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\\Zrhis-dissertation describes research involving vision techniques which would be

useful in an autonomous exploring vehicle, such as a Mars rover. These techniques
+ . produce a description of the surroundings of the vehicle in terms of the position, size, and
c approximate shape of objects, and can match such scene descriptions with others previously
3 S produced.  The informatien produced is thus useful both for navigation and obstacie
avoidance. The techniques operate by using three-dimensional dzta which they can
produce by means of stereo vision from stereo picture pairs or which can be obtzined from
a laser rangefinder, The research thus divides conveniently into two portions: stereo
g ‘ . .mapping and three-dimensional modeiling and matching.
The stereo- mapping techniques are designed tu be suitable for the kind of pictures
\ ‘ that a Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a
depth map of the scene. Emphasis is placed upon extraction of useful data from noisy
pictures and upon the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
position and orientation of the two camera positions); 2 high-resolution stereo correlator for
E o producing accurate matches with accuracy and confidence estimates, which includes the
ability to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce 2 dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched points, including the
propagation of the accuracy estimates, -

The three-dimensional modelling and matching techniques are designed to be
telerant of the errors thar stereo mapping techniques often produce. First, a ground surface
finder tries to find a set of points that form a well-defined smooth surfzce that lies below
most of the other points, Then, by using this knowledge of the ground surface and
1 krowledge of the camera viewpoint that produced the peints in the scene, an object finder
E. approximates-the objecis that are above the ground by ellipsoids. Finally, a scene matcher
can use the descriplicns of scenes in terms of ellipsoidal objects. By using a search pruned
5 by using probabilities obtained by means of Bayes' theorem, it determines the probability
that two scene descriptions refer to the same scene and the linear transformation necded to
bring the two scenes into alignment.

These techniques have been tried on stereo pictures of the Martian surface taken by
the Viking Lander I. The object finder was able to locate rocks f airly successfully, and the

scene matcher was able to match successfully the resulting scene descriptions. Examples of
these results are shown, ;
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ABSTRACT

This dissertation describes research involving vision techniques which would be
useful in an autonomous exploring vehicle, such as a Mars rover. These techniques
produce a description of the surroundings of the vehicle in terms of the position, size, and
approximate shape of ob jects, and can match such scene descriptions with others previously
produced. The information produced is thus useful both for navigation and obstacle
avoidance. The techniques operate by using three-dimensional data which they can
produce by means of stereo vision from stereo picture pairs or which can be obtained from
a laser rangefinder. The research thus divides conveniently into two portions: stereo
mapping and three-dimensional modelling and matching.

The stereo mapping techniques are designed to be suitable for the kind of pictures
that a Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a
depth map of the scene. Emphasis Is placed upon extraction of useful data from noisy
pictures and upon the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
position and orientation of the two camera positions); a high-resolution stereo correlator for
producing accurate matches with accuracy and confidence estimates, which includes the
ability to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce a dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched points, including the
propagation of the accuracy estimates.

The three-dimensional modelling and matching techniques are designed to be
tolerant of the errors that stereo mapping techniques often produce. First, a ground surface
finder tries to find a set of points that form a well-defined smooth surface that lies below
most of the other points. Then, by using this knowledge of the ground surface and
knowledge of the camera viewpoint that produced the points in the scene, an ob ject finder
approximates-the ob jects that are above the ground by ellipsoids. Finally, a scene matcher
can use the descriptions of scenes in terms of ellipsoidal ob jects. By using a search pruned
by using probabilities obtained by means of Bayes' theorem, it determines the probability
that two scene descriptions refer to the same scene and the linear transformation needed to
bring the two scenes into alignment.

These techniques have been tried on stereo pictures of the Martian surface taken by
the Viking Lander 1. The object finder was able to locate rocks fairly successfully, and the
scene matcher was able to match successfully the resulting scene descriptions. Examples of
these results are shown.
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Chapter 1
INTRODUCTION

This chapter describes the types of problems attacked in the current work, provides
an overview of the system which was produced, and describes the notation used herein.

1.1 Motivation and Scope

An important capability possessed by all higher animals is the ability to find their
way around in the world. This ability includes both obstacle detection and navigation.
Although some insects rely mostly on touch and chemical sensors for this purpose, the more
intelligent animals rely largely on vision, which has the advantages of long range, speed in
determining shape information, and the ability to determine the reflectance of surfaces to
aid in identification.

It will become increasingly important for machines to have similar capabilities. For
example, a robot vehicle for planetary exploration, such as a Mars rover, should have some
such ability. Because of the long radio propagation times involved (between 6 minutes and
45 minutes froin Earth to Mars or between 133 minutes and 184 minutes from Earth to
Titan, round trip), and because of the fact that radio transmissions may be interrupted
when the vehicle is on the other side of the planet, it is highly desirable that the vehicle be
largely on its own, with instructions being sent occasionally from Earth.

As with animals, so also with machines it seems desirable to rely heavily on vision. A
robot vehicle may have other navigation devices which are far superior to those of any
animal, such as an inertial navigator, radio navigation equipment, a wheel-revolution
counter for dead reckoning, or even celestial navigation equipment, but each of these has
inherent limitations (and of course is useless for obstacle detection). For example, dead
reckoning can be very accurate over short distances, but as the vehicle travels errors build
up without bound, and thus the position information must be corrected with occasional
fixes from another source. Thus, determining the vehicle position by inspection of its
surroundings when it is in a familiar area can be very important.

As a vehicle explores, it can build up a description of its environment from visual
data. The vehicle position information that it needs for this purpose may come primarily
from dead reckoning, perhaps supplemented by other navigation systems. However, when
the vehicle enters a previously explored area, a considerable position error may have
occured since its previous time there. By visual inspection of its environment it should be
able to recognize the area and correct its position data.

,
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Several types of vision systems are possible. In the most common type, one or more
cameras simply passively view a scene. Although three-dimensional information can be
deduced from such pictures in many cases, more direct, active means of measuring range to
the points in a scene are sometimes used. One possibility is to illuminate the scene with a
light source at one position and view the resuilt with a camera at a different position. By
trianguiation, distance can be unambiguousiy determined. By scanning, the entire scene can
be measured in this manner. Such a system is described by Agin and Binford [1973]
Another possibility is to measure range by the round trip time of flight of a beam of light
which iliuminates the scene. (The term “lidar® is sometimes used for such a device) A
raster scan can cover the entire scene. Such a system is described by Lewis and Johnston
(1977). Although not absolutely necessary, lasers are very convenient for the light source
for both types of rangefinder systems and are used in the existing systems. Thus the term
“laser rangefinder” is used to describe both types of system. It is a moot point whether such
systems should even be called vision. It might be argued that such a laser rangefinder
system is really using touch; its feelers are merely made of photons instead of solid matter.
Be that as it may, the term "vision™ will be used here to include such a system, not only
because it uses light, but also because of the similarity of the data that it produces to the
data which can be extracted from other types of vision systems, as described below. (No
animal has a system exactly like this, although the sonar of porpoises and bats may come

close.)

A vision system used for pavigation can measure various properties of the scenes
being viewed. Reflectivity patterns on ob jects can be used to identify them as particular
landmarks, or the scene can be identified by the three-dimensional shape of its contents,
regardless of their coloring. Animals use both of these methods, and so should a good robot
vision system. However, the research in this thesis is restricted to the latter method.

There are basically three ways in which the desired three-dimensional information
can be obtained by vision. First, a passive monocular view can be used, from which depth
information can be deduced by various clues, such as perspective, shading, shadows, texture
variation, and knowledge about the ob jects in the scene. Some of the recert work on vision
systems of this type is described in Hanson and Riseman [1978) and Shirai [1978). Second,
stereo vision can be used, in which two or more views from different locations can be
compared to deduce the distances to points in the scene by triangulation. This can be
accomplished either by binocular vision, in which two eyes or cameras mounted in fixed
positions obtain simultaneous views, or by motion parallax, in which similar information
can be derived from a single moving sensor. These are squivalent if nothing moves in the
scene, so they are both refered to here as "stereo.” Third, a scanning laser rangefinder can
be used. Animals use both monocular clues and motion parallax, and some use binocular
vision also. The easiest method to use in a robot from the viewpoint of computational
difficulty is the laser rangefinder. The most difficult is monocular vision, because of the
inherent ambiguities in 2 monocular view, which must be resolved by various heuristics.
Therefure, although an intelligent robot should use a combination of these methods, the use
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of monocular cues will not be discussed in this thesis.

If stereo vision is used, each stereo pair of pictures can be processed to produce a
depth map consisting of the distances to points densely spaced over the scene. This is
similar to the data that a scanning laser rangefinder produces. (The stereo method usually
produces less reliable ranges and more blank areas than would the laser rangefinder
method, but the latter may be limited in range and in some cases is not available)
Therefore, the further processing needed is fairly independent of which method was used.
This further processing, which can be calied "modelling”, consists of the reduction of the
information from one or more views to an abstract or symbolic form in order to save
storage, to facilitate recognition upon encountering the same area in the future, and to detect

obstacles.

Vision tasks may be discussed in terms of three types: description, recognition, and
verification, as described by Baumgart (1974] and Bolles (19761 The type considered in
this thesis is mainly description. An unknown scene is viewed and the task is to describe it
in suitable form for the data base. There will be no a priori knowledge of the precise
shapes of objects in the scene, which may consist of rocks scattered around on the surface of
Mars, for example. Thus the system works primarily in a bottom-up fashion, extracting
from the raw data the information needed to describe the scene in terms of the approximate

f size, shape, and position of objects. Hcwever, some similarity to recognition and
verification vision occurs when a current scene is compared to the data base.

An important issue in navigating by visual means is how, in the recognition phase,
the information obtained from a view or views of the current scene is to be matched with
the information previously accumulated in the data base. Should the current data be
transformed into the same kind of data that is in the data base and be compared in that
form, or should a portion of the data base be transformed back into a more primitive form
and compared to the current scene in this low-level form? For example, if monocular vision
is used, an extreme form of the second possibility would be to assume a viewing position
and to project the scene into a two-dimensional picture (o be compared to the actual current
p:cture.  With itereo vision or a scanning laser rangefinder, the same kind of
transformation couid be made, except that range pictures would be compared Instead of

brightness pictures.

It is an important assumption of this thesis that the best choice for the kind of scenes
described above is the first of the above two possibilities. That is, the same kind of
description process should be used on the current scene as was used in generating the data
base. There are two principal reasons for this. First, the search needed in order to deduce
position is less when the matching process operates on symbolic data. If the data were {0 be
matched in the form of numerical values of distance or height at some dense sampling,
values of vehicle position spaced at some fine increment would have to be tried in order to
determine the best matching position. Second, in order to save storage and to make the
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stored data as independent as possible of viewing conditions, the representation used must
discard a good deai of information about the scene and abstract only the significant
features. It then becomes impossible to reconstruct exactly what would be seen from any
particular point. Note that this conclusion might be quite different if the data base
consisted of accurate models of ob jects, such as known manmade ob jects, in which case a
top-down recognition process might be more appropriate.

One purpose of the research described herein is to develop a way of representing
scenes so that they can be matched in this manner and a technique for matching them, and
to see how well these methods work on typical outdoor scenes such as might be seen by a
Mars rover. This problem will be discussed further in Section 1.3. Another purpose is to
develop stereo vision techniques which produce the kind of data that these methods need.
The rationale behind these techniques ard their general outline will be discussed in Section

1.2.

1.2 Stereo Processing

Several different types of stereo vision systems are possible, depending on the level at
which the matching of the two (or more) pictui’ - occurs. Area correlation operates on the
brightness le-els in the actual pictures, attempting 1o match a smail window in one picture
to some area of the same size in the other picture. (IHannah [1974] and many others have
used this method) Edge correlation first applies an edge operator to the pictures to detect
brightness edge elements and thep attempts to match the edges ir one picture to those in the
other picture, a: in Arnoid [1978). Other techniques match even higher features extracted
from the pictures (for example Ganapathy [i975]). Each of these methods has advantages
and disadvantages, and for different types of pictures different methods may be most
suitabie. (Stereo vision systems also can difier in the number of views used to extract the
depth information. For example, Moravec [19%9 and 1980) uses nine-eyed stereo to aid in
resolving ambiguities. However, only twu-eyed stereo is used in the system described in this
thesis.)

Scenes of manmade ob jects often contain smooth lines of high contrast separating
regions that may be fairiy uniform in brightness. 1n this case a system based on edges or
lines would be appropriate. "he edge detector would be able to locate the boundaries in
the scene accurately. An area correlator might not be able to ma‘ch at an edge produc~d by
a depth discontinuity if the background side of the edge is textured, and if the foreground
ob ject is untextured the edges might be the only information about it that can be seen.

On the other hand, natural outdoor scewes often are highly textured. An edge
detector might produce an enormous number of edges to deal with, and the boundaries of
ob jects may be very rough and thus not produce edges that can be easily matched.
However, area correlation should work well in this case. The presence of texture within the
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windows being matched should produce good matches over most of the scene. Trouble may
stili exists at edges of ob jects because of depth discontinuities, but if matches are found over
the rest of each ob ject, these may suffice.

The use of area correlatior: produces a loss in resolution, because the match represents
an average over the match winaow. Typically the match window may be eight pixels by
eight pixels. in which case there would by a loss of resolution of a factor of eight. If
highly detailed information about the shape of ob jects is desired, this would be a drawback.
Huwever, the application in mind here is to produce data for the modelling process, which
will discard fine details anyway in order to represent the scene economically in 2 par:ially
symbelic form. Therefore, the loss of resolution is not very harmful here.

For these reasons area correlation wili be used in this thesis. It should produce points
for which the distance can be calculated spread over the ground and over the surface of
each large object in the scene. From this information the ob jects can be detected and their
approximate size and shape can be measured in the modelling process.

The particular type of correlator used in this research, which includes some
improvements over usua! cross correlation, is described in Chapter 2. It produces a match
when applied locally to a small area by some higher-level procedure, which must periorm
the more global search. In addition to the computed most probable position of match in the
image plane, it computes a two-by-two rovariance matrix which represents the estimated
accuracy of the match, and a probability estimate which indicates the goodness of the
match. The correlator includes the abiliiy to allow for various amounts of brightness and
contrast change between the piciures, depending on the available knowledge about the
pictures.

In some cases the stereo camera model (the relative position and orientation of the
cameras which produced the sterso views) is accurately known before the pictures are
obtained. For example, two cameras may be rigidly mounted on a vehicle and their
positior:s and arientations may have been accurately measured in the laboratory. In other
cases, the :teyeo camera model may be unknown or inaccurately known. For example,
flexu.e in a vehicle may cause slight variations from the previously measured values, or a
one-camera vehicle may move to separate, poorly known, locations for the individual
pictures. In such cases the information to calibrate the stereo camera model can come from
the pictures themselves, although the distance between the cameras cannot be so determined.
Such a self-calibration method is described in Chapter 8. This involves finding a set of
matching points sparsely scattered over the picture, applying the correlator to these points,
and using the resuiting information to solve for the parameters that define the pcsition and
orientation of one camera reletive te the other.

In any case, once the st=reo carnera model 1s known it is easier to preduce a dense
sampling of matched points over the pictures, because the necessary search s
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one-dimensional instead of two-dimensional. A search procedure for doing this, which
applies the corrclator locaily as needed, is described in Chapter 4. It decides whether or not
to accept mawches by using the probability vaiues produced by the correlator and the
agreement of matches with neighboring matches.

From each matched pair of points found by this search procedure, the distance tn the
corresponding point in the scene (and thus the coordinates of a point in three-dimensional
space) can be computed by using the stereo camera model. The computations for doing this,
inciuding the use of the accuracy estimates, are described in Chapter 5.

The mathematics derived in this thesis for the above computations assume that the
relationship between points in three-dimensional space and points in the image plane is the
central projection. (See, for example, Duda and Hart {1973]) Where this is not the case,
distortion corrections can be included in the computations to convert between the central
projection and the actual projection used, insofar as it is known. The places where this
occur in the processing are pointed cut in the subsequent chapters. Two types of distortion
correction are available in the implementec programs. One of these 2ssumes that the image
pixel coordinates, together with range, form a spherical coordinate system, as is the case
with the Viking Lander pictures. The other uses a wo-dimensional polynomial to describe
the distortion. It is used with pictures taken with the Stanford Al Lab Cart, and a way of
calibrating this distortion is described by Moravec [1979 and 1980]

1.3 Three-Dimensional Modelling and Matching

Repgardless of whether a scanning laser rangefinder or stereo vision has been used,
the result is tn2 three-dimensional coordinates of a set of points in the scene. This must be
converted into a suitable form for storing in the data base of an exploring vehicle and for
coinparing to previously accumulated information in the data base.

One possibility would be simply to express each point in terms of height as a function
of horizontal position, relative to a nominally horizontal reference plane. Points gathered
from several observations would simply be combined. When a scene described in this
fashion it compared to similar data in the data base, the heights would be correlated using
something similar to the ordinary two-dimensional correlation coefficient, except that it
wouid have tc take into account the fact that the points are not equally spaced (there even
may be large blank areas). There are several disadvantages to this method. The data base
would require a large amount of storage, and a search to find the correct match would
require a large amount of computing. Therefore, the scene should be represented in a more
compact, abstract way.

The way that has been chosen here represents a scene in terms of ellipsoidal ob jects
and a ground surface. A scene represented in this way is in the form needed for obstacle
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avoidance, in addition to being suitable for storing and comparison with the data base. It
is not necessary that the aciual objects in the scene (for example, rocks on the surface of
Mars) be ellipscids. Approximating them by eilipsoids, while throwing away a good deal of
infermation about their shape, retains the important information needed for obstacle
avoidance (unless it i; desired to pass very close to obstacles), and, if there are many ob jects
in a scene, sufficient information is retained for recognition. (Of course, some types of
obstacles, such as cliffs, could not very weil be represented as ob jects in this way. However,
they couid be included as past of the ground surface.)

Thus, information from one or more stereo pairs or scanning laser rangefinder views
is transformed into coordinate system aligned with a nominaily horizontal plane. A ground
surface finder is then used to find the ground for portions of the scene, which may be tiltad
slightly relative to the assumed horizontal coordinate system. In addition, the computed
ground surface may be curved and may have other complications, depending on the exact
method used, as described in Chapter 6. The ground surfacs finder operates by trying to
find a set of points that form a well-defined smooth surface that lies below most of the
other points. It allows a few points below this surface, such as might be caused by errors in
the stereo processing, and it allows a fairly large number of points above the surface, such
as might occur on ob jects.

The next step in the three-dimensional modelling consists of the application of an
ob ject finder, described in Chapter 7. Points that are sufficiently far above the ground
surface are clustered into objects approximated by ellipsoids. Each ellipsoid is ad justed in
such a way so as not only to fit the points which seem to lie on this ob ject but also to avoid
hiding other points as seen from the camera position.

The representation of the scenes used in the data base could use both the ellipsoid
information (their positions, sizes, and shapes) znd some characteristics of the ground
computed by the ground surface finder (perhaps slope, curvature, and discontinuities).
However, only the use of the ellipsoid information has been implemented in a scene
matcher. For fairly flat ground covered with many ob jects such as rocks, this is the most
important information.

The scene matcher compares the descriptions of two scenes in terms of ellipsoidal
ob jects, as described In Chzpter 8. By using Bayes' theorem it determines the probability
that two scene descriptions refer to the same scene and the translation needed to bring the
two scenes into alignment. It also can ad just for small rotations and scale factor changes.

The techriques described in this thesis have been tested on pictures primarily from
two sources. One of these is the old version of the Stanford Al Lab Cart described by
Moravec [1977]. The object finder was able to xate cars in a parking lot using pictures
digitized from the television camera on the Cart. The other source is the Viking Lander |
on the surface of Mars. Sample results using these Mars pictures are given in appropriate
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places in this thesis. The Mars pictures used for this purpose are described in Appendix C.

1.4 Notation

Matrix notation is used heavily in this thesis. A reader who is unfamiliar with
matrix algebra can find the necessary background information in Hohn [1973].

Matrices are denoted here by capital letters and scalars by lower-case letters, with the
exceptions mentioned below. The transpose of a matrix A is denoted by AT, and the
inverse of A is denoted by A-'. The trace of a square matrix 4 (sum of the diagonal
elements, which is equal to the sum of the eigenvalues) is denoted by tr(4), and the
determinant of A is denoted by det(A). The identity matrix of any size is denoted by /.
The term “vector” is used here in general to denote any column matrix. -

In the special case of a physical vector in three-dimensional space, the vector is
represented by a 3-by-! matrix containing the components in a particular rectangular
coordinate system. However, in this case the symbol for the vector will be a boldface
lower-case letter instead of a capital letter, to emphasize its nature. The cross product of

two physical vectors a and b is denoted by a x b. The magnitude (-JlTa) of a vector ais
denoted by a or |al A unit vector is denoted by the symbol 1 with an appropriate
subscript. (Thus, a=al,, where a represents any vector, provided that a and 1, are

expressed in the same coordinate system.)

It sometimes will be needed to deal with derivatives involving matrices. The
derivative of a matrix (including the case of a vector) with respect to a scalar is defined to
mezn the matrix whose elements are the derivatives of the elements of the original matrix
with respect to the scalar. The derivative of a scalar with respect to a vector (column
matrix) is defined to mean the row matrix whose elements are the partial derivatives of the
scalar with respect to the elements of the vector. The derivative of a vector with respect to
another vector is defined to mean the matrix composed of the partial derivatives of the
individual efements, such that the rows correspond to the elements of the first vector and
the columns correspond to the elements of the second vector. (That is, the {,{ element of

dA

a
7B is Sbi ) Other combinations are not defined.
7

Standard mathematical symbols are used. Thus the use of the symbol I’ to denote the
gamma funclion and the references to the F test in statistics represent exceptions to the

above rule about capital letters being used for matrices.

Symbols for individual quantities differ from chapter to chapter and will be defined
as needed.
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Chapter 2
STEREO CORRELATOR

This chapter describes the correlator (called the high-resolution correlator in Gennery
(1977)) which refines local matches between a pair of pictures. It is the basic low-level
component which operates on raw picture data and produces the information used by all
the higher-level components of the system described in this thesis (except in the camera
mode!} solution, if done, where Moravec's irterest operator and binary-search correlator also
operate on raw data, as described in Chapter 3).

2.1 Statement of Problem

Consider the foliowing problem. A pair of stereo pictures is available. For a given
point in Picture |, it is desired to find the corresponding point in Picture 2. It will be
assumed here that a higher-level process has found a tentative approximate matching point
in Picture 2, and that there is an area surrounding this point, called the search window, in
which the correct matching point can be assumed to lie. A certain area surrounding the
given point in Picture |, called the match window, will be used to match against
corresponding areas in Picture 2, with their centers displaced by various amounts within the
search window in order to obtain the best match.

Let a,(x,y) represent the measured brightness values in Picture 1, a (x,y) represent
the measured brightness values in Picture 2, x,,y, represent the point in Picture | that we
desire to match, x,,y, represent the center of the search window in Picture 2, w,, represent
the width of the match window (assumed to be square), and w, represent the width of the
search window (assumed to be square), where x and y take on only integer values
representing individual pixels.

The following assumptions are made. The pixel values ¢, and a, consist of true
brightness values linearly related to each other. translated by an unknown amount in x and
y. and having normally distributed random errors added. The errors are uncorrelated with
each other, both within a picture (autacorrelation) and between pictures (cross correlation),
and the errors are uncorrelated with the true brightness values. (The assumptions
concerning errors hold fairly accurately for the usual noise content of pictures. However,
another type of change is perspective distortion, which can be important with large match
windows, but it will not be discussec here) No assumptions about the nature of the true
picture content are made, except briefly when discussing interpolation in Section 2.5.

Thus the assumed relationship between the measured brightness values in the two
pictures is
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Bo{x+x =%, $+3,-9,) + 1,(x,9) = aJ1ee? + ca (x,y) + r (x,y) (2.1-1)

where x_,y, is the true matching point in Picture 2 corresponding to ¥,.9, in Picture 1,
r,(x,5) and ry(x,y) are independent normally distributed random variables (roise), and b
and ¢ are the brightness and contrast changes (bias and scale factor) between the pictures.
(The factor J1+¢? is included in the bias term 3o that the bias represents the perpendicular
distance from the origin in a,, @, space to the straight line with slope of ¢ which represents
the relationship between a, and a, This makes the relationship symmetrical with respect to
interchanging ¢, and a,)

It is further assumed that a priori values of bias and scale factor b, and ¢, and their
standard deviations 0, and 0, are available. There may also be some information

available about the stangard devlaotlon of the noise, as described in Section 2.3.

The correlator should use the information in the pictures (the portions specified by
the windows) and whatever information is available about bias, scale factor, and noise in
order to arrive at an estimate of the matching point X.. ) Suppressing the noise as much as
possible based on the statistics of the noise. It also should produce an estimate of the
accuracy of the match in the form of the variances and covariance of the x and y
coordinates of the matching point in the second picture, and an estimate of the probability
that the match is consistent with the statistics of the noise in the pictures, rather than being
an erroneous match. The subsequent sections explain how these goals are achieved.

2.2 Basic Correlator

It is assumed in this section that the standard deviation of the noise is known for
every point in each picture, that the bias and scale factor are known to be zero and unity,
respectively, and that x, and y_ are integers (that is, no fractional-pixel shifts have occured).

Thus we now wish to find the matching point X+ Im Which will produce the best
match of a,(x+x,.~x,, y+y,.-,) to a,(x,9) in 1ome sense. Traditionally the match which
maximized the correlation coefficient between @, and g, has been used (as in Hannah
(1974]). Indeed, this is optimum when the bias and scale factor are completely unknown, if
one of the two functions has no noise. However, here both functions have noise. This fact
introduces fluctuations in the cross-correlation function which may cause its peak to differ
from the expected value. Ad hoc smoothing techniques could be used to reduce this effect,
but an optimum solution can be derived from the assumed statistics of the noise.

Let £ represent the w2 -vector of the differences 8 (x+x,—X . 949 ~9,) - a,(x,y) Over
the w, -by-w,, match window, for a given trial value of Xpyt I AN let x., 9. represent

10




the true (unknown) value of ¥, ,7,. Let p represent a probability and O represent a
probability density with respect to the vector £. Then by Bayes' theorem

Py I ) PE | %00 Ypu=Xc1 )
Pt Im=e: e 1 £) = P Y% er Yo PUE 1%y Fm=%e: I (22-1)

If we assume thai the a priori probability px,,,y,=%..5,) is constant over the search
window and is zero elsewhere, this reduces to

P pys V=% e LE) o< PUE | %0, Yu=%cs V) (2.2-2)

Since E consists of uncorrelated normally distributed random variables,
I exe(- oo

p(E I xm, ’m-xc. ,c) o< exp(— m)

(22-9)

4

|
- exp(—iz 0’?*0’3

where ¢ denotes the components of E, o, and 0, are the standard deviations of @, and a,
and the product and sum are taken over the match window. (Very often, the variances 63
and Ug can be considered to be constant. In this case, the summation can be reduced to the
sum of the squares of the differences over the match window, with the sum of the two

variances factored out.) Thus, defining w to be

| ¢
W = enp(—-f 2 m) (22“*)
produces
P I=%ee 3 | E) = hw (2.2-5)

where k is a constant of proportionality.

So far, the derivation is quite usual. If we 3imply wanted to maximize p {for the
maximum likelihood solution), we wouid minirmnice the above sum (that is, use a wei~hted
least-squares solution). However, because of the fluctuations in w caused by the presence of
noise in both images, the peak of p in general differs from the center of the distribution of

P in a random way due to the randons nature of the errors.

Therefore, we define the optimum estimate of the matching position to be the
mathematical expectation of x,,, 3, according to the above probabtiity distribution. Thus,

letting {x,. y,) represent this optimum estimate, we have
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where the sums are taken over the search window. The variances and covariance of Xy and
9, are given by the second moments of the distribution around the expected values:

(2.2-6)

, L wa? ’
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%y, = Tw % (22-7
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The covariance matrix of x, and y, consists of aiz and 0";,2 on the main diagonal and

o, ¥ " both sides off the diagonal.
2
Because of the finite search window size, the covariance matrix computed by (2.2-7)
may be an under-estimate. It is possible to apply an approximate correction for this effect
(and the implemented correlator does so), but as long as the width of the correlation peak
represented by (2.2-5) is considerably less than the width of the search window, the effect is

negligible.

It might appear that the above analysis is not correct because of the fact that certain
combinations of errors at each point of each picture are possible for more than one match
position, and the probability of these combinations is split up among these match positions.
However, this fact does not influence the results, as can be seen from the following
reasoning. The possible errors at each point of each picture form a multidimensional space.
When a particular match position is chosen, a lower-dimensioned subspace of this spuce is
selected, in order to be consistent with the measured brighiness values. When another
match is chosen, a different subspace is selected. These two subspaces in general intersect, if
at ali, in a subspace of an even lower number of dimensions. Thus the hypervolume (in the
higher subspace) of this lower subspace is zero. Therefore, the fact that the two subspaces
intersect does not change the computed probabilities.

The computation of the output probability estimate depends on some quantities
computed in the variance estimation portiori of the computations, 30 it will be discussed in

the next section.
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2.3 Variance Estimation

If the amount of noise in the pictures is not known, it is possible to estimato it from
the pictures themselves, provided that some assumptions are made about the way in which
the variance (squars of the standard deviation) of the noise varies over the pictures. In
some cases, the variance may be a function of brightness. For example, shot noise variance,
which is the primary source of noise with some phoiodiodes, is proportional to the
amplitude of the signa! (and thus the standard deviation is proportional to the square root
of the signal). For some solid-state cameras the noise might need to be caiibrated for each
pixel in the pictuie. (If it can be completely calibrated, then it can be used in the equations
in Section 2.2, and no variance ad justment is needed.) It is assumed in this section that the
noise variance is constant over each picture. (If it actually varies with brightness in a
known way, the data can be transformed by a nonlinear function to make the variance
constant. For example, taking the square root of each pixel brightness value will cause shot

noise to hecome constant.)
Let v represen. the total variance in both pictures. Thus

ve=ol+o0? (2.3-1)
The task at hand is to estimate v, since this is the quantity that is needed in (2.2-4).

Often some knowledge is available about the noise variance, even if it is not known
exactly. It is assumed here that this knowledge can be represented by a chi-square
distribution. Let the a priori value of v be denoted by v,. Then it is assumed that v, has
the chi-square distribution with n  degrees of freedom. This assumption is made both for
its convenience in the subsequent calkulations and because of the fact that, if the variance
has been estimated by squaring n, samples from a normal distribution and averaging them,
it will have this distribution. Thus n, can be considered to be the weight of the
observation v,. (See Hogg and Craig (1965) for this and other information about the
chi-square distribution.) If the variance is completely unknown, n, = 0. If it is known

exactly, nj = w.

An estimate of the variance can be obtained from the goodness of fit between the two
pictures when matched. This computed estimate is denoted v, If the correct matching
point x,,9, were known, it could be used for x,,,y, 10 compute the vector of differences
between the two pictures E, and then a good value for v, wouki be the mean square value
of these differences, Tef/wl,. However, the correct match is not known. However, w from
(2.2-4) is proportional to the probability that each x, .y, match is correct, according to
(2.2-5). Therefore, a weighted average over the search window, with w as the weight, of the
mean (over the match window) squarad value of the differences is used as a preliminary

value for V. That i3,
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(2.3-2)

where the outer sums are taken over the search window and the inner sum in the
numerator is taken over the match window. (Remember that w and the differences ¢; are
implicit functions of the position of x_ .,y within the search window, in addition to ¢;
being a function of the pesition within the match window as indicated explicitly by the
subscript i) Since the computation of w requires the value of v in (2.2-4), the process is
iterative, and v from the previous iteration is used to compute w in this iteration.

The estimate given by (2.2-2) is called "preliminary” because the process of averaging
over the search window, weighted by w, introduces a bias. The mear squared residuals
fluctuate over the search window because of the random nature of the noise in the pictures.
The weights are computed from ihis value according to (2.2-4), and thus there is a
statistical tendency for the smaller values to have the greater weights. This causes v_ to be
an underestimate of the variance by varying amounts depending on the sharpness of the
correlation peak. At one extreme, the correlation peak is very sharp, one value of w is
much larger than all of the others, and thus only one term has any appreciable effect in the
summation over the search window, and since this is almost certainly the correct matching

point there is no bias in u_. At the other extreme, when the correlation peak is very broad, .

there are many roughly equal terms in the summation, with fiuctuations from noise greater
than their difference from the peak caused by true brightness differences across the
pictures. In this case v, approaches being an underestimate by some cons:ant factor.

To see how much of an underestimate is produced in the limiting case of a very
broad correlation peak, first note that the sum of the squares of the differences has the
chi-square distribution with w? degrees of freedom (because the noise has the normal

distribution). Specifically, if we define

e
v (2.3-9)

b4
n-wm

U =

where v is the true total variance, then the probability density function of u i3

o g ¥
I‘(g):z"/’u exp(- p ) (2.3-4)

Now assume that the variance is known exactly, so that the correct variance is used in
(2.2-4), which becomes

(2.5-5)

w e exp(—;)
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{The variance may not be known at the start, of course, but as the method iterates to a final
solution for variance, a good estimate of the variance will become available to compute w.)
Then (2.3-2) can be rewritten as

. v Z wu
vc - m (23"6)

In the limit as the search window over which the summations are taken increases without
limit, the ratio in (2.3-6) approaches a constant that is the ratio of the expected values of
the quantities wu and u. Thus, ‘

[+ ]

, vj; Ppwudu
v, = —— (2.3-7)

[e 2]
ny‘; Pwdu

Substituting (2.3~4) and (2.3-5) into (2.3-6) produces

o)

i -y,
v j{: W un/2 lex p(-~u)udu
v; - =
| -
nJ; E—;—);;;u“/? texp(-u)du
° (2.3-8)
l 2u
———— (Qu)"/? Yexpl~ 5 X2uMd(2
v_’; I‘(;)W‘/i WP expl - Kauldizu)
2n f ’ — (2u)"/2-texp(~ i Mi(2u)
° T(gnh? 7

But the integrand in the last denominator is the probability density function of the
chi-square distribution with n degrees of freedom and 2u as the variable, which integrates
to unity, and the integral in the numerator similarly is the expected value of the chi-square
distribution with n degrees of freedom, which is n. Thus (2.3-8) simplifies to

v - o (2.3-9)

This means that in this extreme case the variance computed by (2.3-2) is only half as large
as it should be.

Thus v, is too small by a factor that can be anywhere from 0.5 to I. Since this range
is 50 small and since variances are seldom known very accurately anyway, it is possible to
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adequately correct for this bias by an empirical formula. A way of determining
approximately where we are between these extremes is to examine the minimum value of
Zelw?, over the search window, denoted by v,,. Because this is the quantity which is
averaged to produce v, if the correlation peak is sharp v,, is approximately equal to v_.
But v, tends to become smaller and smaller relative to ué as the correlation peak becomes
broader, because of the statistical fluctuations. By simulating a variety of cases with
pseudo-random numbers, an approximate correction factor based on the ratio v, /v, was
determined. It is applied to the variance estimate as follows:

’

< (2.3-10)

v
1-0.5(1 - —3)%8
vc

v

where v, is the minimum value of Ee}’/w?n over the search window, as defined above.

A weight, or accuracy estimate, must be assigned to the above variance estimate so
that it can be combined with the other sources of information. The exactly correct weight
to use would be difficult to determine. A conservative approximation which is adopted is
to consider v, to have the chi-square distribution with n, degrees of freedom, where n_ is
w';’n—2 or 200, whichever is less. (Thus n, is the weight) The reasons for this choice are
that the mean squared differences would have the chi-square distribution with w2, degrees
of freedom at the correct matching point, two degrees of freedom are subtracted to aliow for
the two degrees of freedom that are involved in ad justing the position in the image plane,
the averaging over the search window increases the weight somewhat but in a way that is
hard to estimate (because of the duplication of data influencing the average), and the
approximate nature of the correction factor introduces some additional uncertainty, for

which the limit of 200 is included.

A third source of information about the noise in the pictures can be obtained from
their high-frequency content. This produces only an estimate of an upper limit to the
variance, because the high-frequencies may contain true picture information in addition to
noise. However, the high spatial frequencies are better to use for this purpose than any
other frequency band, because picture content usually tends to be concentrated at the lower
frequencies. First, the square of the output of a simple two-dimensional high-pass fiiter is

computed as follows for each picture:

U - la(x-1,9) + a(x+],9) + a(x.z_‘(y)—l) + a(x, y+1) - 4 a(x, )P @8- 11)

Then U is averaged over the match window in each picture and the results for the two
pictures are added together to form the estimate of the upper limit of v, denoted v,. The
weight assigned to this estimate is n, = 2u?,, because this is the number of observations

which are averaged to produce the estimate.




Thus there are three estimates of noise variance, v,, v,, and v, with weights n,, n.,
and n,, which result from the a priori values, goodness of fit, and high-frequency content,
respectively. These must be combined to produce an overall estimate of variance v, and
must be compared to produce the probability estimate. (Some of the above formulas for

these quantities will be altered slightly in subsequent sections.)

If the estimate of v on the current iteration is less than v, the value of v, does not
matter, since it is only an upper limit. Therefore, in this case the new estimate of v is the

weighted average of v, and v,, as foliows:
ny,+ny
ve 2255 (2.3-12)
Ny, + M,
On the other hand, if the current estimate of v is greater than v, all three values are
averaged, as follows:
MY, + MU, + N,
n,+n, +n,

(2.3-18)

vV e

The iterative process for v as described above undergoes linear convergence, and in
some cases it converges rather slowly. Therefore, convergence acceleration is applied to it,
using a one-dimensional specizl case of the acceleration method described in Appendix A,
which is equivalent to Aitken's extrapolation {see Acton [1970]).

The probability estimate is derived by comparing the estimate of noise variance
obtainec from the goodness of fit (v.) to the nther estimates. Since it is assumed here that
each of these estimates has a chi-square distribution, the Snedecor-Fisher F test is the
appropriate way to do this. (See Hogg and Craig (1965]). If the value of v, on the last
iteraticn is less than v, the value of v, does not matter, approximately. Thereiore, in this
case the quantiry computed is the probability that the ratio of the variance of a sample with
n, degrees of freedom to the variance of a sample with n, degrees of freedom, both from
the same distribution, will exceed Vlvy On the other hand, if the final value of v, is
greater than v, both v, and and v, must be considered. However, in this case the
distribution of the combined v, and v, vaiues is not chi-square because of the fact that v,
is only an upper limit. As an approximation, the lesser of two F-test probabilities is used,
one as above using v, and the other using v, instead, with n,, degrees of freedom.

24 Brightness and Contrast Adjustment
In many cases changes in the brightness of each point in a scene may occur between

the twe pictures of a stereo pair. Some causes are differences in the cameras that took the
two pictures, directional reflectivity of the surfaces, and changes in Hlumination if the
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pictures were taken at different times. It is assumed here that these changes can be
approximated within the search window of the correlator by a linear function. Thus the
changes can be represented by brightness bias and contrast ckange (scale factor) between the

two pictures.

In order to allow for change in brightness and contrast between pictures in area
correlation when using ordinary cross correlation, a common approach has been to use the
correlation coefficient as the quaniity to be maximized, as in Hannah [1974] The
correlation coefficient is normalized so that it is invariant under a linear transformation of
the brightness values. However, using such a criterion throws away a lot of information
about the pictures unless the brightness and contrast changes are compietely unknown,
which is seldom the case. The correlator described here has the ability to incorporate the a
priori knowledge about these changes in the form of the standard deviations ob and 0, c,
If these are infinity, the changes are completely unknown, and the correlator %is free to
ad just them in order to obtain a good fit, as with the ordinary correlation coefficient. At
the other extreme, if these standard deviations are zero, the changes are constrained
completely, and the correlator accepts only an exact match between the pictures, except for

noise.

The equations derived below include a weight equal to the reciprocal of the variance
for each point, so that they can be used in the general case where the noise variance is not
constant over the picture. If the varlance is constant, it can be factored out of the
summations. 1f the variance ad justment described in Section 2.3 is done, the variance must
be assumed to be constant, and factoring out the variance avoids having to recompute
things as the variance changes during the iterations. (The implemented version makes this
assumption always) The variance 02 to be used here is the variance in each picture, if the
variances are equal in the two pictures, which is v/2. If the vartances are not equal, what is
wanted is the the component of variance perpendicular to the line with slope ¢ in a,,4a,
space. Letting & = arctan ¢, we have

02 « 023in20 + 62 cos? 0 (24-1)

(In general, this equation would also include the term -20",, sin @ cos 8, but, since we have
assumed that the noise in the two pictures is uncorrelated, 0, is 1ero) However, the
eigenvector method described below assumes that 0, = 0, (that is, the amount of noise in
.the two pictures is equal). If they are widely unequal, large departures from optimality may
occur. If this is the case, one of the pictures can be rescaled to make the variances at least
approximately equal. Note that equation (2.4-1) requires the use of ¢ (to obtain 8), which
has not been computed yet. In general, this could be solved by iteration, but if the
variances are approximately equal, using ¢, for ¢ here shoukd suffice. (If 0, = 0, exactly, 6

drops out of (2.4-1))
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First consider U"o and U"o to be inimity. Then at any tentative matching position
Xy Im What is desired instead of tlie sum of the squares of the differences in (2.2-4) and
(2.3-2) is a measure of dispersion about a linear fit between the values in ¢, and a,, taken
over the match windows. This is equivalent to fitting a straight line to points in two
dimensicns, where the erruis occur in both coordinates of each point. As discussed by
Duda and Hart (1973), the appropriate riethod to use in such a case is the eigenvector
method. In the unweighted case, this method minimizes the sum of the squares of the
petpendicular distances from the points to the fitted line, the minimum value achieved is
the smaller eigenvaiue of the distributicn about its mezn, and the direction of the line is the
eigenvector corresponding to the larger eigenvaive. The measure cf dispersion that is
desired hzre is this minimized sum. (Actually, twice this is equivaleat to the sum of squares
of differences, because the difierence between an a, vaiue and an g, value is J2 times the
distance from the corresponding point to a 45° iine through the origin !n a,, a, space.)

In order to compute the eigenvaiue Jdesired above, the weighted moments of the
distribution about the mean are first computed. as follows:
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where

and where the summations are taken over all points in the match window, with ¢, and a,
aligned according to the current value of x, and ¥, (that is, g (vex~x,, y+y,.~9,) i
paired with a (x,y)). Then the smaller eigenvalue is

S - % (‘22 +5, - J(sm-.r“)’ + 15';',) (2.4-9)

This eigenvalue replaces Zefl(0%+02) in (22-4), so that insteac cof (22-4) the
following (s used to compute w:

w - exp(-é) (2.4-4)

If variance is beiny adwstsd, s is muliiplied by che current value of 207 (assumed to be
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constant over the picture), which cancels out the effect of 0" in these equations, to obtain the
value which replaces Tef in (2.3-2). Thus, instzad of (2.3-2),

2
v - T ZW 24-5)
Wl Tw

Now consider the effect of the a prior! knowledge about brightness bias. This
knowledge can bz incorporated into the solution by introducing a {ictitious point into the
summations in {2.4-2), which represents a point through which the fitted line would have to

pass if b = b, exactly. The coordinates of this fictitious point are a, = -3¢/ 1+¢? and

ay = b, /\I—l:c.E (The value of ¢ to be used here can be ¢, as » reasonable azproximation, or
the solution can be iterated using improved computed values of ¢ on each iteratior. The
tmplemented version assumes that b, « 0, in which case a, and a, are toth 2ero for this
fictitious point) In order for this fictitious point to have the proper amount of effect
according to the assumed accuracy of &, it must be weighted by the reciprocal of its
variance. Since the variance of this fictitious point in each dimension is O'zo.

n, - L (2.4-6)

The extra values of a, and a, are multiplied by ", and added into the summatioiis in
(2.4-2), and = is tncreased by n, in (2.4-2).

The a priori knowledge about contrast change can be incorporated into the solution
in the following way. Consider the effect of adding two fictitious points to the solution,
each at a distance r from the origin in opposite directions from the origin on a line with
slope ¢, in a,.a, space. Let the angle between this line and the a, uxis be 6, so that ¢, =
tan 6. (in the implemented version ¢, is assuimed to be unity, and thus @, « 45°) Then ¢,
= +rcosf and a, = + 1 sin O for these points. The a priori accuracy can be expressed in

terms of the standard deviation of the angle,

o*,o -0 cocos’Oo (2.4-7)

Let 0, be the assumed standard deviation of the fictitious points in each dimension. If
these two fictitious points were the only points in the solution, o‘ would vepresent the
accuracy of the direction cf the line connecting them. Since the distance between the points
is Zr, each point contributes (0,/2r)? to the variance of the angle, 3o that the effect of both

points produces

o)
03 - = (2.4-8)
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The weight that each fictitious point should have is the reciprocal of its variance:

i
" " oF (24-9)

Solving (2.4-8) for 0’2 and substituting into (2.4-9) produces

|
n% - E;'T;: (2.4-'0)

When the two fictitious points are included in the summations in (2.4-2), their contribution
to the outer summations (considering the means to be constant) are

Qs = ‘zn%r2 cos? 8,
Asy, = 2nc°r2 sin 8, cos 0, (24-11)
As,, = 2nc°r"' sin? 6,

Substituting (2.4-10) into (2.4-11) produces

i
Qs » — cos?f,

o}

sy, = S sin 8, cos 0° (24-12)

o}

Note that r has canceled out of (2.4-12). However, in the inner summations in (2.4-2)
(computing the means) it will not cancel out. Here r will appear in the first power in the
denominator. Therefore, in the limit as r goes to infinity, these terms drop out and
equation (2.4-12) correctly gives the entire effect of the fictitious points. It was considered
above that a,o represented the accuracy of the direction of the a priori line if only the
effect of the fictitious points were considered. However, again In the limit as r goes to
infinity, the effect of the fictitious points interacting with the real points to affect the
direction becomes zero, because the centroid of the fictitious points is constant (at the origin)
and their weight becomes rero, according to ((2.4-10). Therefore, equation (2.4-12) correctly
gives the effect of the a priori contrast knowledge.

The brightness and contrast ad justment can now be summarized as follows. For each
position x_.,y,. equation (2.4-2) is used, including the fictitious point for b, with weight
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given by (2.4-6), the resuits are augmented by (2.4-i2) and are then used in (2.4-3), and the
resulting value of s is used in (2.4-4) and (2.4-5).

Although the above computations correct for brightness bias and conirast changes
between the pictures, explicit values for the changes (b and ¢) are not produced. These may
be desirable, however. Values resulting from the application of the correlator to some parts
of the pictures may be used to improve the estimates b, and ¢, given to the correlator when
it is operating on other parts of the pictures. The above computations are done for all
tentative matching positions within the search window, but single values of & and ¢ are
desired, computed from the apparently correct match.

Thus the adjusted values of b and ¢ are computed in the following way. First, the
matching point computed by (2.2-6) is rounded to the nearest pixel. Then the values of
Syiv Sy and s, computed as described above for this x,,,y,, position (including the
fictitious point and the A terms) are selected. The eigenvector of this distribution
corresponding to the larger eigenvalue determines the scale factor ¢. (The eigenvector
makes an angle @ with the a, axis, and ¢ = tan 6, as previously described.) The direction of
this eigenvector can be found from the following relationship:

St J(’zz"ln)2 + 45], (24-19)

"

Cwtanf =

Then b is the pe:pendicular distance from the origin to this eigenvector, where the line
representing the eigenvector is assumed to pass through the mean of the distribution.

Therefore,

a a
cos O z ;"; -sin@ 2 ;-'5
b - 2 ! (2.4~14)

where the summations include the fictitious point for 8., and n similarly includes n‘.,

2.5 Interpolation

The computations described in the previous sections assume that the shift between
the two pictures is always an integer number of pixels. In this section that assumption Is
removed, and the effects of noninteger values for x, and y, and how to deal with them are
discussed. First will be discussed how to obtain satisfactory performance from the correlator
in spite of these effects, without any particular attempt o produce subpixel accuracy in the
x, and y, matching position estimates. Then a way of interpolating to produce this subpixel
accuracy will be discussed briefly.
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In cases where the correlation peak is broad (caused by a low signal-to-noise ratio),
the smoothing process inherent in the moment computation for x,. 3, 02 , 0;2. and 0,
cause a reasonakle interpolation to be performed if the correct answer lies between pixels.
However, when the correlation peak is sharp (caused by 2 high signal-to noise ratio), this
will not happen, and the answer will tend towards the nearest pixel to the correct best
match. This is not particularly serious insofar as it affects the position estimate, but it can A
have a serious effect on the variance estimate v, and thus on the probability estimate also. ‘
This is because the E vector should be much smaller at the correctly interpolated point than
it is at the nearest pixel, because of the sharp peak. Therefore, vy, may come out much too
large, causing the probability estimate to be much too small, indicating a bad match,
whereas the match actually is good but lies between pixels. To overcome this deficiency, the
previously described computations are slightly modified.

Because of the tendency for x, and y, to tend towards the nearest pixel, the

covariance matrix is augmented by adding I'-2 to 0 and 02, (Unity pixel spacing in x and
9 is assumed here, as before) This is done because the variance of a uniform distribution
with unity width is -'5 This in general overestimates the variance, since it assumes no

inherent interpolation ability in the correlator.
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The effect on the variance estimate will now be discussed. Without knowing
something about the nature of the pictures, it is impossible to accurately correct for this
phenomenon. However, a crude approximate correction can be made to Ve and its weight
n, can be decreased by a liberal amount to allow for the uncertainty in this estimate.

Consider the various estimates of v which can be obtained from Tef/w?, or 20%s/w?,,
for each position within the search window. The minimum value of this quantity,
previously denoted v, occurs at some particular position within the search window. Now
consider the two such estimates for v obtained at one pixel displacements in the x direction
from this minimum. Let Qv  denote the difference between these two values. Similarly let
Avy denote the difference between the two values displaced one pixel in the +y directions.
A sort of worst case assumption, whith assumes that the true function wanted here is a
V-shaped function in each dimension, leads to the conclusion that the true minimum of the
function is less that v, by (IAu,MAv’I)I'L However, if the corrected weighted-average
value v, from (2.3-10) is appreciably greater than v, the averaging process is doing some
interpolation, and thus there is less need for a correciion term. Therefore, the quantity
Uo—0,, I8 subtracted from this quantity. Furthermore, if v, is greater than the v estimates at
reighboring pixels, the corresponding values are replaced by v, in the computation of Qv
and Aur for similar reasons. Since the resuking correction (lAv,MAv,l)l? - v, ¢+,
represents sort of a worst case, it is divided by 2 to obtain an actual correction (not to be
less than 1¢ro), which is subtracted from w,, and the uncertainty in this correction is about

the same magnitude. Thus, let
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Ay, = max(o, ,:,(I——vi;L—vﬂ -y, + v,_)) (2.5-1)

The corrected value of v, i then

U, = max(0, v, ~ Av,) (2.5-2)

The weight n, must be ad justed to reflect the uncertainty in the correction. This can
be done by using the fact that the mean of the chi-square distribution with n degrees of
freedom is n and its variance about the mean is 2n. Thus, if it is assumed that the
additional uncertainty in 7, caused by the uncertainty in this correction has a standard
deviation equal to Av,, the corrected weight can be found from

L, L (2.5-9)
B e $ esnema .
Re e 22

The corrected quantities J, and 7, are usec in place of v, and n, in the equations in the
previous sections.

If the information in the pictures could actually be interpolated to produce interpixel
values, not only could a better corrected variance and weight be produced than by using the
above crude corrections, but the position estimates x, and 3, could perhaps be refined to
subpixel accuracy, with their variances becoming considerably less than the ili values used
above. Ways of doing this will now be discussed.

In order to interpolate, some assumption must be made about the nature of the
pictures. For example, if the pictures consisted of white noise, and they were sampled
without any filtering to produce the digitized versions, there would be no way that any
useful interpolation could be done (other than just setting all interpixel values to zero),
because the interpixel values would be completely independent of the pixel values. At the
other extreme, suppose that any content that the pictures contain at higher spatial
frequencies than 7", (the Nyguist frequency) in each dimension has been removed by
filtering before the pictures are sampled. Then in the absence of noise it is possible to
reconstruct the unsampied filtered pictures exactly by Fourwer interpolation. Ordinarily the
situation is between these extremes. There will be some conient above the Nyquist
frequency before sampling, and the sampling process folds this content into the frequencies
below the Nyquist frequency. This process, known as “aliasing®, contaminates these lower
frequencies with this extraneous information, so that when interpolation (s done based upon
the information In these lowsr frequencies, errors are produced. In order to know how to
Interpolate the data to keep these errors small, some statistical knowledge about the amount

of aliased content must be available.




e e et e < P

If a certain power spectrum of true picture content could be assumed, the amount of
aliasing could be computed at each frequency, and thus a weighting function of frequency
could be derived, based or; the accuracy of each spatial frequency as deduced from its
amount of contamination. Ther a Fourier interpolation tould be done, but instead of
cutting off precisely at the the Nyquist frequency, the computed frequency components
would be multiplied by the weighting function, causing a gradual cutoff as the Nyquist
frequency is passed. The result could then be transformed back to the space domain to
obtain interpolated data. Also, an additional variance component representing the
uncertainty in the interpoiation would be computed, as a funciion of the interpolation
position. (The variance due to noise usually is less for the interpolated points because of
the averaging that occurs in the interpolating process, but the additional variance caused by
the aliased picture content usually causes the total variance to increase.)

An interpolating version of the correlator has been produced based on the above
reasoning. It interpolates o, to a finer sampling interval in both dimensions, with the
option of two different assumptions about the nature of the power spactrum, one of which
produces linear interpolation. Then a, is compared to the interpoiated 4, at the original
sampling interval as required for (2.2-4) or (2.4-2), with 02 augmented for the interpolating
error, but this is done for every position within the search window at the interpolated
sampling interval to produce the summations in (2.2-6) and (2.2-7). Ther. the approximate
interpolation corrections described above are applied at this interpolaied sumpling interval
instead of at the original sampling interval. (If the interpolation is done at a fine enough
sampling interval, this last step is not necessary, but it is usually not known beforehand how

fine an interval is needed.)

Although this interpolating version of the correlator can produce greater accuracy in
some cases, it is very slow. It was developed for a special upplication while the author was
at Lockheed, and it has not been used in any of the other rezearch described i this thesis.
Therefore, it will not be described in further detail here. (The usual version of the
correlator does use the approximate interpolation corrections previously described, however.)

2.6 Color

The description of the correlator in the previous sections assumes that the pictures
are monochromatic, and this is the case in the implemented version of the correlator.

However, most of these computations generalize readily to handle color pictures.

If color pictures are used, then for each pixel the scalar o, or &, is replaced by the
vector A, or A, with one component for each primary color being used. OF course, it is not
necessary to use three primary colors, as with human vision. In designing a vision system to
perform a particular task, the number of primary colors and the bands of wavelengths to
which they correspond would be chosen according to how the content of typical scenes




varies at different wavelengths. Thus the 4, and 4, vectors might weli have more than
three components. (It Is not even necessary that all of these components be obtained from
brightness at certain wavelengths of light. Some might come from other information, such
as parameters describing texture obtained at extra high resolution, or sonar data.)

In equation (2.2-4), where the square of a difference ¢f is used with monochromatic
pictures, the sum of the squares of the components of the difference of the two vectors could
be used instead for color pictures, if all components of the vector were equaliy accurate.
However, in general the noise in each primary color will be diffzrent, and thus the square
of the difference of each component must be divided by the variance of that component
individually, and these results summed to replace ¢}/(02+02) in (22-4). A more general
form to use when the noise in the different primary colors is correlated would be to use the
quadratic form produced from the vector and the inverse of the covariance matrix which
describes the noise. Equation (2.2-4) would then be replaced by

w - exp(—--; 2 (Al-A?)T(S,+S,)"(A,-A2)) (26-1)

where S, and S, are the covariance matrices of the vectors 4, and A, these quantities are
to be aligned according to the current position within the match window as described in
Section 2.2, and the summation is over all positions in the match window. (The subscript
has now been dropped, and the dependence upon position within the match window is now
implicit) However, ordinarily the noise in the different channels is uncorrelated, and thus
Sl and 82 are diagonal matrices, and (2.6-1) reduces to the simpler form described above.

In the variance estimation, there will now be a separate component of variance to
estimate for each primary color. Equations (2.3-2), (2.3-10), (2.3-11), (2.3-12), and (2.3-13)
can be applied independently for each component. However, a more general form is
possible, as with (26-1), in which a compiete covariance matrix is estimated. To do this,
instead of squaring each single component in (2.3-2) and (2.3-11), the outer product of a
vector with itself is taken (that is, the matrix product of the vector times the transpose of
the vector) to produce a square matrix. As stated above, this would seidom be necessary.

In order to obtain the probability estimate, a separate F test could be computed for
each primary color. The product of the resulting probabilities could be used as the result.

If brightness bias and contrast change are to be adjusted, there are several
possibilities, depending on exactly what 13 wanted. If a separate ad justment for each
primary color is wanted, the equations in Section 24 can be used separately on each
component. However, if a single ad justment affecting all channels equally is desired, these
computations would have to modified slightly to include this constraint. The most general
linear relationship between the two vectors A, and A, would be to premukiply one of them
by a square matrix of contrast coefficients and then to add a vector of bias coefficients.
How all of these coefficients could be determined i3 beyond the scope of this thesis, and 1t Is
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hard to imagine how such a relationship (including nonzero off-diagonal elements in the
matrix) would be produced by a reasonable vision device.

2.7 Speed

In processing a typical stereo pair of pictures by the technique to be described in
Chapter 4, the correlator is applied thousands of times. More than haif of the total
computing time through all of the computations described in this thesis can be spent in the
correlator. Therefore, considerable effort was put into making the correlator efficient.

It might appear that mos« of the time in the correlator would be spent in computing
the sum of squares of differences needed in (2.2-4) or the sum of products needed in (2.4-2).
(For example, if w,, = 8 and w, = 8, there would be 8'=4096 total terms in all of the
summations needed in (2.2-4) over the search window.) If the code for these computations
were written in a straightforward way using nested FOR loops, this would be the case.
(Fourier-transform methods are faster only with large windows) However, a special
method for computing the needed sum of squares of differences developed by Moravec
(1977] is used in the implemented correlator. This utilizes the fact that the pixel brightness
values can be represented by small integers. It does the difference by indexing with a
register and does the squaring by a table lookup. The machine code for this is compiled in
line for the entire match window by the program. Then the main program uses this code
for each position within the search window. The entire inner loop of this code (each term
of the summation) consists of one Move Negative instruction and one fixed-point Add
instruction and requires about one microsecond on the PDP KL10.

When the bias and contrast ad justment is done, a sum of products is needed in
(24-2). Since 2a,a, = al+al-(a,-a,)% this is computed from the sum of squares of
differences and two sum of squares. The sum of a? over the match window is constant, and
the sum of a3 over the match window I3 computed quickly for each position within the
search window by the usual moving-average technique of adding new points and
subtracting old points as the match window moves. Alternatively, this latter sum of squares
could be computed by specially compiled code similar to that for the sum of squares of
differences.

Various other techniques are used to speed up the computations. For example, the
exponential function needed in (2.2-4) is computed by a table lookup, and, if the argument
is so large tha: w will be negligibly small, the computations using w are bypassed for this
position within the search window. Alo, in computing the moments according to (2.2-6)
and (2.2-7), symmetry i3 utilized, 30 that the numbzr of multiplications is cut almost by a

factor of four.

The actusl amount of time used by the correlator depends upon the sizes of the
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search window and match window, the signal-to-noise ratio, whether brightness bias and
contrasc are ad justed, whether the varlance upper limit from high frequencies is used, and
the accuracy of the a priori variance estimate. If w, « 8 and w,, = 8, the CPU time on the
PDP KLI10 runges from about 14 milliseconds to about 70 milliseconds.
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Chapter 3
STEREO CAMERA CALIBRATION

In order to do the computations to be described in Chapters 4 and 5, the stereo
camera model (the relative position and orientation of the two cameras which produced the
stereo views) must be known. In some cases this is known beforehand. If it is not, the
information to calibrate the stereo camera model can come from the pictures themselves.
This chapter describes such a self-calibration method. This problem is known as the
relative orientation problem in photogrammetry. (For example, see Schut [1957 and 1959])
However, the data for the ad justment is obtained in a different way here, as described in
Section 3.1, the additional features described in Section 3.2 are used, and the basic
formulation of the problem here is somewhat different from the usual approaches in
photogramnietry, as pointed out in Section 33. (Some of these solutions used in
photogrammetry allow the use of many cameras, instead of just two, however, as in Davis
(19671) An equivalent problem occurs when a single fixed camera views a moving ob ject
at different times. Such a problem is treated by Ullman [1976), although he considers
mainly the case of three views of only four points. Here, only two views are used, and thus
at least five points are required for a solution if there is no other informatton.

3.1 Points for Self-Calibration

In order to extract the necessary information from the pictures themselves, some
features or points must be matched between the two pictures. Since the camera model is not
yet known, this requires a two-dimensional search. However, the number of matches
required is not large. It should be at least as great as the number of camera model
parameters being adjusted, and preferably considerably greater in order to improve the
accuracy and to detect errors. From 20 to 50 matches scattered over the picture is

reasonable.

The implemented program uses Moravec's interest operator and binary-search
correlator to perform this matching (Moravec (1977 and 1980)). First, the interest operator
is applied to Picture | and finds small features with high information content. It
discriminates against features with low contrast or with primarily one-dimensional
information. Then the binary-search correlator finds the corresponding points in Picture 2.
It uses a coarse-to-fine method, starting with the whole picture and rapidly homing in on
the matching point. However, some of the matches that it makes are incorrect.

These matched points are then refined by the correlator described in Chapter 2.
There are three reasons for this step. The positional accuracy of a match may be improved,
its accuracy can be estimated in order to provide appropriate weight in the camera model




ad justment, and the probability value computed by the correlator can be used to re ject some
of the incorrect matches. Actually, since the interest operator detects only high-contrast
features, the accuracy of the matches is usually very good (limited primarily by the pixel
spacing). Thus usually there is not much improvement to be made in their accuracy (unless
the interpolating version of the correlator is used), and the standard deviations are usually
near the minimum of 1Af12 of the pixel spacing. Therefore, the first two reasons are not
important for most points. However, the third reason (rejection of bad points) is quite
usefui. The implemented program rejects any point with a probability less than 0.1. This
rejects a few good points (about 10% of them if the probability value is correct), and it still
lets a few bad points through, but by reducing the number of bad points it helps the
camera model ad justment significantly, both in speed and in likelihood of success.

Finally, the image-plane coordinates of the points are corrected for camera distortion
to make them equivalent to those produced by a central pro jection.

The result for each remaining matched point consists of the image coordinates x, and
3, for the point in Picture 1, the image coordinates x, and y, for the point in Picture 2, and
the variances 02 and 0'2 and the covariance 0y Of the image coordinates of the point in
Picture 2. (The subscript "2" is dropped from the subscripts of "0" in order to avoid
confusion with other subscripts to come. This shouid cause no ambiguity, since x, and y,
are considered to be known exactly and thus have no variances and covariances associated

with them.)

3.2 Additional Error

The errors indicated by the accuracy estimates produced by the correlator are
presumably independent for each point. However, there may be other sources of error
which the correlator cannot estimate, and some of these may be correlated between different
points. For example, there may be some residual distortion in the pictures that has not been
corrected. If this is different in the two pictures or if the pair of matching points are in
different portions of the two pictures where this residual distortion is different, an error is
produced. For different point pairs in widely different positions in the pictures, the
residual distortion may be quite different, but, since distortion usually varies siowly across a
picture, the effect on nearby points may be quite similar. These additional errors and their
correlations, if any, must be taken into account in order to produce the correct weights for
the camera model ad justment and the correct error propagation into the resnits.

One way to obtain the necessary information is from the distortion correction
measurement. By analyzing the residuals of the distortion ad justment, the magnitude of the
errors and how rapidly they vary across the picture can be estimated. Experience with
previous distortion rneasurements and the variation of distortion with time on the camera
or cameras of the same type may be helpful. Also, the camera model ad justment itse!f can
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estimate the variance of the additional error (but not the precise way in which it varies
across the picture).

Ideally, what we would like to have is a complete covariance matrix for this
additional error for all of the points. In practice, such comglete information usually is not
available. However, if the magnitude of the error is known and the approximate
image-plane distance cver which it is highly correlated is known (called here the
“correlation distance”), a reasonable approximation is possible. The implemented program
assumes \hat the correlation coefficient of the additional error is a Gaussian function of the
distance between the points in the image plane. Thus the covariance of the additional error
for points i and § is assumed to be exp(-d}’,-/?c"'), where v is the variance of the additional
error, ¢ is the correlation distance, and d;; is the distance between the two points. (This
distance may be different in the iwo pictures. The average of the two results can be used.)
It is assumed here that the additional error is uncorrelated between x and y and has the
same variance in x and y. Thus the elements of the covariance matrix for total error
(denoted by a tiide) are assumed to be as follows:

¥ - 02 +
xn " Ity

2 . o2
3',,., Uy._+'y

&"m " Oxiy

A (3.2-1)
&'i’j -y exp(~ #). if inf

q
&’ii’j - -yexp(—z—‘g). if twf

0’»"1 =0, iflvf

where { and § denote any two points.

The correlation distance ¢ is considered to be a given quantity. However, the

additional variance o can be ad justed by the program according to the method described in
Appendix A. :

Tie cavartance matrix, whether obtained from precise knowlerdge of the individual
correlations or from (3.2-1), could be used as S;; in Appendix A, which I3 inverted to
obtain the weight mairix W to be used in (A.1-17). . .owever, in order to save computation
time, the implemented program uses the solution according to (A.1-23), partitioned intc the
separate points. Strictly speaking, this would require that the correlations between different
points be 2erc. However, because of the fact that the effect of & point on the solution varies
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slowly us the point is moved across the picture, and because of the fact that with the
approximation of (3.2-i) the correlations are negligible for far-apart points and the
additional variance is equal for all points, the approximation in Section A.2 can be and is
used in the implemented program, and this permits the solution to be partitioned by points.
The specially augmented variances and covariances produced by this approximation will be
used to obtain the weights for the solution.

3.3 Criterion for Adjustment

This section will describe how the image plane measurements described in the
previcus two sections are used to obtain the discrepancies and their weights so that the
ad justment for the camera model parameters can be performed. (The ad justment will be
performed according o the method described tn Appendix A, which is basically a weighted
least-squares ad justment with some modifications. Iis particular form for this problem will
be outlined in the next section.)

There are many possible ways of formulating the problem, according to what are
defined to be the discrepancies whose weighted sum of sqtiares is to be minimized. Some of
the other methods that have been used are discussed by Schut (1957 and 1959). The
method used here defines the discreparcies as distances in the image plane, closely related to
the actua! measured quantities. All of these methods are approximately equivalent as long
as the appropriate partial derivatives relating the observations to the dis:repancies are
included in the formulation, according to the method described by Brown [1958 and 1957),
and as long as no points appear to be beyond an infinite distance. (A more readily
accessible description can be found in Mikhail [1976)) However, the method used here
avoids the need to do this, and permits the use of the simpler formulation ¢ “scribed in
Appendix A. It also permits the use of points that appar to be beyond infinity. This is
important in some cases, because observation errors may cause = distant point to appear to
be beyond infinity. (The complete method, described in the next secilon, also includes the
features of variance ad justment and automatic editing.)

As formulated in Appendix A, the general solution method requires measurements to
be made directly on quantities that are functions of the parameters. However, this is not
quite the situation that we have. Here the directly observable quantities are x,, y,, x,,
and y,. The method used by Brown mentioned in the previous paragraph can handle such
situations within the general formulation. However, this is not necessary for our purposes
here. We will merely propagate the error estimates of the actual observations into the
quantity that we use as the discrepancy, in order to obtain the correct weights, and will
consider the observations to be measurements directly on the discrepancy on any one
iteration. Since the discrepancy that we will use will be some distar.ce in the Camera 2 film
plane, and since we will consider the measurements to be made in this plane, the
transformaiton between them is hnear and thus this error propagation will be exact,
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although the fact that the propagation depends upon the camera model parameters that are
being ad justed causes a slight departure from optisrality.

Consider the point x,y, in the Camera | image plane projected as a ray in space
from the Camera ! center of projection and then consider this ray projected back into the
Camera 2 image plane. The result is a line segment, because a point at an infinite distance
on this ray projects into a specific point in the Camera 2 film plane (unless the ray is
parallel to the film plane). The coordinates of this infinity point {in the Camera 2 fiim
plane) which defines the end of the line segment are denoted by x,.9, The direction of
the line segment {(away from the infinity point) i3 given by the direction cosines ¢, and ¢y
relative to the x and y axes, respectively. (These quantities x,, y,, ¢,, and ¢, and their
partial derivatives rclative to the camera model parameters are computed from x,, 3,, and
the stereo camera model. The details of this computation for the camera model formulation

used in the current work are given in Appendix B.)

The discrepancy e consists of a component of the distance from the measured point
Xy, 9, in the Carvera 2 image plane to the nearest point of the line segment defined by x,.
Yor €x» and ¢ If the point x,,9, is beyond the infinity point x,y, there are two
components of the distance between these two points, and thus there are two observations
for this point (two components of the vector £). Otherwise, ¢ consists of the perpendicular
distance from x,, y, to the line, and there is only one observation for this point.

It remains to define precisely what is meant by "beyond the infinity point.” If the
perpendicular projection onto the line were used, the projected point would be considered to
be beyond the end of the line segment if (x, - x ), + (3, - ?o)‘,. < 0. However, because of
the nature of the errors in x, and y,, a different projection should be used. If a normal
distribution of errors is assumed, the correct projected point is the tangent point of the line
to an error ellipse about x,, 3, This will be discussed further in Chapter 5. Using (5.1-5),
substituting (5.1-3), ignoring the denominator (since it is aiways positive and only the sign
of the resulting quantity needs to be considered here), and recognizing that total error (as
from (3.2-1)) should be used here produces the quantity (¢, 82-c & Xx,-x) +

(c 5‘, ct&,y)(y.‘,-yo

I (e O2mc & Nxp=x0) + (e B2-c & Ky, 2 O, then the point x,, 9, a3 projected
according to the above description does not lie beyond the the end of the line segment
defined by x,, y,. ¢,. and ¢y and the discrepancy ¢ is the perpendicular distance from the
point to the line. Therefore,

¢ - 02"0“‘:"’2'*0)‘, ss1
dx, (33-
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where g represents any of the camera model parameters. (The way in which the polarity of
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¢ is defined does not matter, as leng as the polarity of its derivatives is consistent with this.
When the partial derivatives from (3.3-1) are assembied into the P matrix needed for the
solution described in Appendix A, their signs will be changed, because P is defined in
Section A.l as the partial derivatives of F, which appears in the equation for £ with a
minus sign.) The variance of ¢ representing errors in x, and y, is then

03 = 30} - 2,0, 4300 (8.3-2)
This equation holds whether the 0's represent only the estimates from the correlator, total
error according to (3.2-1) (in which case the symbols should be &), or augmented error
according to (A.2-1) (in which case the symbols should be ). However, since the
additional term for total error or augmented error will be the same for both 02 and 0'; and
zero for 0., and since c2+¢2 = |, the additional variance or augmentation variance can
Just be added to 02 from (3.3-2). The reciprocal of the resulting value for augmented
variance will be used for the weight of this point in the ad justment. (This will be made
explicit in the next section.)

On the other hand, if (c,02-c &, Mxy=x;) + (c,8}-c &, Xp~9,) < O, there are
discrepancies (the two components of the vector £) which are the two components of the
distance from the point x,, 3, to the end of the line segment (x,,y,). Any two orthogonal
components can be used here; for convenience we will use the x and y components.

T herefore,

E « 2= %
’2 =Y

(3.3-3)
ox,
3 _ | 3%
3¢ 3y,
RT3

The covarlance matrix of £ is the same as the covariance matrix of x, and y,, for any of
the three types of error in x, and y,. The weight matrix for this point is the inverse of the
augmented covariance matrix. (Notice that in this case the problem has reduced to the
usual problem discussed in Appendix A. When the signs of the partial derivatives are
changed as mentioned above for insertion into the P matrix, the P matrix is seen to contain
the partial derivatives of x, and y, with respect to the camera model parameters. Thus the
observations in effect are directly on the quantities x, and y,. This is exactly the actual
situation, since x, and x, can be considered to be observations on x, and 3, respectively,
when the point appears to be beyond infinity.)
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3.4 Summary of Adjustment

The previous sections in this chapter have described how the data for the stereo
camera model ad justment are obtained and the particular way in which they are used in the
ad justment. Appendix A describes the general methods that are used in the ad justment.
Appendix B describes the way in which various quantities used in the adjustment are
related to the camera model parameters. This section gives a summary of the stereo camera
model ad justment, showing how these pieces tie together and filling in a few details, more
or less as it is currently implemented.

The given quantities are as follows: a priori values of the five camera model
parameters azimuth, elevation, pan, tilt, and roll described in Appendix B, denoted by the
vector G,; the covariance matrix of these a priori values, denoted by Sc ; the principal
distances of the two cameras, denoted by f, and f,, described in Appendix B (considered to
be known exactly); the a priori value of the additional variance, denoted by vo the
standard deviation of v,, denoted by 62 ; the correlation distance of the additional error,
denoted by c; the maximum number of po?ints to edit, denoted by n_; and for each matched
point the values x,, y,, x,, ¥, o2, 0'§,. and 0, determined by the correlator, as described
in Section 3.1. The following quantities are to be computed: ad justed values of the five
camera model parameters, denoted by the vector G; the covariance matrix of these ad justed
values, denoted by S and the adjusted value of the additional variance, denoted by .
The steps in the computation are as follows.

I. (Begin edit loop.) Correction factors for correlated errors are computed for each
point { as follows:

22

w3l )T

derived from (3.2-1), (A.2-1), and the approximation following (A.3-4). (The quantity &, is
the sum of the correlations of the additional error between this point and every point and
will be used in obtaining weights for the main ad justment. The quantity «; is the sum of
the squares of these correlations and will be used in obtaining weights for the variance
ad justment.) After the first time through this step, the above summations are upduted by
simply subtracting the terms for the rejected points. If ¢ « 0, then &; « 1 and «; = | for all

points.

R, - ?exp(—ﬁz)

2. A3 initial approximations, G is set equal to G,, and ¥ (s set equal to v,. Initially,
r; = 1 for all points.
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8. (Begin inner iteration loop.) The a priori values of the parameters are used as
follows:

H, - 3(':',

C, = HG,-G)

4. For each point the quantities x , y,, ¢,, and ¢, and their partial dertvatives are
computed as described in Appendix B. (The subscript { is omitted from these and from the
input values x,, y,, x,, 3,, 02, cg,. and Oy for each point for simplicity, but all other
quantities that depend on the point carry this subscript.) Then, if [c,(or;w)-cyanj(xz-xo)
+ [C,(U'i*-‘Y)-C,O’,,,K?z-!o) 2 0 the following is done for this point:

ﬂ"'l

G - (’2 = ¥o¥x - ("2 - xo)‘y
ox

de¢ oc ¢ ]

i x Yo
Pim-5g = "0-adg I s -G
0'3., - c§U§ - 2,00, + ‘;‘7;

L

Ci = Plug
H‘ L] PIW‘P‘

@i - !.(U’vy)’t(x-l)'y’ - A0t + 2902 4+ x¥D)
0‘ i 0‘ O‘ l"

X; = Wy
Y = wog,

On the other hand, if [c,(a;w)—c’a"h,-x,) + [c,(czw)—c,c.’h,-y.) < 0 the
following is done for this point:

s




ﬂ‘ . 2
Xg — X,
E‘ - € (]
’2"0
ax, |
Y. Yl
‘ LI w [ J 6’0
&

W ok Oy
i" 2
0.y 0y+k"y J

C; = PTWE,

H - PJWpP,
I IO T R
U U;’, 0;+2‘yo';+un'

Ty 92 = o

r -x )2
g = [1 1 ]9‘[ i ’)), ] 0+ @y 0ry (g = x4 (@45 + W)y L9, - 3
c?
U‘ - ( | | ]ﬂ,[a:] - (wl'JO(ﬂ'u”i#(w'”#mmb;
y

w; = {1 l]ﬂ‘[:] -y Wy Wy

However, If n; for this point changed from the previous iteration, X; = V; = W; = 0.

5. The quantities C, H, X, V, and W are computed by summing over all points
(currently being used) the corresponding quantities with the subscript i, as computed in step
4. For Cand N, C,and H  are included in the summations.
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SG - H-l
D= H"'C

(from A.1-23)), but the elements of D are limited so that their absolute value does not
exceed 0.5 radians (thus limiting wild excursions that may iake piace on early iterations if
the initial approximation is poor).

7. For each point the following is done. If n; = 1,

o2
Y§

05,PiScPl )

0’3‘ + kY

- 0'3‘ +y- mln(P‘ScP}'. v+

0'3‘+'y
" -

03‘

(from (A.1-22), (A.2-2), and (A.3-2)) If n; = 2, the same thing is done to compute r, ; and
Ty 4 €Xcept that for the former the first element of £; is used instead of ¢;, oi‘ is used

instead of 03.,. and the first row of P; is used for P, and for the latter the second element

of E; is used instead of ¢, 0';‘ is used instead of 03.,. and the second row of P; is used for
P,
i

8. If the solution has started to converge (indicated by the maximum absolute value
of an element of D being less on some iteration than on the previous iteration), the variance
ad justment is done as ‘ollows:

(from (A .3-5)), but v is not to be less than tero.

$. If the solution has started to converge (a3 indicated in step 7), the convergence




acceleration procedure described in Section A.4 is applied 10 G and D. For this purpose,
the variance v is considered to be a sixth parameter (sixth element of G), scaled by dividing
it by f2 (with its difference from the preceding iteration being a iixth element of D.)
However, if for any point the condition of being beyond infinity changes froir: the previous
iteration (that is, n; changes), the acceleration procedure is restarted. Whether D has been
changed by the acceleration procedure or not, it i; added to G from the previous iteration to
produce the new G.

10. If the greatest absolute value of an eiement of D {(before acceleration) is is less
than 10°® radian, and the change in v from the arevious iteration is less than 10~Y(y +
V/®), then go to step 11 (exit from the inner iteration loop). Otherwise, if too many
iterations have occurred, give up. Otherwis~, go to siep 3. (End inner iteration huop.)

1. If n, = O, finish successfully. Otherwise, if there is no tentatively re jected polnt
(this is the flrst time through the edit loop), go to step i6.

12. For the last point ientatively rejected, the quadratic form of its residuals with the
inverse of their covariance matrix is computed according to (A.5-2). (If n; « 1, this reduces
to the ratio of the square of its residual to the variance of the residual, where the variance
of the residual is computed as in step 7 but with a plus sign instead of the minus sign.) If
the result is greater than 9 if n; = | or 16 if n; = 2, go to step !5.

13. If the total number of rejected points equals r,, go fo step 17 (exit from the edit
loop).

14. The following F test is computed:

Yeto +q +a)?

’('reu 2‘(:2 )" 2('7 )) 2 0.02

o 'c
where a = U/w, and where p {f,n , n,) is the probability that the ratio of a chi-square
estimate of a variance with n, degrees of freedom to another chi-square esiimaie of the
same variance with n, degrees of freedom will exceec f. (The above use of this test is a
crude approximation based upon the assumption that the sum oi the additional variance
and the input point variance weighted over all points with weight W, has the chi-square
distribution) If this test passes (the above inequnlity is true), go to step 17 (exit fram the
edit loop). Othevrwise, go to step 16.

15. Reject all of the tentatively rejected points. If the total number of rejected points
equals n, give up.

16. For each current point, the quadratic form of its residuals with the inverse of
their covariance matrix is computed according to (A.5-1). (If w; = |, this reducer to the
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ratio of the square of its residual to the variance of the residual, where the variance of the
residual is computed as in step 7.) This quadratic form is divided by 9 if n; = | or by 16 if
n; = 2. The current point with the largest resulting vaiue is tentatively rejected. Then go
to step 1. (End edit loop.)

17.  All tentatively rejected points are reinstated, the solution backs up to the one
computed using these points, and the problem is finished successfuily.

Both intuition from the nature of the problem and experience with the program
indicate that there are no other local minima of the total quadratic form of the solution
near the absolute minimum. Therefore, if the initial approximation is near the correct
solution, the solution should converge to it, if it converges at all. However, there is another
minimum in cases where one camera is roughly in front of or in back of the other (azimuth
s 0 or n). This local minimum occurs when the front-back positions of the cameras are
reversed, for then most of the points appear to be beyond infinity. Tests could be put into
the program to detect this condition and to change to the other solution, but this has not
been done. If the initial approximation is reasonable, there should be no problem with this

phenomenon.

As mentioned in Section A.l, if the iterative solution converges to the absolute
minimum, it produces the exact weighted least-squares solution. Other properties, such as
the estimates of accuracy of the adjusted parameters, are approximately correct as long as
the problem is approximately linear. This is the case as long as no points are near infinity.
However, if a point x,,9, is near the infinity point x,,y, (compared to its standard
deviation), a large nonlinearity is introduced. This will cause, among other things, the error
estimates represented by 5. to be underestimates If the point x,, 3, lies beyond the infinity
point or oversstimates if the point appears to be closer than infinity. Furthermore, this
nonlinearity is caused by a discontinuity. Thus using the second derivatives (as described
in Section A.1) probably would not help. That is, equation (A.1-19) may be no better than
(A.1-20) in this case. This effect also affects the convergence, especially of Newton's
method, which uses the second derivatives. This is the reason for restarting the acceleration
convergence procedure when a point moves across an infinity point.

10




B I BT

Chapter 4
STEREO MATCHING

This chapter describes a method of matching points densely over an entire scene, so
that when the distances to these points are computed as described in the next chapter a

dense depth map will be produced.

In Chapter 2 a stereo correlator was discussed which can refine a local tentative
match between a stereo pair of pictures. However, it is necessary to have a means of
deciding where to apply the correlator and to have a decision criterion for deciding which
matches to accept. This could be done independently for each point to be matched.
Another possibility is to use continuity constraints to force a smooth surface to be produced,
with only a very local search used. Some form of region growing as in Hannah [1974)
might be used in the latter case. The approach adopted here lies between these two
extremes. The stereo disparities are allowed to vary in an arbitrary way over the picture,
subject to some mild local continuity constraints discussed later, which eliminate some
incorrect matches that otherwise would be made. Furthermore, by first trying a match with
approximately the same stereo disparity as neighboring points that already have been
matched, the search can be eliminated for many points. The acceptance of matches is
guided by the probability values returned by the correlator and by agreement with
neighboring matches. No claim is made that this approach is optimum for any particular
typ® v scene, but it seems to work well for the type of scene considered in this research
(outdoor scenes with various ob jects strewn about). (The method of Levine ¢ al. (1973] has
some features that perhaps should be included in an operational system, such as the use of
an adaptive correlation window size.)

Because the stereo camera model is known at this point, the search that needs to be
performed is only one-dimensional. A point in Picture | corresponds to a ray in space,
which, when projected into Picture 2, becomes a line segment terminating at the point
corresponding to an infinite distance along the ray. Therefore, a search along this Kne

segment suffices.

Because the approach used here is based upon area correlation, the first step in the
matching process is to divide the master picture (here called picture 1) into small areas
equal in size to the match window of the correlator, for each of which a matching area in
the other picture (picture 2) is desired. (It usually is Cesirable to have these windows to be
ad jacent and nonoverlapping. Since the correlator match window I3 square, this results in a
square tesselation of Picture |.) These areas must be selected in some order to be matched.

One possibllity for ordering areas 1o be matched would be to start with the points
which were produced by the interest operator and binary-search correlator and were not
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rejected by the camera model solver and then to work outwards in all directions from these
peints, since these points are very likely to be correctly matched. However, there may be
regions separated from all of these points by disparity discontinuities or unmatchable
regions, so this method does not alleviate the search procedure from the necessity to be
self-starting. (A similar method that may produce denser starting points is the tie-point
method of Levine, et al. [1973)) The method that actually is used simply starts with a
column at the left edge of the picture and works to the right a column of areas at a time. In
addition to simplicity, this method has the following advantage when, as is customary,
Camera 2 is to the right of Camera 1. The line segment in Picture 2 corresponding to a
point in Picture | then is directed to the left from the infinity point. Thus, once a few
columns in Picture 1 have been matched, if a search is made starting at the infinity point
and proceeding leftward, eventually areas will be encountered in Picture 2 that already have
been matched. If it can be assumed that there are no foreground ob jects that can be seen
around so that the left camera sees some background points to the left of the ob ject and the
right camera sees these same points to the right of the ob ject, then once a sufficient number
(unlikely to be incorrect matches) of previously matched areas have been encountered in
this manner, the search can be terminated, as there is no need to look at closer distances. In

this way considerable time can be saved.

The implemented method allows several other ways of restricting the search, by using
a priori information about the scene. A minimum distance and a maximum distance can be
specified, and the search will occur only on the portion of the line segments corresponding
to this distance range (and within Picture 2, of course). Also, an approximate ground plane
can be specified, and the search will be inhibited for disparities that correspond to points
that are below this plane by more than a specified height. If desired, a match will not be
attempted for any peint in Picture | which, if on this plane or both above this plane and at
an infinite distance, would project outside of Picture 2. Al of these restrictions save
computation time and tend to prevent incorrect matches, but of course they may also cause
correct matches to be missed if the a priori assumptions are not correct.

In areas of low information content, the noise suppression ability of the
high-resoiution correlator often allows useful results to be obtained. However, if the
information content of the picture in certain areas is too low, the correlator indicates this
fact by producing very large values for the standard deviations of the two position
coordinates. In such a case, it might have been desirable to inhibit the searching to save
computer time, but even if this is not done, the results are sull as good as the standard
deviations indicate.  (Actually, the correct test to indicate no useful information is to
propagate the match accuracy as indicated by its covariance matrix into the computed stereo
disparity for this point, as described in Chapter 5, and to check the size of the resuling
standard deviation relative to the magnitude of the disparity. Both standard deviations in
the film plane might be large, but if only one eigenvalue of the covariance matrix s large,
AN accurate disparity, and hence distance, can Rill be computed for this point unless the

corresponding eigenvector is almost paraliel to the projected line sagment.)
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The implemented version of the method contains a way of inhibiting (if desired) the
search where it is unlikely that useful information will be obtained. It operates as follows.
The standard deviation about the mean of the Picture | data within the current match
window area for which a match might be searched is computed. Then the F test that is
performed in the correlator, as described in Chapter 2 is performed, except that instead of
the variance based upon the residuals that is used in the correlator, this standard deviation
about the mean is used. This F test gives the probability that the noise level in the data
could have given rise to the observed variation in the data to be matched. If this
probability is low, then there must be considerable variation above the noise level, and thus
the correlator shiould be able to match this point. If the probability is high, the data may
be lost in the noise, and thus a search for a match can be inhibited. A probability
threshold of 0.1 perhaps is appropriate.

In deciding whether to 2ccept matches as described below, a tolerance is used in
checking the agreement of disparity in ad jacent matched areas. Ideally, the tolerance should
also take into account the accuracy of the difference in the matches as given by the sum of
the two covariance matrices from the correlator (perhaps accepting anything within three
standard deviations in addition to a given tolerance) However, this has not been
implemented, and currently a constant tolerance is used.

When a window-sized area in Picture | has been selected for an attempted match, the
first thing to do is to try to avoid a search by seeing if a good match agreeing
approximately with neighboring points aiready matched can be made. To do this, the three
ad jacent areas in the previous column just to the left (the last column processed) are
inspected. (These are the areas directly to the left and diagonally to the left both up and
down.) If at least two of these have been successfully matched and if their relative
matching positions in Picture 2 all agree within the tolerance described above (or twice this
tolerance when comparing the top and bottom of the three areas), then the correlator is
applied to the area in question, with the search window in Picture 2 centered on the
position corresponding to the average matching position of these two or three neighbors
(suitably displaced according to the shift to the right and up or down from the position of
the neighboring areas in Picture 1). If the probability computed by the correlator is greater
than some threshoid (C.1 is used currently), this match is accepted and no search is done.
However, if the computed matching point in Picture 2 has already been matched, the
current match {3 accepted only if its probability is greater than that of the old match, in
which case the old match is deleted. The lolerance used for checking whether these
matched points in Picture 2 coincide i3 half of the minimum of the match window width
and the step size in Picture | (which normally are equal).

If the above trial match s not accepted, the search is done in the following manner.
The point at the center of the match window in Picture | is corrected for distortion as
described in Chapter | and is projected into a line segment in Picture 2 a3 described in




Appendix B. Working from the infinity point towards lesser distances, points are chosen
along this line and are distorted to represent points in the actual picture instead of in a
central projection. Previously successfully matched points within the tolerance described
above are skipped, and the correlator is applied with its search window centered on the
remaining points. A good spacing to use for these points would be half of the search
window width, which would produce sufficient overlap so that the computed matched point
will not be forced to be near the edge of the search window. However, in order to speed up
the program a main step size equal to the search window width is used. But if the
probability computed by the correlator for one of these trials is greater than 0.05 or greater
than half of the greatest probability found so far in this search, then another trial is made a
half step ahead if the computed position was in the front quarter of the search window, or
a half step behind if it was in the back quarter. In this way, if the correct matching
position occurs approximately on the boundary between two successive search windows
(without overlap), it will be found more nearly centered within an overlapping search
window produced in this manner, thus avoiding the loss of accuracy from the truncation at

the edge of the search window.

Of all of the matches produced by the correlator in the above search, the one with
the highest probability is tentatively selected. This is checked for agreement within the
specified disparity tolerance with neighboring matched areas, including all three
neighboring areas in the previous coiumn, which may have accepted matches, and the two
areas directly above and below in this column, which may have an accepted match or
tentative matches produced in this manner. If there is agreement with at least one of these
neighbors, and if of the two matches consisting of this neighbor and the current match
under consideration both probabilities are at least 0.01 and either probability is at least 0.1,
the current match is accepted. Otherwise, this area is left unmatched.

It was originally intended to have the method try further in case no match was
accepted above, by comparing the results fiom those points in the search for which the
correlator produced less then maximum probability with those from the ad jacent search
(above or below), as mentioned in Gennery [1977). If an adjacent pair could be found
which agreed closely in disparity and both of which had reasonably high probability, this
pair of matches could be accepted. This additional feature was tried, but using it
considerably increased the number of incorrect matches. Therefore, it was not adopted.
Also, in order to try to reduce the number of incorrect matches, a feature was tried which
accepted the best match in a search only if its probability was at least twice as great as the
second best. But this resulted in the loss of a great number of correct matches in

low-contrast areas, $o it t00 was re jected.

One more refinement in the above method remains to be discussed. Because of
perspective distortion, & match window in one picture will not match exactly the
corresponding match window in the other picture. In many outdoor scenes a large portion
of the points are on the ground, and these points may be very important in finding the
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ground surface, as described in Chapter 6. Also, because the ground makes a large angl:
with the camera focal plane in & roughly horizontal camera, arcas on the ground often
suffe: a large amount of perspective disiortion. Furthermore, not only does this distortion [
afrect the correlator, but it also may cause ad jacent matches (above and below each other) to
disagree by more than the disparity tolerance, unless this tolerznce is mrde very generous.
Therefore, provision has been made for using the correlatcr both straight and with a |
predistorted match window corresponding to the distertion tha: would occur if the point is :
on the a priori approximate ground plane, aid for compensating the check of agreement of
neighbors correspondingly for thic distortion. Of course, the correlaior could include a |
general search over distortion, but this would be very time-consuming. Including a special

distortynn correction for the ground at a cost of ahout doubling the computation time is ;
justified in some cases by the importance of the ground and the large distortion that it may |
undecgo. (Ciark Thompson [1975] also has suggested such a distortion correction. Mori et !
al. {1973} use a more elaborate prediction-correction technique tc handle general perspective f
distortion.)

If the ground is a plare, the perspective distortion of the match window between ;
p.ctures is a constan: skew distortion, for all points on the ground. Qnly a special case has ;
been implemented, in which it is assumed that all angles of the camera model except
arimuth are zero (that is, the two cameras have the same orientation, and the stereo axis [
projects into the film plane as a line parzlle! to the x axis) and that the ground plane is 1
parillel to the x axis. In this case tive amount of this skew is given by (r sin a, cos A)/A,
where o, is the azimuth from camera | to camera 2 relative to the camera axis, A is the tilt
of the ground relative to the axis, r is the distance beiween the cameras, and A is the height
of camera | above the ground planc. The skew given by this tormula is the tanger:t of the ,
angle that « straigh:! line on the ground would make with the y axis when projected into the
camera | film plane, if it is parallel to the y axis when projected into the camera 2 film
plane.

Thus the algorithm as described above has been modified so that the following |
computations are included, when desired. When the correlator is applied to a portion of the !
picture which could be on the a priori grcund plane (that is, the point is not above the a
priort horizon in Picture 1), it is applied both with a normal match window and with a
match window which has been distorted into a parallelogram in picture ! to correspond to
the square match window in picture ¢, according to the skew as computed above. (The
values used within this skewed window are obtained by linear interpolation from the
original picture vaiues, although if the interpolating version of the correlator were used, it
could do this interpolation itself.) In checking for agreement with neighboring areas, the x
coordinates of the points are shifted according to the skew when results from the skewed
window are used, but are used unchanged when the normal window is used. In the
preliminary match to avoid a search ‘trying a match with approximately the same disparity
as neighbors already matched), the result with the greater probability of the two is used. In
the search along the projected line segment, the two results for each trial position simply
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double the effective number of trials, and the best result is seiected as before {based on the
probability and agreement with neighbors).

Figures 4-1 and 4-2 show the results of applying the matching algorithm to the Mars
pictures described in Appendix C. Match windows and search windows werz both 8 pixels
by 8 pixels. Each dot superimposed on the left picture (Figure 4-1) is at the center of an
8-by-8 area that was successfully matched. An error ellipse is shown centered on the point
in the right picture (Figure 4-2) to which each of these points was matched. The ellipses
shown represent the three-standard deviation limits. If a normal distribution of position
errors is assumed (actually not a good assumption for this kind of error), about one out of
ninety points would be expected to have the true matching position outside of the ellipse.
Lines connect points in Figure 4-2 which match points forming a vertical column in Figure
4-1. Dashed lines bridge gaps caused by unmatched areas in thz left picture. It can be seen
that three obviously incorrect matches were made (in the lower right fourth of the picture),
but the rest appear to be more or less reasonable.
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Figure 4-2.  Maiched points irn right picture, showing 830 error ellipses, with lines
connecting points corresponding to columns in Figure 4-1.




Chapter 5
DISTANCE COMPUTATION

Once a pair of matching stereo points has been found, it is usually considered to be
fairly trivial to compute the distance to the corresponding point in three-dimensional space,
if the stereo camera model is known, as in Hannah (19741 However, here this process is
complicated by two facts. First, the available information about the accuracy of each point
(obtained from the correlator) implies that the optimum matching point in the film plane in
general is not the point on the projection line (of the Picture | point into Picture 2) that is
nearest to the matching point found by the correlator. Computing the stereo disparity
corresponding to the optimum matching point requires the use of the two-by-two
covariance matrix produced by the correlator. (The nearest point is optimum only if this
matrix is a scalar matrix or one of its eigenvectors is perpendicular to the line.) Second, it
is desired not only to compute the distance but also to compute its accuracy, by propagating
the accuracy estimates of the matching point and of the camera model into the distance. As
is usually the case, this error propagation computation involves considerably more effort
than the distance computation itself. It is complicated further here by the fact that more
than one type of accuracy ‘estimate may be desired, depending on to what extent the effects
of camera model error are to be included.

5.1 Matching Point

The computations described in the previous chapters have produced, for some point
x,,9, (corrected for distortion) in the Camera 1 image plane, an estimate x, and j,
(corrected for distortion) of the matching position in the Camera 2 image plane and its
accuracy represented by 03, 03, and 0, The accuracy estimates may contain both a
random component, obtained from the correlator or other information independently for
each point, and a systematic compenent, which might be obtained from the additional
variance ad justment in the camera model solution or from other information. From the
camera model information, the projectlon of the Camera | point into the Camera 2 film
plane can be computed as described in Appendix B to produce a line segment represented
by the infinity point x,, 5, and the direction cosines ¢, and ¢, It is now desired to use this
information to compute the optimum matching position XprYp in the Camera 2 image
plane, considering both the estimate x,.y, from the correlator and the projection of x,, 9,
according to the camera model information.

First consider the camera model to be known exactly, so that there is no uncertainty
inx,. 3, ¢, and ¢_. The relationships are shown in Figure 5- 1. The ellipses are contours
of equal probability density from the distribution given by 0;",. 0;. and Oyy (including both
random and systematic error), assuming a normal distribution. The quantity V Is the same
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Figure 5-1. Determination of optimum matching point, neglecting camera model error.




as the discrepancy used in the camera model ad justment. The quantity £ is the stereo
disparity (defined here as being relative to the infinity point) usually used, as in Hannah
[1974]. However, 7' is the quantity used here for the disparity. It is the distance in the

Camera 2 image plane from the infinity point to the tangent point of one of the ellipses and
the projection line of x,,y,. (The prime it used because there may be a correction to be
applied to this quantity when the effects of the uncertain camera model are considered.)

Since ¢, and c_ are the cosines of the angles of the projection line with the x and 9
axes, the following relationships hold:

b= eylrx) + 60,0
(5.1-1)

U = ¢g(05m39) = €y{%y=%,)
Also,

Xp = Xo 4 €T
(5.1-2)

yp e ’o* cyT

where the prime has been dropped, since (5.1-2) holds for both corrected and uncorrected
values.

Now the value of 7’ must be determined. One way to do this is to consider x, 2nd y,
to be observations on the quantities x_ and Y which are functions of the parameter T
according to (5.1-2). A generalized least-squares solution can be done for 7, with weights
derived from the values 07, 02, and 0. Since (5.1-2) is linear in 7, equation (A.1-17)
can be used exactly, and no iteration is required. As described in Appendix A, the proper
weight matrix to use is the inverse of the covariance matrix of observations. Thus the

unique elements of the weight matrix are

o?
w - _..__.Z__
b2 242 _ n?
020 -0l

-0
N” - -;—-;—-!z—?—- (5'-3)
o202 -0l
2
o - -—.—U-’——-—-
Yy 292 2
020 - 03,

where the variances and covariance include both random: and systematic error. Upon
making the appropriate substitutions derived from (5.1-2), equation (A.1-20) becomnes
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Yey Yyy|‘y
- S S (5.1-4)
Cellpy + 2czcy xy ¥ CyVyy

and equation (A.1-17) becomes

T’ 0.2 ¢ wlt wty 22—80
" Oees|’s Sy v w -
sy Yyy| P20

cxw“(xz—xo) + Oyl 2"?o) + c’w,y(xz-xo) +e 2—70)

(5.1-5)

2 2
CUypy + 2c,cywxy + o,

(The subscript "rs” indicates that this estimate of accuracy of T' includes random and
systematic error from the point x,, y, but does not include camera model error.)

This equation for T' needs to be in a form more convenient for error propagation.
By using the fact that c§+c; = |, some algebraic manipulation can transform (5.1-5) into

_ 2_,2
€6y (W W) + (3~ (e, = €, (x=%,1B.1-6)

2 2
ey + 2c’cyw,y + cyw”

T' = cylxgmx) + ¢, 005-9p) +

Now let

c,cy(w”—w“) + (ci—cj';}w,y (5.1-7)

2 2
Wy * 2c,c’,w,y + oW,

Then, by using (5.i-1) and (5.1-7), equation (5.1-6) can be rewritten as

T' =« b+ pv (5.1-8)

These results can be expressed In terms of the variances and covariance instead of
the weights. Substituting (5.1-8) into (5.1-4) and (5.1-7) produces
2
a:a; - 0%y

02, = (5.1-9)
Tore cicr; - 2,00, 4 c;a;

and
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2_02) + (2-¢2)0

i} c,cy(a', c£+ {« ¢:,,)0,ry (5.1-10)
242 242
c*o” - 2:"‘,0'" + cyo"

Thus using (5.1-1), (5.1-10), (5.1-8), and (5.1-2) produces the desired matching point.

The accuracy estimate of 7° from (5.1-9) can te propagated through (5.1-2) as shown
in the next section to produce the effect of combined random and systematic point error on
the results. However, if only the effect of random error is desired, the value of 0'3,'r must
be computed to be used instead. In order to do this, first (5.1-6) is rewritten as follows by

substituting (5.1-7) and rearranging:
T' = (cy = o Xxy = Xg) + (¢, + PC X3, - 3,) (5.1-11)

Then, since p is independent of x, and y, the error propagation from x, and y, to 7’
produces :

o? S pcy)za";"'r + e, - pcy)(cy Pt (c’ + pc,)’ﬁ';’,.r (5.1-12)

where the subscript “r” denotes that only random error is included. {if both random and
systematic error were included here, substituting (5.1-10) into (5.1-12) and simplifying would
produce (5.1-9). However, this simplification does not occur for the random error, because
Q is always computed from the total point error according to (5.1-10).)

Now consider the effect of uncertainty in the camera model, represented by S, the
covariance matrix of the camera model parameters defined in Appendix B. There are two
cases to consider, according to whether the point in question (x,,y,) was used in a camera
model ad justment which produced the camera model being used.

If this point was used in determining the camera model, then the values x,, y,, ¢,
and ¢, used above take into account the information in this point, as represented by x,, y,,
03, 02 and 0, Thus the matching point Xp1Jp Computed above represents the best
compromise between the information in this point and the other information which went

into the camera model determination. Therefore,
T 7'

02 02, (5.1-19)

-
n '

2 ?
Uv,u - ov',u

However, the fact that there is uncertainty in the camera model solution causes components
of uncertainty in the disparity in addition to that represented by azn.
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Since both systematic point error and camera model error will affect nearby points in
related ways, causing correlated errors in these points, the component of error which affects
points independently is due to 0'3’, Thus propagating this error from T into the final
results will produce what is called here "independent error.”

To compute the totai error, the partial derivatives of the the various above quantities
relative to the camera model parameters must be computed, so that by a linear
approximation the accuracy estimates can be propagated. However, because of the different
shapes and orientations that the error ellipses for different points can have, certain changes
in the camera model parameters can cause changes in nearby points that are different but
correlated. These effects occur by the effects of the camera model parameters on the
quantities o and U. (The effects of the camera model parameters on & and on x, and Ip
through their functicnal dependence of x,. 3,. ¢,, and ¢, explicitly indicated in (5.1-2)
produce practically the same effect on nearby points.) Combining this type of error (from p
and V) with the random point error produces what is called here “relative error,” denoted by
the subscript "rel”.

By differentiating (5.1-1), (5.1-2), (5.1-8), and (5.1-10) the desired partial derivatives
can be obtained. These can be expressed as follows in terms of the partial derivatives of
X5 Jor oo and ¢, obtained as described in Appendix B:

ot ax, a’o
5% .(x,—o +(y,y°)-5— T"!/B?
oV ox
XE - (’2 ’o (I.’ -% )B‘Z -r;
op
rg -
> [cy(oi-cr';’,) - 2,0, + 20,0, - ,o’)] .5_ + (e (o’-o’) 20, 420, y"i)] ’Si
| c"’a’ 2c CO.__+ c?a?
ii e (5.1-14)
} a7 ot v ap
TR TR TR T
aT v ap
| ( ;-(- )re! P 5- +v 5-
jE ax c\xo 61‘ 6(‘
; z T‘- + <, ;— + T -3—-
“ 9y 3,
ng R YIRS X' + 7 T!

propagation in the next section.

where g denotes any one of the camera
i partial derivatives from the last three equations of (3.1-14) will be used in the error

model parameters defined in Appendix B. The




If this point was not used in determining the camera model, there is no unequivocally
best thing to do. (The only optimum thing to have done would have been to have included
all of the points in the camera model solution. However, this may have been impractical
because of the time required. For example, after the dense matching of points have been
computed as described in Chapter 4, all of these points could be used in a new camera
model solution. But if the camera model is aiready known sufficiently accurately, the
additional computing may not be worthwhile) One thing to do wouki be simply to use the
same solution described above. This has the advantage that the solution for each point is
based on the same camera model, and thus the independent error is mimimum. However, it
may be desired to produce the best compromise between the information in this point and
the information in the camera model (as far as this point is concerned, without considering
any other points). This approach reduces the total error but increases the independent
error, compared to the previous method. Depending on the circumstances, it may either
increase or decrease the relative error. (We are speaking here of the variances, that is the
expected squares of the errors, not the actual values of the errors for a given point) A
compromise is possible which reduces both the relative error and total error compared to
the first method (although it does not reduce the total error as much as the second method)
and is simpler than the second method. This third method includes the effects of changing
the camera model only insofar as it affects the point Xp Ip but does not consider the effects
of moving the infinity point x,,y, closer to or further from point x,,y, (along the
back-projection line). (Because of correlation between the camera model errors parallel and
perpendicular to this line, shifting the line sideways to improve agreement with the point
x,.y, would cause such movement parallel to the line. Since this movement would be
different for every point, it would make the relative error worse) Since relative error is
usually the most important error, this third method is used in the implemented program,

and it will now be described.

Consider the quantity U, which is the perpendicular distance from the point x,, y, to
the back-projection line. Two variances of this quantity will be considered. First, az’"
includes only the effect of error in the point X0 99 (both random and systematic). It is
shown in Figure 5-1, and its equation can be easily derived from the equation for V in

(5.1-1) to be

2 242 242 -
Oors * c,O,-?c,c’U,’ocyo., (5.1-15%)

Second, Uﬁ.c includes only the effect of camera model error. It can be computed from the

covariance matrix of camera model error § by using the partial derivatives of U with
respect to the camera model computed according to (5.1-14). If these partial derivatives are

4
astembled into the row matrix % , then
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Note that v is the amount by which this point disagrees with the camera model. ,
Thus a compromise position of agreement between these two pieces of information can be i
obtained by performing a weighted average of them, with the weights inversely |

% |

e
!

proportional to these two variances. (This is correct under a linear approximation only,
since the actual variance due to the camera model varies with the position in the image
plane) Therefore, the compromise point is moved from point x,, 9, by a fraction & of the
distance towards the back-pro jection line computed from the camera model, and thus it is at

a perpendicular distance of {1~V from this line, where

02
kR - ..._.---L__-.2 "‘2 (5.1~17)
Ours * Tue

Shifting the point by the distance &V in the direction perpendicular to the line causes it to
shift by the distance pkU paraliel to the line, because of the correlation in the errors in the F
point, according to (5.1-8). Also, the back projection line moves a distance (1-k)U towards x

the point, so that the compromise point lies on the compromise line. However, as stated
above, in this method we do not want to change the camera model. Instead, the compromise 5
point will be projected perpendicularly onto the line computed from the given camera 3
model. Doing this does not affect the stereo disparity or the distance, under a linear |

approximation.

Therefore, the stereo disparity used is

T = £+ A0V
(5.1-18)

- T' - (1-R)py

The partial derivatives of the disparity with respect to the camera

instead of (5.1-13).
model parameters are

T ot av ap
3—- - + ‘p 3—- + AV r
KM L av‘ 3 y (5.1-19)
0
(Xi)..u - oy e

instead of the corresponding equations in (5.1-14). (The partial derivatives of A do not
have to be included. Their effects are negligible compared to the other effects.)

The equation for the vaiiance of T due to point error can be derived from the second
form of (5.1-18) in a straightforward way in terms of the variance of 7' (obtained from
(5.1-9) or (5.1-12)), the variance of V (obtained from (5.1-13) or its equivalent for random




e.ror), and the covariance of T' and U. (Note that 0 is not a function of the point x,, 9,

The effect of the point on & is neglected as being negligible) The equation for the random
covariance can be derived from (5.1-12) and (5.1-1) to be

Ogrgr = —lcy - p‘y"y"i,r +(c, - pcy)c:’p'”’,’r - e, + PR Oyt (e, + pcx)ch(§;,l—20)

A corresponding equation for the covariance from total point error exists, but substituting
the expression for o from (5.1-10) into it causes it to reduce to zero. Therefore, the

variance of disparity from point error in this case (point not used in computing the camera
model) is

0% = Of .+ (1-07%%2 - Al-R)po,.,,
(5.1-21)
02, ~ 0. + (1-A70%2

5.2 Distance

We now have a point x,,9, in Picture 1, point XpYp In Picture 2, and the camera
model which relates the two pictures. It is desired to compute the point in
three-dimensional space corresponding to these points. This will be the point at which the
projections of the two picture points intersect in three-dimensional space. (The pro jections

are guaranteed to intersect, because Xp1Yp Was forced to be on the back projection of x|, 9,
into Picture 2)

Let u be the vector from the Camera | origin (cenier of projection) to point x,.y, in
the image plane (assumed to be in front of the lens, as explained in Appendix B). let v be
the vector from the Camera 2 origin to point X5 Yp In the Camera 2 Image plane in the
same manner, let r be the vector from the Camera | origin to the Camera 2 origin, and let
8 be the vector from the Camera | origin to the desired point in three-dimensional space.
All of these vectors are coplanar, because of the fact that the two projections intersect, as
stated above. It is desired to compute & all other of these vectors are known. Furthermore,
let O be the angle between r and v, let ¢ be the angle between u and v, and let f, and f,
denote the principal distances defined in Appendix B. Figure 5-2, which for simplicity

assumes that the axes of the cameras lie in the plane of these vectors, iliustrates these
quantities.

From the law of sines for plane triangles,

rsinb

I . (3.2-1)
3N

But the sine of the angle between two vectors is the magnitude of the cross product of the
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Figure 5-2. Triangulation to compute distance (two-dimensional version).
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unit vectors in the same directions. Thus (5.2-1) Is equivalent to

r x v uv Ir x v
i .lnxvl * :uxvlu (6.2-2)

Since u znd & are tolinear,
Ir x vi
s o v (5.2-3)
Because 1, u, and v are coplanar, the two cross products in (5.2-3) produce paraliel vectors.

Thus the absolute value cperation can be dropped in this equation, and it can be expressed
in terms of the ratio of twe vectors, as follows:

s 22XV (5.2-4)
uxv

Even though the ratio of two vectors is usually not defined, in the case of parallel vectors it
is taken to mean the ratio of corresponding components of the two vectors (all of which
have the same ratio).

* A that we need to compute here is the component of s parallel to the principal axis
of Camera |, which we denote 2. The other two components in the Camera | cocrdinate
system can then be easily computed as x,2/f, and y,z/f,. Thus, taking this component of
both sides of (5.2-3) produces

IXv

T xv f, . .2-5)

2 =
which will be called the “distance™ here, rather than using this term for the slant range s.

The vectors needed in (52-5) can be expressed in any particular coordinate system
for computational purposes; the Cameta 2 ccordinate systems is chosen here. The
components of these vectors can be computed by using the unit vecior 1, and the rotatior:
matrix B defined in Appendix B. Thus, in the Camcra 2 coordinate system,

x, Xp
r - 1814, u = By, v o=y (5.2-6)
fnj 2

The partial derivatives of these vectors relative to the camera model parameters are then
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'axp' :

. X, 3% |

or r B ou oB ov 3y .
% -rB-rg +r§k—1, % - 3'8-.71 % - -B?P (5.2-7) \
fl '

L 0 J }

assuming that f; and f, are not included in the camera parameters. (If uncertainty in the |
principal distances is to be propagated aiso, additional partial derivatives relative to f, and
f, are computed in the obvious way.) The partial derivatives of 1, and B needed above ;
are obtained a: described in Appendix B.

called for we could .se the ratic of the absolute values of the vectors, as in (5.2-3).
However, in order to keep the computations simple, which is especially important when
computing the partial derivatives for the error propagation, the ratio of cne of the
components is used. The question then is which component to use. In principle, it could be
any nonzero component. However, in order to avoid numerical loss of significance, a small
component should be avoided. Since the point in the scene always is in front of the image
planes of both cameras, the cross products in (5.2-5) never produce vectors perpendicular to
the image plane, and the cross product in the numerator is never zero. Therefore, it is
guaranteed that either the x or y components must be significantly large, at least in the
numerator. Thus what is done in the implemented program is to compute both the x and y
components of the numerator, to select whichever is greater in magnitude, and to select the
corresponding comporent of the denominator. Letting » and ¢ be the components of the “
numerator and denominator actually used, letting the subscripts x, y, and z denote the ;
components of the vectors, noting that the components of v are Xpr Ipr and /,. and writing
out the cross products in terms of the individual components produce the following i

relationships. If lr,j, - 'in > |':"p = 1Sk |

|
In order to compute the distance z by (5.2-5), where a ratio ¢. two parallel vectors is f
s
L
f

p - ',fz—';,p
\5.2-8) ]
g = Ufy- Uy |
Otherwise,
P - r.xp-r’f,‘,.
(5.2-9)

g = uX,- u,‘/'2

Then the distance 1s
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7. ﬂ'— (5.2-10)

In order to do the error propagation, the partial derivatives of p and ¢ relative to the
camera model parameters, and relative to T with the camera model parameters held
constant, need to be computed. These can be obtained by differentiating (5.1-2), (5.2-8),

and (5.2-9). If lr,f.‘, - r‘ypl > lr,,x'n = 1.foh

)
Sg . Ty
9
;‘? I (5:2-11)
32 i c)ryf _ or, _, c)yp
g " T IRy
3 du,, o, 9y
A TR TR
Otherwise,
3
gg s T
)
5% = Uty
(52-12)
3 ar, ox or,
A AT X
3 du, ox,  ou,
S% - -Sg—xp+u'-5?—-;g—f2
Also needed are partial derivatives of the distance z, as follows:
o Srop Moy
T q o1 ¢ T
(5.2-13)

S ?/

where the needed partial derivatives of p and ¢ are available from (5.2-11) or (52-12).
The partial derivatives of z relative to the s are assembled into the 1-by-5 matrix

(It is assumed above that the principal distances are known exactly. Otherwise, additional
partial derivatives relative to f, and f, would be computed and would be used as additional

elements in ;é- . which would be I-by-7 instead of I-by-5)

L Then, by using the description of the three different types of error in Section 5.1, and
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by using the linear approximation rule for the propagation of covariance matrices
(premultiplying by the matrix of partial derivatives and postmultiplying by its transpose),
the independent, relative, and total variances of the distance z are

oz
OFind = 57,:) O

e = (Z )02+ (55).,5 (55 )} (52-14)

dz \2 LY dz 22
0ot ;;)“3,;; 36 sc(m) + 507

where the last term for the total variance is for the uncertainty in the inter-camera distance
(assumed to be independent of the other camera model parameters), and where S is the
covariance matrix of the camera model parameters, as previously described.

Note that in (5.2-14) the error propagation from the camera model to the distance is
done in a different way for relative error and totai error. The error propagation for
relative error could have been done in the same way as for total error, by defining partial
derivatives (32/9g), ;. However, this would have reduced to the form used above. This
simplification does not occur for total error, because of the additional effects considered in
the partial derivatives of Xpe Ipe p. and ¢ for total error.

The linear approximation for error propagation used in (5.2-14) is very poor when
0, is nearly as great as or greater than z. This condition indicates that the point actually
could be at an infinite distance. (If z from (52-10) is negative, the point appears to be
beyond infinity.) When the true z is considerably greater than r, It is more accurate to
consider (r'/z2 (using the values computed as above) to be the standard deviation of the
errors in 1/z (neglecting the fact that the point cannot actually be beyond infinity).
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Chapter 6
GROUND SURFACE FINDER

Once the three-dimensional positions of a large number of points in an outdoor scene
have been determined, it is desired to determine which points are on the ground and which
are on ob jects above the ground. This chapter discusses means of computing the ground
surface.

6.1 Basic Ground Finder

By taking a sufficiently small portion of the scene the ground can be approximated
by- a simple su:face whose equation can be Jdetermined. The procedure which has been
implemented aszumes in general that the ground surface is a two-dimensional
second-degree polynomial (a paraboloid). However, weights can be given to a priori values
of the polynomial coefficients, to incorporate any existing knowledge about the ground
surface into the solution. For example, the second degree terms can be weighted out of the
solution altogether, so that the ground surface reduces to a plane. It usually is wise to use at
least a small amount of weight on zero values of the second-degree terms in order to
constrain them to reasonably small values. (The next section discusses how the method
could be changed to handle large aveas.)

To determine a ground surface from a given set of data, a set of criteria which define
what is meant by a good ground surface is needed. These include the number of points
within tolerance of the surface (the more the better}, the number of points which lie beyond
tolerance below the surface (the fewer the better, since these would be due to errors such as
rmismatched points in a stereo pair), and the closeness of the surface coefficients to the a
priori values. Note that the number of points above the surface does not matter (other than
that it detracts from the number within the surface), because many points can be on ob jects
above the ground. A score for any tentative solution is computed based on these criteria,
and the solution with the highest score is assumed to be correct, although a solution with a
lower score could be selected by a higher level procedure using more global criteria. The
scoring function currently used is

n-m x? ‘t"i'7
- - — 6.1~}
ve n+V—2m “QQk‘ (SU‘) ( l )

where n is the number of points within tolerance of the surface (these points were used to
determine the surface by a least-squares fit), ¥ is the a priors expected number of points in
the surface, X is the number of points below the surface by more than the tolerance, « is the
a priori approximate maximum number of points below the surface, the ¢, are the
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coefficients of the fitted surface, ¢; are their a priori values, 0; are the standard deviations
of these a priori values, and m is the numbter of these coefficients which were ad justed.
The numerical value of the score can range from approximately +1 to arbitrarily large
negative numbers. Any positive value is considered to represent a satisfactory fit.

Finding the best solution out of all of the possible solutions Is a search problem.
What is needed is a method which will be iikely to find the correct solution without
requiring huge amounts of computer time.

One possibility would work as follows. Take all combinations of the points three at a
time for the special case of a plane surface (or six at a time for the more general case), fit
the surface to each combination, see what points lie within tolerance of the resulting surface,
include these in the solution by a least-squares ad justment, and iterate in this manner until
a stable set of points is reached for each tentative solution. However, the number of
tentative solutions would be approximately proportional to the cube of the number of points
for the plane case (or the sixth power for the general case). Therefore, this method would

usually be impractical.

The method actually used uses some heuristics to lead the search to the desired
solution. It can be divided into two portions.

First, a least-squares solution is done using all of the points. This fit is saved for
refinement leading to one tentative solution. Then all points below this fit, but not less
than halt of the points used in this fit, are selected, and another least-squares fit is done on
these points and saved. This process repeats until there are too few points left. (This
portion of the algorithm drives downward to find the low surfaces, even though there may
a large amount of clutter above them.)

Second, a refinement of each of the above fits is done, re jecting erroneous points and
some clutter, in order to find well-defined surfaces. This refinement process is basically an
editing process as described in Appendix A. However, to remove points one at a time as is
done with the camera modei ad justment may be ioo time consuming because of the large
number of points (many of which may need removing). Therefore, at each step, all points
lying outside of the criterion are rejected, and all other points are included, for the next fit.
However, in order to avoid re jecting too many points at once (which may include the good
points), the standard deviation of the points used in the fit about the fitted surface s
computed to obtain a threshold for rejecuing points. This wholesale selection of points is
permissible because the :olution does not need to be rechecked after re jecting each point as
is done with the camera morel, because the ad justment (as described in this section and in
most of the alternatives in the next section) Is linear. However, the computed standard
deviatton will change after the points are rejected.  Therefore, instead of using a
three-standard-deviation limit as is done with the camera model, a one-standard deviation
limit 1s used (but not less than three Limes th= given standard deviation for each point), in
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order to avoid rejecting too many points at once. (If a few good points are re jected, they
will be reinstated on later iterations as long as the process converges to the correct solution.)
This process continues until it stabilizes, in which case the score of the result is computed,

or untif there are too few points in the solution.
The above algorithm can be summarized as follows:
0. Select all of the given points.
l. Save the next fit done according to step 2.
2. Perform a least-squares fit of the surface to the currently selected points.

3. If all current points (and no others) are within tolerance of the fit, save the fit and go to

4. Compute the standard deviation of the current points from the residuals of the fit.

5. Select all points that are within one computed standard deviation or the original
tolerance, whichever is greater.

If n > m (that is, the number of current points is greater than the number of coefficients to
be ad justed), go to 2.

7. Using the last fit saved according to step |, select all points that are below that fit, but
not less than half of the points used in that fit. (To avoid rejecting more than half, a limit
above the fit is increased from zero by an appropriate amount as indicated by a histogram

of the residuals.)

8. If n > m and there is a change in the selected points from the last fit saved according to
step |, goto |

9. Of those fits saved according to step 3, the one with the greatest score is the preferred
solution, with cthers ranked in order of decreasing score.

In the general case of a paraboloid mentioned above, the height of the ground
surface is

Awasdrocysda?s exys+ fy? (6.1-2)
where x and y are the horitontal coordinates, and a, 4, ¢, d, ¢, and f are the coefficients

defining the surface, which are to be determined. Since this equation is hinear in these
coefficients, the iterations required for the nonlinear solution In Appendix A are not
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Figure 8-1. Side view of ground fit.
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Figure 6-2. Points found by stereo processing showing heights above reference z
plane.




Figure 8-3. Heights above computed ground plane.
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Flgure 8-4. Heights above computed ground plane, for points above & cm.
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needed, and equation (A.1-23) can be used directly to obtain each fit needed in the above
algorithm, with the following substitutions:

Pallxyx?xyyl
E-[I] (6."’3)
Delabcdefll

where z is the vertical coordinate, and where x, y, z, P, and £ are evaluated for each
point used in this fit (corresponding to the subscript i in equation (A.1-23)).

Figure 6-1 shows a ground surface (constrained to be a plane) fit to the data from the
Mars pictures shown in Chapter 4. This is a horizontal view in a direction chosen so that
the plane projects as a line. The vertical scale is exaggerated. Each point that was used in
the final accepted fit is shown as a solid circle. The rejected points are shown as open
circles. The number | in the upper left corner indicates that this was the first fit found
according to step 3, the asterisk indicates that this was accepted as the final solution, the
number 0.1503056 is the score for this solution, and the arrow in the upper right corner
indicates the direction of the view in the horizontal plane (in this case about 45° to the left
of the plane perpendicular to the baseline connecting the two cameras).

Figures 6-2 and 6-3 show the same data projected into the left picture in a "before”
and “after” presentation. The head of each arrow is at one of the points used
(corresponding to the dots in Figure 4-1), and the base of the arrow is on a reference plane
1.3 meters below the camera in Figure 6-2 or on the computed ground plane in Figure 6-3.
The arrows are perpendicular to the reference plane in cither case. The fact that most of
the arrows point down in Figure 6-2 indicates that the ground is below the reference plane.
The fact that most of the arrows in Figure 6-3 are very short where there are no large
rocks indicates that a reasonable fit to the ground was obtained. Figure 6-4 is the same as
Figure 6-3 except that only points at least five centimeters above the computed ground

plane are shown.

6.2 Extension to Large Areas

1f it 1s desired to fit a large ground area, a single paraboloid may not he a reasonable
approximation, and some modification of the method in the previous section is needed.
However, whatever method is used, some assumption about the smoothness of the ground s
needed. Otherwise, the disuncion between ground and objects disappears without more
informatton other than the three-dimensional positions of points.  Several postible
appreaches are discussed in this section. However, none of these have been implemented.
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The simplest approach is to divide the area into small sections in a predetermined P
manner and to perform the solution of the previous section independently on each section, H
either with a plane or paraboloid fit. This will cause discontinuities in the ground to
appear - at the boundaries, but this effect is not troublesome if the only purpose of '
computing the ground is for thresholding heights for object detection. However, allowing ‘
these discontinuities to occur means that the constraint of smoothness has been disregarded
at these boundaries, resulting in a less than optimum solution. This can be especially bad if
some of the sections do not have enough points to determine the ground well. A possible
| refinement of this metheod is to take for each section not necessarily the best solution found,
" ut the one which agrees best with the solutions for neighboring sections, if there are a few

almost equally good solutions.

Some methods will now be discussed which utilize the constraint of smoothness and
by means of a single fit produce a ground surface which varies smoothly but in a more or ¥
less arbitrary way over a large area. Because the surface in one part of the scene is aimost H
independent of the surface in a distant part of the scene, the part of the algorithm which [
drives downward to eliminate clutter (steps [, 2, 3, 7, and 8) cannot be used as part of this :
solution. Otherwise, a good solution in one part of the scene might be coupled with a bad ;
solution in another part. Therefore, with these methods an initial approximation to the
ground should be computed first using the method in the previous paragraph (separate
solutions for predetermined sections) with fairly large sections, and then this solution should ’
be refined using steps 4, 5, 6, and 9 on all of the data, with one of the methods discussed |

below.

One approach is to partition the area as above, but to perform a singie solution
which includes continuity constraints at the boundaries. For example, a tesselation into
equilateral triangles can be used, with a separate plane fit in each triangle, but constrained
so that the heights are contihuous at the boundaries, whereas the derivatives may be
discontinuous. (This works because three points determine a plane.) The coefficients to be
computed could then be the heights at the corners of the triangles. (These would form the
D vector) The solution is linear in these heights, so apart from a different P matrix, the
same method as in the previous section can be used. However, in order to produce a
smooth surface, a priort weights would be used to minimize the change in slopes at the
boundaries. Thus, the area can be divided into very small triangles, but this weight causes
a smooth turface to be produced. The change in slope at a boundary (s proportional to B
A=A ~A+h,, where A, and A, are the heights of the surface at the two vertices on this i
boundary, and A, and A, are the two vertices at the vpposite corners of these two triangles
from this boundary. The elements of the P matrix for these a priori observations are then
I, -1, -1, and |, respectively Thus the terms of the PTP matrix corresponding to A, and
A, A and A, A and A, and A, and A, are all -1, and the term corresponding to A, and
A,. A, and A, and il 1our diagonal terms are all |. These would be multiplied by an
appropriate weight and added Into the A matrix at the correct positions for these terms, In ‘
order to constrain the change in slope at this boundary to be close to tero. This wouild be |
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done for every boundary. (A approach similar to this method is to represent the ground by
means of splines, discussed by Schultz [1973))

Suppose that it is desired that the ground surface be smooth in most places but be
alluowed to have occasional discontinuites in siope, which would correspond to such things as
banks and cliffs in the scene. This might be accomplished by modifying the above method
as follows. The weights on the zero values in change in slope would be a function of the
change in slope: perhaps a large constant value up to a certain small value of slope and a
small value beyond. However, this causes the problem to be nonlinear, and it might require
an inner loop of iterations in addition to the iterations which determine which points to use.
Furthermore, on early iterations the large weights should be fairly small and the threshold
for changing weights should be fairly high. These would gradually increase and decrease
respectively as the iterations progress. This process would cause the creases in the surface
to occur at approximately the right places. The precise initial values used weuld determine
at about what size threshold the distinction between discontinuities in the slope of the
ground and ob jects which are above the ground is made. It would also be possible to make
the position of the vertices at which these discontinuites occur (in addition to their heights)
parameters to be adjusted in the solution, but this would introduce even more
nonlinearities. (Note that even without this additional ad justment, which vertices get the
discontinuites is variable, but the solution is limited to the arbitrarily predetermined
position of vertices.) It is not clear how well this would really work.

Another approach is to let the ground surface be the sum of a set of overlapping
two-dimensional Gaussian functions (normal curves). The width (stanclard deviation) of
these functions would be predetermined according to the desired smoothness of the ground
surface, and the positions of the centers of the functions would be at a set of equally spaced
points covering the area to be fit. The spacing would be sufficiently small so that
insignificant ripple would be produced by the finite spacing. The parameters to be
ad justed would then be the amplitudes of the Gaussian functions. The Gaussian function
is chosen because of its smoothness and the rapidity with which it approaches zero in both
directions. In some rough sense it has the optimum combination of these properties.

In order to keep the amount of computing within reasonable bounds, instead of using
the actual Gaussian function (which extends to infinity in both directions), an
approximation to the Gaussian function obtained by truncating it at a finite span would be
preferred. Three or four standard deviations in each direction is a reasonable choice, since
the vaiue of the function at these points is only 0.011 or 000034 of its peak value.
Furthermore, the approximation can be improved by subtracting the value of the Gaussian
function at the truncation point from all of the values, in order to remove the discontinuity
from the approximation function. (This function has been used previously in digital filters,
for similar reasons, by Gennery (1966))

Therefore, the equation for the ground surface would be




A = 2 a.0); (€.2-1)

where

(x-x;)% + (5-3;2

w; = exp(—

w; = 0, otherwise
where r is the number of standard deviations 2t which to truncate the Gaussian function.
The quantities x; and y; are the centers of the Gaussian functions and are constant. The
only quantities to ad just are the coefficients a;, Thus the problem is linear. The elements
of the P matrix in Appendix A for each data point would just be the w; quantities above.

There should be included in the solution a small amount of weight on the equality of
ad jacent g's. so that the surface will continue with a reasonable interpolation through areas
where there are not many points being used to determine the surface. (This is also
desirable to prevent the H matrix from becoming nearly singuiar if the spacing of the
functions is small compared to 0.) This is done by adding ! on the main diagonal of the H
matrix at the position corresponding to each a; of an adjacent pair, and -1 at the two
off-diagonal positions corresponding to these two terms, ail times the appropriate weight.
This is done for all ad jacent pairs. A large weight should not be used here, for this would
introduce additional smoothing in the computed surface, and, if this is what is wanted, it
would be more efficient to increase the width of the Gaussian functions (0) and their
spacing, and thus to decrease their number.

In order to decide what spacing to use for the w,'s, equation (6.2-1) can be used with
all a; = 1, to see how much variation is produced in the values of A as a function of x and y
with a given spacing. For example, if r = « and the centers are on a scuare grid with
spacing 20, the maximum ripple relative to the mean value is about 0.03; with spacing 0 it
is only about 107% (With finite values of r, the former value would not change much unless
r < 3, but 1n order to achieve a value as small as the latier would require a larger value of
r) A ripple of arounc one percent 1s probably tolerable unless the heights being fit are
very large, in which case this would represent a large absolute error. In such 2 case the
mean and perhaps the trend could be removed from the data first before it is used in the
above method in order to reduce the size of the guantities being handled, and then the
corresponding values would be added to the results. (This could be done by using the
single-fit ground finder described in the previous section on the original data)

It should be noticed that in both of the methuds described above (plane triangles fit
with smoothness constraints, and overlapping Gaussian functions) the H matrix which must
bu computed increases 1n size with increasing ground area covered, and it thus may be quite
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large. However, in both methods this matrix will be rather sparse. In the Gaussian case
the matrix will be less sparse than in the other case (because the functions overlap), but
because the spacing of the functions can be so large relative to the amount of smoothing
produced, the size of the matrix can be considerably smaller than in the plane triangle case.

Of the two methods, the Gaussian method would appear to be superior because of

the extremely smooth surfaces that can so easily be produced. However, there is no obvious
way of adding the ability to fit discontinuities in slope, as can be done with the other

method.
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Chapter 7 3
OBJECT FINDER E

This chapter destribes the use of three-dimensional data for the detection of ob jects
and the measurement of their poution, size, and approximate shape. Ahhough the
three-deumensional data could be obianed from a scanning laser rangefinder, the ob ject
detector 15 designed (0 be tolerant of errors in thy data, such as mistakes produced by
INCOTTECt matches i steren viston data and poor accuracy of distances frony stereo.

! 7.1 General Description

Many approaches are possible i describing the shapes of objects At the extreme of
simplecity each ob gect could be represented by a sphere  Since a sphere can be specified by
four paramwters. this 1s economical, and. if the sphere encloses the actual ob ject, 1t could
suifice for obstacle avosdance. sn a conservaiive way Furihermore, this crude sort of J
informaiion for each object in a large scene containing many ob jects amounts to fairly 1
detailed information concerming the whole scene, and thus it would be useful for navigation.

; On the other hand. more elaborate dewriptions that represent the object in more detail |
could be used One possibthty 13 the use of generalized cylinders or generalized cones, as by
Nevatia and Binford [1977) (In the simplest case, the generalized cylinder would reduce to
an ordtnary cyhinder, which can be represented by seven parameters) For man-made
ob jects of regular form or elongated ob jects with well-defined axes, such a rcgresentation is
very useful However, for irregular objects such as rocks, the choice of how many
parameters to use to describe the object and even the choice of direction of the axis of the
generalized cyhnder or cone may become almost indeterminate and thus may be greatly
influenced by noise in the data This wouid make the comparison of two object

descriptions difficult.

A sort of compromise approach 15 used here, in which objects are represented by
ellipsoids.  Since ob jects can be approximated more closely this way than by spheres, in
obstacle avoidance the vehicle may be able to pass more closely to the objects, and in
navigation the shape information may aid in recognition of a scene. This 13 done at the
cost of using nine parameters to describe an ellipsoid instead of four for a sphere, but the
convenient mathematical properties of the sphere are mostly retained. The nine parameters
could be the three coorainates of the center, three angles defining the orientation, and the :
semi-lengths of the three principal axes to define the size and shape In this way the size
and shape parameters would be independent of the choice of coordinate systems However,
for computauonal convenience the onentation, size, and shape are represented here by the
six unique elements of a symmetrical 3-by-3 matrix (as 1n equation (7.3-1)), which are
closely related to the second-degree coef{icients 1n the general form of the equation of a .
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quadric.

By "object” we do not necessarily mean here an actual physical ob ject, but merely a
portion of the scene that can be reasonably approximated by an ellipsoid. Thus, if we use
as an example a vehicle exploring Mars, an ob ject may be a single rock on the Martian
surface, two or more ad jacent rocks, of merely a bump in the ground. Also, an L-shaped

physical ob ject might be represented as two ob jects.

This ellipsoidal representation should be quite appropriate for representing rocks on
Mars, because rocks probably tend to resemble more nearly ellipsoids than any other simple
shape. However, it could also be used to represent cars in a parking lot or trees in a field,
for example, especially in aerial photographs where the resolution may be poor compared to
the size of the ob jects, and in other cases where precise ob ject description or recognition s
not necessary but rather an overall description of the scene is desired.

The stereo vision processing or laser rangefinder results in data representing the
three-dimensional pesition of a large number of points distributed over the scene. The first
step in the processing of this three-dimensional data is to find the grouncd surface, as
described in Chapter 6. Then points which are above the ground by a sufficient amount
(depending on the computed accuracy of the points, the roughness of the ground, and the
minimum size of ob ject that is of interest) are candidates for points on ob jects.

These above-ground points are clustered to produce preliminary groupings of points
which correspond roughly to objects. An ellipsoid is fit to each cluster by first computing
an initial approximation based upon the moments of the points in the cluster and then
iterating a weighted nonlinear least-squares ad justment to fit the ellipsaids to these points
and to avoid obscuring other points. Then, according to the relatve positions of the

ellipsoids and points, clusters can be broken or merged, and the process repeats until the
apparently best segmentation is found. Each of these steps will be described in the

following sections.

The object detection and measurement process a3 described here uses only
three-dimensional position information. Brightness information s discarded after the
stereo processing. However, 2 more complete system would use both types of information.
Perhaps an edge detector could be applied to the brightness data in the regions near the
outhines of the ellipsoids in order to refine the boundaries of the ob jects, for example.

72 Preliminary Clustering

Once the ground surface has been determined, all points that are above this surface
by more than a thrashold are clustered to form an initial approximation to the segmentalion

of the scene into ob jects. -
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Various clustering techniques could be used here. One possibility is a relaxation
method, such as Zucker's [1976). However, at present, the clustering is done by using the
minimal spanning tree of the points. (The minimal spanning tree is the tree connecting all
of the points such that the sum of tire edges is minimum.) This is computed by using the
nearest neighbor algorithm. as described in Duda and Hart {1973) (The length of the
edges of the tree is defined here as the three-dimensional Euclidean distance between the
points.) Then the tree is broken at every edge whose length is greater than twice the
average length of the ad jacent edges, as suggested by Duda and Hart [1973]. However, a
minimum length for an edge to be broken (related to the resolution of the data) is specified,
so that the method will not be overly sensitive to local fluctuations in the data. Also, a

maximum can be specified, beyond which all edges are broken.

7.3 Initial Approximations to Ellipsoids

Since each ellipsoid will be fit to a cluster of points by an iterative process, an initial
approximation is needed. A good approximation increases the likelihood of convergence,
decreaszs the number of iterations required, and can be used as the result in case the
iterations do not converge.  This Iinitial approximation is obtained from the
three-dimensional moments, through the second order, of the points in the cluster.

An ellipsoid can be represented by the following matrix equation:
(r-c)'W(r-c) = | (7.3-1)

where r is a vector of the three-dimensional rectangular coordinates of any point on the
surface of the ellipsoid, ¢ similarly is the position of the center of the ellipsoid, and W is a
positive~-definite symmetrical 3-by-3 matrix. (See, for example, Hohn (1973])) Let M
denote the inverse of W. (The square roots of the eigenvalues of M are the lengths of the
semi-axes of the ellipsoid) The relationship between the computed moments and the
matrices ¢ and M depends on the distribution of points over the elspsoid. If the points are
distributed uniformly over the ellipsoid, the vector ¢ consists of simply the normalized first
moments of the points  The matrix of normalized second moments about ¢ of the points 15
-{ M if the points are distributed uniformly through the body of the ellipsoid, or -; M if the
points are distributed uniformly over the surface of the elliproid. If we have viewed the
object from all sides, we might have an approximation to the latter case. However, if we
have viewed it from a single point, we will have points distributed nonuniformly over half
of the surface (Actually shghtly less than half will be seen because of perspective Also, in
stereo vision, both cameras must see each point, so that with a single pair of cameras only
the common area seen from both camera pouitions will appear. These two eflfects will be

neglected below, however)
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We assume here that the ob ject is seen from a single viewpoint by a raster scanning
device which produces points distributed uniformly in the image plane. Such a device
might be a scanning laser rangefinder or an area-based stereo system. Actually, because of
missing points, the distribution will not be uniform. It would be possible to estimate the
actual distribution by computing higher-order moments, but this might be overly sensitive
to randomness in the distribution or an inadequate density cf points, so it is not attempted
here. As an approximation, we assume an orthogonal projection instead of a central
projection. Let s denote the vector of normalized first moments (centroid) and M, denote
the matrix of second moments about s obtained with this distribution, and let o denote the

position of the camera.

The relationship connecting s and M, to ¢ and M can be derived by first considering
the case of a sphere of radius p. A little integration shows that in this case the eigenvalue
of M, corresponding to the eigenvector o-c is fip"’. the other two eigenvalues are both

d 2 and s is ¢ plus 2 p times the unit vector in the o-¢ direction. All three eigenvalues
] P y 14

of M should be p? in this case. An ellipsoid can be considered to be a distorted sphere
(using stretching and skew distortions). Thus the ellipsoid can be considered to be stretched
in the various directions by the amount given by the square roots of the ratios of the above
eigenvalues, but in computing the displacement of the center, instead of 0 the distance from
¢ towards o to the ellipsoid suriace must be used. Thus the displacement of the center is

the vector -%(o—c) divided by the scalar J(o—c)TW(o-c). Since the points represented by c,
s, and o are colinear, ¢ can be replaced by s without changing the value of this ratio. Also,
W (=M~") can be replaced by %;M;' in this expression, because of the stretching discussed
above. Thus c can be computed from s by translating by this amount. To compute M, we
can take 4 times M, to account for the factor of 4 in two dimensicns, but this leaves |1 out
of the factor of 18 by which we need to stretch the moments in the direction toward the
camera. This extra amount can be introduced by adding 14 times the moment produced by
a fictitous point at the intersection of the s-to-o hne and the surface of the ellipsoid
corresponding to M. In order to keep the ellipsoid to a reasonable shape when there are
not enough points (o determine it well, M as obtained above is averaged with a scalar
matrix whose diagcnal elements are A (which represents a sphere of radius JA), with the
average weighted so that the sphere represents four additional paints in the moment
computation. The value of A s determined so that it is the average of the two components
of the second moments at right angles to o-s, but limited by the average of all three
components (the three eigenvaiues), including the effect of I4 times the effect of the
fictitious point, as above, as an upper imit, and excluding this effect, as a lower limit. This
avoids putting undue weight on the o-s dimension when the elipsoid i3 long In this
direction, since this dimension 1s less reliable because of the factor of I8 compression.

By combining the above information, the comnputaticn of the initial approximation
can be expressed as follows:
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where p is the position of any point in the cluster, n is the number of points in the cluster,
the summations are over these points, and / is the 3-by-3 identity matrix.

14 Iterative Solution for Ellipsoids

The ad justment of the ellipsoids is done by a modified least-squares approach. Each
ellipsoid is adjusted so as to minimize the weighted sum of the squares of two kinds of
discrepancies: the amounts by which the points (usually points in the cluster being fit) miss
lying in the surface of the ellipsoid, and the amounts by which the ellipsoid hides any
points as seen from the camera position. (In the latter case, the discrepancies actually
should be considered separately for each camera that sees the point in question. However,
for narrow-angle stereo we use as a reasonable approximation the assumption that the
“camera® 15 at the midpoint of the stereo baseline) Including the second kind of
discrepancy is useful in helping to determine the size and shape of the object when the
points on the object itsell do not contain sufficient information. Also included in the
weighted sum of squares to be minimized are a priori terms which tend to force the
ellipsoid by default to become 3 sphere near the ground when the points do not constrain it

well.

The first kind of discrepancy above optimally should be defined as the length of the
normal from the point In question to the surface of the ellipsoid. However, computing this
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requires solving a sixth-degree equation. Therefore, as an expedient the distance between
the point and the surface along a straight line from the center of the ellipsoid to the point is
used instead. In order to be consistent with this definition, the second kind of discrepancy
is defined as follows. The midpoint of the two intersections of the surface of the ellipsoid
with a line from the camera to the point is first found. Then the discrepancy of the first
kind is computed for this midpoint. (Note that if the main source of departure of the
3 points from true ellipsoids is error in the measured position of the points, this is not the
. proper definition to use for the second kind. The normal distance from the point to the
cone tangent to the ellipsoid with its vertex at the camera would be better. However, we
assume that the major source of departure is the fact that the objects are not really
ellipsoids, and thus the adopted definition is appropriate, because it is a measure of how far
the ellipsoid juts out into the line of sight to the poin.) Both kinds of discrepancies ave

itlustrated in Figures 7-1 and 7-2.

o -,

Now we must consider exactly for which points which kind of discrepancy is
computed. There are five regions of space to consider, according to whether the point is to
the side of the ellipsoid as seen from the camera (that is, the line through the camera
position and the point does not intersect the ellipsoid), is in front of the ellipsoid as seen
from the camera, is inside the front portion of the ellipsoid (in front of the surface of
midpoints as defined above), is inside the back portion of the ellipsoid, or is behind the
eilipsoid. Also, there are two kinds of points to consider, according to whether or not the f

point is in the cluster which s assumed to correspond to this object This produces ten }f
combinations in all, which are illustrated in Figures 7-1 and 7-2. They divide into four ' .
categories. i

First, if the point is not in the cluster and is either in front of the ellipsoid or is to the 3
side, there is no discrepancy and this point is not included in the computations. |

Second, if the point is in the cluster and is either in front, inside the front half, or to
the side, or if the point is not 1n the cluster and is inside the front half, the first kind of g

discrepancy is used.

Thard, if the point is not in the ciuster and is behind the ellipsoid, or {f either kind of
point is inside the back half, the second kind of discrepancy it used.

Fourth, if the point i3 in the cluster and is behind the the eilipsond, both kinds of
discrepancies are used, and the point acts as two poimnts in the computations. This s :
because there are two separate components of error in this case: the ob ject does not extend
enough on the side to hide the point, but it apparently bulges out in back (yelative to the
ellipsoid) to include the point.

In order to derive the mathematics for dividing space into the above five regions,
consider the equation for the ellipsoid, as stzted in (7.3-1), and the eyuation of a straight
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line through the camera position © and the point in question p, in parametric form,

(r-0) = u(p-o0) (7.4-1)

These can be combined to produce
; (u(p-ol+o-c)TWu(p-o)+o-c) = 1| (74-2)

the roots of which determine the intersections of the line and ellipsoid. Equation (7.4-2) is
equivalent to

aul+ Bu+ys= 0 (7.4-9)

where
a = (p-0)"W(p-o)

B = Ap-0)"W(o-c)

v = (0-c)TW(o-c) - |

The roots of equation (7.4-3) in u determine the region of space in which p lies. If the
roots are imaginary (8%-4av < 0), the point is to the side of the ellipsoid. If the average of
the two roots (-f8/2a) is positive, the point is in front of the midpoint surface, if negative, it
‘ is behind the surtace. If the roots are real, the point is in front of, behind, or inside the
cllipsoid according to whether both roots are greater than unity, both roots are less than
unity, or unity lies between the roots, respectively. Alternatively, we can use the fact that
{ the point is outside of the ellipsoid if and only if (p-¢)TW(p-¢) > 1.

¢ = S0t - ———) (7.4-4)
J(p-c)"W(p-c)

In order to compute the discrepancy of the second kind, the midpoint of the intersections of
the camera-point line with the ellipsoid 1s first obtained as follows:

| 8 ]
.- - 5;(1»—0)0 ° (7.4-3)

Then the discrepancy of the second kind is
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¢ = Jio-aT-o)1 - ! (1.4-6)
( J(b—c)TW(b-—c) )

Because there may be erroneous points in the data, points which have large
discrepancies relative to the size of the ellipsoid are given less weight in the solution. The

weighting function used is

(7.4-7)

W =

l
1+ oJlr-eW(r-c) - 112 .o?

tr(W)

where r represents p or b for discrepancies of the first or second kinds, respectively, and 0
is the component of standard deviation of measurement errors in » propagated into the
discrepancy. (If these are unknown, 0 can be zero.) Thus the dimensionless quantity to be
minimized (by adjusting ¢ and W) is Zwe?, plus some additional terms for a priori values
yet to be discussed. However, this quantity is minimized only with respect to the effects of ¢
- and W acting through € and not their effects through .

In order to solve the above nonlinear problem, the Gauss method described in

Appendix A is used. This method is equivalent to using the partial derivatives of the
discrepancies to approximate the nonlinear problem by a linear statistical model, solving the

linear problem, and iterating this process until it converges.

On any one iteration the following is done. The current values of ¢ and W are used
to compute for each point the value of ¢ as defined above and the 1-by-9 matrix P, which
consists of the partial derivatives of € with respect to the three elements of ¢ and the six
unique eiements of W. (W is symmetrical) The following summations over all of the
points are computed, in which each point in the first category above is not used, each point
in the second or third categories appears once, and each point in the fourth category

appears twice:

H = H,+ 2, PTwp
(7.4-8)
C=C,+ 3 PTux
(H, and C_ are used for the a priori values yet to be discussed.) Then the 8-by-1 matrix

of corrections is

D - vH'C (7.4-9)

where v is a factor used to improve convergence because of the very nonlinear nature of the
probiem. (Currently v = 0.5 on early iterations, but v = | after a test indicates that this will
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produce more rapid convergence) The elements of D are subtracted from the
corresponding elements of ¢ and W to obtain the improved approximations for the next
iteration. H~' from the last iteration is the covariance matrix of the ellipsoid parameters,
although it may need to be ad justed by a scale factor according to the size of the residuals
of the final fit, as described in Appendix A.

Now the a priori values will be discussed. In some cases the points affecting the
ellipsoid will be insufficient in number or insufficiently distributed to determine all
parameters of the ellipsoid very well. It is therefore desirable to have a priori values for
some of the parameters with appropriate weight in the solution to constrain them to
reasonable defauit values when the points do not contain sufficient information. When
there is ample information in the points, the a priori values will have very little effect
because of their small weight. The a priori values currently used are the ground surface
height directly under ¢ for the vertical component of ¢, with weight 0.1/tr(M), equality for
the diagonal elements of W, with weight tr(M)%10, and zero for the off-diagonal elements
of W, with weight tr(M)%10, where M = W-'. (Including tr(M) as shown scales things
correctly so that the solution is invariant under a scale factor change.) The effect of the W
terms is to try to force the ellipsoid into a spherical shape. (It would be better to apply the
a priori weights to the principal semi-axes of the ellipsoid, trying to force them to equality,
so that the effect of the a priori values would be independent of the cocrdinate system
being used. This would require propagating these values into the elements of W on each
iteration, so the implemented program uses the method described here instead.) These a
priori terms are put into the solution in the following way. The diagonal element of H
corresponding to the vertical component of ¢ is 0.1/tr(M), the three diagonal elements
cotresponding to the off-diagonal clements of W are each tr(M)%10, and the 3-by-3
submatrix on the diagonal of H in the position corresponding to the diagonal elements of

W consists of % on its main diagonal and -—: elsewhere multiplied by tr(M)%/10. All other
elements of the 9-by-9 matrix H  are zero. Then

C, = HGC (74-10)

] ]

where G is a column matrix of the current values of ¢ and W, arranged as in D, witis the
height of the ground directly under the center of the ellipsoid subtracted from the element
of G corresponding to the vertical component of ¢. H  and C, are used in the summations
for H and C as previously shown.

1.5 Breaking and Merging Clusters
Because the preliminary clustering is dependent on loca! information, it may not
produce the best segmentation based on more global information. Therefore, after elipsoids

have been fit to all of the preliminary clusters, these clusters may be tentat:vely broken into
smaller clusters and merged into larger clusters, new ellipsoids are fit to these clusiers by the

8¢




same process previously described, and a decision on whether to keep or reject each of these
actions is made based on the goodness of fit of the ellipsoids to the points.

In order to decide where to break a cluster, for each edge in the portion of the
original minimal spanning tree which connects this cluster the quantity A(1-a) is computed,

where A is the length of the edge and a is the minimum of J(p—-c)TW(p-c) for the two
points connected by the edge. Then the cluster is tentatively broken at the edge for which
this quantity is maximum, of all such edges such that each new cluster formed has at least
four points at least one of which has (p-¢)TW(p-c) > 1 (that is, it is outside the old
ellipsoid). This process tends to break the cluster at places furthest inside the ellipsoid, but
connecting points that are outside the ellipsoid. If this new clustering is accepted by the
criteria described below, the process repeats on the new clusters.

After the above breaking process is finished, any two clusters are tentatively merged
if (e’-c)TW(c’-c) < 4 for either cluster, where ¢’ is ¢ for the other cluster, provided that
these two clusters were not previously one cluster before breaking. If there is competition
for the merging, the cluster pair with the minimum value for this quantity is merged first.
If a merger is accepted, further mergers can take place on these clusters by this same

process.

The criteria for accepting two clusters or one after a tentative break or merger are as
follows. If (c’-c)TW(c’-¢) < | for either small cluster, where ¢’ is ¢ for the other small
cluster (that is, the center of one ellipsoid is inside the other ellipsoid), the single cluster is
chosen. Otherwise, the following quantity 1s computed for each of the three ellipsoids:

Ywe?
§ - Tt TS (1.5-1)

where € and w are the discrepancies and weights from the last iteration, as defined in the
previous section, n is the number of points in the cluster corresponding to this ellipsoid, and
m is the number of points below the height threshold but directly above the ellipsoid. If
the initial approximation is used as the resuit, € and w are obtained from the first iteration,
and the first denominator is n instead of n-3. (The second term, containing m, 1s included
to penalize solutions which he mostly below the ground, with the ellipsoid reaching above
the ground in a small area to meet the points in its cluster.) Then the two small clusters are
chosen if the sum of their two values of ¢ 1s less than the value of ¢ for the single cluster.
Otherwise, the single cluster 1s chosen.

7.6 Example

Figure 7-3 shows the points 1n the Mars picture previously shown in Figures 6-2 and
6-3, but this time in a nominally vertical orthogonal projection (perpendicular to the
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reference plane). The figure covers an area 1.6 meters by i.2 meters in the reference plane.
The lower left corner is 0.6 meters to the right of the plane through the left camera and
perpendicular to the baseline connecting the cameras, and it is 2.9 meters in front of the
baseline connecting the cameras. The similar coordinates for the upper right corner are 1.8
meters and 4.5 meters. The symbol for each point represents height in centimeters above
the computed ground plane, with the letters "A”, "B", "C", etc. representing the values 10,
11, 12, etc.

A 5-centimeter height threshold was used for selecting the points to cluster in the
object finder. The minimum distance for breaking the minimal spanning tree to form the
initial clusters was also 5 centimeters, and the maximum distance for connecting points was
20 centimeters. (Using zero and infinity for this minimum and maximum distance
produced an identical clustering in this case.)

Figure 7-4 shows the points that passed the height threshold. These points are
connected to show the minimal spanning trees that were computed. Solid lines connect
points within each initiai cluster.

Figure 7-5 shows the ellipsoids that were fit to the initial clusters. Each ellipsoid is
represented by two ellipses. One ellipse is the orthogonal projection of the ellipsoid onto
the reference plane. The other ellipse is the intersection of the ellipsoid with a plane
through the center of the ellipsoid and parallel to the reference plane. (In most cases the
two ellipses almost coincide and thus cannot be distinguished in the figure) Only the
clustered points are shown here, as in Figure 7-4. However, as previously described, any of
the points shown in Figure 7-3 may have been involved in the ad justment of the ellipsoids.
Remember that the fit is done in three dimensions, whereas Figure 7-5 shows a

two-dimensional pro jection.

Figure 7-6 shows in the same way the results of the breaking and merging operations.
The two clusters in the center (corresponding to the large rock in the center of the pictures)
were merged into one, and a new eliipsoid is shown for this cluster. The other clusters were

not changed.

These results were projected into the left picture to produce Figure 7-7. The outline
of the ellipsoids as they would be seen from the left camera are superimposed on the
picture. The lengths of the principal axes of the large elipsoid in the center are 30.8, 26.2,

and 166 centimeters.

Notice that the elhpsoid fit to the rock in the upper right corner i1s much too large.
This is because the only points found on this rock were on 1ts fairly flat face, and no points
were found in the background behind the rock to help to constratn its size, as can be seen
in Figure 6-3. This lack of points was caused by the fact that r.ost of the desired region is
outside of the night piciure, as can be seen in Figure 4-2. (In such a case the covariance




Figure 7-8. Verticai view of points, showing heights above computed ground plane in
centimeters.
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Figure 7-4. Minimal spanning trees connecting points above 5 cm. Solid lines show initial
cluaters,




Figure 7-5. Ellipsoids fit to initial clusters.
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Figure 7-6. Ellipsoids fit to final clusters.
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Figure 7-7. Ellipsoids fit to final clusters, projected into left picture.
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Figure 7-8. Results using 3-cm height threshold instead of 5 cm.
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matrix of the ellipsoid parameters indicates the large uncertainty in its size and shape.)

Figure 7-8 shows the resuits of processing the data slightly differently. A height
threshold of 8 centimeters instead of 5 centimeters was used. Some of the smaller rocks are
detected in this case.
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Chapter 8
MATCHING OF SCENES

The previous chapter described a means of me lelling three-dimensional scenes in
terms of ellipsoidal objects. A method of matching such scene descriptions will now be
described. This method uses the covariance matrices generated by the ob ject finder, which
indicates the accuracy of the ob ject parameters, to determine the goodness of match for each
ob ject match. This is a special case of a more general problem, in which there is a set of
features in each scene, with each feature being represented by a vector of feature
parameters and the covariance matrix of these parameters. The method to be described
applies to this general case, but it will be described in terms of the special case at hand. In
this special case, the vector of feature parameters consists of the parameters describing the
position, size, and shape of an ellipsoid (the c vector and the W matrix in Chapter 7).
There are nine of these parameters in the complete case (three elements of ¢ and six
elements of W). However, it may be desired to eliminate the verticai component of position
(third element of c), because this component is less reliable due to uncertainties in the
vertical position of a roving vehicle, and this is done in the implemented version of the
program, leaving eight parameters actually used. Also, a completely general program would
aliow for translations and rotations in three dimensions, whereas the method described
below allows only translations and rotations in the horizontal plane. This is suitable for a
roving vehicle, since it should be able to obtain an accurate vertical from gravity. (In fact,
with reasonable instrumentation the direction in the horizontal plane should be determined

also, leaving only transiation to determine.)

81 Optimum Match

The problem at hand can now be described fuily. Given are two scene descriptions.
Scene | consists of n ob jects and Scene 2 consists of n’ objects. Each ob ject is described by
a vector X and its covariance matrix S, with primes denoting objects in Scene 2. Also
available for each ob ject is a probability b that this ob ject will be present in the cther scene,
if the two scenes actually refer to the same physical scene. (These probabilities could be
estimated from statistics gathered from experience with the system that produced the data,
and might be a function of the size of the ob ject, since the larger ob jects would be more
likely to be detected in the other scene and would be less likely to be spurious.) Other
general information that is available includes the a priori probability p, that the two scenes
match (that is, refer to the same physical scene), the a priori value of the rotation @, of
Scene 2 relative to Scene | and its standard deviation 0, , and the a priori value of the

scale factor f, of Scene 2 relative to Scene | and its standard deviation o X It is desired to
find the transiation Ox and Qy of Scene 2 relative to Scene |, the rotation 0, the scale




factor f, the standard deviations of these quantities, and the probability p that the two
scenes actually match.

The approach used here uses Bayes' theorem, which in general states the following:

nP
[ (8- l - i )
P mnp;

where n; is the a priori probability of zvent i occurring, p; is the probability that the
observed result would occur given that event { occurs, and F, is the a posteriori probability
that event { has occurred, given that the observed result has occurred.

For the present purposes, an event will be considered to be the fact that the two
scenes match and the occurrence of a particular set of inatches between the ob jects in Scene
| and the objects in Scene 2. The above terminology is altered slightly to include the fact
that the scenes actually match in these events, with an extra event being the scenes not

matching. Then Bayes' theorem can be restated as follows:

Po"kp k
) (8.1-2)
F.,; Py + (=90,

by -

] where p, is the a priori probability that the scenes match, as previously defined, n; is now
the a priori probability that the Ath combination of ob ject matches would occur, given that
the scenes match, O, is the probability density of the observed set of object parameters
occurring, given that the kth match is correct, p, is the a priori probability density of the
observed set of object parameters, and p, is the a posteriori probability of the kth set of

matches being correct. Thus the term p n, is the a priori probability of the kth event, and

the term (1-p,) is the a priori probability of the scenes not matching.

If the combiration of object matches for which p, is maximum is found, and if this
value of p, is large (near unity), then this combination can be assumed to be correct, and it
can be used to determine the desired parameters describing the transiation, rotation, and
scale factor by a process to be described. (It would appear that all combinations of ob ject
matches would have to be used in this computation, but a way of avoiding this will be
described in the next section.) However, the computation of n, and 0, needed in (8.1-2)

will be described first.

The n; quantities can be found by the following reasoning. The probability that
object { in scene | will be matched to some ob ject in Scene 2 Is §;, the probability that it will
be unmatched is I-b;, and similarly for 5; and I-5; for objec’ § in Scene 2. Thus the
probability of a particular subset of m objects from Scene | and m ob jects from Scene 2
being matched, and no others, is the product of these terms over all objects, chosen




according to whether each object is matched or not. However, there are m! ways of
matching a set of m objects to another set of m objects. Therefore, this product is divided
by m! to obtair the a priori probability of an individual matching combination. Thus,

l l »
M = b (1-b) 1] b; (1-b;) . (8.1-9)
k n! ‘l; l‘H ijl;g‘ f) ]H ¥

where M is the set of objects that are matched in this combination (containing m nb jects
from each scene),

Now the o, quantities will be considered. They can be obtained from the
discrepancies between object parameters for a particular matching, provided that the
probability distribution of the measurements of these parameters is known. It is assumed

here that these have the Gaussian (normal) distribution.

In order to make the problem less nonlinear, instead of using @ and f as the
parameters in the ad justment, the quantities ¢ and s, defined as follows, are used:

¢ = feos O
s « fsin

(8.1-4)
0 « arctan % '

f=Jdies

Now the transformation between ob ject parameters in the two scenes for the special
case under consideration can be expressed as follows:

x’ ¢ s)[x Ox
. +
y =5 ¢jly oy
Wey gy Wy ; ¢ s 0]lw,, Wey Weylfe s Oy
U;’ U;,’ U;. - 7

Wes Yys Yy
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00 fflWyy Wyy Wyy]{0 0 S

From this s rotation and scale factor matrix R can be derived to be
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r 0 002 0 00
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where it is assumed that X ~ [x y w,, o, w,, w, w, w J. (The horizontal
components of ¢ are denoted here by x and 9, and the elements of W are denoted by w with
appropriate subscripts.) In other cases using different features than the ob ject descriptions
used here, R would be defined differently. But in any case, it would be used as follows to
compute a discrepancy vector & and its covariance matrix W for each matching of ob ject {
inn Scene |1 with object j in Scene 2:

V;; = RS;RT+S;

Now the partial derivatives of &, j With respect to the parameters ¢, s, -x’, and -y’
can be obtained from the above equation (by using the fact that f2 = ¢2 + 5% and are
assembled into the matrix B;; (8 by 4 here). (The derivatives relative to -x’ and -y’
produce the effects relative to Ax and Oy, according to (8.1-5)) Then, using the general
solution in Appendix A produces

o3 o]
r| %, B, + Mzcl\ ALY

(8.1-8)

o} o|-[o,-0

0o ~f

+ BI.V;
‘En TiVifsi;

where R is the set of objects making up the Ath combination, the first terms contain the a
priori information, and
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B .| F (8.1-9)

which consists of the partial derivatives of @ and f with respect to ¢, s, Ax, and Ay,
according to (8.1-4). Then the solution is obtained by replacing the values of ¢, s, Ax, and

Ay by values obtained from the old values, as follows:

¢ ] [e]

! g H3'C (8.1-10)
- + I % £

Ax 0 k™k

LA’J L

H}! is the covariance mawrix of {c 5 Ax AylT. Because of the nonlinear terms in (8.1-6)
with respec: to ¢ and s, this process may need ic be iterated. (Since the problem is linear
with ruspect to Ax and Ay, these quantities did not have to be included in (8.1-7), and
thus in (8.1-10) their old values are in effect zero.) Note tha: the nonlinearity with respect
to ¢ and s occurs in R only in the terms involving the w's. When the objects are
considerably smaiier than their separation or are nearly spherical, these terms have very
little effect in the solution in (8.1-10). In such a case, if ¢ and s are fairly accurately known,
it would be a reasonable approximation to neglect their variation in B; j» and thus only the
terms involving B, i (8.1-8) (containing the a priori information) would have to be

recomputed in the jterations.

Now the probability density for this particular matching combination can be obtained
as follows for use in (8.1-2). First, the residuals are

Then the multivariate normal distribution produces

' expl- 1V %) (8.1-12)

p -
‘j (2n)/? /det(@.- P

where r is the number of parameters in the feature vector (size of V), here assumed to be 8.
If object i is unmatched in this combination, the a priori distribution of parameter values is
used for 0; j instead of (8.1-12). Finally, the probability density function for the complete
match is the product of all of the p;; values in this combination times the probability

density functions corresponding to the a priori values, as follows:
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82 Search Procedure

Witk a large number of ob jects, it would be impractical to use ail combinations in
(8.1-2). However, because of the exponential function in (8.1-12), most of the p, values will
be negligibly smali, and these terms can be ignored. The problem is to determine which
combinations will produce significant magnitude in p,, without having to compute them all.

The approach used is to select the ob jects in Scene | one at a time and to tentatively
match these to all objects in Scene 2. The a posteriori probability of each of these partial
combinations is computed, and those with negligibly smali probability are not pursued
further. In order to have a high likelihood of unrambiguous matching, the larger ob jects in
Scene | are selected first, aithough a more complicated ordering using the covariance
matrices also could be devised. This successive matching of features in order to refine a
transformation between scenes is similar in some respects to other scene-matching methods,
for example Price [1978) and Milgram and B jorklund (1979] However, these did not use a
full scarch, matching features one at a time, and did not use probabilities to prune the
search.

Because, when a tentative partial match is made, it is not known which ob jects in
Scene 2 will remain unmaiched, there is no obvicus way to use all of the information in
(8.1-8). Instead, n, is computed by the following method for ihe purposes of the search.
(After the process has used all of the objects in Scene 1, the remaining complete
combinations with significant probability can be used in the fuli computation described in
the previous section.) The value of n, is obtained recursively, as follows:

LA
B, - 2}:0;
5'
", - w,,_,b,,ﬁ. if i and § are matched (8.2-1)

W, = W, (i-4). if {15 not matched
a‘ - a‘_| - .}. if i Mdj are matched

B, = 8;., if {15 not matched




where k denotes the number of ob jects in Scene | that have been selected for matching so
far. In this way a search tree is built up, branching out as different ob jects in Scene 2
(including no object) are matched with the current object in Scene | at each level. The
vaiues from (8.2-1) can be used in (8.1-2) as before, and the resulting probabilities are used

to prune the search tree.

The criterion used for pruning ideally should not use a constant probability
threshold, but shouid take into account the fact that, if a large number of nodes have small
probability each but sum to a iarge probability, there is a good chance that one of them will
turn out to be part of the correct solution. An appropriate method would be to sort by
probability all of the nodes at a given level in the search and to reject all of the ones with
smallest probabilities that sum to less than some threshold. The implemented version is
simpler than this (and more tolerant); it rejects any node whose probability times the
number of nodes at this level is less than the threshold. The threshold currently used is
0.001. This also is quite tolerant. However, once about two ob ject matches are included in
a combination, new matches usually do not agree very well unless they are correct, and thus
the probability drops rapidly for incorrect combinations.

As the bottom level of the search tree is reached, not all of the available information
will have been used in computing n; by the above method. Thus n, from (8.2-1) will act
as an upper limit to the value that would have been obtained from (8.1-3). This effect
causes less pruning to occur than the optimum computation would produce, but it shouid

not result in the rejection of gnod solutions.

At each level of the search, the compiete computation according to (8.1-8) and
(8.1-10) can be computed, including the iterations. However, the result from the previous
level in the search tree can be used as the initial approximation at this level, so that fewer
iterations (perhaps only one) would be needed at each level. Also, as pointed out in section
8.1, under some conditions the variation in the elements of 8.-,- with respect to ¢ and s can
be ignored. In such a case the summations involving B;; in (8.1-8) can be computed
recursively by adding the terms for a new {,j combination to the total accumulated at a
higher level in the search, thus saving time. If the a priori values of ¢ and s were known so
accurately that the variation in B could also be ignored, then the entire computation of H,
and C, could be done recursively, and it would be possible to reformulate the solution by
using a mathematically equivalent Kalman {1960] recursive estimation technique (cailed
sequential ad justment by Mikhail [1976]), with slight additional time savings.

It would also be desirable to save time by recursively computing the product of P;j
used to obtain p, in (8.1-15). However, as formulated in section 8.1, the restduals VU vary
with the current solution as more combinations are added. It i3 possible to reformulate
things so that when a new combination is introduced, It is compared to the previously
accumulated solution for the purposes of computing Pij When Pij1s defined in this way,
its values do not change as more combinations are added, but its product with a given set




of combinations is the same as with the other definition. Thus, its product can be
accumulated recursively. However, this method would involve including the current
estimate of transiation in (8.1-7) and doing the entire error propagation from the current
estimates of ¢, s, Ax, and Ay in (8.1-7) for these purposes. This would be rather
complicated and time censuming, so it is not considered further here. However, it is

described in the next section for an approximate method.

In any case, the solution at the bottom level can be used as an initial approximation
for one or more iterations with the full computation described in the previous section, using
those combinations that have not been pruned because of small probability. (However, this
is not done in the implemented version.)

83 Approximations

The computations previously described, especially (8.1-8), would be quite
time-consuming. Therefore, it is desirable tc make some time-saving approximations,
especially in the search phase where the computations will be repeated many times. The
approximations that will be considered are mainiy those that discard some of the
information about the ob jects. The fact that such a process does not use all of the available
information about the objects will result in less effective pruning. Thus, although less
computation has to be done at each node in the search tree, there are more nodes to
compute. (This is similar to the effect of using the approximate vaiue of r; in the previous
section.) If desired, the full computation can be dene with the nodes remaining at the
bottom level, so that the approximations affect only the computation time and not the final

result.

The approximation that is made in the search portion of the implemented version is
to use only the position and size of each ob ject and to disregard its shape and orientation.
Also, the size is used only in computing the probability density for a given fit, and not in
ad justing the parameters of the fit. (This latter change usually has little effect, because the
scale tactor is determined mainly by the distance between objects) The quantity used to
represent size is the trace of the W matrix, denoted here by ¢. (Actually ¢ is inversely
proportional to the square of a linear dimension of the ellipsoid.) The trace is chosen to
represent size because it is easy to compute from the W matrix and it is invariant under

rotations. T hus,

(8.5-1)

0 « 02 402 +02 +2 + 20 + 20
' Oex Wyy Wy xx%yy ¥ xWyx Yoy ay

Because none of the orientation information about the ob jects is being used, the only
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z portion of the X vector in (8.1-7) that will contribute information to the solution in (8.1-8)
[ is the position information. If only the horizontal position is used, then only the first two
l components of X need to be used in (8.1-7).

Thus the nenlinear terms in ¢ and < have been eliminated from R, and B, ; is now
independent of these parameters. Therefore, the recursive approach suggested in section 8.2
can be used in order to save time in the search phase. This involves updating the old
probabilities when a new match is introduced into the combination. Thus the probability
density of the new match is computed by comparing the new match to the previously
computed solution, instead of examining the residuals of the overall solution as in (8.1-12).
Therefore, for the purposes of computing the probability density only, the discrepancies are
redefined to included the current estimates of transfation (Ax and Ay), and the accuracy
estimates of the discrepancies include the current uncertainty in the translation and rotation.

Making the above changes to & in (8.1-7) and multiplying out the matrices produces
= xc+95+ Dx-x'
(8.3-2)
Usy-xs+Qy-9
The full error propagation associated with this produces

0f = 03+ 207 + 20,05+ 2090, + 02+ Y0+ 20 + 20,5, + 0], + 0%,

2 n 022 2 _ - 2,42 2 - : 2
Oy = Oy + yol 20,65~ 20, + 03 8° 4 X0} + 20 cay = 20,5y + U’X, + 0y

(8.3-9)
Ofy = Oyl + X900 = O2es - X0, + 025 4 90, ~ 0 5% - xy07
+ UA:Ay + chAy +¥caxt WaAy - X0 py + ox'y'
The corresponding quantities for size are
T - /—';I -t

(8.3-4)

o} 40}

3, .-+ =27, 03,
ror

Then the probability density is computed as follows, derived from (5.1-12).

I 1 2203 - 2§UCT" + UQOZ _ i

| pi - CXP - .

~ .




|

However, if no objects have been matched at previous levels, no values of Ax and Ay
would have been computed for the above computation, 30 only the size information would
be used, as foliows:

pij = —— exp( - = (8.5-6)
aftfor o, 20,

where a is the a priori area over which the ob jects might lie in Scene I. In any case, the
overall probabiltiy density for the match so far accumulated is the product of these:

o = [l mij (8.5-7)
ijeR

These values are used in (8.1-2), as before. In the search phase, if the resulting probability
is small, the combination just produced is deleted. Otherwise, a new ad justment for the
parameters is done.

Since the portion of (8.1-7) dealing with W is not used in the parameter ad justment
in this approximation, the adjustment is linear except for the a priori values. The B
matrix is

[x y 1 o]
B (8.3-8)
y-x 01

The error propagation from the position values according to (8.1-7) is as follows, which
differs from (8.3-3) in that it does not include the uncertainty in the parameters being
ad justed (¢, s, Ox, and Ay)
0f = 0%+ 20, s+ 0%+ 0,
0 = 03 - 20, g5+ 02+ 02, (8.5-9)
Ofy = Oy f =035 40Ys-0, 5740,
Then the covariance matrix of the observations is

of o
v. |t b (8.3-10)
U(v Oy
B and W are used in (8.1-8). Note that B now is not a function of the parameters being

ad justed (¢, 5, &x, and Qy); however, W is a function of ¢ and 5. The effect of W changing
slightly is only to change the weights of the observations slightly. Therefore, as long as ¢
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and s do not change very much, there shouid be no need to recompute the summations
involving these matrices when iterating. In the search phase, these summations can be
accumulated recursively as more matches are added to the combination. The implemented
program currently does it this way. Therefore, the a priori vaiues §, and f, must be fairly
accurate, so that ¢ and s will not change very much. (The implemented program also uses
these a priori values in a less optimum way than is described in Section 8.1, and this has

the same resuit of requiring the a priori values to be fairly accurate.)

Other approximations are possible that use more information than the above but less
than the full information available. One possibility is to use the position, size, and shape of
each ob ject but to ignore its orientation. (If the a priori orientation is completely unknown,
when only one ob ject match exists in a combination this is all the information that is useful
anyway, but as more ob jects are matched in a search, the orientation information may
become useful) This approximation would be used in a similar manner to the above
approximation, except that there wouid be three size and shape quantities instead of ¢, with
a 3-by-3 covariance matrix instead of 07. Like ¢, these quantities affect the probability of a
match, but their effect on the adjustment for ¢, s, Ox, and Ay for a particular match ts

small and can be ignored.

The size and shape of an ellipsoid are determined by the semi-lengths of its principal
axes. These are equal to the reciprocal of the square roots of the eigenvalues of the W
matrix. The eigenvalues of the W matrix can be found by solving the following equation

for A (see Hohn [1973)):
det(W - AD = 0 8.9-11)

where / is the 3-by-3 identity matrix. Since W is 3-by-8, (8.3-11) is a cubic in A, and the
three roots are the three eigenvalues. The most difficult part is not computing the
eigenvalues themselves, but computing the error propagation from the elements of W to the
eigenvalues. For a linear approximation error propagation it is necessary to compute (either
analyticaly or numerically) the partial derivarives of the eigenvalues with respect to the six
unique elements of W. Then the error propagation is done in the usual way by forming
these partial derivatives into a 3-by-6 matrix, premuitiplying the 6-by-£ cgvariance matrix
of the w's by this matrix, and postmultiplying by iis transpose to produce the covariance

matrix of the eigenvalues.

84 Example

The only pictures used to test the scene matcher were the Mars pictures described in
Appendix C. Ideally, different stereo pairs taken under different hghting conditions and
from different directions should have been used to obtain the scene descriptions to be
matched, in order to have a more impressive test. However, the Viking could take pictures
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from only one position, and because of 2 lack of time pictures taken under different
conditions were not transferred to our computer system. However, in order to simulate the
differences that might occur from these causes, the pictures used were processed in different
ways. The smail portions (about 10° by 10°) were processed with 8-by-8 maich windews in
the stereo program and with height threshoids of 8, 5, 6, and 7 centimeters in the ob ject
finder; the small portions were also processed with 5-by~5 match windows and a
5-centimeter threshold; and the large portions were processed with 8-by-8 match windows
and a 6-centimeter threshold. The results were compared to each other successfully by the
scene matcher. One of these matches is shown here.

Figure 8-1 and Figure 8-2 repeat Figures 7-7 and 7-8, except that the objects have
been identified with arbitrary numbers. (These scene descriptions were obtained with
height thresholds of 5 centimeters and 8 centimeters, respectively, in the ob ject finder. The
match window in the stereo processing was 8 pixels wide in both cases) These two scene
descriptions were given to the scene matcher. The a priori rotation was given as zero with
a standard deviation of 1° and the a priori scale factor was given as unity with a standard
deviation of 0.01. (The translation was completely free to be ad justed.)

Figure 8-3 shows the results of using the data in Figure 8-1 as Scene | and the data
in Figure 8-2 as Scene 2. The search tree is shown. The numbers at the left followed by
colons are the object numbers in Scene I. The other numbers on the same line are the
ob ject numbers in Scene 2 for the objects being matched to this object in Scene 1. Zero
means that this ob ject in Scene | is left unmatched. The numbers just below the Scene 2
object numbers represent the probabilities computed for this match so far. To save space
the negative of the common logarithm of the probability, truncated to an integer, is shown.
Below the search tree the final results are shown for the most probable match. Shown are
the pairings of ob jects, the probability, the translation in x and ¥, the rotation, and the scate
factor. The values after the plus-or-minus signs are the computed standard deviations.
Note that the standard deviation of the scale factor is not much less than the input value of
0.01, which means that the solution was not able to add much information about the scale
factor. (Since the two scenes were both from the same actual scene and same camera
position, the true values of translation and rotation are zero, and the true value of scale

factor is unity.)

Figure 8-4 similarly shows the results of doing the match with the scenes
interchanged, so that the data in Figure 8-2 is now Scene | and the data in Figure 8-1 is
Scene 2. Even though the search tree is quite different, the final results are almost the
same. (The final results would be exactly the same if a complete solution as described in
Section 8.1 were done at the bottom level of the search tree, since the tame ob jects were
matched.) Of course, since the scenes have been interchanged, the transiation and rotation
have changed sign and the scale factor has been inverted.
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Figure 8-1. Ellipsoids produced with 5-cm height threshold.
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Figure 8-2. Ellipsoids produced with 3-cm height threshold.
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Figure 8-3. Match of scene in Figure 8-1 to icene in Figure 8-2.
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Figure 8-4. Match of scene in Figure 8-2 to scene in Figure 8-1.
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Appendix A
NONLINEAR PARAMETER ADJUSTMENTS

In several parts of this thesis, problems have been discussed that involved solving for
some parameters by using observed values of some quantities that are nonlinear functions
of these parameters. The observed values may contain occasional mistakes (wild points),
and the accuracy of the remaining values may not be entirely known. For example, in the
stereo camera model solution, measured values of film plane coordinates of some points are
obtained, and it is desired to compute the relative position and orientation of the cameras.
A general method for solving problems of this type will be discussed in this appendix.

A.l Basic Method

In this section a method of performing nonlinear generalized least-squzres
ad justments will be described. This method uses partial derivatives to linearize the
problem and iterates to achieve the exact solution. It is assumed in this section that the
accuracy of the observations is known and that there are no wild points that should be

removed from the solution.

Very little in this seciion is original. However, tkis method apparently is not well
known in Artificial Intelligence circies. Even in circles where the basic method is often
used, some of its properties are not well known. For example, the linearized solution
represented by (A.1-17) is often described (as in Mikhail [1976)) without any apparent
awareness of the effecis of the second derivatives. Bard [1974] mentions the second
derivatives but does not cover the related matters dealt with here in the following sections.
For these reasons it is desirable to describe here in a unified manner the method as it is
used in this thesis. Of course, the two references just cited also deal with other aspects of
this problem and similar problems not needea here. Also, more information about the
statistical properties of the linear problem is given by Graybill (1961} Therefore, the
reader who is interested in these inatters is urged to consult these references for further

information.

Suppose we have a set of m unknown parameters for which values are desired,
denoted by the vector G (m-by-1 matrix). (In the stereo camera model solution, these would
be the quantities defining the camera calibration.) Suppose further that there are a set of n
quantities (n 2 m) denoted by the vector F, which can be tneasured with some error and
which are functions of G. Let U denote the measured value of F (containing some error).
(In the stereo camera model solution, the elements of U would be related to the film plane
measurements in a way explained in Section 3.3) Let ¥ be the vector of the n residual
errors in the fit to the observations using a particular set of values for the parameters.

10
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That is,

U=+ FG)+V (A.1-1)

with the functional dependence on G explicitly indicated. The problem is to use U to
compute G such that ¥ is minimized in some sense. (The n scalar equations represented by
(A.1-1) are called the condition equations.)

For the criterion of optimization we wili minimize the quadratic form

q - VTWV (Al-?)

where W denotes an n-by-n weight matrix. W should be the inverse of the covariance
matrix of the errors in the observations. This will result in the maximum-likeiihood (in the
F space) solution if the errors have the mulitivariate Gaussian (normal) distribution, and it
will result in the minimum-variance (of the g's) unbiased solution of all solutions that are
linear functions of the U, for any distribution in linear probiems. {(Proofs of these
statements can be found in Graybill {1961]) Note that if W is a diagonal matrix
(indicating no correlation between errors in different observations) the quadratic form
reduces tc a weighted sum of the squares of the elements of ¥. Thus the problem as stated
here can be said to be a generalized least-squares ad justment.

Solving (A.1-1) for ¥ and substituting in (A.1-2) produces

g = W - FGYTWIU - F(G)) (A.1-9)

The problem then is to find G such that ¢ is minimum.

The difficulty in obtaining a solution to the above problem lies in the fact that F in
(A.1-1) Is a nonlinear function, and thus in general there is no closed form solution. One
way of solving the problem is to use some type of general numericai minimization
technique, in which on various iterations new values of G are tried, ¢ Is recomputed each
time, and ¢ is driven to 2 minimum. However, such methods tend to converge rather slowly.
Also, numerical problems may occur if ¢ has a very broad minimum, for round-off errors
may give rise to :purious local minima. Instead of such an approach, to find the minimum
of g, we will differentiate (A.1-1) with respect to G, set the result to zero, and solve for G
iteratively. (A numerical value of ¢ then never needs to be computed to obtain G.)

In order tc follow the steps of this process, we rewrite (A.i-3) in terms of the elements
of the matrices, as follows (where a particular element of a matrix is represented by the
corresponding lower-—case leiter with appropriate integer subscripts).

¥
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E, (o - F{OMy jlu - fHCN) (A.1-4)
L

Differentiating this produces
3 o
- - .. (¢] A.l1-5
o 22u 5z, %ifu; = £46) (A.1-5)

Since (A.1-5) is a nonlinear equation, to solve it for G when 3¢/dg, is set to zero, we will
use Newton's method. To do this, the partial derivatives of d¢/dg; are needed. These are

of j
rg‘ 2 '"ur 2 rg—"'u[“: -l AL

The corrections d; needed to g; are related to the above by

2
5;?.'3%"1‘ - - S‘% (A.1-7)

7 %%

(These corrections would be exactly correct if F were linear) We can now revert to matrix
notation, by defining the n-by-m matrix P to be composed of the partial derivatives of the
functicn F, such that

of;
pi; - ;g_;: (A.1-8)

and the n-by-m-by-m matrix R to be composed of the second derivatives of F, such that

Tiik " ;%,.L (A.1-9)
/ 8 j98k

Substituting (A.1-5) and (A.1-6) into (A.1-7), using these definitions, and dividing tiirough
by 2 produces

[PTWP - RTW(U - F)ID « PTW{U - F) (A.1-10)

where F, P, and R are all implicit tunctions of G. (An approxim.te value of G used to
obtain F, P, and R in (A.1-10) defines the correction D needed to obtain a more accurate
value.) Notice that R is a strange creature, a three-dimensional matrix. These are not
usually defined in matrix algebra, but the usual definitions can be generalized to handle
them. In particular, a product of the form A « RTWB, where 4, R, W, and B have
respectively two, three, two, and one dimensions, is given by ay; = z r‘“w”bj, where the
summation is over all values of i and §. (Of the five possible ways of rearranging the three
indices, the transpose of a three-dimensional matrix i3 defined here as revarsing the order

of the three indices.)
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The solution for D can expressed in terms of the matrix inverse as follows:

D = (PTWP .- R"WWU - F)I''"PTW{U -~ F) (A.1-11)

or equivalently

D - (/- (PTWP)'RTWW - FIY(PTWP)'PTW({U - F) (A.1-12)

where / denotes the identity matrix (in this case m-by-m). D as obtzined above using an
approximate value of G would be added to this value of G to obtain a more accurate value,

and this process would repeat untit it converged.

The worst part of the above solution is the necessity to compute the partial
derivatives. Often they are difficult to derive analytically and difficult to tompuic
accurately numerically. In either case they are time-consuming to compute. These
difficukties are usually much worse for the second derivatives R than for the first
derivatives P. Furthermore, there are nm? second derivatives 20 compute and only nm first
derivatives. Therefore, it is highly desirable to be able to emit the second derivatives from
the computation. We will now consider the effect of neglecting them.

With a reasonable first approximation, and especially on later iterations, the
discrepancies U-F are small. Also, if the function F is reasonably smooth, the second
derivatives R are small. Of course, what is considzred small is relative. In this case
smaliness depends on the magnituce of the first derivatives P. If U-F and R are small
enough so that the relative change in P is small when G changes enough to cause F to vary
by amounts on the order of U~F, then the nonlinearities are not having much effect, and
the elements of RTW(U-F) are small compared to the eiements of PTWP. Thus a good
approximation in such cases can be obtained by setting R to zero in {(A.1-11) or (A.1-12),

which produces

D =~ (PTWP)'PTW({U - F) (A.1-19)

The use of this approximation is known as the Gaus: method, because Gauss originally
used it on ordinary least-squares problems.

It is important to realize that only the second derivatives of F are neglected in the
Gauss method. The second derivatives of ¢ depend not only on these but also on the first
derivatives according to (A.1-6). Under the assumptions in the previous paragraph the
first term on the right of (A.[-6) usually is considerably larger than the second term, and
thus the second derivatives of ¢ will be fairly accurate.

The approximate (Gauss) corrections given by (A.1-13) are just the accurate (Newton)
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corrections given by (A.1-11) or (A.1-12) premultiplied by / - (PTWP) 'RTW(U-F). The
accurate corrections given by (A.1-11) or (A.1-12) attempt to nullify an error in G which
Newton's method has estimated to be -D, since -D+D = 0. But, if the Gauss method is used
instead, we have in effect ~D + (/~-A)D = -AD, so that the vector of errors in G on each
iteration is premultiplied by 4 = (PTWP) 'RTW(U-F), neglecting the higher order effects
neglected in Newton's method. Therefore, using the approximation (A.1-13) cannot effect
the final solution, unless it destroys the convergence. The matrix (PTWP) 'RTW (U~F) will
tend to become constant as the solution convergences, as the discrepancies U~F converge to
the final value of the residuals V. Thus the Gauss method changes the quadratic
convergence of Newton's method to linear convergence, if convergence is achieved. If ali of
the eigenvalues of (PTW P)"'RTW(U-F) have an absolute value less than one, convergence
will be preserved, and the smaller the eigenvalues are, the faster convergence will be. (After
several iterations, the error will tend to decrease by a factor equal to the absclute vaiue of
the largest eigenvalue) From the arguments in the previous paragraph, the eigenvalues
should be small, except when the initial approximation is very wrong (causing U~F to be
large) or when F is very nonlinear (causing R to be large). Thus, except in these cases, the
solution should converge rapidly. (A way of converting the linear convergence of the Gauss
method inte quadratic convergence without computing R will be discussed 1n a later
section.) Some of these matters are discussed further by Bard [1974]

The solution using (A.1-13) is usually obtained by a different approach (as in Brown

(1955 and 1957) and Mikhail [1976]). This approach approximates (A.1-1) by a
linearization based on the partial derivatives of F, solves the resulting linear problem, and
iterates this process to obtain the solution to the nonlinear problem. Thus let G, denote an

approximation to G. Then equation (A.I-1) can be approximated as foliows:
U = F(G,)+ P(GXG -G+ V (A.1-14)

where P is defined by (A.1-8) and its functional dependence on G has been explicitly
indicated. We now define

E - U-F@G,) (A.1-15)
D-G-G,
Then (A.1-14) can be rewritten as
E = PD+V (A.1-16)

Thus we have replaced the nonlinear equation (A.i-1) by the linear equation (A.1-16), in
which E represents the discrepancy between the obsarvations and their computed values
using the current approximations of the parameters, and D represents the corrections
needed to the parameters. Therefore, we now wish to solve for D in (A.1-16) 30 as to
minimize ¢ in (A.1-2). This 13 a standard problem in linear statistical models. (See, for
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example, Graybill [1961)) The solution for D is

D - (PTWP)'\PTWE (A.1-17)

which is the same as (A.1-13).

The covariance matrix Sg of the errors in the converged values of the parameters G
can be obtained from the covariance matrix Sy, of the errors in the observations U by the
usuai linear approximation of premukiplying by the matrix of partial derivatives of the
transformation and posimultiplying by the transpose of this matrix. In this case the
transformation from U to G in the neighborhood of the converged values is given by
approximately (A.1-13) or more accurately by (A.1-12). (Regardless of which method was
used to produce the converged values of G, the answer is the same. Thus the use of
(A.1-12) will produce a more accurate error propagation than (A.1-13), aithough (A.1-12) is
still only an approximation in this regard if higher-order terms are considered.)

If the accurate transformation (A.1-12) is used, the matrix of partial derivatives will
contain terms produced when (A.1-12) is differentiated relative to both occurrences of U in
(A.1-12). However, when the derivatives are evaluated at the converged values, the effect
of the first term drops out, since PTW(U-F) is then zero (because D is then zero). Thus we

have

S¢c -
(7- (PTWP)"RTW(U-F)]"(PTWP)"PTWSUWP(PTWP)"[I - (PTWP)Y'RTW(U-F)I'"T
(A.1-18)

If W = S{), as it should for the optimum solution, this reduces to

S¢ = U-(PTWPY'RTWWU - F)IF(PTWP) I - (PTWP)'RTW(U - F)I'"T  (A.1-19)

Using the approximation of neglecting the second derivatives, as in (A.1-13), reduces this to
Sc = (PTwp)! (A.1-20)

(Remember that (A.1-19) and (A.1-20) are correct only if W i3 the inverse of the covariance
matrix of the observation errors.)

Note that even though (A.1-19) was derived using the linear approximation for
covariance propagation, it contains the second derivatives of F. An even more accurate
result could be obtained by considering second-order effects in the propagation, although
this would require knowledge of moments of the error distribution of higher order than the
second.  This result would contain squares and cross products of the second derivatives,
whereas they occur to the first power in (A.1-19). Therefore, if the sccond derivatives are




small, (A.1-20) and (A.1-19) can be considered the first two members of an infinite
sequence of better approximations, accurate to higher powers of the second derivatives. In
most cases (A.1-20) Is quite adequate, since the error estimates usually are not known very

accurately anyway.

It often is desired to know the covariance matrix of the residuals. (It is useful to
compare the magnitude of the residuals to the square roots of the diagonal elements of their
covariance matrix, for editing purposes, as will be described in a Section A.5) For the
approximate (Gauss) case, this can be derived by first obtaining the equation for the
residuals by solving (A.1-16) for ¥, substituting (A.1-17) for D, and factering out E, to

produce

V « lI- P(PYWP)'PTWIE (A.1-21)

Then, since the covariance matrix of E is the same as that of U, the coar‘ance matrix of V
can be obtained by premultiplying Sy, by the coefficient of E (in brackets) in (A.1-21) and
postmuliiplying it by the transpose of this coefficient. If W « S{), the resulting expression
simplifies to

Sy = Sy - P(PTWP)'PT (A.1-22)
4 v

Note that by using (A.1-20) the second term in this equation is seen to be the covariance
matrix of the adjusted parameters propagated into the observations; thus it is the
covariance matrix of the adjusted observations. Therefore, (A.1-22) says that the
covariance matrix of the residuals is equal to the covariance matiix of the observations
minus the covariance matrix of the adjusted observations. This may seem appropriate,
because the residuals are the observations minus the ad jusied observations. However, this
should be considered a coincidence, because the covariance matrix of the difference or sum
of two vectors is the sum of their covariance matrices, not the difference, if the vectors are
uncorrelated with each other. Here, the particular way in which the observations and the
ad justed observations are correlated produces the above result. Turning this around and
expressing the observations as the sum of the ad justed observations and the residuals (and
similarly for their covariance matrices) produces the somewhat surprising result that the
residuals are uncorrelated with the adjusted observations. (Remember that these results
holds only in the Gauss approximation and only if the weight matrix is the inverse of the
covariance matrix of the observations))

In many cases W can be partitioned into a diagonal matrix of matrices. Let each of
these submatrices on the main diagonal of W be denoted by W, In the corresponding
manner £ and P are partitioned by rows into £; and P; (What we have done I3 to group
the observations into sets 30 that there is no correlation of errors between members of

different sets.) Then (A 1-17) and (A.1-20) can be rewritien as
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H - 3 PIWpP,
i i
'
C - ; PIW,E; ]
(A.1-29) A
D - H'C ‘
} ;
S¢c - H :
Note that, if the errors in all of the observations are uncorrelated, W, and E; are 1-by-1
matrices, which can be represented as the scalars w; and ¢; and P is a | by m matrix.

Furthermore, if all of the w; are equal, they cancel out of the equation for D, and we have
an unweighted solution (ordinary least-squares).

Severai other quantities of interest can be derived from the solution. We will present
these for the general partitioned Gauss case, with W, « SU‘. The ad justed value of E; is

P;D. The residuals are

V‘ - E‘ - P‘D (A-l‘21)

The quadratic form is
0= %Wy, (A.1-25)

The expected value of g is n-m. If the scale factor of the covariance matrix of observation
errors is unknown, W can be adjusted by the ratio (n-m)/q and S by the ratio g/(n-m).
Otherwise, ¢ can be used as a test on the ad justment; for, if the observation errors have the
Gaussian distribution, then ¢ has the chi-square distribution with n-m degrees of freedom.
(Proofs of these properties of g can be found in Graybill (i1961)) S, represents the
covariance matrix of errors in the ad justed parameters. The square roots of the diagonai
elements of S are the standard deviations of the ad justed parameters. The correlation
matrix of the parameters can be obtained from S by dividing the {,§ element by the
product of the standard deviations of the ith and fth parameters, for all { and j. Other
resuits which follow directly from the results for the unpartitioned case are the covariance
matrix of the adjusted observations PS-PJ and the covariance matrix of the residuals
SU‘ - PScP]. (Some of these matters are discussed further by Brown (1955 and 1957})

The solution of the nonlinear problem can now be desribed as follows. An initial
approximation is used to compute the discrepancies £, and the partial derivatives P,
Then D is computed from (A.1-23) and is added to the current approximation for G to
obtain a better approximation. This process repeats until there I3 no further appreciable
change in G. Then the final values from the last iteration can be used to obtain S, ¥,
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¢. and the other derived quantities described above. Of course, for convergence to the
absolute minimum of ¢ rather than convergence to some local minimum or divergence, it is
niecessary that the initial approximation be sufficiently close to the true solution. In most
practical problems this is not critical; in fact, often there is only one minimum.

As previously discussed, the above solution for G, when converged, produces the true
generalized least-squares ad justment regardless of the nenlinearity. However, the properties
that the solution for G is minimum-variance and unbiased are only approximate in the
nonlinear case. Also, as previously discussed, S as computed above is only approximately
the covariance matrix of the errors in the final value of G in the nonlinear case. However,
if the amount of nonlinearity over the range of the measurement errors is small, these

results will be fairly accurate.

Often it is desired to have observations directly on the parameters. There are several
possible reasons for this. There may be some a priori information about the parameters
that one wants to combine into the solution. Also, it may be desired to give the initial
approximations a very smali amount of weight in the solution, so that in case one of the
parameters would otherwise be indeterminate, it wili be constrained sufficiently to prevent
the H matrix from being singular and thus to allow a sclution for the other parameters to
be obtained. Finally, it may be desired to remove a parameter from the ad justment and to
constrain it to a fixed value. This can be done by assigning a very large weight to the
given value (although it would save computer time to delete this quantity from the
parameters in the program instead). In any of these cases the desired effect can be achieved
by creating an additional m-bv-m P; matrix, say P, equal to the identity matrix.
Corresponding to this there is E , equal to the given a priori value of G minus the current
approximation of G, and an m-by-m matrix W , the desired a priori weight matrix. These
are included in the summations for H and C just like any other observations.

A few tomments should be made about the numerical aspects of performing the
computations. The H matrix is always non-negative definite; that is, if it is pot singular it
is positive definite. The best strategy to use when inverting a positive-definite matrix by
an elimination technique is to pivot on the main diagonal. (See Forsythe and Moler [1967])
Therefore, a simple matrix inverter without any pivoting can be used to obtain H~'. H is
also symmetrical; therefore, some computation time can be saved if an inverter which makes
use of this fact is used. However, if n is considerably larger than m, much more time is
spent in computing H than in inverting 1t, so this may be hardly worth the trouble. In
problems where the solution is neatiy indeterminate, H will be nearly singular. and much
accuracy can be lost because of numerical roundoff error. In such cases it may be necessary
to use double precision in the computations for H, C, D, and S according to (A.1-29),
including the inversion of H. (If a good inverter is used, there is usually not much point in
having it in double precision unleis a double-precision H 13 available to invert, as
explained by Forsythe and Moler [1967]) However, high precision s not needed in
computing the discrepancies £; and the partial derivatives P;, as long as consistent values




are used throughout the computations for H and C.

A.2 Correlated Errors

The solution presented in the previous section allows the observation errors to be
correlated in an arbitrary way, as represented by the covariance matrix §;; However, in
order to partition the solution correctly according to A.1-23, the errors in the different
groups must be uncorrelated. But because of the great savings of time and storage that the
partitioned solution allows, it sometimes is desirable to approximate the compiete solution by
means of the partitioned solution, even though the errors are correlated. This section
describes a way in which this can be done under some circumstances.

It sometimes is the case that the observations are performed at points distributed
throughout some space, with the covariance of different points always being less than the
variance of any point and being negligible for points so far apart that their effects on the
solution are significantly different (that is, have significantly different P; matrices). For
example, in the stereo camera model solution described in Chapter 8, the covariance
between points is caused by the additional errors described in Section 3.2, whose covariance
is a function of the distance between the points in the image plane and is assumed to be

negligible for far-apart points.

In such a case the following approximation can be made. The covariance matrix S,
is partitioned into the covariance matrices §; j of each pair of points { and J. (in the case of
the camera mode! ad justment, each individual covariance matrix §; ; for points { and f is
then 2- by-2.) Then an artificial covariance matrix for each point is computed as follows:

S - Ej:su " (A2-1)

and all 5;; are assumed to be zero for l#f. The results from (A.2-1) are inverted to produce
W, for each point.

To see why this approximation works, consider the following extreme case, where the
assumptions apply either to the entire covariance matrix Sy, or to each of its submatrices
partitioned (in the usual way for (A.1-29)) into groups of peints with no correlation between
groups. Assume that when the covariance matrix is partitioned further into submatrices
corresponding to the points, all of the these submatrices on the diagonal are equal, all of the
off-diagonal submatrices are equal, and all of the corresponding submatrices of P are equal

(within a given group).

Under the above assumptions, the covariance matrix of each group can be considered
to be made up of submatrices corresponding to the points such that the main-diagonal
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submatrices are 4 + B and the off-diagonal submatrices are B. Then by multiplying the
matrices it i3 easily verified that the inverse of the covariance matrix of the group cf points
contains  A™' - (4+nB)'BA™! everywhere on the diagonal and ~(4+n,B)'BA"!
everywhere off the diagonal, where n_ is the number of points in the group.

Because of the assumption about P, the constant submatrices of P (denoted here by
P,) allow the terms for this group in the summations for H and C in (A.1-23) (or the
corresponding portions of the unpartitioned solution in (A.1-17)) to be factored into
PT(EWi )P, and PT(EW ’E ’), respectively, where the summations are over all values of {
and j. {The index t here sheuld not be confused with i in (A.1-23), which is for the
higher-level of partitioning, if any.) Thus it can be seen that the group of points Is
equivalent to one point which is the weighted average of the points, where the weight
matrix for each group is the sum of the row (or column, since the matrix is symmetrical) of
weight submatrices corresponding to this point. From the previous paragraph the sum of a
row of submatrices of the inverse of the covariance matrix is seen to be
AV e (A+n B) 'BA!, which simplifies to (A+n B)' Under the approximation of
(A2-1) the artlﬁcial covariance matrix for this group consists of submatrices A+n_B on the
diagonal and zero elsewhere. Inverting this and summing over the row produces (4+n B)‘
(since there is only one term in the summation). This is equal to the exact resuit just
produced. Therefore, in this special case the approximation is exact.

For another limiting case in which the approximation is exact, consider the points to
be equally spaced in a Euclidean space of an arbitrary number of dimensions, with the
covariance between a pair of points a function only of the coordinates of one point relative
to the other. Thus, in the nomenclature of time series analysis, the errors are said to be
stationary, arnd the covariances form the autocovariance function. Summing the
autocovariance according to (A.2-1) over all of the space produces the tero-frequency value
of the Fourier transform of the autocovariance function, which is the power spectrum of the
errors. (See Blackman and Tukey [1958)) Therefore, what we have done is to use the
value of the power spectrum at zero frequency. Grenander [1954] and Watson (1967) have
shown that the component of correlated errors that affects a least-squares ad justment is the
portion of the power spectrum &t the frequencies contained in the P matrix. Since we have
assumed here that the P matrix varies very slowly, the important frequency components are
all near zero frequency. Therefore, using the power spectrum at tero frequency, as the
approximation does, Is the correct thing to do in this case.

When the above approximation is used, the ad justed parameters and their covariance
matrix (computed from the solution ucing the artificial covariance matrix according to
(A.2-1)) are correct within the limitations of the approximation. However, the quadratic
form computed from (A.1-25) using the inverse of the artificial covariance matrix for W
does not agree with that from (A.1-2) and thus does not have the usual properties described
in Section A.l. (lts expected value and degrees of freedom are in general less than n-m.)
The quadratic form computed from (A.1-2) using the true covariance matrix would be
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correct, but it would be time-consuming to compute. It is possible to approximate the actual
distribution of ¢ from (A.1-25) under this approximation, but that will not be discussed

here.

One problem remains. When the covariance matrix of residuals is computed
according to (A.1-22) (or the corresponding partitioned form), the true covariance matrix of
the observations must be used for SU, whereas the artificially augmented covariance matrix
was used to obtain the covariance matrix of the adjusted observations. Because the
covariance matrix of residuals is the difference between the two, if for some observation the
variance of the ad justed observation is neariy as large as the variance of the observation,
any error in the former caused by the inaccuracy of the approximation will cause a
relatively large error in the variance of the residual. The main problem occurs when the
conditions of the approximation are not met well, in that the extent of the correlation in
observation space exceeds the extent of the similar P matrices. In this case the variance of
the ad justed observation will be overestimated, and the computed variance of the residual
can actually become negative. The problem can be avoided by using the fact that a
reasonable upper limit for the variance of an ad justed observation is as follows:

0‘2".' < v+ __-f (A2‘2)

where 0% =« PSP is the computed variance of the ad justed observation, s;; = oa‘ is
the variance of the observation, §;; is the augmented variance of the observation aczording
to (A.2-1), and ¥ is the greatest s; j for ivj (largest covariance beiween this observation and

any other). Thus the minimum of 0% = and the limit from (A.2-2) can be used for 0%,
u i “1

€,
and the variance of the residual is then obtained by Of,‘ - oﬁi-az' instead of by using

(A.1-22) i

A3 Variance Adjustment

The solution in Section A.l assumes that the covariance matrix Sy is known, 30 that
it can be inverted to obtain the weight matrix. Often this is not the case, and some
information about it must be obtained from the solution itself. Of course, If nothing at all
is known about S, there is not much hope. However, If some information is available
about it, the solution may be able to estimate the rest by utilizing information contained in
the residuals. (An accurate estimate can be obtained only if the number of observations n
is sufficiently greater than the number of parameters m so that there is enough information
in the residuals. If n = m, the residuals are zero) One example of this was mentioned in
Section A.l, concerning the well-known use of the quadratic form to ad just the scale factor
of S5 A more elaborate case is discussed in this section, which is used in the implemented
version of the stereo camera model ad justment.
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Suppose that the covariance matrix can be expressed as the sum of two
positive-definite symmetrical matrices, as follows:

Sy = A+vB (A.3-1)

such that 4 is known exactly, B is known exactly, and the scale factor o is unknown except

for an a priori value v, and its variance 0'?' . (In the camera model adjustment, 4
]

corresponds to errors estimated by the correlator, ¥ corresponds to the additional error

discussed in Section 3.2, and B is its zorrelation matrix.)

In order to estimate v, one approach that might be tried is to use the fact that the
expected value of the quadratic form is the number of degrees of freedom of the
ad justment (the number of observationis minus the number of parameters), as mentioned in
the previous section. Thus substituting (A.3-1) into {(A.1-2) and setting the quadratic form
equal to n—-m produces the equation VY (A+yB)"W « n-m. This could be solved for +.
(The residuals would be obtained from a solution using the old value of v, from the
previous iteration.) However, this equation is equivalent to an nth-degree polynomial in v,
and solving it would be very time-consuming. Therefore, & different approach is used.

Let ] be the ratio of the variance of the ith observation to the variance of the ith
residual. Thus

2
O"u‘

(A.3-2)
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where 03 is a diagonal element of S, obtained from (A.1-22). By definition, 0'3)‘ is the
i

expected value of vf (since the expected value of v; is zero). Therefore, usiag the diagonat
elements of (A .3-1) to obtain 0:‘ in (A.3-2) and rearranging produces

by = 7 Su;" - 8 (A.3-3)

where the symbol £ represents the mathematical expectation operator. MNow, v§ can be
considered to be an estimate of £v} based on one sample. Thus, If the squared residual
(obtained from a solution using the old value of v from the previous iteration) is used in
(A.3-3) in place of its expected value (and r; from the previous iteration is used), (A.3-3)
can be solved for v. Of course, one sample of a squared residual does not produce a good
estimate for the variance, but there are n equations (A .3-3), one for each observation In the
ad justment. Thus an ad justment can be done for v with n observations, using (A.3-3) as
the condition equations. These observations wiil be called “variance observations™ to
distinguish them from the observations ¥, in the main ad justment. (If the covariances were
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used also, there would be - n(n+1) variance observations. However, using this many
observations would be time-consuming and would complicate the analysis below, with little
added benefit, since the main-diagonal elements contain most of the information except in
the case of highly correlated errors. In such a case it may be desirable to perform a rotation
to diagonalize 4 in order to utilize more fully the available information, but this is not done
in the implemented stereo camera model ad justment.)

Because the variance of the ad justed observations is usually much smaller than the
variance of the abservations (assuming that n>>m), r; for most observations is only slightly
greater than 1. Thus its effect usually is only a slight correction, and using the value from
the previous iteration is satisfactory. In any case, when convergence is achieved, the value
will be correct. (In fact, the value of 1/r; averaged over all observations is usually close to
(n—m)/n, although when the approximation in Section A.2 is used this value must be
altered. Thus in many cases it is a reasonable approximation to use a constant value of

n/{n-m) fer all r;’s)

In order to combine the above measurements of v correctly, the covariance matrix of
the variance observations must be known in order to obtain the weight matrix. The
variance observations according to (A.3-3) correspond to the right side of the equation.
Since a;; is known, the covariance matrix of the variance observations is the same as the
covariance matrix of r;pf. As an approximation, it is assumed here that r; is known. Thus,
the covariance of the ith and jth variance observations Is r;r; times the covarlance of v?
and 3. In general, the variances and covariances of the squares of variables cannot be
obtained if only the variances and covariances of the variables are known. However, if the
variables have the normal distribution with zero mean, then the variances and covariances
(about the mean) of the squares of the variables are twice the squares of the respective
variances and covariances of the variables. Under this assumption, which is valid if the
original observations have the normal distribution, the covariance of the ith and fth

variance observations is

,‘j - 27‘7103"1 (AS—‘)

where 03""1 is the {, { element of 5|, which can be obtained by using (A.3-1) and (A.1-22)

from the previous iteration. (When n>>m, a fair approximation for 3jj would be 203‘(“} -
2(au+'rb‘-j)2, using the value of v from the previous iteration. This is exact for the
diagonal elements but neglects the correlations that the solution has introduced into the
ad justed observations. This approximation is used in the camera model ad justment, since it
avoids having to compute the entire covariance matrix of residuals) Then these values of
3y; are assembled into the matrix Sy, the covariance matrix of the variance observations.
(To avoid confusion with the symbols U, W, and P in the main ad justment, the Greek
tetters T, @, and Il are used here for the corresponding matrices in the variance
ad justment.) Then {1 = S3' produces the weight matrix for the variance observations. (it
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might be pointed out here that the covariance matrix of residuals is singular. However, the
matrix composed of the squares of its elements in general is not singular if n is sufficiently
large. Even if it is singular, the method in Section A.2 can recover the needed information

in many cases.)

Then the variance adjustment can be done using (A.1-17). The IT matrix
(corresponding to P there) is a column matrix containing the b; values, and T
(corresponding to both U and E in the main ad justment, since (A.3-3) is linear in ) is a
column matrix containing the values r,v} - a;;. (Do not confuse the symbol II with the
larger symbol used to denote products.) Then

n0'ar+ 1,‘:—’-
v Tt

mran e -
"o (A.3-5)
| .
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where the a priorl vaiue v, and its weight IIU?,Q have been introduced in the proper way.
(Since IT and T each have only one column, the matrix products in (A.3-5) produce i-by-1
matrices, which are equivalent to scalars) However, because of randoin fluctuations it is
possible for ¥ from (A.3-5) to be negative. If this happens, it should be set to zero instead.

Because v is used in obtaining the weights to be used for computing v, the above
process is iterative. A complete iterative solu. ...n for v could be done on each {teration of
the main solution. However, this is not necessary. Oue iteration of the variance ad justment
can be done on each iteration of the main adjustment, and the variance and the main
parameters will converge together. Note that, since the main ad justment has not yest
converged, it is actually the discrepancies instead of the residuals that are used in T in
(A.3-5). This will cause ¥ to be an overestimate on the early iterations. But as the
discrepancies converge to the residuals, ¥ will converge to the proper value.

Instead of using (A.3-5) as is, it can be partitioned in the same manner as (A.1-17)
was partitioned to obtain {A.1-23), If the appropriate off-diagonal terms of {1 are negligible.
But even if certain off-diagonal terms in the main observation covariance matrix §,; are
zero, they won't be zero (n Sy, because of the correlations introduced by the main
ad justment into the residuals. Of course, if the approximation of using twice the squares of
the elements of SU for the elements of Sy i3 used, then the variance solution can be
partitioned in the same way as the main solution. In any event, the approximate way of
handling correlated errors described in Section A2 can be used, and this would allow the
same partitioning to be used in the two solutions.
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A4 Convergence Acceleration

In Section A.i1 it was pointed out that the solution described there using the Gauss
method undergoes linear convergence. In many cases this is adequate, but sometimes the
convergence is quite slow. This section describes a way of accelerating the convergence of
the Gauss method, which converts it into quadratic convergence. This method is used in
the stereo camera model ad justment. (In the case where there is only one parameter being
ad justed, this method, except for the acceptance test described below, is equivalent to
Aitken's extrapolation, described in Acton [1970])

Let the true (unknown) values of the parameters be represented by the vector G, let
G; represent the current values of the parameters used on iteration { (before the correction),
and let D; represent the corrections computed to the parameters by the Gauss method on
iteration {. Then ideally D; = G,~G; However, more accurately

D; = AG, - G) : - (A4-D)

where A is a constant square matrix. The fact that 4 differs from the identity matrix
causes the linear convergence. (A here corresponds to /-4 in the discussion following
(A.1-18)) Even more accurately, (A.4-1) would also contain higher-order terms in G‘-—G.-.
which are neglected here. If 4 could be computed, it could be used to obtain a more
accurate correction by solving (A .4-1) for Gt—G‘.

Suppose that two different sets of parameter values (corresponding, say, to iterations §
and f) are used in the solution and the resulting equations (A.4-1) are differenced. The
result is

D;-Dj - AG;-G) (A.4-2)

J
Everything in this equation is known except 4, but it cannot be solved for A because it
represents m scalar equations in m? unknowns, where m is the number of parameters.
However, if m pairs of values are used to obtain m equations (A.4-2), they can be solved.
Let C be an m-by-m matrix each of whose columns consists of one D‘-DI vector, and let B
be an m-by-m matrix each of whose columns consists of one GI—C‘ vector. Then the m
different equations (A .4-2) are all represented by the one equation

C - 4B (A .4-3)

In the actuai procedure, (Di-D )5 and (G ;-G))is are used to form a column of C and B,
respectively, where s is the magnitude of the vector Gj—Gj (square root of the sum of
squares of its elements). Dividing by s in this way normalizes things to avoid numerical
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problems caused by the rapidly diminishing size of these vectors during convergence, but
the resulting equation (A.4-3) is mathematically equivalent to the above description, since
the same factor is applied to corresponding columns of C and B.

Now let D be the desired m.ore accurate vector of corrections. From (A.4-1) it can be
seen that D; = A7'D; Equation (A.4-3) can be solved to produce A™! = BC™'. Substituting
the latter into the jormer produces

~

D; = BC'D; (A 4-4)
Adding the results of (A .4-4) to G; produces the more accurate values of the parameters.

In order for (A.4-4) to b= computed, C must be nonsingular. This requires that all of
its columns (D;-D i pairs) be linearly independent, which requires that m+ 1 different G's be
used to obtain the m pairs used in (A.4-2). Different values of G could be chosen
deliberately to produce linearly independent columns, but this would require m+! complete
computations of D for each iteration, which would defeat the purpose of the acceleration.
Instead, vaiues of G and D from m+] successive iterations are used to obtain B and C in

(A 4-3).

Therefore, the procedure starts by going through m normal iterations. Then iteration
m+1 is computed. Values of G and D from iterations | through m are each differenced
against those of iteration m+1 to obtain B and C in (A .4-3). These are used in (A .4-4) to
obtain a more accurate correction for iteration m+l. Then iteration m+2 is computed, and
iterations 2 through m+ | are each differenced against iteration m+2 to obtain an accelerated
iteration m+2. This process repeats in this manner, always comparing iterations i-m
through i-1 to iteration { when correcting iteration {, until the convergence tolerance is

achieved.

A problem remains, however. As the solution converges, the direction of the error
vector G-G, will tend to approach the constant direction given by the ecigenvector
corresponding to the largest eigenvalue of /-4, with only its magnitude changing. This will
result in the columns of B and C becoming nearly proportional to each other, which causes
C to become nearly singular. (Indeed, if by accident the error vector started exactly in this
direction, C would be singular from the start) But the eigenvalue of C corresponding to the
eigenvector in this direction will not become zero, and it is this eigenvalue that contains the
information needed to compute D in this case, since D is in this direction ajso. In general,
those eigenvalues of C that are zero correspond te directions orthogor.al to D, and thus do
not matter. Therefore, even though C may be singular, it contains the needed information.
In order to extract this information, some type of generalized inverse might be used instead

of the inverse indicated in (A 4-1).

However, in the implemented procedure the following is done to get around this




problem. Tirst, if possible, C is inverted in the usual way, and a test is made to determine if
there was excexsive loss of significance. If the test is passed, the result is used. However, if
the matrix was singular or the test was failed, 2 small positive quantity is added to the
diagonal clements of C and another try is made. Adding this quantity to the diagonal
elements increases each eigenvalue by this amount. A large eigenvalue will not be
appreciably affected by this small change, but a zero eigenvalue will no longer be zero. If
all eigenvalues differ from zero by significant amounts, the matrix can be inverted
accurately. But there may have been a negative eigenvalue which becomes close to zero by
the addition. Therefore, the same test is made on the second try, and if it also fails, another
try is made. The implemented procedure subtracts the same quantity from the diagonal
vlements of the original C matrix and tries again. If this doesn't work either, it gives up
and does not accelerate on this iteration. (Using up to m tries with 2 good matrix inverter
would practically guarantee success, berause there are only m eigenvalues) The
implemented procedure does these computations in double precision, and the quantity
added is 1075, Since C has been normalized, this changes its largest eigenvalue by roughly
one part in 10% If eight significant decimal digits were used in the computations, an
appropriate quantity to add or subtract would be 107,

Before the convergence acceleration computed above is accepted on any particular
iteration, one more tcit needs to be made. If the higher-order terms which were neglected
abcve are large, applying the acceleration might make things worse instead of better. The
test that is made invcives seeing whether the normal or the sccelerated solution is more
consistent on two successive iterations. Whichever one was used to produce G on the
previous iteration, the other value of G is remembered. Both values of C are obtained for
thiz iteration. Then the magnitude of the difference of th: G vactors produced by the
normal solution on the two iterations is computed, and the magnitude of the difference of
the G victors produced by the accelerated solution on the two iterations is computed. For
this iteration, the solution for which this magnitude is less is accepted. If there was no
accelerated solution computed for the previous iteration (because of insufficient fterations or
failure of the matrix inversion), the normal solution is used for this iteration. (Thus the
nooelerated solution will never be used until iteration m+2 at the earliest, since the first

accelerated solution isn't cormputed until iteration m+1.)

The magnitude of a vector used above is defined as the square root of the sum of the
squarer of the elements of the vector. In order for this to be a meaningful representation of
the distance between iwo solutions, the elements of the vector should be compaiable
quantities, wich their impn.tant effects being the same order of magnitude. If necessary, the
actuei sarameters in the ad justment should be scaled in order to achieve this condition.
(T'his is also desirable to avoid numerical loss of significancr)

If the varisace ad justment described in Seciion A.S is uwed, the variance estimate vy
can be considered to be one of the marameters for the purp 2ses of convergence accelerution.
Then m here corresponds to m+ | in the main wlution. However. the variance must be
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scaled appropriately, as described in the previous paragraph.

Because the method described here requires at least m+2 iterations in order to
accelerate the convergence, it would not be of much use when the number of parameters is
large. However, when m is small and convergence is slow, it can be quite useful. The
computation time it requires (consisting mostly of an m-by-m matrix inversion) is usually
much less than that of the main solution, so a large cost is not paid for its use, even if it

turns cut not (© be needed.

A5 Automatic Editing

It was mentioned in Section A.l that the solution there is the maximum-likelihood
solution if the errors have the Gaussian (normal) distribution. However, suppose that the
errors are from two causes. There are small randoi: errors on every observation
approximately normally distributed, called “noise,” and there are occasional very large
errors, called "wild points.” The combined distribution for the total error departs greatly
from the normal distribution. It consists of an approximately normal curve added to a
function with a very small amplitude but a large width. The use of the unmodified
solution in Section A.l would result in large errors because of the wild points. Some
nonlinear solution adapted to the actual total error distribution is needed.

One approach would be to assume a particular total error distribution, and derive the
exact maximum-likelihood solution for it. Compared to the ordinary weighted
least-squares solution this would have the effect of giving less weight to the points with
large errors on the current iteration, since they would lie on the further parts of the error
distributiors where the curve flattens out instead of following the normal curve. In general
this would be quite complicated, and it would add a great deal of nonlinearity to the
solution, adversely affecting the convergance. (A crude approximation to this sort of thing

is used in the ob ject finder in Chapter 7)

One reasonable way to approximate the above ideal in many cases can be derived
from the following reasoning. Because the amplitude of the probability distribution of the
wild points is so small (caused by their infrequence and vide range of values), the total
error distribution curve is very nearly the normal curve for small errors (if the noise is
normally distributed). But for some value of error the two probability densities are equal,
and for errors greater than this the normal curve rapidly becomes neglig.ble, resuling in a
flat distribution from there on. Thus the tota! curve can be approximated by a normal
curve out to some threshold value and by a constant beyond there. The
maximuin-likelthood solution that results from this approximation is to use the points with
errors less than the threshold in the usual way and to ignore all other points. Such a

process of re jecting outlying points is called “editing.”
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The' correct threshold to use for the editing process depends upon the error
distributions. For example, suppose that the wiki points occur 108 of the time and have a
distribution that is 100 times wider than that of the noise. (Both are assmed to be normally
distributed for convenience, but a uniform distribution for the wild points with a width
100J/2n times the standard deviation of the noise would produce the same results) Then
the height of the wild point distribution at the center is only 1/1000 of that of the noise.
Thus the two distributions become equal when the noise distribution is at 1/1000 of its
peak, since the wild point distribution is practically flat in this region. This occurs at an
error of 3.7 standard deviations for the normal curve, and this would be the correct
threshold in this case. In practice the exact wild point distribution is seidom known, but
using a threshoid of three standard deviations for one-dimensional data is usually
reasonable and is somewhat customary in editing problems. (Cutting the normal curve off
at both sides at three standard deviations results in rejecting only 0.0027 of its area) The
ratio of the threshold to the standard deviation is denoted here by . (In order to take into
account the fact that the standard deviation is not known exactly, it would be better to use a
threshold based on Student's ¢ distribution instead of a constant a priori threshold, but if
the variance estimate is reasonably accurate this will make little difference.)

Of course, the errors are not known. However, after performing an ad justment the
residuals are known, and their covariance matrix can be computed from (A.1-22), with the
correction discussed in connection with (A.2-2) imposed when the approximation in Section
A2 is used. Therefore, the editing process used here basically checks to see whether for any
observations the absolute value of the residual is greater than ¢ times the standard
deviation of the residual. Several refinements are needed to this basic process, however.

Some subsets of observations may be so closely related that, if one of the observations
in a subset is wrong because of a wild point, the others probably are wrong also. For
example, in the sterco camera model ad justment, if a point seems to be beyond infinity,
there are two observations associated with this point, as explained in Chapter 3, and the
two observations should be accepted or rejected together because they both came from the
same correlator measurement. The optimum way in which to de this is to compute the
quadratic form of the vector of residuals for this point with the inverse of its covariance

matrix, as follows:
g = YISy, - PScPIT, (A.5-1)

(sub ject to the limit given by (A .2-2) when the approximation in Section A .2 is used), where
S is the covariance matrix of the ad justed parameters, SUi is the covariance matrix of the
observations in this point, P, is the matrix of partial derivatives of the observations in this
point reiative to the parameters, and ¥, is the vector of residuals for this point (observations
minus ad justed observations). The square root of this quadratic form would correspond to
the ratio of the absolute value of a residual to its standard deviation in the case of one




observation per point. Thus a limit of 2 on ¢; would produce a cutoff at the same
probability density value of the normal curve. However, because of the greater number of
dimensions in the space over which the wild points are distributed, their probability density
will be less, and thus the value of the threshold ¢ perhaps should be greater than in the
one-dimensional case. (In the implemented stereo camera model adjustment, ¢ = 3 in the
one~dimensional case and ¢ = 4 in the two-dimensional case.)

The presence of one wild point may perturb the solution so that it approximately
agrees with another wild point. Therefore, a singie check for all wild points cannot be
completed in one step. After one or more points are rejected, the test must be made again
on the remaining points. The most likely candidate for re jection is the observation with the
largest ratio of absolute value of residual to standard deviation of residual, or the point
with the largest quadratic form from (A.5-1) in the muitidimensional generalization.
(However, if ¢ Is different for different points, this value should be scaled before comparing
by dividing the residual by ¢ or the quadratic form by t2) As implemented in the stereo
camera model ad justment, this point is rejected first if it is beyond the limit. Then the
solution is recomputed and the process repeats until no more points seem to need re jecting.
Previously rejected points could be retested at each step and reinstated if they are now
within the limit, but this is not done in the camera model ad justment. Note that if the basic
problem is nonlinear i« must be iterated to convergence on each one of these steps so that
true residuais will be obtained. Therefore, the editing process consists of outer iterations,
each one of which contains the inner iterations of the basic solution.

If the problem is linear and the variance of the observations is known, then the
process of comparing a residual to its standard deviation computed rrom the solution using
this observation suffices to indicate whether or not this vbservation should be rejected.
However, if the problem is nonlinear, removing a point from the solution may change
things so much that the decision might be different. Also, if the variance is being ad justed
(as in Section A.2), the presence of this wild point will cause the variance to be
overestimated. Therefore, the residual may be less than ¢ times its overestimated standard
deviation but more than ¢ times its true standard deviation. For these reasons, the point
with the largest ratio compared to ¢ is tentatsvely rejected regardless of the size of the ratio,
the solution Is recomputed (including the variance adjustment) without this point, the
residual and its standard deviation are recomputed, and a definite decision of: this point is
made based on the size of the new ratio. The standard deviation of the residual in this last
step must be computed in a different way than usual. Since this observation is not used in
the solution, (A.1-22) cannot be used. There will be no correlation between this unused
observation and the solution, provided that this observation is not correlated with the
observations used in the solution. Therefore, since this residual is the observation minus
the adjusted observation computed from the solution, the variance of the residual is the
sum of the variance of the observation and the variance of the ad justed obtervation. For
muitidimensional observations this generalizes to the sum of the covariance matrices. Thus
the quadratic form which 1 actually compared to (2 to determine whether a tentatively




rejected point shouid really be rejected is computed as follows (uzing values from the
solution computed without using this point):

‘li - VI[SU‘ + Pﬁc”{]"y‘ (A.5-2)

(The limit given by (A.2-2) can be applied here also, but with an addition instead of a
subtraction it is less important.)

The possibility still remains that the presence of many wild points (all about equally
bad) may cause such an overestimate of the variance that none of them would be rejected.
This possibility can be guarded against in the following way. The computed variance (not
including the a priori estimate) is compared to the a privri variance, and, if the ratio is
large enough to cause some confidence level to be exceeded, the most suspect point on this
outer iteration will nat be reinstated yet if it passes the usual test above. Points successively
tentatively rejected in this way are accumulated until they fail the usual test, in which case
they are rejected, or until the confidence level is no longer exceeded or a given limit on the
number of points to remove is reached, in which case they are reinstated. (Thus if the
solution does not reach a set of retained points that indicate that the rejected points are
actually bad, the likelihood is that by chance the confidence level was exceeded with good
data, and the points should be reinstated. An earlier form of the stereo camera model
ad justment reported in Gennery [1977] did not include this last step and thus ran the risk
of once in a while rejecting many good points) The implemented stereo camera model
ad justment uses an F test for this purpose, with a confidence level of 0.98, although the
presence of the two components of error according to (A.3-1) makes this nonrigorous.

An additional explanation perhaps is in order concerning one matter. Suppose that
there is a wild point with no other points in the same region of observation space and that
? the nature of the problem is such that this point thereby forces the solution intc near

agreement with it.  (For example, consider the simple case of fitting a linear
one-dimensional function to some data. If most of the points are clustered in a fairly
narrow interval of the independent variable, but there is one point at a distant value of the
independent variable with an erroneous value of the dependent variable, this one wild
E point will tilt the straight-line fit 3o that it nearly passes through this point) This wild
point will have a very small residual when it is used in the solution, and thus it might
b appear that it would not be the prime candidate for rejection. However, in such a case
almost all of the information in the ad justed value of thi: observation is coming from this
observation itself, and thus the variance of this ad justed observation is nearly as great as
] the variance of the observation. Since the variance of the residual is the difference of these
quantities, it will be very small. As a result, it turns out that, even though the residual is
small, its standard deviation is even smalier. Therefore, taking the ratio of these quantities
(or using the more general result from (A.5-1)) identifies this point as the one to be

removed.
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The basic idea of examining the residuals for editing purposes is fairly common.
(See, for example, Davis [19671) However, the method described above contazins some
refinements, such as the use of the F test.

ST S ey o R IR O S sk TS T

.
?
!
g
|




Appendix B
STEREO CAMERA MODEL

In this appendix the particular set of parameters that constitute the stereo camera
model used in this work is defined, and a method is described for computing the quantities
needed in Chapters 3, 4, and 5 that are functions of these parameters

The stereo camera model might most reasonably be defined to consist of six
parameters defining the relative position and orientation of the two cameras. Many
different sets of six quantities are possible; those that are used in the present work are
described below. However, the magnitude of the distance between the cameras is sometimes
considered separately (because it cannot be determined by the self-calibration method
described in Chapter 3), leaving five quantities in the camera model proper. In addition, a
scale factor for the pictures, related to the principal distance or focal length, may be
included here (and can be adjusted in the same self-calibration procedure, although it
usually is better ad justed with the distortion calibration for the individual cameras). There
may be separate scale factors for each picture or a single one for both. Therefore, the total
number of parameters considered to constitute the stereo camera model may be five, six,
seven, or eight. The implemented version of the stereo camera model self-calibration
ad justs for only the basic five parameters, although the necessary information is included in
this appendix to enable the principal distances to be included in the ad justment also.

If a full set of six parameters defining the relative position and orientation were to be
considered to constitute the stereo camera model, a reasonable choice for the parameters
might be the three Cartesian components of the vector from Camera | to Camera 2 and
three angles defining the orientation of Camera 2. These 2il would be expressed in the
Camera | coordinate system, since we are concerned here only with relative (not absolute)
position and orientation. However, since the magnitude of the vector between cameras is
considered separately here, only the direction of the unit vector pointing towards Camera 2
is considered, which can be specified by two quantities. Depending on what two quantities
are chosen, a degeneracy occurs in some position. Here, the direction of the unit vector is
specified by an azimuth angle and an elevation angle, as in Hannah [1974] The
degenerate position then occurs when one camera is directly above the other, a situation not
usually encountered in sterec work and one which can be defined away by rotating the
Camera | coordinate system about its principal axis. These atimuth and elevation angles,
and the pan, tilt, and roll angles (also as in Hannah [1974]) which specify the orientation of
Camera 2 are the five quantities which constitute the stereo camera model that is ad justed
in Chapter 3. However, the two prinapal distances are also used in the following
computations and could be considered to be camera model parameters. The magnitude of
the vector from Camera | to Camera 2 does not enter into the computations in this
appendix, but i3 used in the computation: in Chapters 4 and 5.
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Definitions of the above quantities and others will now be given. The picture-taking
process in each camera is idealized as a central projection from the real world onto an
image plane perpendicular to the lens axis at a distance f, or f, (for Camera | or Camera 2,
respectively) in front of the center of projection. (The quantity f, or f, is sometimes
referred to as “focal length,” which is not the correct term if the camera is not focused at
infinity. The term “principal distance” is also used, and it will be used here for want of a
better term. The center of projection is often called the "lens center,” which is correct only
in the thin-lens approximation. For thick lenses it is actually the primary principal point.)
Each camera has a Cartesian coordinate system with the origin at the center of projection, x
to the right in the image plane, y up in the image plane, and z outwards along the lens axis.
Thus the coordinate system is left-handed. Measured values of x and y for a corresponding
point in the two image planes will have a subscript | or 2 to denote Camera | or 2,
respectively. The azimuth and elevation of the Camera 2 origin relative to the Camera |
coordinate system are denoted by a, and a, (positive to the right from the z axis and up),
respectively. The pan, tilt, and roll of the Camera 2 coordinate system relative to the
Camera i coordinate system are denoted by §,, 8,, and B, (positive right, up, and right),

respectively.

If the ray from the Camera 1 origin through the point x,, 3, in the Camera | image
plane is back-projected into the Camera 2 image plane, a line segment is produced. Let x_
and y, denote the Camera 2 image-plane coordinates of the end point of this line segment
(corresponding to a point at an infinite distance on the ray), and let ¢, and ¢y denote the
direction cosines of the line segment (in the direction away from x,,y,) relative to the x,
and y, axes, respectively. Then the problem at hand s to use the quantities x, and y, and
the camera model parameters previously defined to compute x,, y,. ¢,, and ¢y Also
needed for the computations in Chapter 5 (and needed in order to compute the above
quantities) are the unit vector 1,_ pointing from the Camera | origin to the Camera 2 origin
(in Camera | coordinates), and the rotation matrix B for transforming Camera |
coordinates into Camera 2 coordinates, which are functions of the camera model parameters
only. The partial derivatives of all of these quantities with respect to the camera model

parameters are also needed.

Two vectors that will be needed later are defined as foilows:

x, 0
P - 7. l. - 0 (B—l)
1\ |

The first step in deriving the needed mathematics consists of defining the rotation
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matrices associated with the angles a,, «,, 8,, 8, and 3, Notice that 4, and 4, are
defined with the opposite direction of rotation from B, and B, This is because the A's will
be used to rotate a vector whereas the B's will be used to rotate the coordinate system.

-

[ cos o, 0 sin a, ' "y r-sln o 0 cos o,
1
A = 0 | 0 HET - 0 0 0
-sin a, 0 cos o, J —Cos o, 0 -sin o ]
[ 0 0o » [ o 0 o |
A, o 0 cos a, sin a, u;’ - 0 -sina, cosa,
0 -sin a, cos %J 0 ~cos o, -sin a,
9 4
rcos [ 0 ~-sin @8 ' F—sln g 0 —cos .
1 s dB 1 1
B, - 0 | 0 'w ] o 0 0 B-
' r/ (B-2)
sing, 0 cos ﬂ' | cos B| 0 -sin g, J
[ 0 o | [ 0 0 o |
ds
8, - 0 cos 8, -sin e, za-;‘: - 0 -sin B, -cos g,
L 0 sin “2 cos 32 J i 0 cos az ~sin 52 J
[ cos By -sin g, 0 B [—sin B, —cos B, ]
B, = |sin By cos B, 0 35,3 = | cos B, -sin B, 0
| 0 0 | J | 0 0 0 ]

The unit vector pointing from the Camera | origin to the Camera 2 crigin is just the
unit z vector rotated through the clevation and azimuth angles:
- A4, (8-9)

1,

To convert a vector from being expressed in the Camera | coordinate system to being
expressed in the Camera 2 coordinate system, the coordinate system must be rotated through
the pan, tikt, and roll angles (in addition to being transiated). Thus the rotation matrix by

which the vector must be premultiplied is

»- 83 (B-4)
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The partial derivatives of 1, and B with respect to the camera model parameters are as
follows:

(B-5)
3B _ 5 p % 3B 5 9B 3B _ 9B, ,
% SRy s Bwh o wm c @t

with all others equal to zero.

Now the infinity point x_, y, will be derived. An image point in the Camera 1 image
plane has a three-dimensional position in the Camera | coordinate system given by the
vector p = [x, 9, f,]'r. Since we are concerned at the moment about the infinity point we
can ignore the translation between the camera coordinate systems and consider only the
rotation. To express the vector p in a coordinate system aligned with Camera 2 the
coordinate system is rotated by premultiplying by the B matrix defined above. Let the
resulting vector be denoted by w. Thus

u,| =« Bp (B-6)

The projection of the point given by the above vector into the Camera 2 image plane is
given by a vector in the same direction as the above vector but having a  component equal

to f, Therefore,

fu
xo - T;E
y (B-7)
2!‘
,0 - —‘-‘—Z

E 4

The partial derivatives of u with respect to 8,, f,, and 3, can be obtained by replacing B
in (B-6) by the corresponding derivatives of B from (B-5). If the partial derivatives with
respect to f, are desired, they can be obtained by replacing p by 1, in (B-6), since
op/of, = 1. Equations (B-7) then can be diiferentiated to obtain the partiai derivatives of

x, and y,, as follows:
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(B-8)
ax, U,
T U
39, u,

where g denotes 8,, B,, 8,. or f,. (The partial derivatives of x, and y, with respect to «,
and «, are zero)

The point x,, y, is the end of the desired line segment. The direction cosines ¢, and
¢, can be found by using the fact that the desired line is the intersection of the Camera 2
image plane with the plane defined by the Camera 2 center of projection and the ray
corresponding to the Camera 1 image point x,, y,.

Thus we proceed as follows. The ray which corresponds to the image point x,, ¥, In
the Camera | image plane is given by the direction of the vector p = [x, 9, £,)T, in Camera
i coordinates. First we musi determine the plane containing this ray and the Camera 2
center of projection. The normal to this plane is given by the direction of the vector cross
product of p and the vector 1_from (B-3) giving the direction of the Camera 2 center of
projection from Camera | center of projection. Therefore, the normal to the desired plane
is p x 1, in Camera | coordinates. To express this normal in Camera 2 coordinates we
must rotate the coordinate system by the pan, tilt, and roll angles. The result is B(p x 1)).
The normal to the Camera 2 image plane in Camera 2 coordinates is 1. The vector along
the intersection of these two planes is the cross product nf the normals to the two planes,
namely 1, x B(p x 1)). This is the desired line which is the projection of the ray into the
Camera 2 image plane, expressed in Camera 2 coordinates, and thus its x and y components
are proportional to the desired direction cosines. Since the vector lies in the Camera 2
image plane, its x component is 1ero. Thus, if we call this vector v, we have

v - 1, xBlpx1) (B-9)

A pplication of either the right-hand rule or the jeft-hand rule consistently to the above two
cross products will verify that the above vector has the correct polarity, that is, it points
away from x .y, along the line segment. The direction cosines ¢, and ¢, can now be
computed simply as follows from the resuks of (B-9).
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The partial derivatives of v with respect to the o's and #'s can be obtained by
replacing in turn 1, and B in (B-9) by the corresponding derivatives from (B-5). The
partial derivatives with respect to f, can be obtained by replacing p in (B-9) by 1, Then
the partial derivatives of ¢, and ¢, are obtained as follows, where g denotes any of the

parameters (a's, 8's, or f,).
6v, oy
o | %3 My
+ v';’)’/ 2
v ov,,
AT
2+ u7y)’72

(B-11)

The resuits are 1, and B for a given camera model, x,, y,, ¢,., and > for a given
point and a given camera model; and the partial derivatives of these quantities.

The above computations were expressed in terms of matrices and vectors as much as
possible, so that the partial derivatives were easy to obtain. In the implemented computer
program the matrix operations are performed numerically by standard procedures.
Therefore, there is no need to expand these equations to scalar form analytically, except in
a few cases where considerable computation time can be saved. In particular, the product of
A A, times 3 reduces to just taking the third column of 4,4, The cross products are
written out in the code for the program; this reduces the cross product of 1, times another
vector to just picking two appropriate terms of the vector, with an appropriate sign change.




Appendix C
MARS PICTURES

The Mars pictures used in this research were extracted from a pair of large mosaics
produced by the Viking Lander Imaging Team from pictures taken by the two cameras on
the Viking Lander I. The pictures form a stereo pair of the Martian landscape in front of
the lander, covering about 173° in azimuth and about 66° in elevation. However, much of
thete pictures do not contain corresponding areas in the two pictures because of occlusion
by parts of the lander. Also, the portions in the extreme distance probably would not aliow
accurate information to be obtained about small ob jects such as rocks. A suitable portion
was chosen to test the methods in this thesis, consisting of an area about 16° in elevation by
20° in azimuth in the left picture and 18° in elevation by 28° in azimuth in the right
picture. Smaller portions of these were used to generate the exampies in this thesis, each
about 10° by 10° These are shown in Figure C-1.

The brightness value of each pixel in the pictures is represented by an eight-bit
integer. The pixel spacing of the pictures is 0.04° in azimuth and elevation. (Azimuth and
elevation form a spherical coordinate system. Therefore, the central angle subtended by a
one-pixel shift in azimuth is 0.04° times the cosine of the elevation angle) The two
cameras are 08187 meters apart. The height of the cameras is 1.3 meters above the
reference plane (nominal ground surface).

The principal noise source in the pictures supposedly is shot noise from the
photodiode rensor. This causes the standard deviation to be proportional to the square root
of the pixel values. In order tc produce a constant standard deviation, the square root of
each pixel value was taken and the result was multiplied by 16 to rescale it to be suitable
for an eight-bit picture. The standard deviation of the noise in the resulting pictures was
estimated to be about 3. These modified pictures were used by the programs described in
this thesis. However, to produce the figures shown herein, the original pictures were
changed by a different nonlinear function to enhance their contrast, in order to compensaie
partially for the inadequacies of the printing device.

Each picture shown in Figure C-1 is 256 pixels by 256 pixels. The azimuth and
elevation from the left camera to the center of the picture are about 18° and -20°
respectively, relative to the perpendicular to the camera baseline and relative to the
reference plane. The distances to the points in the scene range from about 3 meters to
about 4.5 meters.

The white biob in the left picture is an out-of-focus part of the lander's arm, which
was present when this part of the mosaic was taken but was in a different position for other
portions and for the other picture. It represents erroneous data to che stereo program.
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Figure C-1. Stereo pair of Martian surface.

TR

140




SIBLIOGRAPHY

Acton, F.S. [1970L Numerical Methods thut Work, Hasper & Row.

Agin, G.J., and Rinford, T.0. (1978} "“Computer Description of Curved Objects,”
Procndings of the Third International [oint Conference on Artificial Intelligence, Stanford,

Calif, August 1978, pp. 29-640.

Arnold, R.D. [1978] “Local Context in Matching Edges for Stereo Vision," Proceedings.
fmag: Urderstanding Workshop (Defense Advanced Research Projects Agency), Cambridge,
Mass, May 1978 (Stience Applications, Inc., Report Number SAI-79-748-WA), pp. 65-72.

.Batd. Y. (1974) Nonlinear Parameter £:timation, Academic Press.

Baurgart, B.G. [1974). "Geomeiric Modeling for Computer Vision,” Stanford Artificiai
Intelligence Lahoratory Memo AIM-249, Stanford University, Oct. 1974.

Blackman, R.B., and Tukey, JW. [i958] TAe Measurement of Power Spectra, Dover
Publication..

Bolles, R.C. {i976) ‘“Verification Vision within a Programmable Assembly System,”
Stanford Artificial Inieiligence Laboratory Memo AlM-295, Stanferd Univarsity, Dec. 1976.

Brown, D.C. [19551 “A Matrix Treatment of the General Frobkm of Least Squares
Considering Correlated Obseravations”, Report N 937, Ballistic Research Laboratories,
Abcrdeen Md., May 1955.

Brown, D.C. (19571 “A Treatment of Analytical Photogrammetry with Emphasis on
Ballistic Camera Applications” (Apoendix A, “A Treatmer.. of the General Problem of
Least Squares cnd the Associated Error Propagation”), RCA Data Reduction Technical
Report No. 39 (AFMTC-TR-57-22), Patrick AFB, Florida, August 1957.

Davis, R.G. (18371 "Advanced Techniques for the Rigorous Analytical Ad pustment of
Large Photogrammetric Nets,” PAotogrammetris, Vol. 22, po. 191-205.

Duda, R, and Hart, P. [1978) Patiern Recognition and Scene Anaiysis, Wiley.

Forsythe, G.E, snd Moler, CB. [1967) Computer Sclition of Limear Algedraic Systems,
Prentice-Hall.

14}




Gangzpathy, $. [1975). "Reconstruction of Scenes Containing Polyhedra from Stereo Pairs of
Views," Stanford Artificial Intelligence Laboratory Memo AIM-272, Stanford University,

Dec. 1975,

Gennery, 1).B. [1966]. "Direct Digital Filters for General-Purpose Use”, ETR-TR-66-2
(RCA MTP Math Services Technical Report No. 82), Patrick AFB, Florida, Jan. 1966.

sennery, D.B. [1977] "A Stereo Vision System for an Autonomous Vehicle," Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass.,
August 1977, pp. 576-582.

Gennery, D.B. [1979] "Object Detection and Measurement Using Stereo Vision®,
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, Tokyo,
August 1979, pp. 320-327.

Graybill, FA. [1961). An Introduction to Linear Statistical Models, Volume 1, McGraw-Hill
Book Company.

Grenander, U. [1954] "On the Estimation of Regression Coefficients in the Case of an
Autocorrelated Disturbance,” Annais of Mathematical Statitistics, Vol. 25, pp. 252-272.

Hannah, M_]. (1974) "Computer Matching of Areas in Stereo Images,” Stanford Artificiat
Intelligence Laboratory Memo AIM-239, Stanford University, july 1974.

Hanson, A R., and Riseman, E.R. (eds.) [1978). Computer Vision Systems, Academic Press.

Hogg, R.V, and Craig, AT. [1965] /Introduction to Mathematical Statistics (Second
Edition), The Macmillan Company.

Hohn, F.E. (19738). Elementary Matrix Algedra (Third Edition), The MacMiilan Company.

Kalman, R.E [1960) "A New Approach to Linear Filtering and Prediction Problems’,
Journal of Basic Engineering.

Levine, M.I)., O'Handley, DA, anu Yagi, G M. [1973] “Computer Determination of Depth
Maps,” Computer Graphics and Image Processing, Vol. 2, pp. 131-150.

Lewis, RA, and Johnston, AR. [1977] "A Scanning Laser Rangeflinder for a Robotic
Vehicle,” Proceedings of the Fijth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., August 1977, pp 762-768.

Marr, D, and Poggio, T. [1976). "Cooperative Computation of Stereo Disparity,” Scisnee,
Vol. 194, pp. 283-287,




Mikhail, EM. (with contributions by F. Ackermann) [1976) Observations and Least
Squares, IEP (Thomas Y. Crowell Company).

Miigram, D, and Bjorklund, C. [1979] “Superposition,” Lockheed Missiles and Space
Company internal memo, Palo A lto, Calif.

Moravec, H.P. [1977). "Towards Automatic Visual Obstacle Avoidance,” Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass., August

1977, p. 584.

Moraves, H.P. [1979). "Visual Mapping by a Robot Rover®, Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, Tokyo, August 1979, pp. 598-600.

Moravec, H.P. [1980). "Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover,” Ph.D. Dissertation, Stanford University.

Mori, K., Kidode, M., and Asada, H. [1978] “An iterative Prediction and Correction
Method for Automatic Stereocomparison,” Computer Graphics end Image Processing, Vol. 2,
pp. 393-401.

Nevatia, R., and Binford, T.O. (1977). "Description and Recognition of Curved Ob jects,”
Artificial Intslligence, Vol. &, pp. 77-98.

O’Handley, D.A. [1973). "Scene Analysis in Support of a Mars Rover,” Computer Graphics
and Image Processing, Vol. 2, pp. 281-297.

Price, K. [1978)  "Symbolic Matching and Anwnalysis with Substantial Changes in
Orientation,” Proceedings: Image Understanding Workshop, (Defense Advanced Research
Projects Agency), Cambridge, Mass,, May 1978 (Science A pplications, Inc., Report Number

SA1-79-749-WA), pp. 93-99.

Quam, LH. (19681 "Computer Comparison of Pictures,” Stanford Artificial Intelligence
Laboratory Memo i44, Stanford University.

Schultz, M H. [1973]. Spline Analysis, Prentice-Hall.

Schut, GH. [1957)  "An Analysis of Methods and Results in Analytical Aerial
Triangulation,” PAotogrammetria, Vol. 14, pp. 16-33.

Schut, G.H. [19%9] "Remarks on the Theory of Analytical Triangulation,”
PAotogrammetria, Vol. 16, pp. 57-66.




e e T

Shirai, Y. [1978] "Recent Advances in 3-D Scene Analysis,” Proceedings of the Fourth
International Joint Conference on Pattern Recognition, Kyoto, Japan, Nov. 1978.

Sobel, I. [1970). "Camera Models and Machine Perception,” Stanford Artificial Intelligence
Laboratory Memo AIM-121, Stanford University.

Thompson, A.M. [1977). “The Navigation System of the JPL Robot,” Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass., August
1977, pp 749-757.

Thompson, C. [1975). “"Depth Perception in Stereo Computer Vision,” Stanford Artificial
Intelligence Laboratory Memo AIM-268, Stanford University, Oct. 1975,

Ullman, S. [1976). "The Interpretation of Structure from Motion,” Artificial Intelligence
Memo 476, M assachusetts Institute of Technology, Oct. 1976.

Watson, G.S. [1967). "Linear Least Squares Regression,” Annals of Mathematical Statistics,
Vol. 38, pp. 1679-1699.

Yakimovsky, Y. and Cunningham, R. [1978] "A System for Extracting Three-Dimensional
Measurements from a Stereo Pair of TV Cameras,” Computer Graphics and image

Processing, Vol. 7, pp. 195-210.

Zucker, SW. [1976]). "Relaxation Labelling and the Reduction of Local Ambiguities,”
Proceedings of the Third International Joint Conference on Pattern Recognition, San Diego,
Calif,, November 1976, pp. 852-861.

44

< e e S




