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ABSTRACT

An elementary, but useful problem in reliability design is used to
1llustrate some of the principles and concerns of computational probability.
A number n of items with exponential life times are placed in parallel.
The time until all items have failed is denoted by Un‘ It 18 desirable that
Un exceed the duration T, where T 48 a random variable, independent of
the n 1life times. We wish to determine the smallest value of n for which
P{Uh > T} exceeds 1 - ¢. It is shown that if T has a delayed distribution
of phase type, this may be done by a recursive algorithm, which avoids numer-

ical integrations.
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1. Yorsulation of the Problem

The concern for algorithmically tractable solutions to problems in
probability adds an interesting new dimension to their analysis. In the comn-
struction of efficient and stable algorithms, certain principles, which have
not been given much attention in the classical analytic presentations, need
to be followed. In this paper, some of these principles are illustrated by
a simple example from reliability theory.

We first consider n items with independent, identically distributed,
exponential life times with parameter u. These items are placed in parallel
and system failure occurs at the time Un when all n items have expired.
The parallel system 18 to be used during a mission of duration T, wvhere T
is a random variable, independent of the 1life times of the items. The dis-
tribution of T is denoted by F(-).

The probability q(n) = P{Un < T}, that the system fails before

the end of the mission is readily given by

(1) q(n) = [ (1-e7"H" ar(x) , for n2>1.
0
Clearly q{(n) 1is strictly decreasing in n and tends to zaro as n tends

to infinity. For every ¢ > 0, the quantity n* = min {n: q(n) < ¢} 1s
well-defined. n* 1is the smsllest number of items, which will yield a re-
liability of at least 1l -¢ .

The numerical computation of n* requires soms care. It would e.g.

be inadvisable to rewrite (1) s

a
(2) w = T -n* [:] £(a) ,

where f£(*) 4is the Laplace~Stieltjes transform of F(°). Por large n, the




quanticty q(n) 1s given by (2) as the sum of terms of alternmating sign.
Numerical implementatiom of (2) usually suffers from loss of significance.

This serves to illustrate our first point. Mathematically equivalent
solutions may be vastly different in their suitability for numerical com-
putation. A number of the published analytic solutions to stochastic models
are worthless for or hazardous in numerical implewmentation. Algorithmic
tractability deserves to be included in technical discussions of probability
models to a far greater extent than is presently done.

In evaluating the quantities q(n) by numerical integration in Forsula
(1), considerable care is needed. For large values of n, the integrand is
saall for small to moderate x. The improper Riemsnn-Stieltjes integrals need
to be truncated at a high valus -ot X, 80 as to avoid neglecting a substantial
tail contribution. For specific probsbility distributions F(°), we may often
perform an appropriate change-of-variable, so that e.g. the interval of inte-
gration will becoms finite or so that a quadrature method may be applied. This,
of course, depends on particular features of F(-).

In any case - and this is our second point - it will not be possible to
write one computer code to handle a very wide variety of probability distrji-
butions F(<). Except for a small number of classical particular probability
distributions, such as e.g. the gamma family, it is necessary to analyze the
numerical integration procedure from first principles. This is not a matter

of msre computer programming. For this - and & fortiori for more complex

problems ~ this analysis should be the concern and responsibility of the
probabilist.
In many problems, wve may exploit particular probabilistic features to

expedite the computations. For the versatile class of distributions of phase
type, ve shall show that the quantities q(n) may be evaluated without numericel
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utcgatim.‘ Before doing so, we shall consider a more general version of
the problem. Let there be n items originally, which fail according to a
pure death process, i.e. the times between successive failures are independemnt
and exponentially distributed with parameters Moo sees Uyo The time-to-
failure then has a generalized Erlang distribution. If .k(u) (t) denotes

the probability that k of the n original items are still alive at time ¢,

the quantity q(n) 1s given by

3 q(n) = J Ogn) (x) dF(x) , for n>0.
0

The earlier problem corresponds to the choice uj = ju, for 1< j <n.

2. The Case Where F(-) is of Phase Type

F(*) 1s a distribution of phase type (PH) if and only if there is a
finite-state Markov process, with one absorbing state and all other states
transient, in which F(+) 1is the distribution of the time till absorption

[1,2]. The generator Q of such a Markov process is then of the form

vhere T 1is a square matrix, say of order =, with negative diagonal ele-
ments and nonnegative off-diagonal elunﬁ. The watrix T 4is nonsingular
and Ta+I°=0. The initial probability vector is demoted by [g,a ., ].

3 The initial PH-distribution F(°) is then givem by

(4) F(x) =1-aexp (Tx) & , for x> 0.

In the sequesl, we shall sssums for convenience that o = 0, so that i

w1

7(*) 1is continuous on [0,®).




Let now #1(1:) be the conditional probability that U L < T, given that

the Markov process Q starts in the state 1. The w=m-vector with components
#1(1;), 1<1i<wum, 1s denoted by ¥y(n). It is then clear that

(5) qQ(m) = g y(») , for n >0 .
The vectors ¥(J), 0 < J <n, are recursively given by
(6) v0) =,
£ = w01 - D7 g for 1<j<un.

It is clear that ¥(0) = e¢. Furthermore, by conditioning on the time of the
first of the j failures, given that the system starts with j§ > 1 items,

we obtain by using the Markov property that

»
", X

;(1)-[-» (%) ¢ 7
0

vhich readily yields (6).

by dx - Q-1 , ]
From Formulas (5) and (6), we see that the q(n) may be computed
by the numerical solution of systems of linear equations. We evaluate the
successive vectors ¥(J), J > 1, and stop as soon as a y(J) becomss less
than the prescribed c¢. The integer n* is then given by the index j at
vhich computation halts.
The aumerical solution of the linear equatioms

1)) 29 - u;‘ T3 = 231 ,

is highly stable. 1Ia particular, they are ideally suited for Gauss-Seidel
iterstion. As we shall discuss below, there msy be some merit im using this
procedure, although it is somevhat slower than direct Causs eliminatiom.




3. The Case Where F(‘) is a Delayed PH-distributiom.

In practice, it is unrealistic to assume that the distribution F(°)

has support on (0,=). The duration T will usually exceed some fixed value

a >0 with probability one. It is easy to modify the preceding algorithm to

handle this case also. Let F(*) be of the form

F(x) =0, for x<a,

=1 -aexp [T(x-a)] e, for x> a.

It may be called a delayed PH~distribution.

The quantity q(n) is then given

o
(8) a@ = 1 4@ , for n>0 ,
k=0

where the {4(k) are the quantities, given by Formula (5) . In the particular

model, with which we started this discussion, Formula (8) becomes

n n-k
q(n) = I [:] [l-e-u‘] eF 4y for n >0 .
k=0

The binomial probabilities én) (a) are easily evaluated. In general, the

probabilities ‘t(.n) (t) may be computed by the numerical solution of the simple

differentisl equstions

2400 = P,

(C))
_d_:_ .k(ﬂ)(t) - .uk ‘:n)(t) + "H-l ‘é:i(t) . for 1 1k <n,

o) e u WP,




for t >0, with the initial conditions ¢ (0) = 1, 47 (0) = 0, for
0 <k <n.

We believe that the preceding discussion illustrates the point that for
many problems of practical interest, probabilistic insight may lead to natural
and efficacious algorithms. There is one additional point to vbe made in
conclusion. Our simple example again serves to illustrate that point well,

In practical situations, we often wish to vary parameters of the model

in a systematic manner. It is desirable to "nest" the successive implementa-
tions of the basic algorithm, so that guantities computed in earlier runs

may be reused or efficiently updated.
If, for example, we wish to vary the parameter a in Formula (8), it

suffices to start with the smallest value of a and to integrate the dif-
ferential equations (9) progressively up to the largest desired value of a.
The same sequence {(k), k > 0, is used throughout.

If we wish to modify one or more elements of the matrix T, we can solve
the equations (7) by an iterative method and use the preceding solution
vectors as starting solutions.

These considerations are particularly important whea the actual computa-
tions are carried out in the conversational mode at a remote terminal. The
algorithm then becomes a powerful tool, which may be "interrogated" to
assess the effect of varying the parameters of the model. In complex models,
it is mostly impossible to do this by analytic methods only. The times between
the successive printouts of results are usually a dead loss to the user and
it 1is desirable to keep these as short as possibdble.

Once the algorithmic analysis of one stochastic model has been carried
out, it often provides insights into the analysis of related models. The
preceding discussion may easily be modified to handle the case where system




failure occurs when only r out of the original n items survive. The 4
times between successive failures may also be chosen to have distributioms .
of phase type instead of the (particular) exponential distributions, used in
our discussion. The algorithm then becomes more complex, but the underlying
mathematical ideas remain the same. To identify the structural properties,
useful in the construction of efficient algorithms, is the proper objective

of computational probability.
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