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ABSTRACT

Desirable properti2s of linear multistep methods (LMrI) can be

optimized b, viewing those properties as functional values andt" LIthe

possessing those properties as points in a domain space. This study

conducts tNo such optimizations numerically. The first is a search i

for relatively stable explicit LMM and the second -s a search for

stiffly stable implicit LMM. Near-optimally relatively stable explicit

LMM are found for orders four through nine.

In the second study the concept of A(ca, r)-stabili-y is

introduced for stiffly stable L/N. It recognizes the need for large

regions of absolute stability in the left half plane and the need for

a region of accuracy about the origin defined by the region of relative

stability. An economical means of determining the region of relative

stability is developed and used N Nearly-optimal A(a, r)-stable

implicit LMM are found for orders four through six for a variety of

classes determined by fixed error constants CO.,
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CHAPTER I

PREL I MI N ARI ES

1.1 Introduction

Consider the initial value problem

y'= f(x, y), xs[a, b], y(a) = y(L-)

where if, Yo, and f(x, y) are in Rn and sufficient conditions are

placed on f to ensure a unique solution exists. We seek numerical

methods to solve the problem above mnre accurately and to solve

larger classes of such problems. Especially when n > 1 in the

problem given, it can be roughly classified as stiff or non-stiff.

We investigate both classes and find improved methods for solving

members of each class.

Two basic approaches to a rumerical approximatior of the

solution to (1.1-1) are the linear multistep and Runge-Kutta methods.

Most, if not all, popular approaches have stemmed from one or both

of these methods. We limit the ensuing investigation to linear

multistep methods (LMM).

1.2 Linear Multistep Approach

When it is not possible to solve the continuous system

(1.1-1) exactly we must be content with a discrete model of the

given system. We restrict ourselves to an evenly spaced mesh of j

I02
80 '10 14 234 i
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the interval [a, b]. Denote this mesh by {x0 = a, --- ,

xi = a + ih, --. , xn b} so that we have constant mesh-width

h b-a N

Define y= Y(X) and y, = f(x Yn), and denote our respectiven n -n n n
approximations by yn and yn f(xn  Yn Our discrete model then

n n
consists of {yji =  , --- , N}.

A linear k-step method expresses a linear relationship

between y , and the previous k values of yi and y!. This

linear relationship takes the form

k-l k-i

Yn+l : c 1Yi+h i ' (1.2-I) ii=O i=-l 4in-

for real values of a. and i, where 'jkli + Ik-i[ # 0. Returning

to the continuous model, consider

k-1 k-i
- i + 1i= -i i- i

where a1 = 1. If y(x) is sufficiently differentiable, by a Taylor "

expansion about x for y and yn-i i = -1, 0, 1, --- , k-1, we

get

k (a +hiyn i) = I C.hiy(X (1.2-2) 1
1y- 1 flin-i i=0 1 n xe

l'42• I
ik
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where the constants C. are determined from the coefficients C. and 'si.
I 1

of the LIAM (1.2-i). We have tine following expressions for the C.

k-1

-l 0

k-i k-i
C (-i)at + aV (1.2-3)

1 i=-l

1 C (ji)Pc + (pi!ki~for p =2, 3, '

i=-lp =-

The order of a 14M (1.2-i) is defined to be the smallest

integer p such thaIt C. = 0 for 0 < i < p and C 0. When the
I p+l

order is at least one the LMM is said to be consistent. The following

tconcept of convergence i s cri ti cal for any useful L1M.

Definition: A 1MM is said to be convergent if for any problem

(1.1-1) for which we are guaranteed a unique solution, we have

liin y q(X)
n-'

nh = x-a

for all xcja, b] and for all solutions {y,) of (1.2-1) satisfying

starting conditions y= nih where

lrn .(h) =Y(), i =0, 1, * ,k-l.

h-',O

With the 1MM (1.2-1) we associate two polynomials p(z) and

a(z). Define



i=-I
4

and (1.2-4)

k-1
G(z) = z

i =-l1

where = -1. Then any LV4 (1.2-1) uniquely determines both p and

a and conversely. If p(z) has no roots greater than one in modulus

and if all roots of modulus one are simple, the associated LMM is

said to be zero-stable. We have the following theorem (stated

without proof) froi, Dahlquist [5].

Theorem 1.2-i. A LMM is convergent if and only if it is

consistent and zero-stable.

Formula (1.2-i) provides an explicit means of obtaining

Y when 0 0. The resulting LMM are called predictors. When

j_ 0 the formula defines Yn+l implicitly. In this case iterative
|Il

values

s=i $

are computed via the relationship
A{

y [S+1] = [( s](125
n+l = (n+1 ' ( 25

where is defined by the right-hand side of (1.2-i). As long as 0

is contractive , equpnce

II
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In+l
s=i

will converge to y n+" This iteration, normally used to obtain the

value of yn~ when a- 0, prompts The name correctors for this

class of L101. For any k-step method k starting values are required

to implement the recursive calculation of the yi, i > k. These

values are normally found by some explicit LMM or R-k method.

Denote the class of nth order, m step predictors and

correctors respectively by P(n, m) and C(n, m). For example the

nth order Adams-Moulton formula is a member of C(n, n-i). Similarly

the n order Adams-Bashforth formula is a mewber of p(n, n). We -'

search within p(n, n), n = 4, ..- , 9 for improved methods on
non-sti ff problems and within C(n, n), n = 4, 5, 6 for improved methods

on stiff problems.

1.3 Coefficient Matrix Derivation

Let L be a L1414 of the class C(n, n). As in (1.2-1) we

normally assume a- 1 to eliminate ambiguity between equivalent

LMM. Then from (1.2-3) we have n+l independent equations relating

2n + 1 parameters. This leaves n unspecified (free) parameters ta

determine L. We take these free parameters to be ax V an-V

and BI In (1.2-3) C0 = 0 determines a and C1  - : = 0

yields n x n matrices B and D and an n x (n+l) matrix A such that

T TDAD, l' C n-l' IT B[B0  a n_ 1T. These matrices VA

have the form

. ..............
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1 1 2 --. (n-1) -I

-1 1 22 -. (n-l) 2  2
A =(1.3-i)-

(-I) n -  1 2n  "'" (n-l)f (-1)

1 1 1 -- 1

0 1 2 .0 (n-i)

S2 n-I  . n-l

and D = (d..) is diagonal with d = 1/i. In this section we define
1ii

B recursively, that is, we define the B1 for C(n, n) from informa-

tion concerning the B-1 for C(n-i, n-i). Thereby we have the means

to calcuate the exact rational entries of the n x (nil) matrix

B-DA and so all coefficients of L are explicitly determined by the

n free parameters.

Define the n x n matrix S recursively as follows. Let

~s ]  (1), s2 G I

and = () where j

1= "(n-)! o 1 0 for 2< i < n,

= I for < i < n, an . =o 0 -I for 2 <j < n-,
i,n - - n,j ,j-1

eI

--I
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n n-I n-Iand ai = i j- + (n-i) a.i. for 1 < i < n-l and 2 < < < n-l.

Denote the B'I for C(n, n) by B-  Then we have

n %

-Ii+J r

b, n (il ni) for 2 < i, j < n,

= b' b for2 < j<n,

and

bn  =0 for 2 < i < n.

When computing the exact rational entries of the matrix B DA for
n

higher orders it is necessary to increase the machine precision and

use careful prograning. We have calculated rational entries for

these matrices of coefficients through order 18. In Appendix A vie

list those matrices for orders two through nine.

}I

- :; S



CHAPTE R I I

STABILITY AUALYSIS

2.1 A General Consideration

Many questions concerning the stability of LIMM reduce to

determining whether certain polynomials ha-ve- roots less than one

in modulus. Much effort tot.-ards this end has beer devoted to

transformd polynomials whose roots lie in the open left half-. plane.

We say a polynomial is of the Schur t41ype if it has roots less thar

one in modulus and of the Hurw-itz type if it has all rocts lying in

the open left half plane. Several form.; of neciesscry and suffSIC'ient

conditions exist in the literature for a polyn3oma1 to be Irizn

[23, 26]. Translation to necessary and s iffficient coaditions f'r

Schur polynomials normially leads to intractable criteria. Ine zana-32

to find one exception to this, although in the gieneral case it

provides sufficiency only. Fit-st we establish several preliminary

results.

Lennia 2. 1-1. Let A be an 0+19) x n matrix and ed'e. Also

let the set of points xs:P." satisfying the system oT linear inequalities

Ax > C define an n-dimensional simplex £,: with non-erpty interior.

Let -r be the set of all points gtR' such that Ay < C. Then T S

* erpty.

Proof: Let xO be a paint interior to 1:and suppose there

exists a point qc-T. Consider the line segment ax0 + (l--)ij wherej
1-110 4
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0 < a < 1. This line segment must intersect each of the n+1

hyperplanes defining F since Ax0 > C and Ay0 < C.

Now extend this line segment to a > 1. Since E n is bounded

this extension must intersect at least one of the defining hyperplanes

a second time at a point distinct from the first point of intersec-

tion. Thus we have the line c.x0 + (l-) 0yo contained in one of the

defining hyperplanes of Zn* This contradicts the assumptions that
n1

Ax0 > C and Ayo < C. QED.

Lemma 2.1-2. Let

n
P(z) = z

i=O 1

be a Hurwitz polynomial. Then all i 0, 1, *.. , n have the same

sign.

Proof: If all roots of P have negative real part, then

k 2 2 d 2)
P(z) = On i (z + ri) i1 ((z + Ci  +

where r. > 0 and C. > 0 so that all coefficients i take the sign

of . QED.

Lemma 2.1-3. Consider the mapping

z+ 1

•I '
which maps the unit disk onto the left half plane. For any polynomial

n
p(z) = a.z

i 01

W,-j i
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define a new polynomial

P(z) =(Z-l1 Pfzi

Then for the polynomial transformation T p -~P we have T 2  1

where I is the identity transformation.

Proof:

(p) T(P) = (fl n 2 )

2 n~ p(z) 2 2n 1(p). QED.

Consider the real monic polynomial

n
p(z) = =1

1=0

Let the coefficient !ector of p be a (ae 0 * a n) and -a be

the coefficient vector of (z-l)nlj (z+l)j. Define Sn to be the

n-dimensional simplex determined by -ail j 0, 1, ,n.

th
Theorem 2.1-4. The coefficient vector of any n order real

monic Schur polynomial lies in Sn
n'S

Proof: Let

n
p(z) a az1  a n =

i =0

be a real manic Schur polynomial. Transform the roots of p to

the left half plane via the mapping

OR&R,- k. ... .



z+l1
Z z -

Define the new polynomial

n
P(z) = 0 z

i=O

as in Lemma 2.1-2. Then

n' ~ ~P(z) a az-ni(z+l)i,

i=O

and

11 n-j ,n- , ,

j=0 k=O
o<i-k<j

From this expression denote the coefficient of z in (z-l)n-J(z+l)j

by N* and let Mn = (,n), 0 < i, j < n. We have then a matrix

T ,~*, T
equation Mn(a o , " ' an ' , n) We note that Mn can

also be described by

ioi

m.1 j=0, 1,... n

and 4

=0,1,
m n  :m n  + mn  + , j n 0 , 1, n-I
ji 1, j-1 i+l, j-1 w, "'

j = 1, 2,'.., n.
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.ei; a 2.1-3 provides , 2 1 n+l whe re In+1 is the nl x (,l)

idenLi ty matri x.

Since p z) is a real ii;-mic polynoiiai , the first n k iei;.cThs

in the jth coluin of M~ is Ohe vector c_. described in the dicuss ,n

previous to the stE. >r;nt of thc tleoi m. Thus taking, te iodoict

M2 cor'espor.is to eVaIuatig t, +I h yprpiL-1 s in -+ thPa C1:ff cientn
vectors j 10 1, - n. Since M.,I each of the

coefficie-t vectors a. lies un all bIut one of the n+i I y,;prp an.'s

They therefore describe S
th

Let f1l repres,-it. the kth hyperplan. %Jiere or xcRn the ,th

row of I  x, 1)' defines ff% X1 . W.'. define the r, ositive i
' kth, n -"

side of the hylporpl 1ne to consist of those points xcRn for which

(x) n+l imlies each lies oI the positivE side

of its opposite face. Thus for each E:Rn W' have xcSn if and only

if fk(x) is positive for each k = 1, n.. , r + I.

Notice if 0 is the zero w R we have f > 0 for each

k 1, .. , n + 1, so that continuity of the fk provide S, with a

non-empty interior.

Since p is a Schur polynomial, P(z) is a lurwitz polynomial I £I
and lemma 2.1-2 provides that all are of the same sign. Lemma

2.1-1 excludes the possibility that all are negative. Since

02= ( a, , *-- , an1 ) we have the coefficient vector of p(z)

in S. QED.

This Theorem is in fact necessary and sufficient when n < 2.

We obtain the following useful corollary. !

-A V



Corollary 2. I-S. LetI

11

i=-O

T T0II
P i-)of From t9he proo-F of the Th,:ore'n we see that P(z) is a

HurwiJtz p,,) ynoii.1 Thet res ul t follow-, upon application~ of L

2.1--2. 0Ev1

2.2 St-abi iily icrNon-tiff Lalr

In Chapter I w- mientioned conver~;ence of a LIM1 and its

eqUivalcnicc to consistency arid zero-stabiIi ty. There we were

concerned about what happens to !-he error through successive

calculatlons at a fixed point within the interval of integration as

h -) 0 and n ~~ The definition of convergence requires this error

to go to zero on all problem of a certain class given sufficiently

accurate starting values. Now we concern ourselves with what happens

to the error throjugh Successive calculations usIig a fixed step

length h as we proceed through the interval of integration. Odell

and Liniger [30] refer to this concept as fixed-h stability.I

Definition: A U414 is called fixed-h stable if the

accumulated truncation error in solving tile model equation yI' Xy
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where X is a complex constant, remains bounded as n 4 -for a

non-vanishing range of values of the constant q = h.

Here we come to a disjunction in the stability analyses for

stiff and non-stiff LMM. Non-stiff methods norionally have bounded

regions of fixed-h stability in the q-plane and stiff methods require

those regions to be unbounded. We pursue the analysis for stiff

methods more fully in the next section.

The concepts of absolute stability and relative stability

are more commonly used. We denote the characteristic olynomial

of a LMM by 1i(z, q) = p(z) + qa(z) where p and o are taken from

(1.2-4) and q is defined as in the previous definition from the

model test equation y' = Xy.

Definition: A LMM is absolutely stable at a given point qo

if all roots of rf(z, qo) lie inside the unit circle. The region of

absolute stability for a LMM is the set of all points qo in the

q-plane at which the method is absolutely stable.

Absolute stability forces solution of the model test

equation to have a decreasing global error and is therefore more

restrictive than fixed-h stability.

For any consistent and zero-stable method L, I(z, 0) = p(z)

has a simple root at z = 1. This root is called the principal

root and is denoted by r I . As long as the leading coefficient of a

polynomial is non-zero, its roots are continuous functions of the I
coefficients. Thus we may follow this principal root r I to non-zero

values of q. For q sufficiently near zero we have

Ii
"I 2

7741 -7 1 -i

L; -A
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r eq + O(qk ) (2.1-1)

whenever L is of order k. For an argument establishing this

relationship see Lambert [27, p. 66].

Definition: A LMM is relatively stable at a given point qo

if the root of JI(z, qo) of largest magnitude is the principal root.

The region of relative stability for a LMM is the set of all points

qo in the q-plane for which the method is relatively stable.

There are numerous definitions of relative stability given

in the literature (for example see [27, p. 68]); in light of (2.1-1)

the definition above is very useful. Ile take a closer look at

alternate definitions in Chapter IV. Relative stability limits

the rate of growth of the global error to approximately that of the

solution. We will examine this relative error more closely in

Chapter III.

For methods which are consistent and zero-stable there will

not be regions of absolute stability near the origin in the right

half plane as there are with relative stability, while in the

left half plane the regions of absolute stability are larger than

those of relative stability. These conclusions follow since for q 5-

arbitrarily near the origin in the right half plane we have r, >1.

and for q in the left half plane rI < 1. When solving a problem with

q lying in the left half plane and inside the region of absolute

stability but outside the region of relative stability, the global

error goes to zero but possibly much slower than the solution
5*



16

itself. We illustrate this possibility with an example in Ci-apter IV.

Our results must then be viewed with this is mind.

Throughout the remainder of the section we assume p(z) and

o(z) have no roots in common and that o(z) has no roots of unit

magnitude. To find the boundary of the region of absolute stability

we take the image of the unit circle under the map

z q)z q = - o--

This boundary is not always a simple closed curve. The boundary of

the region of relative stability is found numerically by tracking

the principal root on various rays emanating from the origin. These

notions are considered more carefully in Chapter IV. The following

result is often used, many times casually, and we now state it

fo rmaI I y.

Lemma 2.2-1. The boundary of the regions of absolute and

relative stability are symmetric about the real axis.

Proof: If q and q are complex conjugates we have f(z, q) =

(iZ, ) so that z0 is a root of 1T(z, q) if and only if z is a root0 0
of l(z, n). *us the sets of moduli of the roots of 1f(z, q) and

l(z, q) correspond and also Izl(q)J = l(q)l where zl(q) is the

principal root of If(z, q). Since the stability boundaries are

based on the moduli of the roots of f(z, q) the result follows.

QED.

We now take a closer look at the boundary of the region of

absolute stability and develop several results. We use the following

notati on.

-- es
- - - - Z7-



17

P (O) : Re(p(ei)) = . cos (k-(j+l))O

j=-l -.

j= 1

k-lPi ( O) =Im(p(ei) = i sin (k-(j+l))o ;

k-Ik-1

a r() = Re(o(ei)) = ) 6j cos (k-(j+l))Orj=-I ': 3

and

k-i
a Im((eiO)) : cos (k-(j+l))O.

j=-i i

Then p(elO = r(a) +ip (0) and oIe'0  =r r(e) + iaF (0). We

assume no ambiguity exists between the subscript i and the conmplex

number i. Let a be the angle measured from the negative real

axis clockwise to the line through

p(e"8)
I _ P~ i e )

o(e i O)

and the origin, for 0 < e < I. Since

r 0]- PrCO)or(o) + Pimcyo)
Re ~r r1 *

a(ei 0 r2(O) + ai2(0)

and
A

Ilk
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P-(0)e (o) i (
r r 1

a~eV~ja r(0) +.,i(o)

we can express a as

= cot-I  a(0) i( O i(ofl (2.1-2) i

Lemma 2.2-2. For any convergent LMM there is a deleted

lI neighborhood of zero in which (e) 0.

Proof: We have

k-i
'(O)  = (k-j-)caj cos (k-j-l)O.

Now

k-i
pl(O) = Z (k-j-l)j= p'(1) j=0-j=-I

since the LMM is convergent and therefore has a simple root at
z 1. Since p! is continuous, there is a neighborhood NO of zero

in which p! 0. Thus for 6eN0 , 0 f 0, we have piO) 0 0. QED.

Lemia 2.2-3. For any consistent LMM

ji r =.0. I

I .Jji7777I

PrO)..
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Proof:

k-i

0i 0 -- ( 0 ll k I . s n ( - i)

j=-i

k-i
X (j+i-k)cx. sin (k-j-i )o

=linil k-i
0-0 (k-i-i)a. cos (k-i-i )o

since consistency insures

k-i

QED.

Theorem 2.2-4. For any convergent LNM

lrn ci0  11/2.

6+0

Proof:

lini a, limr cot- r'+-Pa

-1 (p /p.)o + a.
r r ir 1 cti

i-t 00 (pr/Pihi - r=12

since o(i) 0. QED.

v *
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Thus we see the boundary locus of the region of absolute

stability always leaves the origin along the imaginary axis. Indeed

then, if the non-principal roots of p are strictly inside the unit

circle, there will be a non-vanishing interval of absolute stability

to the left of the origin and there will be a non-null region of

absolute stability in the left half plane.

For 0 = 0, I, since p and a are real polynomials, the boundary

locus points will be real. At these values of 0 we can compute the

boundary locus points in general.

Theorem 2.2-5. The boundary locus poiits at 0 = 0, 1 for the

region of absolute stability of any convergent LIMM are the origin

and p(-l)/o(-l), respectively.

Proof: For 0 = 0, convergence provides a simple root of

p(z) at z = 1. Consistency implies p'(1) = o(l), thus o(l) = 0

forces a multiple root of p at z = 1. We conclude the origin is the

boundary locus point at e =0.

For 0 = 11 we have

iei~ prr+ prp (-)a (I)
lin Re - e = li r r Pii r r p(-l)
O-lIT .a(eiO)J O-*R a + o [a(lI)]2 --

r r

QED.

There may be other values of 0 for which the boundary locus

points are real. For those LMM of interest to the investigation

reported in Chapters IV and V we characterize real boundary points

in the theorem following. First we define a desired property.

!
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D finition: A L1MI* is strictly zero-stable if the associated
polynomial p(z) has a :inple root at z = 1 and all re.aining roots

interior to the unit circle.

This definition is clearly stronger than the zero-stability

defined in Chapter I.

Theorem 2.2-6. Let L be a strictly zero-stable L1,1-1 for which

no roots of a(z) have unit magnitude. Then the boundary locus points

of the regiun of absolute stability are real if and only if p(e i ) and

o(e i0 ) lie on the same line through the origin.

Proof: When 0 = 0 the result is clear since both p(l) and

a(l) are real.

In the remainder of the proof we assu.me 0 0 0. The boundary

locus points are real 4

IM= 0  'r r~i 0 =Im a- iO)  ° 2 +i 2  =0 Piar = Pr~i .

ci(e a

Suppose pi(O) = 0. If the boundary locus points are real

then pr()Ci(0) = 0. Since 8 0 and L is strictly zero-stable

pr (e) t 0 so that oi(0) = 0. Then both p(ei ) and a(e ) are real and

lie on the same line through the origin. Conversely, if both p(ei )

and a(e ) are on the same line through the origin and pi(e) =o,

both p(eiO) and o(e i O) are real and the boundary locus point is real.

Suppose ai(o) = 0. If the boundary locus points are real
1

then p6(8)or(o) = 0. Since a () = 0 would yield a root of ait i gr r
with unit magnitude we conclude pi(e) =0. Thus both p(e )and
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a(e i ) are real and lie on the sam_ line through the origin.

Conversely, if both p(ei ) and a(ei ) lie on the same line through

the origin and ui(6) = 0 then oi(e) = 0 and both p(e i ) and o(e i ) are

real resulting in a real boundary locus point.

If both pi(O) and .i(e) are non-zero by the remarks at the

beginning of the proof vwe have the boundary locus point at 8 real if

and only if

Pr(0) (9)
r - r

These are equivalent to p(e ) and o(e iO) lying on the sa::e line

through the origin. QED.

2.3 Stability for Stiff L'UM

When n > 1 in problem (1.1-1) the eigenvalues of the system can

be of vastly different magnitudes within the interval of integration.

When this situation occurs stability constraints on the maximum

stepsize permitted way be dictated throughout the interval by

eigenvalues whose contrib."tion to the solution of the system becomes I
negligible after a time. Often the stability constraint limits the

stepsize so severely that the roundoff errors and cori.utation tim

involved are overw:helming. It would be nice when this occurs to have

a region of absolute stability extending to infinity to allow us to

determine stepsize on the basis of accuracy requirements alone.

This is the essence of the stiff problem and its solution. -j
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We wish then to find LM with infinite regions of absolute
stability in the left half plane without sacrificing accuracy around

the origin. First we review the more important definitions from the

literature characterizing properties of such methods. One such

definition has been provided by Gear [9] and descriL.s stiffly stable

LMM.

Definition: A LMM is stiffly stable if in the region R.

(Req< D) it is absolutely stable and in R2 (D<Re q < u., Ilmqc < ()

it is accurate.

The region of accuracy referred to here is not precisely

defined and therefore this definition is not entirely workable.

Other definitions focus only on the infinite region of absolute

stability and omit any measure for a region of accuracy about the

origin. The following definition provides a generally unobtainable

standard to which methods may be compared. It was introduced by

Dahlquist in 1963.

Definition: A LMM is called A-stable if the region of

absolute stability includes the open left half plane.

We fellow here with a somewhat discouraging result also due

to Dahlquist [6].

Theorem 2.3-1. The order of an A-stable LMM cannot exceed

:tWo.
.4

This result naturally led to less severe definitions.

Widlund [41] introduced the concept of A(c)-stability.

A
4N re E
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Defini ti on: A L is A(a)-stable, as(O, 11/2) if the region of

absolute stability includes the wedge

S {zj IArg(-z)l < a, z 0).

(Hfere Arg z:(-]], H]V zeC).

A method is A(II/2)-stable if it is A(a)-stable for all

ac(O, 11/2) and A(O)-stable if it is A(a)-stable for some(sufficiently

small) c(O, 11/2).

Cryer [4] completed the spectrum of A(a)-stability with his

definition of Ao-stability.

Definition: A LMM is Ao-stable if its region of absolute

stability includes the negative real axis.

Clearly then for systems with real eigenvalues we need
A0-stability and for complex eigen\,alues we need A(a-)-stability where

the a is determined by the eigenvalues of the system we are solving.

Cryer [4] gives an example of a LMN which is A -stable but not A(O)-0
stable. There exists then a series of strict inclusicns for the

stability classes of LMM from A-stability through A0 -stability.

Cryer [4] shows that the Adams-Moulton formulae of order

k > 2 are not Ao-stable but he does show that there exists A -stable
0_ 0

methods of arbitrarily high order. The backward differentiation

formulae implemented by Gear are not stiffly stable for order k > 7.

Our investigation of LMM for use on stiff systems is restricted to

implicit methods as we shall see presently. First a variation of

a result from Rodabaugh [34].

Lemma 2.3.2. Let X.(a), i : -1, -.. , m be continuous

functions of a on the interval (-w, b) with

[



25

lira X(a)= 2

Assume that for some i,

lir A (a) 1 0.
a- -oo

Then for any x > 0 there exists an N such that, if a < N then

m
A A.i(a)rm- = 0 (2.3-1)

i=-I

has a root with absolute value larger than x.

Proof: Let j min {i Ii > 0 and lir A (a) 1 0}. The roots

of (2.3-1) are identical with those of

m
rml + (Ai(a)/Xl(a) 0 (2.3-2)

i =0

provided Al(a) 0 0. Since (2.3-2) is monic, its coefficients

(Xi(a)/X,_l(a)) can be expressed by the symmetric polynomials as

polynomial functions of its roots. However, as a tends to negative

infinity, X,(a)/X_(a) increases without bound so at least one of the

roots is unbounded. QED.

Theorem 2.3-3. Any explicit LMM is not Ao-stable.
Proof: Let 1i(z, q) = p(z) + qa(z) be the characteristic

polynomial of an explicit LMM where p anda are of degree k and k-l,

respectively. The polynomial 1/q 11(z, q) has the same roots as

]l(z, q). We need only consider real q and the coefficient of z

R;i



in il/q 11(z, q) as q approachrs negc,tive in ini ty. The previous

I enMMa guarah 1.es an N such tCa 1 :(1 , q) has rc.o s exCe .C E iit n

mnagnituc o for q < N. QED.

Jeltsch [20 finds that Cryer's [4] ,;ethods are not only AO-

st.,ble but also A(O)-stab ,. Hence L.Ee exists A(0,-.stab., .:.th,.. cI

arbitrarily ni-h order. Gui)t.l [.14] has fcq.Id A(o.)-stable !,ei hods

through ordc. 12 wi th (. excer-ding 70', ho.e,ver, the truncaticun eror

gets c .'rcm.ey I o,. .n th,- hi. gher order dios.

Ar.oter useful def in iioni s p ovided by Od21 and Linger [30].

Defiivi.ion: A LM, 1s A -stal.'e i'f 'iL is absolutely stable ini 1,e
0O

a neiu',borhc.A of infinity on the coiqplex q--sohere. We tAe the!

followin ito or,-in fron Harden [29] wvithout proof. I

Theorem 2.3-4 (Rnuch6). If P(z) ard Q(z) are analytic interior

to a simple cosed Jorc'nn curve C and if they are continucus on C and

IP(z) I < IQ(z) for zcC, then the function F(z) = P(z) + Q(z) has the

same number of zeros interior to C as does Q(z).

The following lemma is based orn Rouch6's Theorem and is usef,.'l

in providing insight into the concept of A -stability. In theCO

remainder of this section let L be an implicit zero-stable LIN with

characteristic polynomial li(z, q) = p(z) + qa(z) and C = {z Izl = I}.

Lemma 2.3-5. Consider L as described above and suppose note

of the roots of a lie on C. Then there exists a real nunbler S such

that for lql > S, ii(z, q) and a(z) have the sane number of zeros

interior to C.

Proof: Let

"A

_A'i7 j~ -- ._-
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Then S is finite and if jqj > S we have jqa(z)J > jp(z)j for zeC.

By Rouch6t s Theorem we know that TI(z, q) and qo(z) have the same

number of zeros interior to C. Since the roots of qa(z) and u(z)

are identical and since the degrees of II and a are the sam, we have

11(z, q) and a(z) with the same number of zeros interior to C. QED.

Now we prove a simple and useful characterization of A -stable

methods.

Theorem 2.3-6. L is A.-stable if and only if all the roots

of a(z) lie inside C.
Proof: Let the degrees of 11 be k and let S. and zi(q),

i = 1, -.. , k be the roots of o(z) and I(z, q), respectively,

where

lim z.(q) = S..

If L is A-stable there is a neighborhood of q = in which

Izi(q) I < 1 so that clearly Si < I, i = , -,, k.

If Isil < 1, i = 1, R. , k then the previous lemma provides -

A-stability immediately. QED.

The result which follows provides a relationship between

Ao-stabilizy and A -stability.

Theorem 2.3-7. If L is Ao-stable and none of the roots of

o(z) lie on C, then L is A-stable.
CiO

'4.- ~ - - 7 777-V. Z



28

3

Proof: Suppose one of the roots of a, say Sj has magnitude

greater than one. The previous lemma provides a real number S with

a root of II(z, qo) outside C for all qo with 1q0 I > S. We therefore

contradict A -stability and we conclude all roots of a lie inside C

and hence L is A -stable. QED.

The last definition we look at from the literature is from

Gupta [13] and combines features of Gear's stiff stability and the
A(c)-stability of Widlund.

Definition: A LMM is said to be A(a, D)-stable, ac(O, R/2)

if the region of absolute stability includes all q with lArg(-q)l < a,

q 10 and all q with Re q < D.

Of all the definitions reviewed above, the only one to define

a region of accuracy about the origin was Gear's stiff stability

definition. As mentioned before the reference to accuracy in that

definition is vague. This has led to different interpretations of I
what is meant by the region of accuracy about the origin for example

see Jeltsch [20, p. 9] and Gupta [15, p. 492]. The motivation for

developing stiffly stable methods was to allow us -o determine

stepsize on the basis of accuracy constraints aoorc. To that end

we do need a description of the infinite region of stability as

provided by the foregoing definitions. However, we cannot overlook

then the parallel need to provide a description of the region of

accuracy with equivalent precision. Absolute stability as mentioned

before provides a measure of accuracy which is too lax in the left

half plane and too rigid in the right half plane. We must be

concerned with digits of precision when performing computations on a I

IL
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digital computer. Actually digits of precision are a measure of

relative error. For these reasons then it seems natural to continue

our concern about relative error with a measure of relative stability

which we include in the definition given below.

Definition: A LMM is said to be A(c, r)-stable if the

method is A(a)-stable with regard to its region of absolute stability

and is relatively stable within the disk of radius r about the

origin.
)

It is this definition which we implement in our search for

stiffly stabie LKM. A method which is A(a, r)-stable will be

relatively robust depending upon the size of a and r. By that we

mean it should give good results on a large variety of problems--both

stiff and non-stiff.

71i U

V
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CHAPTER III

ERROR ANALYSIS

3.1 Introduction

Error in our approximation to the solution of (1.1-1) occurs

because we base our recursive calculations on inaccurate values,

because our recursive model does not accurately represent the problem,

and because our calculations themselves are not always precise. Also,

the recursive nature of our model inherently propagates existing error.

Controlling this propagation of error is the aim of stability

constraints discussed in Chapter II. Any complete and careful

analysis of cuniLlative error must consider at least these sources of

error.

3.2 A Global Bound

Henrici [16, section 5.3-4] investigates this cumulative

error and arrives at the bound given below for the solution of

(1.1-1) by a member of C(p, k). If

I-j a1IhL < 1

we have the global error en satisfying I

lenI < r*[A6k + (xn-a)(kl h + GYh )]exp[(xn-a) Lr*B] (3.1-1)

where the following definitions are used.

30
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k-1 k-i11

L is the Lipschitz constant for the function f, 6 is the maximal

starting v.alue error,

r =sup {Ix I )CO

where

Ii- ii
and

k-I

(r is shown to be finite in Henrici [16., p. 242] for zero-stable

nethods.)

I-hj _J

h isthec~ab] I is a bound for the magnitude

of the roundoff error committed at any step of the integration process,

k
G j IGIs)Ids

0

:k 1. 7__ ~ ~
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where

k-I p-1
G(s) = X tj(-) -P5i(~ )+

and

(j-s)+ max {,i-s},

and

y =max y W
xs[a ,b]

Error bounds generally have the burden of coping with worst case

examples and therefore many times are forced to give outrageously

large bounds on sim-ple problems. This severely damages tZ*heir

practical value.

Consider for example the bound (3.1-1) applied to thle

solution of

Y, AY, Y(O) =1, XC[O, li] (3.1-2)

using the second order backwards difference formula

ynl 4/3 Yn 1/3 Yn + 2/3 hf(x~~~~n1 (3.1-3)

with stepsize h. Then

2
p(z) =-z + 4/3 z - 1/3
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4

so that

1 -3-

For Izi < I we find the Laurent expansion

CO - 1-3 i+1 i

Hence

i= =3/2. .r sup fixI1) sup 3/2.0
1=0=

In general for the method (3.1-3) we see that (3.1-1) reduces to

le < {486 + (x -a)(9klh + 2yh2 )J exp (3.1-4)
en1 - 6-4h L Xn-a I'X-

and is valid as long as hL < 3/2.

In this example we then have the bound as

je < 4 8 6 + 9 ni k l h q + 2 3h ,3_ _ _( .1 5
lenl< 6-4hL exp (3_2-5)

If X, = -100 and h = 0.01 then hL = 1 < 3/2 so that this expression is

valid. We compute this bound on the error after 25 steps and in 1

doing so it is of negligible consequence to omit the positive contri-

butions of starting error and roundoff error. In this case

. - -- =- - 4 "
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33 1ule251 < 25 exp (75) , 9.33 10 when the true solution y(x 25)

.138 10 Clearly the information provided by this bound from a

practical point of view is totally useless. When error bounds behave

in this way we can sometimes get better results from the use of error

estimates [9, p. 14]. However, as with the example given by Gear [9,

p. 16], error estimates can give smaller numbers than the actual error.

From a practical point of view it would be more useful if

the expressions for roundoff error and starting error were

respectively dependent upon machine precision and accuracy of the

starting procedure. The bound (3.1-1) is theoretically satisfying

from the viewpoint that it does approach zero with h. It would be

pleasing to see the effect of stability properties represented in

the bound. In the next section we consider a representation of the

global error which is more useful for certain practical and

theoreti cal considerations.

3.3 An App1oximate Error Representation

As in section 1.2, if we assume our solution y(x) has

sufficient derivatives, the local truncation error can be expressed

as

k-1
L(y(xn1 l), h) (inl + hiy'n_i )

= Cp h I  + O(h( ) (3.3-1)
'4
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for a member of C(p, k) where this notation is taken from Henrici

[16, p. 220]. L, as defined above, may be regardcd as a linear

operator on any differentiable function y(x), and if y possesses

sufficient derivatives its value can be given as the right side of

(3.3-1). Following the investigation of Henrici for arbitrary

operators of the form (3.3-1), others [27, 33] have pointed out that

in all cases

IL(y(xn+i), h)I <---h h Gy, (3.3-2)

where G and Y are defined as in the previous section. G(s), also I

defined in the previous section, is called the influence function.

In those cases where G(s) is of the saire sign throughout the interval

[-1, k-1], we have

L(,(x~l) h) = hp+l  q(P+l)(). (3.3-3)

for F (xn k+l, Xn+i). G(s) does not change sign on [-1, k-i] for

many conmmnly used r.ethods including Adam's formulae and the backwards

difference formulae of Gear with order below six.

We now develop an approximate representation of the global

error which occurs in the solution of y' = A by a member of C(p, k).

Let y(x ) and yn be the true and approximate solution, respectively.

Let the local truncation error and roundoff error occurring in the

calculation of yn be Tn and Rn respectively. Then Tn = L(y(xn), h)

and

Af° ia
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Te, as 'n :.. L2 !' p. 6'7, we assume T: - :a " : N S,-Li
we have

I

Y ~*z'>~---(3.3-5
Ii I

iwhere z i are the rocts of .h:- c.aracter;stic yomial "(z, h)

This results as the solution to the n an-horeot,; constant

coefficient difference equation [27, 8]. The famn in which we

have w:ritten (.3.3-5) ass--s the roots zi are distinct.

Admitiedly, the form of the second trm in (3.3-5) will not

be precisely as represented if Tn~ & Dn+ l is not constant. P.rever,,

the first term keeps the form S-i-en regardless oF the forn. ;. takes.

The first term shcr..s the interplay between the stability properties

of a method and perturbazionS such as oundoff and truncation error

introduced at each step.

{ I
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When flg i'Oo)'em1 such ,s ('i.1..) wi th ' ait,.s of ihX)

i11si :C of absl-c III, sTability 1i, u " S id "o of OP 1 a 1.

s ti iity; -ie -crunctii,, ,r or will approach 2ero ,v. ot r Ip~Cy

as the Lrue sc"u,ion. The c;i culation then i , fiThced tu co, fn,.

until the error co;res within accuracy COttairjt een t ou ,:

actual sollui un i,.y ha'.. lo-S beta salisfactoriiy s:r l!. 1 ,, expense

of this conLinued c,,Iculatior, ofset, aed co!ceiv ;bly couid exeed

the exl,,nse of usii:g a ,ll:r steize to "iHn hX %ihin region

of relative st .hility. This -is why rl at, \e sta li:iy can be

uiportant cven in the left half plane. ExamaplCs -f this were

ob Cained in co,:,ute, runs using 3- q- t 31,cision. Sol 0 ion of

(3.1-2) wit, 100 end X = -l using the method (3) cnd h 0.01't ing erro oea (3 - ) P, d hy arLO.O!
8 i-5

gave rCl tie error of 2.53 • 10 a,d 3.3 1 1espectively afL r

100 steps.

Inside the region of relative stability the second term in

(3.3-5) usually dominates the global error. The )roblem independent

part of the local and global truncation error constants are

Cp+l
C__q and -' 1

( -I !

respectively. If we use sufficient machine precision to insure the

roundoff error is negligible compared to the truncation error, then

in (3.3-5) ' is dominated by the local truncation error

Ct~

HI



S-A 0

T ilis r l-es it arp are n ,  , , th e la l, U r!:, ' . . .., i a" l c')r! .... ,-C"1

trun.-a ti on error & f f r- fro:i i} gi ' tntn, o, , eyh 1r 0). w e

facLor of

CV-1

This obsc:'\'a ion is supporte,' ., ceiG:tr" r';s, F..,in in 3S-Ji',it

iprec s on .- ere ;n the sc 1 Uti c;I of (.3.:.-,) : h Ui -1 usi .q -

vari ty of L!If and stlps ;,es ThO Iti o f !c at o glo!,a ta'I;c .on

error w s n is ten t'y

I Ct-'

within apl.oximtely thre( sis9n fi catnt .ig ts . J t is Iior rtant to

note here that there is an entire sdbc~lss of C(F. k) which have locdl

tuncation error constc nts larger than thimr global truncation error

constants, and conversely. This resIlts since the determination of

I Cp+ and o(1) are independent in the solution of the system of

equations (1.2-3) which defines the members of C(p, k). Evaluation

of the relative merits of different ILMM need to take this into account.

In the investigation reported in Chapter V the term

o(T-l

is used as the measure of accuracy for comparison of LMM. :

-. 1
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CHAPTER IV

PREDICTOR SEARCH

4.1 Statement of and Approach to the Problem

Predictor methods commonly suffer smaller stability regions

and larger truncation error constants than implicit ,nethods [27,

p. 84]. On the other hand, implicit methods suffer the difficulty

of finding the solution to the implicit relation defining the fonard

solution approximation at each step of the integration. The

solution to these problems is normally accomplished by pairing a

predictor with a corrector to form a predictor-corrector (P-C)

algorithm. In the solution of non-stiff problems, if [
{Yi I i = 0, -- o , N) is our discrete model of the solution to

(1.1-1), the predictor is used to compute a first approximation to

forward values yn+l" This predicted value is then used as y[i] in

(1.2-5) to start the recursive evaluation of the sequence

lyn+l's=l

This sequence may be evaluated as far out as desired although

convergence within desired accuracy constraints is usually very

fast. For example the popular code DIFSUB by Gear [10] restricts

s < 4. In the solution of stiff problems, the condition required

for convergence of the corrector iteration,

39
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-51
Ih _..1  - IL < 1

where L is a Lipschitz constant for f(x, y) with respect to y, forces

us to discard corrector iteration in fa'or of a Newton iteration

[27, p. 239]. When Newton's method is applied to (1.2-5) for the

solution y n+l, the restriction on h required for convergence is usually

much more relaxed than that imposed by

But even in stiff problems, predictors are used to provide accurate

initial estimates for the Newton iteration.

If predictors with significantly improved stability

characteristics exist, at least two interesting possibilities arise.

Those possibilities are improved P-C algorithms and codes using

predictors exclusively. In a P-C algorithm as described in the

previous paragraph, unless the corrector iteration is carried out to

convergence, the stability characteristics of the P-C algorithm are

not those of the corrector alone [1]. The fewer the number of

corrector iterations performed, the less heavily the stabilit" of

the P-C algorithm depends on the corrector. Since, as noted above,

in practice few iterations are actually carried out it leads us to

believe that it may be important to use a predictor with as large a

stability region as possible.

The other possibility of using predictors alone for non-stiff

problems is very attractive in all cases and occasionally the use of

I" 22_ ;2 I" 2I I
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explicit methods is necessary. Among the advantages to be gained are

economy, simplicity, and versatility. Economy is realized with

regard to speed of computation, pro ranrid-ig efforts iF. developing

a reliable code, and machine storage. For most non-trivial problems,

by far the most expensive computation performed in finding the model
{y, is that of function evaluations for the derivative approxima-

tions yn+l" Predictor algorithms reduce this to one function evaluation

per step whereas P-C algorithms require from two to four. Elimina-

tion of the corrector iteration and the associated coding greatly

reduces the progranoning effort. It also simplifies considerations

such as stability analysis. For example see La-.bert [27, p. 97] for

a definition of the characteristic polynomial of a P-C method. A

proper stability analysis must examine the roots of the characteristic

polynomial which we see is much more complicated than for a predictor

alone. The reduced coding and storage required of predictor algorithms

render such codes' implementation within the capabilities of smaller

machines, even hand-held calculators when the problem is not large.

Gear [11] gives real-time integration as an example of where

implicit methods cannot be used in the usual sense. Here again the

use of predictors would be natural were it not for the smaller stability

regions of these explicit methods.

It is true that normally predictor methods also have larger

truncation error constants than correctors but this can always be

more than compensated for by using reduced steplength. For example

in comparing the truncation error constants of the Adams-Bashforth

to Adams-floulton methods, the stepsize reduction factor required to

I
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equilibrate the truncation error constants for a given order

increases from 0.447 for second order to 0.671 for ninth order. It

is the smaller stability regions which create the greatest drawback

for the exclusive use of predictors in sciving certain problems

(1.1-1).

To date no comprehensive search has been conducted for more

stable predictors. Those searches existing in the literature have had

limited specific goals, for example see [24, 3]. The purpose of the

investigation reported in this chapter then is to determine how far

the stability regions of predictor methods can be extended. These

methods may find utility by incorporation into P-C algorithms or in a

code which ei~ploys explicit methods exclusively. (A related question,

not investigated here, is whether or not it is the case .hat P-C

algorithms with better stability properties are always the result of

combining separate predictors and correctors, each with good stability

properties. ) '

A guide as to the class of predictors in which we may expect

favorable results is provided by Henrici [16, section 5.2-8]. The

theorem is given here without proof.

Theorem 4.1-1. The order of a zero-stable LMM whose

stepnumber is k cannot exceed k+l when k is odd or k+2 when k is even.

As discussed in Lambert [27, p. 67], those zero-stable

methods of the class P(k+2, k) when k is even have no interval of

absolute stability. We are thus restricted to investigation of

classes P(n, m) where n < m + 1. We choose the class P(n, n) because

of the additional degree of freedom permitted over P(n, n-l) and

- -
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because many codes already in existence have imple-iented the Adams-

Bashforth methods which lie in this class.

We use the relative stability region of a L., as our measure

of stability. We could use absolute stability regions for such a

measure, however this would provide us no knowledge of the behavior

of our approxinate solution to (1.1-1) for q in a neighborhood of

the origin. We define the radius of relative stahility to be the

radius of the largest circle centcred at tLe origin and contained in

.the region of relative stability.

There are several definitions of relative stability existing

in the literature [27, p. 68], and it is important to distinguish

which definition is used when making comparisons of stability regions

from different sources. Even though for srmall q we have the

I relationship (2.1-1) there can be iarge differences for q near zero.

In our investigation we use the definition given in section 2.2 which

is taken from Lanbert [27]. Another approach to defining relative

stability is to compare the magnitude of the roots of the charac-

teristic polynomial to the magnitude of exp (q) rather than to the

magnitude of the principal root. For example, Crane and Klopfenstein

require Ir I < exp (q), s = 1, 2, .-. , k and that roots of magnitude

exp (q) be simple. For comparison, consider the second order backwards

difference formula (3.1-3). This method has characteristic polynomial

l(z, q) = 2/3(q-l)z 2 + 4/3 z - 1/3. For the sake of simplicity, we

restrict our comparison to the interval of relative stability which

is the real values of q for which the method is relatively stable.

Lambert's and Crane and Klopfenstein's definition yield the values

S1
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(-1/2, 3/2) U (3/2, 1 and (a, 0], respectively, where a ' -0.75262.

Other method.Ls tested indicate possibly for Crane and Klopfenstein's

definition the radius of the co~iplex region of relative stability is

always zero. For example this is the case when the boundary of the

region of absolute stability intersect: . imaginary axis only at the

origin. This follows since for q imagina: , lexp (q) I = I, and the

condition of relative and absolute stability coincide. Also if y n and

Y are the true and computed solutions at a point xn, then the latter

definition restrains !y I = I'ni - c, for c > 0. The magnitude of c

nnand not its sign determine the acceptability of Yn For these

reasons we find the latter definition unsuitable. Lambert's definition

ties the growth of the relative error to the size of the principal T

root, however, for q not large and especially for higher order

methods,(2.i-l) indicates this is not a lax requirement. Soe.2

definitions of relative stability which compare magnitudes of the

roots of the characteristic polynomial to that of the principal root

do not require strict inequality, see for example Ralston [33, p. 177].

However, strict inequality more easily lends itself to computer

implementation.

We need then to find a means of evaluating the radius of

relative stability defined above. An expression for the boundary of

the region of relative stability cannot be found as with absolute

stability. It is necessary to actually find the roots of the

characteristic polynomial. We define a function introduced by

Rodabaugh [34] and called the critical difference function. Given j
a LMM with characteristic polynomial f1(z, q), we define

_ _ _ _ _-I
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kC(q) : Iz1 (q)j -max {Izs(q)j S=2

where zS(q), S = 1, 2, .. , k are the roots of 11(z, q) and zl(q)

is the principal root. In our search for stable predictors we

require C(O) > 0, or strict zero-stability. We are thus guaranteed

a neighborhood of stability about the origin by the continuity of

the critical difference function.

To determine the radius of relative stability we need then

to locate the zero of C(q) nearest the orgin. The ralius will be

equal to the modulus of this zero.

We do this irumerically by taking a finite set of rays through

the origin, finding tbe zero of C(q) nearest the origin on each ray

in this set, and approximating the radius as the smallest modulus

possessed by the resulting zeros. However, to locate the zero of C(q)

nearest the origin on a given ray we must be able to evaluate C(q)

and this entails tracking the principal root.

To track the principal root along a ray, q is given a fixed

argument and its modulus is increirented successively by a small

amount. We know z1 (0) = 1 and if qn and qn1 are successively

incremented values of q on a given ray, then z (qn~l) is assigned to

be the root of ll(zl qn+l) nearest z (qn). Thus starting at the

origin C(q) is evaluated at the successive increments of q as we

track the principal root. The first increment at which C(q) is

negative identifies an interval which contains the first zero of

C(q). A bisection routine is then used to more accurately identify

the zero. It is conceivable that the first zero of C(q) could be I

I :.:N
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missed in this way, however, it would be necessary for it to be

missed on several rays in order for the output value of the radius

to be severely affected. This is highly unlikely but we should remain

aware of the possibility.

Evaluation of the radius of relative stability can be costly

and rather complex. It is possible that much research into relative

stability characteristics possessed by LM has been inhibited by

these factors. In addition, these factors may have partially

motivated the alternative definitions which compar. the roots of

Bl(z, q) to exp (q) rather than tc the principal root. There are

several considc-raticns v.hich greatly redice the cost factor involved.

These considerations are based on properties of the

characteristic polynomial i(z, q) and the resulting boundary of

consistent zero-stable methods. First of all, it suffices to check

for zeros of C(q) w-ben Im (q) > 0, since Leim.:a 2.2-1 provides that the

boundary of the region of relative stability is symmetric about the

real axis. We also economize by restricting Re (q) < 0 since in practice

it is there that we find the most severe restrictions on the radius.

Normally we find it sufficient to determine zeros of the function C(q)

on 15 rays in the second quadrant, however, occasionally for verifi-

cation we increase this number and extend our'investigation nto the
i

first quadrant. Since we search only for the radius, we terminate

our search for a zero of C(q) on a given ray once we have incremented

the modulus of q beyond the modulus of any previously determined

zero. Thus due to the shape of a typical boundary it is less time

consuming to assign the first ray an argument of II and proceed i :

AI
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backwards to an argument of E12 rather than conversely. Finally, based

on (2.1-1) ve expect lxp (q) zI(q) for q small. A computer analysis

of this approximation has shown this to be of practical value as well.

For a large number of methods tested through ninth o:der, when

JqI < 0.25 the different jexp (q) - zI (q)w was always at most on the

order of 10-2. In practice th:!n we use the alternate means of

identifying the principal root as that root of ,(z, q) nearest exp (q),

for Jqj < 0.25. !n this ran:;e of nz'duli much larger increments are

permitted. This feature alodne hoas --esulted in a cost-savings of

approximately 80'. The savings here is greater when the radius of the

mrthod is smll, for example in hiher orders. It is difficult to

assess th= reduction in the cost of this investigatior affordcd by the

combination of factors mentioned above, however, it is clear that they

have vastly increased its feasibility from the cost perspective.

The search for stable predictors within t.e class P(n, n)

is posed as an optimization problem. In order to do this we isolate a

specific real quantity which is to be minimized. That quantity is

the negative of the radius of relative stability. Clearly there are

limitations incurred by selecting a specific objective such as we have.

For example in the nature of the resulting coefficients and error j
constants of the optimal method. However, our results prove valid as

inputs to decision processes concerning further development of numerical

methods for approximating the solution of problems (1.1-1), and as

"- numerical methods in their own right for some classes of problems.
'4-
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Two packaged codes were incorporated into the progr:n

I written to locate stable predictors. The optimization code used

(ZCXPWLD) is based on Fletchers [8] version of Powell's [32] penalty

function. It uses Poell's unconstrained optimization algorithm [31]

to determine a local minimum through a sequence of unconstrained

minimization problems. For the most part it was not necessary to

use constraints.

In those cases 'e gained convergence more rapidly and the

algorithin reduced to that described in [31]. Another code (ZCPOLY)

employed in our search finds the zeros of a complex polyno.ial. This

code is in the International '11-ahentical and Statistical Libraries

(011). It uses tine Jetkins-Trz:ub Thr-e ;tae variable shifl

iteration described in [21] and [22]. The remainder of the program

was developed by this writer.

The domai;i of our object function for the class P(n, n) is

P- This results from consideration of the system of equations

(1.2-3) which deternines the class P(n, n) as discussed in section

1.3. The only modification, to include nitation, of that discussion

applicable here is that for predictors 0l 0. The flow of the program

consists of taking a point (a, " a" an-) in Rn and determining

the coefficients of the correspondi.ig LM?1 according to the procedures

outlined in section 1.3. We then evaluate C(0). If C(O) < 0 the

object function is assigned a zero value. Othen.ise the radius is

evaluated as previously described and the object function is assigned
I

the negative of the radius. Based on this assigned function value,
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the optimization algorithm calculates a new domain point in

We then repeat this cycle until functional values converge within a

prescribed tolerance. This optimization code perfor: "ell, usually

converging within 100 function evaluations.

Essential for convergence is a starting point (method) with

a positive radius. Good starting points are readily available from

the literature, for example the Adams-Bashforth rnthods. ile I:;ay gain

additional s'Lrting values from consideration of a theorem from

Chapter II. If we factor p(z) (z-l)ps(z), then those polynomials

a p(z) for which pS(z) is a Schur polyno~mial are associated w.rith LIN. o

@ : positive radius. Theorem 2.1-4 provides a characteizatio1 of Lh

Ssmal'sest convex set in Rn containing the coefficients of all Schur

polynomials of degree n. For example w;'e compute this characterizaticn

explicitly for information regarding starting value- for the class

P(5, 5). W-1e have a-: -1 and

4a0 = - i
0 i =1

so that p(z) = (z-1) pS(z), where

4 (4 1
PS- i i=

We apply Theorem 2.1-4 to the polynomial pS(z).

-I-
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The matrix 144 is given by

2-4 2 0 4-24

1M4 6 0 -2 0 6 (4..-I)

-4-2 02
, 1 1 1l1 li

I I

and

(a., aI, a2  a3 ,a)

3 2 , a 4 1
The necessary condition in the Theorem is satisfied by requiring all

elements of the procluct 1.14 (a., --- , ad' to be positive. This leaves

us with the folic.ai.g system of inequalities.

1-a 1 -a > 0
1 3

2- a a2 - 2a4 > 0
3 - 2 -t 3 

+ 24 > 0 (4.1-2)

:'2 + a: + - 2 2c4 > 0

+ i + 2a2 + + 4 > 0.

4.2 Results and Comarisons

The results from the investigation described in the previous

section are given here for orders four through nine. Since the Adam-

SBashforth (A-B) n thods are used nearly exclusively in popular codes

employing explicit LI-, and since the K-th order A-B method is a

member of P(K, K), we choose these methods as a standard for

i
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comparison. The k order A-B method is characterized simply by

k-1  k-"Z -- Z ,

so it is the nxmber of P(!', k) where all the parameters designated

as free in section 1.3 have been set to zero. Classically, this

has been regarded as a desirable property, and certainly one not

possessed by the me,.bers of P(k, k) in general. It was thought

necessary, for a general kt order method, to store 2k values between

integration steps and only k+l for the A-B methods. For exdmple this

notion prevailed in limiting the search of Dill and Gear [7] for

stiffly stable methods to this type of'Ininiimum storage methods."

However, Skeel [38] found that for P-C methods where a' order

corrector is paired with a specific kth order predictor it is necessary

to store at most k+i values, regardless of zero coefficients. If we

apply these findings to codes elploying predictors alone we see that

any k-step ethod needs at most k values stored between integrationa

steps. This removes storage economy as a relevant comparison.

As indicated in Table 4.2-1, we have found predictors with

stability radii roughly three times that of the A-B method of

rorresponding order. Another valuable perspective is gained by

noting the radius of any order A-B methods is roughly matched by

our near-optimal method of two orders higher. Normally an increase

in order means more accuracy at the expense of computation time

induced by the smaller stepsize iequired of reduced higher order

stability regions. As illustrated later in this section, we can leave

1;
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the stepsize the same and change from an A-B method to a near- 52

optimal method of two orders higher.

Table 4.2-1.

Adams-Bashforth Near-OptimalOrder Radi us Cl)I Cpl /am_- adi us C C 1/ (I)

4 0.2146 0.3486 0.4706 0.3856 0.7711

5 0.1266 0.3297 0.3470 0.3666 1.3609

6 0.0731 0.3156 0.2395 0.3496 7.4542

7 0.0412 0.3042 0.1595 0.3259 2.1067

8 0.0226 0.2947 0.0745 0.3056 1.4813

9 0.0121 0.2870 0.0405 0.2957 2.4933

We placed no control on the expression for local or global

truncation error constants. However, the local truncation error

constant remained approximately the same as that for the A-B methods.

The constant related to global truncation error, C /cF(l), did
p +1

increase moderately. This is a t. ult of the observation that as we

approach optimally stable methods, a root of a(z) goes to 1. It also

appears there is no appreciable gain in stability when the constant

p1/a(l) is increased beyond a certain point. As shown by example

later in this section, the increase of this constant for these

near-optimal methods is not so severe as to damage their utility.

Another study addressing the question of how far these stability

regions can be extended for fixed error constants would be of interest.

1-4
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Properties of these near-optimal predictors are given in

Table 4.2-1. Rational coefficients for these methods are given in
Appendix B. Note for A-G Methods, c(l) = 1 so that C /(l) = C

p+l P+l
To illustrate the effectiveness of the near-optimal stability

properties given in Table 4.2-1 and the necessity to measure relative

stability we solve two example problems in 35--digit precision with

A-B methods and with the near-optimal methods. The first problem

considered is

y' =-16y, y(o) 1 , x [O, 3].

We use the A.-B 5th order method on the 7th order near-optimal n'lethod,

both with a stepsize of h = 0.01. Thus we have hX = 0.16 which is

inside both methods' region of absolute stability. However it is

well outside the A-B 5th order relative stability region and near

the boundary of relative stability for the 7th order near-optimal

method. This problem gives us an example of what can happen when we T1

forget about relative stability in the left half plane. If we had

solved this problem with the A-B 5th order method and desired to

follow the solution to this problem (possibly a component of a larger

system) until the solution fell below 10- 0 for example, we would find

by continuing the calculation it is necessary to continue to step 825.

Whereas in fact, and as detected by the relatively stable 7th order

near-optimal method, we could terminate calculation after step 150.

in this case and others like it, ignoring the relat-ive stability

A characteristics of a method can be a very costly choice. The

relative error for the A-B solution in Table 4.2-2 after 300 steps

777



I
~54

is 1.6000Q+13 and for the near-optimal method is 5.3610Q-03. No e

that the A-B solution is tending to zero, which evidences the

methods' absolute stability at h), = -0.16, but not niearly so fast

as the solution itself. In fact it tends to zero so slowly that the

calculated solution values are essentially -; eaningless.

Table 4.2-2.

Step True A-B 5th Order 7th Order Near-Optimal
No. Solution Calculated Actual Error Calculated Actual Frror

0 O.IO00QI.OI O. iOOOQ+Ol 0.0 O.I00Q+0 0.0

50 0.3355Q-03 0.3357Q-03 -0.1988Q-06 0.3354Q-03 0.6280Q-07

100 0.1125Q-06 O.3001Q-0G -0.1875Q-06 0.1125Q-06 0.8515Q-10

150 0.3775Q-10 0.1108Q-06 -0.1108Q-06 0.3769Q-10 0.6116Q-13

200 0.1266Q-13 0.6541Q-07 -0.6541Q-07 0.1263Q-13 0.3401Q-16

250 0.4248Q-17 0.3862Q-07 -0.3862Q-07 0.4231Q-17 0.1686Q-19

300 0.1425Q-20 0.2280Q-07 -0.2280Q-07 0.1418Q-20 0.7640Q-23

The second example is taken to show simply that indeed there

are values of h0A outside the A-B methods' stability region but inside

the near-optimal ethods' stability region. 'Besides highlighting

the difference in the stability regions this example provides credence

in the method used to evaluate stability. The problem used is

= -Y, Y(0)= I, xc[O, 10].

It is solved by the 7th order A-B method and the 7th order near-

optimal method given in Table 4.2-.. A stepsize of h = 0.1 was used

IA
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in both solutions resultinig in hX -0.1 %which, according to the

table, is outside the A-B stability region but inside the near

optimal stability region. The results are given~ below in Table 4.3-3.

Table 4.2-3.

Step True ____A-B 7th Order 7th OrderIkar-COrtinial
No. Sol uti on Calculated Actual Error Calculated_ Actual Error

0 O.lOOOQ+Oi! 0.l000Q+0l 0.0 O.lOOOQr.Ol 0.0

25 O.8208Q..Ol 0.8208Q-01 0.5137Q-07 0.8208Q-01 0.4764Q-07

50 0.6738Q-02 0.6788Q-02 -0.4977Q-04 0.6738Q-.02 0.1320Q-07

75 0.5531Q-03 -0.5459Q-01 0.5514Q-01 0.5531Q-03 0.1936Q-08

100 0.454-0Q-04 0.6109Q+02 -0.6109Q-02 0.4540Q-04 0.2304Q-09

We see clearly that the A-B method is unstable for this problem.

Being able to increase the order by two without reducing theI stepsize more than offsets the larger error constants possessed by

the near-optimal methods. This can be done as long as we are inside

the stability region and the stepsize does not exceed a certain size.

For example, the part of the error dependent upon method and

stepsize for the 7th order A-B method is 0.3042h7 and for the 9th

order near-optimal method is 2.4933h . Thus for h < 0.3493 the 9th

order near-optimal method is more accurate than the 7th order A-B

method. We compute these limiting values of h for all such

comparisonsin Table 4.2-4 below.

N~M MM-~.~*L!f
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Table 4.2-4.

A-B Near-Optimal Limi ti ng
Order Order h- Val ue

4 6 0.2163

5 7 0.3956

6 8 0.4616
7 9 0. 03493

We note all these limiting values of h are well outside

normal stepsize ranges and that for h less than Lhese values,

increased accuracy will be realized by the higher order near-optimal

methods. For example, in comparing the 6th order A-B method with the

8th order near-optimal method, the part of the error dependent upon

stepsize and error constant for h 0.1 is 0.3156Q-07 and 0 .148Q-08,

respectively.

I
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CHAPTER V

STIFFLY STABLE CORRECTOR SEARCH

5.1 Statement of and Arproach to the Problem

In the past fifteen years much research has been devoted to

the development of numerical methods for obtaining solutions to

problemis (1.1-1) of the class referred to ao stiff problems. These

problems and the difficulties they engender were described in

section 2.1. 'Most popular codes which employ LMM for the solution of

stiff problems depend exclusively on the backwards difference formu-ae

(BDF) introduced by Gear. These methods suffer large regions of

instability in the left half plane and are not A0-stabie for orders

greater than six. This suggests much improvewent is possible.

As mentioned in Chapter II, Grigorieff and Scholl [12] and

Kong [25] have given constructive proofs which show the existence of

A(a)-stable methods of arbitrarily high order with a arbitrarily close

to 11/2. However, searches for methods successful in the solution of

stiff problems have made little progress. Kong [25] performied a

numerical optimization on a for fixed values of the error constant

although these methods have little practical value because of their

extremely small regions of accuracy about the origin. In a series of

papers [40, 15, 13], Gupta and Wallace found methods with improved

values for by describing L.4 in terms of local polynomial approxi-

mations. The methods resulting from their investigations have

larger error constants which, for many of their methods, discount

57
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the practical value they might othenise have. Dill and Gear [7]

tried a computer-aided trial and error approach with no appreciable

results. None of these investigations have resulted in methods i*hich

perform significantly better than the BDF.

We see from these reports there are several properties of LV,!M

which appear decisive in determining the performance of a LI,,M, in the

solution of a stiff problem. To conduct a search for optimal methods

we need to isolate these properties, determine a useful measure for

each property, and define our object function in terms of these

measures. The region of absolute stabiliT.y is of prime interest

because cf the need to maintain stability for the components resulting

from the eigenvalues with negative real part and large magnitude. The

angle c is a measure of the absolute stability region which is widely

used. It is a good indicator of the number of problems on which the

L101 may be used. It is also a natural mesure based on implementatioi.

of LMM in that stepsize is the factor which leads to difficulties in

the solution of stiff problems with LMM possessing finite regions of

stability. A changP in stepsize moves a fixed eigenvalue radically

toward or away from the origin. The angle o indicates whether such

radial movem-nent may intersect regions of instability for a given

ei genval ue.

The region of accuracy about the origin is important because

the components of the solution resulting from eigenvalues near the

origin are dominant in the solution and their accuracy must be of

concern. A natural measure for this region is the radius of relative

stability. It seems clear that any measure for this region must admit

-' !
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the origin as an interior point unless we preclude problems with

eigenvalues of positive real part. Also, as we noted with the problem

solution given in Table 4.2-2, a knowledge of the relative stability

characteristics is essential before we attach meaning to the

numL-rical solution, even for eigenvalues .ith negative real part.

Finally the error term is a decisive property since as we see in these

previous investigations, it can l)ecome prohibitively large.

These considerations led to the definition of AC a, r) stability

given in section 2.3. It seems of interest tden to know how far a

and r can be extended for a fixed value of the error constant. 1;e

report the results of such an investigation in this chapter and find

mezhods nearly optimal with regard to these desired properties.

Further, in comparison we find these ne r-optimal methods perform

successfully as we vou'id expect from the stability and error measure-

ments applied.

W choose the class C(n, n) for our searcni of optimal methodIs.

Our reasoning for this choice is similar to that u-ed in Chapter IV

when we chose the class P(n, n) for our predictor search. Theorem

4.1-1 limits our investigation to classes C(n, m) where n <m + 1.

Other investigations, such as those previo'isqy mentioned were

conducted in C(n, n) and the currently popular BDF also lie in this

class. These methods provide good comparisons for our results. In

addition, restricting our search to C(n, n-l) seems to be an unrewarding

handicap. We did make several optimization runs w'thin the class

C(4, 5) with no significant improvement over results we obtained from

the class C(4, 4). Upon consideration of these factors we conclude

i
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C(n, n) is the better class for our search. Further, we search

for A(a)-stable methods and since then A -sability is necessary, by0
virtue of theorem 2.3-7 A-stability is also necesary provided we

allow no roots of (z) to have unit magnitude. Applying the

characterization of A -stable methods from theorem 2.3-6, we consider

only the subclass of C(n, n) for which all roots of u(z) are of less

than unit magnitude.

The corrector search is posed as an optimization problem

similar to that of .he predictor search in Chapter TV. The prooram

we use is asically the sae with five notable xceptiohs. First of

all, in this problem wie have twio desired proerties, o and r, and

V our object function for the onpi!'zition is def'.ied as a linear
combination of these tw.,o properties. Th3 second difference in the

two progrium is sizeable and derives from the need to evaluate a.

The remaining changes we refer to are those necessary for fixing the

error constant, switching to correctors, and for limiting our search

to A -stable methods.
CO

Defining the object function as a linear combination of and

r increases the scope of the optimizazion problem since then our

interest extends to the effect of taking different linear combinations.

i: We find an indicated relationship between the values of c( and r

corresponding to maximal values of these different linear combinations.

The two properties are inversely related but not linearly so. For
iA

examnple, the following relationships are indicated to exist witiin

C4) 4).

~!
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radius of relative stability

Figure 5.1-1. a vs. r.

The three curves result from fixing the error constant,

C.+ 1/o(1), at the values given adjacent to the curve:;. Notice the

curves seem to approach the limiting a-value of Hi/2 for larger values
ri of the radius as the error constraint is relaxed. This leazds one

to suspect these curves, corresponding to valu~es of Cp/a(l) in

(0, ), fill in the area under the line a H .1/2 and to the left of
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the line r = rO, where r0 is the laroest, radius of any method in the

class C(n, n). An estimate for the value of r 0 is provided by the

work of Thompson and Rodabaugh [39], where they report candidates for

r 0 values for the classes C(n, n-l), 4 < n < 9. They obtainted these

values by a numerical optimization with no constraint on the error

constant. We did not investigate thoroughly for all orders and

error constants the portion of the curve defined by linear co,.binations

in which the radius was weighted much more than alpha. Tle methods

in this portion of the curve are expensive to find and of little value

in the solution of stiff prable.s bo'cause of their poor absolute

stability properties. Kong [25] coisidered only absolute stability,

and therefore hi, rvsults !efine the upper extc 1 7t of the curve on t!.Z*_,

alpha axis. The optimiz.1tion runs for these methods are inexpensive,

however, they also are of little value in the solution of stiff or

non-stiff problems because of their poor reldtive stability properties.

For orders greater than four we concentrate our effort in the region

about and just to the left of the point where the curve starts

dropping off most rapidly. This region of tie curve yields methods

which pair values of a and r in a way least costly to either property.

The second change is that necessary lfor evaluating the angle

O of A(ci) stability. We use the stability function

q(z) p(z)

and calculate the boundary of the region of absolute stability as the

image of the unit circle z = e at discrete points On in the

interval [0, Ill. As reviewed in Chapter IV, for real polynomials

--. 4
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Alpha is taken as the ai'ctarngent of the ne-altive of t~jiS la r.-st

ra tio. It is important that the coefficients cf o anid c are

associated as precisely as possible to a n'e!:ber of C(rn, n). 1.,e -FTUlt

when poor precision w.,as used that the,,I- resulting lo,:js calculated w..as

a distortion of the locus we intended to investigate. This was

especially truie for v~ near the origin where occasionally the loci

approached the origin along the real axis instead of along -the

imaginary axis. Within CQn, ni) for exaw-pe, Theore.r, 2.2-4 quarantees

this cannot happen. This distortion resulted in aeaningless values

fo r a. The use of 16-digit precision in the coefficients representin(!



the inenbers of CQn, n) %we investigated el IMnate this problen. Th e

routine described here to evaluate ot is very fast and its cost is a

relatively m~inor part of tie optimization.

The next change ..e discuss is that required to restrict our

investigation to the subclass of CQn, n) corresponding to a fixed

error constant Cn+bC I) = E* The relationsh ip

n-i n-i

derived from requiring C1  0 in the systemn (1.2-3), coupled with

the requirent C =E,7 yi el ds an expression for S_ explicitly i r

termiis of a 1, ** en-I an.! E 0'For example if 1. = 3. we cet

0*

As expected, this leaves one fewer free paraiL..eters than ind-Scated ir.

the discussion of section 1.3. The domain of our object function for

the class CQn, n) with fixed error constant is then R'~', the sarie

as for the class P(n, n) with a floating error constant.

The last two changes referred to earlier were those required

for switching to corr-ectors and insuring A -stability. Working wzith

correctors involves inclusion of S in calculatios such as

determining the coefficients of the LM~~ and in defining the

characteristic polynomial. A.0-stability is determined simply by

checking the magnitude of the roots of a. The optimizer is constrained

away from points in the domain with roots of ogreater than one by use

ip R_ _---
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of the penalty function described in [8]. The use of this const,aint

works very effectively in maintaining A.-stability.

As in section 4.1, to guarantee a positive radius of

relative stability and hence zer.o-stability also, we consider only

those methods for which p(z) = (z-l)ps(Z) where ps(z) is a Schur

polynomial. Since the coefficients of ci(z) are determined by

aI* a and EO, the requirement of A -stability can be used 2

to further refine the reoion of interest for our investigation. As

an example we cxomine these conditions for the class C(3, 3) with

fixed errcr constant EO. The conditions insuring pS to be Schur which

follow are gained fom an application of Theorem 2.1-4.

1 -a >0

1 -a2 > 0 (5.1-?)

1+ a1 + 2a2 > 0

Using the corollary 2.1-5 we see necessity for the polynomial o(z)

to be Schur is similarly provided by all elements of the product

T
vector 13(2, 1 ' 3 1 being of the same sign. Using the

relationships between the a. and 63i developed in section 1.3 and

given in (5.1-1) we express the elements of the produc'

M3( 2, l, (3 0 l)T in terms of the ai and EO . Since two of these

elemc. s are the same as two of the expressions in (5.1-2) required

positive for PS to be Schur, all elements of the product vector must

be positive. The resulting conditions for A-stability are given in
(5.1-3). The first two of these conditions supplement the conditions

for zero-stability given in (5.1-2).

MII
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- (12E 0 + 1) - 12E 0a I  (24E 0 -1) a2 > 0

1 - 2 o1  - a2 > 0
2 (5.1-3)

1 -Q2>0

1 + a1I +2a2 >0.

The first inequality of (5.1-3) is the only expression involving EO.

This class of methods will always have a negative error constant since

when E0 > 0 the first and third inequalities in the presence of the

fourth are incompatible. In general, since is the only parameter

introducing terms involving E0 since the coefficients of _I in

each of the expressions for _i " ' -I respec.ively define

the first column .- the matrix Mnfrom the proof of theorem 2.1-4, and

since M2n 2In+l we will have the error constant E0 appearing in only

one of the inequalities such as given in (5.1-3). We have not shown

in general that E0 must be negative. However, as in (5.1-I), equeting

the expression for Cp+ 1 to E0 ' o(I) yields

k-1
-= a0 + a a a. - FO(1) (5. -4)iil

in general for the class C(p, k). This makes it clear that as E0  -

the inequality P-l approaches the inequality a(l) > 0, which is

already included from both the zero-stability and A -stability

conditions. Thus as we would expect, for large negative error we

gain a larger region of interest. This leads one to suspect, and

from (5.1-2) and (5.1-3) it can be seen for C(3, 3), that if a given

set of parameters cI, " a" 'n- determine an A -stable zero-stable I

1 -- CO
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method for any error constant E' < E However we have found counter

examples to this conjecture in the general case.

5.2 Results and Comparisons

The results of the investi(jation described in section 1 are

given here for orders four through six. The properties of the second

order trapezoidal rule and the third order BDF suggest little or no

improvement possible below fourth order. Since the BDF are members of

C(n, n) and are used exclusively in popular stiff codes, we use them

for comparison. We choose a selection of our near-optimal methods

with error constants C 4 /1 ,(l) of -0.2 and -0.5 for fourth order,

-0.4 and -0.8 for fifth order, and -0.9 for sixth order. Their

stability properties are outlined in Table 5.2-1.

Table 5.2-1. Stability Properties of Ilear--Optimal Stiff Methods.

Order Alpha Radius C +i/(I)

4 1.481 0.192 -0.2C0
1.414 0.471
1.377* 0.650

4 1.535 0.142 -0.500
1.511 0.294
1.445 0.514

5* 1.431* 0.092 -0.400
1.338 0.359
1.259 0.497

5 1.485 0.077 -0.800
1.463 0.155
1.394 0.463

6 1.321* 0.121 -0.900
1.284 0.299
1.065 0.435

*Indicates use in test runs referred to later in this
section.



68

For comparison we give corresponding information for the BDF

in Table 5.2-2 below.

Table 5.2-2. Stability Properties of the BDF

Order Alpha Radius Cp+l/G(1

4 1.280 0.484 -0.200

5 0.905 0.302 -0.167

6 0.311 0.130 -0.143

The kth order BDF has an error constant of l/(k+l). The

severity of this restriciion on the error constant no doubt causes

the loss of A0-stability for the higher order fDF. Notice for each

order, the near-optimal m.2thods have considerably g,-eater region-; of

relative and absolute stability. The effect of the larger error

constants is nullified ,y the capability to increase the order with no

accompanying restriction on alpha. For e:ainple, if we compare the

near-optimal sixth order A(I.284, 0.299)-stable method from Table 5.2-1

with the fourth order BDF, it is the case that the problem independent

part of the error term for the near-optimal method will be less than

that of the BDF for stepsizes less than 0.471. This particular

compar'son does not involve a sacrifice in the permissible values of

alpha, and in other similar comparisons we could realize again in the

permissible values of alpha.

We see then an increase in the error constant accompanying

methods with higher values of alpha is a negative aspect that can be

.4.
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controlled. However, an inferior vdlue of alpha, such as possessed by

tile fifth and sixth order BDF, severely disables a method. We

illustrate this fact by solviing two systems of the form (/'(t) = Ay(t)

where A is a constant 2 x 2 complex matrix and t[0, 5]. In both

problems the initial values are determined by setting both constants

in the general solution to 1.0. Denote the problems P1 and P2 and let

them be defined respectively by the matrices Al and A2 where

Al~ =[ 1  100 ]0 -1(0 + 3731j

(5.2-1)
1  100

A2 h -100 + 2i I

We use the constant stepsize of h = 0.005 throughout the interval

[0, 5]. The calculated values are given in Appendix F. The near-

optimal methods used are identif ed by an astaris, in Table 5.2-1.

We summarize the results of these computitions in Table 5.2-3 below.

All calculations were done in 35-digit precision.

Table 5.2-3. Summary of Tests on Problems P1 and P2.

Order of
Method Method Used Problem Res ul ts

4 A(1.377, 0.650)--Stable P1 Stable
4 BCF P1 Uns table
5 A(1.431, 0.092)-Stable P2 Stable
5 B.DF P2 Unstable
6 A(1.321, 0.121)-Stable P2 Stable
6 BDF P2 Unstable V
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Both P1 and B2 are complicated by the problem of stiffness.

Notice thle near-optimal sixth order i,,ethod solved the prohlem P2

accurately whereas the fi Fth order BDF was unstable.

The difference in the relative st~bility radius is important

as we see In the following example. Consider the problem

Y= -Sy, Yj(O) = 1, xZ40, 10]. (5.2-.2)

We solve this problem with the fourth~ ord.2r A(l.377, 0.650)-stable

method &nd thle fourth order BDF uISing a constant stepsize of h =0.1.

The results are given in Iable 5.2-4 which follows.

Table 5.2*-4. Solution of Problem (.-)

Step True __Fourthi Order BiJF A(l.377, 0. 650)-S ta~lce
No. Soltion C&clatea Actual Errr Calculated ctlError

0 0.l000Q+0l 0.lOO0Q+0l 0.0 0.l000Q+0l 0.0

25 0. 2051Q-03 0.2070Q-06 -0.*t050)EQ-Om -0.21701Q-03 0. 1246Q-0.8

50 0.4248Q-17 0.3318Q-12 -0.3318Q-12 0.4131Q-17 0.ll7Q-Ql18

The previous test problems P1 and P2 demonstrated the need for

methods with higher values of alpha whereas this problem demo~nstrates

thle possib~le effect of smaller regiions of accuracy about the origin.

The relative error after 50 steps in 0.02773 and 0.7811.10~ for the

near-optimal and BDF methods, respectively.

-' We close with one mrore demionstration which accents thle value

of these near-optimal methods as multi-purpose methods. Lambert [28,

Ik
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no-s.i pgiv en, ins, l'i 5 ,2 largo , sc . , . .a aLo't S 1Ce

o .ri gi i t m " . r . .

sTLl . ,(r i., is ,)ur9o se. . i tc ;, cf.P- I

S t-' = 1 x 4th 0d (,t.2--)

We olv this pro Car wi ti the four zI, r 'dCr u !-, c e(;rd aciL

the fifLh orde r A(1.25 , ,J.J37)-.,, : t!1",'.'ho frr,',i ", b1 5.2 1. T,,

25 0.7,80 78. 4,5 7 -1 ... . 78 . -6 . 71 11

resaits given in Tabi 5.2-5 . 'e - ug;. d usi. c o:.st n s..uzt

o r 0.01.

Thble 5.-5. olutioi of Pr l er (.2-sr.),

Step True 4rtai trde' - orde 1 t d this with te- . .
Ho. Solution -;..... .-.--------- .A- .. N-E 53 ON: . :' r

0 O.1lOO9Q+01 0.1 IC9Q+01 0.0 O. 1000(-l 0.0 t

25 0.77883 0.7738 0.4557y -.I 0.7768 0.5S271Q-il

50 0.6065 0.6065 O.72- 10 ,.050li4-

75 0.4724 0.4724 0.9046 -!O 0.1724 0. 1355Q-i.O

100 C. 3679 0.367-; O.949iQ-I0 0.3679 14?6Q-10

As exp~e. ted, we see the large difference in e.rror constants -'

fo hs w ehd -00263. and -0.4 for the Adams-Mculton and -

near-opt,::a! = .hods, r;.spectivel)y) is more th;in offset fe" lis

stepsi-.e b., u.Arg a meth .d of o:ne order higher. An alternative

method of GOmipL sating .or the larger er'ror constant is by decreasing

the stepsize bu retaiinrg the same ordcer. lWe do this w-th th

- - 4 y~ ~ AI
4~. i
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fourth order A(1.377, 0.650)-stable method and a stepsize of 0.005.

The results are given in Table 5.2-6.

Table 5.2-6. Solution of (5.2-3) by Fourth Order Near-Optimal ;-,<,thod.

Step True 5"olution Calculated Actual Error

0 O. l O03Q+01 O.1000Q+9. 0.0

50 0.7780 0.7783 0.2269 Q-10

100 0.6065 0.6065 0.3680 Q-10

150 0.4724 0.4724 0.4356 Q-1O

200 0.3679 0.3679 0.4553 Q-10

We see Lhe error for this fourth order solution is

approximately oiie-half that of the fourth ordLr Adams-I.loulto,, solution

given in Table 5.2-5. ihi-om an examination of the problem indapendent

part of the methods' error terms, we would expect more accuracy from

the near-optimal method as Ions as the ratio of the stepsizes ,,as less

than 0.6.

In this investigation we have found a large number of near-

optimal methods and it is neither piactical nor necessary to list the

coefficients of all these methods. For those methods listed in

Table 5.2-I, we give the rational coefficients in Appendix C. In

indicate the relationship between alpha and the radius discussed in

the previous section. A relationship similar to that is indicated to

exists between alpha and the radius when instead of fixing the error

I
Vi

_____________ ___ ____
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constant C /o(l), we fix the error constant C /C, For the

class C(4, 4) we chart the latter relationships in Appendix I:. It

is interesting to note how well-defined the e curvcs are, evidently

indicative of the geometry of the ra!ige for the function with which

we wori'.

There remains questions of interest in this area which have not

been investigated. For example, as pertains to stiff systems, we

clearly need to determine wliether results as rewarding as. we have found

here await our investigation into higher orders. Ir addition, ther2

may exist unconventional methods which could be successfully applied

t6 large classes of stiff prohle:s. Thete currently exists many

computational difficulties which must be dealt with in stiff codes

employing LN-,. For example, since the implicit relation is solved by

a form of lewton iteration, no smlall difficulty is presented by the

need to calculate Lne Jacobian, especially for large systems. Even so

we find LMM are the most popular methods used to solve stiff systems.

This indicates great potential exists for a different approach. As

pertains to non-stiff methods, there is an open question oi how best to

pair predictors and correctors in P-C methods. Do near-optimal

predictors and near-optimal correctois pair to yield near-optirial

P-C algorithms? Also as ientioned in Chapter IV, the question of h ow

far the stability regions of predictors can be extended for fixed error

constants remains open.

..

ZZ,
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In the m-trices given below we list only the numerator of

the entries. All entries of t..e 2atrix for '(n, n) have the cormdon

denominator D.

c(2, 2), D2 = 2 [Vi1 _

I 2

- ~C(3; 3) D3, 12 :

2-3 4 -32 i "

C(4, 4) D4 = 24

55 9 8 9 -9-

-59 19 32 27 144

37 -5 8 27 -96-

-9 1 0 9 241

C(5, 5), Dz : 720

f1901 251 232 243 224 -3600]

-2774 646 992 918 1024 7200

-2616 -264 192 648 384 7200I

1274 106 32 378 1024 3600

L 251 -19 -8 -27 224 - 72 0

78
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c__,_6_,G) ,1440

- 4277 4-5 448 159 448 475 -8640

-7923 1427 2064 1971 2048 1875 21600

9982 -798 224 1026 768 1250 -28900

-7298 482 224 1026 20418 1250 21600

2877 -173 -96 -189 448 1875 8640

-475 27 16 27 0 475 1410

C 7 _D 60480

198721 19087 18224 18495 1,304 18575 17712 -42 0 360]

-447288 65112 90240 87480 8908S 87000 93312 1270080

705549 -46461 5?8 31347 24576 31875 11654 --2116800

-638256 37504 21248 58752 96256 80000 1175:'4 2116800

407139 -20211 -12912 -19683 11136 58125 11664 -1270080

134472 6312 4224 5832 3072 28200 93312 423""60

19087 -863 -592 -783 -512 -1375 17712 r0t80

I{
:1 7

,, .. d,,.: -,--,,-, , : '-'r ',
' , ' '

... . -:. ,, . ,,,, ';i-' r" ......... '-. '' '-- ' .... ' - * ....... "
"

"' " '--" " "" " " ' .
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C(8, 8) ,= 120960

434241 36799 35424 35775 35584

-1152169 139849 187648 183465 185344

2183877 -121797 -20448 37179 27648

-2664477 123133 78336 160029 228352

2102243 -88547 -61664 -81891 -13568

-'J41723 41499 29952 37179 27648

295767 -11351 352 -10071 -3192

-.36799 1375 1024 1215 '1024

35775 35424 36799 -9676"d

183625 186624 175273 33868801

34875 23328 64827 -6773760

- 208125 235008 146461 8467200

68125 23328 146461 -6773760

85275 186624 64827 3386880

-12735 35424 175273 -967680

1375 0 36799 120950
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C(9, 9 )., 628800

14 097 247 1 070 017 1 036 064 1 043 361 1 040 128

-43 125 206 4 467 094 5 842 688 5 743 062 5 779 456

95 476 786 -4 604 594 -1 359 808 278 478 62 464

-139 855 262 5 595 358 3 842 816 6 474 654 8 384 512

137 968 480 -5 033 120 -3 715 840 -4 548 960 -2 324 480

-91 172 642 3 146 338 2 391 296 2 789 154 2 363 392

38833 486 -1 291 214 - 996 928 -1 139 022 -1 012 736

-9 664 105 312 874 243 968 275 562 249 U56

1 070 H17 -33 953 -26 656 -29 889 -27 392

1 042 625 1 039 392 1 046 689 1 012 736 -32 659 2001

5 753 750 5 785 344 5 716 438 6 029 312 130 636 COO

188 -f0 46 656 340 942 - 950 272 -340 819 200

7 958 750 8 356 608 7 601 566 10 747 904 457 228 800

- 100 000 - 933 120 384 160 -4 648 960 -457 228 800

4 273 250 6 905 088 5 152 546 10 747 904 304 819 200

-1 228 750 409 536 3 654 322 - 950 272 -130 636 800

286 2rO 186 624 1 562 218 6 029 312 32 659 200

-30 625 -23 328 -57 281 1 012 736 -3 628 800

3

Y1. *
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The following coefficients are given for the methods

referred to in Table 4.2-1. The numerators of' the coefficients ar-e

listed in the tables below and each order has a common denominiiator

denoted by D.

Table B-i.

CcefFi ci ellt 4th 0:'der 5th Order 6thi Order

c-1-300 -720 000 000 -14 400 000

bell9 1 705 707 360 40 006 080

0.1  -462 -1 697 984 640 -39 241 440

C2 201 987 585 120 17 628 420

C3 -30 -297 991 440 -8 373 600

22 683 600 6 521 760

-2 141 280

0570 1 533 770 5(69 33 963 773

0-869 -3 284 474 686 -97 823 787

592 3 245 856 024 119 961 838

-143 -1 604 272 786 -81 9212 322

0 4 303 066 559 32 649 093

f3 5 -6 153 235
4D 300 720 000 000 14 400 000

83 1 ;
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Table B-2.

Coefficient 7th Order 8th Order 9 Ot 0rder

-I -604 800 000 -1 209 600 000 -36 288 000 000

e0  1 479 522 240 2 352 439 080 68 929 056 000

al -1 562 984 640 -2 067 206 400 -57 556 396 800

a2  1 112 045 76) 1 671 f.73 2F0 44 478 201 600

a3  -599 477 760 -895 950 720 -29 756 160 000

252 383 040 456 624 000 25 358 04 400

a5  -76 688 610 -411 022 080 -13 624 204 00

t6 0 12 096 000 --2 474 241 600

c(7  85 155 840 232 243 200

a8  762 O[:3 000

1 698 536 399 3 982 004 743 131 051 87v 512

61 -5 101 980 072 -12 450 561 759 -461 208 OC 9 296

02 8 017 316 643 23 395 159 971 1 008 365 805 136

03 -7 743 202 432 -28 566 654 731 -1 467 668 483 312

4 524 155 853 22 109 841 909 1 435 089 863 630

15 -1 510 919 256 -11 107 551 069 -956 912 924 432

06 209 655 425 3 248 488 993 403 247 '72 176

07 -361 187 577 -98 967 442 256

18 11 306 055 592

D 604 800 000 1 209 600 000 36 288 000 000

I t
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Ihe following coefficients are given for the m-thods referred

to in Table 5.2-1. The numerators of the coufficients are listed in

the table belo,. The coefficients of each method have a common

denon.tinator denoted by D.

Table C--l. Fourth Order, C5/o(1) -0.200.

A(1.481, 0192)- A(1.1114, 0.471)- A(1.377, 0.c50)-
Coefficients Stable Stable St. e

0-I -30 000 0O0 -90,) -240 000

60 267 000 1800 464 400

-38 319 030 -1260 -306 63

1 743 0'9 360 87 28Z

a3 6 399 0O0 0 -5 088 0,

14 032 375 415 I0- 512

B0 1 197 750 50 24 16b

3-0 470 000 -240 -64 993

5 782 250 110 19 199

3551 625 25 4 829

D 30 000 000 900 240 000

86
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Table C-2. Fourth Order, C/o(l) = -0.500.

A(1.535, 0.142)- A(1.511, 0.294)- A(P.445, 0.5T,)-
Coefficients Stable Stable Stabl e

a-900 000 000 -900 000 -90 000 000

a0  2 312 370 000 2 448 000 202 104 000

a -2 057 940 000 -2 520 000 -160 425 000

a2  630 909 000 1 170 000 53 c82 000

"3  14 673 GOC --153 000 -5 661 000

44 431 625 437 675 45 498 925

-231 1!,2 750 -3117 450 -20 03$ 950

1  -377 409 000 -244 200 -9 652 200

2 305 $1 75 329 050 1 801 550

16 685 3-15 -79 075 2 941 675

D 900 000 000 900 000 90 000 000

$t

4

" _ ... • __ . . . . .. . ,



88

Table C-3 Fifth Order, C/o() = -0.400.

A(1.431, 0.092)- A(I.338, 0.359)- A(1.259, 0.51<')-
Coefficients Stabie Stable Stable

- -9 000 000 -9 000 000 -720 000

0 27 720 000 24 120 000 i 800 000

a -35 100 000 -26 100 000 -1 728 000

a2 22 500 000 14 403 000 792 O0

a 3 -7 200 000 -3 600 090 -144 000

a1 1 080 000 180 000 0

[ I4 159 U"75 4 0 13 G25 321 4083

0-4 117 125 -1 923 375 -101 &40

-12270-2 450 250 -202 720

2 4 06- 250 2 829 750 117 120

3 -1 537 125 -693 375 38 240

259 875 -156 375 -28 208

D 9 000 000 9 000 000 720 000

111
211

I
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Table C-4. Fifth Order, C6/oI) : -0.800.
6

A(1.485, 0.077)- A(1461, 0.155)- A(1.394, 0.463)-
Coe ffi cients Stable StJile Stable

-90 000 000 -14 400 -9 000 coo

C2 800 0O0 44 640 27 352 890

S -35 Ono 000 -54 720 -33 753 600

02 20 700 030 31 680 21 636 900

C3  -4 £', 000 -7 200 -7 236 000

c" 4  0 0 999 s0 0

_ 4 218 125 6 711 4 1!6 335

Flo -4 726 875 -6 833 -3 &91 235

1 -2 011 250 -2 998 -1 41-19 10

82 5 188 750 7 24 3 4(. 690 L

83 -1 576 875 -2 353 -1 577 785

a4 -191 875 -329 223 905

D 9 000 000 14 400 9 000 000

-p I
- --. -,-~ - - -~- -
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Table C-5. Sixth Order, C7 /i(1) = -0.900.

A(1.321, 0.121)- A(1.284, 0.29 91- A(I.065' 0.4?5)-
Coefficient Stable Stc!,l e Stab'. V

-14 400 000 -604 800 000 -604 800

49 824 000 2 047 06' 5C0 1 959 52 I
-72 000 000 -2 903 040 00) -2 72I 600

c' 53 280 000 2 177 280 000 2 115 800

-18 720 000 -846 720 000 -967 680

a4  1 440 000 117 996 4E9 241 920

7157 000 12 216 9r0 -24 192

563 520 264 974 9&5 274 447

-9 114 120 -302 c86 COO -330 6:

pI 1 415 800 -34 322 ( 9A 1i4 17Th

4 667 6C0 310 644 7' -40 4;8

-1 129 200 -148 424 994 1K3 437

-1 858 120 -14 144 400 -81 720

894 520 23 388 886 21 313 1

D 14 400 000 604 800 000 604 800

N

K #
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Calculations below were carried out on an Amdahl 370/V7 in

35-digit precision. Numbers less than approximnately 1' i antd
are represented as 0.0. o 8 imantd

Table P-1. True Solution of Problem Pl.

Step First Component Second Comzlonent,-
(h=0.005) Real Irmagi nay Real Imaginary

0 0.2000Q+01 0.0 -0.9900Q+00 0.3730Q+01

200 0.3679Q+00 0.2794Q-43 -0.79i83Q-43 -0.1193Q-42

400 0.1353Q+00 0.0 0.0 0.0I

600 0.4979Q-01 0.0 0.0 0.0

300 0.1832Q-01 0.0 0.0 0.0

1000 0.6738Q-02 0.0 0.0 0.0

Table F-2. Calculated Solution of P1 lty Fourth Order A(1.377, 0.650)--.I

Step First___ Cornponent Seco nd Comnponent
(h=0.0051 Real Imaginary Real Imaginary

0 0.2000Q+01 0.0 -0.9900Q+00 0.3730Q+01

200 0.3679Q+00 -0.1916Q-05 0.6626Q-05 0.3862Q-05

400 0.1353Q+00 0.4772Q-11 -0.1198Q-10 -0.2664Q-10

600 0.4979Q-01 -0.1773Q-;.7 -0.2188Q-16 0.1091Q-15

800 0.1832Q-01 -0.5826Q-22 0.3095Q-21 -0.2697Q-21

1000 0.6738n,-02 0.3869Q-27 -0.1601Q-26 0.2124Q-27

igg

- -~ ~ . ~ -A 9-
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Table F-3. Actual Global Error of Calculated Solution of PI by
Fourth Order A(1.377, 0.650)-Stable Method.

First Comrponent Second Component
Step Real Imaginary Real imaginary

0 0.0 0.0 0.0 0.0

200 -0.5267Q-06 0.1916Q-05 -0.6626Q-05 -0.3#862Q-05

400 0.3970Q-10 -0.4772Q-11 0.1198Q-103 O.2664Q-10

600 0.1872Q-10 0.1773Q-17 0.2118Q-16 -0.1019Q-15I
800 0.9199Q-11 0.5826Q-22 -0.3095Q-21 0.2897Q-21 4

1000 0.4234Q-11 -0.3819Q-27 0.1601Q-26 -0. 2124Q-27

Table F-4. Calculated Solution of P1 by Fourth Order DUF.

Step First Component Second Component
(h=0.005) Real Imagi 1n ary Real Imaginary

0 0.2000Q+01 0.0 -0.9900Q+00 0.3730Q+01

200 0.9475Q+01 0.5968-+01 -0.3128Q'-02 0.2806Q+02I

400 0.2122Q+03 -0.1348Q+03a 0.2928Q+03 0.9245Q+03

600 -0.8181Q+03 -0.5742Q+04 0.2223Q+05 -0.2633Q+04

800 -0.120-5Q+06 -0.3738Q+05 0.2669Q+06- -0.4424Q+06

1000 -0.2008Q+07 0.2348Q+07 -0.6769Q+07 -0.9815Q+07

.74;
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Table F-5. Actual Global Error of Calculated Solution of P1 by Fourth
Order BDF.

First Component Second Component
Step Real Imaginary Real Imaginary

0 0.0 0.0 0.0 0.0

200 -0.9107Q+Ol -0.5368Q+01 O.3128QO2 -0.2806Q+02

400 -0.2121Q+03 0.1348Q+03 -0.2128Q+03 -0.9245Q+03

600 0.8182Q+03 0.5742Q404 -0.2223Q+05 -0.2633Q+04

800 0.1285Q+06 0.3738Q-05 -0.2669Q+06 0.4424Q-06

1000 0.2008Q+07 -0.2348Q+07 0.6769Qi-07 0.9815Q+07

Table F-6. True Solution of Problem P2.

Step First Component Second Component
(h=0.005) Real Imaginary Real Imaginary

0 0.200Q+01 0.0 -0.9900Q+00 0.2500Q 01

200 0.3679Q+00 -0.3610Q-43 0.8139Q-43 0.5816Q-43

400 0.1353Q+00 0.0 0.0 0.0

600 0.4979Q-01 0.0 0.0 0.0

800 0.1832Q-01 0.0 0.0 0.0

1000 0.6738Q-02 0.0 0.0 0.0
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Table F-7. Calculated Solution of P2 by Fifth Order A(1.431, 0.092)-
Stable Method.

Step First Component Second Component
(h=0.005) Real Imaginary Real I mg i nary

0 0.2000Q+Ol 0.0 -0.9900Q+00 0.2500Q+01

200 O.3679Q+00 -0.5067Q-12 -0.8977Q-12 0.5967Q-11

400 0.1353Q+00 -0.4956Q-23 O.7781Q-22 -0.1604Q-21

600 0.4979Q-01 -0.1757Q-31 -0.4 609Q-32 0.4982Q-32

800 O.1832Q-01 -0.6335Q-32 0.2243Q-42 -0.1293Q-42

1000 0.6738Q-02 -0.1333Q-32 -0.9632Q-53 0.2167Q-53

Table F-8. Actual Global Error of Calculated Solution of P2 by Fifth
Order A(l.431, 0.092)-Stable Miethod.

Fircst Component Second Component
Step Real Imaginary Real lmgi na13"

0 0.0 0.0 0.0 0.0

200 -0.2413Q-11 0.5067Q-12 0.8977Q-12 -0.5967Q-11l

400 -0.1687Q-12 0.4946Q-23 -0.7781Q-22 0.1604Q-21

600 -0.9338Q-13 0.1757Q-31 0.4609Q-32 -0.4982Q-32

800 -0.4588Q-1 3 0.6335Q-32 -0.2243Q--42 0.1293Q-42

1000 -0.2112Q-13 0.1333Q-32 0.9632Q-53 -0.2167Q-53

* IZ,
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Table F-9. Calculated Solution of P2 by Fifth Order BDF.

Step First Component Second Component -'

(h=0.005) Real Imaginary Real Imaginary

0 0.2000Q+Ol 0.0 -0.9900Q+00 0.2500Q+01

200 0.93,;5Q+03 0.2558Q+04 -0.7321Q+04 -0.1914Q+03

400 O.1696Q+08 0.6429Q+03 -0.1775Q+09 -0.2124Q+08

600 0.2666Q+12 0.1601Q+13 -0.4267Q+13 -0.9187Q+12

800 0.2852Q+16 0.39530+17 -0.1016Q+I 8 -0.3200Q+ 17

1000 -0.2026Q-20 0.9673Q+21 -0.2398Q+22 -0.1008Q+22

Table F-10. Actual Global Error of Calculated Solution of P2 by
Fifth Order BDF. A

First Component Second Comtponent
Step Real Imaginar-y Real Imaginary [

0 0.0 0.0 0.0 0.0

200 -0.9362Q+03 -0.2558Q+04 0.7321Q+04 O.1914Q+03

400 -0.1696Q+08 -0.6429Q+08 O.1775Q+09 0.2124Q+08 i
600 -0.2666Q+12 -0.1601Q+13 0.4267Q+13 0.9187Q 12

800 -0.2852Q+16 -0.3953Q+17 0. 1016Q+18 0.3200Q+17

1000 0.2026Q+20 -0.9673Q+21 0. 2398Q+ 22 0.1008Q+22

ii
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Table F-li. Calculated Solution of P2 by Sixth Order A~i.321, 0.121)-1
Stable l~etnod.

Step First CorC-onent Second Comp~onent

(h=D. 005) Real I maci n a ry Real jimaginar~y

0 0.2000Q+01 0.0 -0.9900Q+00 0.2500Q+01

200 0.3679Q+0-0 0.6007Q-10 -0.4715Q-09 0.7519Q-09j

400 0.1353Q+00 -0.2089Q-18 0.4503Q-18 O.3SS5Q-18

600 0.4979Q-01 -0.6950Q-28 0.3034Q-27 -O.2590Q-1-27

800 0.1832Q-01 -0.2182Q-31 -0.140SQ-36 -0.2275-Q-36

1000 O.6738SQ-02 -0.5375Q-32 -O.165SQ-45 0.7022Q-46 t

Table F-12. Actual Global Error of Calculated Solution of P2 by SixthI
Order A(-1.321, C.121)-Stable Mcathol.

First Component SeconCcmopet
Step Real Imaginary' Real Inasgina ry

0 0.0 0.0 0.0 0.0

200 .-0.32460-09 -0.6007Q-10 0.4715Q-09 -0.7519Q-09

400 0.3310Q-14 0.2089Q-18 -0.45030Q-18 -0.3885Q-18

600 0.2113Q-14 0.6950Q-28 -0.3034Q-27 0.2590Q-27 ' '~-

800 0.10390-14 0.2182Q-31 0.1408Q-36 0.2275Q-36

1000 0.4786Q-15 0.5375Q-32 0.1651Q-45 -0.7022Q-46
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Table F-13. Calculated Solution of P2 by Sixth Order BDF.

Step First Commone;"t SEcond Comp3nen t
(h=O.005) Real I. agi n;y Real Imaginary

0 0.2000Q+01 0.0 -0.9900Q+ - O. 2500Q+0I

200 -0.i667Q+i4 --.431 l4 0.A 245Q+.i5 O.I0-9Q+i3

400 O.3979Q+29 C. 5945Q+29 -0.1 & .Q30 0.4GI Q-29

600 -0.8016Q 44 -0.711Q4-44 0.2696 Q+45 -0.1250i.45

800 0.1467Q+-j 0.87530+59 -0.364"Q+60 O.2,ObQ.6r&

1000 -0.2508Q-75 -O.82i Q-+74 0.4537Q+-75 -0.5457Q 75

Table F-14. Actual Global Erm-r of Calculated Solution of P2 by Sixth
Order BDF.

Fi rst Cow-ponent Second Cooennt
Step Raal Imaginary Peal l.ag~ina.y

0 0.0 0.0 0.0 0.0

200 0.1667Q+1 O. 431W.-14 -0.1245+ 15 -0."C.-3

400 -0.3979Q*29 -0.5945Q+29 - 0.1880Q+30 -0.406 1 9

600 0.8016Q+44 0.7611Q+44 -0.2696Q 45 0.125' 01-45

800 -0.1467Q+60 -0.0753Q+59 O.364 6o -0.28,-Q. -

1000 0.2508Q+75 0.8216Q+74 -0.4537Q+75 0.5457Q+75

_ _:._


