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PBSTRACT i
~v Ik
Desirable propertias of linear multistep methods (LMM) can bhe o
optimized by viewing those properties as functional vaiues and the LI § ié
possessing those properties as points in a domain space. This study E :é
conducts two such optimizations numerically. The first is a search é ég
; for relatively stable explicit LMM and the second is a search for % ;%
§ stiffly stable implicit LMY. Near-optimally relatively stable explicit i %g
: LMM are found for orders four through nine. % éi
; In the second study, the concept of A{c, r)-stability is 5 i
Z introduced for stiffly stable LMM. It recognizes the need for large :

regions of absolute stability in the left half plane and the need for
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a region of accuracy about the origin defined'by the region of relative

stability. An economical means of determining the region of relative
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stability is developed and usedyx Nearly-optimal A{c, r)-stable

implicit LMM are found for orders four through six for a variety of
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classes determined by fixed error constants Cp+]/o(1).
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1 CHAPTER 1 i
PRELIMINARIES
1.1 Introduction %
Consider the initial valuc problem %
i

y' = f(xs lj) > xe[a, b]a l{a) = yo (]']"])

where i, Yo and f(x, y) are in R" and sufficient conditions are

G4

placed on f to ensure a unique solution exists. We seek numerical

It

methcds to solve the problem above more accurately and to solve

s 8 1

larger classes of such problems. Especially when n > 1 in the

A
AR

problem given, it can be roughly classified as stiffor non-stiff.

! .
)
:
3
i
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H
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i
H
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4

We investigate both classes and find improved wethods for sclving

A
=
=
=
S

menbers of each class.

Two basic approaches to a rumerical approximatior of the

solution to (1.1-1) are the linear multistep and Runge-Kutta methods.

hnpunh
e,
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Most, if not all, popular approaches have stemmed from one or both

SR

of these methods. We limit the ensuing investigation to linear

.
aiy!

Y K
st

Rl

oy iy

multistep methods (LMM).

1.2 Linear Multistep Approach

TR R TV

When it is not possible to solve the continuous system

D13 ANANIL I3 & S AN S L NI Y NIRRT s e s

;3 (1.1-1) exactly we must be content with a discrete model of the
5% . given system. We restrict ourselves to an evenly spaced mesh of
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% X
the interval [a, b]. Denote this mesh by {x0 = 3, s*° , é
i ¢
X; = a+ ih, se¢ , Xy = b} so that we have constant mesh-width g
b b
- a
haboa |
3 - 1= iv g
befine b y(xn) and g f(xn, yn), and denote our respective :
approximations by Yn and y; = f(xn, yn). Our discrete model then § é
PR
consists of {yili =0, «++ , N}. % E
g H
A Tlinear k-step method expresses a linear relationship i
between Yo1® Yptl and the previous k values of Y5 and i ihis % %
linear relationship takes the form g 4
1
k-i-] ko1 ( ) : :
y = a.y . th B.y. . 1.2-1 i
nl o Lgy iTn-d s Tin-d é :
-
i‘ for resl values of o, and 8., where l“k-]] + lsk—]l # 0. Returning ! g
Q to the continuous model, consider ; é
g asy + B'Hl_'s H :;1
i=_'i ] n"'] i=-] ] n 1 é if
o=
'gfl
vhere @y = 1. If y(x) is sufficiently differentiable, by a Taylor :E
i 3 ! i1 = - K ece - 'éé
expansion about X for Yo-i and Ypoi> | 1,0, 1, s k-1, we £
get 3
k2
ki] (ot + hig.y! .) = °z° C hiz(i)(x ) (1.2-2) EE
i=“] ijn-i iJn"i i.__o i J n ' };
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where the constants Ci are determined from the coefficients s and 5{

of the LM (1.2-1). Ve have the following expressions for the G

kil
Cy = Q.,
LR ER I

k-1 k-1
¢, = 1 (Hie. + T 8. (1.2-3)

= io4sy

k-1 k-1
- 4 -1)P L L -

%" iz_] (-1 * oy iz_] (-1)" '8 forp =2, 3, .

The order of a LMH (1.2-1) is defined to be the smallest
integer p such that Ci =0 for 0 <i <p and Cp+] # 0. When the
order is at least one the LMM is said to be consistent. The following
concept of cenvergence is critical for any useful LMM.

Definition: A LMM is said to be convergent if for any problem
(1.1-1) for which we are guaranteed a unique solution, we have
im oy = g(x)
n=0 n

ph = x-a

for all xc[a, b] and for all solutions {yn} of (1.2-1) satisfying
starting conditions y; = ni(h} where
Tim n.(h) = Yg> i=20,71, <o+ , k-1.
h-0 !

With the LMM (1.2-1) we associate two polynomials p(z) and
o(z). Define

3
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without proof) 7rom Dahlquist [5].

Theorem 1.2-1. A LMM is convergent if and only if it is

consistent and zero-stable.

Formula (1.2-1) provides an explicit means of obtaining
Yol when 8_] = 0. The resulting LM4 are called predictors. Uhen
B_] # 0 the formula defines Yol implicitly. In this case iterative
values

wlshye

ntl s=1
are computed via the relationship
+ E
yled s gyledy, (1.2-5)

where ¢ is defined by the right-hand side of (1.2-1). As long as ¢

is contractive ‘i.c sequence

k-1 . b
p(z) = X aizk“(1+]) 2
i=-1
:
(1.2-4) :
k-1 AN
=i+
of(z) = § Bizy (i 1/,
i=-1
where @y = -1. Then any LM4 (1.2-1) uniquely determines both p and i
o and conversely. If p(z) has no roots greater than one in modulus '
and if all roots of modulus one are simple, the associated LMM is §
said to be zero-stable. We have the following theorem (stated |
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will converge to Yoil® This iteration, normally used to obtain the

value of y when 6_l # 0, prompts the name correctors for this ;

n+]
class of L. For any k-step method k starting values are required
to implement the recursive calculation of the s i > k. These

values are normally found by some explicit LMM or R-k method. B

Denote the class of n'f order, m step predictors and ‘ 3

correctors respectively by P(n, m) and C(n, m). For example the

nth order Adams-Moulton formula is a member of C(n, n-1). Similarly

th order Adams-Bashforth formula is a member of p(n, n). Ue

the n
search within p{n, n), n =4, <<« | 9 for improved methods on
non-sti ff problems and within C(n, n), n = 4, 5, 6 for improved methods ;

on stiff problems.

1.3 Coefficient Matrix Derivation

Let L be a LMM of the class C{n, n). As in (1.2-1) we
normally assume ¢ 4= 1 to eliminate ambiguity between equivalent
LMM. Then from (1.2-3) we have n+1 independent equations relating

2n + 1 parameters. This leaves n unspecified (free) parameters %o

,.
S as Lh b, , .
i‘lﬁ»?&{fﬁﬁ‘&m@ R I Rt A L 0 K5, e, b AT 20 e

)
¥,

determine L. We take these free parameters to be Gys **t s O 1o

A
e

Ay

and B_,. In (1.2-3) Cj = 0 determines @ and €y = eee =C =0

yields n x n matrices B and D and an n x (n+1) matrix A such that
T— seoe T 4

DAL, «y, s oy y» 8,1 = B[8,, » 8,11, These matrices

have the form

D e

i

4‘
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i
6 i
2
H
i

E A= (1.3-1) . f

L(_])n—'! 1 2" e (@-1)" (-1)";11 ’ :
: 0 1 2 e (n1) O
B= |t i : .
: . -
: o 1 2™ .. ("’”MJ
and D = (dij) is diagonal with dii = 1/i. In this section we define *
B™) recursively, that is, we define the B~ for C(n, n) from informa-
v tion concerning the B-] for C{n-1, n-1). Thereby we have the means
to calcuate the exact rational entries of the n x (n+1) matrix .
B"]DA and so all coefficients of L are explicitly determined by the
ﬁ n free parameters. ’
Define the n x n matrix S recursively as follows. Let o
ST - .52 - (o), 2
and S" = (ogj) where i ‘%\

n
i,

E=%
s
Z
23
piT
k>
2
5

of 7=(-11,0] ;=0for2<iz<n, 9

3

n _ . n _.n-1 ;

I

M Al

g
]
4 -
=3
it
B
=8
<=
=
=

R

o -

N
=
=
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n _ n-l n-1 . . . _
and o, 5= j_]+(n-1)oi,jforl_<_1§n1and2§3in1.

Denote the 8™V for ¢(n, n) by B;] = (b?j). Then we have

n
n _ n - n .
b]’]—],b}’j zzzbz,jf”ziJf-"’

and

0for2§i§n.

or
et
[}

. . . RS |
When computing the exact rational entries of the matrix Bn DA Jor
higher orders it is necessary to increase the machine precision and
use careful programming. We have calculated rational entries for

these matrices of coefficients through order 18. In Appendix A we

list those matrices for orders two through nine.
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CHAPTER 11

STABILITY ARALYSIS

2.1 A General Consideration

Many questions concerning the stability of LM reduce tc
determining whether certain polynomizls have roots less than one
in modulus. Fuch effort towards this end has beenr davoted to
transformed palynomials whose roots lie in the cpen left ha2i{ plene.

He say a polynomial is o7 the Schur type i7 it has roots less thar

one in modulus and of the Hurwitz typs 1f it has &1l rocis iyinc in
the opan left half plane. Several Torms of necessery and sufficient

conditions exist in the literature for a rolynomial ic be Hurwitzian
[23, 26]. Translation to necessary and s ifficient condizions 7o
Schur pelyncmials normally leads ito intractable criteria. Ke ranasgz
to find one exception to this, althouch in the cgsneral case it
provides sufficiency only. First we establish several preliminary
results.

Lemna 2.1-1. Let A be an (n+l) x n matrix and ceX”. Rlso
let the set of points xep" satisfying tne system or 1inear inaqualities
Ax > C define an n-dimensional simplex £ n with non-eroty interior.
Let 7 be the set of ali points yeR" such that Ay < C. Then 7 is
enpty.

Proof: Let Xy be a peint interior to zn and suppose there

exists a point Yo€T- Consider the line segment axg + (]-a)yo where

8
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0 <a < 1. This Tine segment must intersect each of the n+l
hyperplanes defining En since Ax0 > C and Ayo < C.

Now extend this line segment to o > 1. Since zn is bounded
this extension must intersect at least one of the defining hyperplanes
a second time at a point distinct from the first point of intersec-
tion. Thus we have the line Xy + (]-a)yo contained in one of the
defining hyperplanes of Zn. This contradicts the assumptions that
AxO > Cand Ayo < C. QED.

Lemma 2.1-2. Let

be a Hurwitz polynomial. Then all Bi’ i=0,1, *s¢ , n have the same
sign.
Proof: If all roots of P have negative real part, then

n-k

2)

noEne

k
P(z) = 8, T (z +r.)

(2 + ¢)% + ¢
i=1 i

] 1

where ry > 0 and Ci > 0 so that all coefficients 61 take the sign
of B, QED.

Lemma 2.1-3. Consider the mapping

which maps the unit disk onto the left half plane. For any polynomial

a].z1
0

Il ~133

p(z) =
1
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define a new polynomial

[TARN T

- P(2) = (z-1)" p{gé%l.

Woa

¢ Then for the polynomial transformation T : p + P we have T2 = 2"

where I is the identity transformation.

Proof:

I P

2() = 10) = (0" o2 - () »[E L

rone
SO e e

¥l

=2" p(z) = 2" 1(p). QED.

Consider the real monic polynomial

o oy v,

letort e e 4 g

E

"o
L e S
D M bty

Let the coefficient vector of p be a = A an-1) and &j be

a

the coefficient vector of (z-])n'j (z+1)j. Define Sn to be the

R

n-dimensional simplex determined by &j’ j=0,1, -, n.

Theorem 2.1-4. The coefficient vector of any nth order real

.
MR b

SRR
% SR rie

monic Schur polynomial lies in Sn.

(\)’ .
‘?ggf’i'

Il
i

Proof: Let

e

AR ARSI

g i

p(z) = a.z’,a =1, i oz
Lo % n i3
1 - 0 4 ;?}

be a real monic Schur polynomial. Transform the roots of p to -

the left half plane via the mapping b
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Define the new polynomial ;

’ :

n . '

P(z) = ] B;2 ;

'l: «

3 , g

= as in Lemme 2.1-2. Then !
s {
B 2 N i 7
: L n-i i § ;
P(z) = 1 a,(z-1)""'(2+1) .

and

E> bt

SR
& 14 b
o rean

SRS
o
A
1
-~ N
<

R L TR RN S

5,

From this expression denote the coefficient of z' in (z-1)173(z41)7

R )

by bﬂj and Tet M = (m?j), 0 <i, j <n. We have then a matrix
. T
equation Mn(ao, . an)

also be described by

£

. ' " W T, i .
sk e o b T a Srain w1 Crone S SAT PR L 0 3 W b e rrb 8 aov a4 bt

i n -
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v
e 2.1-3 providos ".2 = f“] moere | s iy oy ( +1) () § :
Lenmz 2.1-3 provigas l':" = 2 tnil? vnere ni) 18 1ag (nhi} X {net) i
identity matrix. i
Since p{z) is a real nonic polynomial, the first n elenenis ok
in the jth coiumn of Mn is the vector &j lascribed in the discussien
previcus te the siatement of the theorvam.  Thus taking the vreduct i
. - N, P C
Mﬁ corcesponds to evaluatiig n+1 hyperplanes in RY at the cesid cient i '
e S e 1wl = ol . m ol :
vectors aj, J=0,1, »«« ,n. Since m“ =2 I 4y @&k O the o
- , o : to
coefficient vectors o, 1ies on all but one of the n+l hyperplanss. P
J i
They therefore describe S . P
3 - T 3 th ¥ p H PR ! th . :
Let fr represeat the k7 hyperplane wiere for xeR the K
- 1 =
rYow of %](x1, Tt X 1) defines fl(x). Wa define the positive ¥
H \ :E
., : . n . &
side of the !} ”t hyperplene te consist of those points xeR™ for which ﬁ
2 n C e - . . L ..
fo{x) >0. M. =27 .. impiies each o, lies on the positive side ¥
k n n+l ' J K
. . . N . . R}
of its opposite face. Thus for each x e’ we have chn if and only 2
if 1, (x) is positive for each k = 1, «ov , n + 1. O
= n = P
Notice if 0 is the zero v R we have fk(O) > 0 for each i
k=1, e, n+1,so0 that continuity of the f provide S with a 3
non-empty interior. K
Since p is a Schur pclynomial, P(z) is a Hurwitz polynomial PoB
and lemma 2.1-2 provides that alil g, are of the same sign. Lemma
}
2.1-1 excludes the possibility that all Bi are negative. Since
i (ao, a] e an_]) we have the coefficienil vector of p{z)
inS . QED. b3
This Theorem is in fact necessary and sufficient when n < 2. Z
z
We obtain the following useful corollary. §§
=
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Coroliary 2.1-5. let

r-
i)
-4

and h% be as in the prorl of Thevinm 0.0-4.

n i
Pz} = ] 6.7
§%0
e i S S
where h'\agz Gy tet s a) (po, B], ere Ln) . Then if n(z)

is a Schur poiynomial all the Si have the sane sign

Pyraof: From ihe preof of ihe Theovem we see that P(z) is a
Huneitz poiynomial. The result follows tpon application of Lemiu
Pa) i

2.1-2. QED.

2.2 Stabiiity {crNon-Stiff Lig

In Chapter I we mentioned convergence of a LMM and its
equivalence to consistency and zero-stability. There we were
concerned @voout what happens to the errcr through successive
calculaiions at a fixed point within the interval of integration as
h » 0 and » >, The definition ¢f convergence requires this errvor
to go to zero on all problems of a certain class given sufficiently
accurate starting values. Now we concern ourselves with what happens
to the error through successive calculations using a fixed step
length h as we proceed through the interval of integration. Odeh
and Liniger [30] refer to this concept as fixed-h stability.

Definition: A LMM is called fixed-h stable if the

accumulated truncation error in solving the model equation y' = My,
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where A is a complex constant, remains bounded as n » « for a g E
non-vanishingrange of values of the constant q = Xh. g E

Here we come to a disjunction in the stability analyses for f E

stiff andnon-stiff LMM. Non-stiff methods normally have bounded f ?

regions of fixed-h stability in the g-plane and stiff imethods require i ?

those regions to be unbounded. We pursue the analysis for stiff i vé

methods more fully in the next section. ; :

The concepts of absolute stability and relative stability ;o

are nore commonly used. We denote the characteristic polynomial % %

é of a LMM by li(z, q) = p(z) + qo{z) where p and o are taken from i ;
% (1.2-4) and q is defined as in the previous definition from the % §
% model test equation y' = Ay. i ?
% Definition: A LMM is absolutely stable at a given point d | ?
% if all roots of I(z, qo) lie inside the unit circle. The region of ?
é absolute stability For a LMM is the set of all points a9 in the X év
r% g-plane at which the method is absolutely stable. % %
% Absolute stability forces solution of the model test é
% equation to have a decreasing global error and is therefore more ‘ %
restrictive than fixed-h stability. : é

For any consistent and zero-stable method L, M(z, 0) = p(2z) 2 é%

has a simple root at z = 1. This root is called the principal %%

root and is denoted by e As long as the leading coefficient of a é%

polynomial is non-zero, its roots are continuous functions of th= %

coefficients. Thus we may follow this principal root g to non-zero é

values of q. For q sufficiently near zero we have g%

=




r = e% + 0(q"") (2.1-1)

whenever L is of order k. For an argument establishing this
relationship see Lambert [27,p. 66].

Definition: A LMM is relatively stable at a given point 99

if the root of I(z, qo) of largest magnitude is the principal root.

The region of relative stability for a LMM is the set of all points

9% in the q-plane for which the method is relatively stable.

There are numerous definitions of relative stability given
in the literature (for example see [27, p. 68]); in light of (2.1-1)
the definition above is very useful. e take a closer lock at
alternate definitions in Chapter IV. Relative stability limits
the rate of growth of the global error to approximately that of the
solution. ke will examine this relative error more closely in
Chapter III.

For methods which are consistent and zero-stable therc will
not be regions of absolute stability near the origin in the right
half plane as there are with relative stability, while in the
left half plane the regions of absolute stability are larger than
those of relative stability. These conclusions follow since for g
arbitrarily near the origin in the right half plane we have rn°’ 1,
and for q in the left half plane ry < 1. When solving a probiem with
q lying in the left half plane and inside the region of absolute
stability but outside the region of relative stability, the global

error goes to zero but possibly much slower than the solution
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itself. We illustrate this possibility with an example in Ciapter IV.

OQur results musti then be viewed with this is mind.

B 3 A sk Rkt 7y
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Throughout the remainder of the section we assume p(z; and

e kW

o(z) have no roots in common and that o(z) has no rocts of unit ) ;

»

magnitude. To find the boundary of the region of absolute stability

- .

we take the image of the unit circle under the map

xpw ke

This boundary is not always a simple closed curve. The boundary of
the region of relative stability is found numerically by tracking
the principal root on various rays emanating from the orig:n. These

notions are considered more carefully in Chapter IV. The following
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result is often used, many times casually, and we now siate it

ka4 el Yo

formally. !

Lemma 2.2-1. The boundary of the regions of absolute and

W h Ve B3

relative stability are symmetric about the real axis.

[N S

Proof: If q and q are complex conjugates we have 1z, q) =

H(Z, q) so that z, is a root of M(z, q) if and only if 20 js a root

[t ubpiwinhg Sk e

of M(z, q). aus the sets of moduli of the roots of N(z, q) and

N(z, q) correspond and alsc Iz](q)l = 12](a)l where z](q) is the

principal root of N{z, q). Since the stability boundaries are

R

%

gt

based on the moduli of the roots of I(z, q) the result follows.

QED.

&

Lo aat
+
v,

We now take a closer look at the boundary of the region of
- absplute stability and develop several results. Ile use the following

notation.
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joyy _ K . §
0.(6) = Re(p(e'")) = § a, cos (k-(i+1))o 3
r 1Y ;
io k=1 :
p;(6) = Im(p(e™”)) = ]} , a; sin (k-(j+1))e ;
j==1 - ;
i0 k-1 ; ]
o (68) = Re(c(e’”)) = } B, cos (k-(j+1))0 +
r =17 P
and . ;
L
T L
0.(8) = Im(o{e" ")) = § B. cos (k-(j+1))o. :
1 j=-1 J i
Then p(eie) = pr(ﬁ) + ipi(e) and G(e]e) = or(e) + ioi(e). We ﬁ
assume no ambiguity exists between the subscript i and the conplex gl

nusber i. Let ay be the angle measured from the negative real

axis clockwise to the line through

o(eie)

and the origin, for 0 < 8 <. Since

. f p(eié)] p,.(8)o (6) + p,(e)o,(6)
e |- - = -
l ole'®)) 5, 2(6) + 5;°(0)

and

T WA RS AT Do Y g By




R i ey ¥ S e et T e vy

L adptbae G

18

Im |~

k]

Qigiglj . pi(G)Or(G) - pr(e)oi(e)
U(E]e)j orz(o) + oi2(0)

we can express (16 as

1 [p8)s (0] + p.(0)o.(6))
G cot \pr(e)ci(é) - gr(e)pi(O)J- (2.1-2)

Lemma 2.2-2. For any convergent LMM there is a deleted
neighborhood of zero in which;ﬁ(e) # 0.

Proof: We have

k-1
pi(6) = ¥ (k-j-1)a, cos (k-j-1)e.
i 35-1 3
Now
k-1
p;(0) = ) (k-3-T)a;=p'(1) # 0
3= J

since the LMM is convergent and therefore has a simple root at

z=1. Since p% is continuous, there is a neighborhood N, of zero

0
in which p% # 0. Thus for eeNO, 8 # 0, we have pi(e) # 0. QED.

'?fi\;s {4k

Y,

Lemma 2.2-3. For any consistent LMM

o

s e

pr(B)
1im — 5y " 0
0+0 Pi

Y
5
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Proof:

Y a. cos (k-j-1)8
j==1 9
L

i
!
3
1
i
3
3
:
3

et

S

} a. sin (k-j-1)8
j==1 Y

) (j+1-k)aj sin (k-j-1)0 T

whaes (P s

]
60 (k—j-1)aj cos (k-j-1)6 i

since consistency insures !

k-1
¥ o(k-3-1)e. # 0.
3= ’

R TR A R IS s T R L PRI ST

iy se

QED. ;
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Theorem 2.2-4. For any convergent LMM

3
¥

lim g™ n/2.
8-+0

[

Proof:
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- [0, +0.0.)
Tim @y = T1im cot ! ’I%SLTT‘;%EL
6+0 6-+0 PpOy = PO,

i

il S

tads

Iy

- (p./0:)0  + o .
. 6+0 ‘Pp/Pi’9% ~ O

|
O
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o
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- since o(1) # 0. QED.
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Thus we see the boundary locus of the region of absciute
stability always leaves the origin along the imaginary axis. Indeed
then, if the non-principal roots of p are strictly inside the unit
circle, there will be a non-vanishing interval of absolute stability
to the left of the origin and there will be a non-null region of
absolute stability in the left half plane.

For 6 = 0, N, since p and o are real polynomials, the boundary
locus points will be real. At these values of 6 we can compute the
boundary locus points in general.

Theorem 2.2-5. The boundary locus poiats at 8 = 0, 1 for the

region of absolute stability of any convergent LM4 are the crigin
and p(-1)/c{-1), respectively.

Proef: For € = 0, convergence provides a simple rest of
p(z) at z = 1. Consistency implies p'(1) = o(1), thus o(1) =0
forces a multiple root of p at z = 1. HWe conclude the origin is the
boundary locus point at & = 0.

For 6 = 1l we have

10 PO * P05 - pr(ﬂ)or(H) - e(-1)
2 2 2
e o+ o, [Gr(H)]

tim Re | - 208 )| < yip

g1l a(e'?)

QED.

There may be other values of 6 for which the boundary locus
points are real. For those LMM of interest to the investigation
reported in Chapters IV and V we characterize real boundary points

in the theorem following. First we define a desired property.

.




Definition: A LMM is strictly zero-stable if the associated

polynomial p(z) has a :imple root et z = 1 and all remaining roots
interior to the unit circle.

This definition is clearly stronger than the zero-stability
defined in Chapter I.

Theorem 2.2-6. Let L be a strictly zero-stable LI for which

no roots of o(z) have unit magnitude. Then the boundary locus points
of the regiun cof absolute stability are real if and only if p(eia) and
o(eie) lie on the same 1line through the origin.

Proof: Unen & = 0 the result is clear since both p(1) and
o(1) are real.

In the remainder of the proof we assume 6 # 0. Th2 boundary

o -
locus points are real «

{ i -
o o) ozt

o(eie)

Suppose pi(e) 0. If the boundary locus points are real

then pr(e)oi(e) = 0. Since 6 # 0 and L is strictly zero-stable

pr(e) # 0 so that Oi(e) = 0. Then both p(ei?) and o(eie) are real and

lie on the same line through the origin. Conversely, if both p(eie)

and o(eis) are on the same line through the origin and pi(e) =0,

both p(eie) and o(eie) are real and the boundary locus point is real.
Suppose oi(e) = 0. If the boundary locus points are real

then pi(e)or(é) = 0. Since or(e) = 0 would yield a root of ¢

with unit magnitude we conclude pi(e) = 0. Thus both p(eie) and

ke v diad
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o(e1 ) are real and lie on the sare line throuch the origin.

S e e

Conversely, if both p(eie) and o{e’e) 1ie on the same line through
the origin and oi(e) = 0 then pi(e) = 0 and both p(e]e) and c(e’g) are

real resulting in a real boundary locus point.

g 4 dte.

P

1f both pi(e) and si(e) are non-zero by tne remarks at the

beginning of the prcof we have the boundary locus point at € real if

Aot

and only if

op(8) ¢ (8)
5, (8~ ;T8

RS IT RMI A L S AT

s

Ry

These are equivalent to p(e‘s) and 0(810) 1ying cn the same line

[T

through the origin. QED.

2.3 Stability for Stiff LIM

When n > 1 in problem (1.1-1) the eigznvalues of the system can

be of vastly different magnitudes within the interval of iniegration.

B, ke ot et b el e
",

i

Hhen this situation occurs stability constraints on the maximum

Lyrtr b

1

stepsize permitted may be dictated throuchout the interval by
eigenvaluas whose contribution to the sclution of the system becomes
negligible after a time. Often the stability constraint limits the

stepsize so severely that the roundoff errors and corputation tim2

involved are overvhelming. It would be nice when this occurs to have

w;.r".‘frfﬁﬁf§”ﬁ"a&@j"x\':’$@£’,ﬁfﬂjxf Wby g

a region of absolute stability extending to infinity to alicw us to

determine stepsize on the basis of accuracy requirements alone.

i

AL Sba

This is the essence of the stiff problem and its solution.
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We wish then to find LMM with infinite regions of absoluie

stability in the left half plane without sacrificing accuracy around

§
]
i
N
H
:

the origin. First we review the more importani definitions from the
literature characterizing properties of such methods. One such
definition has been provided by Gear [9] and descrit.s stiffly stable
LMM.

Definition: A LMM is stiffly stable if in the region R,

(Req< D) it is absolutely stable and in R, (D<Re q < a, |Img] < 6)

it is accurate.

The region of accuracy referred to here is not precisely
defined and therefore this definition is not entirely workable.
Other definitions focus only on the infinite region of absolute
stability and omit any measure for a region of accuracy aboul the
origin. The following definition provides a generally unobtainable
standard to which methods may be compared. It was introduced by
1 Dahlquist in 1963.

o Definition: A LMM is called A-stable if the region of
2 absolute stability includes the open left half plane.

A We follow here with a somewhat discouraging result also due

4 to Dahlquist [6]. )

Theorem 2.3-1. The order of an A-stable LMM cannot exceed

two.

I E
5
5

This result naturally led to less severe definitions.

AT
vl
e

e Widlund [41] introduced the concept of A(a)-stability.
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Definition: A LMM is A(a)-stable, oe(0, H/2) if the region of

absolute stability includes the wedge
Sy = {z] |Arg(-2z)] <o, z # 0}.

(Here Arg ze(-1t, N1V zeC).

A method is A(f/2)-stable if ii is A(a)-stable for all
ac(0, 11/2) and A(0)~stable if it is A(a)-stable for some (sufficiently
small) ae(0, 1/2).

Cryer [4] completed the spectrum of A(o)-stability with his
definition of Ao—stabiTity.

Definition: A LMM is Aj-stable if its region of absolute
stability includes the negative real axis.

Clearly then for systems with real eigenvalues we need
Ao—stability and for complex eigenvalues we need A(a)-stability where
the o is determined by the eigenvalues of the systew we are solving.
Cryer [4] gives an example of a LMM which is A0~stab}e but not A(0)-
stable. There exists then a series of strict inclusicns for the
stability classes of LMM from A-stability through Aoustabi1ity.

Cryer [4] shows that the Adams-Moulton formulae of order
k > 2 are not Ao—stable but he does show that there exists AO-stable
methods of arbitrarily high order. The backward differentiation
formulae implemented by Gear are not stiffly stable for order k > 7.
Our investigation of LLMM for use on stiff systems is restricted to
implicit methods as we shall see presently. First a variation of
a result from Rodabaugh [34].

Lemma 2.3.2. Let Ai(a), i = -1, +++, m be continuous

functions of a on the interval (-, b) with

ot -
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Tim A_](a) = 0.
a->~o
Assume that for some i,
1im Ai(a) # 0.
Q-r-o
Then for any x > 0 there exists an N such that, if a < N then
m .
) Ai(a)r'“"=o (2.3-1)
24
has a root with absolute value larger than x.
Proof: Let j =min {i|i >0 and 1lim Ai(a) # 0}. The roots
-
of (2.3-1) are identical with those of
mt+] m m-i _
et ) (@) (@) = 0 (2.3-2)
i=0

provided A—](a) # 0. Since (2.3-2) is monic, its coefficients
(Ai(a)/x_](a)) can be expressed by the symmetric polynomials as
polynomial functions of its roots. ilowever, as a tends to negative

infinity, Aj(a)/A_](a) increases without bound so at least one of the

roots is unbounded. QED.

Theorem 2.3-3. Any explicit LMM is not Ao-stab]e.

Proof: Let N{z, q) = p(z) + qo(z) be the characteristic

polynomial of an explicit LMM where p and ¢ are of degree K and k-1,

respectively. The polynomial 1/q TN(z, q) has the same roots as

n(z, q). We need only consider real q and the coefficient of zk
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in 1/q Wz, q) as q approach<s negative infinily. The provious
lemma guarant~es an N such that it{z, q) has rcots excerding unit
magnitude for q < N. QLD

Jeltsch [20] finds thet Cryer's [4) methods are nst only AO"

L
H
L}

steble but also A{O)-siabie. Hence there exists A(Q)-stabte methods ol
arbitrarily nich ovder. Gupta [14] hes {ewd Ae)-siable weihods
through ovder 12 with o excecding 70°, however, the truncelivn ericr
gets extremely large on the higher order nathods.
Another useful definition is piovided by Gdzn and Linger [30].
Definition: A LNM is A -stable i it is absolutely stable in

a

1eighiborhood of infinity on the complex g-sphere. YWe toke the
following thesrem from Marden [29] without preof.

Thecrem 2.3-4 {Roucié). If P(z) anc Q{z) are analytic interior
to a simpie closed Jorcan curve C and if they arc continucus on C and
[P(z)] < [G{z); for zeC, then the function F{z) = P(z) + Q(z) has the
same number of zeros interior to C as does Q{z).

The following lemma is based on Rouché's Theorem and is useful
in providing insight into the concept of A -stability. Tn the
remainder of this section let L be an implicit zero-stable LMM with
characteristic polynomial li(z, q) = p{z) + qo(z) and C = {z{lz] = 1}.

Lemms_2.3-5. Consider L as described above and suppose noune
of the roots of ¢ T1ie on C. Then there exists a real number S such
that for |q] > S, §i(z, q) and o(z) have the same number of zeros
interior to C.

Proof: Let

= e
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o fetd|
Then S is finite and if |q| > S we have |qo(z)]| > |o(z)] for zeC.
By Rouché's Theorem we know that N(z, q) and qo(z) have the same
number of zeros interior to C. Since the roots of qo(z) and o(z)
are identical and since the degrees of M and o are the sam2, we have
{z, q) and o(z) with the same number of zeros interior to C. QED.
Now we prove a simple and useful characterization of Aw-stab1e

me thods.

Theorem 2.3-6. L is A -stable if and only if all the roots

of o(z) lie inside C.
Proof: Let the degrees of Il be k and Tet S, and zi(q),

i=1, <« , k be the roots of o(z) and II(z, q), respectively,

where

;iz zi(q) = Si'
If L is A -stable there is a neighborhood of q = « in which
lzi(Q)l < 1 so that clearly ISiI <1,i=1, «*« , k.
If ISil <1, i=1, ««« , k then the previous lemma provides
Aw—stability immediately. QED.
The result which follows provides a relationship between

Ao-stabi]izy and A -stability.

Theorem 2.3-7. If L is Aonstab?e and none of the roots of

o{z) 1ie on C, then L is A -stable.
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Proof: Suppose one of the roots of o, say Sj has magnitude % 22
greater than one. The previous lemma provides a real number S with % :
a root of 1(z, qO) outside C for all 9 with Iqol > S. We therefore % ?
contradict Ao—stability and we conclude ail roots of o lie inside C ’ !
and hence L is A -stable. QED. ; ,3

The last definition we look at from the literature is from % ':
Gupta [13] and combines features of Gear's stiff stability and the % Es

A(o)-stability of Kidlund.

? Definition: A LMM is said to be A{a, D)-stable, ac(0, 11/2) % §§

; if the region of absolute stability includes all q with |Arg(-q)]| < a, 4 %f

: q # 0 and a1l q with Re q < D.

0f all the definitions reviewed above, the only one to define ;
a region of accuracy about the ourigin was Gear's stiff stability i EE
definition. As mentioned before the reference to accuracy in that éi
definition is vague. This has led to different interpretations of % f
what is meant by the region of accuracy about the origin for crample % ég

g see Jeltsch [20, p. 9] and Gupta [15, p. 492]. The motivation for ? %%

% developing stiffly stable methods was to allow us .o determine z ég

g stépsize on the basis of accuracy constraints a!enc. To that end ; ﬁ{

i we do need a description of the infinite region of stability as

§ provided by the foregoing definitions. However, we cannot overlook

g then the parallel need to provide a description of the region of

E accuracy with equivalent precision. Absolute stability as mentioned J 3

% before provides a measure of accuracy which is too lax in the left ’%

é ) half plane and too rigid in the right half plane. We must be : g%

% concerned with digits of precision when performing computations on a éz

. k.
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digital computer. Actually digits of precision are a measure of
relative error. For these reasons then it seems natural to continue
our concern about relative error with a measure of relative siability
which we include in the definition given below.

Definition: A LMM is said to be A(a, r)-stable if the
method is A(a)-stable with regard to its region of absolute stability
and is relatively stable within the disk of radius r about the
origin.

It is this definition which we implement in our search for
stiffly stebie LMM. A method which is A(a, r)-stable will be
relatively robust depending upon the size of o and r. By that we

mean it should give good results on a large variety of problems--both

stiff and non-stiff.
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CHAPTER II1
ERROR ANALYSIS

3.1 Introduction

Error in our approximation to the solution of (1.1-1) occurs
because we base our recursive calculations on inaccurate values,
because our recursive model does not accurately represent the problem,
and because our calculations themselves are not always precise. Also,
the recursive nature of our model inherentiy propagates existing error.
Controlling this propagation of error is the aim of stability
constraints discussed in Chapter II. Any complete and careful
analysis of cumulative error musti consider at least these sources of

error.

3.2 A Global Round

Henrici [16, section 5.3-4] investigates this cumulative
error and arrives at the bound given below for the solution of

(1.1-1) by a memver of C{p, k). If
la) 8 InL <1
-1 7-1
we have the global error e satisfying

lenl‘ﬁ I*[Ask + (xn—a)(k]hq + Gyhp)]exp[(xn—a) Lr*g]  (3.1-1)

where the following definitions are used.
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k-1 k-1
A= T o, B= 3 |81,
) i=-1 i=-1
. L is the Lipschitz constant for the function f, 6 is the maximal

starting value error,

where
1 s .
TV S ) AszZ
plz) 457
and
k-1
plz) = ) aiz1+1
i=-1

(r is shown to be finite in Henrici [16, p. 242] for zero-stable

nmethods. )

r*: _!;____._.
]-h]a_]B_]]L

k
6= [ ]6/s)|ds
0

h is the stepsize, xne[a, bl, k]hq+] is a bound for the magnitude

31

of the roundoff error commitied at any step of the integration process,
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where

ke p-1
G(S) = Z ak_j_z(j‘S)E - psk_j_z(j“s)+

and

(j-s), = max {0, j-s},

and

y= mx |yPT 1.
xe[a,b]

Error bounds generally have the burden of coping with worst case

examples and therefore many times are forced to give outrageously

large bounds on simpie problems. This severely damages their

practical value.

Consider for example the bound {3.1-1) applied to the
solution of

y' = Ay, 4(0) = 1, xe[0, 1] (3.1-2)

using the second order backwards difference formula

Youy =43 Y, - W3 Y+ 273 hf(X4qs Yo (3.1-3)

with stepsize h. Then

o(z) = - 22+ 4/3 2 - 1/3
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f; so that é
|
: 1 -3 ;
. p(z) ~ (z-1)(z-3) - :
E, For |z] <1 we find the Laurent expansion §

1 »

© i+ . i

A]Z = z J——3"T Z].

P i=0 | 2-3 :

Hence é

I =sup {|r.]} = sup { —_— !}.= = 3/2. ion

V=0 2-3‘ =0 P

In general for the method (3.1-3) we see that (3.1-1) reduces to

P,

T e d

2
le | 2T {485 + (xn-a)(9k]hq + 2yh“)} exp [?3 o i] (3.1-4)

o P

and is valid as long as hL < 3/2. :

In this example we then have the bound as

A conmd s gt B o o 08 e b e
'

. gl 33 :
485 + 9n k]h + 2nL”h nhL

6-4hL exp |35nm)  (3.1-5) =

le | <

ol

If X =-100 and h = 0.01 then hL = 1 < 3/2 so that this expression is E

. valid. We compute this bound on the error after 25 steps and in

iyt

1,

doing so it is of negligible consequence to omit the positive contri-

MRS

4

% butions of starting error and roundoff error. In this case

i
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le25|.§ 25 exp (75) ~ 9.33 - 1033 when the true solution y(x25) N §
3
.138 - 10'10. Clearly the information provided by this bound from a ;
: practical point of view is totally useless. Vhen error bounds behave f

in this way we can sometimes get better results from the use of error
estimates [9, p. 14]. However, as with the example given by Gear [9,
p. 16], error estimates can give smaller numbers than the actual error.

From a practical point of view it would be more useful if

L AN

the expressions for roundoff error and starting error were
respectively dependent upon machine precision and accuracy of the

starting procedure. The bound (3.1-1) is theoretically satisfying

R RATCR

from the viewpoint that it does approach zero with h. 1t would be

LG

pleasing to see the effect of stability properties represented in f §

fq
the bound. 1In the next section we consider a represeniation of the v
global error which is more useful for certain practical and P

theoretical considerations. H

3.3 An Approximate Error Representation

..
W o bt b gt RIS R

As in section 1.2, it we assume our solution y(x) has

sufficient derivatives, the local truncation errcr can be expressed

as

k-1
L(y(xn+])3 h) = iz'-] (aiyn-] * hBiy;'l"i)

I .
RIS

S

et Xty e

1
' = €y 07T P )+ 0(P*D) (3.3-1)
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for a member of C(p, k} where this notation is taken from Henrici

PR

[16, p. 220]. L, as defined above, may be regardcd as a linear 3
operator on any differentiable function y(x), and if y possesses
sufficient derivatives its value can be given as the right side of
(3.3-1). Following the investigaticn cof Henrici for arbitrary
operaters of the form (3.3-1), others [27, 33] have pointed out that

in all cases

IR

L(y(x4p)s W] <5 07, (3.3-2)

where G and ¥ are defined as in the previous section. G{s), also

defined in the previous section, is called the influence function.

B T L g A L e
A

In those cases where G{s) is of the same sign throughout ihe interval

[-1, k-1], we have

we AL e BB
RIS YRR TATY)

Y PN s s

Lg(x00)> 0) = € 8771 4P (), (3.3-3)

for Es(xn_k+], xn+]). G(s) does not change sign on [-1, k-1] for
many commonly used methods including Adam's formulae and the backwards

difference formulae of Gear with order below six. :

685 0 Dtthe h e d b esinis

e d

le now develop an approximate representation of the global .
error which occurs in the solution of y' = Ay by a member of C(p, k).

Let y(xn) and Yn be the true and approximate solution, respectively.

PO

Let the local truncation error and roundoff error occurring in the

calcuiation of Yn be Tn and Rn respectively. Then Tn = L(y(xn), h)

and
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H
: = aily Y om v owe o i
E If we defite ¢ = n{x } - ¥y we have H
- n L+ 3
2 4
44
i - ?
= k-1 k-1 i
- £ e v " 5 N oLT Y [ U t
| T .o =R o= 5 (o, +na3 el V- ] {n, 0 gy :
£ § nti LTS : ; n- = i Y- -
3 i=-1 j:e 1 )
B & ¢ H
533 -
- X :
B E -
'5 [ :
] .‘('u -
ke - - -~ - 3
= ) (. + h!7 2 .. {3.3-% .
2 = 1 17 n-3% :
1= i
I
v —tsdan e T fide . o - a = o R :
I7, as in Lanbert {27, p. 631, we assume . - R = g, 3 onstant, 2
- i L 3
:
we heve :
g §
P 3 i ¢
3 E
= , :
3 X , i
- R < -~ 3
e = § 4"+ -t (3.3-5} :
! PP R | hide.
i=U

; I e et s
vhers z, are the rocts of .he claracteristic pelysomial [i{z. hi}

This resuylis as the solution 1o the non-homogenecus constani

0 12 PR WO Gy PP FYY T

3

e ey b b St it gt o

~h

coefficient differsnce eguation {27, 5. 8]. The form in which w2
H

'
1

dtin !

have writtea {3.3-5) ass-->s tue roots z, are distinct.

4
-

s
1 %eli

Rdmitiecly, the form of the socond ftorm in {3.3-3) will not =
be precisely as represented if Tn+} - Rn+l is not constani. However,
the first ferm keeps the Torm ¢iven regerdiess of the form ; takes.
The first term shovs the interplay bebueen the stability propertiss

of a method and parturtations such as voundoff and truncation error

introduced at each step.
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Vhen colving o probiem such as {1.1-7) with valuves of b
inside of absciuie stability but outside the region of o
stebility. the vruncation ewor will approaca zero bui vot go rap:idiy

as the true sclution., The caiculation then is forcad 0 convinu

-

until tho error coires within accuracy constraints evew thoush tha

actuxl solulicn moy have ioug beea satisfactorily smill.,  The exgense

>

of this continted clleviation offsels and conceivebly could exceed
the exbense of using @ smxller stepsize to bring hA within thz region
of relative stehility. This is why velative siabality can be
important even in the left half plene. Exsrples of thiz were

obtained in compuier runs using 35-digit precision.  Ssiution of

(3.1-2) with X = 100 end X = -1 using the method (3 1-2) ond h = 0.01
5

<o

gave reletive ervor of 2.63 « 107 and 3.3 « 1077, respactively, alier
100 steps.

Inside the region of relalive stability the second term in
(3.3-5) usually dominates the global errer. The problem indapendent

part of the local and global truncation error constants are

C C

pt

pil and (7 ;

4

respectively. If we use sufficient machine precision to insure the
rowrdoff error is negligible compared to the truncation ervcr, then

n (3.3-5) ¢ is dominated by the local truncation ervor
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This rekes it apparent why the prehlen Dmdopendont pary of the loced
truncaticen erreor differe from ihe glehal iruncetion ereoy by @

facwr of

Sy
.

Thi

o

chservalion is supported by computer runs, eouin in 35-diat
Fli R ; .
precision, wheve in the sclution of (3.3-0) with A = -1 using a

variety of LFii and stopsizes the ratio of Tocal to global truncaiion

eryor was sunsistently

vwithin appieximetely threc signiticant digils. Tt is fmportant {o
note here ihat there is an entire subclass of C{r. k) which have locel
truncation arvor constents larger than thair global truncation error
constants, and conversely. This resulis since ihe deterniinaition of
Cp+1 and ¢(1) are independent in the solution of the system of

equations {1.2-3) which defines the members of C(p, k). Evaluatio

of the relative merits of different LMM need to take this into account.

In the investigation reported in Chapter V the term

is used as the measure of accuracy for comparison of LMM.
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CHAPTER 1V

PREDICTOR SEARCH

4.1 Statement of and Approach to the Problem

Predictor methods comronly suffer smaller stability regions
and larger truncation error constants than implicit wethods [27,
p. 84]. On the other hand, implicit methods suffer the difficulty
of finding the solution to the implicit relation defining the forward
solution approximation at each step of the integration. The
solution to these problems is normally accomnlished by pairing a
predictor with a corrector to form a predictor-corrector (P-C)
algorithm. In the solution of non-stiff problems, if
{yi | =0, «+« , N} is our discrete model of the solution to
(1.1-1), the predictor is used to compute a first approximation to

forward values y This predicted value is then used as yEl% in

ntl’

(1.2-5) to start the recursive evaluation of the sequence

{[S]”

Yarits=1

This sequence may be evaluated as far out as desired although
convergence within desired accuracy constraints is usually very
fast. For example the popular code DIFSUB by Gear [10] restricts
s <4. 1In the solution of stiff problems, the condition required

for convergence of the corrector iteration,
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IhB_]oz:}]L < 1

where L is a Lipschitz constant for f(x, y) with respect to y, forces
us to discard corrector iteration in favor of a Newton iteration

[27, p. 239]. When Newton's method is applied to (1.2-5) for the
solution Y1 the restriction on h required for convergence is usually

much more relaxed than that imposed by

e

IhB_]a:}IL < 1.

But even in stiff problems, predictors are used to provide accurate
initial estimates for the Newton iteration.

If predictors with significantly improved stability
characteristics exist, at Teast two interesting possibilities arise.
Those possibilities are improved P-C algoriihms and ccdes using
predictors exclusively. In a P-C algorithm as described in the
previous paragraph, unless the corrector iteration is carriea out to
convergence, the stability charscteristics of the P-C algorithm are
not those of the corrector alone [1]. The fewer the number of
corrector iterations performed, the less heayi]y the stabilit- of
the P-C algorithm depends on the corrector. Since, as noted above,
in practice few iterations are actually carried out it leads us to
believe that it may be important to use a predictor with as large a
. stability region as possible.

The other possibility of using predictors alone for non-stiff

problems is very attractive in all cases and occasionally the use of
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explicit methods is necessary. Among the advantages to be gained are
economy, simplicity, and versatility. Economy is realized with

regard to speed of cowputation, pro¢rammiag efforts ir developing

a reliable code, and machine storage. For most non-trivial problens,

by far the most expensive computation performed in finding ihe model
{yi}g, is that of function evaluvations for the derivative approxima-
tions y$+]. Predictor algorithms reduce this to one function evaluation
per step whereas P-C algorithms require from two 1o four. Elimina-

tion of the corrector iteration and the associated coding greatly
reduces the progranming effort. It also simplifies considerations

such as stability analysis. For example see Lambert {27, p. 27] for

PR A I

a definition of the characteristic polyncmial of & P-C method. A
proper stability analysis must examine the roots of the characteristic
polynomial which we see is much more compiicated than for a predictor
alone. The reduced coding and storage required of predictor algorithms
render such codes' implementation within the capabilities of smaller
machines, even hand-held calculators when the problem is not large.

Gear [11] gives real-time integration as an example of where
implicit methods cannot be used in the usual sense. Here again the
use of predictors would be natural were it not for the smaller stability ;
regions of these explicit methods.

It is true that normally predictor methods also have larger
truncation error constants than correctors but this can always be
more than compensated fer by using reduced steplength. For example
in comparing the truncation error constants of the Adams-Bashforth

to Adams-ltouiton methods, the stepsize reduction factor required to
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equilibrate the truncation error constants for a given order
increases from 0.447 for second order to 0.671 for ninth order. It
is the smaller stability regions which create the greatest drawback
for the exclusive use of predictors in sciving certain problems
(1.1-1).

To date no comprehensive search has been conducted for more
stable predictors. Those searches existing in the iiterature have had
Timited specific goals, for example see [24, 3]. The purpcse of the
investigation reported in this chapter thern is to determine how far
the stability regions of predictor methods can be extended. These
metheds may find utility by incorporation into P-C algorithms or in a
code which eaploys explicit methods exclusively. (A related quesiion,
not investigated here, is whether or not it is the case zhat P-C
algoriithms with better stability properties are always the result of
combining separate predictors and correctors, each with good stability
properties.)

A guide as to the class of predictors in which we may expect
favorable results is provided by Henrici [16, section 5.2-8]. The
theorem is given here without proof.

Theorem 4.1-1. The order of a zero-stable LMM whose

stepnumber is k cannot exceed k+1 when k is odd or k+2 when k is even.
As discussed in Lambert [27, p. 67], those zero-stable

methods of the class P(k+2, k) when k is even have no interval of

absolute stability. We are thus restricted to investigation of

classes P(n, m) where n < m + 1. He choose the class P(n, n) because

of the additional degree of freedom permitted over P{n, n-1) and
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because many codes already in existence have implemnented the Adams-
Bashforth methods which 1ie in this class.

We use the relative stability region of a LMV as our measure
of stability. We could use absolute stebility regions for such a
measure, however this would provide us no knowledge of the behavior
of our approximate solution to (1.1-1) for q in a neighborheod of

the origin. We define the radius of relative stability to be the

radius of the largest circle centcred at tle origin and contained in
-the region of relative stability.

There are several definitions of relative stability existing
in the Titerature [27, p. 68], and it is important to distinguish
which definition is uscd when making compzrisons of stability regions
from diffevent sources. Even though for small q we have the
relationship (2.1-1) there can be tlarge differences for q near zero.
In our investigation we use the definition given in section 2.2 which
is taken from Lambert [27]. Another approach to defining relative
stability is to compare the magnitude of the roots of the charac-
teristic polynomial to the magnitude of exp (q) rather than to the
ragnitude of the principal root. For example, Crane and Klopfenstein
require lrsl_g exp (q), s =1, 2, »=+ , k and that roots of magnitude
exp (q) be simple. For comparison, consider the second order backwards
difference formula (3.1-3). This method has characteristic polynomial
iz, q) = 2/3(q-])z2 + 4/3 z - 1/3. For the sake of simplicity, we

restrict our comparison to the interval of relative stability which

is the real values of q for which the method is relatively stable.

Lambert's and Crane and Klopfenstein's definition yield the values
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(-1/2, 3/2) U (3/2, =) and (a, 0], respectively, where a ~ -0.75262.
Other methods tested indicate possibly for Crane and Klopfenstein's
definition the radius of the couplex region of relative stability is
always zero. For example this is the case when the boundary of the
region of absolute stability interseci. = imaginary axis only at the
origin. This follows since for q imagina: , lexp (q)]| = 1, and the
condilion of relative and absolute stebility coincide. Also if A and
y, are ihe true and computed soluiions at a point Xpo ihen the latter
definition restrains !ynl = Iynl - ¢, for e > 0. The magnitude oi ¢
and not its sign determine the acceptability of Yy For these

reasons we find the latter definition unsuitable. Lambert's definition
ties the growth of the relative error to ihe size of the principal
root, however, for q not large and espacially for highesr crder
methods. (2.1-1) indicales this is not a lax requirement. Some
definitions of relative stability which compare magnitudes of the
roots of the characteristic polynomial to that of the principal root
do not require strict inequality, see for example Ralston [33, p. 177].
However, strict inequality more easily lends itself to computer
implementation.

We need then to find a means of evaluating the radius of
relative stability defined above. An expression for the boundary of
the region of relative stability cannot be found as with absolute
stability. It is necessary to actually find the roots of the
characteristic polynomial. We define a function introduced by

Rodabaugh [34] and called the critical difference function. Given

a LMM with characteristic polynomial 1i(z, q), we define
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¢la) = [z (@] - max {zgl@)idE,
é
where zs(q), S=1, 2, «»» , k are the roots of I(z, q) and z](q)
is the principal root. In our search for stable pradictors we
require C(0) > 0, or strict zero-stability. We are thus guaranteed
a neignborhood of stabiiity about the origin by the continuity of
the critical differcnce function.
To determine the radius of relative stability we need then :
to locate the zero of C{q) nearest the or:gin. The redius will be ?
equal to the medulus of this zero. z
We do this rumerically by teking a finite set of rays through §

the origin, finding the zero of C(q) nearest the origin on each ray

in this set, and approximating the radius as the smallest modulus

possessed by the resulting zeros. However, to locate the zero of C(q)

nearest the origin on a given ray we must be able 1o evaluate C{q)

IR SRR IR

and this enteils tracking the principal root.

P aveb

To track the principal root along a ray, q is given a fixed

i

arcument and its modulus is incremented successively by a small

amount. We know z](O) =1 and if q, and q are successively

nil
incremented values of q on a given ray, then Zl(qn+1) is assigned to
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be the root of H(z] qn+]) nearest z](qn). Thus starting at the

origin C{q) is evaluated at ithe successive increments of q as we '
track the principal root. The first increment at which C(g) is

negative identifies an interval which contains the first zero of

C(q). A bisection routine is then used to more accurately identify

the zero. It is conceivable that the first zero of C(q) could be
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missed in this way, however, it would be necessary for it to be % 13
missed on several rays in order for the cutpui value of the radius .
to be severely affected. This is highly unlikely but we should remain : 3
aware of the possibility.

Evaluation of the radius of relatlive stability can be costly
and rather complex. It is possible thet much research into relative

stability characteristics possessed by LFit has been inhibited by

P o E e o Ght aet r s ooy )

these factors. In addition, these factors may have partiaily

TPRIRRRPTL AN

motivated the alternative definitions which compar. the roots of ; :

N{z, q) to exp (q) rather than tc the principal root. There are
several considevaticns vhich greatly reduce the cost factor invelved.
These considerations are based on properties of the

characteristic polynomial ii(z, q) and the rasulting boundary of

s e B A e Bt 2 O T

Ve
TR AT

consistent zero-stable methods. First of all, it suffices to check

o

for zeros of C(g) when Im (q) > 0, since Lemma 2.2-1 provides that the

e g o BEEI

boundary of the region of relative stability is symmetric avsout the

v
g

real axis. ie also economize by restricting Re (q) < 0 since in practice

R ATV YR

LRy ot

it is there that we find the most severe restrictions on the rzdius.

ciee] e

Norinally we find it sufficient to determine zeros of the function C(q)

e lebors

on 15 rays in the second quadrant, however, occasionally for verifi- :

e
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cation we increase this number and extend our investigation into the

,

1

£

first quadrant. Since we search only for the radius, we terminate :

our search for a zero of C{(q} on a given ray once we have incremented

the modulus of q bevond the modulus of any previously determined

zero. Thus due to the shape of a typical boundary it is less time :
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consuming to assign the first ray an argument of II and proceed
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backwards to an argument of 1/2 rather than conversely. Finaily, based : i
n, - . L |
on (2.1-1) ve expect =2xp {q) = z](q) for g small. A computer analysis
of this approximation has shown this to be of practical value as well.
For a large number of methods tested through ninth ovder, when
la] < 0.25 the different fexp (g} - z](q)} was always at most on the
-2 . ;
order of 10 . In practice thun we use the alternate means of -
K
identifying the principal roc’ as that rcot of L(z, q) nearest exp (q), ’
= for fq] < 0.25. In this ran;e of moduli much Targer increments are i
E permitted. This feature alcne has resulted in a cost-savings of $
5 approximateiy 80%. The savings here is greater when the radius of the P
2 wathod is sm31l, for example in higher orders. It is difficult to ;
= 2
% assess the reduction in the cost of this investigatior affordcd by the :
E | 5
E combination of factors mentioned above, however, it is ciear that they 2
= 1 have vastly increased its feasipility fiom the cost perspective. :
= * ;
3 The search for stable predictors within tke class P(n, n) 1
e §i
Z is posed as an optimization problem. In order tc do this we isolate a b
3 specific real quantity which is 1o be minimized. That quantity is N
e the negative of the radius of relalive stability. Clearly there are P
e Timitations incurred by selecting a specific objective such as we have. R
E 2
5 For example in the nature of the resulting coefficients and error F
= =
- : constants of the optimal method. However, our results prove velid as 1%
e inputs to decision processes concerning further development of numericél i3
methods for approximating the solution of problems (1.1-1), and as 3
' numerical methods in their own rignt for some classes of problems. 3
¥
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Two packaged codes were incorporated into the progra

-
oy

r—rt

written to locate stable predictors. The optimization code used

(ZCYPHLD) is based on Fleichers [8] version of Poweli's [32] penalty Ck

function. It uses Powell's unconsirained optimization algorithm [31]

(P raee & > aad eer

10 determine a local minimum through a se2quence of unconstrained

minimizaticn problems. For the most part it was not necessary to

P T

use constraints.

In those cases we gained convergence more rapidly end the
algorithm reduced to that described in [31]. Another code {ZCPOLY)
employed in our search finds the zeros of a complex pelynomial. This
code is in the Internaiional Maithematical and Statistical Libraries

(IML). It uses tie Jenkins-Treub thrze stage variabis shifi

o) . n
e T T R L L A R R

jieration described in [21] and [22]. The remainder of the proegram i

was developad by this writer.

v e e b

wodqarey ey et

The domain of our cbject function for the class P(n, n) is L
°n~]. This resuits from consideration of the system of equations ;i?
(1.2-3) which determines the class P(n, n) as discussed in section
1.3. The only modification, to include notation, of that discussion

applicable heve is that for predictors Eq° 0. The flow of the program

consists of teking a point (a], cos an-l) in Rn'] and determining

b VN )
(Nn".‘«"ﬁ“'(n.uﬁm»‘.uw o gberbe by te

"
[

'
k]

the coefficients of the correspondiag LM4 according to the procedures
outlined in section 1.3. He then evaluate C(0). If C(0) < O the

obiect function is assigned a zero value. Othenwise the radius is

evaluated as previously described and the object function is assigned

VTR
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the negative of the radius. Based on this assigned function value,

R LA B Al LA R [T € 8 1T o8\ S EA) e

’

AL T,

—

B e et g mnr e B T ey e D 2T




| 4
;i
4
\
e . . . < . s pN- o
the optimization algorithm calculates a new domain point in R . :
ke then repeat this cycle until functional values converge within 2 g
prescribed tolerance. This optimization code pertor: ~ -well, usually 3
3
converging within 100 function evaluations. E
Essential for convergence is a starting point (method) with ;
a positive radius. Good starting points are readily available from ;
: the 1literature, for example the Adams-Bashiorith mcthods. e may gain H
¥ .« g . . 3 -
H additional siarting velues from consideration of a theorem from
i o
: Chapter I1. If we factor p{z) = (z-])ps(z), then those pelynomials i
.
: p(z) for which ps(z) is a Scihwur polynomial are associated with LFM of
positive radius. Theorem 2.1-4 provides a characierization of the
: . N .o rr s
smaliest convex set in K containing the coefficients of all Schur
polynomials of degree n. For example we compute this churacterizaticn
explicitiy for information regarding starting value: for the class
P(5, 5). e have @ = -1 and
4 :
i=1 :
so that p{z) = (z-1) ps(z), where k:
4 (4 ] f
_ . 4-13 =
ps(z)"'_z .)_ ajz . :::
i=0 {i=0 J N
f':.
We apply Theovem 2.1-4 to the polynomial pc(z). 3
5
&
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%
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The matrix MQ is given by
: 1 -1 1 -1 1T
-4 2 0 -2 4
: M4 = 6 C -2 0 6 (4.1-1)
-4 -2 0 2 4
11T 1 11 1
and

(ao, 3y 355 25, aq) =

[ R TP Ter e

. + q, + 2, v oo + + + 1).
(ogs ag ¥ 0ga up # 25 05 0 F 0y +ag ¥+, 1)

’

The necessary condition in the Th2orem is satisfied by rejuiring ali

-

elemants of the product ”4(30’ ce- an) to be positive. This leaves

us with the folicwing systems of inequalities.

1- o - oy >0

2-a,-0a,-2a, >0

1 2 4
3- o, - ¢y + Za4 >0 {(4.1-2)
2+ o o, - Za4 >0
1+ a, * 2&2 + 3a3 + 434 > 0.

4.2 Results and Compavrisons

The results from the investigation described in the previous
section are given here for orders four through nine. Since the Adams-

Bashforth (A-B) methods are used nearly exclusively in popular codes

employing explicit L!¥, and since the K-th order A-8 method is a

member of P{K, K), we choose these methods as a standard for
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so it is the member of P(k, k) where all the parameters designated

as free in section 1.3 have been set to zero. Classically, this

has been regarded as a desirable property, and certainly one not
possessed by the members of P(k, k) in general., It was thought
necessary, for a general kth order method, to store 2k values between

integration steps and only k+1 for the A-B methods. For exanple this

[

notion prevailed in Timiting the search of Dill and Gear [7] for

stiffly stable methods to this type of 'Wwinimum storage methods."

PR S ]

However, Skeel [38] found that for P-C methods wheve a kth order ;i

R A YR (A Y KE S IR N, Yoy h e St AR

corrector is paired with a specific kth order predictor it is necessary
to store at most k+i values, regardless of zero coefficients. If we 3;
apply these findings to codes enploying predictors alone vwe see that i .
any k-step method needs at most k values stoired between integration ;
steps. This removes storage economy as a relevant comparison.

As indicated in Table 4.2-1, we have found predictors with

Shad. s

stability radii roughly three times that of the A-B method of
rorvesponding order. Another valuable perspective is gained by
noting the radius of any order A-B methods is roughly matched by

our near-optimal method of two orders higher. Normally an increase
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in order means more accuracy at the expense of computation time
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induced by the smaller stepsize i1equired of reduced higher order
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stability regions. As illustrated later in this section, we can leave
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52 ;
the stepsize the same and change from an A-B method to a near- i
optimal method of two orders higher.
Table 4.2-1.
__Adams-Bashfortn s Near-Optimal
Order Radius CP+]=CP+]/0(T7 kadius Cp+1 Cp+1/o(1)
4 0.2146 0.3486 0.4706 0.3856 0.7711 '
5 0.1266 0.3297 0.3470 0. 3666 1.3609 : :
6 0.0731 0.3156 0.2395 0.3496 7.4542 :
7 0.0412 0.3042 0.1595  0.3259  2.1067 ;
i
8 0.0226 0.2947 0.0745 0. 3056 1.4813 ?
9 0.0121 0.2870 0.0405 0.2857 2.4933 :

We placed no control on the expression for local or global
truncation error constants. However, the local truncalion ervror

constant remained upproximately the seme as that for the A-B methods. %

The constant related to global truncation error, Cp+]/o(1), did
increase moderately. This is a te ult of the observation that as we

approach optimally stable methods, a root of o(z) goes tc 1. 1t also

PP T
USRS P URE NEE EAIPEY S

appears there is no appreciable gain in stability when the constant }

B LN

Cp+]/o(1) is increased beyond a certain point. As shown by example N
later in this section, the increase of this constant for these
near-optimal methods is not so severe as to damage their utility.

Another study addressing the question of how far these stability

hEvardd S el B dea i 200 s me ad wAnd e

regions can be extended for fixed error constanis would be of interest.




Properties of these near-optimal prediclors are given in

Table 4.2-1. Rational coefficients for these methods are given in

Appendix B. Note for A-G Methods, ¢{1) = 1 so Lhat Cp+]/c(1) = Cp+].

To illustrate the effectiveness of the near-optimal stability

GOV R
o *

,; properiies given in Table 4.2-1 and the necessity to measure relative

;i stability we solve two example problems in 35-digit precision with

%* A-B methods and with the near-optimal methods. The first problem

i considered is ‘

%f y' = -16y, y(0) = 1, xe[0, 3]. o
b

§ We usc the A-B 5th order method on the 7th corder near-optimal method,

both with a stepsize of h = 0.01. Thus we have hx = 0.16 which is

inside both methods' region of absolute stability. However it is
- well outside the A-B 5th order relative stabilily region and near 2
the boundary of relative stability for the 7th order near-optimal b
method. This problem gives us an example of what can happen when we :
forget about relative stability in the left half plane. If we had i
solved this problem with the A-B 5th order method and desired to £

follow the solution to this problem (possibly a component of a larger |

sy

system) until the solution fell below 10—]0 for example, we would find b

[T

by continuing the calculation it is necessary to continue to step 825.

3

10 e AN

Whereas in fact, and as detected by the relatively stable 7th order
near-optimal method, we could terminate calculation aftar step 150.
in this case and others like it, ignoring the relative stability

characteristics of a method can be a very costly choice. The
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relative error for the A-B solution in Table 4.2-2 after 300 steps
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is 1.6000Qt13 and for the near-optimal method is 5.23610Q0-03. Noie

that the A-B solution is tending to zero, which evidences the
methods' absolute stability at hx = -0.,16, bul not nearly so fast
as the solution itself. In fact it tends to zero so stowly that the

calculated solution values are essentially mcaningless.

Table 4.2-2
Step True A-B 5th Order 7th Order Near-Optimal
No. Solution Calculated Actual Error Cailculated Actuail Frror

0 0.1000Q+01 0.1000Q+01 0.0 0.1000¢+01 0.0

50 0.3355Q-03 0.3357Q-03 -0.19830-06  0.3354Q-03  0.6280Q-07
100 0.1125Q-06 0.23001Q-06 -0.1875Q-06 0.1125Q-06  0.8515Q-10

150 0.3775Q-10 0.1108Q-06 -0.1108Q-06 0.3769Q-10 0.6116Q-13

200 0.1266Q-13 0.6541Q0-07 -0.6541G-07 0.12639-13  0.3401Q-16

250 0.4248Q-17 0.38620-07 -0.3862Q-07 0.4231Q-17 0.1686Q-19

o OO O O o o O

300 0.1425Q0-20 0.2280Q-07 -0.2280Q-07 0.1418Q-20 0.7640Q-23

The second example is taken to show simply that indeed there
are values of hx outside the A-B methods' stability region but inside
the near-optimal methods' stability region. ~Besides highlighting
the difference in the stability regions this example provides credcnce

in the method used to evaluate stability. The problem used is
y' = -y, y(0) =1, xe[0, 10].

It is solved by the 7th order A-B method and the 7th order near-

optimal method given in Table 4.2-1. A stepsize of h = 0.1 was used
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in both solutions resulting in hA = -0.1 which, according to the
table, is outside the A-B stability region but inside the near

optimal stability region. The results are given below in Table 4.3-3.

Table 4.2-3.

Step True A-B_7th Order _7th Order Hear-Optimal
No. Solution  Calculated Actual Error Caiculated Actual Error
0 0.1000Q+01 0.1000Q+01 0.0 0.1000Q+01 0.0 ;
25 0.8208Q-01 0.8208Q-01 0.5137Q-07 0.82083-01  0.4764Q-07 :
50 0.6738Q-02 0.6788Q-02 -0.49277Q-04 €.6738Q-02  0.1320Q-07 :
75 0.5531Q-03 -0.5459Q-01  0.5514Q-01  0.5531Q-03  0.1836Q-08 %
100 0.4540Q-04 6.6109Q+02 -0.6109Q-02  0.4540Q-04  0.2304Q-09 f

We see clearly that the A-B method is unstable for this problem.

Being able to increase the order by two without reducing the

; stepsize more than offsets the larger error constants possessed by

the near-optimal methods. This can be done as long as we are inside

the stability region and the stepsize does not exceed a certain size.
For example, the part of the error dependent upon method and o
stepsize for the 7th order A-B method is 0.3042h7 and for the 9th % %
order near-optimal method is 2.4933h9. Thus for h < 0.3493 the 9th
order near-optimal method is more accurate than the 7th order A-B
method. We compute these limiting values of h for all such

comparisonsin Table 4.2-4 below.
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Table 4.2-4.
A-B Near-Optimali Limiting
Order Order h-Valua
4q 6 0.2163
5 7 0.3956
6 8 0.4616
7 9 0.3493

We note all these limiting values of h are well outside
normal siepsize ranges and that for h less than these valucs,
increased accuracy will be realized by the higher order near-oplimal
methods. For example, in comparing the 6th order A-B method with the
8th order near-optimal method, the part of ithe error dependent upon

stepsize and error constant for h = 0.1 is 0.3156Q-07 and €.1481Q-08,

respectively.
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CHAPTER V

STIFFLY STABLE CORRECTOR SEARCH

5.1 Statcwment of and Approach to the Problem

In the past fifteen years much research has been devoted to
the development of numerical metheds for obtaining solutions to

problers (1.1-1) of the class referred to a, stiff problems. These
problems and the difficulties they engender were described in

section 2.1. Most popular codes which employ LMM for the solution of

stiff problems depend exclusively on the beckwards difference formulae

(BDF} introduced by Gear. These methods suffer large regions of

instability in the left half plane and are not Ao—stab]e for orders

greater than six. This suggests much improvement is possible.

As mentioned in Chapter 11, Grigorieff and Scholl [12] and
Kong [25] have given constructive proofs which show the existence of

Alo)-stable methods of arbitrarily high order with o arbitrarily close

to 1I/2. However, searches for methods successful in the solution of

stiff problems have made 1ittle progress. Kong [25] performed a

numerical optimization on o for fixed values of the error constant
although these methods have 1ittle practical value because of their

extremely smail regions of accuracy about the origin. In a series of

papers [40, 15, 13], Gupta and Wallace found methods with improved

values for by describing LM4 in terms of local polynomial approxi-

mations. The methods resulting from their investigations have
larger error constants which, for many of their methods, discount
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the practical value they might otherwise have. Dill and Gear [7]
tried a computer-aiced trial and error approach with no aporeciable
results. None of these investigations have resulted in methods which
perform significantly better than the BDF.

We see from these reports there are several properties of LIMM
which appear decisive in determining the performance of a LIKM in the
solution of a stiff problem. To conduct a search for optimal methods
we need to isolate these propertics, determine a useful measure for
each property, and define our object functicn in terms of these
measures. Tho region of absolute stabilicty is of prime interest
because cf the need to maintain stability for the components resulting
from the eigenvalues with negative real part and large magnitude. The
angle a is a measurc of the absolule stability region which is widely
used. It is a good indicator of the number of problemss on which tie
LMM may be used. It is also a natural measure based on implementation
of LMM in that stepsize is the factor which leads to difficulties in
the solution of stif{f problems with LMM possessing finite regions of
stability. A changn in stepsize moves a fixed eigenvalue radically
toward or away from the origin. The angle o indicates whether such
radial movement may intersect regions of instability for a given
eigenvalue.

The region of accuracy about the origin is important because
the components of the solution resulting from eigenvalues near the
origin are dominant in the solution and their accuracy must be of
concern. A natural measure for this region is the radius of relative

stability. It seems clear that any measure for this region must admit
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the origin as an interior point unless we preclude problems with
eigenvaiues of positive real part. Also, as we noted with the problem
solution given in Table 4.2-2, a knowledge of the relative stability
characteristics is essential before we attach meaning to the

numerical solution, cven for eigenvalues wilh negative real part.
Finally the error term is a decisive property since as we see in these
previous investigations, it can become prohibitively large.

These considerations led to the definition of A(a, r) stabiiity
given in section 2.3. It seems of interest tnen to know how far ¢
and r can be extended for a Tixed value of the error constent. Ue
report the results of such an investigation in this chapter and find
methods nearly optimal with regard to these desircd properties,
Furthar, in comparison we find these neir-optimal methods perform
successTully as we wouid expect from the slability and error measure-
ments applied.

ko choose the class C(n, n) for our search of optimal methods.
Our reasoning for this choice is similar to that used in Chapter IV
when we chose the class P(n, n) for our predictor search. Theoren
4.1-1 limits our investigation to classes C{n, m) where n < m + 1,
Other investigations, such as those praviousdy mentioned were
conducted in C(n, n) and the currently popuiar BGF also lie in this
class. These methods provide good comparisons for our results. In
addition, restricting our search to C{n, n-1) seems to be an unrewarding
handicap. We did make several optimization runs within the class
C(4, 5) with no significant improvement over results we obtained from

the class C(4, 4). Upon consideration of these factors we conclude
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C(n, n) is tha better class for our search. Further, we search

P Y Y

for A(a)-stable methods and since ihen A0~s*cbility is necessary, by
virtue of theorem £.3-7 A -stability is also necessary provided we
allow no roots of o(z) to have unit magnitude. Applying the
characterization of A -stable methods from theorem 2.3-6, we consider
only the subclass of C(n, n) for which all rootls of ¢(z) aire of less
than unit magnitude.

The corrector search is pesed as an optimization probleom

similar to thal of the predictor search in Chapter TV. The prooram

we use is basically the sane with five notable 2xceptions. First of

€

all, in this problem we have two dssired pronerties, o and r, and
our object function for the ontimizietion is def’.aed as a liuear
combination of these two properties. Tha <econd difference in the

tio programs is sizeable and dewrives from the need to evaluate c.

_3J

The remaining changes we refer to are thosc necessary for fixing the %
3

error constant, switching to correctors, and for limiting our search :
to A -stable methods. ?
Defining the object function as a linear combination of o and %

r increases the scope of the oplimizazion problem since then our ‘é
interest extends to the effect of taking different linear combinations. 3?%
TR

We find an indicated relationship between the values of « and r é %
corresponding tc maximal values of these different linear combinations. % é
The two properties are inversely related but net iinearly so. For % é
E

example, the following relationships are indicated to exist within
C(4, 4).

"'L 3 -65




RVCAMFZ AL PRad iyl 1 SR

;

|

—

. .
B N N

61

Wes — o o e
iy T l
1.47 —_— \6\ |
s |
\B\ﬂ\ : I
|
1.2 I

;_%;: -c.S00

e, ! 7
1.04 OTT)':i—o...OO
a
—-'—s~= -O.’,OO
1 { )
.81 g
P !
h i |
D

; {
l
.41 l
|
|
.2 1
] |
{
l
- — 3 . - . . . . . A

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
radius of relative stability

Figure 5.1-1. a vs. r.

The three curves result from fixing the error constant,
C"+]/c(]), at the values given adjacent to the curves. Notice the
curves seem to approach the limiting a-value of 1i/2 for larger velues
of the radius as the error constraint is relaxed. This lezds one
to suspect these curves, corresponding to values of Cp+]/o(1) in

(0, «), fill in the area under the line a = /2 and to the left of
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the line r = Yo where o is the larcest radius of any method in the
class C(n, n). An estimate for the value of ro is provided by the
sork of Thompson and Rodabaugh [39], where they report candidates for
o values for the classes C(n, n-1), 4 < n < 9. They obtzined thcse
values by a numerical optimizatior with no constraint on the error
constant. We did not investigste thorouchly for all orders and
error constants the portion of the curve defined by linear coubinations
in which the radius was weighted much more than alpha. The methods
in this portion of the curve are expensive to find and of little value
in the solution of stiff problems because of their poor absolute
stability properties. Kong [25] considered only absolute stability,
and therefore his results defire the upper exteal of the curve on tha
alpha axis. The optimizetion runs for these methods are inexpansive,
however, they also are of little value in the soluticn of stiff or
non-stiff problems because of their poor reiative stebility properiies.
For orders greater than four we concentrate our effort in the region
about and just to the left of the point where the curve siarts
dropping off niost rapidly. This region of the curve yields methods
which pair values of a and r in a way least costly to either property.
The second change is that necessary for evaluating the angle

a of A(u) stability. We use the stability function

q(z) = g—%}

and calculate the boundary of the region of absolute stability as the
i6

image of the unit circle z = e 7 at discrete points en in the

interval {0, 11]. As reviewed in Chapter IV, for real polynomials
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Alpha is tzken as the arctangsnt of the nccative of this lary
ratio. It is important that the ccefficients ¢f o and ¢ are
associated as precisely as possibie to a member of C(n, n). ke Found
when poor precision was used that the resulting lorus calculated wes
a distortion of the locus we intended to inééstigate. This wes
especially true for v near the origin whers occasionally the loci
approached theorigin along the real axis instead of along the
imaginary axis. Uithin C{n, n) for example, Theores 2.2-4 guzraniees

this cannct happen. This distortion resulied in seaningless values

for a. The use of 16-digit precision in the coefficients representinc
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the members of C{n, n) we investigated eliminated this problen. The

routine described here to eveluaie o is very fast and its cost is &
relatively minor part of the cotimization.
- The next change we discuss is ithat reqguired to restrict our

investigation to tne subclass ef C{n, n) correspending fo 2 fixed

error consiant Cnﬂ/s(]) = E{)' The relatienship

derived from requiring C] = 0 in the system {1.2-3}, cou
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the requirvement Cnﬂ =E0. yields an exgression for 8_1 explicilly in
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terns of s 200 5 @ o and E.. For examplie if 1o = 3, we c2
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As expected, this leaves one fewer frees paraueters than indiceated in

.

4

the discussicn of saction 1.2. The domain of our object fuiction for

i

the class C(n, n) with fixed error consiant is then R , the same

as for the class P{n, n) with a floating error constant.

The last two changes referred to earlier were those required
for switching to correctors and insuring A -stability. Working vith
correctors involves inclusion of 8_; in calculations such as

determining the coefficients of the L!% end in defining the

PRAGINGEA o A S AP 50 I ol s 21 %

characteristic polynomial. A -stability is determined simply by
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checking the magnitude of the roots of ¢. The optimizer is constrained

3

away from points in the domain with roots of G greater than one by use




. e sty e T T F Wk, S A O (I
e RN 3 S S e I S

65

of the peralty function described in [8]. The use of this constraint
works very effectively in maintaining A -stability.
As in section 4.1, to guarantee a positive radius of

relative stability and hence zero-stability also, we consider only

those methods for which p(z) = (2—1)ps(2) where ps(z) is a Schur
poiynomial. Since the coefficients of of{z) are determined by . ‘
Qs s Oy and EO’ the requivement of A -stebility can be used é
to further rofine the recion of interest for our investigation. As %
an example we cxomine thase conditions for the class C(3, 3) with

fixed errcr constant EO. The conditions insuring Pg to be Schur which

follow are gained ¥-om an application of Theorem 2.1--4,

1 - a] >0

- 5.1-
1 Gy > 0 (5.1-2)

'|+Oc]+2az>0 X ‘

Using the corollary 2.1-5 we see necessity for the polynomial o(:z) ;

to be Schur is similarly provided by all elements of the product

T S R

vector M3(82, B], BO, 8_1)T being of the same sign. Using the

relationships between the o and Bi aeveloped in section 1.3 and

given in (5.1-1) we express the elements of the produc*

T
M3(629 B]s 803 B_])

N e N, o
PRER O IYY)

RS

in terms of the o and EO. Since 1two of these

SRRPA D RS R N 8 T AN Y s Ay
.

elem:. s are the same as two of the expressions in (5.1-2) required : 2
P positive for po to be Schur, all eicments of the product vector must % é
% be positive. The resulting conditions for A -stability are given in 3 é
% (5.1-3). The first two of these conditions supplement the conditions §
% for zero-stability given in (5.1-2). 'é
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- (12E0 + 1) - 12E0a1 - (24E0 - 1) Gy > 0

1 - 2 oy -a, > 0
(5.1-3)
1 + Gy + 2 a > 0.

The first inequality of (5.1-3) is the only expression involving EO.
This class of methods will always have a negative error constant since

when EO > 0 the first and third inequalities in the presence of the

fourth are incompatible. In gereral, since 6—1 is the only parameter

introducing terms involving EO’ since the coefficients of § 1 in

each of the expressions for 8_,, g 0 By

¢ the matrix Mnfrom the proof of theorem 2.1-4, and

respectively define
the first column

. N ! . . . . .
since Mn=2 In+] we will have the error constant EO appearing in only

one of the inegualities such as given in (5.1-3). Ue have not shown

in general that EO must be negative. However, as in (5.1-1), equeting

the expression for Cpyy to EO + o(1) yields

k-1

By =ayt izl a; o - Eoo(l) (5.3-4)

in general for the class C(p, k). This makes it clear that as E. -+ ~w

0
the incquality B_1 approaches the inequalitly o(1) > 0, which is

already included from both the zero-stability and A_-stability

conditions. Thus as we would expect, for large negative error we

gain a larger region of interest. This leads one to suspect, and

from (5.1-2) and (5.1-3) it can be seen for C(3, 3), that if a given

set of parameters s oy Gy determine an A -stable zero-stable
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method for any error constant Eb < EO. However we have found counter

examples to this conjecture in ihe general case.

5.2 Results and Comparisons

The results of the investication described in section 1 are i
given here for orders four through six. The properties cf the second
order irapezoidal rule and the third order BDF suggest litile or no
improvement possible below fourth order. Since the BDF are members of
C(n, n) and are used exclusively in popular siiff codes, we use them

for comparison. We choose a selection of our near-optimol methods

with error constants Cp+]/c(]) of -0.2 and -0.5 for fourth order, ; ::
~0.4 and -0.8 for fifth order, and -0.9¢ for sixth order. Their . ;
stability properties are outlined in Table 5.2-1. ' §

Taile 5.2-1. Stability Properties of Hear-Optimal Stiff Methods.

Order Alpha Radius Cp+]/o(1) A
4 1.481 0.192 -0.2C0
1.414 0.471 :
1.377% 0.650 ‘
4 1.535 0.142 ~-0.500 .
1.511 0.294 ‘
1.445 0.514 ,
5 1.431% 0.092 -0.400 :
1.338 0.359 S
1.259 0.497 N
5 1.485 0.077 -0.800 (T
1.463 0.155 S
1.394 0.463 g
6 1.321% 0.121 -0.900 i
1.284 0.299
1.065 0.435

PR

*Indicates use in test runs referred to later in this
- section.
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For comparison we give corresponding information for the BDF

in Table 5.2-2 beliow.

Table 5.2-2. Stability Properties of the BDF

Order Alpha Radius Cp+]/o(1)
4 1.280 0.484 -0.200
5 0.905 0.302 -0.167
6 0.311 0.130 -0.143

The kth order BOF has an error constant of 1/(k+1). The
severity of this restiriciion on the error constant no doubt causes
the loss of Ao-stabi]ity for the higher order EDF. Notice for each
order, ihe near-opiimal mathods have considerebly greater regions of
relotive and absolute stability. The effect of the larger error
constants is nullified by the capability to increase the order with no
accompanying restriction on alpha. For example, if we compare the
near-cptimal sixth order A(1.284, 0.299)-stable method from Table 5.2-1
with the fourth order BDF, it is the case that the problem independent
part of the error term for the near-optimal mgthod will be less than
that of the BDF for stepsizes less than 0.471. This particular
compar-son does not involve a sacrifice in the permissible volues of
alpha, and in other similar comparisons we could realize again in the
permissible values of alpha.

He see then an increase in the error constant accompanying

methods with higher values of alpha is a negative aspect that can be
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conlrolled. However, an inferior value of alpha, such &s possessed by
the fifth and sixth order BDF, severely disables a method. We
illustrate this fact by solving two systems of the form y'(t) = Ay(t)
where A is a constant 2 x 2 complex matrix and te[0, 5]. In both
problems the initial values are determined by setting both constants
in the general sclution to 1.0. Denote the problems P1 and P2 and let

them be defined respectively by the matrices Al and A2 where

“1 100
Al =
| 0 -100 + 373i]
(5.2-1)
-1 100 7
A2
| 0 =100 + 2501

We use the constant stepsize of h = 0.0065 throughout the interval
[0, 5]. The calculated values are given in Appendix F. The near-
optimal melhods used are identifled by an asterisk in Table 5.2-1.
1e summarize the results of these compututions in Table 5.2-3 below.

A1l calculations were done in 35-digit precision.

Table 5.2-3. Summary of Tests on Problems P1 and P2.

Order of

Method Method Used Problem Results
4 A(1.377, 0.650)-Stable P1 Stable
4 BLCF Pl Unstiable
5 A(1.431, 0.092)-Stable P2 Stable
5 BOF P2 Unstable
6 A(1.321, 0.121)-Stable p2 Stable
6 BDF p2 Unstable

B i
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Both P1 and B2 are complicated by the prob:lem of stifiness.

Notice the near-cptimal sixth order method soived the prohlem P2

accurately whereas the fifth order BDF was unstable.

The difference in the relative stability radius is important

as we see in the following example.

Consider the problem

y' = -8y, y(0) = 1, x<{0, 10].

(5.2-2

We solve this problem with the fourth ordsr A(1.377, 0.650)-stable

method and the fourth order BDF using a constant stepsize of h = 0.1,

The results are given in Table 5.2-4 which follows.

Table 5.2-4.

Solution of Problem (5.2-2).

70

)

Step True Feurth

Order Br

No. Solution Cefculatea

Actual Lrror

_A(1.377, ©.650)-Stable

Calculated

{ctueal Lrvor

0 0.1000Q+01 0.1000Q+01
25 0.2051Q0-03 0.26700-06
50 0.4248Q-17 0.3318Q-12

0.0
~0.2050Q-05
-0.3318Q-12

0.1006Q+01
-0.2179¢-03
0.4131Q-17

0.0
0.42403-C8
0.11780-18

The previous test problems P1 and P2 demonstrated the need for

methods with higher values of alpha whercas this problem demonstrates

the possible effect of smaller regions of eccuracy about the origin.

The relative error after 50 steps in 0.02773 and 0.7811.]05 for the

near-optimal and BDF methods,

respectively.

We close with one more demonstration which accents the value

of these near-optimal methods as multi-purpose methods.

Lambert [28,

38 2 o Aot fod g rn DU R e bwins A vt w4 ¢
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We solve this nroblept witii the fourch ordar Adao =i coa metand and
1

P RER IS Ciamey Tl Ve I -
-otable motiod from Toblz 5.2 1. the

St

the fifih order A(1.259, 0.437

(>4

i

[N

)

resJits given in Tabic 5.2-8 wore obirined usiig a corstant siepsize

cf 0.01.

Table 5.2-5. Solution of Pr Uil {8.2-7)

Step Trua e~ Prgmn-igniton | Oth Ordar Rear-Optipal
toAactust Lerore Caloulz.ed nCtuoal myver

Ho. Solution Tzlcuiated

0 G.1000Q+07  0.1(20%+01 0.0 0.30000+01 3.0

2b 0.7788 0.7788 0.4557¢-10 0.7788 Q.02714-11
50 ¢. 6965 0.6035 0.7532-16  6.6085 0.171143-1C
75 0.4724 0.4724 0.904€,~10  0.4724 0.13569-10
100 €.3679 0.367: 0.94910-10 0.3679 1 1426Q-10

As expe. ted, we see the large difference in 2rror conctants
for these two methods (-0.0263% and -0.4 for the Acams-Mculton and
near-optiwal nrihods, respectively) is more than offset fov ta.s
stepsize by u.ing a methed of one nrdzr higher. An 2liernative
method of compt sating .or the larger error censtant is by decreasing

the stepsize bu retaiming the same order. We do this with the
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fourth order A(1.377, 0.650)-stable method and a stepsize of 0.005.

The results are given in Table 5.2-6.

Table 5.2-6. Solution of (5.2-3) by Fourth Order Near-Optimal Method.

Step True Yolution Calculated Actual Error
0 0.10833+01 0.10009+9: 0.0
50 0.7780 0.7783 0.2269 Q-10 .
100 0.6065 0.6065 0.3580 7-10 ;
150 0.4724 0.4724 0.4356 Q-10 |
200 0.3579 0.3679 0.4553 Q-10 5

o wle bt

We see the error for Llhis fourih order solution is

PR T

approximately one-half that of the fourth ordcr Adams-Moulton solution
given in Table 5.2-5. irom an examination of the problem independent
part of the methods' error terms, we would expect more accuracy from
the near-optimal meihod as lung as the ratio of the stepsizes was iess
than 0.6.

In this investigation we have found a large nurbe: of neer-
optimal meilhods and it is neither practical nor necessary to Tist the
coefficients of all these methods. For those methods listed in }
Table 5.2-1, we give the rational coefficients in Appendix C. In

Appendix D we chart the properties of many selected methods which

PR R N Y

indicate the relalionship between alpha and the radius discussed in
the previous section. A relationship similar to that is indicated to

exisis between alpha and the radius when instead of fixing the error :




R E T TR TR T e e

constanti Cp+]/0(])’ we fix the error constant Cp+]/a"]. ior the
class C(4, 4) we chart the latter relationsiiips in Appendix t. Ii
is interesting to note how weil-defined these curves are, evidently
indicative of the geomelry of the rauge for the function with which
we work.

There remains questions of interest in this area which have not
been investigated. For examnle, as periains to siiff systems, we
clearly need to determine wiether resuits as rewarding as we have found
herc await our investigaiion into higher orders. Ir addition, ther2
may exist wiconventional metheds which could be successfully epplied
to large classes of stiff problems. There currently exists many
conputational difficulties which must be deait with in stifi codes
employing Li. For example, since the impiicit relation is solved by
a form of hLewton iteration, no small difficulty is presented by the
need to calculate wne Jacobian, especially for large systems. Even so
we find LMM are the most popular methods used tv solve stiff sysiems.
This indicates great potentiai exists for a different approach. As
pertains to non-stiff methods, there is an open question of how best to
pair predictors and correctors in P-C methods. Do near-optimal
predictors and near-optimal correctors pair to yield near-cptimal
P-C algorithms? Also as mentioned in Chapter IV, the question of how
far the stability regions of predictors can be extended for fixed error

constants remains open.
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In the matrices given below we list only the numeraior of H
the entries. All entrics of tle matrix for %{n, n) have the comscn j
denominator Dn.
E €(2,2),9p=2
i 31 -4
i 11 2 '
! z
i (3. 3)Ds = 12 ‘
g: -~ -~ :
k 25 5 4 -361 y
- ' 2
3 “~r
] -16 & 15 ao! H
3 5 -1 1 -12! i
E ;
3 !
; C{4, 4) Dq = 24 :

5 9 8 8 -Gf]

59 12 32 27 144 ol

3 37 -5 8 27 -86 1

5 | -2 1 0 9 24 :
. c(5, 5), D5 = 720

3 T1e01 251 232 243 224 -3600] %
-2774 646 992 918 524 7200 :

2616 -264 192 648 284 -7200
-1274 106 32 378 1024 3600 :

i
™
(%3]
—~—t

!

L d
Il
]
(o=
1
~N
~
N
no
&
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C(6, 6), Dg = 1440

[ 4277 4:5 448 459 448 475  -8640~
-7923 1427 2064 1971 2048 1875 21600
. 9982 -798 224 1026 768 1250 -28900

-7298 482 224 1026 2048 1250 21600
2877 -173  -96 -18% 448 1875 8640

L -475 27 16 27 0 475 1440

C(7, 7)., Dy = 60480

198721 19087 18224 16495 1u304 18575 17712 -£233607]
-447288 65112 90240 87480 89083 87C00 93312  127€080
705549 464617 528 31347 24576 31875 11654 -2116800
-638256¢ 37504 21248 58752 96256 83000 117504 2116800

&

407132 -20211 -12912 -7i9683 11136 58125 11664 -1270G80

At

E
g
y:
E
2 29
&
=
.;1

~134472 6312 4224 583z 3072 28200 93312 423360

L 15087 -863 -592 ~783 =512 -137% 17712 -C0489
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C(8, 8), Do = 120960

434241 36799 35424 35775 35584
~-1152169 139849 187648 183465 185344
2183877 -121797 -20448 37179 27648
-2664477 123133 78336 160029 228352
2102243  -88547 -61664 -81891 -13568
-1341723 61499 29952 37179 27648
295767  -11351 8352 -10071  -3192

P

_ ~36799 1375 1024 1215 1024

35775 35424 36799 -967643] f
183625 186624 175273 3386880
34875 23328 64827  -6773760
208125 235008 146461 8457200,
68125 23328 146461  -6773760
85275 186624 64827 3356880
-12735 35424 175273 -967680
1375 0 36799 120850 :
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€(9, 9), Bg = 3628300

-43
95
-139
137
-91

125
476

042

[~ 14 097 247

206
786
262
4860
642
486
105
17

753 7%(

188
958
100
273
228

286 ¢

~-30

070
467
604

[
O
(&3}

033
146
291
312
-33

017
094
594

120
338
214
874
953

[&2]

036 064
842 688
359 808
842 816
715 840
361 296
99¢ 928
263 958

~26 656

046 682
716 433
340 942
601 566
384 160
152 546
654 322
562 218
-57 281

1 043 361

5 743 062

278 478

6 474 654

-4 548 960

1040 128
779 456

<

62 464
8 384 512

2 363 392

~27 392

-32 659 205~
130 636 820
-340 819 200
457 228 800
-457 228 300
304 819 200
~-130 636 800
32 659 200

-3 628 800
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The following coefficients are given for the methods

referred 1o in Table 4.2-1.

The numerators of the coefficients are

listed in the tables below and each order has a common dencminator

denoted by D.

Table B-1.
Ceefficient 4th Order 5th Order 6th Order
@ 4 -300 -720 0060 000 -14 409 000
% 561 1 705 707 360 40 006 080
o ~-462 -1 697 984 640 -39 241 440
0y 207 987 585 120 17 628 4£0
ag -30 ~297 997 440 -8 373 609
oy 22 683 600 6 521 760
Qg -2 141 280
BO 570 1 533 770 509 33 963 773
B] -869 -3 284 474 686 -97 823 787
82 592 3 245 856 024 119 961 838
83 -143 -1 604 272 786 -81 922 322
84 303 066 559 32 649 093
85 -6 153 235
D 300 720 000 000 14 400 000
83
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Table B-2.

Coefficient 7th Order 8th Order 9th Order
o_3 -604 800 GO0 -1 209 600 000 ~-36 288 090 00C
o 1 479 522 240 2 352 £33 080 68 929 56 0GC
oy -1 562 984 640 -2 067 206 409 -57 556 396 8CC
ay 1112 045 763 1677 £73 280 44 478 291 600
oy -599 477 750 -895 950 720 -2% 75¢ 760 090
aty 252 383 040 456 624 GO0 25 353 0v4 400
s -76 688 640 -411 022 089 -13 684 254 &30
e 0 12 096 000 -2 874 841 600
oy 85 155 840 232 243 280
og 762 05 000
By 1 698 535 399 3982 004 743 131 051 87y 512
By -5 101 9380 072 -12 450 561 759 -461 208 029 296
By 8 017 316 643 23 395 158 971 1 008 365 805 136
3 By -7 743 202 432 -28 566 €54 731 -1 467 668 483 312
: By 4 524 155 853 22 109 841 209 1 435 089 863 680
2 B -1 570 919 256 -11 107 58 069 -956 912 924 432
8 Bg 209 655 425 3 248 488 993 493 247 572 176
B, -361 187 577 -98 967 442 25¢
Bg 11 306 355 592
D 604 §00 000 1 209 600 009 36 288 €920 0900
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The following coefficients are given for the mathods referred
to in Table 5.2-1. The numerators of the coefficients are listed in
the table below. The coefficients of cach method have a common
denominator denoted by D.
Table C-1. Fourth Order, Cg/o{1) = -0.200. |
A(1.481, 0192;- A(1.414, 0.47)- A(1.377, 0.650)-
Coefficients Stable Stable Si. vie
o -30 00 060 -909 -240 009 :

v} 60 267 000 1800 464 400
u -38 319 029 -1259 -306 €5) %
a 1743 0°9 360 87 ¢85
a 6 305 003 ¢ -5 083

P I R

B 14 032 375 415 10¢ 512
80 1187 750 50 24 165
B] -10 470 009 ~240 -64 993
B 5 782 250 110 12 199 ‘ %

B 3 551 625 25 4 829

w

D 30 000 000 8GO 240 00C
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Table C-2. Fourth Grder, CS/O(]) = -0.500.

A(1.535, 0.142)-  A(1.5171, 0.294)-  A{1.445, 9.5%:)-
Coefficients Stable Stable Stable

o, ~900 000 009 -900 029 -90 039 090

@ 2 312 270 00 2 448 000 202 104 00

. _2 057 940 000 ~2 520 000 160 425 000 fo
o, 630 909 000 1 176 000 52 ©82 000 o
2 14 672 63 ~168 020 -5 661 02 ;
B, 424 431 625 437 675 45 458 925 :

B, _231 112 750 -317 450 20 035 950 :

B ~377 402 G0O ~264 200 -9 652 200

305 314 G

16 655
930 000

323
-79
800

80 005 000
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Table C-3  Fifth Order, Cg/o(1) = -0.400.
A(1.431, 0. A(1.338, 0.3%9)- AR(1.259, ©
Coefficients Stabie Stable Stable
®_y -9 (30 CCO0 -9 0C0 000 -720 000
g 27 720 (00 24 120 60O i 820 0C0
o -35 100 0090 -26 100 009 -1 728 000
a, 22 500 009 14 403 €00 792 GO0
ag -7 200 050 -3 600 0D -144 000
a, 1 08D GOO 180 00C 0
B_] 4 159 875 4 0i3 625 321 408
BO -4 117 125 -1 923 375 -101 &40
B -1 212 750 -2 450 250 ~202 720
By 4 057 250 2 829 750 117 120
B3 -1 537 125 -693 375 38 240
By 259 875 -156 375 -28 208
D 9 000 0OC 2 000 009 720 000
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;. Table C-4. Tifth Order, C6/011) = -{0.800.

R e PG A

A(1.485, 0.077)- A{1.462, 0.155)- A(1.30
Coefficients Stabie Stubhle St

i ¢ q -8 000 000 -14 400 -9 600 600

e AT e T
L l’y’i,. b

e 23 80C GO0 44 640 27 352 239

ok i1 S A bt 4 Y
N o

E o -35 699 000 -54 720 -33 753 600 ;
1 o, 20 700 090 3 620 21 636 960

§ oy -4 £C 000 -7 200 -7 236 600 |
% o 0 0 989 ¢30 |

= B 4 218 125 6 71 4§ 1¢6 335

. B -4 726 875 -6 33 -3 £35 235

E B, -2 011 250 -2 998 -1 459 110 K
- 8, 5 188 750 7 242 340 690 i
= By -1 576 875 -2 353 -1 577 785 T
: B, -191 875 -329 223 905 ¥

s
b

¢ ©00 00C 14 400 9 000 000
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Table C-5. Sixth Order, C.]/c(l) = -0.900.
A(1.321, 0.121)-  A(1.284, 0.29¢)-  A{1.065, G.435)-
Coefficient Stable Stakle Stabie
o 14 400 030 -€04 890 000 -604 800
i % 45 £24 0G0 2 D47 (65 5(0 1 959 552
o -72 000 900 -2 803 040 003 -2 721 600 P
o, 53 280 000 2 177 280 000 2 116 850 E
g -18 720 000 -846 720 000 -967 680 ;
% 1 440 60O 117 996 4£3 241 920 % ;
s 575 000 12 216 679 -26 192 1
i 6 562 520 266 974 985 274 447
By -8 114 120 -302 §86 €00 -330 695
8, 1 415 800 -84 322 L4 114 147 5
5, 4 667 6C0 310 644 725 -50 448 :
By -1 129 200 ~148 424 094 103 437 %
8, -1 858 120 -14 144 400 -81 720 é
B 894 520 23 388 886 21 313 : jé
i D 14 400 000 604 800 000 604 800 : 7%
. ’ f%
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APPEHDIX D
RELATICHSIIP OF ALPHA VS. RADIi . FOR FTXED GLOBAL ,
TRUKCATION ERROR CONSTARTS
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RELATIONSHIP OF ALPHA VS. RADIUS FOR FIXED LOCAL
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TRUHCATION ERROR CONSTANTS
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Calculations below were carried out on an Amdahl 370/V7 in

35-digit precision. Numbers less than approximately 10"78 in magnitude

are represented as 0.0.

Table F-1. True Solution of Problem P1.

Step First Component Second Com-onent
(h=0.005) Real Imaginary Real Imaginary

0 0.2000Q+01 0.0 ~0.9900Q+C0 0.3730Q+01
200 0.3679G+00  0.2794Q-43 -0.79850Q-43

0.1193Q-42
400 0.1353¢+00 0.0 0.0 0.0

600 0.4979Q-01 0.0 0.0 0.0
300 0.18320-01 0.0 0.0 0.0

ARG DGR DARI DRI AT

1000 0.6738Q-02 0.0 0.0 6.0

L .
o ks v b Ar ool gl i, Y g dipr gttt Thont v fiaterk P b Wiy etehaes s o
;J“n‘nwn’éiﬁ:‘hvﬂuqm Ll Hdy A b s e Fadly s Vet i

7
LA
3
\

Table F-2. Calculated Solution of P1 by Fourth Crder A(1.377, 0.650)--
Stable Method.

st fae By

£
"

SRR

Step First Component Second Component
(h=0.005) Real Imaginary Real Imaginary

o

A
i

%

.‘F-:& ] ﬂ%’f

0 0.2000Q+01 0.0 -0.9900Q+00 0.3730Q+01
200 0.3679q+00 -0.1916Q-05 0.6626Q-05 G.3862Q-05
400 0.1353Q+00 0.47720-11 -0.1198Q-10  -0.2664Q-10
600 0.4979Q-01 -0.1773Q-.7 -0.2188Q-16 0.1091Q-15
800 0.]852Q-0] -0.5826Q-22 0.3095Q-21 -0.2697Q-21

1]

T
e
Oyl

."‘ v

v 5 A s
A .n%;ﬁl
s LR oS

2,

1400 0.67380-02  0.3869Q-27 -0.16010Q-26 0.2124Q-27
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Table F-3.

o - - TWRE TR RIS A T
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Actual Global Error of Calculated Solution of P1 by
Fourth Order A{1.377, 0.650)-Stable Method.

Step

First

Component

Real

Imaginary

Second Component

Real

Imaginary

200
400
600
300
1000

0.0
-0.5267Q-06
0.3970Q-10
0.1872%-10
0.9199Q-11
0.4234Q-11

0.0
0.1916Q-05
-0.4772Q-11
0.1773¢-17
0.5826Q-22
-0.3569Q-27

0.0
-0.6626Q-05
0.1198Q-19
0.2118Q-16
-0.3095Q-21
0.1601Q-26

0.0
-0.3862Q-05

0.2664Q-10
-0.1019Q-15

0.2897Q-21
-0.2124Q-27

Teble F-4.

Calculated Solution of P1 by Fourth Order BDF.

Step
(h=0.005)

First

Component

Second

Component

Real

Imaginary

Real

Imaginary

0
200
400
600
800

1000

0.2000Q+01
0.9475Q+01
0.212201#03
-0.8181Q+03
-0.1285Q+06
-0.2008Q+07

0.0

0.59682+01
-0.1348Q+03
-0.5742Q+04
-0.3738Q+05

0.2348Q+07

~0.93800Q+00
-0.3128Q+02
0.2928Q+03

T 0.2223Q+05

0.26690+00
-0.6769Q+07

0.3730Q+01
0.2806Q+02
0.92453+03
-0.2633Q+04
~-C.4424Q+06
-0.9815Q+07
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Table F-5. Actual Global Error of Calculated Solution of P1 by Fourth
Order BDF.

LA L A
e fol

First Component Second Comnonent
Step Real Imaginary Real Imaginary

0 0.0 0.9 0.0 0.0
200 -0.91070+01 -0.5568Q+G1 0.3128G+02  -0.2806Q+02

T s A
"

400 -0.2121Q+03  0.1348Q+03 -0.2128Q+03  -0.9245Q:03

600 0.818243+03  0.5742Qi04 -0.22230#05  -0.2533Q+04
800 0.1285Q+C6  0.3738Q+05 ~0.2665Q+06 0.4424Q+06
1000 0.20083+07 -0.2348Q+07 0.6768Q+07 0.9815Q+07
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Table F-6. True Solution of Probliem P2.

o

Loy

L
s

Step First Component Second Component
(h=5.005) Real Imaginary Real Imaginary

s st 1 8, W ot A Lt R i

0 0.2000+01 0.0 -0.9900Q+00  0.2500Q+01
i 200 0.36790:00 -0.36100-43  0.81390-43  0.58160-43
4 0.13530+00 0.0 0.0 0.0 S
0.4979G-01 0.0 0.0 0.0
0.18320-01 0.0 0.0 0.0
0.67380-02 0.0 0.0 0.0
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Table F-7. Calculated Solution of P2 by ifth Order A(1.431, 0.092)-
Stable Method.
Step First Component Second Component

(h=0.005) Real Imaginary Real Imaginary
0 0.2000Q+01 0.0 -0.9900Q+G0 0.2500Q+01
200 0.3672Q+00 -0.5067Q-12 -0.8277Q-12 0.5867Q-11
400 0.1353Q+00 -0.4956Q-23 0.7781Q-22  -0.16043-21
600 0.4979Q-01 -0.1757Q-31 -0.4509Q-32 0.4582Q-32
800 (.18320-01 -0.6335Q-32 0.22430-42 -0.1293Q-42
1000 0.67368Q-02 -0.1333Q-32 -0.96320-53 0.2167Q-53

Table F-8. Actual Global Error of Calculated Solution oi P2 by Fifth

Order A(1.431, 0.092)-Stable Method.
First Component Second Component
Step Real Imaginary Real Imaginary
0 0.0 0.0 0.0 0.0

200 -0.2413Q-11  0.5067Q-12 0.8377Q-12 -0.5967Q-11
400 -0.1687Q-12  0.49469-23 -0.7781Q-22 0.1604Q-21
600 -0.9338Q-13 0.1757Q-31 0.4609Q-32 -0.4982Q-32
800 -0.4588Q-13 0.6335Q-32 -0.2243Q--42 0.1293Q-42
1000 -0.2112Q-13  0.1333Q-32 0.9632Q0-53 -0.2167Q-53
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Table F-9.

Calculated Solution of P2 by Fifth Order BDF.

102

Step First Compcnent Second Component
(h=0.005) Real Imaginary Real Imaginary
0 0.2000Q+01 C.0 -0.9900Q+00 0.2500G+01
200 0.93650+03  0.2558G+04 -0.73210+¢04  -0.19140+03
400 0.1696Q+08  0.6429Q+08 -0.1775Q+09  -0.21243+08
600 0.2666Q+12  0.1601Q+13 -0.4267Q+13  -0.9187Q+12
809 0.28523+16  0.39530+17 -0.1016QG+18  -0.3200Q+17
1000 -0.2026Q+20  0.9673Q+21 -0.2398Q+22 -0.1008G+22

Table F-10.

Actual Global Error of Calculated Solution ¢f P2 by
Fifth Order BDF.

First Component

Second Component

Step Real Imaginary Real Imaginary
0 0.0 0.0 0.0 6.0
200 -0.9362Q+03 -0.2558Q+04 0.7321¢+04 0.1914Q+03
400 -0.1696Q+08 -0.64290+08 ~ 0.1775Q+09 0.2124Q+08
600 -0.2666Q+12 -0.1601Q+13 0.4267Q+13 0.9187Q+12
800 -0.2852Q+16 -0.3953Q+17 0.1016Q+18 0.3200Q+17
1000 0.2026Q+20 -0.9673Q+21 0.2398Q+22 0.1008Q+22
..,‘3 —~
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Calculated Solution of P2 by Sixth Order A{1.321, 0.121)-
Stable Metned.

Step First Comnonent Second Component
(h=0.005) Real Imaginary Real Imaginary
0 0.2000Q+01 0.0 -0.99009Q+00  0.2500G+01
200 0.3679Q+00 §.5007G-10 -0.4715Q-09 0.75153-02
400 0.1353q+00 -0.2089Q-18 0.4503Q0-18  0.3855Q-18
600 0.4379Q-01 -0.6950G-28 0.3033Q-27 -0.258G5-27
800 0.1832G-01 -0.2182Q-31 -0.1408Q-36  -0.22759-36
1000 0.67389-02 -0.5375Q-32 -0.1651Q-45  0§.7022Q-46

Table F-12.

Actual Global Error of Calculated Solution of P2 by Sixth
Order A{1.321, £.121)-Steble Method.

First Comoonant

Second Ccmporent

Step Real Imaginary Reai Imacinary
0 0.0 0.0 0.0 0.0

200 -0.3246Q-0% -0.6007Q-10 0.4715Q-09  -0.75194-09

400 0.3810Q-14 0.2082Q-18 -0.4502Q-18  -0.3885Q-18

600 0.21130-14  0.6950Q-28 -0.3034Q-27  0.2590G-27

800 0.1039Q-14 0.2182Q-31 0.1408Q-36  0.22750Q-35

1000 0.4786Q-15 0.5375Q-32 0.1651Q0-45 -0.7022Q-46
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Table F-13.
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Calculated Solution of P2 by Sixth Ordéer BDF.

s = e e
- ST

104

Step
(h=0.005)

First Component

Rezal

Imaginzry

Sccond

{omponent

Real

Imaginary

0
200
400
600
800

1000

0.20G50+C1
-0.76673+14
0.357943+25
-0.8016Q+44
0.1467Q+(5
-0.25083+75

0.5

-0, 42100413
€.594350Q:20
~-0.7511Q+44%
0.87524+59

-0.821¢€G+74

-0.99000+30
0.12450+15
-0.18250:30

(4]

0.26950+3
-0.36403+60
0.4537Q+75

0.2555G+01

0.19354+13

C.4061G+29

-0.12504+55

0.2800Q:65

-0.58533+75

Table F-i4.

Actuzl Global Erver of Calculaied Solution of P2 by Sixth

QOrder BOF.

Ste

First Component

Raal

Imaginary

Second Component

real

Imaginery

2888 8

1

0.0
0.1667Q+14
-0.3979&*29
0.8015G+44
-0.1467¢+60
0.2508Q+75

0.0
0.4319G:14
-0.5945Q:29
0.7611Q:44
-0.82753Q+59
6.82160+74

0.0
-0.1245Q+15
- 0.1880G33
-0.2696Q+4%
0.3640%:6C
-0.4537¢+75
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