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I. INTRODUCTION

This report describes the work; performed on Contract DAABO7-77-C-0010 for
the U.S. Army Electronics Command. Arhe report documents the development of a
low loss single section coupled cavity traveling wave tube designated as a

Booster Tube which may be used in military satellite communication ground
terminals.

The primary objective of the program was to design, fabricate and test a
prototype tube which would deliver 5 kW of CW power in the frequency band of
7.9 -8.4 GHz with 10 dB of saturated gain and low insertion loss.

The first task on the program was the modification of a design previously
tested at a higher power level and the analytical optimization of this design.
This was followed by the fabrication of test circuits for cold rf testing. An
electron gun was designed with a modulating anode and tested in the beam ana-

lyzer. These tasks then led to the design and construction of a prototype
tube.

The tube was tested using a high power klystron as a driver. The klystron
was tuned in 100 MHz steps across the band and the power, gain, amplitude phase
and stability were measured. These data are presented in the contents of this
report.
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II. ELECTRICAL DESIGN
A. ELECTRON GUN

A gun using a modulating anode for control of the beam current was
selected for the tube. The modulating anode is used to allow the booster tube
to be cut off during normal feed-through operation. When the system requires
an additional 10 dB of power output, the modulating anode is then switched to
ground potential turning the tube on to full beam power.

The most difficult task in the gun design is to obtain the required shape
of the magnetic polepiece and anode while maintaining the required spacings for
arc-free performance. The magnetic polepiece was designed for confined flow
focusing. This means that the magnetic field lines should closely follow the
electrostatic electron trajectories in the cathode-anode region.

The performance of a traveling wave tube is critically dependent on the
beam size. The effective diameter determining the interaction between the beam
and circuit is close to the 50% point in current density distribution. The

largest possible effective beam filling factor is desired for high gain and
conversion efficiency.

A design goal of 5% beam ripple was selected. In order that this percent-
age of ripple be achieved in the design and still maintain the gun electrode
spacing for arc-free performance, a gun coil was added in the solenoid design.
This gun coil shapes the magnetic flux lines in the gun region to launch the
beam into the main uniform magnetic field with minimum ripple.

The gun was designed by first using computer calculations. The computer
esploys a relaxation technique to calculate the potential, including effects of
space charge. Based on this potential, electron trajectories are calculated
with and without magnetic field. The computer model injects electrons with the
correct denaity and velocity. The electrode shapes are then altered until the
desired beam is obtained. The design goal is fairly uniform spacings of the
electron trajectories along the beam path, but especially near the beam
minimum.
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A gun model is assembled and operated in the beam analyzer. The beam
analyzer results are compared to the computed results, and the electrode shapes

are altered, if necessary, to improve gun performance. When a good electro-

static beam is obtained in the beam analyzer, the magnetic field is applied and
the shape adjusted to acquire a low value of beam ripple.

The beam analyzer measures the current density across the beam at a number

of axial positions, starting from the magnetic aperture near the anode and

extending down the uniform region of magnetic field. These measurements give

the exact behavior of the gun and beam in terms of average beam ripple.

The beam profiles measured on the final gun design are extremely good.
With the use of the gun coil, a minimum of 2% of beam scalloping was achieved.
Figure 1 shows a cross-sectional view of the gun.

B.  CIRCUIT

The circuit design for the tube was accomplished by scaling the higher

power tube design described in Varian Technical Proposal No. 76-30137 dated
April 1976.

The circuit design sealing was accomplished by computer calculations.
Both small signal and large signal calculations were carried out.

Figure 2 shows the calculated small signal gain for the booster tube. The

calculations were carried out for two circuit sections, a twelve-cavity section

and a fourteen-cavity section. The twelve-cavity section operating at 13.5 kV

at a beam current of 2.0 A had an average gain of 17 dB but rolled off at the
upper band edge to 15 dB.

The fourteen-cavity circuit operating at 13 kV and 1.6 A of beam current

produced a well balanced gain over the band with a minimum gain at 18 dB at the
band edges and 19.6 dB at band center.
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Figure 2. Small Signal Gain Calculations
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Large signal calculations were carried out on the twelve-cavity circuit to
find the power output capability of this circuit design, and the large signal
gain expected.

Figure 3 shows the power output calculated as a function of frequency and
by varying the drive power in 3 dB steps starting at 100 W. The calculations
show that the tube had adequate power to meet the 5 kW CW requirements at 400 W
drive.

Figure 4 shows the large signal gain behavior of the tube at various drive
powers. These calculations were again carried out with a beam voltage of 13.5
kV and a beam current of 2 A. AS can be seen at the 400 W level of rf drive,
the large signal gain meets the 10 dB required goal.

Based on the calculations carried out, a thirteen-cavity booster tube was
designed and constructed. The choice of using thirteen cavities instead of

twelve or fourteen was because of waveguide considerations in the solencid.

Figure 5 shows the transmission insertion loss measured on the tube. As
can be seen, the insertion loss measured over the band of interest is approxi-
mately 0.9 dB. This insertion loss measurement includes reflections from the
circuit and transitions.

Figure 6 shows the match data achieved on the tube looking through both
waveguide transitions. The maximum VSWR of the circuit was 1.65:1.

C.  STABILITY

The dc band edge oscillations are instabilities which occur either because
of regenerative gain effects at or near the upper band edge (BL 2) of the

circuit as a result of large, backward wave generated power on the circuit, or
because of resonant trapped energy on the circuit caused by poor ecircuit
matches in tne region of circuit cutoff frequency. In broadband tubes, there
is little margin between velocities associated with synchronous interaction at
the band edge frequencies and those required for interaction over the operating H
band.
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The band edge oscillation usually manifests itself as a monotron-type
oscillation which requires the total loop gain of a uniform circult at the band
edge frequencies. At these frequencies, which are the upper cutoff of the
operating mode, the group velocity of the circuit is approaching zero, and the
impedance of the circuit is going to infinity. Usually, these oscillations are
suppressed at the operating voltage and current by use of distributed loss
within the circuit, limiting the gain of the circuit and judiciously choosing
the number of lossless cavities in the output section without too severely
compromising the efficiency.

Another type of oscillation problem which tends to plague high efficiency,
coupled cavity TWTs is an oscillation which is associated with high levels of
rf drive. This oscillation is commonly referred to as a drive-induced oscilla-
tion. This instability occurs at or near saturated output power conditions,
and the oscillation frequency is, again, at the band edge frequency. Because
these instabilities only seem to occur at or near saturation, it was deduced
that these oscillations must be associated with large-signal effects within the
tube. This means that the oscillation must originate at the output end of the
output circuit. Experiments on different tube types have borne out this
hypothesis.

The output circuits of coupled cavity TWTs are usually designed to have a
lossy and a lossless cavity section within the same circuit for reasons previ-
ously stated. These cavity sections, by design, have the same upper cutoff
frequency. The lossy section of the circuit results in an impedance mismatch
to the lossless section of the circuit, thereby reflecting the band edge fre-
quency. This reflection may be canceled in cold matching the circuit by intro-
ducing another mismatch in the output line., Although the sum of these reflec-
tions might show, on a cold test basis, that the circuit appears well
terminated at the band edge frequency, a trapped mode exists within the cir-
cuit. At this high Q trapped mode frequency, the lossless section of the
circuit now appears similar to an extended interaction klystron. When the TWT
. is operated at or near saturation, enough slow electrons are produced by large
signal velocity spread in the beam to be synchronous with the trapped mode and
cause the rf oscillations.

11




The booster tube was designed by specifically limiting the gain of the
circuit at the upper band edge so that the tube would be dc stable at the
operating voltage and current without the use of loss. Further, the design of
the upper cutoff frequency characteristics of the circuit is such that the
large signal cavities near the output of the tube would be well terminated in
both directions of the eircuit without trapping modes and lowering the Qext of
the band edge frequency.

Stability calculations on the twelve- and fourteen-cavity design were
carried out. Figure 7 shows the results of these calculations. The calcula-
tion is made by computing the minimum start oscillation current for a fixed
voltage. Figure 7 shows that the tube design has adequate margin at the oper-
ating voltage of 13 kV at 2 A of beam current. The calculations further show
that the tube should not oscillate above 9.5 kV.
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III. TEST DATA

Because of the unavailability of a broadband 500 W power source to test

the tube, a klystron drive source which was tuned in 100 MHz steps over the
band was used.

The power output over the band was measured and presented, showing the
drive power measured through the tube when the beam was turned off (Figures 8
through 12).

Gain characteristics of the tube at various frequencies were also measured
showing the power output as a function of drive power (Figures 13 through 17).

Amplitude data was also measured and plotted and the data is presented in
steps of 100 MHz over the band (Figures 18 through 22). For the most part, it
was found that the booster amplitude tracked with the amplitude of the driver.

An attempt was made to measure the phase characteristics of the booster.
The measurements clearly showed that the booster introduced very little phase
variation. The measurements indicated that the narrow band phase of the
klystron was measured in all cases (see Figures 23 through 27). Finally, the
stability of the booster was measured against the calculation.

Figure 28 shows the results of the measured stability data. The measure-
ments showed that the start oscillation current for the tube was slightly lower
than calculated for the various voltages, and the minimum operating oscillation
has moved up from 9.5 kV to 10.5 kV. However, this left plenty of margin in
the tube design, which operated at a minimum of 13 kV.




TABLE OF OPERATING PARAMETERS

Beam Voltage
Beam Current
Ibody

Heater Voltage
Heater Current
Solenoid Current
Solenoid Voltage
Body Flow
Solenoid Flow

15

13.2
2.0
10
13.5
3.0
10
134
1.0
2.0
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Figure 28. Stability Calculations

36




