A reinvestigation of the claim that stannocene and H5-
OCT 80 T S DORY, J J ZUCKERMAN, C D HUFF N00014-77-C-0432
NL
A Reinvestigation of the Claim that Stannocene and h_5^-Cyclopentadienyltricarbonyltungsten Hydride Form Bis-h_5^-cyclopentadienyltricarbonyltungsten) tin (II).

by

T. S. Dory and J. J. Suckerman
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019

C. D. Hoff
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

J. W. Connolly
Department of Chemistry
University of Missouri at Kansas City
500 Rockhill Road
Kansas City, MO 64110

Prepared for Publication
in
Journal of Organometallic Chemistry

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
A Reinvestigation of the claim that stannocene and h^5-cyclopentadienyltricarbonyltungsten hydride form bis-(h^5-cyclopentadienyltricarbonyltungsten) tin(II).

Reinvestigation of the claim that stannocene and h^5-cyclopentadienyltricarbonyltungsten hydride form bis-(h^5-cyclopentadienyltricarbonyltungsten) tin(II), the sole representative of a class of compounds in which tin(II) is attached to electropositive ligands, is revealed to be the facile halogenation product from the recrystallization from halocarbons of the tris-(h^5-cyclopentadienyltricarbonyltungsten)tin(IV) hydride which actually results from the action of the stannocene on the tungsten hydride. The tris-(h^5-cyclopentadienyltricarbonyltungsten)tin(IV) hydride, chloride,
and iodide are reported.
A Reinvestigation of the Claim that Stannocene and h^5-
Cyclopentadienyltricarbonyltungsten Hydride Form
Bis-(h^5-cyclopentadienyltricarbonyltungsten)tin(II).

T. S. Dory and J. J. Zuckerman
Department of Chemistry
University of Oklahoma
Norman, OK 73019

C. D. Hoff
Department of Chemistry
Kansas State University
Manhattan, KS 66506

J. W. Connolly
Department of Chemistry
University of Missouri at Kansas City
500 Rockhill Road
Kansas City, MO 64110
Of the seven categories of tin(II) compounds which can be potentially distinguished by tin-119m Mössbauer spectroscopy, one category, embracing tin(II) compounds with electropositive ligands, contains a single member, \([h^5\text{-C}_5\text{H}_5(\text{CO})_3\text{W}]_2\text{Sn}\). This vermilion solid was obtained by recrystallization from methylene chloride of the product from the exothermic reaction of bis-\((h^5\text{-methylcyclopentadienyl})\text{tin(II)}\) (methyl stannocene) and \(h^5\text{-cyclopentadienyltricarbonyltungsten hydride}\):

\[
n(h^5\text{-CH}_3\text{C}_5\text{H}_4)_2\text{Sn}+2n h^5\text{-C}_5\text{H}_5(\text{CO})_3\text{W} \xrightarrow{\text{THF}} \{\text{Sn}[\text{W(}\text{CP})_3\text{C}_5\text{H}_5-h^5]\}_n. \tag{1}
\]

The product gave apparently satisfactory analyses as formulated \([\text{Calcd. for C}_{16}\text{H}_{10}\text{O}6\text{SnW}_2}: \text{C}, 24.5; \text{H}, 1.3\%. \text{ Found: C}, 24.9; \text{H}, 1.7\%\]. The tin-119m Mössbauer spectrum was a doublet with Isomer Shift (I.S.) = 2.08±0.05 and Quadrupole Splitting (Q.S.) = 2.05±0.10 mm s\(^{-1}\). The magnitude of the I.S. value, which lies outside the tin(II) range, was at first attributed to the auto-oligomerization well-known in tin(II) chemistry which gives tin(IV) species with tin-tin bonds. A subsequent report gave the results of an osmometric molecular weight determination in chloroform as 1007 vs. the calculated value of 785 for the monomer \((n = 1)\) product depicted in Eq. 1. The mass spectrum was interpreted in terms of polyisotopic \([\text{P-}n\text{CO}]^+ (n = 4-6)\) and \([\text{P-}C_5\text{H}_5-m\text{CO}]^+ (m = 5,6)\) fragments. The rather large magnitude of the Mössbauer Q.S. value proved more difficult to rationalize, but analogy could be drawn with the dimeric \(\{\text{Sn}[\text{CH}[\text{Si(}\text{CH}_3)_3]_2\}_2\}_2\), I.S. = 2.16; Q.S. = 2.31 mm s\(^{-1}\), which also contains a tin-tin bond. The observed value of 2.05 mm s\(^{-1}\) would require a severely bent W-Sn-W angle, since
there is presumably little difference in electronegativity between these metal atoms. Electron release to tin in the monomeric product would, moreover, tend to give the lone pair predominantly 5p-character and shield the tin nucleus, reducing effective $|\psi(0)|^2$ and diminishing the magnitude of the I.S. value. Opening of the tungsten-tin-tungsten angle by the steric bulk of the cyclopentadienyltricarbonyltungsten moiety would have the same effect,¹ contrary to the high value of the I.S. actually found.²

Experience with the analogous tin-molybdenum derivatives teaches that the action of stannocene on molybdenum carbonyl hydrides is complex, yielding a tris-(molybdenum carbonyl)tin(IV) hydride product. In addition, the tin-hydrogen bonds in this series are readily halogenated by halocarbons under mild conditions.⁶ Thus, because of the unique role of the reported bis-(h⁵-cyclopentadienyltricarbonyltungsten)tin or its oligomers as the sole examples of a novel class of tin compounds,¹ we decided to reinvestigate the reaction depicted in Eq. 1.

We find by analogy to the corresponding reaction in the molybdenum series, that the product from the action of stannocene on h⁵-cyclopentadienyltricarbonyltungsten hydride is tris-(h⁵-cyclopentadienyltricarbonyltungsten)tin(IV) hydride:

$$(h^5-C_5H_5)_2Sn + 3HW(CO)C_5H_5-h^5\overset{THF}{\rightarrow}HSn[W(CP)C_5H_5-h^5]_3 + 2C_5H_6 \quad (2)$$

and not the bis-(h⁵-cyclopentadienyltricarbonyltungsten)tin previously claimed. Further, treatment with methylene chloride, chloroform or carbon tetrachloride produces a deep red solution containing tris-(h⁵-cyclopentadienyltricarbonyltungsten)tin(IV) chloride:⁷
\[
\text{HSn[W(CP)₃C₅H₆-h^5]}_3 + \text{CH}_n\text{Cl}_{14-n} \rightarrow \text{ClSn[W(CP)₃C₅H₆-h^5]}_3
\]
\[+ \text{CH}_n\text{Cl}_{14-n-1} \quad n=0, 1 \text{ and } 2 \]

It is this product that is formed by the procedure used in reference 2. The analytical data reported there fit this formulation [Calcd.: C, 24.98; H, 1.30%] better, the molecular weight of 1153 fits the measured value within experimental error, and the Mössbauer parameters are those expected from a tris-transition metal-substituted tin(IV) chloride. An absorption band is found at 352 cm⁻¹ in the infrared which arises from the ν(Sn-Cl) mode, and the δ(Sn-Cl) is found in the Raman at 151 cm⁻¹. Titration of the starting materials in an nmr tube confirmed the stoichiometry of Eq. 3. No signals arising from intermediates were observed, and the tris-compound is the sole tin-containing product even in an excess of stannocene.

Treatment of the hydride with 1, 3-dibromopropane or methylene bromide, or methyl iodide yields the tris-(h⁵-cyclopentadienyltricarbonyl)tungsten)tin bromide and iodide, respectively.

The properties of the four tris-(h⁵-cyclopentadienyltricarboxyl)tungsten)tin products are listed in Table 1.

Thus the synthesis of a tin(II) compound with electropositive ligands is still awaited.

Acknowledgements

Our work is supported by the Office of Naval Research (to J.J.Z.) and by the National Science Foundation under grant CHE-78-26548 (to J.J.Z.).
<table>
<thead>
<tr>
<th></th>
<th>E = H</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%C</td>
<td>Calcd. 25.75</td>
<td>24.98</td>
<td>24.06</td>
<td>23.15</td>
</tr>
<tr>
<td>Found</td>
<td>25.88</td>
<td>24.78</td>
<td>25.33</td>
<td>23.48</td>
</tr>
<tr>
<td>%H</td>
<td>Calcd. 1.43</td>
<td>1.30</td>
<td>1.25</td>
<td>1.21</td>
</tr>
<tr>
<td>Found</td>
<td>1.59</td>
<td>1.25</td>
<td>1.87</td>
<td>1.44</td>
</tr>
<tr>
<td>%E</td>
<td>Calcd. -</td>
<td>3.08</td>
<td>6.67</td>
<td>10.21</td>
</tr>
<tr>
<td>Found</td>
<td>-</td>
<td>3.36</td>
<td>7.07</td>
<td>9.97</td>
</tr>
<tr>
<td>Yield</td>
<td>72</td>
<td>86</td>
<td>68</td>
<td>83</td>
</tr>
<tr>
<td>m.p.</td>
<td>196-200°d.</td>
<td>212°d.</td>
<td>210-214°d.</td>
<td>185-189°d.</td>
</tr>
<tr>
<td>1H nmr (ppm)</td>
<td>4.93</td>
<td>5.02</td>
<td>5.03</td>
<td>5.03</td>
</tr>
<tr>
<td>Infrared ν(CO) (cm⁻¹)</td>
<td>2016(m)</td>
<td>2025(s)</td>
<td>2026(sh)</td>
<td>2028(sh)</td>
</tr>
<tr>
<td></td>
<td>1970(s)</td>
<td>1985(m)</td>
<td>1985(s)</td>
<td>1982(s)</td>
</tr>
<tr>
<td>Mössbauer (mm·s⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.S.</td>
<td>1.79±0.02</td>
<td>1.98±0.02</td>
<td>1.99±0.01</td>
<td>1.95±0.01</td>
</tr>
<tr>
<td>Q.S.</td>
<td>---</td>
<td>1.86 0.03</td>
<td>1.87±0.01</td>
<td>1.81 0.04</td>
</tr>
</tbody>
</table>

a W Calcd. = 49.32, Found = 50.09; %Sn Calcd. = 10.61, Found = 10.92.

b Lit. 198°.

c δ_H-Sn = 5.01 ppm; |J(¹¹⁷,¹¹⁹Sn-H)| = 2066 Hz.

d In THF.

e In CH₂Cl₂.

f Reported as 2012(w,sh), 2004(m), 1982(s), 1968(s), and 1913(s,sh), 1894(vs), 1880(s,sh) and 1866(m) in ref. 2 for the solid, and as 2015(m), 2005(m), 1979(m), 1948(m), 1922(s) and 1905(s,sh) in dichloromethane solution.
References

