Final Report
MECHANISMS OF SIMULTANEOUS LEARNING

Benton J. Underwood
Northwestern University

October, 1980

Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-78-C-0661
Contract Authority Identification No., 154-424

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted
for any purpose of the United States Government.
Title: Final Report: Mechanisms of Simultaneous Learning

Authors: Benton J. Underwood

Performing Organization: Northwestern University, Department of Psychology, Evanston, Illinois 60201

Controlling Office: Personnel and Training Research Programs, Office of Naval Research (Code 458), Arlington, VA 22217

Report Date: October 1980

Number of Pages: 121

Security Class: Unclassified

Distribution Statement: Approved for public release, distribution unlimited.

Keywords:
- simultaneous learning
- negative transfer
- recognition
- resource allocation
- recall

Abstract:
In various training situations it is common for the learner to be studying several different topics simultaneously. In our experimental work on simultaneous learning we restricted the tasks to the acquisition of two or more clearly distinguishable lists of words. Two questions dominated the research. The first question was concerned with negative effects that had been observed in earlier work. Subjects learned three lists in isolation for a trial before being given simultaneous learning on the three tasks...
When a list was to be recalled, positive transfer from isolated to simultaneous learning was usually very high. However, when recognition memory was tested, or when memory for frequency of presentation of the words was measured, negative transfer was usually quite heavy. In the extreme case, it was as if the prior learning had no lasting influence on the memory. Our experiments sought to give a more thorough empirical characterization of these negative effects.

The second question asked about trade-off effects when a subject is learning two tasks simultaneously. If subjects are asked to learn an easy task along with a difficult task, it might be expected that more learning resources would be allotted to the difficult than to the easy task. The evidence from a number of experiments indicated that any substantial inequality in the allocation of resources did not take place unless the easy task was easy because the learner had been given practice on it before it was merged with another task for simultaneous learning. Other variables, which produced rather wide differences in the difficulty of the two tasks being learned simultaneously, did not result in differential allocation of resources.

The technique of using the simultaneous learning of two or more tasks appears to have considerable potential for studying many problems in learning and memory. The technique may be used to make new tests of theories developed from single-task learning. An illustration is a test of the theory which asserts that the spacing effect results from an attenuation of attention. In addition, however, the technique produces new phenomena which cannot be produced in single-task learning. An illustration of this is the finding in our earlier work that long-term retention is a direct function of the number of lists learned simultaneously. Another illustration is the negative effects (noted above) which occur when the learner is moved from isolated learning to simultaneous learning.
Final Report
MECHANISMS OF SIMULTANEOUS LEARNING

Benton J. Underwood
Northwestern University

October, 1980

Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-78-C-0661
Contract Authority Identification No., 154-424

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted
for any purpose of the United States Government.
The experimental study of human learning and memory processes is nearly 100 years old. For most of that period the basic paradigm of research has been that of presenting the subjects a list of verbal units to learn and discovering the variables that influence the rate of learning and rate of forgetting.

In most training situations the learner is constantly shifting back and forth among various learning tasks that have been assigned. Thus, research using the single task is a representation for only a part of the learning which occurs in a training situation. It does not touch upon the phenomena which may evolve only because learners switch back and forth among tasks. It was to start to fill this gap in our knowledge that we initiated studies that came to be called simultaneous-learning studies. The first major work on this was published as a Technical Report in September, 1977, under the title "The Simultaneous Acquisition of Multiple Memories." In simultaneous learning the subject is given two or more tasks (we have used lists of verbal units almost exclusively) to study at the same time. This can only mean that the learner or subject moves back and forth between the lists. In all of the work done thus far we have used lists of items which are clearly distinguishable from each other. The memory for the lists may be tested by recall, or by recognition, or by other means, but the testing is separate for each list. In some studies the tests differed for each list. Thus, if the subjects were given three lists to learn simultaneously, one might be recalled, one might be tested by recognition procedures, and the other by requesting
frequency judgments of the items.

The research on simultaneous learning under Contract NO0014-78-C-0661, which is the topic of this final report, concentrated on two problems. The first evolved from the results of an experiment reported in the Technical Report of July, 1977, entitled "Recall and Recognition of Tasks Learned Simultaneously." For reasons that are not relevant at this point, we carried out an experiment in which the subjects first learned three lists separately (one trial each), one list being recalled, one being tested for recognition, and the third required the subjects to make judgments of the frequency with which the items had been presented during study. Following the isolated learning trial on each of the lists, they were presented for simultaneous learning for additional trials. The critical data are those obtained on the first simultaneous learning trial. These data showed that the learning which occurred in isolation when recall was used transferred essentially 100% to simultaneous learning. However, for recognition and for frequency information, very heavy negative transfer occurred. The first problem, therefore, concerned factors which are involved in producing this negative transfer.

The second problem arose as a result of certain findings in the September, 1977 Technical Report noted earlier. Indirect evidence led us to suspect that learners did not easily change their allocation of resources for the different tasks under simultaneous learning. That is, it did not appear that across trials the subjects changed appreciably the amount of time spent on each of the various lists. However, as noted, direct tests were not made of this. Our second problem, therefore,
constituted a study of the conditions under which subjects did reallocate study time and under what conditions they did not.

The research on each of these two problems will now be summarized.

Negative Transfer for Recognition or Frequency Judgments

Our purpose was to develop a more thorough empirical characterization of the negative-transfer phenomenon which occurred in moving from isolated learning to simultaneous learning. To that end we asked about the effect of degree of learning before the transfer, about the effects of rates of presentation, and about transfer from simultaneous learning to isolated learning. During the course of the experiments we also replicated the original experiment and then replicated that replication with minor changes. In all of these replications we found the same negative effects first reported for recognition and for frequency judgments, but with high positive transfer for recall. We note this consistency to underline some problems we had in the other experiments where consistency was not always found. In these other experiments, where degree of learning and rate were varied, we found marked variations in the magnitude of the negative effects, and we have been unable to provide an accounting of this inconsistency. Perhaps even more disturbing, we found some inconsistencies within a single experiment. On a more positive note we found that the negative effects were tied to the direction of transfer; they occurred only when moving from isolated learning to simultaneous learning, not in the reverse direction.

One hypothesis for the negative effects was that the new items used on the tests for recognition and for frequency assimilation
following isolated study resulted in those items gaining an old "flavor." Therefore, on the test following the first simultaneous learning trial they would be a source of false alarms. This hypothesis was tested and found to have no basis in fact. There was reason to think that the negative effect might be caused by associations which develop between items presented together for simultaneous learning. A study showed that such associations do develop, and they do so quickly. It remains an hypothesis that they are involved in the negative-transfer effect.

The results overall indicate that under particular conditions (which can be clearly specified) a very heavy negative transfer occurs for recognition memory and for event frequency; for event frequency the negative effect may be complete in that the performance on the first simultaneous learning trial is no better than for a group not having the isolated learning trial. The negative effect for recognition is almost as great. Recall learning shows only strong positive transfer. We have not discovered the basis for the negative effects. Moving from isolated learning to simultaneous learning can be said to represent a change of context, but that really does not explain anything. Further, were change of context taken seriously as a cause, then we would need to rationalize the fact that moving from simultaneous learning to isolated learning (which is also a change in context) does not result in negative transfer. And, we would have to ask why change of context results in positive effects for recall.

Allocation of Study Time

In recent years there has been more and more attention paid to
strategies that a learner might develop. The work on this second problem might be viewed as being related to the emphasis on strategies. In most of the experiments we have carried out on the allocation of study time, the subjects have learned two tasks simultaneously. One of the tasks is called the standard task, the other the variable task. The standard task remained constant across all conditions of a given experiment. The variable task was changed across conditions to make it have varying degrees of difficulty. The learners were always under instructions to learn as many items from both lists as possible. Thus, the potential was present for strategy changes in that the subjects might come to spend more of their study time (more of their resources) on the standard task when the variable task was easy than when it was difficult. To conclude that reallocation of resources did occur required that the learning on the standard task differed as a function of the difficulty of the variable task.

The results have shown that reallocation does not occur except under quite special conditions. There are several cases where it did not occur. In free-recall learning, the background frequency of words had a substantial effect on rate of learning (a high-frequency list is much easier to learn than a low-frequency list) but it did not influence the performance on the standard task. Performance on the standard task was uninfluenced when the difficulty of the variable task was changed by varying the level of intrastimulus similarity for a paired-associate list. Meaningfulness differences for the variable lists had no influence on the learning of the
standard list. When the variable task was made up of abstract words in one case, and of concrete words in the other, the learning rate was markedly different, but the standard task was not influenced thereby.

In two cases a shift in resource allocation was found. In one of these the variable list consisted of presenting at one extreme, 36 different words (the same number as in the standard task), and at the other, nine words, four times each. The standard task was learned more rapidly when the subject had the nine words to learn, but this occurred only on the second trial, and did not occur when recognition was the response measure for both lists. In the second case subjects were given varying numbers of preliminary learning trials on the variable list before simultaneous learning. This had a marked effect on allocation of resources in that the greater the number of preliminary trials on the variable task the faster the learning of the standard task.

Putting the results together, it appears that before a reallocation of resources of a substantial magnitude will occur between two tasks, the learners must have had direct learning experience with the items in the variable task so that they essentially know them (have learned them) before or shortly after starting to learn the lists simultaneously. A subject may realize that a common word would be easier to learn than a nonsense syllable but this does not seem to cause him to redistribute his resources. Thus, there is less flexibility in the subjects behavior than might have been supposed.
If subjects are told to learn as many items as possible in both lists, they tend to divide their efforts consistently between the two lists. Only in extreme cases will there be a shift in this practice.

Some General Comments About Simultaneous Learning

In the approximately seven years that we have been working with simultaneous learning we have found it to add greatly to the versatility of a human learning laboratory. Although work with simultaneous learning may be more ecologically valid than work with single tasks, it seems self-evident that we must view them as complimenting each other when viewed in the perspective of pure knowledge seeking. From our previous work we know that many independent variables have the same influence on lists being learned simultaneously as they do for lists learned singly. Yet, simultaneous learning has unique characteristics in addition to its complimentary aspect.

Simultaneous learning may provide an appropriate vehicle by which theories, developed from single-list learning, may be tested. Three illustrations of this occur in the work being summarized. The age-old issue of the role of contiguity in associative learning was given a new test by simultaneous learning, and the results gave a very positive answer; items get associated in simultaneous learning even though the learner does not intentionally try to learn these associations. We also made a test of the hypothesis that the spacing effect is due to an attenuation-of-attention for the massed items. This hypothesis was tested (and supported) in simultaneous learning without using spaced items at all. We have also noted that
recall and recognition measures give quite different results in two instances in our data. Theoretically, this may well mean that the two measures result from different underlying processes, and our theories about them should be coordinated to this fact.

In addition to supplying tests of theories based on single-list learning, simultaneous learning produces new phenomena. The negative transfer in going from isolated learning to simultaneous learning is one such. Although not investigated in this particular contract period, we have shown in previous work that retention (as measured by recall) is a direct function of the number of different lists learned simultaneously. A difference in recall of 38% occurred for 24-hour recall between a list learned singly and a list learned along with two other lists. Our earlier work also strongly suggested that there would be equivalent differences in short-term memory.

All of the research under this contract has been reported in two distributed technical reports, both under the authorship of Benton J. Underwood and Arnold M. Lund. One of these reports is entitled "Factors Involved in the Negative Transfer from Isolated Learning to Simultaneous Learning," the date being July, 1980. The other is entitled "The Effect of the Difficulty of One Task on the Simultaneous Learning of Another Task," the date being August, 1980. None of the work has been accepted for publication in standard journals as yet.
<table>
<thead>
<tr>
<th>Navy</th>
<th>Navy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dr. Ed Aiken</td>
<td>1 CDR Robert S. Kennedy</td>
</tr>
<tr>
<td>Navy Personnel R&D Center</td>
<td>Head, Human Performance Sciences</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td>Naval Aerospace Medical Research Lab</td>
</tr>
<tr>
<td></td>
<td>Box 29407</td>
</tr>
<tr>
<td></td>
<td>New Orleans, LA 70189</td>
</tr>
<tr>
<td>1 Dr. Robert Breau</td>
<td>1 Dr William Montague</td>
</tr>
<tr>
<td>Code N-7</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td>NAVTRAQIPCEN</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>Orlando, FL 32813</td>
<td></td>
</tr>
<tr>
<td>1 Chief of Naval Education and Training</td>
<td>1 Library</td>
</tr>
<tr>
<td>Liaison Office</td>
<td>Naval Health Research Center</td>
</tr>
<tr>
<td>Air Force Human Resource Laboratory</td>
<td></td>
</tr>
<tr>
<td>Flying Training Division</td>
<td></td>
</tr>
<tr>
<td>WILLIAMS AFB, AZ 85224</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Richard Elster</td>
<td>1 CAPT Paul Nelson, USN</td>
</tr>
<tr>
<td>Department of Administrative Sciences</td>
<td>Chief, Medical Service Corps</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td>Bureau of Medicine & Surgery (MED-23)</td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td>U. S. Department of the Navy</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20372</td>
</tr>
<tr>
<td>1 DR. PAT FEDERICO</td>
<td>1 Ted M. I. Yellen</td>
</tr>
<tr>
<td>NAVY PERSONNEL R&D CENTER</td>
<td>Technical Information Office, Code 201</td>
</tr>
<tr>
<td>SAN DIEGO, CA 92152</td>
<td>NAVY PERSONNEL R&D CENTER</td>
</tr>
<tr>
<td></td>
<td>SAN DIEGO, CA 92152</td>
</tr>
<tr>
<td>1 Dr. John Ford</td>
<td>1 Library, Code P201L</td>
</tr>
<tr>
<td>Navy Personnel R&D Center</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1 Dr. Richard Gibson</td>
<td>1 Technical Director</td>
</tr>
<tr>
<td>Bureau of medicine and surgery</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td>Code 3C13</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>Navy Department</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20372</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Henry M. Halff</td>
<td>6 Commanding Officer</td>
</tr>
<tr>
<td>Department of Psychology, C-009</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>University of California at San Diego</td>
<td></td>
</tr>
<tr>
<td>La Jolla, CA 92039</td>
<td>Code 2627</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20390</td>
</tr>
<tr>
<td>1 LT Steven D. Harris, MSC, USN</td>
<td>1 Psychologist</td>
</tr>
<tr>
<td>Code 6021</td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td>Bldg 114, Section D</td>
</tr>
<tr>
<td>Warminster, Pennsylvania 18974</td>
<td>666 Summer Street</td>
</tr>
<tr>
<td></td>
<td>Boston, MA 02210</td>
</tr>
<tr>
<td>1 CDR Charles W. Hutchins</td>
<td>1 Psychologist</td>
</tr>
<tr>
<td>Naval Air Systems Command Hq</td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>AIR-340F</td>
<td>536 S. Clark Street</td>
</tr>
<tr>
<td>Navy Department</td>
<td>Chicago, IL 60605</td>
</tr>
<tr>
<td>Washington, DC 20361</td>
<td></td>
</tr>
</tbody>
</table>
Navy Personnel & Training Research Programs

Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 LT Frank C. Petho, MSC, USN (Ph.D)
Code L51
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

1 DR. RICHARD A. POLLAK
ACADEMIC COMPUTING CENTER
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

1 Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

1 Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group (TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152
Army

1. DR. RALPH DUSEK
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. Dr. Michael Kaplan
 U.S. ARMY RESEARCH INSTITUTE
 5001 EISENHOWER AVENUE
 ALEXANDRIA, VA 22333

1. Dr. Harold F. O'Neil, Jr.
 Attn: PERI-OK
 Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1. Dr. Robert Sasmor
 U.S. Army Research Institute for the
 Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333

1. Commandant
 US Army Institute of Administration
 Attn: Dr. Sherrill
 FT Benjamin Harrison, IN 46225

1. Dr. Joseph Ward
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

Air Force

1. Dr. Earl A. Alluisi
 HQ, AFHRL (AFSC)
 Brooks AFB, TX 78235

1. Dr. Genevieve Haddad
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling AFB, DC 20332

1. Dr. Marty Rockway (AFHRL/IT)
 Lowry AFB
 Colorado 80230

1. Jack A. Thorpe, Maj., USAF
 Naval War College
 Providence, RI 02846
Marines

1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
NCB, Bldg. 2009
Quantico, VA 22134

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. Marine Corps
WASHINGTON, DC 20380

Other DoD

1 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 HEAD, SECTION ON MEDICAL EDUCATION
UNIFORMED SERVICES UNIV. OF THE
HEALTH SCIENCES
6917 ARLINGTON ROAD
BETHESDA, MD 20014
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 |
| 1 Dr. Joseph I. Lipson
SEDR W-638
National Science Foundation
Washington, DC 20550 | 1 DR. MICHAEL ATWOOD
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110 |
| 1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia |
| 1 Dr. Arthur Melmed
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND |
| 1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550 | 1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208 |
| | 1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819 |
| | 1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80309 |
| | 1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304 |
Non Govt

1 DR. C. VICTOR BUNDERSON
 WICAT INC.
 UNIVERSITY PLAZA, SUITE 10
 1160 SO. STATE ST.
 OREM, UT 84057

1 Dr. Pat Carpenter
 Department of Psychology
 Carnegie Mellon University
 Pittsburgh, PA 15213

1 Dr. John B. Carroll
 Psychometric Lab
 Univ. of N.C. Carolina
 Davie Hall 013
 Chapel Hill, NC 27514

1 Dr. William Chase
 Department of Psychology
 Carnegie Mellon University
 Pittsburgh, PA 15213

1 Dr. Micheline Chi
 Learning R & D Center
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213

1 Dr. Allan M. Collins
 Bolt Beranek & Newman, Inc.
 50 Moulton Street
 Cambridge, Ma 02138

1 Dr. Lynn A. Cooper
 Department of psychology
 Uris Hall
 Cornell University
 Ithaca, NY 14850

1 Dr. Hubert Dreyfus
 Department of Philosophy
 University of California
 Berkeley, CA 94720

1 LCOL J. C. Eggenberger
 DIRECTORATE OF PERSONNEL APPLIED RESEARCH
 NATIONAL DEFENCE HQ
 101 COLONEL BY DRIVE
 OTTAWA, CANADA K1A OK2

Non Govt

1 ERIC Facility-Acquisitions
 4833 Rugby Avenue
 Bethesda, MD 20014

1 Dr. Victor Fields
 Dept. of Psychology
 Montgomery College
 Rockville, MD 20850

1 Dr. Edwin A. Fleishman
 Advanced Research Resources Organ.
 Suite 900
 4330 East West Highway
 Washington, DC 20014

1 Dr. John R. Frederiksen
 Bolt Beranek & Newman
 50 Moulton Street
 Cambridge, MA 02138

1 Dr. Alinda Friedman
 Department of Psychology
 University of Alberta
 Edmonton, Alberta
 CANADA T6G 2E9

1 Dr. R. Edward Geiselman
 Department of Psychology
 University of California
 Los Angeles, CA 90024

1 J.R. ROBERT GLASER
 LDRC
 UNIVERSITY OF PITTSBURGH
 3939 O'HARA STREET
 PITTSBURGH, PA 15213

1 DR. JAMES G. GREENO
 LDRC
 UNIVERSITY OF PITTSBURGH
 3939 O'HARA STREET
 PITTSBURGH, PA 15213

1 Dr. Harold Hawkins
 Department of Psychology
 University of Oregon
 Eugene OR 97403
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Barbara Hayes-Roth</td>
<td>Dr. David Kieras</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>1700 Main Street</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>Santa Monica, CA 90406</td>
<td>Tucson, AZ 85721</td>
</tr>
<tr>
<td>Dr. Frederick Hayes-Roth</td>
<td>Dr. Mazie Knerr</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>Litton-Mellonics</td>
</tr>
<tr>
<td>1700 Main Street</td>
<td>Box 1286</td>
</tr>
<tr>
<td>Santa Monica, CA 90406</td>
<td>Springfield, VA 22151</td>
</tr>
<tr>
<td>Dr. James R. Hoffman</td>
<td>Dr. Stephen Kosslyn</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Harvard University</td>
</tr>
<tr>
<td>University of Delaware</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>Newark, DE 19711</td>
<td>33 Kirkland Street</td>
</tr>
<tr>
<td></td>
<td>Cambridge, WA 02138</td>
</tr>
<tr>
<td>Dr. Lloyd Humphreys</td>
<td>Mr. Marlin Kroger</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>1117 Via Goleta</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>Palos Verdes Estates, CA 90274</td>
</tr>
<tr>
<td>Champaign, IL 61820</td>
<td></td>
</tr>
<tr>
<td>1 Library</td>
<td>Dr. Alan Lesgold</td>
</tr>
<tr>
<td>HumRRO/Western Division</td>
<td>Learning R&D Center</td>
</tr>
<tr>
<td>27857 Berwick Drive</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Carmel, CA 93921</td>
<td>Pittsburgh, PA 15260</td>
</tr>
<tr>
<td>Dr. Earl Hunt</td>
<td>Dr. Allen Munro</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>Behavioral Technology Laboratories</td>
</tr>
<tr>
<td>University of Washington</td>
<td>1845 Elena Ave., Fourth Floor</td>
</tr>
<tr>
<td>Seattle, WA 98105</td>
<td>Redondo Beach, CA 90277</td>
</tr>
<tr>
<td>1 DR. LAWRENCE B. JOHNSON</td>
<td>Dr. Donald A. Norman</td>
</tr>
<tr>
<td>LAWRENCE JOHNSON & ASSOC., INC.</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>Suite 103</td>
<td>Univ. of California C-009</td>
</tr>
<tr>
<td>4545 42nd Street, N.W.</td>
<td>La Jolla, CA 92093</td>
</tr>
<tr>
<td>Washington, DC 20016</td>
<td>Dr. Melvin R. Novick</td>
</tr>
<tr>
<td>1 Dr. Steven W. Keele</td>
<td>356 Lindquist Center for Measurement</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>University of Oregon</td>
<td>Iowa City, IA 52242</td>
</tr>
<tr>
<td>Eugene, OR 97403</td>
<td>Dr. Jesse Orlansky</td>
</tr>
<tr>
<td></td>
<td>Institute for Defense Analyses</td>
</tr>
<tr>
<td></td>
<td>400 Army Navy Drive</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22202</td>
</tr>
<tr>
<td></td>
<td>1 MR. LUIGI PETRULLO</td>
</tr>
<tr>
<td></td>
<td>2431 N. EDGEWOOD STREET</td>
</tr>
<tr>
<td></td>
<td>ARLINGTON, VA 22207</td>
</tr>
<tr>
<td>Non Govt</td>
<td>Non Govt</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Dr. Martha Polson
Department of Psychology
University of Colorado
Boulder, CO 80302 | Dr. Walter Schneider
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820 |
| Dr. Peter Polson
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80309 | Dr. Robert J. Seidel
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314 |
| Dr. Diane M. Ramsey-Klee
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265 | Committee on Cognitive Research
% Dr. Lonnie R. Sherrod
Social Science Research Council
605 Third Avenue
New York, NY 10016 |
| Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720 | Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305 |
| Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007 | Dr. Robert Sternberg
DEPT. OF PSYCHOLOGY
Yale University
Box 11A, Yale Station
New Haven, CT 06520 |
| Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850 | Dr. Albert Stevens
BOLT BERANEK & NEWMAN, INC.
50 Moulton Street
CAMBRIDGE, MA 02138 |
| Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974 | Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305 |
| Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92039 | Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801 |
| Dr. Irwin Sarason
Department of Psychology
University of Washington
Seattle, WA 98195 | |
1 DR. PERRY THORNDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104