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PREFACE

This final technical report was authorized by Dr. T. Wessel-Berg and

prepared by Electron Dynamics Division, Hughes Aircraft Company,

Torrance, California, on Contract F30602-79-C-0028 for Rome Air

Development Center, Griffiss Air Force BaL , New York. It summarizes

the results of a continuation effort on the "Development of a Large

Signal Computer Theory for TWT," based on polarization variables that

was reported on Contract F30602-77-C-0221. This continuation effort

describes the implementation of variable circuit parameters along the

tube axis, and provides a stability analysis of backward wave inter-

action, based on the assumption of confined-flow-focusing.

This effort has been initiated in December 1978 and was completed in

March 1980. Joseph Polniaszek was RADC Froject Enginebr.

ti

-~ .~...- -



/

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 1

2.0 THE TREATMENT OF TAPERED CIRCUIT PARAMETERS 2

2.1 Introduction 2

2.2 Mathematical Approach 2

3.0 RELATIVISTIC uORRECTIONS 4

4.0 FTJDAMENTAL AND SPACE-HAR.ONIC INTERACTIONS IN
fHE TWT 6

4.1 Interactions of Beam and Circuit in the
Backward Modes 6

4.2 The Architecture of Forward and Backward
Wave Interactions 10

4.3 The Matching Problem 12
4.4 Dispersion Relations for the Forward and

Backward Waves 16

4.5 Specification of the RF Variables in the
Backward Traveling Wave 20

4.6 Summary of Normal Mode Amplitudes 23

4.6.1 Left-Handed Helix 23
4.6.2 Right-Handed Helix 24

4.7 Compact Formulation of the Full Set of RF
Equations 24

4.7.1 Left-Handed Helix Section 25
4.7.2 Right-Handed Helix Section 26

4.8 Special Cases and Approximations 27
4.9 The Transmission Motrix of a Uniform Helix

Section 29

4.10 The Over-all Transmission Matrix of the
Multisection TWT 32

4.11 Two-Port Terminal Description of the
Multisection TWT 34

5.0 BACKWARD WAVE INSTABILITIES 38

5.1 The Inherent Backward Wave Instability 38

V hILCD M ML EA..aNo F1j.V



TABLE OF CONTENTS (CONTINUED)

Section Page

5.2 Resolution in Forward and Backward Components
in the Over-all Tranmission System 40

5.3 Proper Procedure for Determination of the
Inherent Backward Wave Instability 45

5.4 The Effect of Mismatched Input and Output

Terminals on Backward Wave Instabilities 48

5.4.1 Forward and Backward Characteristic
Impedances 48

5.4.2 The Reflections at the Input and
Output Terminals 50

6.0 PLASMA, REDUCTION FACTORS AND BEAM COUPLING COEFFICIENTS
FOR FORWARD AND BACKWARD MODES 56

6.1 Beam Model 56
6.2 Confined Flow 57

6.2.1 Plasma Reduction Factors for Confined
Flow 59

6.2.2 Coupling Coefticients for Confined
Flow 63

6.3 Brillouin Flow 65

6.3.1 Plasma Reduction Factors for the
Backward Waves (m - t1) in Brillouin
Flow 67

vi



|. .

LIST OF ILLUSTRATIONS

Figure Page

4-1 Dispersion diagram of left-handed helix. 8

4-2 Dispersion diagram of right-handed helix. 9

4-3 Schematic diagram illustrating the circuit and beam
harmonics involved in: a) forward interaction,
b) backward interaction in a left-handed helix. 11

4-4 Schematic diagram of forward interaction, and the

rf variables involved. 13

4-5 Schematic diagram of backward interaction, and the

rf variables involved: a) left-handed helix,
b) right-handed helix. 14

4-6 Schematic illustration of one uniform helix section. 31

4-7 Schematic configuration of a multisection TWT
consisting of a total of n uniform, but different
sections. 33

5-1 Illustration of instability diagram for backward
wave oscillations. 41

5-2 Sketch illustrating the nature of backward wave
instabilities. 47

5-3 Schematic diagram of a sectioned TN7 with arbitrary
input and ot..put loads Z LI and ZLN. 49

5-4 Sketch showing the TWT separated into two regions,
with the attenuator load Z serving as output loadAt
for the first region and input load for the second
region. 49

5-5 Schematic illustration of the condition (5.36) of
unity loop gain as criterion for backward wave
oscillations. 54

6-1 Schemati diagrams of the assumed distributions of
the dynamic variables over the beam cross section. 58

6-2 Plasma frequency reduction factor R0 for forward
wave interaction and confined flow. 61

vii



LIST OF ILLUSTRATIONS (CONTINUED)

Figure Page

6-3 Plasma frequency reduction factor R for backward

wave interaction and confined flow. -  62

6-4 Beam-circuit coupling coefficient f0 for forward wave
interaction (m = 0) and confined flow. 64

6-5 Beam-circuit coupling coefficient f.1 for backward wave
interaction (m- ±1) and confined flow. 66

viii

. . . . . -



EVALUATION

This report describes a novel approach to large signal modeling
of a helix type TWT. It embodies the benefits of increased accuracy
and decreased computation time for initial tube modeling and develop-
ment. This is accomplished through the use of a transformation
that reduces the nonlinear equations describing the system into a
set of linear differential equationsthat can be solved using classi-
cal techniques. The ultimdte benefit of this program will be de-
creased development time and cost through a reduction in the com-
putation time and also the "cut and dry" experimental techniques
used presently.

JOSEPH J. POLNIE
Project Engineer
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1.0 INTRODUCTION

This report presents continuation efforts in the large signal computer

theory described in report No. W-07587. It represents a further investi-

gation of special effects and conditions of importance in TWT design. In

particular, it treats two main areas: Implementation of variable circuit

parameters along the tube, and backward wave instabilities.

The first of these main areas involves the handling of velocity tapers,

impedance tapers, and variable attenuator sections, all in any prescribed

fashion.

The second area is concerned with analysis of backward wave instabilities

under the same conditions of variable parameters along the tube. In

particular, the theory is applicable for segmented TWTs, i.e., tubes with

several sections of otherwise constant circuit parameters. Such con-

figurations are known to reduce backward wave instabilities, but the

underlying theoretical background and the modeling have been inadequate.

In particular, the symmetries and coupling relations of beam and cir-

cuit modes have not been sufficiently well understood. The present

work is an effort to contribute to a better understanding of these

effects and provide improved models and mathematical procedures for use

in numerical analysis of backward wave instabilities.

One part of the investigation is the analysis of the properties of the

beam modes involved in backward wave interactions. These have different

symmetries from the usual circularly symmetric modes involved in for-

ward interaction, and need special consideration.

The analysis of the stated problems involves a considerable mathematical

apparatus, and all details can not be contained in a relatively short

final report. In particular, this applies to the analysis of the beam

modes. On the other hand, a fairly complete account is presented of

the backward wave instability problem.



2.0 THE TREATMENT OF TAPERED CIRCUIT PARAMETERS

2.1 INTRODUCTION

If the circuit parameters are varying along the z-axis, the model and the

basic formulation must satisfy certain requirements which can be stated

as follows: (i) the basic circuit and beam rf-variables must be chosen

such that they are continuous along the axis, even if the circuit param-

eters are discontinuous, (ii) the beam-to -circuit coupling must be

appropriately formulated in terms of wavelength-dependent coupling

coefficients rather than frequency-dependent coefficients.

The requirement (i) serves to facilitate the mathematical formulation

of problems having z-dependence in general. The requirement (ii) is

necessary for handling cases of high circuit loss, i.e., attenuators in

general. In such cases the wavelength beam-to-circuit coupling is

specified by an attenuated and increasingly fast propagation factor

entering the argument of the coupling coefficient, which then itself

becomes complex. This implies that the coupling is no longer pure

capacitive but has a real component as well.

In the polarization model used in the present work both requirements (i)

and (ii) stated above are fully accounted for.

2.2 MATHEMATICAL APPROACH

The following is a formal exposition of the mathematical procedure. In

the first part of this work, reported earlier, we established the concept

of the transmission matrix T for a uniform helix section. The trans-

mission matrix relates the rf variables at the input and output ends of

the uniform section in the following way:

a(z) = T(p) a(zpI) , (2.1)

2



where a(z p) is a column vector containing the rf variables of all the

frequency components. The transmission matrix implicitly contains large

signal effects, in that the off-diagonal submatrices are nonzero. These

represent the nonlinear coupling terms between the various harmonics.

If the circuit parameters vary over a certain length of the TWT, this

length is subdivided into a sufficiently large number of subsections.

In each of these the parameters are considered to be constant and

independent of z.

The over-all transmission matrix for the tapered section is then given

by the product of the separate transmission matrices of the p

subdivisions.

T = T(p) T(p - 1) . T(2) 1(l) (2.2)

The formula applies for the practical computational case in which the

number p is finite. The exact formula is

T = lim IT(p) T(p - 1) . . .(2) T(l)] (2.3)

p - O

This simply means that the subdivisions have to be made sufficiently

small to simulate the real situation. In practice, this is no problem,

since the computer prog:am is sufficiently general to accommodate the

indicated procedure. It is more a question of organization of input data

for the computer.

In the small signal domain, the over-all transmission matrix is diagonal

on a submatrix basis, and the computations are correspondingly simple, in

that each harmonic components can be treated independently of the

others.

3



3.0 RELATIVISTIC CORRECTIONS

The relativistic corrections that have to be implemented at high dc

voltages have been introduced. These corrections are all expressed in

terms of the usual relativistic factor y, defined by:

2 1/2
¥= [ l/o

- ---f) (3.1)
c

The relativistic effects appear in the following parts:

1. The relativistically correct dc velocity V0 is obLained

from the dc voltage V by:

+ e %7O

0o 2 m 02

0

+oo
2 e m 2

e0 c]

The last fraction represents the relativistic correction, being

unity if V0 is small.

2. The longitudinal relativistic mass m is increased by the

factor I/y3.

mz = m0 -- (3.3)

Y
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3. The transverse relativistic mass m t is increased by the

factor 1/y.

mt  = 0  (3.4)

: 3/2
4. The plasma frequency w is reduced by the factor y

3/2 (35)
p pO

With the indicated corrections introduced into the program

at the appropriate places the results are relativistically

correct for small signals and approximately correct for large

signals.

5



4.0 FUNDAMENTAL AND SPACE-HARMONIC INTERACTIONS
IN THE TWT

The main objective of the present work is to analyze backward wave

instabilities. But in order to accomplish this task it has been neces-

sary first to establish a sufficiently detailed physical model together

with a sufficiently simple mathematical formulation of the over-all

forward and backward interactions Laking place in a multisection TWT.

4.1 INTERACTIONS OF BEAM AND CIRCUIT IN THE BACKWARD MODES

It is necessary to distinguish between left- and right-handed helices

because of possible inclusions of pitch reversals in the helix struc-

ture. The rf fields of left- and right-handed helices are given by the

following expansions in space-harmonic components:

oo

-JB m -jme
0(, e, z) E (r) e e- (4.1)h.Jm

m=-00

(r, 0, Z) = (r) ejm, (4.2)

In these expansions the exponent a is given by:

am= 40 T (4.3)

where d is the helix pitch.

6



The dispersion diagrams of the left- and right-handed helices are shown

in Figures 4-1 and 4-2, respectively.

The figures labeled a) and b) in these drawings are mirror images of

each other. They both exist because the helix looks the same in either

direction.

From a study of the diagrams we can draw the following conclusions

relating to the basic interactions:

1. For a left-handed helix the backward wave interaction

involves the m a -1 space harmonics.

2. For a right-handed helix the backward wave interaction involves

the m = +1 space harmonics.

3. The fundamental mode interaction is not affected by the direc-

tion of helix pitch.

4. In a given left- or right-handed helix section only one of the

two space harmonics m = -1 or m = +1 is involved. This is

because the m = -1 and m = +1 harmonics are always in opposite

directions. Therefore, only one of the two space-harmonic

components can be synchronized with the beam, namely the one

with positive propagation constant.

The same considerations do not apply to the corresponding space har-

monic components of the beam. If a m = -1 mode is excited in the beam

through backward wave interaction in a left-handed helix section, this

particular beam symmetry is retained through a pitch reversal. In the

reversed pitch section the m = -1 existing in the beam is completely

decoupled from the circuit, because the m - -1 circuit mode in the

7
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Figure 4-1 Dispersion diagram of left-handed helix.
a) Forward wave interaction in the

m - 0 mode
b) Backward wave interaction in the

m -1 mode
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Figure 4-2 Dispersion diagram of right-handed helix.
a) Forward wave interaction in the

m - 0 mode
b) Backward wave interaction in the

m = +1 mode



right-handed helix is completely out of synchronism with the beam. In

such a pitch reversal the effect on the beam is that it suddenly sees a

noninteracting circuit, all referred to the m = -1 beam mode,

Conversely, if we started out with a right-handed helix, the m = +1 mode

is the appropriate backward mode. A pitch reversal reduces the beam-

circuit interaction for the m = +1 mode to essentially zero.

The points brought up here might conceivably be of importance for reduc-

tion of backward wave instabilities through pitch reversals. Provided

these can be designed with negligible fundamental mode reflections over

the appropriate frequency band, they appear to represent a practical

possibility. As far as backward wave interactions is concerned the

effective length of the helix is reduced by a factor of two, which cer-

ta{nly would serve to diminish the instability problem.

4.2 THE ARCHITECTURE OF FORWARD AND BACKWARD WAVE INTERACTIONS

Using the previous discussion as a guideline let us establish the rele-

vant interactions that need be considered. Figure 4-3 shows a schematic

diagram which helps sort out the interactions and the angular sym-

metries of the modes involved. The first point which we have to keep

in mind is that the circuit alone supports two independent modes, one

traveling in the forward direction with group velocity v > 0, and one
g

traveling in the backward direction with v < 0. The correspondingg
interactions with the beam are those shown in the lower blocks of

Figure 4 -3a and 4-3b.

The second polit which we must keep in mind is that all circuit har-

monics are intimately coupled, so that the excitation of one particular

harmonic by the beam, say the m = -1 harmonic shown In Figure 4-3b,

anti(otriicalv gives rime to a proport inate excltation of all the other

circuift ha rmon i e .

10
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CIRCUIT FORWARD MODE, Vg >0

CIRCUIT -21 =+12

ELECTRON BEAM mn=0

(a)

4CIRCUIT BACKWARD MODE, Vg < 0

CIRCUIT - 1M0+

ELECTRON BEAM m -

(b)

Figure 4-3 Schematic diagram illustrating the circuit and
beam harmonics involved in: a) forward inter-
action, b) backward interaction in a left-
handed helix.
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The third point we like to make is that it Is convenient to interpret-

the circuit voltage and circuit current as the fundamental components,

i.e.,, those corresponding to the m = 0 mode, both in forward and back-

ward interactions.

The relevant interactions and rf circuit and beam variables are those

summarized in the schematic diagrams of Figures 4-4 and 4-5. The

forward interaction shown in Figure 4-4 involves only the circularly

symmetric modes m = 0 of the circuit and the :beam. The rf variables

are the normalized circuit voltage vf, the circuit current ifs the

normalized beam velocity U, and the normalized displacement S0.

This mode of operation is the regular TWT amplification process, which

is independent of the direction of pitch.

Th backward wave interactions depicted in Figure 4-5 involve the

m ±1 beam and circuit modes, and the m 0 circuit mode. As stated

previously, the relations between the m = 0 and m = ±1 circuit space

harmonics are fixed.

4.3 THE MATCHING PROBLEM

With these considerations in mind let us consider the matching problem

at some discontinuity along the helix, such as a change in pitch angle.

Which rf variables are continuous across the discontinuity, and need

be considered? Expressed in general terms, the circuit voltage, circuit

current, beam velocity, and beam displacement are continuous. Let us

first consider the circuit variables. As noted previously it suffices

to express these in terms of the fundamental (m = 0) component, which

consists of the sum of the forward components vf and if (Figure 4-4)

and the backward traveling components vb and ib (Figure 4-5). The

latter are also of the m = 0 symmetry, but are cnused by interactions

of the m - -1 or m = +1 components, depending cn the sense of rotat ion

of the helix, as already shown in Figure 4-5.

1.2
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Figure 4-4 Schematic diagram of forward interaction,
and the rf variables involved.
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CIRCUIT VOLTAGE AND CURRENT CIRCUIT VOLTAGE AND CURRENT

FOR LEFT-HANDED HELIX FOR RIGHT-HANDED HELIX

BACKWARD
1Vb,+l V+l CIRCUIT

b i_ 1 b,+ 1  i+1 MCDE

M=+1 M=+l

U1U+ 1

S_ 1  S+1

FORWARD BEAM MODES FORWARD BEAM MODES
FOR LEFT-HANDED HELIX FOR RIGHT-HANDED HELIX

a) b)

Figure 4-5 Schematic diagram of backward interaction,
and the rf variables involved:

a) left-handed helix,

b) right-handed helix.
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The rf variables of the beam corresponding to different m-values are

orthogonal, and presumably are not coupled by a change in helix pitch.

Accordingly, it is necessary to match the various rf beam variables,

corresponding to different m-values, separately. These variables are

U_1 and SI for the m = -l symmetry, U+l and S+1 for the m + I sym-

metry, and U0 and S for the m = 0 symmetry. Altogether we have eight

matching conditions of circuit and beam variables. If pitch reversals

are not involved at any position along the helix, these are reduced to

six conditions.

If the forward mode is disregarded, these six conditions are turther

reduced to four, namely continuity of:

Backward circuit voltage vb

Baclc.ard circuit current ib

Beam velocity U_1

Beam displacement S_,

where we have assumed a left-handed helix.

However, with the forward wave disregarded, there are only three inde-

pendent wave solutions available. These are the three solutions of the

third-order backward wave dispersion relation specifying the coupled

beam-circuit system in the backward mode. But this means that we

have only three independent equations to determine the four rf variables.

Under these circumstances we are left with the only alternative of dis-

regarding one of the rf variables in (4-4), say the beam velocity U_,

and use the other three for matching at the pitch change. This is a pro-

cedure which has been used in the past, but is rather questionable,

because the forward mode is bound to be subject to some reflections at

a discontinuity of pitch angle. Only in the very special case that

the circuit impedances on either side of the discontinuity are the same,

15



will there be no reflections. But this conditions is not likely to occur

in the'general case. We are therefore forced to adapt six independent

boundary conditions, and as many as eight conditions if pitch reversals

are involved. The two additional conditions in the latter case arise

because the two independent m = -1 and m = +1 beam modes are both present,

traveling along the beam and interacting with the appropriate space har-

monic of the left-handed and right-handed helix sections, respectively.

From Figure 4-5 it is noted that in a given helix section, left-handed

or right-handed, only one of the m = -1 or m = +1 beam-to-circuit inter-

actions is involved. From inspection of the dispersion diagrams shown

earlier in Figures 4-lb and 4-2b we conclude that these are identical.

Hence, the circuit equations of the m = -1 and m = +1 interactions will

be the same. However, the electronic equations for m = -1 and m = +1 are

not the same in the general case. Only for confined focusing are they

identical. The physical reason for the difference is the presence of

the dc focusing magnetic field which introduces a nonsymmetric effect

with regard to the positive (m = 1) and negative (m = -i) angular

dependence. A typical example is the Brillouin focused beam, for which

the propagation factors of the m = -1 and m = +1 modes are different.

Hence, a section of reversed pitch essentially retains the same circuit

equation, but requires a difficult electronic equation, except for con-

fined flow. The case of confined flow is therefore considerably simpler

to analyze.

4.4 DISPERSION RELATIONS FOR THE FORWARD AND BACKWARD WAVES

A detailed analysis of the coupled circuit and electronic equations leads

to the same form of the dispersion relation for the forward and the

backward waves, i.e., for m = 0 and m = ±1. The relation is expressed

in the matrix form:

16



10 VM I
Bm 0 0c0

~M

S qI

I W Wi2 (i)

~~B~~fi)oIl (- B~) 2R(i) 2

'B if~i 0 j I B R

J m m 'I - pm

0L i - , ] - BI m

i 1,2,3

m =0, !1

(4.5)

The parameters appearing in the equation are the followin!:

a(i)

B)m - = normalized propagation factors of the three

e modes, corresponding to i = 1,2,3

R M = plasma reduction factors for the same modes
m

f i = coupling coefficients for the same modesm

v = phase velocity of the circuit for the mth spacecm

harmonic

Z = circuit impedance of the mth harmonics

m 0

K = 1 - j(-l) m 
--- = loss par;ameter

m acoZ co

17



P normalized plasma frequency

In (4.5) the columin q M is the state vector of the particular inode

B( W- fi) (- 2R x
m m

qm10cm(V0 f~)0-Bi) 2(Pi)2R l (4.6)

L- (' m' m

i = 1.2,3

M - 0, t1

The state matrix is constructed from the state vectors by

Q LI) (2) (3)]m . 0,± 4?

The rf variables of mode m are then specified by the relations

aim (())= Qm e m0A m (4.8)
U (z) 0 m-

Sm (Z0

am= 0, ±1
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where D is a diagonal matrix containing the three propagation factors of

the mode m.

These are obtained from the determinantal equation associated with (4.5)

A = 0 M = 0, ±1 (4.9)m

Furthermore, the vector A in (4.8) contains the normal mode amplitudes~m

of the three component modes, which are independent of the axial coordi-

nate z0 within a uniform helix section. But they undergo changes at any

discontinuity of the helix.

ith reference to the variables listed after (4.5) one should note

that:

I. The plasma reduction factors and the coupling coefficients are

not the same for the m = 0 and the m = ±i modes.

2. The circuit impedance Z is positive for forward mode m = 0cm

and negative for the backward modes m - ±1.

3. The loss parameters Km is the same for m = 0 and m = ±1 except

for the sign of the imaginary part.

With these restrictions the same general equations apply to all three

modes m - 0, and m = ±1. Note that in this formulation all the modes

have positive propagation constants B m, because the phase velocitiesm

are all positive. The circuit part of the m = ti modes relate to the

space-harmonic voltage and current v.1 and i, appearing in (4.8). In

the next step one must convert from these variables to the corresponding

fundamental components vb and ib appearing in the diagrams of

Figure 4-5.
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4.5 SPECIFICATION OF THE RF VARIABLES IN THE BACKWARD
TRAVELING WAVE

In view of the strongly coupled space harmonics of the helix this pro-

cedure is fairly straightforward. Let us first look at the propagation

factor of the m = 0 backward traveling mode. From the general formula

(4.3) we obtain

BM _(i) M ~i 27

B =BB
O,backward b m , (4.10)

where 8 d is the normalized helix pitch.e

The corresponding backward circuit voltage of the fundamental component

is obtained by noting that the total rf circuit power P in all harmonics

is given by the formula

1Z I I 2 m 0, 1, +2, . . (4.11)
cm 2P

Hence

m cm
Vb ~ co

or

' c o n = ! (4.12)Vb 1 m ZC

mcmI

which relates the normalized rf voltages of the m - 0 mode and the

m ! ±I modes.
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The inverse relation applies to the corresponding rf currents. Since

v b Vo
IIib Zo I

Co /

(4.13)

v V
m om Z I 1
cm 0

we obtain

i = i c m =- (4.14)

In this backward mode Z as well as Z cm must be taken negative, but we

have used absolute signs in (4.12) and (4.14) in order to avoid errors.

Using the established relations (4.10)-(4.14) between the m - 0 and

m = ±1 components in the backward mode, the relevant rf variables for

this mode, to be used in the matching procedure, are specified by the

relation:

v b (z z0)
vb(zO) -~z

i(z j

a b(z O) b - e A , (4.15)

U (z)
m 0

Sm (z0

where the modified state matrix Q' is given in terms of the original
Qm by:
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Z e mO,/ed 0 0 0
cml

o , Zcm I jimI2 /6ed 0 0
T-

q' Qm

0 , ,1 0

0 0, 0,1

m 0, ±1

(4.16)

By the described procedure we have been able to express the rf variables

of4 the backward traveling wave in the form (4.15) which involves the

m = 0 circuit rf variables. This is a necessary step in the matching

process, as discussed earlier.

Before concluding this section on the backward traveling wave we must

pay proper attention to the discrimination of left- and right-handed

helices. In light of the earlier discussions it follows that the

m - +1 and m = -1 waves do not simultaneously exist with their full

range of composite mode solutions, described by the superscript i. The

full set corresponds to three modes, with i = 1, i = 2, and i = 3,

respectively. But either the m = +1 or the m = -1 wave has only two

composite modes. The reason for this is that one of the two m = ±1 set of

beam waves, both of which have about the same phase velocity, is way

out of synchronism with the corresponding space harmonic component of

the circuit. We can easily convince ourselves that this is the case

by studying the circuit dispersion diagrams of Figures 4-1b and 4-2b.

Hence, for either m = +1 or m = -1, the interaction with the circuit
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disappears, leaving us with the two decoupled space charge modes corre-

sponding to the particular noninteracting m - value.

More specifically, for a left-handed helix the m = +1 circuit space har-

monic is way out of synchronism with the beam (see Figure 4-1b) and,

therefore, the m = +1 space charge waves are completely decoupled from

the circuit. Hence, in the left-handed helix section only two modes

corresponding to m = +1 exist. Conversely, in a right-handed section

there are only two modes associated with the m = -1 wave.

These considerations imply that in any one helix section we have a total

,of eight independent normal mode amplitudes, which will be discussed in

more detail in the next section.

4.6 SUMMARY OF NORMAL MODE AMPLITUDES

In general, the normal-mode amplitudes refer to the independent and arbi-

trary components in the normal mode vector A , appearing in (4.8) and

(4.15). In this form they are arbitrary, because the normal mode sc u-

tions have not yet been matched at the discontinuities between the helix

sections. In effect, the matching procedure provides exactly sufficient

conditions to determine the normal mode amplitudes everywhere.

Let us specify explicitly the independent normal modes in left-handed

and right-handed helix sections, respectively.

46.1 Left-Handed Helix

The fundamental forward wave has three independent modes, corresponding

to m = 0 and i'= 1, 2, and 3. The backward wave has three independent

solutions corresponding to m = -1, and two solutions corresponding to

m = +1. The eight independent mode amplitudes can be summarized as

follows:
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0 0 0:0

m - -1: A)A( A(3 )  (4.18)
-1 -1 -1

m +1: A+1A +1 (4.19)

4.6.2 Right-Handed Helix

In this case the corresponding normal mode amplitudes are:

M = 0: AM A(2)  A(3)  (4.20)

00 0

m = -1: AM')  A (2 )  (4.21)
-1 -1

m = +1: A+M A+( A(3 ) (4.22)

+1 +1 +1

4.7 COMPACT FORMULATION OF THE FULLSET OF RF EQUATIONS

From the foregoing discussion it is quite apparent that the matching of

eight normal-mode amplitudes at the intersections between different helix

sections is a fairly complex mathematical task. It can best be accom-

plished by etablishing a systematic 8-dimensional matrix formalism.

For convenience and clarity of the exposition let us introduce sub-

matrices in the state matrix Qm' defined by (4.16), (4.6), and (4.7).

Let
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3 m 2,±

2 2s
m-Wm 2 (4.23)

Le O --m

As indicated in (4.23) PM and WM are 3 x 2 submatrices, except for the

decoupled modes corresponding to (4.19) and (4.21). In the latter case

P and W are 2 x 2 submatrices.-m -m

We can now proceed to use (4.8) and (4.15) for the various waves and

modes and construct matrix relations for the over-all eight rf variables

in a particular section. These look a bit different for the left-handed

and right-handed sections.

4.7.1 Left-Handed Helix Section

The following matrix relation applies:

3 3 2 3 3

V- (z
" 0 o) Jo

O(zO) P 0 0  0 0

0 0
I I I' I(zo- I I

0 I0) 0 I 0 A
S 0 (z; 

00 I I 177/7-7 /7/7.

S_ (zO) -

S1(z) I 

0

s+t (Zo)"I /
• : .., L 2 0

I prop i oabof rf avwave backard matrix of norm,,
variableJ coun Lou wave column modes (4.24)
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The left column specifies all the eight rf variables involved in the

left-handed helix section. The first 8 x 8 matrix on the right is a

generalized state matrix for the over-all system. The second 8 x 8

matrix is the diagonal exponential matrix containing all the eight

propagation factors, and the last column represents the eight inde-

pendent normal mode amplitudes. Equation (4.24) is an extension of

(4.8) from four dimensions to eight dimensions. The shaded blocks in

the equation correspond to the noninteracting m = +1 space charge

waves.

4.7.2 Right-Handed Helix Section

The corresponding relation for the right-handed section is the following:

3 2 3 3 2 3

V0 (Z0 ) J 0 Z1 
10 0 P+I 0 0 A 0 0

0, 0

I IVo (z0 I (;-jD_

0  00 0 0 2

1101

-w $ -I +
S (Z)

0 0

U l (ZoII

p 0 0p JiW

- ~ I ~ I ~+

SU (ZoI '' . .

tiull st forward additional L {fullndv

Kvariables column wave~ column r.colutmn alffor2 bicward [b 11 m t i ,-1 7

(4.25)
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Equations (4.24) and (4.25) form the very basis of the analysis of

backward wave instabilities in multisection TWTs. All the elements in

the 8 x 8 matrices are known from the specified data and evaluation of

the previously stated equations.

It has been common practice in the past to analyze backward wave

instabilities using various simplifications in the model and in the

mathematical procedure. Most of these approximations are justified only

by the ensuing mathematical simplifications and tractability, and are

not justified from physical reasoning.i The more common approximations

can be easily obtained from the general formulae above. Let us have a

lbok at these.

4.8 SPECIAL CASES AND APPROXIMATIONS

!. If there are no pitch reversals along the entire helix structure, only

one of the two m = ±1 space harmonics is involved in the interaction.

Let us assie that the helix is left-handed, in which case (4.24) applies.

In this case the m - +1 wave can not be excited in any section and is

therefore nonexistent. Hence, the corresponding normal mode amplitudes

specified by A+ are zero everywhere.

A+ E 0 (4.26)

These two modes are the decoupled space charge modes which had to be

excited in some other right-handed section. But since these do not exist,

the modes are nonexistent. In (4.24) these are represented by the last

two equations, cotresponding to the shaded areas. By removing all the

shaded blocks, the resulting equation becomes of sixth order, and

represent an exclusive left-handed helix 11T.
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Similarly, if all sections are right-handed, the m -- 1 waves are not

excited, in which case:

A 0 (4.27)

The relevant equation is now (4.25) with all the shaded blocks removed.

Inspection of (4.24) and (4.25) after remov al of shaded blocks show that

both take exactly the same form:

3 3 3 3

-0z0  _+ -j0z 3I
(z0)I-

U 0 (z 0) -jD z A- 3

0 0 e 1 10  Z+

U-0( z) L _ -

+1 0

S;1~ 0

fowrd backward
wave wave

coun] col1umn (4.27)

Even if the equations are the same form for left-handed and right-handed

helices, the elements in the matrices are not the same for in =-1 and

in = +1. They are the same only for confined flow, but not for general,

balanced beams, including Brtiouln-bcams. Those more subtle points

were dIiscussed earlier.
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Backward wave instabilities are often analyzed disregai~dng the forward

traveling wave. This is legitimate if there are no discontinuities in

the form of pitch changes along the helix. However, the use of this

approximation for analyzing the effect of discontinuous changes in

pitch angle is very questionable, and at best gives a crude approxima-

tion to the starting condition.

However, for the sake of completeness, let us discuss how this approxi-

mation follows from (4.27) by putting the forward traveling wave ampli-

tude A0 equal to zero.

A =0 (4.28)

Hereby, (4.27) is simplified to:

v 0(z 0

io0(zo 0 P . -jD . Izo

- e Az, (4.29)

USl (ZOLs+-1 (z0)_ w J

which is just the same as the original equation (4.15).

In the present work we shall not use any of the approximations dis-

cussed here, but retain generality by applying (4.24) and (4.25).

4.9 THE TRANSMISSION MATRIX OF A UNIFORM HELIX SECTION

The introduction of transmission matrices for the sections is particu-

larly convenient for the purpose we have in mind.
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First, let us write (4.24) and (4.25) in the following compact forms:

b() ~ JDeZ 0  40
b(z O)  = M e A, (4.30)

0JrZ0

b(z0) = r e A r (4.31)
rr

where the meanings of the terms follow from comparison with (4.24) and

(4.25). Since both equations are of the same form, we can drop the

subscripts Z and r and simply write:

b(z 0 M e A (4.32)

The proper subscript can be added once the pitch direction has been

specified.

Let us consider the uniform helix section shown in Figure 4-6 and apply

(4.32) at both ends of the section. Recalling that the normal mode

vector A is constant and independent of z0 within the uniform section,

we find, by elimination of A froa the two equations:

-jD! M-1t(z 02) =M e- M- I b(z 01) ,(4.33)

where

L = z02 -z01 (4.34)

The equation is in transmission form, specifying all the rf variables

b(z02) at the output end by the rf variables b(z01 ) at the input end of

the section. The transmission matrix T is given by
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zO1 z 0 2
I I
; -L - -
I I
I _ _ _ _ _ _ _ _ I

b (Z0 1 ) b (Z0 2)

Figure 4-6 Schematic illustration of one

unif3rm helix section.
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T = M ejDL M 1  (4.35)

Hence, (4.33) takes the simple form

b(z02) T b(z0) (4.36)

We have also use for the inverse relation

-1
b(zTIT (z 0 2 ) = b (z 0 2 ) (4.37)

where

I = T (4.38)

is the inverse transmission matrix.

4.10 THE OVER-ALL TRANSMISSION MATRIX OF THE MULTISECTION TWT

By the transmission matrix formulation (4.35) we have established the

necessary tools for a conceptually simple and mathematically elegant

description of a multisection TWT. The configuration is shown

schematically in Figure 4-7. For each of the N sections the trans-

mission relation (4.36) applies. Some of the sections may be left-

handed and some right-handed, and care must be taken to apply the cor-

responding version of the transmission matrix, evaluated either from

(4.30) or (4.31), in conjunction with (4.35).

As noted earlier, all the rf variables, represented by the columns b(z0 1)

and b(z0 2) in (4.36) are continuous across the intersections. The

transmission properties, expressed by this equation, can therefore

easily be extended to comprise any number of sections, and in particular,

the full length of the tube. The following result is obtained:
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BACKWARD FORWARD

-~ n =1 2 3 P -- -N1 1
I ILpI

b IZ11) ZP1  Zp2  b(ZN2)

Figure 4-7 Schematic configuration of a multisection TNT
consisting of a total of n uniform, but
different sections.
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b(z 2) = TnT. . . T2T b(z11) , (4.39)

where b(zn2 refers to the output end of the last section, and b(z1 1 ) to

the input end of the first section. If we write (4.39) in the form

- .. T L 1(4.40)
n2" 1

the over-all transmission matrix T is given by the product of all the

section transmission matrices

T = T T TT (4.41)

The transmission relation expressed in (4.40) .s a complete and detailed

description of the TWT characteristics, including forward gain and

backward wave properties. All the elements of the transmission matrix

T can be specified or evaluated from the detailed relations in the

earlier part of this report. In the next section we shall show that

only four of these are necessary for describing two-port terminal

relations.

4.11 TWO-PORT TERMINAL DESCRIPTION OF THE MULTISECTION TWT

Let us express the transmission relation (4.40) in the following more

explicit and detailed form:
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rf circuit

variables

2 6

VO(z F2 v (z

T T
i (z1 12 (z1

0n2U
0 (z 1 1

So(Z 2 ) S(Zll)

U10 (z2) S 0 (z )1

UI (zn2) Ul(zl) 11

b(z 2 ) - 2 1  T
SI(Z 2 ) 1Sl (z

I n2 11

U+I (zn2 ) U+1 (z 1)

S+1 (Zn2 _ + L(z 11

rf beam
variables (4.42)

Let us define the circuit colun bc(zO) and the beam column by be(z 0),

wher z0 can be either zn2 or zll'

b (z a (4.43)

(zo)

35



U (

S0 I(z 0)

b (z 0 (4.44)

-1 (Z0

U +1 (Z 0

Equation (4.42) can then be subdivided into co -)r.,onent equations:

b- z 2 T11 b c( 11~ + Tid u (4.45)

b e(z n) 0 T 21b c(z It + T 22 :(Z 11 (4.46)

But at the input end all the rf variables in the beam are identically

zero, because the beam enters the helix unmodulated. Hence. the cor-

responding vector b e(z 1 1) is identically zero.

b e(z it - 0 ,(4.47)

and (4.45) and (4.46) simplify to:

h 0 0~ - TI ~z 1  (4.48)

be (z n2~ T 2 1 b c(z 1 1  (4.49)
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As a consequence of the fact that the rf beam modulations are zero at the

input end of the tube, we have been able to obtain nice separate trans-

mission matrices for the circuit variables b and the beam variables b

Of these, the circuit relation (4.48) is by far of most significance, and

we shall not use (4.49) any further.

It is quite remarkable that a simple relation like (4.48) describes all

the small signal terminal properties of the multisection TWT, including

forward gain characteristics and backward wave instabilities. All these

properties are contained in the 2 x 2 transmission matrix T11, which is

known from the computer calculations of the over-all transmission

matrix T.

Hence, the discussions of TWT properties are reduced to a discussion of

the properties of the submatrix T l" Only in the simplest cases, and

certainly not for multisection TWTs, can we obtain exact or approximate

analytical expressions for the elements of T 11 But for the computer,

determination of T 1 is a well defined problem and a straightforward

procedure using the general formula (4.41).
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5.0 BACKWARD WAVE INSTABILITIES

From this base on we can proceed to determine the conditions for backward

wave instabilities which are contained in the properties of the TI1

matrix in (4.48). Let us express the matrix explicitly by its elements:

T1 (5.1)

X 21 X 22

and remember the relevant equation (4.48), repeated here for

convenience:

bc (Zn2) = X bc(z 1 1 ) (5.2)

5.1 THE INHERENT BACKWARD WAVE INSTABILITY

The usual argument for determining backward wave instabilities is the

following: If the rf circuit variables b c(zn2) are zero at the output

end, but nonzero at the input end, i.e., b c(zl) 1 0, then the backward

gain is infinite and the solution unstable, giving rise to oscillations

at some frequency. This condition is easily obtained from (5.2) by

putting b (z n2) 0, which results in the equation:

Sb (z ) 0 (5.3)

The solution of this homogeneous set of equations specifies the condi-

tion for backward wave instabilities. In order for bc(z11) to be nonzero,

the determinant of (5.3) must be zero

KI= "' _ v N = 0 , (5.4)11 = 2e 12'

which i; the Instability criterion.
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The elements in the \-matrix are functions of all the relevant param-

eters of the multisection TWT. It reflects the properties of all the

sections as far as fixed design parameters are concerned, such as helix

impedances, pitch angles, etc. Moreover, X is also a function of

operational parameters, in particular the dc beam current and the fre-

quency . We are not at liberty to specify the oscillation frequency

w, which is an unknown parameter together with the starting current I
_ Os"

Since all the elements in the ',-matrix are complete quantitiLs, the

determinantal equation (5.4) contains two independent equations, repre-

senting the real and imaginary parts:

I,(.,Io) = 0 (5.5)
r

I= 0 (5.6)
i

These two equations define implicitly two functional relationship.

between I0 and u,, which have to be satisfied simultaneously. In

Figure 5-1 these two relations are represented by the intersecting

curves in the u-I0 plane. The intersection is specified by point A in

the diagram and represents the starting current I OS and oscillation fre-

quency ws for backward wave instabilities.

The numerical procedure would involve appropriate search routines for

determining the intersection point A between the two curves.

At this stage it is appropriate to point out some common errors made

in determining the starting current. It Is not unusual that the
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starting condition is established by considering only one equation,

say (5.5), or some linear combination of (5.5) and (5.6). Regardless

of details, the point is that only one relation between 10 and w is

specified. In Figure 5-i this would correspond to disregarding one of

the two curves, say the one corresponding to iX(W 0 ,I0) ji = 0. In this

erroneous procedure one is then plotting the remaining curve, which in

this example would be IX(Wlo)Ir = 0, and specifying the starting con-

dition as the minimum of the curve. In this example this would be

point B, corresponding to an alleged, but incorrect starting current

I' and frequency w'
Os S.

But even if we avoid this incorrect procedure, the described method

using both equations (5.5) and (5.6) is not the best way of approaching

the instability problem. It is sure that the method gives the correct

starting condition for the inherent backward wave instability, which

has to do with internal feed-back loops in the circuit-beam system.

However, the method is unable to cope with more general configurations

characterized by additional feedback from reflections at the input and

output terminals. Expressed differently, the described procedure is

valid only for perfectly matched input and output terminals. The

reason for this deficiency is that the relation (5.2) is not yet

expressed in terms of its forward and backward traveling rf components

and the corresponding forward and backward gain. In the following we

shall develop a procedure along these lines, and arrive at a better

method for determination of backward wave instabilities.

5.2 RESOLUTION IN FORWARD AND BACKWARD COMPONENTS IN THE OVER-ALL
TRANSMISSION SYSTEM

As already pointed out, the x-matrix in (5.2) contains all the informa-

tion on the terminal behavior of the multisection TWT. An equivalent way

of expressing this fact is the statement that the behavior is described

by the eigenvalues and eigenvectors of X.

40



G 7651

1041

414



The eigenvalue relation is given by:

Xrr i = , 2 (5.7)

Nonzero solutions of r. requires the determinant to be zero.1

I X - Y I = 0 , i = 1, 2 (5.8)

Expansion of (5.8) yields the two eigenvalues:

Y f I X 
X1 / 5 9

= 11X + X22 ± [(Xll - x2 2)
2  + 12X21

In particular, the following relation holds:

Yfyb =  XIX22 - X2X2 = I x (5.10)

Note that the upper and lower sign of (5.9) are allocated to yf and yb

or, possibly in reversed order, to *b and yf. The choice is determined

from the corresponding eigenvectors rf and rb" These are given by:

=f yf - X1 1 (5.11)

X12

b= (5.12)

yb - X
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The elements in the vectors yf and Yb must satisfy certain sign require-

ments which determine the choice of sign in (5.9). The details are dis-

cussed at the end of this section.

The mathematical procedure is now to express the circuit rf variables,

which are given by the vectors b C(z n2) and bc(Z 1) in (5.2), as super-

positions of the two eigenvectors rf and rb. Let

c(Z n)) = Cf (z) rf b Cb(zn2 rb (5.13)

b c = Cf(z)1 1  rf + Cb(zl1) r b  (5.14)

Substituting these expansions into (5.2) and making use of (5.7), the

resulting equation is in diagonal form:

=Cf((. 11)

C[ 2b - 0 7J[b( J 1
)

In component form:

Cf (za) = y C (z ) (5.16)f 112 1f 11

Cb (zn2) = 'bCb(z 11) (5.17)

What is the physical significance of the mathematical procedure of

expansions into eigensolutions? It describes the resolution of the

over-all rf circuit variables v 0 and i into its forward and backward

traveling components. These are described by their amplitudes Cf and Cb

which, of course, are different at the input and output terminals.
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Apparently, the gain of the forward and backward traveling waves are

given by:

(voltage gain) = yf

(voltage gain) = 1(59)
b Y

Hence, the respective gains are specifiEd by the eigenvalue y, and the

inverse eigenvalue 1/yb The two are related by (5.10) which can be

expressed as:

(voltage gain) f
(voltage gain)b T (5.20)

This equation confirms the earlier condition (5.4) for backward wave

oscillations, namely I x ! - 0. But (5.20) tells us more than (5.4). If

Lhe forward gain, at the oscillation frequency, is zero, or very small,

the procedure of putting I x I - 0 is bound to be quite inaccurate,

because the right-hand side of (5.20) is essentially a zero over zero

expression.

The better, and correct, procedure is to determine the condition for

infinite backward gain directly from (5.19), which is

Yb . 0 1 (5. 1)

where Yb is specified by the appropriate expression in (5.9). It

follows Immediately that this equation gives

'.22 - A12,,1 " I ., 0 (5.22)
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Hence, it leeks like (5.21) and (5.4) are entirely equivalent, but this

is only from a superficial viewpoint. In any numerical iterative search

routine, the end result is a small, but nevertheless finite value of yh

or Ixl. The search procedure depends on the variations of these func-

tions around their zeros, which are quite different for Yb and lJy and

favors the use of ib" The discussion in conjunction with (5.20) already

emphasized this point. Moreover, the small, but finite value of Yb

obtained as the end result of the search procedure also tells us what the

backward gain is under these circumstances, nariely 1/Yb.

The forward and backward solutions are basically identified by the nature

of the eigenvectors, rather than the eigenvalues. The latter can vary

over o wide range because the forward and backward gain can be larger or

smaller than unity, depending on the frequency and other operating

parameters. Hence, under genera. conditions it is not easy to identify

the forward and backward components from the two eigenvalues.

The forward wavL is characterized by positive Eower flow which requires

a positive real part of the impedance. In the eigenvector this require-

ment is reflected in the signs oi the two vector elements. The real

part of the elements must have the same sign.

Conversely, the eigenvector for the backward wave is characterized by

opposite signs of the real parts of the vector elements.

The eigenvectors also provide us with direct information on the charac-

teristic impedances for the forward and the backward waves. Thesa

questions are discussed in Section 5.4.1.

5.3 PROPER PROCEDURE FOR DETERMINATION OF THE INHERENT BACKWARD
WAVE INSTABILITY

As noted, the procedure described in 5.1 is not entirely satisfactory.

The proper procedure is based on the condition (5.2!) rather thatn
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(5.4). The real and imaginary parts are both zero. For convenience

disregarding the subscript b we then have the two equations:

+ ji = 0 (5.23)

Yi(lo ' -r + j"i 0 (5.24)

which must be satisfied simultaneously. In order to provide a better

understanding of backward wave oscillations, the frequency - is assumed

to be complex

c= r + ji

The two functional relationships (5.23) and (5.24) are sketched in

Figure 5-2 as two sets of intersecting curves, with . constant for each

curve. The intersections between curves of the same complex frequency

+ J'i represent the solution of the set (5.23) and (5.24). i.t.,

the condition for infinite backward wave gain. In the figure the solu-

tion is given by the dotted line B-C, which is naturally separated in

two by the point A corresponding to a real freuency -,. Below A the

solutions have positive imaginary frequency. Apparently this corre-

sponds to an exponentially decaying solution in time, which therefore

is stable. The solutions above the point A have negative imaginary

frequency and grow expoentlally with time. This is the unstable region.

Hence, if we visualize that the current I0 is increased from a low

value, we are moving upward along the line B-C. The system is nice and

stable until point A is reached. Point A repkesents the .tarting condi-

tion, which is characterized by a real oscillation frequency .. , and the

starting current 108' If the current is increased upwarus from A

towards C, the system becomes un.stable, with exponentially increasing

rf amplitude. The amplitude is, of course, limited to a finite va.lue

through nonlinear effects.
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Figure 5-2 Sketch illustrating the nature of backwaird wave
instabilities. The region above the shaded outline is
unstable.
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5.4 THE EFFECT OF MISMATCHED INPUT AND OUTPUT TERMINALS ON BACKWARD

WAVE INSTABILITIES

In the preceding treatment of the backward wave instability condition,

it was assumed that the input and output terminals were matched. This

can be considered to be the basic instability criterion. With no reflec-

tions at the input and output terminals, the instability is due entirely

to the inherent feedback loops in the backward mode, and to the reflec-

tions taking place at the intersections between the uniform helix

sections.

In this section we shall extend the analysis to the more general con-

figuration of nonmatched input and output terminals. A schematic illus-

tration of the configuration is shown in Figure 5-3.

In a practical situation one would like to determine the instability

conditions for each of the two regions which are separated by the

attenuato-. The actual configuration is shown schematically in Figure

5-4. The treatment is general enough to be applicable for this

situation.

In the previously treated inherent instability condition, corresponding

to matched input and output terminali, it was sufficient to consider

equation (5.17) describing the backward wave gain. The equation (5.16)

could be disregarded because of the forward wave amplitude Cf is zero

under matched conditions. in the general case to be treated here, Cf is

not zero. It will be convenient to introduce the ratio Cf/Cb at the

input and output as new variables. But first, we must define the

characteristic impedances of the forward and backward waves.

5.4.1 Forward and Backward Characteristic Impedances

The concept of characteristic impedance tollows directly from (5.12)-(5.14).

The impedance specifies the ratio of the normalized circuit voltage v0

48



G7M3

ATTE NUATOR

Figure 5-3 Schematic diagram wf a sectioned TWIT with arbitrary
input and output loads Z LI and Z LN.

G76S4

RElION ZAT ZA OUTPUT Z LN
REGIONREGION

Figure 5-4 Sketch showing the TWT separated into two regions. with
the attenuator load Z At serving as output load for the
first region and input load for the second region.
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and the normalized circuit current i0 for each of the two modes in the

absence of the other. The normalized impedances follow in a straight-

forward fashion from (5.11) and (5.12).

The forward wave characteristic impedance Jf is given by:

f -f(-")2 
(5.26)

Note that /, is a normalized impedance because v0 and i0 are normalized

with respect to the dc voltage and current, respectively.

The backward wave characteristic impedance /. is given by

( V 12 (527
,/b = 0b b - 'I (

As already noted in Section 5.2, the real parts ot /f and /b are posi-
tive and negative, respectively. But there is no reason to expect that

A is equil to minus./f. Nor are these impedances specified directly

by the cold circuit impedances. They rellect the properties of the

over-all coupled beam and circuit system in the forward and backward

directions, respectiveldy.

5.4.2 The Reflectior3 at the input and Output Terminals

Introducing the ratio of the forward and backward mode amplitudes ah a

variable, we can use (5.16) and (5.17) to obtain the following

re I at ion:

C b )Wb b

I' 5
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where subscript n and I refer to the output and input terminals,

respectively. We can easily determine the amplitude ratios from (5.13)

and (5.14), together with a specification of input and output load

impedances Zbl and ZLn. At the output terminal

(i) Z~ nGO (5.29)

n

where

ID
DC (5.30)

o VDC

is the dc beam conductance.

At the input terminal we must reverse the sign because the rf circuit

current is defined positive in the positive z-direction. Hence

" 0 i Z11 CO (5.31)

Using these two relations together with (5.13) and (5.14) we obtain:

z nL C 
0

Cb " n F ; (5.32)

n -5
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+ Z 1L Co

( f A (5.33)

/f

It is clear that the expressions (5.32) and (5.33) are the reflection

coefficients at the output and input terminals, respectively. Denoting

these by )n and .,I, we have

Z C
n, 0

n " n C j 5.34)
n ZnLCo

lb

1 + ZL 'o

/f

One should note that the reflection coefficients are of a generalized

nature compared to reciprocal transmission systems, because the charac-

teristic impedarces are different in the two directions.

The remaining step is to substitute (5.32) and (5.33) into (5.18). Also

using the definitions of reflection coefficients, we obtain the follow-

ing formula:

"Vb'n b I 1 (5.36)
Yb

This is the new instability condition which is chiracterized by unity

loop &Lan. The condition of unity gain is clvarcr from in p'ctions of
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Figure 5-5, where the various factors in the product (5.36) are repre-

sented in the closed loop.

Equation (5.36) can be expressed in the equivalent way:

Yb - YfPlOn = 0 (5.37)

This equation represents the required generalization of (5.21). With

matched terminals, and n are zero, and (5.37) reduces properly to

(5.21).

If we define a modified Yb by the relation

b ' Yb - ¥fol'n ' (5.38)

it follows thal. the instability condition (5.37) is expressed by

Yb a 0 (5.39)

This implies that the general nonmatched configuration can be treated

by exactly the same mathematical procedure as discussed in Section 5.3

for the inherent backward wavt instability. We simply replace yb by y,

defined in (5.38), and proceed in exactly the same way.

With mismatched input and output terminals, i.e., with o and .,n both

different from zero, the required backward gain for the occurrence of

instabilities is less than infinity. Hence, the starting current ION is

expected to be reduced correspondingly.

This concludes the discussion of the formal structure of backward wave

instabilities. We have established a general mathematical procedure by
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Figure 5-5 Schematic Illustration of the condition (5.36) of uniti
loop gain as criterion for backward wave oscillations.
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which very general configurations of multisection TWTs can be analyzed

with regard to both forward and backward wave properties, in particular

backward wave instabilities. The important problems of optimum design,

i.e., the design of multisection TWTs with the largest possible starting

current IOs without undue sacrifice of forward wave characteristics, are

not approached analytically in the present work. The computer program

developed from the theory probaLly represents a better tool than any

approximate analytical methods, which conceivably could be developed from

the theory.
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6.0 PLASMA REDUCTION FACTORS AND BEAM COUPLING

COEFFICIENTS FOR FORWARD AND BACKWARD MODES

The dispersion relation and state vectors for the coupled beam-circuit

system in a uniform helix section were given earlier by (4.5)-(4.7).

Among the parameters appearing in these relations are the plasma reduc-

tion factors R M and the coupling coefficients f(i), where m = 0, ±1
m m

and i = 1, 2, 3.

A considerable amount of analytical work has been done in the course

of this program to determine these parameters under general focusing

conditions. The details are far too extensive to be included in the

final report. It is anticipated that a full account of beam wave

properties under general focusing conditions will eventually appear as

a separate technical report. In the present report we shall state a

few of the more significant results, in particular the plasma reduc-

tion factors and the beam-circuit coupling coefficients for confined flow.

We shall also discuss the more complex Brillouin focusing condition and

the corresponding backward wave characteristics.

6.1 BEAM MODEL

Plasma reduction factors and coupling coefficients are concepts that

depend on certain assumptions concerning the distribution of rf modu-

lations over the beam cross section. The details of the longitudinal

and transverse distributions depend in large measure on the driving

fields from the surrounding circuit. However, in order to represent

useful concepts in TWT design, the plasma reduction factors and coupling

coefficients should be largely independent of the details of the circuit,

except for a minimum of geometrical details such as radial dimensions

of the beam and the circuit.
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This implies that one has to make reasonable asaumptions concerning the

distribution of beam modulations over the cross section. In the more

traditional approaches it is common to use a Bessel function distribu-

tion, which is simply the basic term in an infinite normal mode expan-

sion of space charge wave components. But this choice is dictated more

from mathematical convenience rather than physical reality. In view of

the fact that the edge regions of the beam are modulated more strongly

than the central part, the Bessel function distribution is obviously

not a good choice, because the J (. er) Bessel function has its maximum

at the center and decays towards the beam edge, i.e., the variation is

exactly opposite from the actual situation.

With this in mind it seems logical to assume the very simplest distri-

bution, which is that of constant velocity and displacement distributions

over the beam cross section. Although this is not the actual physical

distribution in the TWT, it is a better choice than the traditional

Bessel function distribution.

Accordingly, the longitudinal and transverse dynamic variables for the

m - 0 and the m - ±1 modes are specifed by the schematic diagrams in

Figure 6-1. On this basis we have developed a complete field theory

for determination of the associated fields which, in turn, specify the

plasma reduction factors and coupling coefficieutts.

6.2 CONFTNED FLOW

Confined flow represents a limiting case of focusing which Is never

quite achieved in a practical tube, because it requires infinite mag-

netic field, or zero beam current. But the condition can be approached

to a degree which justifies the use of this concept.

As discussed earlier, confined flow is by far the simplest from a con-

ceptual viewpoint. iince no beam rotation takes place, the m - -1 and
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b) m 1

Figure 6-1 Schematic diagrams of the assumed distributions of the
dynamic variables over the beam cross section.
a) Fundamental mode, m - 0
b) Backward wave modes, m - -1.
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m - +1 beam modes are identical, except, of course, for the opposite

angular variations. The plasma reduction factors and the coupling coef-

ficients are the same for m = +1 and m = -1. But these differ from the

corresponding factors of the fundamental mode m - 0.

6.2.1 Plasma Reduction Factors for Confined Flow

For the fundamental mode m = 0, the square of the plasma reduction

factor is given by the expression:

R20=1I- 2 GlYb (yr, yr) (6.1)
m I (yr ) 01 b

The variables appearing in the equation are:

Beam radius, rb

Helix radius, ra (6.2)

Propagation factor, y

The functions Il(yrb) and 10 (Yra) are modified Bessel functions, and

S01 (yra s yrb) is defined as follows:

G0 1 (yra, Yrb) = 10 (Yra) Kl(Yrb) + Ka(yra) Il(Yrb) (6.3)

The propagation factor y basically refers to the propagation factors

8(i) of the three forward traveling modes, corresponding to i = 1, 2, and

3. But these are sufficiently close to justify the use of the same y

for all three components. Hence, for practical purposes

Y = Be (6.4)
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The plasma reduction factor for the m = ±1 waves is given by:

R 2 2
2 (Yrb)2 K 2 (yr b) 2m=R = 1+ 22
m=± (Yrb) 2

- 212Yb

- l (Yra) [G1 0 (Yras yr) - K1 (Yra) ]  (6.5)

where

G1 0 (yra, yrb) = 1(yra) K0(yrb) + KI(Yra) I0(Yrb) (6.6)

The plasma reduction factors R0 and R+1 are plotted in Figures 6-2

and 6-3 for several values of the beam-to-helix diameter ratio r b/ra

From the expressions for R0 and R+ I one can show that

lim R = lim R = 0 (6.7)
yrb 0 yrb0

lim R0  lim R+, = 1 (6.8)
yr b4  yrb4

The first of these two limiting cases, R = 0, corresponds to an

infinitely thin beam in which case there are no longitudinal fields, only

transverse field components. The second limiting case, R = 1, corre-

sponds to infinite normalized beam radius, which essentially represents

a one-dimensional case. The fields are pure longitudinal, and the

transverse field components are zero.
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Figure 6-3 Plasma frequency reduction factor R. for backward wave
interaction and confined flow.
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6.2.2 Coupling Coefficients for Confined Flow

The coupling coefficient f M is a measure of the strength of the
m

coupling between the beam and the current. The coefficient appears in

the dispersion relation (4.5) and the state vectors (4.6).

For the fundamental mode, m - 0, the coupling coefficient is defined as

the ratio of the circuit current I and the longitudinal current Ib in

the beam

I
f C (6.9)

The coupling coefficient is obtained from the equation:

21
1(Yrb) I

fo 2 rb 1(r) (6.10)

The expression is plotted in Figure 6-4 for several values of the

ratio r /r

The mode symmetry in the backward traveling waves is such that the cor-

rebponding coupling coefficient does not have the same simple physical

interpretatio as (6.9) for the fundamental mode m - 0.

With reference to Figure 6-lb. the longitudinal current density in the

m - !I modes is specified by

ib(r, ", Z) * b(z) e-' j er, (6.11)

where 'Ib(z) is itterpruted is the one-dimensional equivalent of the

conbtant current density in the fundamental mode. The actual current
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Figuie 6-4 Beam-circuit coupling coefficient fo for forward wave
interaction (m -0) and confined flow.
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density is proportional to the radius and varies azimuthally as exp (±j6).

The total integrated current is therefore zero. The entire theory in the

present report is based on interpreting ,b(Z) and (6.11) as an equiva-

lent one-dimensional current density. The coupling coefficient f. is

defined on the basis of this variable, in the following way:

A
i(z) r d(ca

±1 2 (6.12)
i b z) -1 r bd

Awhere i (z) is the surface current density in the surrounding circuit,c
in the m = ±1 mode.

Evaluation cf the coupling coefficient f. yields the following

expression:

[20 Berb) - 2 1(Brb) (6.13)

The equation is plotted in Figure 6-5. It is noted that f. can be
±1

larger than unity. This is simply due to the fact that the coupling

coefficient for the antisymmetric backward wave modes does not have the

same simple physical interpretation as the corresponding coefficient fo

for the fundamental mode. In particular, the numerical value of f.

depends on how we define the "one-dimensional equivalent beam current

density" b(Z). The definitions used in the present work are stated in

(6.11) and (6.12), and all remaining equations are consistent with these

definitions.

6.3 BRILLOUIN FLOW

In the present program an extensive analysis has been made oi tLe

nature of electron beam waves in a general, balanced beam model. This
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model includes, as special cases, the confined flow condition treated

in the previous section and the Brillouin flow condition. The dispersion

relation, and thereby the plasma reduction factors and the coupling

coefficients, are specified by an implicit equation of sixth order.

For the simple case of confined flow one can evaluate these factors

explicitly. However, for Brillouin beams the situation is not so simple.

The roots of the sixth order equation must be solved by numerical com-

puter procedures, and only fairly crude approximations can be obtained

analytically.

The roots of the sixth order equations determine a set of six beam

waves. In addition to the regular space charge waves the beam supports

two cyclotron waves and two quasisynchronous displacement waves.

The analysis has been carried all the way to a detailed specification of

all the elements in the sixth order dispersion relation. But the estab-

lishment of numerical solutions and interpretations of the characteris-

tics of the beam waves would represent a large effort much beyond the

scope of the present program. Therefore, the following treatment is

limited to presenting approximate solutions for the backward wave

characteristics in Brillouin beams'.

6.3.1 Plasma Reduction Factors for the Backward Waves (m = ±) in
Brillouin Flow

For confined flow we found that the plasma reduction factors for the

m = +1 and m = -1 modes were the same. The reason for this result is

that the beam motion is purely longitudinal. Hence, for reasons of

symmetry there can be no difference in the behavior of the m = +1 and

m = -1 modes, except, of course, the opposite azimuthal variations.

On the other hand, for nonconfined flow, such as the Brillouin condi-

tion, the m - +1 and m = -1 modes have different plasma reduction
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factors. They also depend on the direction of the dc magnetic

focusing field.

An approximate perturbation procedure is reasonably accurate for the

m = ±l modes because this particular symmetry maintains the beam cross

section everywhere under rf conditions. Hence, the transverse dis-

placement is nct likely to play an important role for the space charge

field. On the other hand, for Brillouin flow, the circularly sym-

metric mode, m - 0, is characterized by uniform radial expansions and

contractions, which clearly contribute to the axial space charge field

and therefore to the plasma reduction factor. Accordingly, we limit

the approximate procedure to the m - !l backward modes.

The results for the m - +1 mode can be stated as follows:

Slow wave: R R 1 (6.14)
+I,s 2

Fast wave: R - R + (6.15)
+lb 1 -1

where R.I is the plasma reduction factor for confined flow, specitied

by (6.5) or Figure 6-3. The upper signs in (6.14) and (6.15) arpiy for

positive direction of the dc magnetic focusing field, the lower sign

for negative direction of the field.

For the m - -I mode the corLesponding equations are:

Slow wavt.: R_ , - . 1 (6.16)

Fast wave: Kl,b - X, , b.17)
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where the upper and lower signs refer to the same conditions of

focusing as stated above.

According to these relations the plasma reduction factors depend on the

sign of m, and the sign of ihe dc magnetic field. The following general

relations apply:

Rs(m,B0 ) = Rs(-m, -B0 ) (6.18)

R (m,B -B (6.19)f 0 f~m - 0)

The consequences of these relations for backward wave oscillations under

Brillouin flow conditions are such that we expect the starting condition

to be different for reversed direction of magnetic field. Or equiva-

lently, as shown by the general relations (6.14)-(6.19), a right-handed

and a left-handed helix do not have the same starting conditions for

the same direction of magnetic field. This difference is expected to

affect both the starting current and the frequency of oscillation,

and should be observable experimentally in uniform Brillouin focused

TWTs.

In a periodically focused TWT, the focusing fields in alternate sections

correspond to the positive and negative Brillouin field. Accordingly,

the plasma reduction factors alternate between the upper and lower values

in (6.14)-(6.17). The synchronization condition for backward wave

oscillations also changes periodically with the same periodicity. Due

to the dominant use of periodic Brillouin focusing in TWTs, an impor-

tant question is how to approach the problems associated with the

periodic nature of the electron beam. We could suggest to incorporate

the periodic sections into the over-all forward and backward inter-

action system analyzed in Chapters 4 and 5. In principal, one could

think of introducing the concept of a "sectioned beam" in the same way
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as done for sectioned helices. However, this is more difficult for the

beam,'because of mode conversions taking place at the field reversals,

but it may still be possible to implement. It would require more

detailed knowledge of all the six beam modes discussed earlier, and of

the appropriate matching conditions of the field reversals. In itself

this is a considerable task far beyond the scope of the present program.

In lack of such a description we are forced to accept approximate

procedures. If we insist on using one single plasma reduction factor

for the entire length of the periodically Brillouin focused beam, the

best choice appears to be the average value of the reduction factors in

alternate sections. But from (6.14)-(6.17) we observe that the average

values are just R±1 , i.e., the reduction factor for confined flow.

Hence:

S(R_+i) = (R+1 )_ (6.18)

Brill confined

In this approximate description the periodic Brillouin beam looks like

a confined beam, as far as the m = ±1 modes are concerned. Physically,

this p-icture is quite acceptable in view of the fact that the average

dc rotational frequency is zero, i.e., the same as in confined flow.

In the same approximation, we would expect the average coupling

coefficient to be equal to the coupling coefficient for confined flow:

(ff1 ) = (f l)_ (6.19)
Brill ±1 confined

This concludes the discussion of backward wave characteristics for the

Brillouin focused beam. Further analysis is required of the special

problems of periodic Brillouin focusing and its implementation in the

over-all forward and backward wave system described in Chapters 4 and 5.
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LIST OF SYMBOLS

a Column vector specifying the rf variables along
the tube.

a b Column vector for the backward wave mode.

af Column vector for the forward wave mode.

a Column vector for the mth space harmonic component.

b Overall column for the rf variables.

b Circuit part of b.

b Beam part of b.

c Velocity of light in vacuum.

d Pitch of helix.

e Charge of the electron.

f(i) Coupling coefficient of the ith mode of the mth
m space harmonic.

i b  Backward wave mode circuit current normalized to
the dc current (mode m = 0).

ibm Backward wave mode circuit current normalized to
the dc current (mode m).

if Forward wave mode circuit current normalized to the
dc current (mode m).

m Space harmonic number.

m Rest mass of electron.
0

m£ Relativistic mass of electron in the longitudinal
direction.

mt Relativistic mass of electron in the transverse

direction.

qi) The ith component of the state vector for the mth
space harmonic.
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LIST OF SYMBOLS (CONTINUED)

r Helix radius.a

r b  Beam radius.

rf Eigenvector of the x-matrix.

r5 Eigenvector of the x-matrix.

s RF displacement.

t Time.

v 0DC beam velocity.
v b  Backward wave mode circuit voltage normalized to

the dc voltage (mode m = 0).

V b,m  Backward wave mode circuit voltage normalized to
vthe dc voltage (mode m).

Forward wave mode circuit voltage normalized to

Vf'm the dc voltage (mode m).

v Phase velocity of the mth space harmonic componentc,m of the circuit alone.

Yf Forward wave mode overall characteristic impedance
of the TWT.

Yb Backward wave mode overall characteristic impedance
of the TWT.

A m Normal mode vector of the mth space harmonic.

B) Normalized propagation factor of the ith mode of
m the mth space harmonic.

C f Normal circuit mode amplitude of forward mode in
the TWT.

Cb Normal circuit mode amplitude of backward mode in
the TWT.

D mDiagonal matrix containing the normalized propaa-

tion factors 41 ).
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LIST OF SYMBOLS (CONTINUED)

E . Electric field of the mth space harmonic component.Em(r)

Gol(Bra Brb) Combination Bessel function.

I DC beam current.
0

I Inverse of transmission matrix T.

I ( er) Modified Bessel function of first kind and zero order.

1(Serd _ Modified Bessel function of first kind and first
order.

K ( er) Modified Bessel function of second kind and zero
order.

K ( er) Modified Bessel function of second kind and first
order.

L Normalized length of one helix section.

M Overall state matrix for left-handed helix.

M r  Overall state matrix for right-handed helix.

P Submatrix of state matrix Q'.

Q State matrix of the mth space harmonic component.

QPart of Q'

Ri) Plasma reduction factor of the ith mode of the mth
m space harmonic component.

S Normalized displacement of the mth space harmonicm
component.

T Overall transmission matrix.

T(P) Transmission matrix of section p.
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LIST OF SYMBOLS (CONTINUED)

12 Submatrices in the overall transmission matrix T.

_ 21

T22

U Normalized rf beam velocity of the mth space
m harmonic component.

V DC beam velocity.0

W Submatrix of Q'.

z 0Normalized length.

Z cCircuit impedance of the mth space harmonic, referred
to the circuit location r - ra.

Zn2 Normalized pocirion at output end of last section.

Z 1 Normalized position at input end of first section.

Z 12 Load impedance at the input.

ZnL Load impedance at the output.

8Propagation factor of the mth space harmonic.m

y Relativistic factor.

yf Elgenvalue of the k-matrix.

Yb  Elgenvalue of the X-matrix.

f Permittivity of frce bpace.

Plo~q ). ramiter of the mth space harmonic component.m

Retlection toeftJ,lent .it the input end oi the TVT.

C Refle tion (oefflrient at th, the output en,. of
the .
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LIST OF SY.2OLS (CONTINUED)

Angular frequency.

CComplex angular frequency.

. Imaginary angular frequency.

po Non-relativistic plasma frequency.

nRelativistic plasma frequency.

.p Plasma frequency normalized to the operating frequency.

A A 2 x 2 submatrix equal to T1

All)

X1 2
The elements of X.

X21

'22

1x i Determinant of x.

1Ix r  Real part of jX •

}i i~ Imaginary part of
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