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PREFACE

This final technical report was authorized by Dr. T. Wessel-Berg and
prepared by Electron Dynamics Division, Hughes Aircraft Company,
Torrance, California, on Contract F30602-79-C-0028 for Rome Air
Development Center, Griffiss Air Force Bac:, New York. It summarizes
the results of a continuation effort on the '"Development of a Large
Signal Computer Theory for TWT,” based on polarization variables that
was reported on Contract F30602-77-C-0221. This continuation effort
describes the implementation of variable circuit parameters along the
tube axis, and provides a stability analysis of backward wave inter-

action, based on the assumption of confined-flow-focusing.

This effort has been initiated in December 1978 and was completed in
March 1980. Joseph Polniaszek was RADC Froject Enginebr.
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EVALUATION

This report describes a novel approach to large signal modeling
of a helix type TWT. It embodies the benefits of increased accuracy
and decreased computation time for initial tube modeling and develop-
ment, This is accomplished through the use of a transformation
that reduces the nonlinear equations describing the system into a
set of linear differential equatiors that can be solved using classi-
cal techniques. The ultimcte benefit of this program will be de-
creased development time and cost through a reduction in the com-

putation time and also the "cut and dry" experimental techniques
used presently.

B N
S
})/,‘9 an %Zéx.
v JOSEPH J. POLNI

Project Engineer
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1.0 INTRODUCTION

This report presents continuation efforts in the large signal computer

theory described in report No. W-07587. It represents a further investi-
gation of special effects and conditions of importance in TWT design. In
particular, it treats two main areas: Implementation of variable circuit

parameters along the tube, and backward wave instabilities.

The first of these main areas involves the handling of velocity tapers,
impedance tapers, and variable attenuator sections, all in any prescribed

fashion.

The second area 1s concerned with analysis of backward wave instabilities
under the same conditions of variable parameters along the tube. In
particular, the theory is applicable for segmented TWTs, i.e., tubes with
several sections of otherwise constant circuit parameters. Such con-
figurations are known to reduce backward wave instabilities, but the
underlying theoretical background and the modeling have been inadequate.
In particular, the symmetries and coupling relations of beam and cir-
cuit modes have not been sufficiently well understood. The present

work is an effort to contribute ta a better understanding of these
effects and provide improved models and mathematical procedures for use

in numerical analysis of backward wave instabilities.

One part of the investigation is the analysis of the properties of the
beam modes involved in backward wave interactions. These have different
symmetries from the usual circularly symmetric modes involved in for-

ward interaction, and need special consideration.

The analysis of the stated problems involves a considerable mathematical
apparatus, and all details can not be contained in a relatively short
final report. 1In particular, this applies to the analysis of the beam

modes. On the other hand, a fairly complete account is presented of

the backward wave instability problem. , .



2.0 THE TREATMENT OF TAPERED CIRCUIT PARAMETERS

2.1 INTRODUCTION

If the circult parameters are varying along the z-axis, the model and the
basic formulation must satisfy certain requirements which can be stated
as follows: (i) the basic circuit and beam rf-variables must be chosen
such that they are continuous along the axis, even if the circuit param-
eters are discontinuous, (ii) the beam~to~circuit coupling must be

appropriately formulated in terms of wavelength-dependent coupling

coefficients rather than frequency-dependent coefficients.

The requirement (i) serves to facilitate the mathematical formulation
of problems having z-dependence in general. The requirement (ii) is
necessary for handling cases of high circuit loss, i.e., attenuators in
general. In such cases the wavelength beam-to-circuit coupling is
specified by an attenuated and increasingly fast propagation factor
entering the argument of the coupling coefficient, which then itself
becomes complex. This implies that the coupling is no longer pure

capacitive but has a real component as well.

In the polarization model used in the present work both requirements (i)

and (ii) stated above are fully accounted for.

2.2 MATHEMATICAL APPROACH

The following is a formal exposition of the mathematical procedure.  In
the first part of this work, reported earlier, we established the concept
of the transmission matrix T for a uniform helix section. The trans-
mission matrix relates the rf variables at the input and output ends of

the uniform section in the following way:

az) = I alz,)) (2.1)



where a(zp) is a column vector containing the rf variables of all the
frequency components. The transmission matrix implicitly contains large
signal effects, in that the off-diagonal submatrices are nonzero. These

represent the nonlinear coupling terms between the various harmonics.

If the circuit parameters vary over a certain length of the TWT, this
length is subdivided into a sufficiently large number of subsections.
In each of these the parameters are considered to be constant and
independent of z.

;
The over-all transmission matrix for the tapered section is then given
by the product of the separate transmission matrices of the p

subdivisions.
T = T(e I -1 ...T(2) I (2.2)

The formula applies for the practical computational case in which the

number p is finite. The exact formula is

T = lim [T I(p -1 ... T(2) T(M)) (2.3)
p-\w

This simply means that the subdivisions have to be made sufficiently
small to simulate the real situation. In practice, this is no problem,
since the computer prog:am is sufficiently general to accommodate the
indicated procedure. 1t is more a question of organization of input data

for the computer.

In the small signal domain, the over-all transmission matrix is diagonal
on a submatrix basis, and the computations are correspondingly simple, in
that each harmonic components can be treated independently of the

others.
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3.0 RELATIVISTIC CORRECTIONS

The relativistic corrections that have to be implemented at high dc
voltages have been introduced. These corrections are all expressed in

terms of the usual relativistic factor y, defined by:

1/2

2
\1
y = - - (3.1)
C.. ¥
The relativistic effects appear in the following parts:
1. The relativistically correct dc velocity Vo is obtained
from the dc voltage Vo by:
L] \7
l+..l.._e.._9.
2 ooley fMé G3.2)
0  2m 0 2 )
(¢} VO
I+-3-—-2-
"0 ¢

The last fraction represents the relativistic correction, being

unity if VO is small.

2. The longitudinal relativistic mass m, is increased by the

factor l/Y3.

m = m us (3.3)



s
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3. The transverse relativistic mass m_ is increased by the
factor 1/y.

= 1
m. = m v (3.4)

E o3

The plasma frequency wp is redudéd by the factor Y3/2

_ 3/2
wp = pr \ (3.5)

With the indicated corrections introduced into the program
at the appropriate places the results are relativistiéally

correct for small signals and approximately correct for large
signals.



© 4.0 FUNDAMENTAL AND SPACE-HARMONIC INTERACTIONS
IN THE TWT

The main objective of the present work is to analyze backward wave
instabilities. But in order to accomplish this task it has been neces-
sary first to establish a sufficiently detailed physical model together
with a sufficiently simple mathematical formulation of the over~all

forward and backward interactions taking place in a multisection TWT.

i

4.1 INTERACTIONS OF BEAM AND CIRCUIT IN THE BACKWARD MODES

It 1s necessary to distinguish between left- and right-handed helices
because of possible inclusions of pitch reversals in the helix struc-
ture. The rf fields of left- and right-handed helices are given by the

fpllowing expansions in space-harmonic components:

_— -ig 2 .
E(r, 8, z) = Z E (1) e m =imo (4.1)
m==-co
> - “3Bn? 5mo
ﬁ(r, 8, z) = Z Em(r) e e R (4.2)

- 0O

In these expansions the exponent Bm is given by:

8 = B, + —— (4.3)

where d is the helix pitch.



The dispersion diagrams of the left~ and right-handed helices are shown

in Figures 4-1 and 4-2, respectively.

The figures labeled a) and b) in these drawings are mirror images of
each other. They both exist because the helix looks the same in either

direction.

From a study of the diagrams we can draw the following conclusions

relating to the basic interactions:

1. TFor a left-handed helix the backward wave interaction

involves the m = ~1 space harmonics.

2. For a right-handed helix the backward wave interaction involves

¢ the m = +1 space harmonics.

3. The fundamental mode interaction is not affected by the direc-
tion of helix pitch.

4. In a given left- or right~h§nded helix section only one of the
two space harmonics m = -1 or m = +1 is involved. This is
because the m = -1 and m = +1 harmonics are always in opposite
directions. Therefore, only one of the two space-harmonic
components can be synchronized with the beam, namely the one

with positive propagation constant.

The same cornsiderations do not apply to the corresponding space har-
monic components of the beam. If am = -1 mode is excited in the beam
through backward wave interaction in a left-handed helix section, this

particular beam symmetry is retained through a pitch reversal. 1In the

reversed pitch section the m = -1 existing in the beam is completely

Qecouglcd from the clrcuit, because the m = <1 circuit mode in the
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Figure 4-1 Dispersion diagram of left-handed helix,
a) Forward wave interaction in the
m = 0 mode
b) Backward wave Interaction in the
m = -] mode
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Figure 4~2 Dispersion diagram of right-handed helix.
a) Forward wave interaction in the
m = 0 mode
b) Backward wave interaction in the
m = +} mode
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right-handed helix is completely out of synchronism with the beam. In
such a pitch reversal the effect on the beam is that it suddenly sees a

noninteracting circuit, all referred to the m = -1 beam mode,

Conversely, if we started out with a right-handed helix, the m = +1 mode
is the appropriate backward mode. A pitch reversal reduces the beam-
circuit interaction for the m = +1 mode to essentially zero.

The points brought up here might conceivabl; be of importanée for reduc-
tion of backward wave instabilities through pitch reversals. Provided
these can be designed with negligible fundamental mode reflections over
the appropriate frequency band, they appear to represent a practical
possibility. As far as backward wave interactions is concerned the
effective length of the helix is reduced by a factor of two, which cer-

tafﬁly would serve to diminish the instability problem.

4.2 THE ARCHITECTURE OF FORWARD AND BACKWARD WAVE INTERACTIONS

Using the previous discussion as a guideline let us establish the rele-
vant interactions that need be considered. Figure 4-3 shows a schematic
diagram which helps sort out the interactions and the angular sym-
metries of the modes involved. The first point which we have to keep

in mind is that the circuit alone supports two independent modes, one
traveling in the forward direction with group velocity vg > 0, and one
traveling in the backward direction with vg < 0. The corresponding
interactions with the beam are those shown in the lower blocks of

Figure 4-3a and 4-3b.

The second point which we must keep in mind is that all circuit har-
mon{cs are i{ntimately coupled, so that the excitation of one particular
harmonic by the beam, say the m = ~1 harmonic shown In Figure 4-3b,
automatfcally gives rise to a proportionate excitation of all the other

clreuft harmontes,
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Figure 4-3
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Schematic diagram illustrating the circuit and
beam harmonics involved in: a) forward inter-
action, b) backward interaction in a left-
handed helix.
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The third point we like to make 1s that it is convenient to interpret -
the cirvcuit voltage and circuit current as the fundamental components,
i.e., those corresponding to the m = 0 mode, both in forward and back-

ward interactions.

The relevant interactions and rf circuit and beam variables are those
summarized in the schematic diagfams of Figures 4~4 and 4-5. The
forward interaction shown in Figure 4-4 involves only the circularly
symmetric modes m = 0 of the circuit and tHe beam. The rf variables
are tpe normalized circuit voltage Ves the circuit current if, the
normalized beam velocity Uo’ and the normalized displacement SO.

This mode of operation is the regular TWT amplification process, which

is independent of the direction of pitch.

The backward wave interactions depicted in Figure 4-5 involve the
m = *]l beam and circuit modes, and the m = 0 circuit mode. As stated
previously, the relations between them = 0 and m = *1 circuit space

harmonics are fixed.

4,3 THE MATCHING PROBLEM

With these considerations in mind let us consider the matching problem
at some discontinuity a]ohg the helix, such as a change in pitch angle.
Which rf variables are continuous across the discontinuity, and need
be considered? Expressed in general terms, the circuit voltage, circuit
current, beam velocity, and beam displacement are continucus. Let us
first consider the clrcuit varfables. As noted previously it suffices
to express these in terms of the fundamental (m = 0) component, which

consists of the sum of the forward components v_. and i( (Figure 4-4)

f
and the backward traveling components Vi and ib (Figure 4-5). The
latter are also of the m = 0 symmetry, but arc caused by interactions
of them = -1 or m = +1 components, depending on the sense of rotation

of the helix, as already shown in Figure 4-5.

12
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Figure 4-4  Schematic diagram of forward interaction,
and the rf variables involved.
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CIRCUIT VOLTAGE AND CURRENT
FOR LEFT-HANDED HELIX

CIRCUIT VOLTAGE AND CURRENT
FOR RIGHT-HANDED HELIX

m= -1 m=0 m=+1
v.q Vb1 Vb +1 i1 BACKWARD
< o 4..” o o+ e i+ CIRCUIT
I_1 'b,-1 ib,"‘ |+1 ‘- MCDE
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U
> SH
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FORWARD BEAM MODES
FOR LEFT-HANDED HELIX

Figure 4-5

FORWARD BEAM MODES
FOR RIGHT-HANDED HELIX

b)

Schematic diagram of backward interaction,
and the rf variables involved:

a) left-handed helix,
b) right-handed helix.
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The rf variables of the beam corresponding to different m~values are
orthogonal, and presumably are not coupled by a change in helix pitch.
Accordingly, it is necessary t> match the vacious rf beam variables,
corresponding to different m-values, separately. These variables are
Uy and S_, for the m = ~1 symmetry, U and S for the m+ | sym-

1

metry, and U, and SO for the m = 0 symmetry. Altogether we have eight

6
matching conditions of circuit and beam variables. If pitch reversals
are not involved at any position along the helix, these are reduced to

5ix conditions.

1f the forward mode is disvegarded, these six conditions are turther !

reduced to four, namely continuity of:

Backward circuit voltage Yy ,
Backward circuit current i .
b (4-4) *
Bean velocity U_1
Beam displacement S-l'
where we have assumed a left-handed helix.

However, with the forward wave disregarded, there are only three inde-
pendent wave solutions available. These are the three solutions of the
third-order backward wave dispersion relation specifying the coupled
beam-circuit system in the backward mode. But this means that we

have only three independent equations to determine the four rf variables.
Under these circumstances we are left with the only alternative of dis-
regarding one of the rf variables in (4-4), say the beam velocity U_i»
and use the other three for matching at the pitch change. This is a pro-
cedure which has been used in the past, but is rather questionable,
because the forward mode is bound to be subject to some reflections at

a discontinuity of pitch angle. Only in the very special case that

the circuit impedances on either side of the discontinuity are the same,

15
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will there be nu reflections. But this conditions 1s not likely to occur
in the ‘general case. We are therefore forced to adapt six independent
boundary conditions, and as many as eight conditions if pitch reversals
are involved. The two additional conditions in the latter case arise
because the two independent m = -1 and m = +1 beam modes are both present,
traveling along the beam and interacting with the appropriate space har-

monic of the left-handed and right-handed helix sections, respectively.

From Figure 4-5 it is noted that in a given helix section, left-handed
or right-handed, only one of the m = —i or m = +1 beam-to-circuit inte;-
actions is involved. From inspection of the dispersion diagrams shown
earlier in Figures 4-1b and 4-2b we conclude that these are identical.

Hence, the circuilt equations of the m = ~1 and m = +1 interactions will

be the same. However, the electronic equations for m = -1 and m = +] are

not the same in the general case. Only for confined focusing are they
identical. The physical reason for the difference is the presence of
the dc focusing magnetic field which introduces a nonsymmetric effect
with regard to the positive (m = 1) and negative (m = -1) angular
dependence. A typical example is the Brillouin focused beam, for which

the propagation factors of the m = -1 and m = +! modes are different.

Hence, a section of reversed pitch essentially retains the same circuit
equation, but requires a difficult electronic equation, except for con-
fined flow. The case of confined flow is therefore considerably simpler

to analyze.

4.4 DISPERSION RELATIONS FOR THE FORWARD AND BACKWARD WAVES

A detailed analysis of the coupled circuit and electronic equations leads
to the same form of the dispersion relation for the forward and the
backward waves, i.e.,for m = 0 and m = #1, The relation is expressed

in the matrix form:

16
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- ' | ol
i=1,2,3
m =0, ¢l
(4.5)
The parameters appearing in the equation are the following:
i
(1) 8:1 ) )
Bm = 3 = normalized propagation factors of the three
€ modes, corresponding to i = 1,2,3
R;i) = plasma reduction factors for the same modes
f“(‘i) = coupling coefficients for the same modes
Vem = phase velocity of the circuit for the mth space
harmonic
Zcm = circuit impedance of the mth harmonics
m R0
X = 1 - j(-1)" =—=— = loss parzmeter
m 4
c0’cO
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¢ = 7? = normalized plasma frequency

In (4.5) the column qéi) is the state vector of the particular mode

[ 7 ]
-2j C Rty 20T
NEUMEY [(1 Bo ) SR
m m
(1) 2 W2 2 i)?
-2 i i
= (1 - By - o ]
o o Y () [ m pm
V c¢m (v ) "m'm
(o] cm
j (1 - Bn(“) )
L 1 !
i=1,2,3
m=0, *1

The state matrix is constructed from the state vectors by
= (1 ()Y (3
9m"[i‘mi‘m‘_‘m
m=0, =1
The rf variables of mode m are then specified by the relationms

[ vatzo) |

im(zo)
gm(zo) = . ) = Q e A,
m(zO

i Sm(zo)J

m=20, 1
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Where Qm is a diagonal matrix containing the three propagation factors of

the mode m.
These are obtained from the determinantal equation associated with (4.5)

A =0 m = 0, ¢l (4.9)

Furthermore, the vector Am in (4.8) contains the normal mode amplitudes
of the three component modes, which are independent of the axial coordi-
nate z, within a uniform helix section. But they undergo changes at any

0
discontinuity of the helix.

ith reference to the variables listed after (4.5) one should note

that:

1. The plasma reduction factors and the coupling coefficients are

not the same {or the m = 0 and the m = *i modes.

2. The circuit impedance ZCm is positive for forward mode m = 0

and negative for the backward modes m = ¢1,

3. The loss parameters K is the same for m = 0 and m = *1 except

for the sign of the imaginary part.

With these restrictions the same general equations apply to all three

modes m = 0, and m = 1. Note that in this formulation all the modes
(1)
m

are all positive. The circuit part of the m = ¢l modes relate to the

have positive propagation constants B » because the phase velocities

space-harmonic voltage and current v,, and i‘l' appearing in (4.8). 1In

4

the next step one must convert from these variables to the corresponding

fundamental components v, and ib appearing in the diagrams of

b
Figure 4-5.
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4.5 SPECIFICATION OF THE RF VARTABLES IN THE BACKWARD
TRAVELING WAVE

In view of the strongly coupled space harmonics of the helix this pro-
cedure is fairly straightforward. Let us tirst lonk at the propagation
factor of the m = 0 backward traveling mode. From the general formula

(4.3) we obtain

(i) _ (i) _ (i) _ 2z
BO,backward h Bb Bm B (&£.10)

where Bed is the normalized helix pitch,

The corresponding backward circuit voltage of the fundamental component
is obtained by noting that the total rf circuit power P in all harmonics

is given by the formula

lv_|?
12l = 2“}‘, m o= 0, #l, £2, ... (4.11)
Hence
v 2 YA
ol | em
vb Aco ‘
or

m=:l , (4.12)

which relates the normalized rf voltages of the m = 0 mode and the

m =« *] modes.
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The inverse relation applies to the corresponding rf currents. Since

A Y
b~ Tz 1
co o
(4.13)
v v
; = r 0
m z_ I
cm o
we obtain
i = m= 1 {(4.14)

In this backward mode zco as well as zcm must be taken negative, but we

have used absolute signs in (4.12) and (4.14) in order to avoid errors.

Using the established relations (4.10)-(4.14) between the m = 0 and
m = t] components in the backward mode, the relevant rf variables for

this mode, to be used in the matching procedure, are specified by the

relation:

(v (29 ]
i, (z,) ~iD 2z
X b "0 ' ~m 0
gb(zo) = = Qe A (4.15)
Un(2g)
] Sn(2g) ]

where the modified state matrix 9; is given in terms of the original

gm by:
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T ]
Zoo| JImi2n/Bed
—=le s 0, o, 0
2
cm
9 ’ Zem jlm|2n/ged Lo, 0
'z—— e
c0
& = Zm
0 , 0, 1, 0
0 . 0, o , 1
m =0, *1
(4.16)

By the described procedure we have been able to express the rf variables
of, the backward traveling wave in the form (4.15) which involves the
m = 0 circuit rf variables. This is a necessary step in the matching

process, as discussed earlier.

Before concluding this section on the backward traveling wave we must
pay proper attention to the discrimination of left- and right-handed
helices. 1In light of the earlier discussions it follows that the
m=+] and m = -1 waves do not simultaneously exist with their full
range of composite mode solutions, described by the superscript i. The
full set corresponds to three modes, with i =1, i = 2, and i = 3,
respectively. But either the m = +1 or the m = -1 wave has only two
composite modes. The reason for this is that one of the two m = %] set of
beam waves, both of which have about the same phase velocity, is way
out of synchronism with the coi'responding space harmonic component of
the circuit. We can easily convince ourselves that this is the case

by studying the circuit dispersion diagrams of Figures 4-1b and 4-2b.

Hence, for either m = +1 or m = -1, the interaction with the circuit

22
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disappears, leaving us with the two decoupled space charge modes corre-

sponding to the particular noninteracting m - value.

More specifically, for a left-handed helix the m = +1 circuit space har-
monic is way out of synchronism with the beam (see Figure 4-lb) and,
therefore, the m = +1 space charge waves are completely decoupled from
the circuit. Hence, in the left-handed helix section only two modes
corresponding to m = +1 exist. Conversely, in a right-handed section
there are only two modes associated with the m = -1 wave.

These considerations imply that in anywone helix section we have a total
' of eight independent normal mode amplitudes, which will be discussed in

more detail in the next section.

4.6 SUMMARY OF NORMAL MODE AMPLITUDES

In general, the normal-mode amplitudes refer to the independent and arbi-
trary components in the normal mode vector Am, appearing in (4.8) and
(4.15). 1In this form they are arbitrary, because the normal mode sc¢ u~
tions have not yet been matched at the discontinuities between the helix
sections. 1In effect, the matching procedure provides exactly sufficient

conditions to determine the normal mode amplitudes everywhere.

Let us specify explicitly the independent normal modes in left~handed

and right-handed helix sections, respectively.

4. 6.1 Left-Handed Helix

The fundamental forward wave has three independent modes, corresponding
tom=0and i'= 1, 2, and 3. The backward wave has three independent
solutions corresponding to m = -1, and two solutions corresponding to

m = +1. The eight independent mode amplitudes can be summarized as

follows:
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. (1)
m = O AO
-] s - (1)
m = -1: A_1
sl (1)
m +1 A+1

4.6.2 Right-Handed Helix

In this case the corresponding normal mode amplitudes are:

m = 0: Aél)

¢ m = -1 A(l)
-1

- (1)

m = -+l A+I

4.7 COMPACT FORMULATION OF THE FULL SET OF RF EQUATIONS

()
Ag

(2)

AL

A

+1

(2)
A0

(2)
ALy

(2)
AL

(3)
Ag

(3)
ALy

(3)
AO

(3)
Ap

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

From the foregoing discussion it 1s quite apparent that the matching of

eight normal-mode amplitudes at the intersections between different helix

scctions is a fairly complex mathematical task.

It can best be accom-

plished by etablishing a systematic 8-dimensional matrix formalism.

For convenience and clarity of the exposition let us introduce sub-

matrices in the state matrix Qé defined by (4.16), (4.6), and (4.7).

Let

rJ
I~



m
, N
%
Vo | 2 (4.23)
- -
3 - m =0, 21

As indicated in (4.23) gm and Hﬁ are 3 x 2 submatrices, except for the
decoupled modes corresponding to (4.19) and (4.21). In the latter case
P and W are 2 x 2 submatrices. ;

We can now proceed to use (4.8) and (4.15) for the various waves and
modes and construct matrix relations for the over-all eight rf variables
in a particular section. These look a bit different for the left-handed
and right-handed sections.

.
i

4.,7.1 Left~Handed Helix Section

The following matrix relation applies:

3 3 2 3 k} 2
[P S U — S ———, oo e, s e
’ IR R
|
vo (2 | L ~324% | .
P ~
~0 | ~=1 ; -~ | P. ! P- AO 3
10(20) | | | |
———————— j=——a == | -] e
Uy (2z4) l ! | l
0% | | =3P, Z,!
W ;0 | 0 0 le | 0 A k!
~0 I ~ | ~ ~ | | -~ ~1
SO(ZO) \ | | |
_____ I S SN SRS [ SRR Jp - -
‘ . : Yo v
P10 o | (s ] ¢
9 4 a8 U g 4¢+1; 2
5.1z } | ! ! [ i ¥
\ I | e b, ,‘J
V770727, B e B l !
/ /
;U1 (202 l o
’ o | 0o L*lﬂ
% ~ } Ir:} ~
4 S+l(10); L ] . ;1 ~ - -
7 Y | {/.///////‘J'
full':setgﬂ forward | [backward] [additional ] r;;;pngntion full set
of rf wvave wave backward \an_”x of normal
variables column column wave column o modes (4. 24)
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The left column specifies all the eight rf variables invuslved in the
left-handed helix section. The first 8 x 8 matrix on the right is a
generalized state matrix for the over-all system. The second 8 x é
matrix is the diagonal exponential matrix containing all the eight
propagation factors, and the last column represents the eight inde~
pendent normal mode amplitudes. Equation (4.24) is an extension of
(4.8) from four dimensions to eight dimensions. The shaded blocks in
the equation correspond to the noninteracting m = +1 space charge

waves.

4.7.2 Right-Handed Helix Section

The corresponding relation for the right-handed section is the following:

3 2 3 3 2 3 .
ot am—,  p—————  p——a— pm— ————,  ————— sn—"
r 7 § [ ! B | ] 1T
l
o | volzg) : ' W -1D42, : | 1
2o , 9 v Py e | 9 ; g Ao 3
1.(z,) '
070 | | ! |
_________ }_—_j—"_' “_"~727@7r"*““' [
U, (z,) L ; 7
0“0 | | v -32_1201 g :
W | O | 0 0 le {0 A 2
~0 l ~ ( -~ ~ | I ~ ’,‘-v-l%
So(%? , l 3 ! C
L e e L B S N, L
7777 YL | L
L’ U (2 )d } 1 | _
/ 10 b A | } P41%0
. ’ A S I L¢3
U5 (zy); LT ( i
727707 N Caza oL | ! A R
| |
Uy (29 | |
0 : 0 : N
S_H(zo) | l ~ ~ —
L. J L ! !

TR I

) R R L ] _
full set forward additional backward propagation full set
of rf wave backward wave matrix of normal
vaviables column wave columnj | column T modes

(4.25)
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Equations (4.24) and (4.25) form the very basis of the analysis of
backward wave instabilities in multisection TWTs. All the elements in
the 8 x 8 matrices are known from the specified data and evaluation of

the previously stated equationms.

It has been common practice in the past to analyze backward wave
instabilities using various simplifications in the model and in the
mathematical procedure. Most of these approximations are justified only
by the ensuing mathematical simplifications and tractability, and are
not justified from physical reasoning.: The more common approximations
can be easily obtained from the general formulae above. Let us have a

look at these.

4.8 SPECIAL CASES AND APPROXIMATIONS

. If there are no pitch reversals along the entire helix structure, only
one of the two m = *1 space harmonics is involved in the interaction.

Let us assume that the helix is left-handed, in which case (4.24) applies.
In this case the m = +1 wave can not be excited in any section and is
therefore nonexistent. Hence, the corresponding normal mode amplitudes

specified by §+1 are zero everywhere.

A = 0 (4.26)

These two modes are the decoupled space charge modes which had to be

excited in some other right-handed section. But since these do not exist,

the modes are nonexistent. In (4.24) these are represented by the last
two equations, corresponding to. the shaded areas. By removing all the
shaded blocks, the resulting equation becomes of sixth order, and

represent an exclusive left-handed helix TWT.
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Similarly, if all sections are right-handed, the m = -1 waves are not‘

excited, in which case:

é—l = 0 (4.27)

The relevant equation is now (4.25) with all the shaded blocks removed.

Inspection of (4.24) and (4.25) after removal of shaded blocks show that

both take exactly the same form:

3 3 3 3
e — g e— e e e e,
- - - | - i 1 N
vo(zo) ; ’13020 l
Po 1 P |e | 9 ERE
|
o | %) | | )
. ———g— ~__“"j _____ —
U (Z ) = ! | - -
00 w oo . "801%00 | A f3
0 0
| _
So(zo) i et L L
————— 9 ¥
U31(zp) !
S31(%g)
forward backward
wave wave
column column 4.27)

Even if the equations ave the same form for left-handed and right-handed
helices, the elements in the matrices are not the same for m = -1 and

m = +1. They are the same only for confined flow, but not for general
balanced beams, including Brillouin-beams. These more subtle points

were discussed carlier,




Backward wave instabilities are often analyzed disregarding the forward
traveling wave. This is legitimate if there are no discontinuities in
the form of pitch changes along tlie helix. However, the use of this
approximation for analyzing the effect of discontinuous changes in
pitch angle is very questionable, and at best gives a crude approxima-

tion to the starting condition. '
However, for the sake of completeness, let us discuss how this approxi-

mation follows from (4.27) by putting the forward traveling wave ampli- :

tude Ay equal to zero.

Hereby, (4.27) is simplified to:

— e — !
rvo(zo)
i (z.)
0'°0 P .
- - -1 30,42
= |--=--| e A, (6.29)
Usy (29 i
+ W
~*1
S . (z)
+1°70
_ _ L B

which is just the same as the original equation (4.15).

In the present work we shall not use any of the approximations dis-

cussed here, but retain generality by applying (4.24) and (4.25).

4.9 THE TRANSMISSION MATRIX OF A UNIFORM HELIX SECTION

The introduction of transmission matrices for the sections is particu-

larly convenient for the purpose we have in mind.




First, let us write (4.24) and (4.25) in the following compact forms:

t
=
0

(k-

9(20) (4.30)

P(ZO) = M e A . (4.31)

where the meanings of the terms follow from comparison with (4.24) and
(4.25). Since both equations are of the same form, we can drop the

subscripss € and r and simply write:

b(z)) = Me A (4.32)

The proper subscript can be added once the pitch direction has been

specified.

Let us consider the uniform helix section shown in Figure 4~6 and apply
(4.32) at both ends of the section. Recalling that the normal mode
vector A is constant and independent of zo within the uniform section,

we find, by elimination of A from the two equations:

P b)) (4.33)

9(202) = Me
where

02~ 201 (4.34)

The equation is in transmissfon form, specifying all the rf variables
Q(zo,\ at the output end by the rf varfables §(201) at the input end of

the section. The transmission matrix T is given by
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Figure 4-6  Schematic illustration of one
unifcrm helix section.
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T = e Pyt (4.35)

~ ~

Hence, (4.33) takes the simple form

blzg,) = I B(zg)) (4.36)

We have also use for the inverse relation

-1

B(zg) = T b(zg,) = 1T B(zy)) (4.37)

where

1 = (4.38)

3

.
is .the inverse transmission matrix.

4,10 THE OVER-ALL TRANSMISSION MATRIX OF THE MULTISECTION TWT

By the transmission matrix formulation (4.35) we have established the
necessary tools for a conceptually simple and mathematically elegant
description of a multisection TWT. The configuration is shown
schematically in Figure 4-7. For each of the N sections the trans-
mission relation (4.36) applies. Some of the sections may be left-
handed and some right-handed, and care must be taken to apply the cor-
responding version of the transmission matrix, evaluated either from
(4.30) or (4.31), in conjunction with (4.35).

)

As noted earlier, all the rf variables, represented by the columns E(z01
and 9(202) in (4.36) are continuous across the intersections. The
transmission properties, expressed by this equation, can therefore
easily be extended to comprise any number of sections, and in particular,

the full length of the tube. The following result is obtained:
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Figure 4-7

Zp1 sz
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l‘!_ Zn2)

Schematic configuration of a multisection TWT

consisting of a total of n uniform, but

different sections.
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p(znz) = Inzn—l c e ?211 b(zll) , (4.39)
where E(zrz) refers to the output end of the last section, and Q(zll) to
the input end of the first section. If we write (4.39) in the form

DLy o= T U (4.
SOy vleyys 4.40)

the over-all transmission matrix T is given by the product of all the

section transmission matrices

T = TT . ...TT (4.41)

The transmission relation expressed in (4.40) 1s a complete and detailed
description of the TWT characteristics, including forward gain and
backward wave properties. All the elements of the transmission matrix
T can be specified or evaluated from the dz=tailed relations in the
earlier part of this report. In the next section we shall show that
only four of these are necessary for describing two-port terminal

relations.

4.11 TWO-PORT TERMINAL DESCRIPTION OF THE MULTISECTION TWT

Let us express the transmissjon relation (4.40) in the following more

explicit and detailed form:
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rf circuit
variables

- .- = = - - - - - -

~21

/ U 2

“2..

rf beam
variables

Let us define the circuit column yc(zo) and the

wher 2. can be either zn2 or 2z

0 1’

vo(zo)
bc(zo) -
10(z0)
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(4.42)

beam column by be(zo).

(4.43)
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b (zy) = (4.44)

S ., (z

L "+l )

0

Equation (4.42) can then be subdivided into tw~ orponent equations:

Bc(znZ) = Ill Ec(zll) + zl.“’v'e‘ZlI) (4.45)
be(Zqa) = Ty 22 * Iy (7)) (4.46)

But at the input end all the rf variables in the beam are fdentically
zero, because the beam enters the helix unmodulated. Hence, the cor-

responding vector ge(zll) is identically zero.

be(zll) o, (4.47)
and (4.45) and (4.46) simplify to:
hc(znZ) - IH Pc(zll) (4.48)
be(znz) - T21 bc(zll) (4.49)
36
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As a consequence of the fact that the rf beam modulations are zero at the

input end of the tube, we have been able to obtain nice separate trans-

mission matrices for the circuit variables bc and the beam variables be.
Of these, the circuit relation (4.48) is by far of most significance, and

we shall not use (4.49) any further.

It is quite remarkable that a simple relation like (4.48) describes all
the small signal terminal properties of the multisection TWT, including
forward gain characteristics and backward wave instabilities. All these
properties are contained in the 2 x 2 transmission matrix 111. which is
known from the computer calculations of the over-all transmission

matrix I.

Hence, the discussions of TWT properties are reduced to a discussion of
the properties of the submatrix Il!' Only in the simplest cases, and
certainly not for multisection TWTs, can we obtain exact or approximate
analytical expressions for the elements of le. But for the computer,
determination of zll
procedure using the general formula (4.41).

is a well defined problem and a straightforward
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5.0 BACKWARD WAVE INSTABILITIES

From this base on we can proceed to determine the conditions for backward
wave instabilities which are contained in the properties of the 211

matrix in (4.48). Let us express the matrix explicitly by its elements:

11 12
_\T = Z= > (5.1)

*21 Y22

and remember the relevant equation (4.48), repeated here for

convenience:

bz p) = Xb.(z})) (5.2)

5.1 THE INHERENT BACKWARD WAVE INSTABILITY

The usual argument for determining backward wave instabilities is the
following: If the rf circuit variables Ec(znz) are zero at the output
end, but nonzero at the input end, i.e., Ec(zll) # 0, then the backward
gain is infinite and the solution unstable, giving rise to oscillations
at some frequency. This condition is easily obtained from (5.2) by
putting gc(znz) z 0, which results in the equation:

) = 0 (5.3)

X B (zyy

The solution of this homogeneous set of equations specifies the condi-
tion for backward wave instabilities. In order for Pc(zll) to be nonzero,

the determinant of (5.3) must be zero

Ix] = v, = vy = 0, (5.4)

which i{s the instability criterion.
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The elements in the \-matrix are functions of all the relevant param-
eters of the multisection TWT. It reflects the properties of all the
sections as far as fixed design parameters are concerned, such as helix
impedances, pitch angles, etc. Moreover, % is also a function of
operational parezmeters, in particular the dc beam current and the fre-

quency «. We are not at liberty to specify the oscillction frequency

w, which is an unknown parameter together with the starting current Ios'

Since all the elements in the ‘-matrix are complete quantitics, the
determinantal equation (5.4) contains two independent equations, repre-

senting the real and imaginary parts:

G, 1)l = 0 (5.5)
r

[“ 1] =0 (5.6)
i

These two equations define implicitly two functional relatiomships

between IO and «, which have to be satisfied simultaneously. In

Figure 5-1 these two relations are represented by the intersecting

curves in the w—Io plane. The intersection is specified by point A in

the diagram and represents the starting current 1 and oscillation fre-

Os
quency w_ for backward wave instabilities.

The numerical procedure would involve appropriate search routines for

determining the intersection point A between the two curves.,

At this stage {t is appropriate to point out some common errors made

in determining the starting current. It is not unusual that the

19

T A i sl




starting condition is established by considering only one equation, ‘
say (5.5),'or some linear combination of (5.5) and (5.6). Regardless
of details, the point is that only one relation between IO and w is
specified. In Figure 5~1 this would correspond to disregarding one of
the two curves, say the one corresponding to lX(mo,IO)]i = 0. In this
erroneous procedure one is then plotting the remaining curve, which in
this example would be I)((w,IO)[.r = 0, and spécifying the starting con-
dition as the minimum of the curve. In this example this would be
point B, corresponding to an allegéd, but incorrect starting current
Iés and frequency wé. ”

But even 1f we avoid this incorrect procedure, the described methed
using both equations (5.5) and (5.6) is not the best way of approaching
the instability problem. It is sure that the method gives the correct
starting condition for the inherent backward wave instability, which
h;s to do with internal feed-back loops in the circuit-beam system.
However, the method is unable to cope with more general configurations
characterized by additional feedback from reflections at the input and
output terminals. Expressed differently, the described procedure is
valid only for perfectly matched input and output terminals. The
reason for this deficiency is that the relation (5.2) is not yet
expressed in terms of its forward and backward traveling rf components
and the corresponding forward and backward gain. In the following we
shall develop a procedure along these lines, and arrive at a better

method for determination of backward wave instabilities.

5.2 RESOLUTION IN FORWARD AND BACKWARD COMPONENTS IN THE OVER-ALL
TRANSMISSION SYSTEM

As already pointed out, the x-matrix in (5.2) contains all the informa-
tion on the terminal behavior of the multisection TWT. An equivalent way

of expressing this fact is the statement that the behavior is described

by the eigenvalues and eigenvectors of .

40



G788}
to
IX(w,lo)I, =0
os pmo — — — — —

los: | — |
I ' fx‘w,lo‘li =0

| |

] 1

ws' Wy

Figure 5-1

Illustration of instability diagram for
backward wave oscillations.
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The eigenvalue relation is given by:

Xr = y,r, , i = 1, 2 (5.7

Nonzero solutions of r, requires the determinant to be zero.

~

| x -yl ] =0, i = 1,2 (5.8)

Expansion of (5.8) yields the two eigenvalues:

v .
:
1 2 1/2 .
2 {Xll g ® L0y =X )P L Gl
b
fIn particular, the following relation holds:
YeVp T XiXpp T Xpp¥ap T x| (5.10)

Note that the upper and lower sign of (5.9) are allocated to Y and Y
or, possibly in reversed order, to Yb and Yo The choice is determined

from the corresponding eigenvectors Ie and Iy These are given by:

X12

e © (5.11)
Ye T X1
X12

o < (5.12)
Yo T X1y
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The elements in the vectors Y¢ and Yy must satisfy certain sign require-
ments which determine the choice of sign in (5.9). The details are dis-

cussed at the end of this section.

The mathematical procedure is now to express the circuit rf variables,
which are given by the vectors kc(znz) and Ec(zll) in (5.2), as super-~

positions of the two eigenvectors re and Tpe Let

b (2,)) = Cplz ) rp +Clz ), (5.13)
boley) = Gl T+ Gz 5 (5.14)

Substituting these expansions into (5.2) and making use of (5.7), the

resulting equation is in diagonal form:

Cf(znl) Ye 0 cf(zll)
= (5.15)
Cp(2n2) R I ST
In component form:
Ct(zn2) = chf(zll) (5.16)
Cb(znl) = chb(zll) (5.17)

What is the physical significance of the mathematical procedure of
expansions into eigensolutions? 1t describes the resolution of the
over-all rf circuit variables vo and io into its forward and backward
traveling components. These are described by their amplitudes Cf and Ch

which, of course, are different at the input and output terminals.
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Apparently, the gain of the forward and vackward

traveling waves are

given by:
(voltage gain)f = v (5.18)
. 1 .=
(voltage gain) = - {(5.19)
b Yy

Hence, the respective gains are specified by the eigenvalue Yy and the
inverse eigenvalue l/yb. The two are related by (5.10) which can be

expressed as:

(voltage gain)f

T
o

(voltage gain)b = (5.20)
This equation confirms the earlier condition (5.4) for backward wave
oscillations, namely | x | = 0. But (5.20) tells us more than (5.4). If
the forward gain, at the oscillation frequency, is zero, or very small,
the procedure of putting | x | = 0 is bound to be quite inaccurate,
because the right-hand side of (5.20) is essentially a zero over zero

expression.

The better, and correct, procedure is to determine the condition for

infinite backward gain directly from (5.19), which is
Y, *® 0, (5..21)

where Y is specified by the appropriate expression in (5.9). Lt

follows immediately that this equation gives

A1t22
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Hence, it lcoks like (5.21) and (5.4) are entirely equivalent, but this
is only from a superficial viewpoint. In any numerical iterative search
routine, the end result is a small, but nevertheless finite value of Y
or |x|. The search procedure depends on the variations of these func-
tions around their zeros, which are quite different for Yy and ]x] and
favors the use of Yp* The discussion in conjunction with (5.20) already
emphasized this point. Moreover, the small, but finite value of Y
obtained as the end result of the search procedure also tells us what tne

backward gain is under these circumstances, namely 1/Yb.

The forward and backward solutions are basically identified by the nature
of the eigenvectors, rather than the eigenvalues. The latter can vary
over » wide range because the forward and backward gain can be larger or
smaller than unity, depending on the frequency and other operating
parameters. Hence, under genera. conditions it is not easy to identify

the lorward and backward components from the two eigenvalues.

The forward wave is characterized by positive power flow which requires

a positive real part of the impedance. In the eigenvector this require-
ment is reflected in the signs of the two vector elements. The real

part of the elements must have the same sign.

Conversely, the eigenvector for the backward wave is characterized by

opposite signs of the real parts of the vector elements.

The eigenvectors also provide us with direct information on the charac-

teristic Iimpedances for the forward and the backward waves. Thesz

questions are discussed in Section 5.4.1.

5.3 PROPER PROCEDURE FOR DETERMINATION OF THE INHERENT BACKWARD
WAVE INSTABILITY

As noted, the procedure described in 5.1 is not entirely satisfactory.

The proper procedure is based on the condition (5.21) rather than
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(5.4). The real and imaginary parts are both zero. For convenience
disregarding the subscript b we then have the two equationms:

[}
o

Yo ge «p *+ 3=y) (5.23)

Yilgs wp + 3wp)

L}
o
-

(5.24)

which must be satisfied simultaneously. In order to provide a better
understanding of backward wave oscillations, the frequency . is assumed

to be complex

w
[ %
w
~

“., = Lt .,
c r - ¢

The two functional relationships (5.23) and (5.24) are sketched in
Figure 5-2 as two sets of intersectirg curves, with ~j comstant tor each
curve. The intersections between curves of the same complex frequency
we t jwi represent the solution of the set (5.23) and (5.24), i.c.,

the condition for infinite backward wave gain. In the figure the solu-
tion is given by the dotted line B-C, which is naturally separated in
two by the point A corresponding to a real frequency . Below A the
solutions have positive imaginary frequency. Apparently this corre-
sponds to an exponentially decaying solution in time, which therefore
is stable. The solutions above the pcint A have negative imaginary
frequency and grow expoentially with time. This {s the unstable region.
Hence, if we visualize that the current IO is increased from a low
value, we are moving upward along the line B-C. The system is nice and

stable until point A (s reached. Point A repiesents the starting condi-

tion, which {8 characterized by u real oscillation frequency . ard the
starting current 105' If the current is increased upwarus trom A
towards C, the system becomes unstable, with exponeatially increasing
vf amplitude. The amplitude s, of course, limited to a finite value

through nonlinear effects.
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Figure 5-2  Sket'ch illustrating the nature of backward wave
instabilities. The region above the shaded outline is
unstable.
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5.4 THE EFFECT OF MISMATCHED INPUT AND OUTPUT TERMINALS ON BACKWARD
WAVE INSTABILITIES

In the preceding treatment of the backward wave instability condition,

it was assumed that the input and output terminals were matched. This
can be considered to be the basic instability criterion. With no reflec-
tions at the input and output terminals, the instability is due entirely
to the inherent feedback loops in the backward mode, and to the reflec-
tions taking place at the intersections between the uniform helix

sections.

In this section we shall extend the analysis to the more general con-
figuration of nonmatched input and output terminals. A schematic illus-

tration of the configuration is shown in Figure 5-3.

In a practical situation one would like to determime the instability
conditions for each of the two regions which are separated by the
attenuato~. The actual configuration is shown schematically in Figure
5-4. The treatment is general enough to be applicable for this

situation.

In the previously treated inherent instability condition, correspoading
to matched input and output terminals, it was sufficient to consider
equation (5.17) descriving the backward wave gain. The equation (5.16)
could be disregarded because of the forward wave amplitude Cf is zero

under matched conditions. In the general case to be treated here, C, is

f
not zero. It wilJl be convenient to introduce the ratio Cf/Cb at the
input and output as new variables. But first, we must define the

characteristic impedances of the forward and backward waves.

5.4.1 Forward and Backward Characteristic Impedances

The concept of characteristic impedance tollows dircetly from (5.12)-(5.14).

The lmpedance specifles the ratio of the normalized circuit voltage v,
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Figure 5-3 Schematic diagram wf a sectioned TWT with arbitrary
input and output loads ZLl and ZLN'
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Figure 5-4 Sketch showing the TWT separated into two regions, with

the attenuator load Z,,  serving as output load for the
first region and input load for the second region.
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and the normalized circuit current iO for each of the two modes in the

absence of the other. The normalized impedances follow in a straight-

forward fashion from (5.11) and (5.12).
The forward wave characteristic impedance /f is given by:

Yo
)

f

X2
Yf = \‘.l

Note that_/i is a normalized impedance because Vo and i, are normalized

0
with respect to the dc voltage and current, respectively.

The backward wave characteristic impedunce_/b is given by

(5.27)

As already noted in Section 5.2, the real parts ot‘/f and‘/b are posi-
tive and negative, respectively. But there is no reason to expect that
‘/b is equol tu minus(/f. Nor are these impedances specified directly
by the cold circult impedances. They retlect the properties of the
over-all coupled beam and circuit system in the forward and backward

directions, respectively.

5.4.2 The Reflectiora at the loput and Output Terminals

Introducing the ratio of the forward and backward mode amplitudes Jas a
variable, we can use (5.16) and (5.17) to obtuin the following

relation:

(5.28)
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where subscript n and | refer to the output and input terminals,
respectively. We can easily determine the amplitude ratios from (5.13)
and (5.14), together with a specification of input and output load

impedances Zbl and ZLn' At the output terminal
Vo
(T) = ZnL Co, (5.29)

where
Co e {5.30)

is the dc beam conductance.

At the input terminal we must reverse the sign because the rf circuit

current is defined positive in the positive z-direction. Hence

Vo
(T) = -ZlL Co (5.31)

1 - ZnL GO
y Sk ,
o - 2-—77-————— (5.32)
f nl Vo
n ——— - |
Ly
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C l+7—
<E-f-> . ————T—L (5.33)
4 G
b | |+ S %o
g

It is clear that the expressions (5.32) and (5.33) are the reflection
coefficients at the output and input terminals, respectively. Denoting

these by on and 91, we have

B e (5.34)

by T T (5.35)

One should note that the reflection coefficients are of a generalized
nature compared to reciprocal transmission systems, because the charac-

teristic impedarces are different in the two directions.

The remaining step is to substitute (5.32) and (5.33) into (5.28). Alsu
using the definitions of reflection coefficients, we obtaia the follow-

ing formula:
L. 5. 36
Yo'n v, 'l (. J6)
This is the new {nstability condition which {s characterized by unity

loop gain. The condition of unity gain is clearer from {aspections ot
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Figure 5-5, where the various factors in the product (5.36) are repre-

sented in the closed loop.

Equation (5.36) can be expressed in the equivalent way:
Yy T YgPPy, = 0 (5.37)

This equation represents the required generalization of (5.21). With
matched terminals, ) and r, are zero, and (5.37) reduces properly to
(5.21).

. [}
If we define a modified Yy, by the relation

N = - N A
Yb Yb Yf‘*ltn ] (5-38)

it follows that the instability condition (5.37) is expressed by

' =
b 0 (5.39)
This impilies that the gencvral nonmatched configuration can be treated
by exactly the same mathematical procedure as discussed in Section 5.3

for the inherent backward wave instability. We simply replace Yp by yg.
defined in (5.38), and proceed in exactly the same way.

With mismatched input and output terminals, i.e., with 01 and “n both
different from zero, the required backward gain for the occurrence of
instabilities is less than infinity. Hence, the starting current I is

Os
expected to be reduced correspondingly.

This concludes the discussion of the formal structure of backward wave

instabilities. We have established a general mathematical procedure by
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Which very general configurations of multisection TWTs can be analyzed
with regard to both forward and backward wave properties, in particular
backward wave instabilities. The important problems of optimum design,
i.e., the design of multisection TWIs with the largest possible starting
current IOs without undue sacrifice of forward wave characteristics, are
not approached analytically in the present work. The computer program
developed from the theory probably represents a better tool than any
approximate analytical methods, which conceivably could be developed from

the theory.
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- 6.0 PLASMA REDUCTION FACTORS AND BEAM COUPLING
COEFFICIENTS FOR FORWARD AND BACKWARD MODES

The dispersion relation and state vectors for the coupled beam-circuit
system in a uniform helix section were given earlier by (4.5)-(4.7).
Among the parameters appearing in these relations are the plasma reduc-
tion factors R;i) and the coupling coefficients féi)
and i = 1, 2, 3.

, wherem = 0, %1

£

A considerable amount of analytical work has been done in the course

of this program to determine these parameters under general focusing
conditions., The details are far too extensive to be included in the
final report. It is anticipated that a full account of beam wave
properties under general focusing conditions will eventually appear as
g”éeparate technical report. In the present report we shall state a

few of the more significant results, in particular the plasma reduc-

tion factors and the beam-circuit coupling coefficients for confined flow.
We shall also discuss the more complex Brillouin focusing condition and

the corresponding backward wave characteristics.
6.1 BEAM MODEL

Plasma reduction factors and coupling coefficients are concepts that
depend on certain assumptions concerning the distribution of rf modu-
lations over the beam cross section. The details of the longitudinal
and transverse distributions depend in large measure on the driving
fields from the surrounding circuit. However, in order to represent
useful concepts in TWT design, the plasma reduction factors and coupling
coefficients should be largely independent of the details of the circuit,
except for a minimum of geometrical details such as radial dimensions

of the beam and the circuit.
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This implies rhat one has to make reasonable asjumptions concerning the
distribution of beam modulations over the cross section. In the more
traditional approaches it is common to use a Bessel function distribu-
tion, which is simply the basic term in an infinite normal mode expan~
sion of space charge wave components. But this choice is dictated more
from mathematical convenience rather than physical reality. In view of
the fact that the edge regions of the beam are modulated more strongly
than the central part, the Bessel function distribution is obviously
not a good choice, because the Jo(ger) Bessel function has its maximum
at the center and decays towards the beam edge, i.e., the variation is

exactly opposite from the actual situation.

With this in mind it seems logical to assume the very simplest distri-~
bution, which is that of constant velocity and displacement distributions
over the beam cross section. Although this is not the actual physical
dis-ribution in the TWT, it is a better choice than the traditional

Bessel function distribution.

Accordingly, the longitudinal and transverse dynamic variables for the
m = 0 and the m = *] modes are specifed by the schematic diagrams in

Figure 6-1. On this basis we have developed a complete field theory
for determination of the associated fields which, in turn, specify the

plasma reduction factors and coupling coefficieuts.

6.2 CONFINED FLOW

Confined flow represents a limiting case of focusing which is never
quite achieved in a practical tube, because it requires infinite mag-
netic field, or zero beam current. But the condition can be approached

to a degree which justifies the use of this concept.

As discussed earlier, confined flow 1s by far the simplest from a con-

ceptual viewpoint., Since no beam rotation takes place, the m = -1 and
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Figure 6-1 Schematic diagrams of the assumed distributions of the
dynamic variables over the beam cross section,
a) Fundamental mode, m = 0
b) Backward wave modes, m = ‘].
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m = +1 beam modes are identical, except, of course, for the opposite
angular variations. The plasma reduction factors and the coupling coef-
ficients are the same for m = +1 and m = -1. But these differ from the

corresponding factors of the fundamental mode m = O.

6.2.1 Plasma Reduction Factors for Confined Flow

For the fundamental mode m = 0, the square of the plasma reduction

factor is given by the expression:

2 I my)
R0 = 17 2T Gy Cor OFar YY) .1
a
The variables appearing in the equation are:
Beam radius, Ty
Helix radius, r, (6.2)

Propagation factor, ¥y

The functions Il(Yrb) and IO(Yra) are modified Bessel functions, and

G01 (Yra, Yrb) is defined as follows:

001(Yra, Yrb) = IO(Yra) Kl(Yrb) + Ka(Yra) Il(YI‘b) (6.3)

The propagation factor y basically refers to the propagation factors
B(l) of the three forward traveling modes, corresponding to i =1, 2, and
3. But these are sufficiently close to justify the use of the same vy

for all three components. Hence, for practical purposes

y = B (6.4)
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The plasma reduction factor for the m = %1 waves is given by:

2
' (yr.)< K, (yr,) - 2
RZ - 1+2—b 2D
m=x] (Yr )2
b
I,(yr ,
2''"b)
-2 I,y [Gl_o (yrps vrp) = KiQyr )l (6.5)
where
G]_O(Yra’ Yrb) = Il(Yra) KO(Yrb) + Kl("{ra) IO('Yrb) (6.6)

The.plasma reduction factors RO and R+1 are plotted in Figures 6-2

)
~and 6-3 for several values of the beam-to-helix diameter ratio rb/ra.

From the expressions for R0 and R+l one can show that

lim

R lim R = 0 (6.7)
Yrb+0 0 Yrb*o *
11011100 Ry = :‘.1200 R, = 1 (6.8)
1Ty YTy,

The first of these two limiting cases, R = 0, corresponds to an
infinitely thin beam in which case there are no longitudinal fields, only
transverse field components. The second limiting case, R = 1, corre-
sponds to infinite normalized beam radius, which essentially represents

a one-dimensional case. The fields are pure longitudinal, and the

transverse field components are zero.
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Figure 6-3 Plasma frequency reduction factor R , for backward wave

interaction and confined flow.
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6.2.2 Coupling Coefficients for Confined Flow

(i)
m
coupling between the beam and the current. The coefficient appears in

The coupling coefficient f is a measure of the strength of the
the dispersion relation (4.5) and the state vectors (4.6).
For the fundamental mode, m = 0, che coupling coefficient is defined as

the ratio of the circuit current Ic and the longitudinal current Ib in

the beam
Ic
f = --n—I (6-9)

The coupling coefficient is obtained from the equation:

‘ 21l(vtb) 1
o Yry lo(yra)

(6.10)

The expression is plotted in Figure 6-4 for several values of the

ratio rb/ra.
The mode symmetry in the backward traveling waves is such that the cor-
responding coupling coefficient does not have the same simple physical

interpretation as (6.9) for the fundamental mode m = Q.

With reference to Figure 6-1b, the longitudinal current density in the

m = t| modes (s specified by
' P - 2 P a:j!; 14
1b(r, 1y 2) ib(z) e Bl (6.11)

where Tb(z) ls interpreted as the one~dimensional equivalent of the

constant current density in the tundamental mode. The actual current
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Figure 6-4  Beam-circuit coupling coefficient f, for forward wave

interaction (m = 0) and confined flow.
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density is proportional to the radius and varies azimuthally as exp (:j6).
The total integrated current is therefore zero. The entire theory in the
present report is based on interpreting Qb(z) and (6.11) as an equiva-

lent one-dimensional current density. The coupling coefficient f_is

defined on the basis of this variable, in the following way:

?c(z) rada
le §—z:;~zf:5;; (6.12)
b 2°b

A . . : . .
where ic(z) is the surface current density in the surrounding circuit,

in the m = 2l mode.

Evaluation ¢f the coupling coefficient f+1 ylelds the following

expression:

21 (B r,)
2 1 7ed ,
f:l Il(Bera) Io(eerb) Berb (6.13)

The equation is plotted in Figure 6-5. It is noted that le can be
larger than unity. This is simply due to the fact that the coupling
coefficient for the antisymmetric backward wave modes does not have the
same simple physical interpretation as the corresponding coefficient f

0
for the fundamental mode. In particular, the numerical value of f

:1
depends on how we define the 'one-dimensional equivalent beam current
density" ?b(z). The definitions used in the present work are stated in
(6.11) and (6.12), and all remaining equations are consistent with these

definitions.

6.3 BRILLOUIN FLOW

In the present program an extensive analysis has been made of the

nature of clectron beam waves in a general, balanced beam model. This
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model includes, as special cases, the confined flow condition treated

in the previous section and the Brillouin flow condition. The dispersion
relation, and thereby the plasma reduction factors and the coupling
coefficients, are specified by an implicit equation of sixth order.

For the simple case of confined flow one can evaluate these factors
explicitly. However, for Brillouin beams the situation is not so simple.
The roots of the sixth order equation must be solved by numerical com-
puter procedures, and only fairly crude approximations can be obtained

analytically. ¢

The roots of the sixth order equations determine a set of six beam
waves. In addition to the regular space charge waves the beam supports

two cyclotron waves and two quasisynchronous displacement waves.

. The analysis has been carried all the way to a detailed specification of
all the elements in the sixth order dispersion relation. But the estab-
lishment of numerical solutions and interpretations of the characteris-
tics of the beam waves would represent a large effort much beyond the
scope of the present program. Therefore, the following treatment is
limited to presenting approximate solutions for the backward wave

characteristics in Brillouin beams.

6.3.1 Plasma Reduction Factors for the Backward Waves (m = £1) in
Brillouin Flow

For confined flow we found that the plasma reduction factors for the
m = +] and m = -] modes were the same. The reason for this result is
that the beam motion is purely longitudinal. Hence, for reasons of

symmetry there can be no difference in the behavior of the m = +] and

m = -1 modes, except, of course, the opposite azimuthal variations.

On the other hand, for nonconfined flow, such as the Brillouin condi-

tion, the m = +1 and m = ~1 modes have different plasma reduction
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factors. They also depend on the direction of the dc magnetic

focusing field.

An approximate perturbation procedure 1s reasonably accurate for the
m = *] modes because this particular symmetry maintains the beam cross
section everywhere under rf conditions. Hence, the transverse dis-
placement is not likely to play an important role for the space charge
field. On the other hand, for Brillouin flow, the circularly sym-
metric mode, m = 0, is characterized by uniform radial expansions and
contractions, which clearly contribute to the axial space charge tield
and therefore to the plasma reduction factor. Accordingly, we limit

the approximate procedure to the m = 21 backward modes.
The results for the m = +1 mode can be stated as follows:

Slow wave: R = R . — (6.14)

Fast wave: R+l.b = R:l t — (6.15)

where R:l is the plasma reduction factor for confined flow, specitied
by (6.5) or Figure 6-3. The upper signs in (6.14) and (6.15) arpiy for
positive direction of the dc magnetic focusing ficld, the lower sign
for negative direction of the ficld.

For the m = -] mode the coriesponding cquations are:
Slow wave: R = K

1
-1,s ] P (6.16)

Fast wave: R = R —— (b.17)
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wheve the upper and lower signs refer to the same conditions of

focusing as stated above.

According to these relations the plasma reduction factors depend on the
sign of m, and the sign of ihe dc magnetic field. The following general

relations apply:

Rs(m,BO) Rs(—m, —BO) (6.18)

Rg(m,B) R (+m, -By) (6.19)

The consequences of these relations for backward wave oscillations under
Brillouin flow conditions are such that we expect the startingAcondition
to be different for reversed direction of magnetic field. Or equiva-
lently, as shown by the general relations (6.14)~(6.19), a right-handed
and a left-handed helix do not have the same starting conditions for

the same direction of magnetic field. This difference is expected to
affect both the starting current and the frequency of oscillation,

and should be observable experimentally in uniform Brillouin focused
TWTs.

In a periodically focused TWT, the focusing fields in alternate sections
correspond to the positive and negative Brillouin field. Accordingly,
the plasma reduction factors alternate between the upper and lower values
in (6.14)-(6.17). The synchronization condition for backward wave
oscillations also changes periodically with the same periodicity. Due

to the dominant use of periodic Brillouin focusing in TWTs, an impor-
tant question is how to approach the problems associated with the
periodic nature of the electron beam. We could suggest to incorporate
the periodic sections into the over-all forward and backward inter-
action system analyzed in Chapters 4 and 5. In principal, one could

think of introducing the concept of a "sectioned beam" in the same way
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as done for sectioned helices. However, this is more difficult for the
beam, because of mode conversions taking place at the field revefsals,
but it may still be possible to implement. It would require more
detailed knowledge of all the six beam modes discussed earlier, and of
the appropriate matching conditions of the field reversals. In itself

this is a considerable task far beyond the scope of the present program.

In lack of such a description we are forced to accept approximate
procedures. If we insist on using one single plasma reduction factor
for the entire length of the periodically Brillouin focused beam, the
best choice appears to be the average value of the reduction factors in
alternate sections. But from (6.14)-(6.17) we observe that the average
values are just Rtl’ i.e., the reduction factor for confined flow.

Hence:

(R, = (R,,) (6.18)
=" Brill ~" confined

In this approximate description the periodic Brillouin beam looks like
a confined beam, as far as the m = *1 modes are concerned. Physically,
this picture is quite acceptable in view of the fact that the average
dc rotational frequency is zero, i.e., the same as in confined flow.

In the same approximation, we would expect the average coupling
coefficient to be equal to the coupling coefficient for confined flow:

(£, = (f,,) (6.19)
Brill ~" confined

This concludes the discussion of backward wave characteristics for the
Brillouin focused beam. Further analysis is required of the special
problems of periodic Brillouin focusing and its implementation in the

over-all forward and backward wave system described in Chapters 4 and 5.
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LIST OF SYMBOLS

Column vector specifying the rf variables along
the tube.

Column vector for the backward wave mode.

Column vector for the fo;ward wave mode.

Column vector for the mth space harmonic component.
Overall column for the_rf variables.,

Circult part of P. |

Beam part of b.

Velocity of light in vacuum.

Pitch of helix,

Charge of the electron.,

Coupling coefficient of the ith mode of the mth
space harmonic.

Backward wave mode circuit current normalized to
the dc current (mode m = 0).

Backward wave mode circuit current normalized to
the dc current (mode m).

Forward wave mode circuit current normalized to the
dc current (mode m).

Space harmonic number.
Rest mass of electron.

Relativistic mass of electron in the longitudinal
direction.

Relativistic mass of electron in the transverse
direction.

The ith component of the state vector for the mth
space harmonic,
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LIST OF SYMBOLS (CONTINUED)

Helix radius.,

Beam radius,

Eigenvector of the x-matrix.
Eigenvector of the yx-matrix.
RF displacement.

Time.

DC beam velocity.

Backward wave mode circuit voltage normalized to
the dc voltage (mode m = 0).

Backward wave mode circuit voltage normalized to
the dc voltage (mode m).

Forward wave mode circuit voltage normalized to
the dc voltage (mode m).

Phase velocity of the mth space harmonic component
of the circuit alone.

Forward wave mode overall characteristic impedance
of the TWT.

Backward wave mode overall characteristic impedance
of the TWT.
Normal mode vector of the mth space harmonic.

Normalized propagation factor of the ith mode of
the mth space harmonic.

Normal circuit mode amplitude of forward mode in
the TWT.

Normal circuit mode amplitude of backward mode in
the TWT.

Diagonal matrix containing the normalized propapa-
tion factors Béi .
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LIST OF SYMBOLS (CONTINUED)

Electric field of the mth space harmonic component.
Combination Bessel function.

DC beam current.

Inverse of transmission matrix T.

Modified ﬁessel function of first kind and zero order.

Modified Bessel fungtion of first kind and first
order. :

Modified Bessel function of second kind and zero
order.

Modified Bessel function of second kind and first
order.

Normalized length of one helix section.

Overall state matrix for left-handed helix.,
Overall state matrix for right-handed helix.
Submatrix of state matrix 9;.

State matrix of the mth space harmonic component.
Part of 9;.

Plasma reduction factor of the ith mode of the mth
space harmonic component.

Normalized displacement of the mth space harmonic
component .

Overall transmission matrix.

Transmission matrix of section p.
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LIST OF SYMBOLS (CONTINUED)

Submatrices in the overall transmission matrix T.

Normalized rf beam velocity of the mth space
harmonic component.

DC beam velocity.
Submatrix of Q;.

Normalized length,

Circuit impedance of the mth space harmonic, referred
to the circuit location r = L

Normalized pocition at output end of last section.
Normalized position at input end of first section,
Load impedance at the input,

Load impedance at the output,

Propagation factor of the mth space harmonic.
Relativistic factor.

Eigenvalue of the F-matrtx.

Eigenvalue of the x-matrlx.

Permittivity of frce space,

Lose prrameter of the mth space harmonic component.
Retlection toefti- fent at the {nput end ot the TWT,

Ketlection coefflcient at the the output end of
the TW7,




LIST OF SYMBOLS (CONTINUED)

Angular frequency.

Complex angular frequency.
Imaginary angular frequency.
Non-relativistic plasma frequency.

Relativistic plasma frequency.

Plasma frequency normalized to the operating frequency.

A 2 x 2 submatrix equal to Tll'

The elements of x.

Determinant of x.
Real part of jx| .

Imaginary part of {xt
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MISSION
of
Rome Awr Development Center

RADC plans and executes research, develooment, test and
delected acquisdition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support wiihin areas of technical competence
48 provided to ESD Program Offices {POs) and other ESD
elements. The principal technical mission areas are
communications, 2lectromagnetic yuidance and control, sur-
vecllance of ground and aerospace objects, intelligence data
collection and handling, infoamation system technology,
4onospherdic propagation, sclid state selences, micrcuave
phusics and electronic reliability, maintainability and
compatibility.
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