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ABSTRACT

Iterative algorithms for signal reconstruction from partial time- and

frequency-domain knowledge have proven useful in a number of application

areas. In this report, a general convergence proof, applicable to one class

of such iterative reconstruction algorithms, is presented. The proof relies

on the concept of a nonexpansive mapping in both the time and frequency

domains.

Two examples studied in detail are timelimited extrapolation (equ-

ivalently, bandlimited extrapolation) and phase-only signal reconstruction.

The proof of convergence for the phase-only iteration is a new result which

illustrates this method of proof. The generality of the approach allows

the incorporation of nonlinear constraints such as time- (or space-) domain

positivity or minimum and maximum value constraints. Finally, the under-

relaxed form of these iterations is also shown to converge when the solution

is not guaranteed to be unique.
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1.0 Introduction

Recently, considerable attention has been focused on a class of iterative

signal reconstruction algorithms that assume partial knowledge of the signal

in both the time and frequency domains. Perhaps the most widely known algor-

ithm of this type is Gerchberg's algorithm [1] for bandlimited extrapolation,

which has been considered by several authors including Papoulis [2],

Cadzow [3], and Youla [4]. More recently, Quatieri and Oppenheim [5] and

Hayes et. al [6] have investigated iterative procedures for reconstructing

a signal from the phase of its Fourier transform. A related problem involves

reconstruction from the magnitude of the Fourier transform (5,7,8].

The conditions under which such signal reconstruction problems have a

unique answer are known. Often these solutions are closed form expressions

in terms of the given partial knowledge, but they still may be computationally

intractable. Thus, iterative solutions have been proposed to generate the

reconstruction.

In this paper, we investigate the convergence of a particular set of

iterative signal reconstruction algorithms. These iterative solutions

involve repeated transformation between the time and frequency domains where,

in each domain, the known information about the signal is incorporated into

the current estimate of the desired signal. Although our discussion centers

on two specific examples, timelimited extrapolation (and consequently,

bandlimited extrapolation) and phase-only reconstruction, our approach is
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general and may be applied to other iterative algorithms that satisfy the

same assumptions. Since the convergence of the iteration for bandlimited

extrapolation has been demonstrated by others [2,3,4], the present paper

offers an alternative approach into which nonlinear constraints, such as

positivity [8,9] can be incorporated. The generality of our approach also

yields the first proof of convergence for the phase-only reconstruction

problem. Finally, it is straightforward to generalize our convergence

proofs to multi-dimensional signals.

We begin in Section 2 with a brief review of the required mathe-

matical notation and terminology and state three theorems that are

relevant to our discussion of convergence. In Section 3, we define some

specific mappings and establish the nonexpansive property of these mappings.

In Section 4, we apply the results of the previous sections to demonstrate

the convergence of the iterative solutions to the time-limited extrapolation

and phase-only signal reconstruction problems. Finally, in Section 5, we

dircuss some extensions to the iterative algorithms presented in Section 4.

2.0 Mathematical Preliminaries

In this section, we first establish some notation and terminology re-

lated to mappings from one metric space into another*. We also define what

is meant by a fixed point of a mapping and review a few results related to the

We assume that the reader is familiar with the basic concepts and termin-
ology of metric spaces. A detailed treatment of the material presented in
this section may be found in [10,11].
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existence and uniqueness of fixed points. We then define a special class

of mappings which are referred to as nonexpansive mappings. Finally, three

theorems are presented which address the existence and uniqueness of fixed

points and the convergence of iterative solutions for finding a fixed point

of a mapping.

2.1 Metric Spaces, Mappings and Fixed Points

A metric space consists of a set X along with a metric or distance

function d defined on X. Frequently, we will simply refer to X as a metric

space and assume that an underlying metric d has been defined on X. Through-

out most of this paper, we will limit our discussions to the metric 
space RN

with the Euclidean metric

~N-1
d(xy) U [x(n) - y(n)]2 1/2 (1)

Sn=0

A point xcRN is an N-dimensional vector but we will also refer to it as an

N-point sequence x(n). In this context, we consider that x(n) is defined for

all n with x(n) equal to zero outside the interval [0,N-1].

A mapping F from a subspace A of a metric space X into X will be

represented notationally as F:ACX-+X. If the image of A under F, F(A), is

a subset of A, we say that F maps A into itself. A fixed point of a mapping
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F:ACX-X is a point x*cA which is invariant under F, i.e., F(x*)-x*. Since

not all mappings have a fixed point (e.g., F:RR with F(x)-x+l), conditions

for the existence or uniqueness of fixed points are important in many

practical applications. Whenever it is desired to numerically determine a

fixed point of a mapping which is known to have at least one fixed point,

an iterative procedure is often employed. A common iterative approach based

on the method of successive approximation is defined by

xk+l - F(xk) (2)

where xk is the kth approximation to the fixed point x* and x0 is some

initial estimate of x*. Using the notation Fk(x)-F(F k-l(x)), (2) may be

expressed as

kxk - F (x)

Unfortunately, this iteration need not converge to a fixed point of F even

if the fixed point is known to be unique. For example, although the mapping

F:R-R defined by F(x)--x has a unique fixed point, x*-O, the iteration

defined by (2) will not converge unless xo-0.



In order to guarantee that the iteration in (2) converges to a unique

fixed point of F, constraints must be imposed on the mapping F and on the

underlying metric spaces A and X. Since the convergence of the iteration (2)

to a unique fixed point of F plays a central role in this paper, several

theorems which address this issue of convergence are presented in the

following section.

2.2 Contractions and Nonexpansive Mappings

There are many different types of constraints which may be imposed on

a mapping F:ACX X and on the metric spaces A and X to insure the existence

or uniqueness of a fixed point of F or to guarantee the convergence of the

iteration defined in (2). Perhaps the most familiar set of constraints is

that contained in the Contraction Mapping Theorem. This and two other

theorems are presented here in a general form, even though we will confine

our subsequent discussions to RN . First, we define what is meant by a

contraction mapping.

Let A be a subset of a metric space X and let F be a mapping which maps

A into itself. Then F is said to be a contraction mapping if there is a

constant a, 0 < a < 1, such that for all x,yEA.

d(Fx,Fy) < a d(x,y) (4)
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We then have the following

THEOREM 1 [10, p. 1201 (Contraction Mapping Theorem): If F

is a contraction mapping on a closed subset A of a complete*

metric space X, then there is a unique fixed point x*eA.

Furthermore, the sequence x.= F k(x0) converges to x* for

any initial point x0cA and

n
d(xnx*) < - d(Xlo (5)

Although the Contraction Mapping Theorem is useful in many applications, not

all iterations which converge to a unique fixed point are characterized by a

contraction mapping.

A wider class of mappings results if we allow a to equal one in the

definition of a contraction mapping. In this case, the mapping F:AcX-X

is said to be nonexpansive if

d(Fx,Fy) < d(xy) (6)

for all x,yEA. Unlike contractions, nonexpansive mappings may have any number

of fixed points.

We point out that the metric space RN is complete.
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The mapping F is said to be strictly nonexpansive if strict inequality

holds in (6) whenever x~y. Although it is straightforward to show that a

strictly nonexpansive mapping has at most one fixed point, strict non-

expansiveness is not sufficient to guarantee that a fixed point exists.

Nevertheless, if an additional constraint is imposed on the image of A under

F, strictly nonexpansive mappings may be shown to have a unique fixed point.

Specifically, we have the following theorem which will play an important role

in Section 4.

THEOREM 2 [10, p. 404]: Let F:AC XX be a strictly non-

expansive mapping which maps a subspace A of a complete

metric space X into itself. If the image of A under F is

compact*, then F has a unique fixed point, x*cA. Further-

more, the sequence xkF k(x0 ) converges to x* for any x0eA.

Note that the nonexpansiveness of F implies that F is continuous. Therefore,

compactness of F(A) may be replaced by the stronger condition that A be

compact.

Unfortunately, Theorem 2 does not hold if the nonexpansiveness of F is

not strict. Therefore, the following theorem, which will be needed in

Section 5, is useful since F is required only to be nonexpansive.

A subset of A of RN is compact if and only if it is closed and bounded.
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THEOREM 3 [10, p. 404]: If F is nonexpansive and maps

a convex* compact subset A of the metric space RN into

itself, then F has a fixed point in A. Furthermore, for

any wc(0,) and xoeA, the sequence

xk+l ' (l-)xk + oLF(xk) (7)

converges to a fixed point of F in A.

(7) is often referred to as the relaxed form of the iteration given by (2) and

w is the relaxation parameter. When, in particular, wc(0,l) (7) represents

the under-relaxed form of (2).

It should be pointed out that Theorem 3 guarantees the existence of a

fixed point in A. This fixed point, however, need not be unique as illustra-

ted by the mapping F:[0,l][0,1] defined by F(x)-x.

3.0 Time and Frequency Domain Mappings

Let h(n) be a sequence of length N which has an N-point Discrete

Fourier Transform (DFT), H(k). When expressed in polar form, H(k) is given

in terms of its magnitude and phase by

H(k) = IH(k)lexp[JEh(k ) ]  (8)

Convexity of A requires that if x,yeA and ac[0,1], then (l-a)x+ty C A.
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In this section, we show that two mappings which incorporate partial in-

formation about h(n) in the time domain or about H(k) in the frequency

domain are nonexpansive. In particular, we investigate a time domain

mapping which substitutes known values of h(n) into an estimate x(n) of

h(n) for certain indices n. Similarly, in the frequency domain, we examine

mappings which either substitute Gh(k) or incorporate known values of H(k)

into X(k). Another iterative procedure invokes the substitution of known

values of jH(k)j into X(k) [5,7,8], but these mappings do not have a non-

expansive property and, therefore, do not lie within the framework of this

paper.

3.1 Notation and Framework

The mapping which incorporates known values of an N-point sequence

h(n) into an arbitrary sequence x(n) will be denoted by T and is defined by

x(n) n IT

T[x(n)] - (9)h (n) nc IT

where IT is a subset of the interval [O,N-1] over which h(n) is known.

Figure 1 illustrates the mapping in the case of timelimiting.

Likewise, in the frequency domain, the mapping which incorporates known

values of H(k) into X(k) will be denoted by F . This mapping may be
g



x (n) Tx(n) 1061-

T

0N-i NI-1

Fig. 1. Time-domain mapping T for the truncation case where h(n)=O
for ncI T-



represented as F W-1 BW where W and W-1 denote the DFT and IDFT mappingsg

respectively and

X(k) nOIB
BiX(k)] (10)

H(k) ncI

with I a subset of [0,N-1] over which H(k) is known. Figure 2 illustrates

the mapping where constant magnitude replacement and linear phase replacement

are made in a low-frequency region. Finally, the mapping which replaces the

-1
phase of X(k) with the known phase of H(k) is given by F =-W Iw where

[ IX(k)] - IX(k)Iexp[JEh(k)] (11)

3.2 Nonexpansive Properties

We now proceed to show that the mappings T, F and F defined in
S P

Section 3.1 are nonexpansive. To show that T in (9) is nonexpansive in

N N
the metric space RN is straightforward. Specifically, for any x,yeR

2(xy) - E [x(n)'y(n)]2 + [x(n)'y(n)] 2  (12)

neIT 4I T

11



Tiioi--,

org[x(k)] arg[BX(k]

Fig. 2. lFrequency-domain mapping B for constant magnitude and linear
phase replacement in a low-frequency region IB.
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Thus,

d(x,y) > x(n)-y(n) 2  (13)

Since the right hand side of (13) equals d 2(TxTy), then

d(xy) > d(TxTy) (14)

with equality if and only if x(n)-y(n) for all nEIT.

The nonexpanaiveness of the mapping B in (10) follows in a manner

analogous to that for T. The discrete form of Parseval's Theorem may then

be used to show that F -w-CBW Is also nonexpansive. Therefore, since F isg g

nonexpansive

d(x,y) > d(F x,F y) (15)

with equality if and only if X(k)-Y(k) for kel B e

To show that the mapping F in (11) is nonexpansive, we proceed as

follows:

2 N-1 1

(i,¥) - , IX(k)-Y(k)12  (16)

k-0
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Using the triangle inequality for vector differences, (16) becomes

N-1

d (X,Y) >. E IIX(k)I-[Y(k)II (17)

Thus,

dN-M) ,I I~ eJe k -Ykl ie h(k) 2 (18)
~k-O

Therefore,

d(X,Y) > d(OX,OY) (19)

with equality if and only if for each index k, x(k)-Oy (k), or IX(k)1-0,

or IY(k)1=0. Thus, as was the case for Fg, since 0 is nonexpansive then so

is F
p

d(x,y) > d(F xF py) (20)

Finally, we note that the composition of two or more nonexpansive mappings

is also nonexpansive. In particular, the compositions G-TF and P-TF are
g p



nonexpansive. A discussion of these mappings is the subject of the following f
section where we present sufficient conditions for the sequences Xk+l=X.k

and xk+l-Pxk to converge to a unique fixed point.

4.0 Iterative Solutions to Signal Reconstruction Problems

In this section, an iterative solution (2) for two specific signal

reconstruction problems is examined. The first is the iteration defined by

the composite mapping G=TFg, i.e.,

xk+1 -Gxk (21)

where T and F =W'BW are defined by (9) and (10), respectively. The resulting
g

reconstruction algorithm is identical to the timelimited (bandlimited)

extrapolation procedure described by Gerchberg [1] and Papoulis [2]. This

algorithm seeks to determine the entire Fourier transform of a finite

duration signal given knowledge of the spectrum only over a subset of the

frequency domain.

The second iteration is defined by the composite mapping P-TFp, i.e.,

xk+1 " Pxk (22)

15



where T and F -W OW are defined by (9) and (11), respectively. This itera-P

tion defines the phase-only algorithm for reconstructing a finite duration

signal from the phase of its Fourier transform [5,13].

The objective of this section is to show that, under the appropriate set

of conditions, both of these iterations converge to the desired sequence,

h(n). First, we establish conditions which guarantee the uniqueness of the

sequence which simultaneously satisfies the constraints imposed by the

mappings of T and F or F . Under these conditions, we then show that bothg P

G and P are strictly nonexpansive and map a compact subset of RN into itself.

Finally, using Theorem 2 in Section 2.2, we show that the sequences (21) and

(22) converge to the desired sequence, h(n).

4.1 Timelimited Extrapolation Iteration

There are applications such as diffraction-limited imaging for which it

is desirable to determine the Fourier transform of a finite duration signal

when only a segment of the transform is known. In order that this problem

be well defined, however, we need to establish a set of conditions related

to the uniqueness of the solution. Specifically, the following theorem can

be deduced from the results in [12]:

THEOREM 4: Let h(n) be a sequence which is zero outside

the interval [O,M-l]. Then h(n) is uniquely specified by

M samples of its Fourier transform in the interval [0,2r).

16



in particular, we assume frequency samples are derived from the DFT,

and that only a segment of the corresponding Fourier transform is known

in an interval IB' To satisfy the sampling requirement of Theorem 4, the

DFT then must be sufficiently long so that M samples of the DFT fall within

this given interval. If, for example, the known segment is low-pass with

cutoff frequency c , there must exist M DFT samples in the region

[0, c ] U [27-c,27r) .

For any sequence which satisfies this finite duration constraint,

there is a solution which expresses h(n) in terms of M samples of its Fourier

transform. However, since this solution requires an MxM matrix inversion, an

iterative solution may be preferable when M is large. One such iterative

solution alternately imposes the time and frequency domain constraints at

each step of the iteration. Mathematically, this iteration is expressed as

xk+l - Gxk - (TFg)Xk  (23)

where F is defined by (10) with IBC[O,N-1] consisting of at least M points,

and .where T is the mapping (9) with IT - [M,N-11:

SX(n) 0 < n < M
T[x(n)] - -- <(24)

0 M< n < N

17
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We now proceed to show that the sequence xk(n) in (23) converges to h(n)
for any x R

x0e

Let S denote the closed sphere of radius p about h:
p

Sp "xeRN I d(x,h) < p) (25)

Since G is nonexpansive and Gh-h, then G maps S into itself. To see this,

consider a point xcS o Then

d(Gx,h) - d(Gx,Gh) < d(xh) < p (26)

so GxcS and our claim follows. We note, in addition, that the continuity
P

of G implies that G(S P) is compact.

Now consider the mapping G:S C RN R0 and recall from (14) and (15) that

d(Gx,Gy) d(TF x,TF y) < d(gx,Fgy) < d(x,y) (27)

18



We shall proceed to show that G is, in fact, strictly nonexpansive.

Assume to the contrary that there exists x,yESP with x~y such that d(Gx,Gy)=

d(x,y). It follows from (27) that

d(TF x,TF y) - d(F x,F y) - d(x,y) (28)

The lefthand equality is true if and only if Fgx-Fgy for neIT' In addition,

the DFTs of F x and F y are equal for kcI B .

Define now the sequence z(n) by

z - F x - F y (29)
g g

The sequence z(n) is of length H and its Fourier transform is zero over the

set IB which contains M points. Thus, Theorem 4 implies z(n)mO for

o < n < N-l; and d(F x,F y) - 0. Consequently, from (28), d(x,y) - 0 which

implies x-y, a contradiction. Therefore, G is strictly nonexpansive,

d(Gx,Gy) < d(xy) (30)

for all x,yeS P when x~y.

19



Finally, we note that since G is strictly nonexpansive and maps a

compact subset of RN into itself, then from Theorem 2 the sequence (23)

converges to h(n) for any xoeS P Since the radius p of the sphere S was

arbitrary, (23) converges for any x0 ERN

4.2 Phase-Only Iteration

Recently, several sets of conditions have been developed under which

a sequence is uniquely specified, to within a scale factor, by the phase of

its Fourier transform [6]. One such set of constraints is contained in the

following

THEOREM 5: Let h(n) be a real sequence which is zero

outside the interval [0,M-1] with h(O)OO. If the z-

transform of h(n) has no zeroes in reciprocal pairs or

on the unit circle, then h(n) is uniquely specified to

within a scale factor by (M-l) samples of the phase

(or tangent of the phase) of its Fourier transform in

the open interval (0,7).

A special case of this theorem arises when the phase samples of H()

are equally spaced around the unit circle and motivates an iterative tech-

nique for reconstructing h(n) from these phase samples. Specifically, we

have the following Corollary [6] to Theorem 5:

20



Corollary: Let h(n) satisfy the constraints of Theorem 5

and denote its N-point DFT by

H(k) - IH(k)Iexp[J h (k)] (31)

with N > 2M. If x(n) is any sequence which is zero outside

the interval [O,M-l] with an N-point DFT of the form

X(k) =IX(k)Iexp[JO h(k) + Jrack] (32)

where a k O ,±l for each k, then x(n)-$h(n) for all n-and some scalar $.

Motivated by this corollary, the following iterative technique has

been proposed for reconstructing h(n) from h (k):

xk+1 Pxk - (TF P)xk (33)

where F p W-1 4W is the mapping defined in (11) and T is the mapping (9) with

I= fO)U[M,N-l], i.e.,

h(O) n-0

T[x(n)]- x(n) 0< n< M (34)

0 m <n <N

21



N
We now show that the sequence (33) converges to h(n) for any xOeR

As in (25), let S denote the closed sphere of radius p about h.
p

For reasons identical to those in (26), we note that since P is nonexpansive

with Ph-h, then P(S p) is a compact subset of S . Now consider the mapping

P:S C RN RN . From (14) and (19), we recall thatp

d(Px,Py) = d(TF x,TF y) < d(F xF y) < d(x,y) (35)
p p p p

As before, we show that P is strictly nonexpansive by contradiction. Assume

equality holds in (35) and that x0y. We then have

d(TF p,TF py) - d(Fp x,F py) = d(x,y) (36)

where the lefthand equality in (36) is true if and only if F x-F y for nT
p p T'

If we then define a sequence z(n) by

z = Fx - Fpy (37)

and note that z(n)-O for neIT and that z(n) has an N-point DFT of the form

(32), it then follows from the Corollary to Theorem 5 that z(n)-Bh(n) for

all n and some scalar f. However, since z(O)-O and h(O)O, 0-0 and z(n)'mO

for all n. Therefore, d(Fp x,F py)-O and from (36), it follows that d(x,y)=O

and x-y, a contradiction. Consequently, P is strictly nonexpansive since

22
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d(Px,Py) < d(x,y) (38)

for all x,yES when xOy.

Again, Theorem 2 guarantees the convergence of the sequence (33) to

N
h(n) for any x 0 eR

5.0 Extensions

In this section, we examine the issue of convergence when the iterative

procedures (21) and (22) are modified to include a minimum or maximum value

constraint in the time domain. We also briefly describe an adaptive relax-

ation technique which offers another convergent algorithm.

5.1 Minimum and Maximum Value Constraints

In some applications, the partial characterization of a sequence in the

time domain includes a minimum or maximum value constraint. For example,

a positivity (i.e., minimum value) constraint is frequently imposed in it-

erative procedures related to images [8) and spectra [9].

Within our framework, it is easy to show that the inclusion of a mini-

mum or maximum value constraint into the nenexpansive mapping T in (9) does

not alter the nonexpansive property of the mapping. Consider, for example,

the case in which h(n) is known to be positive for n9IT, and let the mapping

23



T be defined by

Ix(n)l nl T

To0fX(n) ]= (39)
h(n) ncIT

In this case, we show that T is nonexpansive as follows. Using the

triangle inequality for vector differences, we have

d 2 (xy) > E [jx(n)[-1y(n)j] 2 = d 2 (T 0 x,T 0 y) (40)

It should be pointed out that the replacement of x(n) with jx(n)j for xeIT

in (39) is not the only one which preserves the nonexpansive property of T.

For example, it is straightforward to show that the mapping

max[Ox(n)] ni T

T*0[x(n) ] h (41)
0 h(n) ne T

is also nonexpansive.

24



A generalization of (39) and (41) to incorporate an arbitrary minimum

value constraint in T also preserves the nonexpansive property. For ex-

ample, suppose that h(n) is known to be greater than or equal to some number

m for all nl IT* Then the mappings

T [i-Ix n (42)

h(n) neT

and

] max[m,x(n)] nilTT*[x(n) (43n)~1

ih (n) ne T

are both nonexpansive. This follows simply by noting that Tm in (42),

for example, may be written as

T- S aIT0sm  (44)

25



where TO is the mapping (39) and where S and S- 1 are defined bym m

Sm[x(n) ] x(n)-m (45a)

S -[x(n)] x(n)+m (45b)m

Since S and S- 1 are nonexpansive mappings, (44) implies that T is also non-m m m

expansive.

In a similar fashion, it follows that if a maximum value constraint is

imposed in the mapping T, then the nonexpansive property of T is preserved.

In addition, by recalling that the composition of nonexpansive mappings is

also nonexpansive, we see that an arbitrary combination of minimum and maxi-

mum value constraints may be used. For exaple, if it is known that

M <x(n)<M2 for njIT, then the mapping

I min{M2 ,max[MlX(n)]} nOIT

TM M 2 [x(n)] h(n) (46)
nEIT

is nonexpansive.

26



Finally, we note that if the minimum or maximum value constraints are

consistent with the existence of a fixed point, the nonexpansive property of

T is preserved and the iterations (20) and (21) still converge to the unique

solution.

5.2 Fixed and Adaptive Relaxation

The motivation for examining convergence of the so-called under-relaxed

form of the iteration given by (7) with wE(O,1) is two-fold. First, we would

like to develop iterative procedures which converge in the absence of a unique

solution. Secondly, this iterative formulation may possibly increase the rate

of convergence of the iteration.

The iteration in (7) must converge if the conditions of Theorem 3 are

met. Theorem 3 also implies that if a unique fixed point exists, the iter-

ation will converge to that solution. The iterative procedures of section 4,

in particular, satisfy the conditions of Theorem 3 and, in addition, have a

unique fixed point. Thus, the under-relaxed forms of the iterations given by

(21) and (22) yield a unique converging solution. In the case of multiple

solutions, however, (7) will converge to any one of the possible solutions.

Furthermore, the minimum or maximum value constraints of the previous section

can be imposed with resulting convergence.

By modifying (7) slightly, an adaptive form of the relaxation technique

has been realized. Specifically, the modified iteration becomes

1k+l - (l -k)xk + "Fkxk (47)

where wk is a relaxation scalar which is computed at each step of the iteration

and which can be optimally chosen to minimize a residual error criterion.
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For the case where a mean-square error is used, w k is relatively easy to

derive, and the convergence characteristics of (47) are significantly improved

[13]. Futhermore, if the optimum relaxation parameter is never allowed to

take on values outside the interval (0,1), the convergence of (47) follows

from a modified version of Theorem 3. A discussion of the more general case

in which no restriction is placed on the range of values for wk may be found

in [14].

6.0 Summary

In this report, we have demonstrated the convergence of two iterative

procedures which involve repeated transformations between the time and

frequency domains. The convergence proofs rely on the nonexpansive property

of the mapping which defines the iteration as well as on the uniqueness of

the desired signal. The generality of our approach is such that other

iterative procedures and their under-relaxed forms which are characterized

by nonexpansive mappings may similarly be shown to converge when the ap-

propriate conditions are satisfied. For example, iterative deconvolution

techniques studied by Mersereau and Schafer [9] and the iterative filtering

procedure of Dudgeon [15] fall within our class of iterations.

We also considered the incorporation of a minimum or maximum value

constraint into the iteration. With our approach, the convergence of this

iteration was easily demonstrated. In a similar manner, other forms of

constraints may be considered and, provided these constraints preserve the

nonexpansive property of the mapping, convergence of the iteration follows.
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When multiple solutions exist, the under-relaxed form of the iterations

has been shown to converge. Finally, we also briefly examined the convergence
of the under-relaxed formulation when the relaxation parameter is variable,

and discussed the optimal choice of this parameter for increasing the rate

of convergence.
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