TWO-DIMENSIONAL TRANSIENT HYGROTHERMAL STRESSES IN BODIES WITH --ETC(U)
AUG 80 G C SIH + A OGAWA
DAAS46-79-C-0049

END
TWO-DIMENSIONAL TRANSIENT HYGROTHERMAL STRESSES IN BODIES WITH CIRCULAR CAVITIES: MOISTURE AND TEMPERATURE COUPLING EFFECTS

August 1980

G. C. Sih and A. Ogawa

Lehigh University
Bethlehem, Pennsylvania 18015

Final Report

Contract Number DAAG46-79-C-0049

Approved for public release; distribution unlimited.

Prepared for

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official endorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.
Do not return it to the originator.
When moisture and/or temperature are suddenly changed on the boundary of a solid, stresses and strains are introduced and they can be further aggravated by the presence of stress raisers such as voids or cavities. A time dependent finite element procedure is developed for solving the hygrothermal stresses around a circular cavity in a finite plate. Numerical results are displayed graphically for the T300/5208 graphite fiber-reinforced epoxy resin material. The size of the hole relative to the plate is varied for three different cases.
such that the interaction of moisture and temperature is investigated in conjunction with changes in the solid geometry.

Possible failure sites are also examined by application of the strain energy density criterion. These locations are determined from the stationary values of the strain energy factor. The hygrothermal influence tends to move the failure site away from the cavity while the mechanical load gives the opposite effect. The proportion of the energy stored by hygrothermal and mechanical disturbances is investigated.
Foreword

This research work was performed for the Army Materials and Mechanics Research Center at Watertown, Massachusetts under Contract No. DAAG46-79-C-0049 with the Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennsylvania. Mr. J. F. Dignam of the AMMRC was project manager and Dr. S. C. Chou as technical monitor. The support and encouragement of Mr. Dignam and Dr. Chou are gratefully acknowledged.
TWO-DIMENSIONAL TRANSIENT HYGROTHERMAL STRESSES
IN BODIES WITH CIRCULAR CAVITIES: MOISTURE AND TEMPERATURE COUPLING EFFECTS

by

G. C. Sih
Institute of Fracture and Solid Mechanics
Lehigh University
Bethlehem, Pennsylvania 18015 USA

and

Akinori Ogawa*
National Aerospace Laboratory
Tokyo, Japan

ABSTRACT

When moisture and/or temperature are suddenly changed on the boundary of a solid, stresses and strains are introduced and they can be further aggravated by the presence of stress raisers such as voids or cavities. A time dependent finite element procedure is developed for solving the hygrothermal stresses around a circular cavity in a finite plate. Numerical results are displayed graphically for the T300/5208 graphite fiber-reinforced epoxy resin material. The size of the hole relative to the plate is varied for three different cases such that the interaction of moisture and temperature is investigated in conjunction with changes in the solid geometry.

Possible failure sites are also examined by application of the strain energy density criterion. These locations are determined from the stationary values of the strain energy factor. The hygrothermal influence tends to move the failure site away from the cavity while the mechanical load gives the opposite effect. The proportion of the energy stored by hygrothermal and mechanical disturbances is investigated.

*Akinori Ogawa held the position of Visiting Scientist at the Institute of Fracture and Solid Mechanics, Lehigh University, for the academic years 1978 to 1980 during which time this work was completed.
INTRODUCTION

The general influence of moisture and/or temperature on the stresses and displacements in laminated composite materials [1,2] has received increased attention in recent times. It is known that when a laminate absorbs moisture, its mechanical stiffness and strength are degraded and recovery is incomplete after desorption. Heat can also degrade a material. These environmental influences can interact so that the stress state of the material is dependent on both temperature and moisture in its surroundings. A theory of diffusion which incorporates the interaction between temperature and moisture can be found in [3]. Phenomenological arguments leading to coupled equations governing the simultaneous diffusion of moisture and heat were further elaborated in [4]. All the physical models led to the same system of differential equations although the coefficients related to the basic thermodynamic properties of the solid differed. Discussed were the reciprocal effects of heat and moisture.

The stresses produced in a plate by the hygrothermal strains associated with the diffusion processes described earlier have been calculated [5]. Both the conditions of suddenly applied temperature and/or moisture on the plate surface were considered. Since the temperature and moisture concentration in the plate vary with time, the stresses also fluctuate and tend to zero when the temperature and moisture concentration become uniform. The situation when the moisture diffusion coefficient is temperature dependent was treated in [6] for the symmetric boundary conditions which produce no bending. Coupling of moisture and heat was found to be inherent in the case of transient temperature boundary condition for a given moisture content. Depending on the magnitude of the surface temperature change, the stresses predicted from the coupled and uncoupled theory can differ.
anywhere from 20 to 80%. Bending is produced when the boundary condition is skew-symmetric [7].

The present investigation is concerned with the moisture, temperature, and stress fields for the problem of a plane body containing a circular hole. The coupled diffusion equations with polar symmetry are first solved by a time dependent finite element procedure. Since the elastic deformation is assumed not to be coupled with moisture and temperature, the stresses can be solved independently once the diffusion field is determined. Two types of transient boundary conditions are considered. They are the sudden change of temperature and moisture on the circular hole. Numerical results are displayed graphically and discussed in connection with the minimum strain energy density criterion for locating possible failure sites. The accuracy of the time dependent finite element procedure developed in this work is tested by solving the one-dimensional diffusion problem of a plate whose solution is known in closed form [5]. The results agree very well and are given in the Appendix.

FINITE ELEMENT FORMULATION

A time dependent two-dimensional finite element method will be developed to solve the coupled diffusion equations of heat and moisture:

\[
D\nabla^2 C - \frac{\partial}{\partial t} (C - \lambda T) = 0
\]

\[
D\nabla^2 T - \frac{\partial}{\partial t} (T - \nu C) = 0
\]

in which \(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\) stands for the Laplacian operator in two dimensions and \(t\) is the time. In equation (1), \(T\) is temperature and \(C\) is the mass of mois-
ture per unit volume of void space in the solid. The diffusion coefficients \(D \) and \(D \) have units of area per unit time, and the coupling coefficients \(\lambda \) and \(\nu \) have units of mass per unit volume per unit temperature and the reciprocal, respectively. These equations are relatively easy to solve in the one-dimensional case and when the coefficients are constant and boundary values of temperature and moisture content are held constant between occasional moments of sudden changes [5].

Referring to Figure 1, the boundary value problem to be considered here is inherently two-dimensional and multiply-connected with an inner boundary \(r_1 \) and outer boundary \(r_2 \). The enclosed region is denoted by \(R \). For \(t<0 \), the temperature and moisture fields are such that

\[
T(x,y,t) = T_0(x,y)
\]

\[
C(x,y,t) = C_0(x,y)
\]

while for \(t>0 \) they change to

\[
T(x,y,t) = T_0(x,y) + \Delta T(x,y,t)
\]

\[
C(x,y,t) = C_0(x,y) + \Delta C(x,y,t)
\]

Since equations (1) cannot be solved generally by analytical means, a finite element procedure will be developed.

Basic formulation. In order to apply a scheme used in variational calculus, the following scalar functions \(\phi_1 \) and \(\phi_2 \) are introduced:
\[\phi_1 = \iint_R \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) + C \frac{3}{3t} (C-\lambda T) \]
\[\phi_2 = \iint_R \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + T \frac{3}{3t} (T-\nu C) \]

The desired solution to equations (1) can be obtained by requiring

\[\delta \phi_1 = \delta \phi_2 = 0 \] (5)

Let the body in Figure 1 be divided into m triangular elements with n nodes. The moisture C and temperature T at the nodes will be denoted with the subscripts i,j and k while C and T will refer to the values in the element A. For a linear relation, C and T can be written as

\[C = N_i C_i + N_j C_j + N_k C_k = [N_i, N_j, N_k] \]
\[T = N_i T_i + N_j T_j + N_k T_k = [N_i, N_j, N_k] \]

in which \(N_i, N_j \) and \(N_k \) stand for

\[N_i = \frac{1}{2A} [(x_jy_k - x_ky_j) + (y_jy_k) + (x_k-x_j)y] \] (7)

with \(A \) being the area of a typical element shown in Figure 1. Note that the expressions for \(N_j \) and \(N_k \) may be obtained by the cyclic permutation of subscripts. A system of linear equations can thus be obtained with the help of equations (5) and (6):
\[\frac{\partial^2 \phi}{\partial C_i} = 0, \quad i = 1, 2, \ldots, n \]

(8)

\[\frac{\partial^2 \phi}{\partial T_i} = 0, \quad i = 1, 2, \ldots, n \]

Let the vector \(\xi \) and \(\mathcal{I} \) be defined as

\[\xi = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix}, \quad \mathcal{I} = \begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_n \end{bmatrix} \]

(9)

Applying the conditions in equations (8) to (4) yields the expressions

\[\dot{H} \xi + D K \xi - \lambda H \mathcal{T} = 0 \]

(10)

\[\dot{H} \mathcal{T} + D T \mathcal{I} - \nu \dot{H} \xi = 0 \]

where dot represents differentiation with respect to time. The elements of the matrices \(H \) and \(K \) for the finite element \(A \) are given by

\[H_{ij}^{(A)} = \frac{1}{4\Delta} \left(a_i a_j + \frac{1}{12} b_i b_j (x_i^2 + x_j^2 + x_k^2) + \frac{1}{12} (b_i d_j + b_j d_i) (x_i y_j + x_j y_i + x_k y_k) \right) \]

\[+ \frac{1}{12} d_i d_j (y_i^2 + y_j^2 + y_k^2) \]

*If the origin of the coordinate system \((x,y)\) in Figure 1 is placed at the centroid of the element \(A \), then \(H_{ij}^{(A)} \) becomes
\[H_{ij}^{(A)} = \frac{1}{4\pi^2} \int \int_A (a_i + b_i x + d_i y)(a_j + b_j x + d_j y) dx dy \]
(11)

\[K_{ij}^{(A)} = \frac{1}{4\pi} (b_i b_j + d_i d_j) \]

in which

\[a_i = x_j y_k - x_k y_j, \quad b_i = y_j y_k - x_k y_j, \quad d_i = x_k - x_j \]
(12)

and the remaining quantities in equations (11) can obviously be obtained by the cyclic permutation of the subscripts. The quantities \(H_{ij} \) and \(K_{ij} \) can be obtained by summing up \(H_{ij}^{(A)}, H_{ij}^{(B)}, \ldots \), and \(K_{ij}^{(A)}, K_{ij}^{(B)}, \ldots \), for all elements \(A, B, \ldots \), i.e.,

\[H_{ij} = H_{ij}^{(A)} + H_{ij}^{(B)} + \ldots \]
(13)

\[K_{ij} = K_{ij}^{(A)} + K_{ij}^{(B)} + \ldots \]

Decomposing matrices and vectors. In order to solve equations (10) numerically, it is convenient to rearrange it to the forms

\[\left(\frac{1}{\lambda} - \nu \right) \dot{C} + \frac{D}{\lambda} \dot{K} + DK = 0 \]
(14)

\[\left(\frac{1}{\nu} - \lambda \right) \ddot{K} + \frac{D}{\nu} \dot{K} + DK = 0 \]

The time portion of the problem will be solved analytically so as to give an adequate treatment of the transient nature of the boundary conditions.
Equations (14) will be re-structured by decomposing the matrices and vectors into parts referring to the inner region with subscript I and to the boundary nodal points with subscript B. This leads to

\[
\left(\frac{1}{\lambda} - \nu \right) \mathbf{H}_I \dot{\mathbf{z}}_I + \frac{D}{\lambda} \mathbf{K}_I \mathbf{z}_I + \frac{D}{\lambda} \mathbf{K}_I \mathbf{z}_I = - \left(\frac{1}{\lambda} - \nu \right) \mathbf{H}_B \mathbf{z}_B - \frac{D}{\lambda} \mathbf{K}_B \mathbf{z}_B - \frac{D}{\lambda} \mathbf{K}_B \mathbf{z}_B
\]

\[\text{(15)}\]

\[
\left(\frac{1}{\lambda} - \lambda \right) \mathbf{H}_I \dot{\mathbf{z}}_I + \frac{D}{\lambda} \mathbf{K}_I \mathbf{z}_I + \frac{D}{\lambda} \mathbf{K}_I \mathbf{z}_I = - \left(\frac{1}{\lambda} - \lambda \right) \mathbf{H}_B \mathbf{z}_B - \frac{D}{\lambda} \mathbf{K}_B \mathbf{z}_B - \frac{D}{\lambda} \mathbf{K}_B \mathbf{z}_B
\]

As \(t \) becomes infinitely large, the steady state condition is recovered and equation (15) reduces to

\[
\mathbf{K}_I \mathbf{z}_I + \mathbf{K}_B \mathbf{z}_B = 0
\]

\[\text{(16)}\]

\[
\mathbf{K}_I \mathbf{z}_I + \mathbf{K}_B \mathbf{z}_B = 0
\]

In what follows, the transient boundary conditions of sudden moisture and/or temperature change will be considered.

BOUNDARY CONDITIONS

Let \(\mathbf{z}_0 \) and \(\mathbf{I}_0 \) be the initial values of the moisture and temperature vectors while \(\mathbf{z}_f \) and \(\mathbf{I}_f \) are those corresponding to the final values. The quantities \(\Delta \mathbf{z}_B \) and \(\Delta \mathbf{I}_B \) represent the increment change of these vectors on the surfaces \(\Gamma_I \) and \(\Gamma_{II} \) as shown in Figure 1, i.e.,

\[
\mathbf{z}_f = \mathbf{z}_0 + \Delta \mathbf{z}_B
\]

\[\text{(17)}\]

\[
\mathbf{I}_f = \mathbf{I}_0 + \Delta \mathbf{I}_B
\]
Sudden Moisture Change. The first type of transient boundary conditions involves a sudden change of the moisture condition on Γ_I while the temperature remains constant. No changes occur on Γ_{II}. This can be expressed as

$$\Delta C = \begin{cases} \Delta C_B, & \text{on } \Gamma_I \\ 0, & \text{on } \Gamma_{II} \end{cases}$$

$$\Delta T = 0, \text{ on } \Gamma_I \text{ and } \Gamma_{II}$$

(18)

Under these considerations, equation (15) becomes

$$\left(\frac{1}{\lambda} - \nu\right) \frac{\partial}{\partial t} \bar{C}_I + \frac{D}{\lambda} \bar{K}_I \bar{C}_I + \frac{D}{\nu} \bar{K}_I \bar{C}_I = - \frac{D}{\lambda} \bar{K}_I \bar{C}_F - \frac{D}{\nu} \bar{K}_I \bar{C}_F - \left(\frac{1}{\lambda} - \nu\right) \bar{H}_IB \Delta C_F \delta(t)$$

$$\left(\frac{1}{\nu} - \lambda\right) \frac{\partial}{\partial t} \bar{I}_I + \frac{D}{\nu} \bar{K}_I \bar{C}_I + \frac{D}{\lambda} \bar{K}_I \bar{C}_I = - \frac{D}{\nu} \bar{K}_I \bar{C}_F - \frac{D}{\lambda} \bar{K}_I \bar{C}_F$$

(19)

Taking the Laplace transform of equations (19) such that

$$\bar{I}_I = \int_0^\infty I_i(t) \exp(-st) dt$$

$$\bar{C}_I = \int_0^\infty C_i(t) \exp(-st) dt$$

(20)

it can be shown that by eliminating \bar{C}_I, the following expression is obtained:

$$\left(s^2 M + s N + A\right)(\bar{I}_I - \bar{I}_0) = - \left(\frac{1}{\lambda} - \nu\right)(\bar{H}_I \bar{K}_I^{-1} + \bar{H}_I B \Delta C_F)$$

(21)

in which M, N and A are given by
Equation (21) may be solved as an eigenvalue problem with a solution of the form

$$\sum_{j=1}^{n} e_j f_i(t)$$

where n is the number of nodes. The eigenvectors e_i obey the relation

$$(A - \omega_i^2 M)e_i = 0, \quad i = 1, 2, \ldots, n$$

For a nontrivial solution, the determinant $|A - \omega_i^2 M|$ must vanish which may be evaluated to yield ω_i. The scalar function $f_i(t)$ is

$$f_i(t) = \frac{\alpha_i \exp(-\gamma_i \omega_i t)}{\omega_i^{1/2}/2} \sinh(\omega_i t \sqrt{\gamma_i^2 - 1}), \quad |\gamma_i| > 1$$

In equation (25), α_i and γ_i stand for

$$\alpha_i = -\left(\frac{1}{\lambda} - \nu\right) e_i^T \left(\frac{1}{\lambda \kappa_i} \kappa_i \kappa_i^T \kappa_i + H_{iB} \Delta C_B + H_{iB} \Delta C_B^T\right)$$

$$\gamma_i = \frac{1}{2\omega_i} e_i^T N e_i$$

Similarly, the same procedure can be repeated to eliminate Γ_1 in the expressions for the Laplace transforms of equations (19). This leads to
\[\xi_1 - \xi_0 = \sum_{i=1}^{\infty} \alpha_i g_i(t) \]

(27)

and the scalar function \(g_i(t) \) takes the form

\[g_i(t) = \frac{\beta_i}{\omega_i} \left[1 - \exp(-\gamma_i \omega_i t) \cosh(\omega_i t \sqrt{\gamma_i^2 - 1}) \right] \]

\[+ \frac{\exp(-\gamma_i \omega_i t)}{\omega_i \sqrt{\gamma_i^2 - 1}} \left(\kappa_i - \frac{\beta_i \gamma_i}{\omega_i} \right) \sinh(\omega_i t \sqrt{\gamma_i^2 - 1}) \text{ for } |\gamma_i| > 1 \]

(28)

where

\[\kappa_i = (1 - \frac{1}{\lambda v}) e^{T_i K_i^{-1} \kappa_{IB} \Delta C_B} \]

(29)

The condition \(|\gamma_i| > 1\) is always satisfied since it can be shown that

\[\gamma_i = \frac{D + D^2}{2\sqrt{D(D(1-\lambda v))}} > 1 \]

(30)

Sudden Temperature Change. If the moisture on \(r_1 \) and \(r_{II} \) is held constant while the temperature on \(r_I \) is changed from \(T_o \) to \(T_f \), then the following conditions prevail:

\[\Delta C = 0, \text{ on } r_I \text{ and } r_{II} \]

\[\Delta T = \begin{cases} \Delta T_B, & \text{on } r_I \\ 0, & \text{on } r_{II} \end{cases} \]

(31)

In this case, equation (15) becomes

\[\left(\frac{1}{\lambda} - \nu \right) H_1 \xi_1 + \frac{D}{\lambda} K_1 \xi_1 + D \Delta T_I = - \frac{D}{\lambda} K_{IB} \xi_0 - D K_{IB} T_f \]

(32)
\[
\left(\frac{1}{\nu} - \lambda\right)H_I^2 + \frac{P}{\nu} K_I I_I + DK_I C_I = -\frac{P}{\nu} K_{IB} I_I - DK_{IB} C_O - \left(\frac{1}{\nu} - \lambda\right)H_{IB} I_B \delta(t)
\]

Following the procedure discussed earlier where use was made of Laplace transform, it is found that

\[
I_I - I_O = \sum_{i=1}^{n} \xi_i h_i(t)
\]

(33)

The function \(h_i(t)\) is found to be

\[
h_i(t) = \frac{\beta_i^*}{\omega_i^2} \left[1 - \exp(-\gamma_i \omega_i t) \cosh(\omega_i t \sqrt{\gamma_i - 1})\right] + \frac{\exp(-\gamma_i \omega_i t)}{\omega_i \sqrt{\gamma_i - 1}}
\]

\[
\times \left(\kappa_i^* - \frac{\beta_i \gamma_i}{\omega_i} \right) \sinh(\omega_i t \sqrt{\gamma_i - 1}) \text{ for } |\gamma_i| > 1
\]

(34)

in which \(\beta_i^*\) and \(\kappa_i^*\) are given by

\[
\beta_i^* = \frac{P}{D(1 - \frac{1}{\lambda\nu})^T K_{IB}}
\]

\[
\kappa_i^* = \frac{P}{D} \left(1 - \frac{1}{\lambda\nu}\right) \xi_i^T H_I^{-1} K_{IB} A_B
\]

(35)

Returning to equations (32), \(C_I - C_O\) can also be evaluated and it takes the form

\[
C_I - C_O = \sum_{i=1}^{n} \xi_i k_i(t)
\]

(36)

with \(k_i(t)\) being given as

\[
k_i(t) = \frac{\alpha_i \exp(-\gamma_i \omega_i t)}{\omega_i \sqrt{\gamma_i - 1}} \sinh(\omega_i t \sqrt{\gamma_i - 1}) \text{ for } |\gamma_i| > 1
\]

(37)
such that

\[
\alpha_i^* = -\frac{D}{\nu} \left(\frac{1}{\nu} - \lambda \right) e^T \bar{H} I K^{-1} \bar{K} B^T \Delta T_b
\]

(38)

This completes the formation of the time-dependent portion of the problem. The geometric portion will be solved numerically by the method of finite element in the numerical examples to be followed.

NUMERICAL EXAMPLES: DIFFUSION PROCESS

The geometry to be treated is that of a square plate LxL containing a circular hole of radius a. Referring to Figure 2, if the boundary conditions on the hole or \(r_1 \) is independent of \(\theta \), then the problem possesses 1/8 - symmetry. Only the shaded area needs to be analyzed. Considered are three different \(L/a \) ratios with \(L \) being equal to 8, 16 and 1,352*. This corresponds to progressively weaker interaction of the hole with the plate boundary as the hole radius a is always kept at unity. The distance \(b = L - a \) is kept constant so that the numerical results for all three cases can be compared on the same graph. The finite element grid patterns are shown in Figures 3 to 5 and they are self-explanatory.

The plate material is made of an epoxy resin used for the T300/5208 graphite fiber-reinforced composite. The coupling constants were determined in [6] and they are \(D/D = 0.1, \lambda = 0.5 \) and \(\nu = 0.5 \). Numerical results for the moisture and temperature distribution around the circular cavity are obtained for the conditions specified by equations (18) and (31) which will be discussed separately.

Moisture Change. For Case I with \(L=8 \), a plot of the normalized moisture change \((C-C_0)/(C_F-C_0)\) versus \((r-a)/b\) is given in Figure 6 for different values of the

*In this case, L represents the diameter of a circular plate.
time parameter Dt/b^2. For small time t, the moisture concentration drops rapidly as a function of the distance $(r-a)/b$ and only the material near the circular hole boundary is affected. As time increases, the material away from the hole is also influenced by moisture change and the decrease in $(C-C_o)/(C_f-C_o)$ becomes more gradual. The variations of temperature with distance measured from the hole are exhibited in Figure 7. The temperature peaks near the hole for small time and their values tend to decrease and move away from the hole as t is increased. The results for Case II with $L=16$ are not appreciably different from those shown in Figures 6 and 7 and hence will not be displayed. When $L=1,352$ such that the hole diameter is decreased considerably in size as compared with that of the plate, a significant change of results are observed. They are referred to as Case III illustrated in Figures 8 and 9. The moisture changes in Figure 8 for different times are seen to take place only in the material close to the hole boundary. The temperatures in Figure 9 do not peak as significantly as those in Figure 7 when the hole is closer to the plate edge. A comparison of results for all the three cases is made in Figures 10 and 11 in terms of the average moisture and temperature defined as

$$C_{ave} = \frac{1}{V} \int V \left(C - C_0 \right), \quad T_{ave} = \frac{1}{V} \int V \left(T - T_0 \right)$$

Displayed in Figure 10 is $(C_{ave}-C_0)/(C_f-C_0)$ versus \sqrt{Dt}/b. As it is to be expected, a significant uptake in moisture as a function of time is observed for Case I where the circular hole occupies a greater portion of the plate. The presence of the hole becomes less and less significant as its size is reduced going from Case I to Case III. Similarly, the average temperature peaks at $\sqrt{Dt}/b = 0.55$ for all cases with the largest peak corresponding to Case I when the hole and plate edge interaction is the strongest. This is shown in Figure 11.
Temperature Change. If the temperature on the hole boundary Γ_1 is suddenly changed from T_i to T_f while the surface moisture is kept constant, Figure 12 displays the drop in temperature as a function of $(r-a)/b$ for $Dt/b^2 = 0.011$, 0.044 and 11.111. The material near the hole experiences more severe temperature drop for small time t. As more of the material is subjected to temperature changes, this influence becomes more gradual. The corresponding changes in moisture $C-C_i$ are similar to those shown for $T-T_i$ in Figure 7 when moisture boundary condition is specified. In fact, the results for $C-C_i$ can be obtained from those in Figure 7 for $T-T_i$ by the multiplication factor D/D since $\lambda = \nu = 0.5$ for this particular example. Therefore, $C-C_i$ will peak near the hole and then decrease. Figure 13 gives the decrease in temperature versus distance for Case III. The trend is the same as that in Figure 12 except that the influence is confined closer to the hole boundary. The values of $C-C_i$ for Case III again differ from those in Figure 9 for $T-T_i$ by the factor D/D and hence will not be repeated.

TRANSIENT HYGROTHERMAL STRESSES

Once the moisture and temperature distribution in R are known, the stresses can be obtained in a straightforward manner as follows:

$$\hat{\sigma} = E(\hat{\varepsilon} - \varepsilon_0)$$

(40)

in which the stress tensor $\hat{\sigma}$ has the components σ_r, σ_θ and $\sigma_{r\theta}$ and the strain tensor has the components ε_r, ε_θ and $\varepsilon_{r\theta}$ referred to the polar coordinates r, θ and z in Figure 2. For plane strain, the matrix E for an isotropic and homogeneous material is given by
where \(E \) is the Young's modulus and \(\nu_p \) the Poisson's ratio. Assuming that \(\varepsilon_z = 0 \), the transverse normal stress component \(\sigma_z \) can be found as

\[
\sigma_z = \nu_p (\sigma_r + \sigma_\theta) - E[\alpha(T - T_0) + \beta(C - C_0)]
\]

The coefficient of thermal expansion is \(\alpha \) and of moisture expansion is \(\beta \). The hygrothermal thermal strain \(\varepsilon_0 \) in equation (40) takes the form

\[
\varepsilon_0 = (1+\nu_p) \begin{bmatrix} \varepsilon_0 \\ \theta_0 \\ 0 \end{bmatrix}
\]

in which \(\theta_0 \) is defined by

\[
\theta_0 = \alpha(T - T_0) + \beta(C - C_0)
\]

There remains the determination of \(\varepsilon_0 \) owing to the nonuniform distribution of \(C \) and \(T \) throughout the elastic plate containing a circular cavity. This will be accomplished by application of the finite element procedure.

Let \(q \) be the equivalent nodal force which is statically equivalent to the tractions applied on the element. It can be expressed as

\[
q = Qa - p
\]
such that

\[Q = \int B^T B dV, \quad p = \int B^T E \varepsilon_0 dV \]

and \(\bar{a} \) is the equivalent nodal displacement corresponding to \(\bar{q} \):

\[\bar{a} = \begin{bmatrix} a_i \\ a_j \\ \vdots \\ a_k \end{bmatrix}, \quad \bar{q} = \begin{bmatrix} q_i \\ q_j \\ \vdots \\ q_k \end{bmatrix} \]

The matrix \(B \) is given by

\[B = [B_i, B_j, B_k] \]

in which

\[B_i = \frac{1}{2\alpha} \begin{bmatrix} y_j - y_m \\ 0 \\ x_m - x_j \\ x_m - x_j, y_j - y_m \end{bmatrix} \]

and \(B_j \) and \(B_k \) may be written down by the cyclic permutation of indices. Since both \(Q \) and \(p \) in equations (46) are known quantities, \(\bar{a} \) may be found from equation (45) and hence the strain \(\varepsilon \) is determined since*

*Note that the displacement \(u \) is related to \(\bar{a} \) as

\[u = [N_i I, N_j I, N_k I] \bar{a} \]

with \(I \) being the identity matrix and \(N_i, N_j, \text{ etc.} \), are given by equation (7) and \(u \) has the components

\[u = N_i u_i + N_j u_j + N_k u_k \]

\[v = N_i v_i + N_j v_j + N_k v_k \]

-17-
\[\mathbf{e} = \left[B_1, B_j, B_k \right] \begin{bmatrix} a_1 \\ a_j \\ a_k \end{bmatrix} \] (50)

It is now obvious that equations (43) and (50) may be inserted into equation (40) to yield the hygrothermal stresses.

For the T300/5208 resin material, the following material properties will be used for the hygrothermal stress calculations:

\[\alpha = 4.5 \times 10^{-5} \text{ m/m°C} \]
\[\beta = 2.68 \times 10^{-3} \text{ m/m/% H}_2\text{O} \]
\[E = 3.45 \text{ GN/m}^2 \ (5 \times 10^5 \text{ psi}) \]
\[\nu_p = 0.34 \] (51)

Again, the discussion on stresses for the cases of moisture change and temperature change will be presented separately.

Moisture Change. In all of the cases, the stresses will be expressed in MN/m\(^2\) and plotted against the dimensionless distance \((r-a)/b\) such that \(r=a\) refers to the points on the hole boundary and \(r = a + b = L/2\) refers to points on the plate edge. The dimensionless time parameter \(Dt/b^2\) is varied from 0.011 to 11.111. The stresses \(\sigma_r\), \(\sigma_\theta\), and \(\sigma_z\) for Case I are given in Figures 14 to 16. The component \(\sigma_r\) in Figure 14 is zero at \(r=a\) and \(r = L/2\) as required by the free stress boundary conditions. It is compressive in the interior of the plate and varies with time. The peak of the compressive stresses tend to move away from the hole as time is increased. The circumferential stress component \(\sigma_\theta\) plotted in Figure 15 is compressive near the hole and becomes tensile at a finite distance \(r\) which increases with time. A similar trend is observed in Figure 16 for the transverse...
normal stress except that the effect is not as pronounced. When the hole diameter is small in comparison with the plate width L, it is interesting to note from Figures 17 to 19 referred to as Case III that the stress variations tend to be confined closer to the hole boundary. The compressive portion of σ_r and σ_θ are greater in magnitude than those for Case I. However, the tensile portion of σ_θ and σ_z greatly reduced. Refer to Figures 18 and 19 for Case III and the results in Figures 15 and 16 for Case I. Since stresses for Case II do not differ significantly from those for Case I, they are not presented.

Temperature Change. If the hole is subjected to a sudden change in the surface temperature as specified in equation (31), the stresses acquire an oscillatory character changing from tension to compression. The variation depends on the elapsed time. Figure 20 shows that σ_r is tensile for small time near the hole and becomes compressive as r increases. The maximum value of σ_r in tension occurs at intermediate time as it becomes entirely compressive for large time.

The variations of σ_θ and σ_z in the material ahead of the hole at different times are illustrated in Figures 21 and 22. A plot of σ_θ versus time for $r=a$ is displayed in Figure 23. It clearly shows that σ_θ reaches a peak at $Dt/b^2 = 0.127$ and then decreases and becomes compressive. The component σ_z will have a similar behavior. Figures 24 to 26 give the stress results for Case III. As the hole size is reduced, the compressive portion of σ_r in Figure 24 tends to dominate while the tensile portion is greatly diminished. The magnitude of both σ_θ and σ_z are reduced appreciably in Case III and the results are given in Figures 25 and 26. In general, the elevation of the stress state decreases with the ratio of L/a. Figure 27 gives a summary of the values of σ_θ for all three Cases I, II and III. The solid curves correspond to $Dt/b^2 = 0.011$ and the dotted curves to $Dt/b^2 = 0.444$.

-19-
FAILURE CRITERION: STRAIN ENERGY DENSITY THEORY

Having obtained the hygrothermal stresses σ_r, σ_θ and σ_z around the circular cavity, it is natural to inquire into possible sites of failure. A criterion that has been used successfully for predicting failure of solids due to yielding and/or fracture is the strain energy density theory [9,10]. The theory assumes failure to occur when the energy stored within a unit volume of material reaches a critical value. This energy density can be computed from the stresses as follows:

$$\frac{dW}{dV} = \frac{1+\nu_D}{2E} \left[\sigma_r^2 + \sigma_\theta^2 + \sigma_z^2 - \frac{3\nu_D}{1+\nu_D} (\sigma_r + \sigma_\theta + \sigma_z)^2 + 2\sigma_r^2 \right]$$ (52)

The location of failure corresponds to dW/dV being a minimum and the physical meaning of this condition can be best interpreted by resolving dW/dV into the sum of two components. The first component $(dW/dV)_v$ is associated with volume change and the second $(dW/dV)_d$ with shape change. The locations of dW/dV minimum corresponds to failure by volume change and are most likely to result in fracture while dW/dV maximum corresponds to failure by yielding. These are relative minimum and maximum values of dW/dV and occur exclusively within the material, not including any physical boundary. They are most conveniently obtained by taking derivatives of dW/dV with respect to the position angle ϕ of the radial vector r measured from a reference point to a possible failure site. Refer to Figure 2. Hence, the relation $dW/dV = S/r$ is often used. The quantity S is extracted from dW/dV as the $1/r$ coefficient and is known as the strain energy density factor. Numerical results of dW/dV will only be given for Case I where $L=8$ as indicated in Figure 3.
Moisture Change. Making use of equation (52), the strain energy density \(\frac{dW}{dV} \) is computed as a function of the radial distance \(r \) for different time \(t \). When the hole boundary is subjected to a sudden change in moisture, the minimum value of \(\frac{dW}{dV} \) or \((\frac{dW}{dV})_{\text{min}} \) tends to increase with \(t \) reaching a limit as time becomes increasingly larger. This is shown in Figure 28. Failure is assumed to occur when \((\frac{dW}{dV})_{\text{min}} \) reaches the critical value of \(\frac{dW}{dV} \) or \((\frac{dW}{dV})_{\text{c}} \) for a given material. The maximum \((\frac{dW}{dV})_{\text{min}} \) is approximately \(10.5 \times 10^{-4} \text{ MJ/m}^3 \). The trend of the curve in Figure 28 implies that damage due to moisture boundary condition is a long-time effect.

Temperature Change. The variations of \((\frac{dW}{dV})_{\text{min}} \) with time exhibit a different character when the hole experiences a sudden temperature change. Figure 29 shows that there are two sets of \((\frac{dW}{dV})_{\text{min}} \). One has a larger peak \((\frac{dW}{dV})_{\text{max}} = 1.75 \times 10^{-4} \text{ MJ/m}^3 \) with \(\Delta t/b^2 = 0.23 \) and occurs at a larger distance away from the hole, \(r/a = 3.15 \). The other has a lower peak \((\frac{dW}{dV})_{\text{min}} = 0.75 \times 10^{-4} \text{ MJ/m}^3 \) with \(\Delta t/b^2 = 0.20 \) and occurs at a smaller distance away from the hole \(r/a = 1.10 \). For the same time \(t \), \((\frac{dW}{dV})_{\text{min}} \) is seen to be larger at distances further away from the hole. The strain energy density criterion seems to suggest that failure due to hygrothermal stresses alone is more likely to occur at approximately one diameter distance away from the hole.

Superposition of Mechanical Stresses. Since in most applications mechanical loads are also present, it would be natural to inquire into the combined influence of mechanical and hygrothermal stresses. In the case of a circular hole of radius \(a \) subjected to uniaxial applied stress \(\sigma_0 \), the stress field is given by
\[\sigma_r = \frac{\sigma_0}{2} \left[(1 - \frac{a^2}{r^2}) + (1 - \frac{4a^2}{r^2} + \frac{3a^4}{r^4}) \cos 2\theta \right] \]

\[\sigma_\theta = \frac{\sigma_0}{2} \left[(1 + \frac{a^2}{r^2}) - (1 + \frac{3a^4}{r^4}) \cos 2\theta \right] \]

\[\sigma_r^\theta = - \frac{\sigma_0}{2} (1 + \frac{2a^2}{r^2} - \frac{3a^4}{r^4}) \sin 2\theta \]

\[\sigma_z = \nu_p (\sigma_r + \sigma_\theta) \]

Consider the supposition of an applied tensile mechanical stress of \(\sigma_0 = 0.2 \) MN/m\(^2\), the top curve in Figure 29 can be combined with the (dW/dV)\(_{\text{min}}\) obtained from equations (53). This leads to the results given in Figure 30 for \(\theta = 0^\circ \) and \(90^\circ \) which correspond to planes parallel and normal to the direction of applied stress. The value of (dW/dV)\(_{\text{max}}\) is seen to occur on a plane normal to the applied tension at a distance approximately \(r = 3a \). The situation is reversed when the applied stress \(\sigma_0 \) is compressive. Figure 31 shows that the most likely failure site is now in a plane parallel to the applied load, i.e., \(\theta = 0^\circ \) along which (dW/dV)\(_{\text{min}}\) is larger. In general, the failure is assumed to occur when the first (dW/dV)\(_{\text{min}}\) reaches (dW/dV)\(_{\text{c}}\).

As the magnitude of the applied mechanical stress \(\sigma_0 \) is gradually increased to 1.0 MN/m\(^2\), the predicted failure site tends to move in closer to the hole boundary and the lower curve in Figure 29 becomes more dominant. For \(\sigma_0 = 2.0 \) MN/m\(^2\), it is seen from Figure 32 that the predicted failure site is much closer to the hole. (dW/dV)\(_{\text{max}}\) for \(\sigma_0 \) positive and \(\sigma_0 \) negative both occur at approximately \(r/a \) equal to 1.1.

CONCLUDING REMARKS

The hygrothermal stresses induced by the sudden change of moisture and/or temperature at the boundary of a circular cavity are determined. A time dependent
finite element procedure is developed in which the time portion of the problem was solved analytically by means of Laplace transform. All calculations are carried out on the CDC 6400 computer and the numerical results are believed to be accurate. An estimate of this accuracy can be evidenced by the numerical computation of

\[\gamma_i = \frac{1}{2\omega_i} \frac{D+D}{D} \left(\frac{1}{\lambda v} - 1 \right) e_i^T\Delta e_i = 2.0083 \]

(54)

which agrees with the exact value obtained from equation (30). Another check can be seen from the solutions of the one-dimensional slab problem which has been solved analytically. This is given in the Appendix. Special care has also been given to scaling the grid patterns for Cases I, II and III where relative dimensions of the hole and plate are varied.

In addition to determining the coupling effects between moisture and temperature, the strain energy density criterion was applied to investigate possible failure sites. Several interesting results were observed. First, the energy state due to the hygrothermal influence alone tends to dominate in a region approximately one diameter away from the circular hole while mechanical loading exerts more effects on the stress and energy states close to the hole boundary. Thus, the precise location of failure will depend on the combined influence of hygrothermal and mechanical stresses. It should be noted that the present analysis did not consider coupling between diffusion and mechanical deformation. Such an interaction will be left for future investigation.
APPENDIX: MOISTURE AND TEMPERATURE DISTRIBUTION

This section considers the special problem of a slab of thickness \(h \) which coincides with the \(z \)-direction. The external surfaces of the slab being parallel to the \(xy \)-plane are subjected to sudden change in moisture and/or temperature. The problem is one-dimensional in space as variations in \(C \) and \(T \) occurs only as a function of \(z \). The solutions for the coupled moisture and temperature diffusion problem are given to illustrate that the present time-dependent finite element procedure yields the same results as those obtained analytically [5].

The grid pattern is given in Figure 33 and the same constants \(D/V = 0.1 \), \(\nu = 0.5 \) and \(\nu = 0.5 \) are used for the numerical computation. Figures 34 and 35 give plots of \((C-C_0)/(C_f-C_0) \) and \((T-T_0)/\nu(C_f-C_0) \) versus \(2z/h \) for the case when the moisture on the slab surfaces are suddenly raised from \(C_0 \) to \(C_f \) while the surface temperatures are held constant. Both the moisture and temperature levels tend to increase with the parameter \(4Dt/h^2 \). Similar plots are displayed in Figures 36 and 37 for the sudden application of uniform temperature to the slab surfaces. As mentioned earlier, these results when compared with the closed form solutions show that the finite element method developed here is indeed reliable.
REFERENCES

Figure 1 - A two-dimensional multiply-connected domain
Figure 2 - Circular cavity in a square plate
Case I - 119 Elements; 77 Internal Nodes; and 14 Boundary Nodes

Figure 3 - Grid pattern for Case I (L = 8 units)
Case II - 80 Elements; 56 Internal Nodes; and 11 Boundary Nodes

Figure 4 - Grid pattern for Case II (L = 16 units)
Figure 5 - Grid pattern for Case III ($L = 1,352$ units): (a) Outside region; (b) Inner core
Case I (L = 8)

$\Delta C = \text{constant}; \Delta T = 0$ on Γ_I

$\frac{\delta I}{b^2} = 11.111$

Figure 6 - Normalized moisture change versus radial distance for Case I with $\Delta C = \text{constant}$ and $\Delta T = 0$ on Γ_I
Case I (L=8)

ΔC = constant; $\Delta T = 0$ on Γ_i

Figure 7 - Temperature change versus radial distance for Case I with $\Delta C =$ constant and $\Delta T = 0$ on Γ_i
Case III (L=1,352)
\[\Delta C = \text{constant}; \Delta T = 0 \text{ on } \Gamma_1 \]

Figure 8 - Normalized moisture change versus radial distance for Case III with \(\Delta C = \text{constant} \) and \(\Delta T = 0 \) on \(\Gamma_1 \)
Case III \((L = 1,352) \)
\(\Delta C = \text{constant}; \Delta T = 0 \) on \(\Gamma_1 \)

Figure 9 - Temperature change versus radial distance for Case III with \(\Delta C = \text{constant} \) and \(\Delta T = 0 \) on \(\Gamma_1 \)
Figure 10 - Average moisture concentration as a function of time for $\Delta C = \text{constant}$ and $\Delta T = 0$ on Γ_1.

Case I ($L = 8$)
Case II ($L = 16$)
Case III ($L = 1,352$)
Figure 11 - Average temperature as a function of time for ΔC = constant and $\Delta T = 0$ on T_I.

The graph shows three cases:

- **Case I** ($L = 8$)
- **Case II** ($L = 16$)
- **Case III** ($L = 1,352$)

The ordinate represents $(T_{ave} - T_0)/\nu(C_f - C_0)$, and the abscissa represents $\sqrt{2t/\delta t}/6$. The curves illustrate how the average temperature changes over time for different cases with varying L values.
Case I (L = 8)
ΔT = constant; ΔC = 0 on Γ_I

Δt/b^2 = 11.111

Figure 12 - Variations of normalized temperature with radial distance for Case I with ΔT = constant and ΔC = 0 on Γ_I.
Case III \((L=1,352)\)

\[\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma \]

\[\frac{(T-T_0)}{(T_f-T_0)} \]

\[\Delta t/b^2 = 11.11 \]

Figure 13 - Variations of normalized temperature with radial distance for Case III with \(\Delta T = \text{constant and } \Delta C = 0\) on \(\Gamma\)
Figure 14 - Radial stress versus distance for Case I with sudden change moisture on Γ_1
Figure 15 - Circumferential stress versus distance for Case I with sudden moisture change on Γ_1.

Case I ($L = 8$)

$\Delta C =$ constant; $\Delta T = 0$ on Γ_1
Figure 16 - Transverse normal stress versus distance for Case I with sudden moisture change on Γ_1
Figure 17 - Radial stress versus distance for Case III with sudden moisture change on Γ_1.
Case III (L = 1,352)
ΔC = constant; ΔT = 0 on \(\Gamma_1 \)

Figure 18 - Circumferential stress versus distance for Case III with sudden moisture change on \(\Gamma_1 \)
Figure 19 - Transverse normal stress versus distance for Case III with sudden moisture change on Γ_1

Case III ($L = 1,352$)
$\Delta C = \text{constant}; \Delta T = 0$ on Γ_1
Figure 20 - Radial stress versus distance for Case I with sudden temperature change.

\[\Delta t/b^2 = 0.444 \]

\[(r-a)/b \]

Case I \((L = 8)\)

\(\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma_i\)
Case I \((L = 8)\)
\(\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma_1\)

Figure 21 - Circumferential stress versus distance for Case I with sudden temperature change
Figure 22 - Transverse normal stress versus distance for Case I with sudden temperature change

\[(r-a)/b \]
\[\Delta t/b^2 = 0.011 \]
\[\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma \]

Case I (L = 8)
Figure 23 - Circumferential stress as a function of time for Case I with sudden temperature change.

\[
\text{Case } I \ (L = 8) \quad \text{for } r = a
\]
\[
\Delta T = \text{constant}; \quad \Delta C = 0 \quad \text{on } \Gamma_i
\]
Figure 24 - Radial stress versus distance for Case III with sudden temperature change on Γ_i
Case III (L = 1,352)
\[\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma_I \]

Figure 25 - Circumferential stress versus distance
for Case III with sudden temperature change on \(\Gamma_I \)
Case III (L = 1,352)
ΔT = constant; ΔC = 0 on Γ_I

Figure 26 - Transverse normal stress versus distance for Case III with sudden temperature change on Γ_I
Figure 27 - Circumferential stress versus distance for all three cases with sudden temperature change.
Figure 28 - Minimum strain energy density as a function of time for Case I with $\Delta c = \text{constant on } \Gamma_1$.
Case I \((L = 8)\)

\[\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma_1\]

\[
\begin{align*}
\frac{dW}{dV} \min \times 10^{-4} \text{ (MJ/m}^3\text{)}
\end{align*}
\]

\[1.75 \times 10^{-4} @ r/a = 3.15 \]

\[
0.75 \times 10^{-4} @ r/a = 1.10
\]

Figure 29 - Minimum strain energy density as a function of time for case I with \(\Delta T = \text{constant on } \Gamma_1\)
Figure 30 - Variations of \((dW/dV)_{\text{min}}\) with time for Case I

\(\Delta T = \text{constant}; \Delta C = 0 \text{ on } \Gamma_1\)

\(\sigma_0 = 0.2 \text{ MN/m}^2\)

\(2.10 \times 10^{-4} \text{ at } r/a = 3.02 \text{ for } \theta = 90^\circ\)

\(1.62 \times 10^{-4} \text{ at } r/a = 3.20 \text{ for } \theta = 0^\circ\)
Figure 31 - Variations of \((dW/dV)_{\text{min}}\) with time for Case I

\[\Delta T = \text{constant; } \Delta C = 0 \text{ on } \Gamma_i \]

\[\sigma_0 = 0.2 \text{ MN/m}^2 \]

\[1.95 \times 10^{-4} @ r/a = 3.13 \text{ for } \theta = 0^\circ \]

\[1.45 \times 10^{-4} @ r/a = 3.50 \text{ for } \theta = 90^\circ \]
Figure 32 - Variations of \((dW/dV)_{\text{min}}\) with time for Case 1

\[
\Delta T = \text{constant; } \Delta C = 0 \text{ on } \Gamma_i \\
\sigma_0 = 2.0 \text{ MN/m}^2
\]
Figure 33 - Grid pattern for a slab of one unit thick subjected to moisture and/or temperature changes.
Figure 34 - Variations of moisture with distance for slab subjected to
$\Delta C = \text{constant}$ and $\Delta T = 0$
Figure 35 - Variations of temperature with distance for slab subjected to
\(\Delta C = \text{constant} \) and \(\Delta T = 0 \)

\[4 Dt/h^2 = 0.1 \]

\[\Delta C = \text{constant}; \Delta T = 0 \]
$\Delta T = \text{constant}; \Delta C = 0$

$4\,Dt/h^2 = 0.2$

0.02

0.04

0.06

0.08

Figure 36 - Variations of temperature with distance for slab subjected to $\Delta T = \text{constant}$ and $\Delta C = 0$
Figure 37 - Variations of moisture with distance for slab subjected to $\Delta T = \text{constant}$ and $\Delta C = 0$
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Office of Deputy Under Secretary of Defense for Research and Engineering (ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: Mr. J. Persh, Staff Specialist for Materials and Structures (Room 3D1089)</td>
</tr>
<tr>
<td>The Pentagon</td>
</tr>
<tr>
<td>Washington, DC 20301</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office of Deputy Chief of Research Development and Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: DAMA-CSS/Dr. J. I. Bryant (Room 3D424)</td>
</tr>
<tr>
<td>The Pentagon</td>
</tr>
<tr>
<td>Washington, DC 20310</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Materiel Development and Readiness Command</td>
</tr>
<tr>
<td>ATTN: DRCLDC, R. Gonano, Office of Laboratory Management</td>
</tr>
<tr>
<td>500 Eisenhower Avenue</td>
</tr>
<tr>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic Missile Defense Systems Command</td>
</tr>
<tr>
<td>ATTN: BMDSC-TEN, Mr. N. J. Hurst</td>
</tr>
<tr>
<td>BMDSC-H</td>
</tr>
<tr>
<td>BMDSC-T</td>
</tr>
<tr>
<td>BMDSC-AOLIB</td>
</tr>
<tr>
<td>P. O. Box 1500</td>
</tr>
<tr>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ballistic Missile Defense Program Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: DACS-BMT</td>
</tr>
<tr>
<td>DARCOM Bldg., Seventh Floor</td>
</tr>
<tr>
<td>5001 Eisenhower Avenue</td>
</tr>
<tr>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic Missile Defense Advanced Technology Center</td>
</tr>
<tr>
<td>ATTN: ATC-X, Dr. J. Carlson</td>
</tr>
<tr>
<td>ATC-X, Col. J. W. Gillespie</td>
</tr>
<tr>
<td>ATC-M, Mr. M. Whitfield</td>
</tr>
<tr>
<td>ATC-M, Dr. D. Harmon</td>
</tr>
<tr>
<td>ATC-M, Mr. J. Papadopoulos</td>
</tr>
<tr>
<td>P. O. Box 1500</td>
</tr>
<tr>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
</tbody>
</table>
No. of Copies

Director
Defense Nuclear Agency
ATTN: SPAS, Mr. D. Kohler
Washington, DC 20305

Director
Army Ballistic Research Laboratories
ATTN: DRDAR-BLT, Dr. N. J. Huffington, Jr.
 DRDAR-BLT, Dr. T. W. Wright
 DRDAR-BLT, Dr. G. L. Moss
Aberdeen Proving Ground, MD 21005

Commander
Harry Diamond Laboratories
ATTN: DRXDO-NP, Dr. F. Wimenitz
2800 Powder Mill Road
Adelphi, MD 20783

Commander
U.S. Army Combat Development Command
Institute of Nuclear Studies
ATTN: Technical Library
Fort Bliss, TX 79916

Commander
Air Force Materials Laboratory
Air Force Systems Command
ATTN: LNE/Dr. W. Kessler
 LNC/Dr. D. Schmidt
Wright-Patterson Air Force Base, OH 45433

Commander
BMO/ABES Office
ATTN: BMO/MNRT, Col. R. Smith
 BMO/MNRTE, Maj. J. Sikra
 BMO/MNRTE, Maj. K. Yelmgren
Norton Air Force Base, CA 92409

Commander
Air Force Materials Laboratory
ATTN: AFML/MBM, Dr. S. W. Tsai
Wright-Patterson Air Force Base, OH 45433
Commander
Naval Ordnance Systems Command
ATTN: ORD-03331, Mr. M. Kinna
Washington, DC 20360

Commander
Naval Surface Weapons Center
ATTN: Dr. C. Lyons
 Dr. W. Messick
Silver Springs, MD 20910

Lawrence Livermore Laboratory
ATTN: Dr. E. M. Wu
P. O. Box 808 (L-342)
Livermore, CA 94550

Los Alamos Scientific Laboratory
ATTN: GMX-6, Dr. J. W. Taylor
P. O. Box 1663
Los Alamos, NM 87544

Sandia Laboratories
ATTN: Dr. Frank P. Gerstle, Jr.
 Dr. L. D. Bertholf
 Dr. J. Lipkin
P. O. Box 5800
Albuquerque, NM 87115

Aerospace Corporation
ATTN: Dr. R. Cooper
P. O. Box 92957
Los Angeles, CA 90009

AVCO Corporation
Government Products Group
ATTN: Dr. W. Reinecke
 Mr. P. Rolincik
201 Lowell Street
Wilmington, MA 01997

ETA Corporation
ATTN: Mr. D. L. Mykkanen
P. O. Box 6625
Orange, CA 92667
Effects Technology, Inc.
ATTN: Dr. R. Wengler
 Dr. R. Parisse
 Mr. J. Green
5383 Hollister Avenue
Santa Barbara, CA 93111

Fiber Materials, Inc.
ATTN: Mr. M. Subilia, Jr.
 Mr. L. Landers
 Mr. G. Williams
 Mr. P. Marchol
Biddeford Industrial Park
Biddeford, ME 04005

General Electric Company
Advanced Materials Development Laboratory
ATTN: Mr. K. Hall
 Mr. J. Brazel, Room 4466
 Ms. B. McGuire
 Mr. L. Gilbert
3198 Chestnut Street
Philadelphia, PA 19101

General Dynamics Corporation
Convair Division
ATTN: Mr. J. Hertz
 Mr. H. McCutcheon, Jr.
5001 Kearny Villa Road
San Diego, CA 92138

General Dynamics Corporation
ATTN: Dr. D. J. Wilkins, Mail Zone 2884
P. O. Box 748
Fort Worth, TX 76101

Kaman Sciences Corporation
ATTN: Mr. F. Shelton
P. O. Box 7463
Colorado Springs, CO 80933

Ktech
ATTN: Dr. D. Keller
911 Pennsylvania Avenue, N.E.
Albuquerque, NM 87110
Lockheed Missiles and Space Company
ATTN: Mr. D. Aspinwall
P. O. Box 504
Sunnyvale, CA 94088

1

Martin Marietta Aerospace
ATTN: Mr. V. Hewitt
Mr. Frank H. Koo
P. O. Box 5837
Orlando, FL 32805

1

McDonnell Douglas Corporation
ATTN: Dr. L. Cohen
Mr. H. Parachanian
5301 Bolsa Avenue
Huntington Beach, CA 92647

1

Prototype Development Associates, Inc.
ATTN: Mr. J. Schultzler
Mr. N. Harrington
1740 Garry Avenue, Suite 201
Santa Ana, CA 92705

1

R&D Associates
ATTN: Dr. A. Field
525 Wilshire Blvd.
Santa Monica, CA 90025

1

RDK Associates
ATTN: Dr. P. Radkowski
P. O. Box 5474
Riverside, CA 92507

1

Southwest Research Institute
ATTN: Mr. A. Wenzel
8500 Culebra Road
San Antonio, TX 78206

1

Stanford Research Institute
ATTN: Dr. D. Curran
Dr. L. Seaman
333 Ravenswood Avenue
Menlo Park, CA 90250

1
Terra Tek, Inc.
ATTN: Dr. A. H. Jones
420 Wakara Way
Salt Lake City, Utah 84108

TRW Systems Group
ATTN: Mr. D. Gamble
One Space Park
Redondo Beach, CA 90278

Stanford University
Department of Applied Mechanics
ATTN: Professor E. H. Lee
Stanford, CA 94305

University of Illinois at Chicago Circle
Department of Materials Engineering
ATTN: Professor R. L. Spilker
Professor T. C. T. Ting
Chicago, IL 60680

Defense Documentation Center
Cameron Station, Bldg. 5
5010 Duke Station
Alexandria, VA 22314

Director
Army Materials & Mechanics Research Center
ATTN: DRXMR-H, Mr. J. F. Dignam
DRXMR-H, Dr. S. C. Chou
DRXMR-H, Mr. L. R. Aronin
DRXMR-H, Dr. D. P. Dandekar
DRXMR-AP
DRXMR-PL
DRXMR-PR
Watertown, MA 02172
When moisture and temperature are suddenly changed on the boundary of a solid, stresses and strains are introduced and they can be further increased by the presence of stress raisers such as cracks or notches. A finite element method is employed for solving the problem. The stresses are calculated using a numerical procedure. The results are presented graphically for the three different cases of moisture and temperature. The finite element method is used for analyzing the problem and the results are presented graphically for the three different cases of moisture and temperature.
Figure 31 - Variations of $\frac{dW}{dV}_{\text{min}}$ with time for $C\Delta T = \text{constant}$ and applied compressive load.