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TRANSIENT HYGROTHERMAL AND MECHANICAL STRESS INTENSITIES
AROUND ELLIPTICAL CAVITIES

by

G. C. Sih
Institute of Fracture and Solid Mechanics
Lehigh University
Bethlehem, Pennsylvania 18015 USA

and
%
Akinori Ogawa

National Aerospace Laboratory
Tokyo, Japan

ABSTRACT

The transient hygrothermal stresses are determined by assuming that heat and
moisture are coupled. A system of coupled diffusion equations is solved by a
finite element scheme allowing for time-dependent changes in the moisture and/or
temperature on the surfaces of the T300/5208 epoxy resin for the graphite/epoxy
fiber-reinforced composite. The time dependent portion of the problem was solved
by means of Laplace transformation. Particular emphases are given to the evalua-

tion of transient stresses around a mechanical imperfection in the form of a narrow

Numerical results are displayed graphically for three different values

of the semi-minor to semi-major axis ratio.

A stress intensity factor parameter commonly used in fracture mechanics is
defined for a narrow ellipse and calculated to investigate the influence of
stresses induced by hygrothermal and mechanical disturbances. The radius of cur-

vature of the elliptical cavity can significantly affect the combined stress in-

*
This work was completed in the U.S. when Akinori Ogawa held the position of
Visiting Scientist at the Institute of Fracture and Solid Mechanics at Lehigh Uni-
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tensity near the cavity ends. The maximum stress intensities occur at different
times depending on the cavity geometry and proportion of the hygrothermal and
mechanical loading. These results could shed 1ight on composite failure under

conditions where heat and moisture play a role.

INTRODUCTION

One of the main concerns of using advanced fiber-reinforced polymeric matrix
composites as aerospace structural components is the degradation of the material
due to moisture at elevated temperatures. This is of particular concern to the
matrix-dominated composite. The deterioration of material properties cannot be

easily understood without a sound analytical modeling of the physical problem.

A majority of the present workers in this field [1-3] assume that temperature and

moisture do not interact and that they each obey the simple (Fickian) diffusion
theory. As a consequence, experimental data are available only for changes in
the moisture condition [4] while the temperature environment is taken to be con-

stant. In contrast to the common belief, coupling between temperature and mois-

ture can be extremely important [5,6] when the surface temperature undergoes rapid

changes. The difference in the hygrothermal stresses with and without coupling
can differ anywhere from 20 to 80% depending on the surface temperature gradient.
This casts a new light on the subject and suggests a series of new experiments
before reliable predictions on the life of structural components due to sService

environments could be made.

In two recent publications, the transient hygrothermal stresses arcund a
spherical [7] and circular [8] cavity were determined. The stresses were found
to oscillate in time and vary in a complicated nature depending on the boundary

condition whether moisture and/or temperature are applied to the cavity. An
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analysis was also performed in [8] to investigate the possible sites of failure. |
The hygrothermally and mechanically induced stresses were found to peak at dis-

tances away and near the cavity, respectively. Based on the minimum strain en- ;
ergy density criterion, actual locations of possible failure were determined and

discussed in detail.

The primary objective of this investigation is to develop an analytical meth-
od for determining the redistribution of hygrothermal and mechanical stresses due
to narrow elliptically-liked defects such that the initiation of failure in com-
posites exposed to service environments could be better understood. Use is made
of the time-dependent finite element method developed in an earlier publication
[8]. Different grid patterns are constructed as the aspect ratios of the ellip-
tical flaw are altered. Presented graphically are hygrothermal stresses near
the ellipse for different time from which time dependent stress intensity factors

can be defined to study the resistance of the T7300/5208 epoxy resin to fracture.
MATHEMATICAL MODEL

The thermodynamic treatment for deriving the coupled diffusion equations is
given in [9] and will not be repeated here. If T stands for the temperature and
C the mass of moisture per unit volume of void space in the solid, then the

governing equations take the forms

-2 (c- 2
OviC - 2 (C - aT) = 0

(1)
V2T - 22 (T - wC) = 0




Elﬁum*wA .

in which D and D are the diffusion coefficients with units of area per unit time
and 1 and v are the coupling coefficients with units of mass per unit volume per
unit temperature and the reciprocal, respectively. The Laplace operator in equa-
tions (1) is in two dimensions given by v2 = 32/3x% + 32/3y2. The domain of in-
terest is that of a multiply-connected rectangular region R having the dimen-
sions: 6 units in height and 8 units in width. A narrow elliptical opening with
semi-major axis a of one unit and variable semi-major axis b is centered at the
origin of a rectangular coordinate system (x,y) and js shown in Figure 1. Ini-
tially for t<0, the region R possesses the following temperature and moisture

fields:

T(x,y,t) = T,(x,y)

Cx,y,t) = G (x.y)

For t>0, the temperature and/or moisture on the boundary TI and/or ?IT are

changed such that equations (2) become

T(x,y,t) = To(x,y) + aT(x,y,t)

Cix,y,t) = Colx,y) + aClx,y,t)

Once the boundary conditions at t = t° are known, equations (1) may be solved

numerically for T(x,y,t) and C(x,y,t).

The time dependent two-dimensional finite element method developed in [8]

will be applied to evaluate equations (1). The two types of boundary conditions
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are sudden moisture change with

€0 onry
AC =

AT = 0 on FI and FII

and sudden temperature change with

AC = 0, on PI and FII
0 on Ty (5)
AT = ,

Since the problem is one-quarter symmetry, there is only the need to consider
the grid pattern shown in Figure 2 consisting of 100 nodal points. The elements

near the elliptical cavity are smaller in size so as to accommodate the high

gradient of the local moisture and temperature. In fact, special consideration
is given to the sub-region A enclosed by the corner nodes 6, 27, 48 and 47.
Depending on the ratio of b/a or the radius of curvature defined by o = b</a,
special grid patterns are constructed as shown in Figures 3 to 5. Table 1 out-
lines the three different aspect ratios of the elliptical opening that will be ,i

analyzed. The results will be presented subsequently.
NUMERICAL RESULTS ON DIFFUSION

The system of equations (1) is solved numerically by subjecting the ellipti- 4

cal cavity to sudden changes in the surface moisture and/or temperature according

-5-
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Table 1 - Three different aspect ratios of the elliptical opening
with a=1 unit

Figure Semi-minor Radius of
number axis b or (b/a) curvature
3 0.200 0.0400
0.100 0.0100
0.067 0.0044

to the conditions described by equations (4) and/or (5). The moisture and
temperature distribution are assumed to be constant in the direction normal to
the xy-plane. For the T300/5208 epoxy resin material, the coupling constants
are [6] given by D/D = 0.1, » = 0.5 and v = 0.5. Of particular interest is the
variation of C and T in the material ahead of elliptical cavity as a function of

time.

Figures 6 to 12 give the results for the case when the surface moisture on
the ellipse is suddenly raised to another ¢onstant value, while the surface tem-
perature is unchanged. Refer to the conditions in equations (4). The initial
and final condition on the outside boundary of R in Figure 1 are maintained con-

stant at all time. Plots of (C-Co)/(Cf-C ) versus x/a for different values of

0
Ot/a2 are shown in Figures 6 to 8 with b/a varying from 0.2 to 0.067. The end
point of the narrow ellipse is given by x/a = 1.0. Initially, the moisture

drops very rapidly in the vicinity of the elliptical cavity and it gradually dif-
fuses into the material as time is increased. In the absence of mechanical ten-
sile loading, moisture diffusion tends to decrease with decreasing b/a ratio or
radius of curvature of the ellipse o = b2/a. This can be seen from the curves

in Figures 6 to 8 although the differences are not appreciable. The transient

behavior of the temperature is exhibited in Figures 9 to 11 as b/a is varied.

The quantity (T-TO)/v(Cf-Co) is seen to peak very sharply at first and the vari-

-6-




ations become more gradual as time increases. The peaks move into the material
with decreasing amplitude and they take lower values as the ellipse becomes

more slender.

The disturbances within the solid due to coupling of heat and moisture are
considerably more pronounced when the surface temperature on the elliptical
cavity undergoes rapid changes, equations (5). Figures 12 to 14 give the vari-
ations of (T-To)/(Tf-To) with x/a and time. For small time, only the material
near the ellipse experiences temperature change. The temperature gradient tends
to spread over a larger portion of the material as time goes by. Again, (T-T)

o]
/(Tf-TO)

increases with the ratio b/a. Numerical results of (C-CO)/X(Tf-TO) ver-
sus x/a for the case of sudden temperature change are similar to those shown in
Figures 9 to 11 except for the factor D/D which is equal to ten in the present

problem, i.e.,

C-Cq p . T-T,
[;TT;:Tgy] =5 [;TE;:EETJ (6)

AT = const AC = const

Hence, there is no need to duplicate them separately.
HYGROTHERMAL STRESSES

For an isotropic and homogeneous material, the hygrothermal stresses may be

obtained as

) ' (7)

. = E(E-- - a.AT5ij - BAC(S_iJ

1] 1]

in which E is the Young's modulus, a the coefficient of thermal expansion and z

the coefficient of moisture expansion. The stress and strain components are de-

-7-
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noted respectively by 9 and €54 The condition of plane strain with e, = 0

J J
will be assumed such that oy

9, = Vp(dr+06) (8)

with Vo being the Poisson's ratio. The material properties pertaining to T300

/5208 are given as follows:

4.5 x 1072 m/m°C

Q
"

3 =2.68 x 1073 m/m/% Hy0

5 (9)
E = 3.45 GN/m2 (5 x 10° psi)
vp = 0.34

For clarity sake, the discussion for the cases of moisture change and temperature

change will be carried out separately.

Sudden Application og Hodsture. When the moisture on the elliptical cavity is
suddenly raised, there results a nonuniform expansion and contraction of material
which, in turn, give rise to stresses and strains. Figures 15 to 17 show that
the radial stresses are compressive along the line of symmetry ahead of the el-
1ipse. They are highly influenced by the radius of curvature of the eliipse.

Note from Figures 15 to 17 that 9, decreases very sharply as b/a is reduced.

This drop increases in magnitude with time and gradually diminishes away from the
cavity. The results for the circumferential stresses are given in Figures 18 to
20. Unlike Tps O starts out in compression and then becomes tensile for small

time. Again, the magnitude of Iy is increased greatly for the more slender el-

-8-




liptical cavity in Figure 20.

Sudden Application of Temperature. The stresses resulting from a sudden change
of the surface temperature in the cavity boundary are qualitatively different
from those discussed earlier. The radial stresses in Figures 21 to 23 are no
longer always compressive. For Dt/a? = 4.0, 9 first becomes tensile rising to
a peak and then becomes compressive. This peak increases with decreasing b/a.

For small time, o, oscillates violently near the cavity end and returns to zero

r
at x/a = 1. Similarly, the circumferential stresses displayed graphically in

Figures 24 to 26 are also tensile for Dt/a?2 = 4.0 attaining their largest values
at x/a = 1.0 and then decrease in magnitude until they become compressive. The

opposite trend is observed for small time, i.e., o, is compressive near the cav-

8
ity and tensile away from the cavity. The transverse normal stress component
o, may be obtained from equation (8) from the results in Figures 15 to 26 in a

straightforward manner and no special treatment is needed.
TIME DEPENDENT STRESS INTENSITY FACTOR

It is well-known that mechanical imperfections can interact with the sudden
changes in moisture and/or temperature in the material causing it to degrade in
strength and/or fracture toughness. A parameter that has been commonly used in
fracture mechanics [10] is the stress intensity factor whose critical value for
a given material can be related to the energy required to initiate the propaga-
tion of a line crack. If the stresses are symmetric with respect to the crack
plane, only a single parameter kl is needed to describe the intensity of the
1ocal stresses. Since the hygrothermal stress field is time dependent, the re-

sulting stress intensity factor k] will also fluctuate with time.




In addition to the hygrothermal stresses, mechanical stresses will also as-
sume to be present owing to a uniform static tensile load 9, applied normal to
the crack which is approximated by a narrow ellipse with radius of curvature p.
Since the stresses induced by diffusion are not coupled with the mechanical
stresses, the combined k] factor may be obtained by superposition:

- 1 08 —E
k] = cova [] b 7-(53) v EJ (]0)

In the absence of heat and moisture, o, = 0 and equation (10) reduces to the fa-

9
miliar result of k, = 00/5.

Figures 27 to 29 display the variations of the normalized stress intensity
factor k]/oovﬁ'with time for three different values of the applied mechanical
stress 95 = 1.0, 0.1 and 0.01 having the units MN/m2. The temperature on the
crack surface is raised suddenly introducing additional stresses. When g, 18
relatively large, Figure 27 shows that k1/oo/§ is not sensitive to changes in
b/a. A1l the curves rise slowly to a peak at Dt/a? = 4.5 and then decrease in
magnitude. In the limit as t--, k] = co/E is recovered. The hygrothermal ef-
fect becomes more pronounced when the applied mechanical stress o, is reduced
in magnitude, Figure 28. For 0y = 0.1 MN/m2, the maximum value of k] = 3.61

aovﬁ'occurs at b/a = 0.20 and occurs at Dt/a2 = 4.5. The peaks for k] decreases
as b/a is decreased and occur at a later time. A similar trend is also observed

in Figure 29 when % is further reduced to 0.01 MN/m2.

Depending on the gradient of the applied moisture and/or temperature, the
hygrothermal stresses alone could lead to failure. The additional mechanical
stresses can further aggravate the state of affairs near the crack and cause the
crack to run. The results presented in Figures 27 to 29 offer some insight into

-10-
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the fracture toughness requirement for the T7300/5208 resin material when both

hygrothermal and mechanical disturbances are present.
CONCLUDING REMARKS

The simultaneous diffusion equations for the coupling of heat and moisture
have been solved for a region containing a crack-like imperfection. Studied in
detail are the influence of the crack tip radius of curvature modeled by a nar-
row ellipse on the redistribution of the hygrothermal stresses. The stresses
near the crack front are found to vary more sharply as the ellipse becomes more
slender. Because of the time dependent nature of the diffusion process, the
stresses tend to oscillate and can be either compressive or tensile depending

on the elapsed time.

The coupling of heat and moisture is particularly significant when the crack
boundary temperature is raised suddenly. The maximum intensification of the
local stresses occurs at Dt/a? = 4.5. The crack tip radius of curvature o af-
fects the local hygrothermal and mechanical stresses in different ways. The
former tends to increase with p while the latter behaves in the opposite fashion.
It is a combination of loading and geometry that must be analyzed for determining

the critical condition of crack instability.

11~
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Figure 1 - A rectangular region with an e]h’p’tical opening
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1.00

Ellipse With b/a = 0.2
AC#0, AT=0 on 1"]I

0.75

-C,)

0.50

(C-Cy)/ (Cy

0.25

1.0 2.0 30 40 i
x/a

Figure 6 - Normalized moisture content versus distance for b/a = 0.2 and
sudden moisture change
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(C-Cg)/ (C4-C,)

1.00

Ellipse With b/a = 0.1
AC#0; AT=0 on I"n

0.50

Bt/02=4.0

0.25

J

.0 2.0 3.0 4.0
x/a

Figure 7 - Normalized moisture content versus distance for b/a = 0.1 and
sudden moisture change
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1.00

Ellipse With b/a = 0.067
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(C-Co)/(Cg=Cg)

0.257

Dt7a%2=4.0

| 1
4.0

3.0

L ' ' x/a

! § Figure 8 - Normalized moisture content versus distance for b/a = 0.067 and
" sudden moisture change
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(T‘To)/V(Cf"'CO)

0.06— Ellipse With b/a =0.2
AC#0; AT=0 on I"]1
0.04H '
Pt/a?2=4.0
0.02¢
0.1
?
; 0.0l
0 l | ‘
1.0 2.0 3.0 40

x/a

Figure 9 - Normalized temperature with distance for b/a = 0.2 and sudden
moisture change
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Ellipse With b/a = 0.1
AC#0;AT=0 on I‘II
0.04 H
~ . '
S
!
: '/‘
|
=
— ,
o 0.02 Dt/a?2=40
1.0
0.4
0.1
0.01
0 I 1 —
1.0 2.0 3.0 4.0
x/a

Figure 10 - Normalized temperature with distance for b/a = 0.1 and sudden
moisture change

-23-




-

Ellipse With b/g = 0.067

AC#0; AT=0 on I
Dt
= 200!
02
0.1
0.04 04
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S
;_ 4.0
|T° Dt/a?=4.0
. 0.02f
- 1.0
0.4
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1.0 20" 3.0 4.0
Xx/Q

Figure 11 - Normalized temperature with distance for b/a = 0.067 and
sudden moisture change
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Ellipse With b/a = 0.2
AC=0; AT#0 on I"n
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o
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Figure 12 - Normalized temperature with distance for b/a = 0.2 and sudden
temperature change
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Figure 13 - Normalized temperature with distance for b/a = 0.1 and sudden
temperature change
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Figure 14 - Normalized temperature with distance for b/a = 0.067 and sudden
temperature change
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Elliptical Opening With b/g = 0.2
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Figure 15 - Variations of radial stress with distance .
for b/a = 0.2 due to sudden moisture change |
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Figure 16 - Variations of radial stress with distance
for b/a = 0.1 due to sudden moisture change
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Figure 17 - Variations of radial stress with distance
for b/a = 0.067 due to sudden moisture change
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Fiqure 18 - Variations of circumferential stress with
distance for b/a = 0.2 due to sudden moisture

change
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Figure 19 - Variations of circumferential stress with
distance for b/a = 0.1 due to sudden moisture

change
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Figure 20 - Variations of circumferential stress with
distance for b/a = 0.067 due to sudden

moisture change
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Figure 21 - Variations of radial stress with distance for

b/a

0.2 due to sudden temperature change
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Figure 22 - Variations of radial stress with distance
for b/a = 0.1 due to sudden temperature change
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Figure 23 - Variations of radial stress with distance
for b/a = 0.067 due to sudden temperature change
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Figure 24 - Variations of circumferential stress with
distance for b/a = 0.2 due to sudden

temperature change
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Figure 25 - Variations of circumferential stress with
distance for b/a = 0.1 due to sudden
temperature change
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Figure 26 - Variations of circumferential stress with
distance for b/a = 0.067 due to sudden
temperature change
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