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PREFACE

This report presents the results of an investigation performed in

the Materials Engineering Research Laboratory at the University of I1linois.

The principal investigator was Dr. Jo Dean Morrow with associate investigators
—

D.F. Socie and Peter Kurath. The program was administered by the Air Force

Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air
Force Base, Ohio under Project 2307, "Flight Vehicle Dynamics," Task 2307N1,
"Research on the Behavior of Metallic and Composite Components of Airframe
Structures." Financial support for this work was provided by the Air Force
Office of Scientific Research under grant AFOSR 77-3195. Mr. Robert M. Engle
(AFFDL/FBE) was the Air Force project engineer.

The research was conducted from February 1977 through July 1979.
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SECTION I
INTRODUCTION

1. Background

Fatigue life estimates for notched members have been the subject of

research for a number of years. Early investigators measured the endurance
limit of notched and unnotched specimens and concluded that, in fatigue,
notches have less of an effect than that predicted by the theoretical stress
concentration factor, Ky. As a result, a fatigue notch factor, K¢, was

introduced as an effective stress concentration factor in fatigue. A

number of empirical relationships betwee K¢, Ky and notch size have been
proposed (1,2). Topper et al. (3) extended this work to include the finite
life region by employing Neuber's rule (4) to calculate elastic and plastic

strains at the notch roct. The appropriate value of K; that should be em-

ployed in life prediction procedures was found to depend on material, load
level, load history and the definition of failure (specimen separation or
a crack of some arbitrary length) (5). The methods have been extended to
estimate the life under variable amplitude load histories (6,7).

Use of these methods is tevmed a crack initiation analysis, because they
estimate the number of cycles to initiate a crack of engineering significance.
The ¢rack propagation portion of the life is ignored in these methods, although

it does influence the precise value of K¢ etployed. The relative fraction of

the total fatigue life spent in propagating a crack is assumed to be sazall.
In many cases this assuaption is not justified (8). Nevertheless, th ¢
procedures have found widespread industrial application.

Since Paris {9) showed that tne fatigue crack growth rate is a funciion

of the cyclic stress irtensity, several investigators have shown how to apply

WERLE | A Lot BN = 1 it T A S
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fracture mechanics concepts to estimate the crack propagation life of

notched structures subjected to variable amplitude load histories (10-12).
These methods integrate the crack growth rate from an initial crack size to
some criticai crack size to obtain the crack propagation life. Crack initia-
tion and early crack growth stages of the total fatigue life are ignored.

As a result, these methods are limited to problems that have pre-
existing fatique crack flaws. In an effort to estimate the total fatigue
life of fastener holes, Potter (13) postulated an equivalent initial flaw
size. [t is determined by calculating the initial flaw size that would be
required to give the total fatigue life of a laboratory specimen if the
crack growth rate was integrated. The equivalent initial flaw size is not
a constant, since it depends on the material, notch size, load level and
loading history. As a result, the concept cannot be applied to different
components or load histories without experimental data. El Hadad et al.

(14) proposed a model to explain the growth of short cracks by introducing

an intrinsic defect size that is constant for a given material. It is deter-
mined from the smooth specimen endurance limit and threshold stress intensity
factor.

Recently, several investigators have calculated the total fatigue life
by employing toth crack initiation and crack propajation concepts. Initial
crack s?zes for the propagation analysis are assumed to be between IO'S in.
and 107 in. jo the discussion of their work, Nelson and Fuchs (11) postu-
iated that the fatigue damage, due to crack initiation of an arbitrary
element, located along the potential crack pathk, decreases as the distance
from the notch root increases. Fatigue damage, due te ropagation, increases

as the distance from the notch root increases. The intersection of the two
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damage curves may be considerad as the demarcation between crack initiation

and propagation. Methods for calculating the damage due to each mechanism
were not described. Smith and Miller (15) proposed that the crack growth

near the notch is a function of the plastic strair. range and also decreases

! as the distance from the notch root increases. The crack growth rate, as a
function of the cyclic stress intensity, increases as the distance from the
; notch root increases. The two rates intersect at some distance from the
notch root. Later, Hammouda and Miller (16) proposed that the growth ..te
of cracks near the notch should be described by elastic-plastic fracture
mechanics concepts. Crack growth is determined by the interaction of

plastic zone at the crack tip and the plastic zone near the notch.

P

Based on the elastic stress intensity solution for a small crack growing
in the notch stress field, Dowling (17) suggests that a crack is initiated

when it reaches a length equal to 20 percent of the notch roo* radius. Strain

) cycle fatigue concepts are employed to calculate the initiation life and linear
elastic fracture mechanics methods are used to determine the propagation life.
\é He provided a computational method and experimental data for 4340 steel with

two notch geometries. Socie et al. {18) proposed a model for determining a

“«, »
.

nonavbitrary transition crack size by assuming that strain cycle fatigue

-

mechanisms control the initial crack development until the crack propagation

rate exceeds the crack initiatlion rate of elements along the potantial crack

S, R .,

path.
i ¢. Purpose and Scope

The goal of this program was to utilize the concept of a nonarbitrary
fatigue crack size in a working computer algorithm for predicting total

fatigu: iives. A test program emplioying varicus motches in plate specimens

B el i & IR

g, was pe ‘formed to determine the viability of the concept.
“;ﬂé 3
fv
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SECTION II
ANALYSIS

1. Basic Concepts

Low cycle fatigue formulations have been successfully used to estimate
crack initiation lives of notched members (6-8). Basically, if the local
stresses and strains are known, initiation 1ife can be related to fatigue data
obtained from smooth laboratory specimens. Fatigue recistance of metals is
usually characterized by a cyclic strain-life curve. Smooth specimens tested
to failure under fully-reversed constant amplitude strain control provide
these curves. The relation between strain amplitude and reversals to failure
is usually represented in the following form:

Ac
2

b

= eb (2Ng)C + % (Ng)
T (1)
E
To account for the presence of a mean stress, the strain-life equation may be
modified to the following form:

Ae
2

¢, (ot ~-0) b -
)+ VO . 0 (2Nf) (2)

Fatigue crack propagation under constant amplitude loading is most frequently

= (2N

represented in the form proposed by Paris (9).

da _ pigap\M
~% = C'(aK) (3)

There have been numerous modifications of this basic form {19-21) to account
for mean load. sequance, and crack closure effects. Final crack sizes are
determined from fracture mechanics concepts and the appropriate fracture

toughness data. Propagation lives can be calculated by integrating Eq. 3,
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Initial crack sizes, 2 assumed in the literature, range from approxi-
mately 10"5 to ]0-1 inches. This range in a; can affect the calculated propa-
gation lives by orders of magnitude. Also, the assumed value of a; may influ-
ence the total fatigue life estimates in a similar manner.

In this research, crack initiation 1ife was represented in terms of low
cycle fatigue concepts as described in Appendix B, while using a Forman (22)

descriotion of crack propagation:

da . cr AKm .
@ TR & (5)

Equation 5 accounts for mean load effects in terms of the ratio of
minimum to maximum load, R. Propagation, as described by Forman, is in
terms of a cyclic rate of damage criterion, while strain cycle fatigue data
are generally presented as total cycles to failure. To change these two
models (Eqs. 2 and 5) into comparable forms, the low cycle fatigue life data
are converted tc a rate of initiation demage. It is assumed that for some |
number of cycles the initiation rate dominates, while propagation behavior
controls during the later portion of fatigue life. A nonarbitrary crack
initiation length, 3y is defined to be the point where the two rates reach
the same value. This method of determining a; wili be referred to as the
intersecting rate analysis. Another equally valid approach to defining 3
which will be referred to as the minimum life estimate, is to predict the

total 1ife from initiation and propagation models as before for various
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values of x in Fig. 1. At some distance from the notch the calculated total

life will be a minimum, and this value defines a4

2. Details of Implementation
Imagine a series of microfatique elements ahead of a notch root (Fig. 1a),

considering them to simulate smooth fatigue specimens. From the stress and

”
. o
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i strain distributions (Fig. 1b, 1c) for the notched plate obtained by using

a finite element analysis, or mathcmatical formulation for a finite width

nctched plate, cre car assign cyclic stresses and strains to the various

a

" B elements. Finite element methods applied to this problem are discussed in

a (23). Finite width plate mathematical formulations involve elastic stresses

and strains, whereas most problems at notches involve some degree of plasticity.
[t is possible, given the nominal stresses and local elastic stresses

and strains, to estimate the elasto-plastic stresses and strains using Neuber's

- '; rule (4) as follows:

Ao & (6)

The value of ASx defines the local elastic stress range for a given element

|
: 3 distance x from the notch root. Combining this information with Hook's
N
5? law for elastic strains and a power law for plastic strains,
|
\ A edo o jd/nt
i g 22 [zx'] (7)
i . results in the following relation,

2 1 .
j (ASX) = Bo , lo Au)]/n

J 3 g€ W TR
é‘ This equation can be solved rather easily by iterative procedures using a

s computer. Smooth specimen fatigue lives are then assigned to the various elements
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as described in Appendix B (Fig. 1d). It is then possible to construct a
curve with the dimensions of life versus position on the x axis (Fig. le)

For the minimum 1ife prodecure, the initiation life is defined as the value
of the fatigue life of the element at the position x = a;. The reciprocal

of the derivative of the life with respect to x can be calculated by numerical
methods at various points along the x axis resulting in dx/dNf versus distance
from the notch root (Fig. 1f). In this way strain cycle data are converted to
a rate form for the intersecting rate analysis.

Yel another method to procure an initiation life estimate is to use

Neuber's rule ir conjunction with Peterson's {24) relation.

K, -1

] e

'..]+

This caiculation w:s dnne merely for comparison with the previous two methods.

Similarly, crack prop.gation data are usually presented in the form of
da/dN versus aK {Fig. 2a). From linear elastic fracture mechanics solutions
of finite width cracked platss, one can determine AKX versus x (Fig. 2b) being
o7 the form:

oK = 8373 Fi) FIQ) (10)

For a finite width center cracked plate, the correction factors huave the form,

F(%) * fez (T2 F(Q) = 1 ()

However, for small cracks growing out of notches, this 1 not a suitable repre-
sentation due tc tne notch root plastic field. Emery's (25) solution can be
used to represent this phenomenrn and has been employed by Dowling (17).
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Another method accounting for this, proposed by Miller and Smith {15), con-

siders an equivalent crack length, yielding:

oK = aSvAE\[1.0 + 7.69 VO/p)

(12)
with the provision that,

a < 0.13vDp

in other words, that the crack is small. Note that D is the notch width and
» the notch root radius. This formulation was employed to estimate AK for
small cracks. As the cracks grow out of the notch, linear elastic fracture
mechanics was employed to estimate AK. With this information one can con-
struct a curve with dimensions AK versus x. Combining AK versus x, and da/dN
versus AK results in a curve with dimensions da/dN versus x (Fig. 2c).

for the intersecting rate analysis, the strain cycle fatigue data and
crack growth data are in a comparable form. Utilizing these assumptions,
initiation and propagation rates were calculated for each element and compared
(Fig 3). When the propagation rate exceeds the initiation rate for a given
element, the location of the previous element is designated 3. Initiation
life is defined as the fatigue life of the element at x = a;. Knowing Kc
from crack growth data, one may determine P the final crack size. Integrating
tq. 5 from a; to a; provides an estimate of the propagation life. Combine the
two for a total life estimate.

The minimum 1ife analysis assumes various values of 3;. For each x, the
initiation life is defined as before, and integration of £q. 5 from that speci-
fic x to PN provides a vropagation life estimate. Again these two are combined
for a total life estimate, and the assumed x that resuits in the minimum total

life is denoted as ai.
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3. Impiications of the Assumptions

The use of Miller and Smith's formulation for small cracks in the
formulation of AK includes the influence of geometry in the propagation
model. Forman's equation incorporates load ratio, therefore mean load,
into the calculation of da/dN. The differing stress and strain distri-
butions result in the initiation length and life being a function of
notch geometry. Local mean stress and strain range were used in the
calculation of fatigue cycles to failure and, thus, were also included
in the initiation concept. The material properties incorporated through
the Forman propagation model and strain-life calculations allow the
material to affect the results also. It is through these considerations
that a; becomes unique for a given material, nominal load range, load

ratic, and geometry with respect to the initiation and propagation

models employed.




SECTION III
EXPERIMENTAL PROGRAM
An aluminum alloy, 7075-T7651, that was supplied by Alcoa was used in
this investigation. A1l specimens were machined so that loading was in the

rolled direction of the 0.25 inch thick plate.

;
q
@
]
£
b
48

3§ Smooth fatigue specimens 0.200"1in circular cross section with a gage

{
4
23
X
(]
i3
34
- )
a
3

length of 0.50 in were used to generate the baseline fatigue data. Some of
these specimens were initially overstrained for ten cycles of +1% followed
by 25 cycles of linearly decreasing strains to zero. Side notched plate
samples 2.0 in wide and 0.08 in thick were employed to obtain da/dN data
at a load ratioc of 0.1, while center notched specimens of similar dimen-
sions were used at a load ratio of -1.0. An incremental polynomial data
reduction program generated the Forman equation constants for both load
ratios and the Paris constants at a load ratio of 0.1. The results are
tabulated in Appendix A. All tests were conducted on closed loop electro-
hydraulic test systems.

To compare with predicted values of life, center notched plate speci-
mens with thickness of 0.08 in, width of 2.00 in, notch width of 0.5 in,
and notch radii varying from 0.25 in to 0.015 in, were tested under constant
i{ cyclic load at R ratios of -1.0 and 0.1 (Figs. 4 and 5). Maximum nominal
stress levels varied from 5 ksi to 30 ksi.
'y Optical observations were periodically made with a 40X traveling micro-
] : scope to detect the first visible crack. Small cracks of the size of the
predicted a; values couid not be observed due to microscope resolution.
Y L Further observations were made of crack growth on some specimens after'siz-
;?? able cracks had developed to ensure that they followed the trends predicted

i
5 ; from the crack growth data.
.
-

10




Finally some tests at R = -1.0 using specimens of similar dimensions were
incrementally overloaded at the start of the test to avoid mean residual
stress effects. They were then cycled to failure at constant amplitude.
Total lives for cumpletr separatics of all specimens are tabulated in

Tables 1 and 2.
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SECTION IV

DISCUSSION
Analytical predictions of 1ife for constant amplitude loading using
the intersecting rate method, the minimum 1ife method, and Neuber analysis
for the various geometries are presented in Tables 3 through 7. Total life
for predicted and experimental results versus stress level for each geometry
are graphically presented in Figs. 6 through 15 for the minimum 1ife approach
since the two methods of analysis give essentially the same results.

The value of a* = 0.02 in., used in Peterson's relation, was obtained
from the literature (26). The technique based on Neuber's rule does not
give adequate life predictions, especially for sharp notches.

Table 8 and Figs. 16 and 17 present percentage of the total life that
is due to initiation versus nominal stress level. Sharp notches and/or
high loads cause the life to be propagation dominated, while the life for
blunt notches and/or low loads tend to be mostly initiation dominated.

Table 9 lists calculated aiva}ues versus nominal stress level, and
these results are presented in Figs. 18 and 19. Predicted values for a;
range between 10'“ to 10'2 in. The value of a, exhibits a definite depen-
dence on R ratio, load renge and geometry. This indicates that one cannot
arbitrarily assign a constant initiation crack size for a given material
or geometry.

It should also be noted that a small value of 3 does not infer a short
or a long initiation lite. Rather it indicates a transition in mode of
analysis is necessary. Local strain gqradient, mean stresses, nominal stresses,
and material all combine tu dictate the a, value. [t can be noted that blunter

notches and lcwer load levels tend to aive smaller initial crack sizes for

12
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either load ratio. Since the method of calculating the notch strain
distribution to determine initiation life assumes that no crack is present.
it is reassuring that the calculated LR values are small, and the assumption
that the notch strain field dominates at small crack sizes is reasonably
valid.

A major point of controversy has been the definition of fatigue crack
initiation and propagation. These terms have been used rather loosely and
could have varied implications. When used in this report, initiation does
nct imply that there are no cracks or flaws present. Also the presence
of small cracks does not infer that a da/dN versus AK type description is
valid. Rather it is probably better to consider that there are two types
of data commonly available to describe cyclic damage; smooth specimen,
reduced to cyclic strain versus 1ife data, and cracked plate, resulting
in da/dN versus AK curves. A notched member fits neither of these two
during its entire life. Portions of the total life may be adequately de-
scribed by one or the other depending on load ratio, load range, notch acuii-.
and previous fatigue damage. It is also unclear whether a crack of size a;
actually exists after the number of cycles referred to as Ni‘ At present,
it is probably best to regard a; as a conceptual crack that quantitatively
reflects a transition from smooth specimen damage description to a propaga-
tion or cracked plate damage criterion in a notched member subject to cyclic
loading.

Initial incremental overloaded tests were conducted under the assumption

that the initiation lifg predictions would be more affected than propagation

VI s e AW

dominated predictions. Table 10 lists and Fig. 20 illustrates the relation-

ship between the percentage of the life due to initiation and the percentage
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reduction in 1ife due to an initial overloading. In general, it seems
that those cases with a large percentage of initiation life were affected
more by the overload than those with smaller percentages of .alculated
initiation life.

Finally, in Fig. 21 the results of analytical predictions versus
experimental life are presented. For the most part between lives of 103
to 10¢ cycles the data fall within a factor of two of the predictions.

Considering the range of notch acuity, load ratio, and load range, this

seems encouraging.

14




SECTION V
CONCLUSION

The correlation between the predicted and actual lives for the notched
members tested indicates that the concept of a ~2narbitrary fatigue crack
size is a viable technique for predicting total fatigue lives in notched
members. The concept of a; provides 2 demarcation between smooth specimen
and cracked specimen types of damage evaluation. Many variables, including
geometry, material, and loading conditions influence the value of a;, so that
the technique may be applicable to a broad range of problems. This approach
seems more reasonable than assuming a constant value for initiated crack size.
For the intermediate cases where the life is approximately half initiation
and half propagation, an accurate value of 34 is necessary to obtain a reason-
able estimate of the combined total life,

Another advantage to this method is that the need to determine K¢, which
is used in most techniques for smooth specimen simulation of notched members,
is eliminated. The fatigue notch factor, K., requires extensive fatigue
testing of smooth and notched members. It should be noted that, perhaps, a;
concepts could be applied to infer approximate values of K¢ and a* without
resorting to notched specimen testing.

Although no variable loading cases, other than initial overload, have
been treated, it seems reasonable to extend the a; concept to predict life

under block type loading. Using constant amplitude smooth specimen data

and cracked plate data, initiation damage/bluck as a function of x in Fig. 1

!
A
¥
S

could be calculated using rainflow counting, Niner's rule, etc. I!n a manner

. + similar to that followed by Socie (12), the crack advance/block as a function

.. LET
AT T

of x in Fig. 1 could also be estimated. One could then determine and a; value

and the corresponding number of “initiation blocks” and “propagation blocks."
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APPENDIX A
BASELINE MATERIAL PROPERTIES
FOR
A1 7075-T651
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MECHANICAL PROPERTIES OF Al 7075-T651
Monotonic Properties
3
Elastic Modulus E 10 x 10 ksi (68750 MPa)
Yield Strength, 0.2% O0ffset Sy 77.9 ksi (537 MPa)
Tensile Strength S, 85.4 ksi (589 MPa)
True Fracture Strength of 95.1 ksi (656 MPa)
Strength Coefficient K 87.3 ksi (602 MPa)
Percent Reduction in Area %RA 13.5%
True Fracture Ductility €f 0.1451
Strain Hardening Exponent n 0.017
Cyclic Properties
Fatigue Ductility Coefficient e% 0.158
Fatigue Ductility Exponent c* -0.83
Fatigue Strength Coefficient of 114.8 ksi (792 MPa)
Fatigue Strength Exponent b -0.04
Cyclic Yield Strength, 0.2% Offset S} 78.5 ksi (541 MPa)
Cyclic Strength Coefficient K' 100.7 ksi (694 MPa)
) Cyclic Strain Hardening Exponent n' 0.048
'ﬁ Propagation Properties )
i Paris Crack Growth Coefficient ¢! 1.18 x 107
i g Forman Crack Growth Coefficient c" 1.01 x 107
@ Paris Crack Growth Exponent 2.94
*ﬂ Forman Crack Growth Exponent m' 2.36
gﬁ Fracture Toughness K, 40 ksiv/in (43.9 MPavm )
2? * Indicates slope for high levels of plasticity
1
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CONSTANT AMPLITUDE FATIGUE TEST RESULTS ON SMOOTH SPECIMENS

PR D S L e e e e S
T & 5 g A RS SR TN NSO 0 G S TSI b

Material: Al 7075-T651 tested in rolled direction
. {Strain contro] unless otherwise noted.)
" T USTABLE or HALFELIFE VALUES T T
Strain Fatique Stress Plastic Strain Modutus of
Specimen Amplitude Life Amplitude Amplitude Elasticity
No. Ae/2 Reversals bo/2,ksi(MPa) Aep/Z E,ksi(MPa)
1A 0.010 590 78.3 10,000
(540) 0.00217 (69,480)
78.5 70,000
6 0.010 560 (541) 0.00224 (69.600)
78.8 10,000
7 0.010 208 (543) 0.000213 (69,100)
779 10,700
1 0.0075 2,874 (503) 0.000312 (70,000)
VER 10,200
12 0.0075 2,900 (507) 0.000297 (70.500)
757 70,400
2 0.007 1.964 (515) 0.000309 (71,700)
37 3005 508 9,700
13 0.005 37,600%* (350) - (70,000)
36,300%% B8 3,760
2A 0.0%5 37,6004+ (337) - (67,300)
36,3007 576 — 10,300
7 0.005 36.600%+ (356) (71,200)
15 0.004 106,100 1359) - (67650)
97,300%F 308 p— 10,270
10 0.004 106,900 (281) (70.400)
120,300+ 8 — 19,400
22 0.004 124,800 (208) (72.,000)
347 15,200
3B - 10,200
63 0.0034 905,000 Gig) (70.100)
F T 23
2.5 9,800
59 0.0029 2,499,000 (193) - (67,8000
*:. 10,100
29.2 '
53 0.0029 | 3,002,000 (201) (69,600)

*Failed by knife edge of strain gage.

**Ten percent load drop in strain controlled tests when recorded
W 0ad controlled tests 20
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OVERSTRAIN* FATIGUE DATA ON SMOOTH SPECIMENS

Material: Al 7075-T651 tested in rolled direction
STABLE or HALF-LIFE VALUES
Strain Fatigue Stress Plastic Strain [Modulus of
Specimen AmpTitude Life Amplitude Amplitude Elasticit
No. be/2 Reversals ho/2,ksi{MPa) Aep/Z E,ksi(MPa
50.1 10,300
89 0.0049 30,900 (345) --- (70,800)
50.1 . 10,300
56 0.0049 29,300 (345) (70,800)
50.2 10,200
55 0.0049 17,000 (346) -- (70,300)
40.1 10,200
51 0.0039 81,100 (276) --- (70,100)
39.8 10,200
n 0.0039 77,400 (247) . (70.300)
39.7 10,200
58 0.0039 76,100 (274) -—- (70,100)
29.7 10,200
57 0.0029 213,000 (205) --- (70,100)
29.7 10,200
53 0.0029 217,300 (205) -—- (70,500)
29.7 10,100
66 0.0029 316,000 (205) --- (69,800)

*Initially overstrained 10 cycles at +0.01 followed by 25 cycles of linearly
decreased strain to zero.
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APPENDIX 2
LOW CYCLE FATIGUE CONCEPTS

t

The most common form of the strain-l1ife relation expressed in Eq. 1 is
commonly applicable to most steels. The term, oF/E(ZNQ)b, represents the
elastic strain amplitude and e; (2NF)c the plastic strain amplitude. On log-
log coordinates of life versus strain amplitude, the elastic and plastic
strain amplitudes have a linear relation with 1ife and the exponents b and ¢
are the slopes. When plotting the strain-life data for Al 7075-T651 in a
similar fashion, it was observed that the log-log linear behavior occured
within certain bounds of life, not the entire life range. Plastic strain
amplitudes were negligible at lives greater than about 1000 cycles.

For computational purposes it was decided to fit an equation of the form
f(ang)®

* c'

in short life region where plastic behavior was appreciable. The values of o?
and E; are the intersection of the ac/2 axis at a life of one reversal for
the linear relations in this region.

In the long life region it was found that a single Basquin type relation
was sufficient.

Yk
g Uf

_ bH
T T

Again, u;* ob*ainad by extrapolating the linear relation in the long life
region back to a life of one reversal. It should be noted o; e c;* and b' # b".
7o avoid any discontinuity, the equations were set equal to one another

to find the life that satisfied both. This was close to 1000 cycles, and

served as a demarcation between the two descriptions.
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