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ABSTRACT

~

A new technique for numerically solving the reduced

wave equation on exterior domains is presented. The method

is basically a relaxation scheme which <xploits the limiting
amplitude principle. A modified boundary condition at "infinity"
is also given. The technique is tested on several model
problems: the scattering of a plane wave off a metal cylinder,

a metal strip, a Helmholtz resonator, an inhomogeneous

cylinder (lens ), and a nonlinear plasma column.n

The results are in good qualitative agreement with previously
calculated values. In particular, the numerical solutions

exhibit the correct refractive and diffractive effects at

moderate frequencies.

1. Introduction

It is well known that for dissipative linear ordinary
differential equations with a forcing term of period X that the
transients die out and the solution tends as t + « to solutions
of period X. The same is true of many hyperbolic equations. In
particular solutions of the wave equation in infinite domains
with appropriate boundary conditions and with the forcing term

felvt tend, for large times, to solutions of the Helmholtz

equation 4u + w?u = f. This is known as the limiting amplitude

principle [10].
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. The purpose of this paper is to show that a varied form
of a limiting amplitude principle can be used to solve
numerically, in a short time and for a rather wide variety
of geometries, the Helmholtz equation in the exterior of an
obstacle with a variable index of refraction. Furthermore
this can be done at such high frequencies that a great
deal of geometric optical behavior can be confirmed even
on a relatively coarse mesh.

The Helmholtz equation with variable index of refraction
is

Au + wznu

1]
o
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where the index of refraction n = n(x) is a functinn of the
. > . . .
space variables (x). We also consider situations where
n = n(;,lul) which corresponds to certain models of laser

beam propagation. At large distances we assume n -+ constan

which may be scaled to 1. Then the parameter w has the Sssio,,?
dimension of [Length] * and the appropriate dimensionless )

constant is wa where a is a characteristic length of the/ -
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scatterer. It may range from zero to infinity. / Tin ~
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The field u is given as a plane wave e and its’ lep o,

e Ay e

scattered field ugs AN PR
iwx
(1.1) u=e + u_.
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However, the source could equally well be located at a finite ~
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point in the plane. The scattered field satisfies the outward

radiation condition
(1.2) — iwug + = 0
as |x| » .

This problem may be studied using geometrical optics
for high freyuency and expansion in w for low frequency.
Our original objective was to deal with the range of frequency
where neither of these approximations is good. We found, in
addition, however, that many of the features of geometrical
optics emerge from the computations at moderate frequencies.
Primarily though, we are concerned with perturbations in the
index of refraction or with disturbing objects where the
characteristic length is not large compared to the wave length.

A wave at frequency w has the wave length 27/w and theo-
retically for geometrical optics one needs 2n/w << a. Our ob-
servations confirm that in many applications wa = 5 or 10
displays the significant features of geometrical optiecs and
diffraction theory.

In this paper we restrict ourselves to two dimensional
examples. In a second paper we plan to demonstrate results
in axi-symmetric and possibly three dimensional geometries.
A particular advantage in 2D is that every simply-connected
object can be studied by noting that it can be mapped con-

formally onto the exterior of a circle and the transformation




induces a new Helmholtz equation for the solution with a new
index of refraction. In fact, however, we have also computed
objects that are not simply-connected but have rectangular
boundaries in polar coordinates.

The principal results of interest are:

(i) Confirmation of the scattering cross section for a
cylinder of radius one with a Dirichlet boundary con-
dition. Results are comparec with those presented by
Bowman, Senior, and Uslenghi [ 1 1. The error is less 1
than 1(10) % at the frequency w = 5 (10) . The
computafions also show that the position of the shadow
edge, as given by geometrical optics, is within one

or two mesh points.

(ii) The diffraction by an infinite strip of half-width

2 at various angles to an incident plane wave. There
is good correlation with [ 1] particularly at low
frequencies and at an angle of 45° and with geometrical
optics [11].

(iii) The computations of the field including the cross-

section of a Helmholtz resonator of radius 1 with
various apertures and for plane waves at various angles
of incidence.

(iv) The refraction of a plane wave by a lens of either

constant or variable index of refraction.




In particular we include lenses that produce focusing and

caustics such as the Luneberg lens.

(v) The refraction by a model of an overdense plasma.

The method of computation is a modification of the
relaxation meth>d used in [ 2 ] and is described in Secticn 2.
To reduce the number of mesh points involved a modified
radiation condition corresponding to (2) is imposed at a
finite radius (see Section 3). The difference scheme and
how to deal with the artificial singularity at the origin
created by using polar coordinates is described in Section &.
In Section 5, we describe in detail the particular examples
computed. In each case we give the running times on the CDC
6600 required to achieve convergence. The effects of apply-

ing the modified radiation condition at different distances

are also discussed.

In Section 6 we discuss the limitations of this kind

of iterative method and other possible applications.

The authors are grateful to F. Tappert for much advice
and many suggestions. The work of A. Bayliss and E. Turkel
[ 3 ] on similar problems with obstacles treats the radiation

condition using the same ideas. Turkel pointed out to the
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authors that the modified radiation condition is well posed

in the sense .of Kreiss-Lobatchinskii [ 11 1.

2. The Iteration Method.

We consider a time dependent equation

(2.1) Ql), = a7 + nw 20

where Q is a first order operator in the space variables,

Q = 23-7 + b. The coefficient vector a and the scalar b are
chosen so that the solutions of (2.1) of the form plane wave
or source plus outgoing scatte.red wave will approach a time
independent state. This will be the desired solution.

This method was used in [2]. However, (2.1) was used

— ——

directly, i.e. in characteristic form. Data was given on a

characteristic surface. The convergence was therefore very

slow because a very small time step was required for
stability with the space differences used.
; In the present method we transform (2.1) to a Cauchy

problen by a change of variables given by

dt + a.dx

b (2.2)

f ‘3 dt’
|

ax' = dx.

' We obtain in the new variables

[ ] - ~ ~ ~ ~
. (2.3) 131%0,, = a0 + U_(v-3-b) + nu’U

| i where we have dropped the primes. We now solve an initial
Jé value problem which by our choice of a and b will converge
s : to the steady state. For example, the convergence has been
2,2
f )
'
i
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improved by more than an order of magnitude in the case
(2.4) a2 = x/|%|, b ==2iw + V-a.

In two dimensions with %, b given by (2.4) we introduce

emp it o

in (2.3) the change of variable:

. ~ iwt
(2.5) ¥ = et0% 4 We
Yr
with |;| = ». Equation (2.3) reduces in polar coordinates to

~

(2.6) W,y = B 20, ]+ 0¥ (0-1F + 0¥ /E-1)e™ X7

which for n = 1 is the wave equation. However, in general

it has fixed characteristics that are independent of n. Thus

]
if n = 1 we are using the standard limiting amplitude principle
but since in some of our examples n changes dramatically it

i

is a great advantage that the characteristics are fixed. For
n # 1 we are solving a wave equation with potential.

i From [ 2] we have the growth restriction to obtain decay
; 3
f , (2.7) s=lr(n-1)1 > 0.
{

If this condition is not satisfied we are dealing with a po-

tential which has bound states that give rise to exponen-

m———— g b ——

tially growing solutions of (2.6). This showed up numerically

in a very dramatic fashion when we tried lenses with n > 1.

. The inequality (2.7) was proved by J. Weidmann [4] as a necessary

condition to prevent these growing modes.
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In order to handle this situation we note that instead

of (2.6) we could use

I
+
o]
!
N
™
=2

~ oy 2~ 2 iw{x-t)
(2.8) nlwtt = W, ee+’u]] + (n2—l)w W+ w/r(n-1)e

where n, +n, =n + 1. If the limiting amplitude principle
holds, i.e. the potential (n2~l)w2 doe:z not give rise to
growing modes and n, > 0, then the solutions of (2.8) also
approach a time harmonic steady state and the space dependent
coefficient satisfies the desired Helmholtz equation.

If we m;ke n; > 1 L |
in such a way that [r(nz-l)]r > 0, then (2.8) can be used for
the iteration. We have applied this notion only for ny =Nz 1,
n, = 1l and n £ 4 inside a circle. Note that the Courant-
Friedrichs-Lewy condition for the time step continues to be
satisfied over ny, > 1 if it holds for ny, = 1. On the other
hand if there are trapped rays produced by the artificial |

index nqy then the approach to steady state may be exceedingly

slow as the higher freyuencies have poorer exponential decay.

3. Improving the Radiation Condition and Finding the

Scattering Cross Section.

Returning to the original radiation condition (1.2) we
note that if a solution satisfies the radiation condition,

then by using the fundamental solution representation for

the reduced wave equation, we have with ug ~ Wr-(N"l)/zele

the expansion
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(3.1) W= I Ajr‘J

in any number of dimensions. Here Aj is a function of w and
the angular variables. The differential equation for W at

large distances is

- _ L
(3.2) 21Wr = -wrr r2

LW

where L. is a differential operator acting on the angular
variables (the Laplace-Beltrami operator). We have rescaled
r so that w = 1. On substituting the expansion for W we

find the recursion feormula

(3.3) An+1 = P(n+l,L)An, n=>90

where P(n+l,L) = - %i (n+l)-1 {L+n(n+1)}. Note that P(1,L) = =

Next we set

n~
P(n,L) = RUY P(j,L), P(O,L) = 1

1=1
and obtain
oo
(3.4) W=2= P(n,L)r”“A0
0
and
- -n-1
W_ = =% P(n,L)nr " -A
r 0 0
which we invert to find
Ay = LI nP(n,L)r " 1)-1y

1 r
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apd thus

© [+

(3.5) W__ = —(Z n(n+1)P(n,L)r ™" 2)(z nP(n,L)r "1y 1y .
rr 1 1 r

The boundary condition on W is then found by substituting in

the differential equation (3.2)

(3.8) 2iW = - iz LW + %EQP(I,L) + Ezn(n+1bp(n,L)p“‘*1] . {

[P(1,L) +
n

g s

-n+l,-1,
n 1]

nP(n,L)r ﬂr

2
and solving for W, as a function of LW. ) ;
We simply expand the formula in powers cof r but it may ]

be better to use the approach of Enquist and Majda [5] and use

other representations of the operators. What is needed is a

o0
. -n+ . . .
good representation of £ nP(n,L)r " 1. The first approximation

n=2

is Wr = 0 and from (3.6) the next approximation is

. 2 _ Lw -4
(3.7) (21 -~ ;)wP = —;7 + 0(r ).

Note that as w + », LW - «» in general and there are problems of

convergence.

In transforming to the Cauchy problem the derivative

Wr > Wr + Wt and the right hand side is unchanged. Thus the

radiation condition which we used was

(3.8) o+ W o= LW
rt el - Ly
wr

where, for the two-dimensional problem L = — ¢ 1/4,
20
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To obtain the far field, that 1s the scattering cross

section AO’ we invert (3.4) and obtain

i P(1,1)q,
(3.9) Ay = 1 - Elablyy

which 1s accurate to 0(—%—7).
wy

4, The Difference Scheme.

To solve the time-dependent differential eguation (2.7)
imposing the far field condition (3.9) we have used a standard
backward difference scheme for the initial value prcblem of a
second order hyperbolic equation with second order accuracy.
Let the solution to the difference scheme be Q(j,m,n) where

(j,m,n) are evaluated on a grid
(4.1) r = jAr + rys 8 = mAB, t = nAt,

with
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Then for an interior point,

(4.2) W(j,m,n+l) = T(j*1,3j,m*1,m,n,n-1)

is determined from the values of W at (j*l,m*1l,n), (j,m,n),

(j,m,n-1). On the outer boundary r = NAr + r, we use the

differenced form of (3.9)

A (T, m,n+ 1) -0 (N,m,n-1)} + 7§F{W(N+1,m,n)-ﬁ(n-l,m,n)}

(4.3) AT

= S(N,m,n)

where S(N,m,n) denotes the difterence approximation for

the right hand side, centered differences being used in L.
The value of W at j = N+1, m,n has to be eliminated by using

the difference equation (4.2) and thus one obtains

(4.u) W(N,m,n+1) = B(N,m,m#1,n,n-1).

It still remains to apply the Dirichlet condition if
there is a disturbing object or to deal with the singularity
at the origin which is artificially created by the use of

polar coordinates.

(a) To apply the Dirichlet condition (u=0) we simply

use the given values from W = -v©¢ expliw(x-t)] at the mesh
point j = 0 for a circle or at any other boundary point. To
simplify the computation we have used only boundaries con-
constant.

sisting of sections 6 = constant or r =

——
“ e
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(b) To deal with the origin we note two difficulties.

First the Courant-Friedrichs-Lewy condition limits the

smallest radius, i.e., we must have rA® > At for all points

in the computation. Secondly, there is a singularity from
-2~

the term & r °W. However, we do have W ~ vr. Our approach

is to keep doubling the mesh size A§ as r.» U. Thus in these

problems for r < ry we use the mesh
(4.5) r = j'Ar, 8 = ms(3'), t = nit

where s(j') is chosen so that ~A6 = j'Ars(j') > At and so
that for each j' where the mesh size s(j') changes the
@-mesh is half as dense as before. The behavior of the
equation at the origin itself has to be taken into account.
Various integral forms of the equation could be used but

it is sufficiently effective to use the equation for U at

r = 0 using for AU the values of & = W/VT at 8 = 0, n/2, =
and r = 2Ar. By the standard difference formula along with
¢(n) for the value of U at r = 0 and time t = nAt. This

yields, for the symmetric case,

(2(n+1)-26(n)+¢(n-1))/(At)?
= (fi(2,my,n)+2(2,m,,n)+¥(2,my,n)-40(n))/ (287) /2

+ ©2n0)0(n) + wl(n(o)-1)e iwndt

Here My> My, My correspond to 6 = 0,%,n. Note n(0) means
the value of the index of refraction at the origin. In the

non-symmetric case there is a similar formula.

PUI—




Finally we obtain Q(l,m,n+l) by interpolating the values
of ¢(n+1) and &(2,m,n+l)//7§? to obtain Q(l,m,n+1)//KF. The
error is 0(Ar2) but turns out to be larger than in the rest
of the computation.

In closing this section we shall describe our numerical
method for determining when & has reached its time harmonic
steady state. Recall that the scatterved field, ug s is given
by

ug = [&eiwt]//F.

The bracketted term must approach Wel® as t - ». Thus f-r
large time |W| becomes independent of t. We terminate our
computations when

(4.6) max ||W(n+1l,i,§){-[{W(n,i,5)]| < €

0<isN
0<sj<M

for some prescribed & > 0.
5. Results for Model Problems.

(1) The metal cylinder.

This is a benchmark problem to test the method. Solu-
tions have been determined by separation of variables, integral
equations, and by geometrical optics [see reference 1 for a
fairly comprehensive bibliographyl. 1In [1] the "scaled cross
section" /E%— S(8) is presented graphically for various frequencieé.

Here S(8) is the amplitude of the outgoing cylindrical wave and

@ is the polar angle with 6 = 7 the direction of the incident
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plane wave. These results were carefully converted to tabular
form for the case wa = 5. They are shown in column C of Table 1
while the results of our present calculation are listed in column

B. The areement is excellent. The relevant parameters uced in

the computation are wa = 5, Ar = 0.1, A6 = n/40, At = 0.05, and
; € = 0.01.

For the sake of comparison the results of [2] are listed in
column A. The gain over our old method is in the running time
which is now approximately 1 minute on the CDC 6600. The old
calculations took roughly 15 minutes on the same machine. J3oth
methods used the same amount of core, 138K.

The effect of applying the medified radiation condition (3.9)
at various distances to gain in mesh refinement was done by in-
creasing the radius of the cylinder and applying (3.9) at a fixed

radius. The relevant parameter is wa where a is the radius of the

e ————— e ——"_

object [see Table 1l,columns D-F]. This does not, of course,
refine the 9 mesh.
i . Since our numerical method gives the total field at each
} grid point, the cross sections given in Table 1 represent a small
fraction of the generated information. Instead of just listing
these numbers an alternate method was devised to visually convey
the results. First, the polar output was converted into a
rectangular grid of numbers using straightforward interpolation.
$i (This unfortunately introduces errors which tend to smear out the
optical features that will be described shortly.) Then seven

weights of shade were used with the darkest color corresponding
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to the smallest total field while the lightest gives the largest
field. The amplitude ranges are (0,2),(2,6),(6,8),(8,10),(10,1u),
(14,17), and (17,»). This process gives the interference pattern

shown in Figure 1 when wa = 10. The light regions correcpond

to constructive interference, the dark ones to destructive.

Since the incident wave enters from x» - - ®» (6 = 7 or from the
left of the figure), the total field is svmmetric about the x

axis and only half the pattern is shown in Figure 1. The dark
semicircle is the metal cylinder. The wave patterns are readily
seen in this picture. Moreover, tie shadow cast by the cylinder
is quite apparen:t. The width of the transition re ion which
connects the dee> shadow and the illuminated portions of the plane

is exagerated by the interpolation process mentioned above.

(ii) Infinite Strip. (Dirichlet Case)

The diffraction by an infinite strip of half-width
2, {x=0, |y| = 2} was computed at the frequency 5, wa = 10 at
the angles of attack a = 70° (head-on), 45°, and 20° (on edge).
Here a is the angle between the incident plane wave and the
positive x axis. The wave again is approaching from 6 = .
The mesh size is 7/20 in 8 and 0.1 in r. A variable mesh was
used near the origin.

Since the interference pattern in the x -~ y coordinates
is smeared by interpolation in this and in other cases with sharp
boundaries, it is omitted here. However, the results for a = 0
are presented in polar form in Figure 2. The numbers printed at

Thus the dark

the mesh points are ten times the total field.
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regions now correspond to constructive interferernce, the light

to destructive. In this picture one sees the shadow at 0, 2w,

the standing wave in the illuminated region along 6 = 7, the
singular corners at 0 = %, %1 and the chadow boundaries on
y =+ 2 =r sin 0.

For the sake of brevity, we have not included the polar
output for the cases a4 = 452 and 90°. Rather a few words describing
these resuits will be offered instead. A turn through 45°(:=a)
destrovs the symmetrv and slightly distrots the waves in the
illuminated regicn. The shadow is shifted 45°. When the wave
attacks the strip on edge (a = 90°) there is no :-.adow. However,
in the forward scattored direction the total field is cut in
half as it should be; see [6]. The field is again symmetric.
The cross sections are presented in Table 2. They check
well at 45° and qualitatively at 0° with those given in [1]. The
deviation betwcen our results and those given by [1] is probably
due to the fact that the derivatives of the field bec-me singular
at the strip's edges. The coarseness of our mesh masks this problem
The running time and core requirement for this problem were

roughly the same as those needed for the metal cylinder problem.
(iii) The Helmholtz Resonator

A cylindrical Helmholtz resonator was placed in a plane wave
at different angles of attack. The resonator is an infinitely
thin cylinder of radius two with a strip aperture centered on the

negative x axis. The angle B8 which subtends the aperture was taken
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at different sizes. When B = 0 the resonator is a metal cylinder

which was used for comparison. (The frequency was fixed at five.)

The cross sections arc shown in Table 3 where a is again the angle

between the incident plane wave and the positive x axis. The
other relevant parameters are At = 0.05, Ar = 0.1, and A9 = 7m/20.
There 1s no data for comparison. In iterating on 1..» closed

resonator the method generated some eigenmodes in the interior.
These exist as slowly damped modes as the aperture opens.

At an angle of attack of a = 0° and an aperture of 26° the
exterior field is very similar to that generated by a metal cylinder.
The interior field contains a considerable amount of energy. The
amplitudes focus on the axis in two places. The strongest (maximum
amplitude 5) at x = ~.5 is a portion of caustic caused by the second
reflections off the interior. The weaker focus (maximum amplitude 3)
at x = +.5 probably corresponds to the peak of a nephroid-like
caustic formed by the first reflections. The difference in strength
is probably due to constructive interference.

When the wave strikes the resonator from directly behind
(angle of attack = 180°) it acts like a metal cylinder. The only
energy inside is diffractive and weak.

At an aperture of 180° and an angle of attack of 0° there
should be a nephroid-like caustic but the edge diffraction obli-
terates this feature. There is marked focusing as expected,
for -2 s x s -1. The shadow is not so sharp as with a metal
cylinder. The aperture edges act like slits and smear the

geometrical effects.

The core requirements for these problems were the same
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as those needed for the various metal cylinders. However,
the running time depends upon the aperture size which
determines the complex eigenfrequencies of the resonator.
Several eigenfrequencies for various resonators are computed
numerically and presented in [ 7]. For an aperture of 36°
and 800 iterations we could satisfy (4.6) only for € 2= .1.
However, when the aperture was 180° we could satisfy (4.6)
with € = .05 at 400 iterations. These two numerical examples
show how the iteration scheme depends upon the eigenfrequency
with the smallest imaginary pa.t. In the first case the imagi-
nary part is roughly 0.015 while in the second case it is about
If we assume that the transients decay like Exp(-.015t) in
the first situation, then t ~ 200 would make this factor
0(1/100). Thus for At = .05 (the number used in our program)
we would need in the neighborhood of 5000 iterations to
obtain convergence. The same crude argument shows that about
310 iterations are needed when the aperture is 180°.

All of these problems could be sclved with the addition
of a variable index of refraction depending on all variables

including the amplitude of the total field provided the

focusing effects are weak.

(iv) Lens with variable index of refraction.
For a lens of constant index of refraction less than 1
we used (2.6), 1.e. (2.8) with n; =1, n, = n. There are no

particular difficulties and the fields are qualitatively




correct. The basic lens was of radius a € 3 and the frequency

w ¢ 5 so that the relevant parameter wa < 15. For constant n

less than 1 in the lens there is rapid convergence and typical

lens patterns emerge. In Figure 3 the interference pattern (in

the x-y plane) is cshown for a lens with a = 2, w = 5, and n = 0.4.
For 1 < n < 2 there are focusing effects; e.g. when n = 2 the maxinum

amplitude is 2.€ and occurs on the axis 8

0. The full limiting
amplitude princicle with ny = n and n, = 1 works well for these
cases. However, n, = n cannot be taken too large. A rescaling of
time in (7.8) would introduce a large effective frequency into the
exponential term. This would generate a large tr:..cation error far
a fixed At and cause numerical instabilities. Numerical experimer:s
confirmed this observation for ny N2 8 and At = .05. On the

other hand, taking n, = 1, n, - n brings immediate instability in<*to

the computation.
More interesting effects occur if n = n(r) or n = n(r,8). TFor
example, geomatrical optics predicts [see reference 8] that for

n = r2/9, r € 3, n=1, r 2 3 that there will be focusing at (3,%).

At w = 5 we obtained an amplification of 2.5 in the total field at
that point. Also there is a geometrical shadow on 6 = g. This

shadow (for a finite w ) is not sharp because a single ray on
6 = 0, 8 = m passes through it.

A second case, a Luneberg lens with n = 2 - r2/9 for r < 3,

n 1 for r 2 3 focused at (3,0) with a magnitude of 3. This

point is a focus for the geometrical optics rays.

2

The general case n = n(r,8) was tried with n = (r°- rg)/(g - rg)

forr s 3, n =1 forr 2 3, where ry © 2 - 0.5 cos2(8/2). The
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particular effects are not of interest. Obviously the oscillations

in n cannot be too large without destroying accuracy. What is
important is that this problem cannot be solved by separation of
variables. Geometrical optics is complicated and an integral method

would involve inverting a kernel in four variables. No difficulties

are encountered here. There is some increx.: in memory since n
depends on two variables. The running time was again about a
minute. Condition (4.6) was satisfied for ¢ = .01 with w = 5,
a = 3.

(v) A Model of an Overdense Plasma.
An overdense plasma column can be modelled by an index of
refraction which becomes negative, such as the example used,

n = (rz-u)/S for r £ 3, n =1 for r 2 3., Geometrical optics

X2 y2
T*g© Ll

Figure 4 shows the calculated field in polar coordinates

predicts [9] a caustic on the ellipse

with w = 5, a = 2, At = 0.05, Ar = 0.1, and A8 = m/40. Recalling

that the larger (hence darker) numbers correspond .o constructive
interference note that the ellipse (heavy curve) lies very close

to the edge of the constructive interference for n/2 < 8 < . The

rest of the shadow is cast by the caustic along the liney = r sin8® = 3
(remaining portion of the heavy curve for r 2 3, 6 < w/2). Figure

5 shows the x-y plot of the interference pattern where the lighter
regions now correspond to constructive interference. The amplitude
ranges for the various shades are again (0.2), (2,6),(6,8),(8,10),

(10,14),(14,17), and (17,»). Unfortunately the interpolation re-

quired for the rectangular output smears out the caustic.
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6. Conclusions.

There are four obvious dimensionless parameters in the
computed problem, wlr, wrdf, wa and wry where a is a
relevant length and ry is the value of r where the radiation
conditicn is imposed. The sgva 2 of the first two enter the
errors produced by the second order difference scheme and in
most of our calculations was approxinately .2. The third
measures th» relevance of geometrical optics and ranged up
to 15. The last one,usually about .025, arises fgom an
expansion at « for fixed w. The error term:c are of order
(wro)_3 but the coefficients are singular as w —» .

In many of the problems there were disContinuities,
infinitely thin objects or discontinuities in the index of
refraction. These induce discontinuities in the second
derivatives of the time dependent solution and in the steady
state. In spite of this source of inaccuracy there was
remarkable agreement w.th known results and there is probably
some cancellation of error.

The method could be applied to higher dimensional
phenomena where the reflecting object as well as variable
index of refraction are not amenable to solution by integral
equations. Since the problem is solved by a very straight
forward difference scheme it should be easily effected by
vector computation. Other problems where variations of the

limiting amplitude principle could be used involve Maxwell's

equations, and wave propagation in water.

22
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Finally, the method has been modified slightly and applied

to the interesting and important case of a nonlinear medium [12].

In that report

2
no=mng oty - nO)IUI

where ng, is the index of refraction used in our overdense plasma
model and vy is a ccnstant which controls the strength of the non-
linearity. The results were excellent; the effects of refraction

and self-focusing could be discerned and controlled by varying

Y. In particular, self-focusing amplifies the fields near the origin

as was first observed by F. Tappert [unpublished results].
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Figure Captions

Figure 1: The interference pattern produced by the total field's
amplitude, |U|, for a metal cylinder. The light regions correspond
to constructive interference, the dark to destructive. The dark
semicircle is the cylinder. The relevant ~arameters are wa = 10,

Ar = 0.1, A0 = w/u40, and At = C.05.

Figure 2: The total field's amplitude, [U|, in polar coordinates
for a metal strip with the incident wave normalized to 10. The in-
cident wave strikes the strip head on (o = 0). The set of points

{(r,8)]0 = w/2, 31/2, 0 < r < 2} represents the strip a polar
coordinates. Since the numbers printed are the actual field

values, the dark regions now correspond to constructive inter-
ference, the light to destructive. The relevant parameters are

the same as in FTigure 1 except A8 = m/20.

Figure 3: The interference pattern produced by the total field's
amplitude, |U], for a dielectric lens with n = 0.4 The relevant
parameters are wa = 15, Ar = 0.1, A9 = w/20, and 4t = 0.05.

Figure Wu: The total field's amplitude, |U|, in polar coordinates

for an overdense plasma column. The incident wave was normalized
2 2

to 10. The heavy curve represents the caustic ol % = 1, when
3.

r < 3 and the geometric shadow y = 3 when »r 2 The relevant

parameters are wa - 15, Ar = 0.1, A8 = m/40, and At = 0.05.

Figure 5: Same physical problem and relevant parameters as
Figure 4. However, this is now the interference pattern in x-y

coordinates with the light regions corresponding to constructive

interference, the dark to destructive.
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Legend for Table 1: Columns A-T present the cross section

(%2 1/2 S(0), for a metal cylinder with ug o~ S(8)

™, At = 0.0s,
and A6 = w/ug0. /r

Column A contains the results given in [2], B presents a
tabulated version of the data given graphically in [1], and

columns C-F contain the results of our ..~w calculations.

Legend for Table 2: Columns A-D presen* the cross section
(%9 1/2 S(8), for a metal strip with ug ~ S(G)giwr , At = 0.05,

)

Ar = 0.1, and A6 = 1m/20.

Columns A and D present tabulated versions of data given
graphically in [1]. Columns B and C contain the results of
our new calculations. The parameter a is the angle between
the incident plane wave and the normal to the strip. L is the

length of the strip.

Legend for Table 3: Columns A-C present the cross section

(%9 1/2 S(¢), for various Helmholtz rescnators with

ug - S(8)el®" | At = 0.05, A6 = m/20, and Ar = 0.1. The
/r

parameter a is the angle between the incident plane wave and

the positive x axis while B is the aperture angle of the

resonator. The parameter wa = 10 where a = radius of the

resonator.
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Table 1

A C. D E F

8(°) wa=5 wa=5 was5 w=10,a=1 w=5,a=2 w=5,a=4
5.67 6.05 6.05 11.33 10.84 12.49

9 5.30 5.25 5.29 6.63 7.20 10.15
18 3.78 3.30 3.3L 2.11 3.72 11.15
27 2.10 1.75 1.70 3.21 3.7 13.50
36 1.81 1.75 1.77 2.50 3.55 14,71
) 2.00 1.95 1.99 2.61 3.41 15.0u4
54 1.88 1.75 1.81 2.54 3.32 14.97
63 1.74 1.68 1.73 2.55 3.23 14,74
72 1.79 1.75 1.80 2.56 3.18 “1u.41
81 1.86 1.80 1.83 2.56 3.10 13.91
90 1.86 1.82 1.82 2.56 3.04 13.12
108 1.93 1.88 1.86 2.57 2.88 10.60
126 1.97 1.92 1.89 2.55 2.79 7.51
14y 1.99 1.93 1.91 2.55 2.76 5.02
162 1.99 1.94 1.93 2.59 2.75 3.97
186 2.00 1.85 1.96 2.55 2.76 3.88
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-90

-81
-72
-63
~54
~-45
-36
-27
-18
-9
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18
27
36
45
54
63
72
81
90

1
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1
2
S

7
5
2
1
1

Table 2

a=45° we=10

c

a=0°,08=10

.89
.89
.89
.89
.89
.20
.90
.20
.20
.20
.50
.66
.80
.10
.96
.20
.37
.98
<49
.05
.70

az0°,02=10

U1

.85

.19
1.31
1.72
1.62
1.60
l.64
1.52
l.49
1.88
1.71
2.08
2.40
5.40
7.30
5.61
2.50
1.30
1.05

.68

+32
.96
.09
1.0
1.9
2.6
2.8
3.3
3.6
6.2
8.1
6.2
3.6
3.3
2.8
2.6
1.9
1.0
.09
.96
.32

.00
.00
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Table 3
A B c
8(°) 8=36°,a=0 B=36°,a=180° B=180°,a=0°
0 8.86 2.70 8.55
9 6.81 2.71 6.83
18 4.10 2.73 4,11
27 4,11 2.75 4,01
36 3.99 2.74% 3.73
45 4,06 2,85 3.39
54 4.01 2.96 "2.58
63 4.01 3.11 1.38
72 3.97 3.30 . 84
81 3.86 3.50 1.39
90 3.71 3.70 1.09
99 3.53 3.85 1.86
108 3.42 3.99 2.15
117 3.50 3.95 3.12
126 3.72 L.15 3.73
135 3.83 3.83 2.85
14y 3.66 4,25 3.55
153 3.28 3.87 5.55
162 2.48 3.77 3.78
171 1.10 7.60 2.99
180 1.36 8.48 5.32
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