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ABSTRACT

A new technique for numerically solving the reduced

wave equation on exterior domains is presented. The method

is basically a relaxation scheme which dxploits the limiting

amDlitude principle. A modified boundary condition at "infinity'!

is also given. The technique is tested on several model

problems: the scattering of a plane wave off a metal cylinder,

a metal strip, a Helmholtz resonator, an inhomogeneous

cylinder (lens ), and a nonlinear plasma column.,

The results are in good qualitative agreement with previously

calculated values. In particular, the numerical solutions

exhibit the correct refractive and diffractive effects at

moderate frequencies.!

1. Introduction

It is well known that for dissipative linear ordinary

differential equations with a forcing term of period X that the

transients die out and the solution tends as t - to solutions

of period A. The same is true of many hyperbolic equations. In
i'

particular solutions of the wave equation in infinite domains

with appropriate boundary conditions and with the forcing term

iWt
fe tend, for large times, to solutions of the Helmholtz

equation Au + w 2u f. This is known as the limiting amplitude

principle [10].

L V:+- - - -- __ _ _ _ _ __ _ .-.
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The purpose of this paper is to show that a varied form

of a limiting amplitude principle can be used to solve

numerically, in a short time and for a rather wide variety

of geometries, the Helmholtz equation in the exterior of an

obstacle with a variable index of refraction. Furthermore

this can be done at such high frequences that a great

deal of geometric optical behavior can be confirmed even

on a relatively coarse mesh.

The Helmholtz equation with variable index of refraction

is

2
Au + w nu 0

where the index of refraction n = n() is a function of the

space variables (x). We also consider situations where

n = n(xjuI) which corresponds to certain models of laser

beam propagation. At large distances we assume n - constan,

which may be scaled to 1. Then the parameter w has the

dimension of [Length]- and the appropriate dimensionless &.. t

constant is wa where a is a characteristic length of the - "

scatterer. It may range from zero to infinity.

The field u is given as a plane wave e and its/

scattered field us;

o(1.1) urc e + u • --e.

• However, the source could equally well be located at a finite "-
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point in the plane. The scattered field satisfies the outward

radiation condition

au u
(1.2) _S iWu + s 0ar s 2r

as x -.

This problem may be studied using geometrical optics

for high fre-uency and expansion in w for low frequency.

Our original objective was to deal with the range of frequency

where neither of these approximations is good. We found, in

addition, however, that many of the features of geometrical

optics emerge from the computations at moderate frequencies.

Primarily though, we are concerned with perturbations in the

index of refraction or with disturbing objects where the

characteristic length is not large compared to the wave length.

A wave at frequency w has the wave length 27/ and theo-

retically for geometrical optics one needs 2w/w << a. Our ob-

servations confirm that in many applications wa = 5 or 10

displays the significant features of geometrical optics and

diffraction theory.

In this paper we restrict ourselves to two dimensionaliexamples. In a second paper we plan to demonstrate results
in axi-symmetric and possibly three dimensional geometries.
A particular advantage in 2D is that every simply-connected

object can be studied by noting that it can be mapped con-
*: formally onto the exterior of a circle and the transformation

f!,
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induces a new Helmholtz equation for the solution with a new

index of refraction. In fact, however, we have also computed

objects that are not simply-connected but have rectangular

boundaries in polar coordinates.

The principal results of interest are:

(i) Confirmation of the scattering cross section for a

cylinder of radius one with a Dirichlet boundary con-

dition. Results are compared with those presented by

Bowman, Senior, and Uslenghi [ 1]. The error is less

than 1(10) % at the frequency w = 5 (10) The

computations also show that the position of the shadow

edge, as given by geometrical optics, is within one

or two mesh points.

(ii) The diffraction by an infinite strip of half-width

2 at various angles to an incident plane wave. There

is good correlation with [ 1] particularly at low

frequencies and at an angle of 450 and ith geometrical

*i optics E 1].

(iii) The computations of the field including the cross-

section of a Helmholtz resonator of radius 1 with

9,1 various apertures and for plane waves at various angles

of incidence.

(iv) The refraction of a plane wave by a lens of either

constant or variable index of refraction.
4{

St

L •__ _



In particular we include lenses that produce focusing and

caustics such as the Luneberg lens.

(v) The refraction by a model of an overdense plasma.

The method of computation is a modification of the

relaxation method used in [ 2 1 and is described in Section 2.

To reduce the number of mesh points involved a modified

radiation condition corresponding to (2) is imposed at a

finite radius (see Section 3). The difference scheme and

how to deal with the artificial singularity at the origin

created by using polar coordinates is described in Section 4.

In Section 5, we describe in detail the particular examples

computed. In each case we give the running times on the CDC

6600 required to achieve convergence. The effects of apply-

ing the modified radiation condition at different distances

1 I are also discussed.

In Section 6 we discuss the limitations of this kind

of iterative method and other possible applications.

,' The authors are grateful to F. Tappert for much advice

and many suggestions. The work of A. Bayliss and E. Turkel

[ 3 1 on similar problems with obstacles treats the radiation

condition using the same ideas. Turkel pointed out to the
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authors that the modified radiation condition is well posed

in the sense of Kreiss-Lobatchinskii [ Ii 1.

2. The Iteration Method.

We consider a time dependent equation

(2.1) (QU)t = AD + nw2u

where Q Is a first order operator in the space variables,

Q = 2a. + b. The coefficient vector a and the scalar b are

chosen so that the solutions of (2.1) of the form plane wave

or source plus outgoing scattered wave will approach a time

independent state. This will be the desired solution.

This method was used in [2]. However, (2.1) was used

directly, i.e. in characteristic form. Data was given on a

characteristic surface. The convergence was therefore very

slow because a very small time step was required for

stability with the space differences used.

In the present method we transform (2.1) to a Cauchy,
problem by a change of variables given by

dt' = dt + a dx4 , (2.2) 4.

dx' = dx.

We obtain in the new variables

(2.3) a A5 + U (Vta-b) + nw 2 U

tt t

where we have dropped the primes. We now solve an initial

r value problem which by our choice of a and b will converge
,p

~to the steady state. For example, the convergence has been

$ - -%- -'-
L~
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improved by more than an order of magnitude in the case

(2.4) a = x/I-I, b =-2iw + V-a.

In two dimensions with 9, b given by (2.4) we introduce

in (2.3) the change of variable:

(2.5) = e + /F

with jI . Equation (2.3) reduces in polar coordinates to

(2.6) Wtt rr +r- ]2 W 2 (n-l) + w2 'w(nl)e iW(x-t)

which for n 1 is the wave equation. However, in general

it has fixed characteristics that are independent of n. Thus

if n = 1 we are using the standard limiting amplitude principle

but since in some of our examples n changes dramatically it

is a great advantage that the characteristics are fixed. For

n 1 we are solving a wave equation with potential.

From [ 2] we have the growth restriction to obtain decay

a|
. (2.7) -[r(n-l)] > 0.

If this condition is not satisfied we are dealing with a po-

tential which has bound states that give rise to exponen-

tially growing solutions of (2.6). This showed up numerically

in a very dramatic fashion when we tried lenses with n > 1.

The inequality (2.7) was proved by J. Weidmann [4] as a necessary

condition to prevent these growing modes.
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In order to handle this situation we note that instead

uf (2.6) we could use

(2.8) nIWtt = Wrr + r- 2 [W +] + (n 2-1 + 2/ (n-l)eiW(x-t)

where n1 + n2 = n + 1. If the limiting amplitude principle

2
holds, i.e. the potential (n2-l1) doe:; -ot give rise to

growing modes and nI > 0, then the solutions of (2.8) also

approach a time harmonic steady state and the space dependent

coefficient satisfies the desired Helmholtz equation.

If we make n1 > 1

in such a way that [r(n 2 -1)]r 2 0, then (2.8) can be used for

the iteration. We have applied this notion only for nI = n 1,

n2 = 1 and n ! 4 inside a circle. Note that the Courant-

Friedrichs-Lewy condition for the time step continues to be

satisfied over n1 > 1 if it holds for n1 = 1. On the other

hand if there are trapped rays produced by the artificial

index n I then the approach to steady state may be exceedingly

slow as the higher frejuencies have poorer exDonential decay.

3. Improving the Radiation Condition and Finding the

Scattering Cross Section.

Returning to the original radiation condition (1.2) we

note that if a solution satisfies the radiation condition,

then by using the fundamental solution representation for

the reduced wave equation, we have with us Wr (N-I)12eiwr

the expansion

4
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(3.1) W E A.r -

j=0

in any number of dimensions. Here A. is a function of w and
I

the angular variables. The differential equation for W at

large distances is

(3.2) 2iWr = -Wrr 2 LW
r

where L is a differential operator acting on the angular

variables (the Laplace-Beltrami operator). We have rescaled

r so that w = 1. On substituting the expansion for W we

find the recursion formula

(3.3) A (n+l,L)A , n 2 0
n+1 n

where P(n+l,L) - (n+l)-1 {L+nCn+l)}. Note that P3U,L) - L.

Next we set

n

P(n,L) nI P(j,L), P(O,L) = 1
j=l

and obtain

(3.4) W z P(n,L)r-nA0
0

and

W -Z P(n,L)nr--A
r 0

which we invert to find

A0  4E nP(n,L)r- )-Wr

.4

-
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apd thus

(3.5) Wrr = -( n(n+l)P(n,L)r- n-2)( nP(n,L)r- n-l) W.1 1 r

The boundary condition on W is then found by substituting in

the differential equation (3.2)

(3.6) 2iW - LW + 1[2P(1,L) + E n(n+l)P(n,L)r "  ] +1
r n=2

[P(1,L) + E nf(n,L)r-n+l]-l
n=2 r

and solving for Wr as a function of LW.

We simply expand the formula in powers of r but it may

be better to use the approach of Enquist and Majda [51 and use

other representations of the operators. What is needed is a
-n+l

good representation of Z nP(n,L)r -  . The first approximation
n=2

is Wr = 0 and from (3.6) the next approximation is
2 LW+

(3.7) (2i - 2r r - + O(r-4).
r

Note that as w c, LW in general and there are problems of

convergence.

In transforming to the Cauchy problem the derivative
'IWr - W r + Wt and the right hand side is unchanged. Thus the

radiation condition which we used was

3.8) W + Wt LW
r 2wr 2 (i -

wr

a2

where, for the two-dimensional problem L + 1/4.

5a



To obtain the far field, that is the scattering cross

section A0 , we invert (3.4) and obtain

! P(I,L)]
(3.9) A0 =i [1 wr]

which is accurate to 0(-
w 2r

4. The Difference Scheme.

To solve the time-dependent differential equation (2.7)

imposing the far field condition (3.9) we have used a standard

backward difference scheme for the initial value problem of a

second order hyperbolic equation with second order accuracy.

Let the solution to the difference scheme be 7(lm,n) where

(j,m,n) are evaluated on a grid

(4.1) r jAr + r. ,  me, t =nAt,

with

0 j N, 0 m M

i

- i-

- ,--
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Then for an interior point,

(4.2) W(j,m,n+l) = T(j±l,j,m±l,m,n,n-l)

is determined from the values of W at (j±l,m±l,n), (j,m,n),

(j,m,n-l). On the outer boundary r NAr + r0 we use the

differenced form of (3.9)

(4.3) + [ {W(N+l,m,n)-W(U-l,m,n))

- S(N,m,n)

where S(N,m,n) denotes the diflerence approximation for

the right hand side, centered differences being used in L.

The value of W at j = N+l, m,n has to be eliminated by using

the difference equation (4.2) and thus one obtains

(4.4) W(N,m,n+l) = B(N,m,m±l,n,n-l).

It still remains to apply the Dirichlet condition if

there is a disturbing object or to deal with the singularity

at the origin which is artificially created by the use of

polar coordinates.

/'1 (a) To apply the Dirichlet condition (u=0) we simply

use the given values from W = -v cxp[iw(x-t)] at the mesh

point j = 0 for a circle or at any other boundary point. To

simplify the computation we have used only boundaries con-

sisting of sections 0 constant or r constant.

[ ; ,;j
_ _,,_

" > .4 ~ U



13

(b) To deal with the origin we note two difficulties.

First the Courant-Friedrichs-Lewy condition limits the

smallest radius, i.e., we must have rAO > At for all points

in the computation. Secondly, there is a singularity from

the term r 2 . However, we do have W - YT. Our approach

is to keep doubling the mesh size AO as r.- 0. Thus in these

problems for r ! r0 we use the mesh

(4.5) r = j'Ar, 0 = ms(j'), t = nAt

where s(j') is chosen so that -AO = j'Ars(j') > At and so

that for each j' where the mesh size s(j') changes the

0-mesh is half as dense as before. The behavior of the

equation at the origin itself has to be taken into account.

Various integral forms of the equation could be used but

it is sufficiently effective to use the equation for U at

r = 0 using for AU the values of 4 = W// at 0 = 0, ±7T/2, 7

and r = 2Ar. By the standard difference formula along with

i Cn) for the value of d at r = 0 and time t = nAt. This

yields, for the symmetric case,

i ' (4(n+l)-2(D(n)+0(n-l))/(At) 2

(W(2,mln)+A(2,m2 n)+W(2'm 3 n)-40(n))/(2Ar)

+ W 2n(0)(n) + w2 (n(O)-l)e-iwnAt

Here mil, 2 , m 3 correspond to 0 = 0,1,r. Note n(O) means

the value of the index of refraction at the origin. In the

non-symmetric case there is a similar formula.

[[
- ... .4 M ' ,
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Finally we obtain W(l,m,n+l) by interpolating the values

of 0(n+l) and W(2,m,n+l)//Ir to obtain W(l,m,n+l)//A-r. The

error is O(Ar 2 ) but turns out to be larger than in the rest

of the computation.

In closing this section we shall describe our numerical

method for determining when W has reached its time harmonic

steady state. Recall that the scattered field, us, is given

by

us = [Welmt ]//r.

The bracketted term must approach We iwr as t - . Thus f'r

large time IWI becomes independent of t. We terminate our

computations when

(4.6) max ( W(n+l,i,j) -jW(n,i,j)j < E
O i N

0O5j Nm

for some prescribed E > 0.

5. Results for Model Problems.

(i) The metal cylinder.

This is a benchmark problem to test the method. Solu-

tions have been determined by separation of variables, integral

equations, and by geometrical optics [see reference 1 for a

fairly comprehensive bibliography]. In [1] the "scaled cross

section" /w- S(O) is presented graphically for various frequencies.

f u i
Here SCO) is the amplitude of the outgoing cylindrical wave and

e is the polar angle with 8 r the direction of the incident

I I S -7 .. .. ... ... ... . . ....... ... .. ..
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plane wave. These results were carefully converted to tabular

form for the case wa = 5. They are shown in column C of Table 1

while the results of our present calculation are listed in column

B. The areement is excellent. The relevant parameters used in

the computation are wa = 5, Ar = 0.1, AO = n/40, At = 0.05, and

£ : 0.01.

For the sake of comparison the results of [21 are listed in

column A. The gain over our old method is in the running time

which is now approximately 1 minute on the CDC 6600. The old

calculations took roughly 15 minutes on the same machine. 3oth

methods used the same amount of core, 138K.

The effect of applying the modified radiation condition (3.9)

at various distances to gain in mesh refinement was done by in-

creasing the radius of the cylinder and applying (3.9) at a fixed

radius. The relevant parameter is wa where a is the radius of the

object [see Table l,columns D-F]. This does not, of course,

refine the 0 mesh.

Since our numerical method gives the total field at each

grid point, the cross sections given in Table 1 represent a small

fraction of the generated information. Instead of just listing

these numbers an alternate method was devised to visually convey

the results. First, the polar output was converted into a

rectangular grid of numbers using straightforward interpolation.

(This unfortunately introduces errors which tend to smear out the

a optical features that will be described shortly.) Then seven

weights of shade were used with the darkest color corresponding

--ANAL -
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to the smallest total field while the lightest gives the largest

field. The amplitude ranges are (0,2),(2,6),(6,8),(8,10),(0,l14),

(14,17), and (17,,-). This process gives the interference pattern

shown in Figure 1 when wa = 10. The light regions correspond

to constructive interference, the dark ones to destructive.

Since the incident wave enters from x - - (0 ii or from the

left of the figure), the total field is symmetric about tho x

axis and only half the pattern is shown in Figure 1. The dark

semicircle is the metal cylinder. The wave patterns are readily

seen in this picture. Moreover, t ie shadow cast by the cylinder

is quite apparent. The width of the transition reion which

connects the deeD shadow and the illuminated porr4Dns of the plane

is exagerated by the interpolation process mentioned above.

(ii) Infinite Strip. (Dirichlet Case)

The diffraction by an infinite strip of half-width

2, {x = 0, IyI ! 2} was computed at the frequency 5, wa = 10 at

4the angles of attack a = 100 (head-on), 45° , and 9g0 (on edge).

Here a is the angle between the incident plane wave and the

positive x axis. The wave again is approaching from 0 = n.

The mesh size is /20 in e and 0.1 in r. A variable mesh was

used near the origin.

Since the interference pattern in the x - y coordinates

* is smeared by interpolation in this and in other cases with sharp
boundaries, it is omitted here. However, the results for a = 0

are presented in polar form in Figure 2. The numbers printed at

the mesh points are ten times the total field. Thus the dark
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regions now correspond to constructive interference, the light

to destructive. In this picture one sees the shadow at 0, 2ff,

the standing wave in the illuminated region along 0 r, the

7T 3 77
singular corners at 0 2' and the shadow boundaries on

y = + 2 = r sin 0.

For the sake of brevity, we have not included the polar

output for the ca;e; 4 = 45a and 900. Rather a few words describing

these resuits will be offered instead. A turn through 45°(=a)

destroys the symmetry and slightly distrots the waves in the

illuminated regicn. The shadow is shifted 45 ° . When the wave

attack:; the strip on edge (a = 900) there is no t',adow. However,

in the forward scattered direction the total field is cut in

half as it should be; see [6]. The field is again symmetric.

The cross sections are presented in Table 2. They check

well at 450 and qualitatively at 00 with those given in [1]. The

deviation between our results and those given by [1] is probably

due to the fact that the derivatives of the field bec-me singular

*at the strip's edges. The coarseness of our mesh masks this problem

The running time and core requirement for this problem were

roughly the same as those needed for the metal cylinder problem.

(iii) The Helmholtz Resonator

A cylindrical Helmholtz resonator was placed in a plane wave

at different angles of attack. The resonator is an infinitely

" ,thin cylinder of radius two with a strip aperture centered on the

S~:negative x axis. The angle 8 which subtends the aperture was taken
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at different sizes. When 8 0 the resonator is a metal cylinder

which was used for comparison. (The frequency was fixed at five.)

The cross sections are shown in Table 3 where a is again the angle

between the incident plane wave and the positive x axis. The

other relevant parameters are At = 0.05, Ar = 0.1, and AO = /20.

There is no data for comparison. In iterating on 1">- closed

resonator the method generated some eigenmodes in the interior.

These exist as slowly damped modes as the aperture opens.

At an angle of attack of a = 00 and an aperture of 360 the

exterior field is very similar to that generated by a meta? cylinder.

The interior field contains a considerable amount of energy. The

amplitudes focus on the axis in two places. The strongest (maximum

amplitude 5) at x = -. 5 is a portion of caustic caused by the second

reflections off the interior. The weaker focus (maximum amplitude 3)

at x = +.5 probably corresponds to the peak of a nephroid-like

caustic formed by the first reflections. The difference in strength

is probably due to constructive interference.

* When the wave strikes the resonator from directly behind

(angle of attack = 1800) it acts like a metal cylinder. The only

energy inside is diffractive and weak.

At an aperture of 1800 and an angle of attack of 00 there

,1 should be a nephroid-like caustic but the edge diffraction obli-

terates this feature. There is marked focusing as expected,

for -2 5 x 5 -1. The shadow is not so sharp as with a metal

cylinder. The aperture edges act like slits and smear the

geometrical effects.

The core requirements for these problems were the same
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as those needed for the various metal cylinders. However,

the running time depends upon the aperture size which

determines the complex eigenfrequencies of the resonator.

Several eigenfrequencies for various resonators are computed

numerically and presented in [ 7 ]. For an aperture of 360

and 800 iterations we could satisfy (4.6) unly for E .1.

However, when the aperture was 1800 we could satisfy (4.6)

with e = .05 at 400 iterations. These two numerical examples

show how the iteration scheme depends upon the eigenfrequency

with the smallest imaginary pa,'t. In the first case the imagi-

nary part is roughly 0.015 while in the second case it is about .3.

If we assume that the transients decay like Exp(-.015t) in

the first situation, then t - 200 would make this factor

0(1/100). Thus for At = .05 (the number used in our program)

we would need in the neighborhood of 5000 iterations to

obtain convergence. The same crude argument shows that about

310 iterations are needed when the aperture is 1800.

All of these problems could be solved with the addition

of a variable index of refraction depending on all variables

2 .including the amplitude of the total field provided the

.1 focusing effects are weak.

(iv) Lens with variable index of refraction.

For a lens of constant index of refraction less than 1

we used (2.6), i.e. (2.8) with nI  1, n2  n. There are no

particular difficulties and the fields are qualitatively
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correct. The basic lens was of radius a ! 3 and the frequency

w e 5 so that the relevant parameter wa 15. For constant n

less than 1 in the lens there is rapid convergence and typical

lens patterns emerge. In Figure 3 the interference pattern (in

the x-y plane) is shown for a lens with a = 2, w = 5, and n = 0.4.

For 1 ! n 2 there are focusing effects; e.g. when n = 2 the maxirmum

amplitude is 2.6 and occurs on the axis e = 0. The full limiting

amplitude princiklc with n = n and n2  1 works well for these

cases. However, nI = n cannot be taken too large. A rescaling of

time in (.8) would introduce a large effective frequency into the

exponential term. This would generate a large tr,:.cation error for

a fixed At and cause numerical instabilities. Numerical experlimens

confirmed this observation for n 1= n 8 and At = .05. On the

other hand, taking nI  1, n2 - n brings immediate instability into

the computation.

More interesting effects occur if n = n(r) or n = n(r,0). For

example, geonetrical optics predicts [see reference 8] that for

n = r 2 /9, r ! 3, n 1 1, r 3 that there will be focusing at (3,7).

At w = 5 we obtained an amplification of 2.5 in the total field at

* .. that point. Also there is a geometrical shadow on 0 6 . This
02

shadow (for a finite w ) is not sharp because a single ray on

8 = 0, e = w passes through it.

A second case, a Luneberg lens with n = 2 - r2 /9 for r ! 3,

n = 1 for r 3 focused at (3,0) with a magnitude of 3. This

point is a focus for the geometrical optics rays.

The general case n = n(r,O) was tried with n = (r
2- r - r0

for r 5 3, n 1 for r a 3, where r0 = 2 - 0.5 cos 2(e/2). The

-9
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particular effects are not of interest. Obviously the oscillations

in n cannot be too large without destroying accuracy. What is

important is that this problem cannot be solved by separation of

variables. Geometrical optics is complicated and an integral method

would involve inverting a kernel in four variables. No difficulties

are encountered here. There is some incre.- in memory since n

depends on two variables. The running time was again about a

minute. Condition (4.6) was satisfied for E = .01 with w 5,

a = 3.

(v) A Model of an Overdense Plasma.

An overdense plasma column can be modelled by an index of

refraction which becomes negative, such as the example used,

n 2 -4)/5 for r 3, n = 1 for r 3. Geometrical optics
2 2

predicts [9] a caustic on the ellipse x + Y i.
9

Figure 4 shows the calculated field in polar coordinates

with w = 5, a = 2, At = 0.05, Ar = 0.1, and AO = r/40. Recalling

that the larger (hence darker) numbers correspond o constructive

interference note that the ellipse (heavy curve) lies very close

to the edge of the constructive interference for w/2 5 6 5 7T. The

rest of the shadow is cast by the caustic along the line y = r sine 3

,I j (remaining portion of the heavy curve for r 2t 3, 6 :5 n/2). Figure

5 shows the x-y plot of the interference pattern where the lighter

regions now correspond to constructive interference. The amplitude

ranges for the various shades are again (0.2), (2,6),(6,8),(8,10),
(10,14),(14,17), and (17,-). Unfortunately the interpolation re-

quired for the rectangular output smears out the caustic.

'K 2T.



22

6. Conclusions.

There are four obvious dimensionless parameters in the

computed problem, wAr, wrA8, wa and wr0  where a is a

relevant length and r0 is the value of r where the radiation

condition is imposed. The sq'a. e of the first two enter the

errors produced by the second order difference scheme and in

most of our calculations was approxinately .2. The third

measures th relevance of geometrical optics and ranged up

to 15. The last one,usually about .025, arises from an

expansion at - for fixed w. The error term- are of order

-3(wr) but the coefficients are singular as w -

In many of the problems there were discontinuities,

infinitely thin objects or discontinuities in the index of

refraction. These induce discontinuities in the second

derivatives of the time dependent solution and in the steady

state. In spite of this source of inaccuracy there was

1remarkable agreement w-th known results and there is probably

some cancellation of error.

The method could be applied to higher dimensional

phenomena where the reflecting object as well as variable

index of refraction are not amenable to solution by integral

equations. Since the problem is solved by a very straight

forward difference scheme it should be easily effected by

vector computation. Other problems where variations of the
4

limiting amplitude principle could be used involve Maxwell's

equations, and wave propagation in water.
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Finally, the method has been modified slightly and applied

to the interesting and important case of a nonlinear medium [12].

In that report

n = n0 + y(l - no0 )Uj
2

where n0 is the index of refraction used in our overdense plasma

model and y is a constant which controls the strength of the non-

linearity. The results were excellent; the effects of refraction

and self-focusing could be discerned and controlled by varying

y. In paiticular, self-focusing amplifies the fields near the origin

as was first observed by F. Tappert [unpublished results].

I.

*4
1 . ,S'l" .

- _ _ __ _ - _ __ _ _ __ _ _ _
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Figure Captions

Figure 1: The interference pattern produced by the total field's

amplitude, vI, for a metal cylinder. The light regions correspond

to constructive interference, the dark to destructive. The dark

semicircle is the cylinder. The relevanL -arameters are wa = 10,

Ar = 0.1, A0 = 7/40, and At = 0.05.

Figure 2: The total field's amplitude, luI, in polar coordinates

for a metal strip with the incident wave normalized to 10. The in-

cident wave strikes the strip head on (a = 0). The set of points

{(r,e)10 = 7/2, 37T/2, 0 r 2} represents the strip al polar

coordinates. Since the numbers printed are the actual field

values, the dark regions now correspond to constructive inter-

ference, the light to destructive. The relevant parameters are

the same as in Figure 1 except AO = Tr/20.

Figure 3: The interference pattern produced by the total field's

amplitude, lUI, for a dielectric lens with n 0.4 The relevant

* parameters are wa = 15, Ar = 0.1, Ae = /20, and At = 0.05.

Figure 4: The total field's amplitude, lUI, in polar coordinates

for an overdense plasma column. The incident wave was normalized
,x 2 2

to 10. The heavy curve represents the caustic - + = 1, when
[ 9

r 3 and the geometric shadow y = 3 when r ' 3. The relevant

parameters are wa r 15, Ar = 0.1, AO = 7/40, and At = 0.05.

* Figure S: Same physical problem and relevant parameters as

* Figure 4. However, this is now the interference pattern in x-y

coordinates with the light regions corresponding to constructive

.interference, the dark to destructive.

1 _ ... __- - -- . _ ° .f '



27

Legend for Table 1: Columns A-F present the cross section

'iW 1/2 i wr(-) S(O), for a metal cylinder with us - S(O)e At 0.05,
and AO 7/40. A;

Column A contains the results given in [2], B presents a

tabulated version of the data given graphically in [1], and

columns C-F contain the results of our .,-w calculations.

Leuend for Table 2: Columns A-D present the cross section
T 1/2 iwr

(L--) S(O), for a metal strip with u SO)e' , At = 0.05,

Ar = 0.1, and Ae = 7/20. /

Columns A and D present tabulated versions of data given

graphically in [1]. Columns B and C contain the retilts of

our new calculations. The parameter a is the angle between

the incident plane wave and the normal to the strip. L is the

length of the strip.

Legend for Table 3: Columns A-C present the cross section

(7w 1/2
(L--) 1 s(e), for various Helmholtz resonators with

us - S(O)e r , At = 0.05, A6 = 1/20, and Ar = 0.1. The

parameter a is the angle between the incident plane wave and

the positive x axis while B is the aperture angle of the

resonator. The parameter wa = 10 where a radius of the

resonator.

j

I

'
- --.~



Table 1

A B C. D E F

0(0) wa=5 wa=5 wa=5 L=10,a=l w=5,a=2 w=5,a=4

0 5.67 6.05 6.05 11.33 10.84 12.49
9 5.30 5.25 5.29 6.63 7.20 10.15

18 3.78 3.30 3.34 2.11 3.72 11.15

27 2.10 1.75 1.70 3.21 3. 1' 13.50

36 1.81 1.75 1.77 2.50 3.55 14.71

45 2.00 1.95 1.99 2.61 3.41 15.04

54 1.89 1.75 1.81 2.54 3.32 14.97

63 1.74 1.68 1.73 2.55 3.23 14.74

72 1.79 1.75 1.80 2.56 3.18 14.41

81 1.86 1.80 1.83 2.56 3.10 13.91

90 1.86 1.82 1.82 2.56 3.04 13.12

108 1.93 1.88 1.86 2.57 2.88 10.60

126 1.97 1.92 1.89 2.55 2.79 7.51

144 1.99 1.93 1.91 2.55 2.76 5.02

162 1.99 1.94 1.93 2.59 2.75 3.97

186 2.00 1.95 1.96 2.55 2.76 3.88

OV

A.



Table 2

A BC 
D

8() ct=45o~i a45O ,WP2~0 a: 0 t=j c( 0 w2a

90.89 
.41 .2..-81 .89 .85 .96.0~

-72 .89 .19 .096 .00
-63 .89 131.09 .83
-54 .89 1.72 1.9 1.83

136.0 1.62 2.6 1.5
-36 1.20 1.60 2.8 .9
-27 1.20 1.64 3.3 2.6
-18 1.20 1.52 3.6 0.0
-9 1.0 1.49 6.2 7.00 1.501. 88 8.19 9
98 1.66 1.71 6.2 7.0
182.8 2 .08 3 .6 0 .0272.10 

2.40 3. 32.
36 596 5.40 2.8 .

7.07.30 
2.6 1.554 5.37 5.61 1.91.63 2.825011.83

72 1.49 .30 1.09 .8381 1.05 1 5.09 .00
90 .70 .68.300 .3 0j.0



Table 3

A BC

0(0) a=360 ,a=0 360 ,az=1800  0=1800,c0Ol

0 8.86 2.70 8.55

9 6.81 2.71 6.83

18 4.10 2.73 4.11

27 4.11 2.75 4.01

36 3.99 2.79 3.73

45 4.06 2.85 3.39

54 4.01 2.96 *2.58

63 4.01 3.11 1.38

72 3.97 3.30 .84

81 3.86 3.50 1.39

90 3.71 3.70 1.09

I99 3.53 3.85 1.86
*108 3.42 3.99 2.15

117 3.50 3.95 3.12

126 3.72 4.15 3.73

135 3.83 3.83 2.85

144 3.66 4.25 3.55

153 3.28 3.87 5.55

162 2.48 3.77 3.78

171 1.10 7.60 2.99

)180 1.36 8.48 5.32
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