PROPAGATION IN A TROPOSPHERIC DUCT WITH A SINGLE-STEP DISCONTINUITY IN THE REFRACTIVE INDEX IN THE DIRECTION OF PROPAGATION

R. H. Ott
Institute for Telecommunication Sciences
Department of Commerce
Boulder, Colorado 80303

June 1980

TECHNICAL REPORT AFWAL-TR-80-1138

Final Report for Period November 1979 - May 1980

Approved for Public Release; distribution unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

RAYMOND P. WASKY, Project Engineer
EO Sensor Science & Engineering Group
EO and Reconnaissance Branch
Avionics Laboratory

HAROLD E. GELTMACHER, Chief
EO Sensor Science & Engineering Group
Recon & Weapon Delivery Division
Avionics Laboratory

FOR THE COMMANDER:

GALE D URBAN, Chief
Electro-Optics Recon Branch
Reconnaissance & Weapon Delivery Division
Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFHRL/ARL, 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/4790/23 September 1980 - 90
### REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFML-TR-80-1136</td>
<td>AD-A090 544</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (Final Report for Period Nov 79-May 80)</th>
<th>5. TYPE OF REPORT &amp; PERIOD COVERED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(s)</th>
<th>7. AUTHOR(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. H. Ott</td>
<td>MIPR FY117579N2119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. CONTRACT OR GRANT NUMBER</th>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Institute for Telecommunication Sciences</td>
</tr>
<tr>
<td></td>
<td>Department of Commerce</td>
</tr>
<tr>
<td></td>
<td>Boulder, Colorado 80303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. PROGRAM ELEMENT, PROJECT, TASK</th>
<th>11. CONTROLLED OFFICE NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project ILIR, ILIR92</td>
<td>Air Force Avionics Laboratory (AAR)</td>
</tr>
<tr>
<td></td>
<td>Air Force Wright Aeronautical Laboratories, AFSC</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson Air Force Base, Ohio 45433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. REPORT DATE</th>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 89</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME &amp; ADDRESS</th>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A Green's function approach is used to derive an expression for the field inside a laterally inhomogeneous duct. The laterally inhomogeneous duct is assumed to have a single step, and convergence criteria for the step size and number of modes are discussed.
FOREWORD

This technical report describes the work completed by the Institute for Telecommunication Sciences, U.S. Department of Commerce, Boulder, Colorado, under Project ILIR9209, "Over-the-Horizon Target Detection Feasibility Study." This work has been supported by the Avionics Laboratory Director's Fund.

The work described herein is for the period November 1979 to May 1980, under the direction of Mr. Raymond P. Wasky (AFWAL/AARI-3), Electro-Optics and Reconnaissance Branch, Reconnaissance and Weapon Delivery Division, Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

This report was submitted by the author in June 1980.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I   INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II  ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>III REMARKS</td>
<td>18</td>
</tr>
<tr>
<td>IV EXAMPLE</td>
<td>20</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>26</td>
</tr>
<tr>
<td>VI REFERENCES</td>
<td>27</td>
</tr>
</tbody>
</table>

**Accession For**

<table>
<thead>
<tr>
<th>NTIS GRAI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIC TAB</td>
<td></td>
</tr>
<tr>
<td>Unannounced</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
</tbody>
</table>

**Availability Codes**

<table>
<thead>
<tr>
<th>Avail and/or Dist Special</th>
</tr>
</thead>
</table>

By Distribution/
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometry for single step discontinuity in a tropospheric duct.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Geometry for aperture integration. Modes in regions (I) and (II) are $\nu_1$ and $\nu_2$, respectively.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Height-gain curves for a frequency of 100 MHz. Step height shown in legend. Refractive index contrast is 25 N-units. W is the normalized signal strength. The radial wavelength corresponding to the curve &quot;20m&quot; is 0.463 radians.</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Convergence of solution with increasing number of modes. Distance between source and step and step and observer is 10 km. The frequency is 100 MHz and the refractive index contrast 25 N-units.</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Height-gain run for 300 MHz. W is the normalized signal strength. The refractive index contrast is 25 N-units. 100 km separation between source and aperture plane.</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Height-gain run for 60 MHz. W is the normalized signal strength. The refractive index contrast is 25 N-units. 100 m separation.</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Height-gain run for 300 MHz. W is the normalized signal strength. The refractive index contrast is 50 N-units.</td>
<td>25</td>
</tr>
</tbody>
</table>
SUMMARY

The purpose of this study was to generate a model for use in determining the feasibility of detecting radar signals beyond the normal radar horizon. The mechanisms to be considered were tropospheric ducting and earth diffraction. Until recently, models of tropospheric ducts assumed that the ducts were horizontally homogeneous, which led to significant errors when compared with experimental results. Under this study, ducts are treated as laterally nonuniform stratifications in the lower atmosphere.

A Green's function approach is used to derive an expression for the field inside a laterally inhomogeneous duct. The laterally inhomogeneous duct is assumed to have a single step discontinuity. The formulation for the field, convergence criteria for the step size and the number of modes needed for a solution are discussed.
SECTION I

INTRODUCTION

A solution to a very "sticky" problem is given, using the Green's function method. The extension of the solution for propagation in a uniform medium to a medium composed of steps, to represent the slow variation in refractive index with distance along the direction of propagation, allows a solution for propagation in a laterally inhomogeneous medium. The coupling between normal modes in each region is easily separated out of the solution in the present formulation. The theory could be used to study the problem of propagation of underwater sound waves in shallow water with slowly varying depth.\(^{(1)}\) The problem of propagation in a laterally inhomogeneous duct was investigated by Bahar\(^{(2)}\) using an iterative solution to Maxwell's equations directly.
SECTION II
ANALYSIS

The geometry of the propagation problem is shown in Figure 1. The term duct refers to the concept of the trapping of modes and the resulting propagation over long distances.

Figure 1. Geometry for single step discontinuity in a tropospheric duct.
Our approach will be to find the Green's function for the bounded waveguide cross section in Figure 1. In particular, we will analyze the effect of the step size, \((a_2-a_1)\), and the refractive index contrast, \(n_2-n_1\).

The electric and magnetic fields will satisfy the two-dimensional, time-harmonic, Helmholtz equation

\[
\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial G}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 G}{\partial \phi^2} + k^2 G = \frac{\delta(r-r_s)\delta(\phi-\phi_s)}{r},
\]

where \((r_s, \phi_s)\) and \((r, \phi)\) are the source and observation coordinates respectively, \(k\) is the wave number, and the time dependence is \(e^{-i\omega t}\). Considering regions (I) and (II) separately, \(G\) must meet the periodicity requirement, and we have

\[
\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial G}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 G}{\partial \phi^2} + k^2 G = \frac{\delta(r-r_s)}{r} \sum_{n=-\infty}^{\infty} \delta(\phi-\phi_s-2\pi n)
\]

where \((r_s, \phi_s)\) on each "Riemann sheet", \(n\) as

\[
G(r, r') = \sum_{n=-\infty}^{\infty} G_n(r, r'), \quad r' = (r', \phi + 2\pi n)
\]

where \(G_n\) satisfies

\[
\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial G_n}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 G_n}{\partial \phi^2} + k^2 G_n = \frac{\delta(r-r_s)\delta(\phi-\phi_s)}{r}
\]

The completeness relation is

\[
G_n(r, r') = \frac{-1}{2\pi i} \oint g_r(r, r_s; \lambda) g_\phi(\phi, \phi_s; \lambda) d\lambda
\]

where the contour (counterclockwise) in (4) is selected to enclose all the singularities in the complex \(\lambda\)-plane.
If we define
\[
\nu = \sqrt{\lambda}, \quad \text{Im}(\nu) > 0
\]
\[
d\nu = \frac{1}{\nu} d\lambda
\]
then the Green's function \( g_\phi \) on an "infinite" angular transmission line is
\[
g_\phi(\phi, \phi_s; \nu^2) = \frac{\text{e}^{i\nu(\phi-\phi_s-2\pi)}}{2i\nu}
\]
(6)

with \(|g_\phi| \to 0 \text{ as } |\nu| \to \infty\). Substituting (6) in (4) gives
\[
G_\infty(r, r_s; \nu^2) = \frac{1}{2\pi} \int_\infty^\infty g_r(r, r_s; \nu^2) e^{i\nu(\phi-\phi_s-2\pi)} d\nu
\]
(7)

with Fourier inversion
\[
g_r(r, r_s; \nu^2) = \int_\infty^\infty G_\infty(r, r_s; \phi, \phi_s+2\pi) e^{-i\nu(\phi-\phi_s-2\pi)} d\phi.
\]
(8)

From (3), \( g_r \) satisfies
\[
\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial g_r}{\partial r} \right) + k^2 g_r - \frac{\nu^2}{\rho^2} g_r = \frac{\delta(r-r_s)}{r}.
\]
(9)

With a perfect absorber at \(|\phi-\phi_s|=\pi\), Figure 1 corresponds to the case \( n = 0 \) for (7) and (8). Much of the discussion up to this point can be found in the literature. (3)

The field, \( E(r) \), in region (II) due to the aperture field in the plane \( \phi=\phi_0 \) in Figure (1) is obtained from Green's Theorem after integrating over the cylinder \( \Sigma \) at infinity and over the aperture plane \( \phi=\phi_0 \) yielding
\[
E(r) = \int_{\Sigma} dr' \left[ E(r') \frac{\partial G_\infty(2)}{\partial \phi'} - G_\infty(2) \frac{\partial E}{\partial \phi'} \right],
\]
(10)

where by analogy with the problem to the left of the aperture.
\[ G_{\infty}^{(2)}(r,r';\phi,\phi') = \frac{1}{2\pi} \int_{-\infty}^{\infty} g_{r}^{(2)}(r,r';v^2)e^{i\nu(\phi-\phi')} \, dv, \]  

(11)

from which it follows that

\[ \frac{\partial G_{\infty}^{(2)}}{\partial \phi'} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} g_{r}^{(2)}(r,r';v^2)e^{i\nu(\phi-\phi')} \, dv. \]  

(12)

We now make the parabolic wave equation assumption

\[ \frac{\partial E}{\partial \phi'} = ika_1 E(r') \]  

(13)

Substituting (12) and (13) into (10) gives

\[ E(r) = \int_{a_0}^{\infty} \frac{dr'}{r^2} E(r') \left[ \frac{1}{2\pi i} \int_{-\infty}^{\infty} g_{r}^{(2)}(r,r';v^2)e^{i\nu(\phi-\phi')} \, dv, \right. \]

\[ + \left. \frac{ka_1}{2\pi i} \int_{-\infty}^{\infty} g_{r}^{(2)}(r,r';v^2)e^{i\nu(\phi-\phi')} \, dv \right] \]  

(14)

and because we are interested in solutions when \( v = ka_1 \), (14) becomes

\[ E(r) = \frac{ka_1}{\pi^4} \int_{a_0}^{\infty} \frac{dr'}{r^2} E(r') \int_{-\infty}^{\infty} g_{r}^{(2)}(r,r';v^2)e^{i\nu(\phi-\phi')} \, dv. \]  

(15)

Now, \( E(r') \) is the field in the plane \( \phi = \phi_0 \) due to the point source at \( r_s, \phi_s \), neglecting reflected fields and is given by

\[ E(r') = \frac{1}{2\pi} \int_{-\infty}^{\infty} g_{r}^{(1)}(r',r_s;v^2)e^{i\nu(\phi_0-\phi_s)} \, dv. \]  

(16)
Substituting (16) into (15) gives the solution

\[ E(r) = \frac{ka_1}{2\pi^2} \int_{a_0}^{\infty} \int_{-\infty}^{\infty} d\nu_1 \int_{-\infty}^{\infty} d\nu_2 \ g^{(1)}_r(r', r_s; \nu_1^2) g^{(2)}_r(r, r'; \nu_2^2) e^{i\nu_1(\phi_0 - \phi_s)} e^{i\nu_2(\phi - \phi_0)}. \] (17)

which is easily generalized to 2-step discontinuities as

\[ E(r) = \frac{ka_1}{2\pi^2} \int_{a_0}^{\infty} \int_{r''}^{r'} \int_{r'}^{\infty} \int_{-\infty}^{\infty} d\nu_1 \int_{-\infty}^{\infty} d\nu_2 \int_{-\infty}^{\infty} d\nu_3 \ h^{(1)}_r(r', r_s; \nu_1^2) g^{(2)}_r(r', r''; \nu_2^2) g^{(3)}_r(r'', r_s; \nu_3^2) \]
\[ \cdot e^{i\nu_1(\phi_1 - \phi_s)} e^{i\nu_2(\phi_2 - \phi_1)} e^{i\nu_3(\phi_2 - \phi_0)}. \] (18)

The Green's function for the source \( r_s \) in the duct is given by the "broken" function

\[ T(v)[H^{(1)}_\nu(kr_s) + R_1(v)H^{(2)}_\nu(kr_s)] \ H^{(1)}_\nu(kr), \ a_1 \leq r < \infty \]
\[ a(v)[H^{(1)}_\nu(kr) + R_2(v)H^{(2)}_\nu(kr)]. \]

\[ g(r, r_s; \nu^2) = \cdot [H^{(1)}_\nu(kr_s) + R_1(v) H^{(2)}_\nu(kr_s)], \ r_s \leq r \leq a_1 \] (19)
\[ a(v)[H^{(1)}_\nu(kr_s) + R_s(v) H^{(2)}_\nu(kr_s)]. \]
\[ \cdot [H^{(1)}_\nu(kr) + R_1(v) H^{(2)}_\nu(kr)]], \ a_0 \leq r \leq r_s \]

In (19) \( H^{(1)}_\nu \) and \( H^{(2)}_\nu \) are Hankel functions of the first and second kind.
where \( a_1 \) is the height where the refractive index changes from \( k \) to \( \hat{k} \) where
\[
\hat{k} = k(1 - \Delta n)
\] (20)
and \( a_0 \) is the radius of the earth and \( \Delta n \) is the refractive index contrast.

The Green's function if the source is outside the duct is
\[
\hat{g}(r, r_s; \nu^2) = \begin{cases} \\
\hat{\alpha}(\nu)[H_{\nu}^{(1)}(kr_s) + \hat{R}_2(\nu)H_{\nu}^{(2)}(kr_s)]H_{\nu}^{(1)}(kr), & r_s \leq r \leq \infty \\
\hat{\alpha}(\nu)[H_{\nu}^{(1)}(kr) + \hat{R}_2(\nu)H_{\nu}^{(2)}(kr)]H_{\nu}^{(1)}(kr_s), & a_2 \leq r \leq r_s \\
\hat{T}(\nu)[H_{\nu}^{(1)}(kr) + R_1(\nu)H_{\nu}^{(2)}(kr)]H_{\nu}^{(1)}(kr_s), & a_0 \leq r \leq a_2
\end{cases}
\] (21)
where the height of the duct is now labeled \( a_2 \), because, as we see in Figure 2, the integration point for Region II eventually lies outside the duct.

From the jump condition
\[
\left. \frac{\partial g}{\partial r} \right|_{r = r_s^-} - \left. \frac{\partial g}{\partial r} \right|_{r = r_s^+} = \frac{-1}{2\pi r_s}
\] (22)
and the use of the following Wronskian
\[
H_{\nu}^{(1)}(kr_s)H_{\nu}^{(2)}(kr_s) - H_{\nu}^{(1)}(kr)H_{\nu}^{(2)}(kr) = \frac{4i}{\pi kr_s},
\] (23)
we obtain
\[
\alpha(\nu) = \frac{-1}{8[R_2(\nu) - R_1(\nu)]}
\] (24)
and the "resonance" condition; i.e., \( R_2(\nu) = R_1(\nu) \). From the boundary conditions at \( r = a_1 \), i.e.,
\[
g(r, r_s; \nu^2) \left|_{r = a_1^-} = g(r, r_s; \nu^2) \left|_{r = a_1^+} \right. \right.
\] (25)
and
\[
\left. \frac{\partial g}{\partial r} \right|_{r = a_1^-} = \left. \frac{\partial g}{\partial r} \right|_{r = a_1^+} \right.
\] (26)
we find
\[
R_2(v) = - \frac{[\hat{\mathbf{h}}_V^{(1)'}(\hat{\mathbf{ka}}_1)\mathbf{h}_V^{(1)}(\mathbf{ka}_1) - k\mathbf{h}_V^{(1)'}(\mathbf{ka}_1)\hat{\mathbf{h}}_V^{(1)'}(\mathbf{ka}_1)]}{[\hat{k}\mathbf{h}_V^{(1)'}(\mathbf{ka}_1)\mathbf{h}_V^{(2)}(\mathbf{ka}_1) - k\mathbf{h}_V^{(1)'}(\mathbf{ka}_1)\mathbf{h}_V^{(2)'}(\mathbf{ka}_1)]}
\]

\[(27)\]

a "reflection" coefficient at the boundary. Similarly, from the boundary condition at \(r=a_0\), i.e.,

\[
\frac{\partial g}{\partial r} \bigg|_{r=a_0} = -i\kappa \delta \bigg|_{r=a_0}
\]

we find
\[
R_1(v) = - \frac{[\hat{\mathbf{h}}_V^{(1)'}(\mathbf{ka}_0) + i\delta \mathbf{h}_V^{(1)}(\mathbf{ka}_0)]}{[\mathbf{h}_V^{(2)'}(\mathbf{ka}_0) + i\delta \mathbf{h}_V^{(2)}(\mathbf{ka}_0)]}
\]

\[(29)\]

where
\[
\delta = \begin{cases} \sqrt{n-1}, & \text{vertical polarization} \\ \sqrt{\kappa n - 1}, & \text{horizontal polarization} \end{cases}
\]

and
\[
\eta = \varepsilon_r - \frac{i\sigma}{\omega \varepsilon_0}
\]

\[(30)\]

\[(31)\]

where \(\sigma\) is the ground conductivity in Siemens/m and \(\varepsilon_r\) is the relative dielectric constant. Knowing \(R_1(v)\), \(R_2(v)\) and \(\alpha(v)\) allows us to solve for \(T(v)\) in (19), again using the continuity of \(g\) at \(r=a_1\) and we obtain

\[
T(v) = - \frac{(i/8)[\mathbf{h}_V^{(1)}(\mathbf{ka}_1) + R_2(v)\mathbf{h}_V^{(2)}(\mathbf{ka}_1)]}{[R_2(v) - R_1(v)] \mathbf{h}_V^{(1)}(\mathbf{ka}_1)}.
\]

\[(32)\]

Similarly, the jump condition for \(\hat{g}\) gives

\[
\hat{\alpha}(v) \hat{R}_2(v) = (i/8).
\]

\[(33)\]

From the boundary condition at \(r=a_2\), we find
\[
\hat{R}_2(v) = -\left\{ k H_v^{(1)}(ka_2)[H_v^{(1)}(ka_2) + R_1(v)H_v^{(2)}(ka_2)] \\
- k H_v^{(1)}(ka_2)[H_v^{(1)}(ka_2) + R_1(v)H_v^{(2)}(ka_2)] \right\} / \sqrt{V_2}
\]
(34)

and

\[
\hat{T}(v) = \hat{\alpha}(v)[H_v^{(1)}(ka_2) + \hat{R}_2(v)H_v^{(2)}(ka_2)] / [H_v^{(1)}(ka_2) + R_1(v)H_v^{(2)}(ka_2)].
\]
(35)

We now turn our concentration to the aperture integration \( a_0 < r' < \infty \) in (17). The geometry of the problem is given in Figure 2, where we will confine our analysis to the case where \( a_0 < r_s < a_1 \) and \( a_0 < r < a_2 \).

Figure 2. Geometry for aperture integration. Modes in regions (I) and (II) are \( v_1 \) and \( v_2 \), respectively.
Using the "broken" functions in (19) and (20) with appropriate interpretations for
the source and observations points (i.e., in the aperture plane the integration
point, \( r' \), becomes the observation point, \( r \), in Region (I) while the integration
point, \( r' \), becomes the source point, \( r_s \), for Region II), we have

\[
\int_{a_0}^{r} \frac{dr'}{r'} g_1^2(r', r_s; \nu_1^2) g_2^2(r, r'; \nu_2^2) = \alpha(\nu_1) \alpha(\nu_2) \psi_{\nu_1}(kr_s) \psi_{\nu_2}(kr) \int_{a_0}^{r} \frac{dr'}{r'} \phi_{\nu_1}(kr') \phi_{\nu_2}(kr')
\]

\[
+ \alpha(\nu_1) \alpha(\nu_2) \psi_{\nu_1}(kr_s) \phi_{\nu_2}(kr) \int_{r}^{a_1} \frac{dr'}{r'} \phi_{\nu_1}(kr') \psi_{\nu_2}(kr') + \alpha(\nu_1) \alpha(\nu_2) \phi_{\nu_1}(kr_s) \phi_{\nu_2}(kr) \int_{r}^{a_1} \frac{dr'}{r'} \int_{a_1}^{a_1} \frac{dr''}{r''} H(1)(kr') \phi_{\nu_1}(kr') \psi_{\nu_2}(kr') \psi_{\nu_2}(kr')
\]

where

\[
\psi_{\nu}(kr) = H_{\nu}^{(1)}(kr) + R_1(\nu) H_{\nu}^{(2)}(kr)
\]

\[
\phi_{\nu}(kr) = H_{\nu}^{(1)}(kr) + R_2(\nu) H_{\nu}^{(2)}(kr).
\]

From the differential equation (9) for the radial functions and linear combinations
as given in (37) we have

\[
\int_{a_0}^{r} \frac{dr'}{r'} \phi_{\nu_1}(kr') \phi_{\nu_2}(kr') = \frac{r}{(\nu - \nu_2^2)} \left[ \phi_{\nu_2}(kr) \frac{\partial \phi_{\nu_2}}{\partial r} \right]_{r' = a_0}^{r' = r} - \phi_{\nu_1}(kr) \frac{\partial \phi_{\nu_1}}{\partial r} \right]_{r' = a_0}^{r' = r} \]

\[
- \frac{a_0}{(\nu - \nu_2^2)} \left[ \phi_{\nu_2}(kr) \frac{\partial \phi_{\nu_2}}{\partial r} \right]_{r' = a_0}^{r' = r} - \phi_{\nu_1}(kr) \frac{\partial \phi_{\nu_1}}{\partial r} \right]_{r' = a_0}^{r' = r} \]

\[
= \frac{r}{(\nu - \nu_2^2)} \left[ \phi_{\nu_2}(kr) \frac{\partial \phi_{\nu_2}}{\partial r} \right]_{r' = r}^{r' = r} - \phi_{\nu_1}(kr) \frac{\partial \phi_{\nu_1}}{\partial r} \right]_{r' = r}^{r' = r}
\]
because $\phi_v(kr)$ satisfies (28). Also

$$\int_0^{r_s} \frac{dr'}{r} \phi_v(kr') \phi_v(kr') = \frac{r_s}{(v_1'^2 - v_2'^2)} \left[ \phi_v(kr_s) \frac{\partial \phi_v}{\partial r'} \right]_{r'=r_s}^{r'=r}$$

$$- \frac{r}{(v_1'^2 - v_2'^2)} \left[ \phi_v(kr) \frac{\partial \phi_v}{\partial r'} \right]_{r'=r}^{r'=r_s}$$

(39)

$$\int_{r_s}^{a_1} \frac{dr'}{r} \phi_v(kr') \phi_v(kr') = \frac{a_1}{v_1'^2 - v_2'^2} \left[ \phi_v(ka_1) \frac{\partial \phi_v}{\partial r'} \right]_{r'=a_1}^{r'=a_2}$$

$$- \frac{r_s}{(v_1'^2 - v_2'^2)} \left[ \phi_v(kr_s) \frac{\partial \phi_v}{\partial r'} \right]_{r'=r_s}^{r'=r}$$

(40)

The following integral involves both the wave numbers $k$ and $\hat{k}$; i.e.,

$$\int_{a_1}^{a_2} \frac{dr'}{r} H^{(1)}_{v_1}(kr') \phi_v(kr') = \frac{a_2}{v_1'^2 - v_2'^2} \left[ H^{(1)}_{v_1}(ka_2) \frac{\partial H^{(1)}_{v_1}}{\partial r'} \right]_{r'=a_2}^{r'=a_1}$$

$$- \frac{a_1}{v_1'^2 - v_2'^2} \left[ \phi_v(ka_1) \frac{\partial H^{(1)}_{v_1}}{\partial r'} \right]_{r'=a_1}^{r'=a_2} + \frac{2\Delta \kappa^2}{(v_1'^2 - v_2'^2)} \cdot$$

$$\int_{a_1}^{a_2} d'dr' H^{(1)}_{v_1}(kr') \phi_v(kr')$$

11
and, finally,

\[
\int_{a_2}^{\infty} \frac{dr'}{r'} H_{\nu_1}^{(1)}(kr') H_{\nu_2}^{(1)}(kr') = -\frac{a_2}{(\nu_1^2 - \nu_2^2)} \left[ \frac{\partial H_{\nu_1}^{(1)}(ka_2)}{\partial r'} \right]_{r'=a_2} - H_{\nu_1}^{(1)}(ka_2) \frac{\partial H_{\nu_2}^{(1)}(kr')}{\partial r'} \bigg|_{r'=a_2} \right]. \tag{42}
\]

Substituting (38), (39), (40), (41) and (42) into (36) gives

\[
\int_{a_0}^{\infty} \frac{dr'}{r'} g_r^{(1)}(r', r_s; \nu_1^2) g_r^{(2)}(r, r'; \nu_2^2) = \left( \frac{-1}{64} \right) \frac{1}{[R_2(\nu_2) - R_1(\nu_2)][R_2(\nu_1) - R_1(\nu_1)](\nu_1^2 - \nu_2^2)} \left|
\begin{array}{c}
\begin{align}
\psi_{\nu_1}(kr_s) \phi_{\nu_1}(kr) & \frac{\partial \psi_{\nu_2}}{\partial r'} \bigg|_{r'=r} - \psi_{\nu_2}(kr) \frac{\partial \phi_{\nu_2}}{\partial r'} \bigg|_{r'=r} \\
+ \phi_{\nu_2}(kr) \psi_{\nu_2}(kr_s) r_s & \psi_{\nu_1}(kr_s) \frac{\partial \phi_{\nu_1}}{\partial r'} \bigg|_{r'=r_s} - \phi_{\nu_1}(kr_s) \frac{\partial \psi_{\nu_1}}{\partial r'} \bigg|_{r'=r_s} \\
+ \psi_{\nu_2}(kr) \psi_{\nu_2}(ka_1) a_1 & \phi_{\nu_1}(kr_s) \frac{\partial \psi_{\nu_1}}{\partial r'} \bigg|_{r'=a_1} - \psi_{\nu_1}(ka_1) \frac{\partial \phi_{\nu_1}}{\partial r'} \bigg|_{r'=a_1} \\
+ \psi_{\nu_2}(kr) \phi_{\nu_1}(kr_s) \frac{\partial \psi_{\nu_1}}{\partial r'} \bigg|_{r'=a_2} - \psi_{\nu_2}(ka_2) \frac{\partial \phi_{\nu_1}}{\partial r'} \bigg|_{r'=a_2}
\end{align}
\end{array}
\right|
\right].
\]
We will show that terms (1) and (2) in (43) represent the "uncoupled" or zeroth order solution and (6) represents the first order coupling, while the remaining terms; i.e., (3), (4), and (6) are all of second order. Consider the following combination of terms from (3) and (5); i.e.,

\[ \frac{\psi_{v_1}(k_1a_1)}{H_{v_1}(k_1a_1)} \psi_{v_2}(kr_1) \rho_2(r_1) \hat{H}_{v_1}(kr_1) \psi_{v_2}(kr_2) \]

\[ \frac{a_2}{a_1} \frac{r'dr'}{r' \psi_{v_1}(kr_1)} - \hat{H}_{v_1}(kr_1) \psi_{v_2}(kr_2) \]

We will make use of the following asymptotics

\[ H_{v_1}(k_1a_1) \sim \left( \frac{2}{k_1a_1} \right)^{1/3} \text{Wi} (t + x) \]

\[ H_{v_2}(k_2a_2) \sim \left( \frac{2}{k_2a_2} \right)^{1/3} \text{Wi} (t + x) \]

where \( \text{Wi}(1) \) and \( \text{Wi}(2) \) are Airy functions with (4)

\[ t = \left( \frac{k_1a_1}{k_2a_2} \right)^{2/3} \left( 1 - \left( \frac{k_1a_1}{k_2a_2} \right)^{2/3} \right) \text{ or } \psi = \psi(t) \]

and the dimensionless "radial wavenumber"

\[ x = k_1a_1^{2/3} \left( \frac{2}{k_2a_2} \right)^{1/3} \]
Using (45), (46) and (47) we find (44) becomes
\[\frac{2}{k^r} \left[ \frac{1}{3} Wi(t_2 + X_r) + R_1(t_2)Wi(t_2 + X_r) \right] \left[ \frac{1}{3} Wi(t_1 + X_s) + R_2(t_1)Wi(t_1 + X_s) \right].\]

\[-k\left(\frac{\epsilon}{k^r}\right)\left[ \frac{1}{3} Wi(t_2 + X_r) + R_1(t_2)Wi(t_2 + X_r) \right] \left[ \frac{1}{3} Wi(t_1 + X_s) + R_2(t_1)Wi(t_1 + X_s) \right].\]

\[\cdot \left[ \frac{2}{ka_2} \left( \frac{1}{3} Wi(t_2) + R_2(t_2)Wi(t_2) \right) \left( \frac{2}{ka_2} \right) \left( \frac{1}{3} Wi(t_1 + x_a + x_d) \right) \right].\]

\[-a_1\left(\frac{2}{ka_1}\right) \left[ \frac{1}{3} Wi(t_2 + X_a) + R_2(t_2)Wi(t_2 + X_a) \right] \left( \frac{2}{ka_1} \right) \left( \frac{1}{3} Wi(t_1 + x_d) \right)\]

with
\[x_r = k (a_1 - r)/(\frac{1}{2}),\]
\[x_a = k (a_2 - a_1)/(\frac{1}{2}),\]
\[x_s = k(a_1 - r_s)/(\frac{1}{2}),\]
\[x_D = 2\pi n(\frac{1}{2}).\]

Now, we see if the radial wavenumber, \(x_a\), is small, (48) becomes
\[\frac{2}{k^r} \left[ \frac{1}{3} Wi(t_2 + X_r) + R_1(t_2)Wi(t_2 + X_r) \right] \left[ \frac{1}{3} Wi(t_1 + X_s) + R_2(t_1)Wi(t_1 + X_s) \right].\]

\[\cdot \left[ \frac{2}{ka_2} \left( \frac{1}{3} Wi(t_2) + R_2(t_2)Wi(t_2) \right) \left( \frac{2}{ka_2} \right) \left( \frac{1}{3} Wi(t_1 + x_a) \right) \right].\]

\[-a_1\left(\frac{2}{ka_1}\right) \left[ \frac{1}{3} Wi(t_2 + X_a) + R_2(t_2)Wi(t_2 + X_a) \right] \left( \frac{2}{ka_1} \right) \left( \frac{1}{3} Wi(t_1 + x_a) \right)\]

\[\cdot \left[ Wi(t_2 + X_a) + R_2(t_2)Wi(t_2 + X_a) \right].\]

which is negligible compared with (1), (2) and (6).
Also from (3) and (5), we find

\[
\phi_{\nu_2} (kr) \phi_{\nu_1} (kr) r a_1 [\psi_{\nu_2} (ka_1) \frac{\partial \psi_{\nu_1}}{\partial r} \bigg|_{r'=a_1} - \psi_{\nu_1} (ka_1) \frac{\partial \psi_{\nu_2}}{\partial r} \bigg|_{r'=a_1} ]
\]

\[
- 2ika_1 \phi_{\nu_2} (kr) \phi_{\nu_1} (kr) R_2 (t_2) \left( \frac{2}{ka_1} \right)^{2/3} \frac{(1)}{(2)} [W_1 (t_1) W_2 (t_2 + x_a) - (50)
\]

\[
- W_1 (t_1) W_2 (t_2 + x_a)]
\]

which is negligible, again compared with (1), (2) and (6). Consider (6), and the rational function

\[
\frac{[H_{v_2}^{(1)} (k a_2) H_{v_1}^{(1)} (k a_2) - H_{v_1}^{(1)} (k a_2) H_{v_2}^{(1)} (k a_2)]}{[k H_{v_2}^{(1)} (k a_2) \phi_{v_2} (k a_2) - k H_{v_2}^{(1)} (k a_2) \phi_{v_2} (k a_2)]}
\]

\[(51)
\]

\[
\frac{(1) - (1)'}{(1) - (1)'} - k W_1 (t_2 + x_D) [W_1 (t_2) + R_1 (t_2) W_2 (t_2)] - k W_1 (t_2 + x_D) [W_1 (t_2) + R_1 (t_2) W_2 (t_2)]
\]

which is negligible for small radial wavenumber, \( x_a \). Note, even if \( x_D = 0 \), the denominator in (52) is non-zero because it involves the Wronskain \( W_1 (t_2) W_2 (t_2) - W_1 (t_2) W_2 (t_2) = -2 i / \pi \). Of the terms in (43) remaining, (1) and (2) represent the uncoupled normal modes and are given by

\[
\psi_{\nu_1} (kr) \phi_{\nu_1} (kr) r [\phi_{\nu_2} (kr) \frac{\partial \phi_{\nu_2}}{\partial r} \bigg|_{r'=r} - \phi_{\nu_2} (kr) \frac{\partial \phi_{\nu_2}}{\partial r} \bigg|_{r'=r} ] \]

\[(52)
\]

\[= (4i/\pi) [R_1 (\nu_2) - R_2 (\nu_2)] \psi_{\nu_1} (kr) \phi_{\nu_1} (kr)
\]

and

15
\[
\phi_{v_2}(kr)\psi_{v_2}(kr_s)r_s \left[ \psi_{v_1}(kr_s) \frac{\partial \psi_{v_1}}{\partial r'} \bigg|_{r'=r_s} - \phi_{v_1}(kr_s) \frac{\partial \psi_{v_1}}{\partial r'} \bigg|_{r'=r_s} \right] = \\
= \frac{4i}{\pi} [R_2(v_1) - R_1(v_1)] \phi_{v_2}(kr)\psi_{v_2}(kr_s),
\]

where use of (23) is made. The term involving the coupling between regions (I) and (II) is (5) is given by

\[
\phi_{v_2}(kr)\psi_{v_1}(kr_s) \frac{1}{H_{v_1}'(ka_1)} 2\Delta n^2 \int_{a_1}^{a_2} r'dr' H^{(1)}_{v_1}(kr') \psi_{v_2}(kr')
\]

Returning to (17), we have the \(v_1\)- and \(v_2\)-integrations remaining. These are easily performed using Cauchy's Theorem; the integrands are analytic except at the simple poles which are solutions of

\[
R_1(v_1) = R_2(v_2).
\]

The residues at the simple poles are

\[
a_1(t) = (\pi/2i) \left\{ \frac{1}{(2)\Gamma(1)} \frac{x_D^{(1)} [(t + x_D)^2]}{[\Gamma(t)\Gamma(t+x_D) - \Gamma(t)\Gamma(t+x_0)]^2} - \frac{1}{(2)\Gamma(1)} \frac{1}{[\Gamma(t+x_0)^2]} \right\}^{-1}
\]

with

\[
x_0 = \frac{k(a_1 - a_0)/(ka_1/2)}{2}
\]

\[16\]
The \( \nu_1 \)- and \( \nu_2 \)-integrations yield the desired result

\[
E(r) = \left(-\frac{1}{32}\right) \sum_m a_1(t_1^m) \phi_m^{(kr)} \psi_m^{(kr_s)} \exp[i(\phi - \phi_s)(ka_1 + i(ka_1/2)^{1/3} t_1^m)]
\]

\[
\cdot \exp[i(\phi - \phi_s)(ka_2 + i(ka_2/2)^{1/3} t_2^m)]
\]

\[
+ \frac{1}{(ka/2)^{1/3}} \sum_m a_1(t_2^m) \psi_m^{(kr_s)}
\]

\[
\cdot \exp[i(\phi - \phi_s)(ka_1 + i(ka_1/2)^{1/3} t_1^m)]
\]

\[
\cdot \exp[i(\phi - \phi_s)(ka_2 + i(ka_2/2)^{1/3} t_2^m)]
\]

\[
+ \frac{\pi^2 \Delta n}{4} \frac{1}{(ka/2)^{1/3}} \sum_m \sum_n a_1(t_1^m) a_1(t_2^n) \frac{\phi_m^{(kr)} \phi_m^{(kr_s)}}{[\nu_1^m - \nu_2^m]} \frac{\psi_m^{(ka_1)}}{H_{\nu_1 m}(ka_1)}
\]

\[
\cdot \exp[i ka_1 + (\phi_0 - \phi_s) t_1^m(ka_1/2)^{1/3} + i ka_2 + (\phi_0 - \phi_s) t_2^m(ka_2/2)^{1/3}]
\]

\[
\cdot k \int_{\psi_{t_1}^{\infty} H_{\nu_1 m}(kr')} \psi_{t_2}^{\infty} (kr')
\]

with

\[
[(\nu_1^m)^2 - (\nu_2^n)^2] \equiv 2ka_1 \left\{ k(a_1 a_2) + \left( \frac{ka_1}{2} \right)^{1/3} \left[ t_1^m(a_1^2) + t_2^n(a_2^2) \right]^{4/3} \right\}
\]

In (58), \( E(r) \) is the field normalized by the source intensity, this result is used for numerical experimentation and has been further normalized as \( W = |E(r)| (-1/32) \). Therefore, \( W \) is dimensionless.
SECTION III

REMARKS

1) The single sums over the modes in (58) represent the field, assuming uncoupled normal modes \(^5\),\(^6\). The assumption proceeds by taking the boundary conditions to be independent of the coordinate in the direction of propagation, but the boundary conditions in the normal direction are the same that would be applied for perfectly stratified media. It is also assumed that eigenfunctions corresponding to a particular normal mode are orthonormal; i.e.,

\[ \int_a^\infty \frac{dr'}{r'} \phi_n(kr')\phi_m(kr') = \delta_{mn}. \]

Unfortunately, in many theories, it is often very difficult to justify when to neglect the coupling. The solution given in (58) allows a direct determination of the effect of coupling. In (58) if the coupling is negligible, the solution suggests the angular position of the step is unimportant, and one must only remember which medium he is in; e.g., source in medium (I), observer in medium (II).

2) Cho and Wait\(^7\) gave a derivation for the fields in a stepped model for a non-uniform duct which employed the use of a non-Hilbert space inner product; i.e., \( \langle \phi_n, \phi_m \rangle \), instead of the usual definition in terms of a complex-valued function or ordered pairs with inner product \( \langle \phi_n, \phi_m^* \rangle \). The natural metric

\[ \frac{1}{2} \left\{ \frac{1}{2} \right\} \]

is a real nonnegative quantity and represents the physical quantity power. Recalling a metric space is complete if every Cauchy sequence is a convergent sequence, the usual definition of a Hilbert space is an inner product space which is complete with respect to its natural metric. The Cho and Wait result can be explained by the use of "biorthogonal" coordinates\(^8\). Let \( \{ \nu_n \} \) be the set of nonzero eigenvalues of the differential operator

\[ \mathcal{L} = \frac{\partial}{\partial r} \left( r \frac{\partial}{\partial r} \right) + rk^2 \]

and let \( \{ \phi_n \} \) be the corresponding eigenfunctions. The nonzero eigenvalues of the adjoint (formal) operation \( \mathcal{L}^* \) are given by \( \{ \nu_m^* \} \) and the corresponding eigenfunctions will be denoted by \( \{ \psi_m \} \). Now, take for the set \( \{ \psi_m \} \)

\[ \{ \psi_m \} = \{ \phi_1^*, \phi_2^*, \ldots \} \]
Then, indeed, the inner product will satisfy
\[ < \varphi_n, \varphi_m > = \delta_{mn}. \]

In fact, Cho and Wait's result for \( < \varphi_n, \varphi_m > \) equals our result in (56); i.e.,
\[ < \varphi_n, \varphi_m > = a_1(t). \]
This yields the interesting conclusion that the Cho-Wait inner product will equal zero if and only if \( a_1(t) \) equals zero which requires the existence of a double root! This can occur even in a single section duct. Proof:
Since the denominator of \( a_1(t) \) is a rational function, the only singularities it can have in the entire complex tplane are poles. A double root suggests degenerate modes in the two regions; i.e., the spatial distribution of sources across the aperture plane \( \phi = \phi_0 \) has the same wavelength as the normal modes being driven and a resonance occurs. The integral formulation used here in terms of the Green's function approach completely sidesteps the issue of what the normalized "eigenfunctions" should be in the biorthonormal coordinate approach. It may be that since the residue in the Green's function approach equals the inner product in the biorthonormal case and because the \( H^{(1)}(kr) \) are dense in our Hilbert space, any function can be approximated to within \( \epsilon > 0 \) by \( \sum_m a_m H^{(1)}(kr) \). The problem comes in finding out how to express the \( a_m \)'s. This is probably an example of a problem where the solution can be found by a Green's function method but only a generalization of the notion of eigenfunctions permit a solution in terms of the latter. The other point is that the residues come out naturally in the Green's function method.

3) The double sum in (58) depends upon the location of the vertical step, \( \phi_0 \), and represents the coupling from mode \( m \) to mode \( n \). The magnitude of this term depends, on the electrical step size, \( k(a_2 - a_1) \), as seen in (58) and (59).
SECTION IV
EXAMPLE

The numerical results for the four "height-gain" curves in Figure 3 correspond to the following choice of parameters:

\[ a_0 = 6378 \text{ km} \]
\[ a_1 = 6379 \text{ km} \]
\[ a_2 = 6379000, 6379010, 6379020, 6379030 \text{ m} \]
\[ r_s = 6379 \text{ km} \]
\[ f = 100 \text{ MHz} \]
\[ \Delta n = 25 \text{ N-units} \]
\[ a_0(\phi_0 - \phi_s) \approx 100 \text{ km} \]
\[ a_0(\phi_s - \phi) \approx 100 \text{ km} \]
\[ \delta = 0.3 - i4 \times 10^{-2} (\sigma = .001 \text{ Siemens/m}, \varepsilon_r = 10) \]

From Figure 3 it appears that a step size of about 20m causes significant change in the height-gain pattern. We will refer to this as the "resonant" step-size. This would correspond to a radial wave number from (47) of about 0.463 radians (i.e., about \( \pi/8 \)). The second limiting criteria for our solution in (58) is the number of modes required for convergence of the series. For the example in Figure 3, 10 modes gave two significant figures. The convergence of the series is dominated by the exponential terms in the series for small \( m \) and by the asymptotic decay of the residues for large \( m \); i.e.,

\[ a_1(t_m) \sim \exp(-4/3 t_m^{3/2})/4 t_m^{3/2} \]

where for \( t_m < x_0 \), the imaginary part of \( t_m \) becomes small. In Figure 4, the effect of the number modes is shown for a 10 km separation between source and step and step and observer. At this distance 30 modes are required for convergence.

In Figures 5 and 6, the choice of the parameters is the same as in Figure 3 except the frequency is 300 and 60 MHz respectively. Figure 7 is the same as Figure 4 except the refractive index contrast is 50 N-units. The limiting step size for this case is about 10 m. The resonant step size for 300 MHz is about 5 m for \( \Delta n = 25 \). In Figures 5, 6 and 7, 10 modes provided adequate convergence of the sums.
Figure 3. Height-gain curves for a frequency of 100 MHz. Step height shown in legend. Refractive index contrast is 25 N-units. \( W \) is the normalized signal strength. The radial wavelength corresponding to the curve "20m" is 0.463 radians.
Figure 4. Convergence of solution with increasing number of modes. Distance between source and step and step and observer is 10 km. The frequency is 100 MHz and the refractive index contrast 25 N-units.
Figure 5. Height-gain run for 300 MHz. $W$ is the normalized signal strength. The refractive index contrast is 25 N-units. 100 km separation between source and aperture plane.
Figure 6. Height-gain run for 60 MHz. W is the normalized signal strength. The refractive index contrast is 25 N-units. 100 m separation.
Figure 7. Height-gain run for 300 MHz. W is the normalized signal strength. The refractive index contrast is 50 N-units.
SECTION V

CONCLUSIONS

A Green's function approach is used to examine the effect of varying the step-height in a tropospheric duct with a single step discontinuity. If the electrical height of the step is less than the "radial" separation,

\[ k(a_2 - a_1)/(ka/2)^{1/3} \]

the vertical distribution of the field strength agrees with the fields in a duct with no discontinuity. This agrees with a result obtained by Wait and Spies for an ionospheric duct\(^{(9)}\). The location of the step in relation to the source and observer determines the number of modes required for convergence.
SECTION VI
REFERENCES


