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1. Introduction. ring missile flight tests at White

Sands Missile Range (WSMR), position data on the current status of
the missile is transmitted 20 times per second from radar sites to a
Univac 1108 computer. Consecutive pairs of such data are averaged 10
times per second and computations for plotting displays such as cur-
rent position, range verses altitude, or impact prediction are based
upon this averaged data.

In the event that a missile veers from its planned trajec-

tory, it will be necessary to terminate thrust to prevent the missile
from impacting in a populated area. For this reason, the Range Safety
Officer (RSO) requires that for each computational cycle (10 per sec-
ond) an instantaneous impact prediction (lIP) of the missile be com-
puted. This point is the intersection of the missile trajectory,
should thrust be terminated, with the Clarke Spheroid (of 1866) model
of the Earth at an altitude of 4000 feet..

If the effects of atmospheric drag are neglected then a
vacuum lIP can be rapidly computed using Kepler's central force equa-
tions, since the missile trajectory is an ellipse. This method is
applicable for a variety of low drag vehicles whose exit from and re-

LI- entry to the Earth's atmosphere occur at high angles. Since approxi-
___ mately one millisecond is required to compute a vacuum lIP, it is
Li_ always computed at a 10 per second rate. Details of this computation

are given in [1].

For low altitude missiles, whose trajectory is signifi-
cantly affected by atmospheric drag, a drag-corrected lIP calculation
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*KUZANEK

is also required by the RSO. Since the ordinary differential equa-
tions describing the missile trajectory in the atmosphere are not

solvable in closed form, as they were in the case of an elliptical
trajectory for a missile in a vacuum, these equations must be numer-

ically integrated until the resulting trajectory pierces the Earth's
surface. The numerical method currently being used is a fourth-order

Runge-Kutta (RK) method with approximately ten steps per trajectory
length or a second-order RK method with approximately twenty steps
per trajectory length. The fourth-order RK method is used whenever

the ballistic coefficient a of the missile is greater than 200 lbs/

ft2 , whereas the second-order RK method is used whenever B is less

than or equal to 200 lbs/ft 2 . In either case, approximately forty
evaluations of the equations of motion are required per drag IIP
computation. Since the Runge-Kutta method is a single step method,

the step size at each integration step is independent of the step
size at all previous steps. The step size used is adjusted at each
step so that it decreases as drag increases, in order to obtain a
more accurate drag iP in the same number of integration steps. A
derivation of the equations of motion and the method of solution is
described in [2], whereas the step size adjustment is described in
[31.

2. Statement of Problem. Some missions at WSMR involve
several simultaneous missiles. A drag lIP computation is required

for each such missile. Experimental runs have indicated that only
one drag lIP could be computed at a ten per second rate and at most
four drag lIPs at a five per second rate [4]. Until recently drag
liPs were computed at a five per second rate, with a linear extra-
polation of the last two computed drag liPs being used to approxi-

mate the drag lIP at the next intermediate time. Additional mission
requirements have necessitated the implementation of a variable rate
for computing drag lIPs, ranging from ten per second to two per sec-

ond [4]. At a two per second rate, four drag iP approximations via
linear extrapolation are required for each computed drag lIP, in
order to output lIPs at a ten per second rate. Consequently, the
output drag lIPs at a two per second rate are not as smooth and ac-

curate as they are at a five or ten per second rate.

The purpose of this paper is to present an alternative
method of computing drag liPs and alternative methods of obtaining
approximations to the drag lIPs at intermediate times, in order to

decrease computation time and/or increase accuracy. In order to put
this paper in its proper perspective, we briefly mention some pre- 1
vious investigations toward achieving these goals.
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3. Previous Investigations. In 1965 a method for obtain-
ing a drag-corrected Kepler lIP for Athena missiles was investigated
[5]. Briefly this method consisted of using position and velocity
data from a previous Athena mission to calculate, in non-real time,
a table of differences between Kepler liPs and drag-corrected IIPs
as a function of velocity. During the next Athena mission a linear
extrapolation of this data was used to obtain a drag-corrected Kepler
lIP in real time.

In 1975 various numerical integration methods for computing
drag liPs using digital and/or analog computers were investigated
[6], which included Adams-Moulton, Milne-Hamming, Euler, a variable
order Adams method called DIFSUB developed by C. W. Gear [7, 8, 9],
and 2nd, 3rd, and 4th order Runge-Kutta methods. The conclusions
reached were that the RK methods were better than the other methods,
except possibly the method of Gear. Large errors were associated
with the analog solutions.

Subsequently, alternative methods for expressing the equa-
tions of motion, using Encke's method [10, pp. 29-35] and two dif-
ferent versions of the method of variation of parameters [10, pp.
116-120 and 11], were investigated, as well as alternative numerical
integration methods, such as an improved variable order, variable
step Adams method [12], a rational extrapolation method [13, 14, 15,
161, and a Gauss-Jackson (Z2) method [101. The conclusions drawn
were that the method of variation of parameters took about twice as
long as Cowell's method for the computation of the same drag lIPs,
whereas Encke's method took about four times as long 117, p. 131 and
18, p. 15]. Furthermore, the alternative numerical integration
methods investigated offered little if any improvement over the vari-
able step RK method currently being used [17, p. 134].

Recently, an "f and g series" impact predictor algorithm,
which is based upon a Taylor-series-in-time representation of a mis-
sile's position and velocity, was developed for which a "two to ten
fold reduction in computer execution time for satellite orbits and a
seven to ten fold reduction in execution time for ICBM trajectories"
could be achieved over conventional numerical integration [19, p.
591. A second report uses the f and g series technique to determine
the "geographical distribution of debris impact coordinates that
would result if the missile were destroyed," [20, p. 287]. This tech-
nique is an extension of the classical f and g series used in the
solution of Kepler's equations of motion [21, pp. 107-111].
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Such a Taylor series type of solution to an initial value

problem is "generally impractical from a computational point of view,"
[22, p. 365]. In fact "... the necessity of calculating the higher

derivatives makes Taylor's algorithm completely unsuitable on high-
speed computers for general integration purposes," [23, p. 330].
However, in "comparison with fourth-order predictor-corrector and
Runge-Kutta methods, the Taylor series method can achieve an appre-
ciable saving in computer time, often by a factor of 100," [24, p.
389]. In view of these statements, the equations necessary to imple-
ment the Taylor series method are derived in this paper in order eo
determine whether or not the claims made for satellite orbits and
ICBM trajectories are equally valid for short and medium range tra-
jectories, such as those experienced by the missiles tested at WSMR.

4. Equation of Motion. The vector equation of motion of
a missile is

(4.1) r -r + r + ru g d

where r is the total acceleration of the missile, r is the unper-
•% u

turbed (Keplerian) acceleration, r is the perturbative accelerationg

due to higher order harmonics of the Earth's gravitational field, and

rd is the perturbative acceleration due to the Earth's atmospheric

drag.

Missiles which are launched from one end of WSMR and which
impact at the other end do not travel more than 143 miles, whereas
missiles which are launched from Green River, Utah and impact on
WSMR do not travel more than 500 miles. For such short and medium

range missiles the perturbative acceleration r is insignificant
g

compared with r d Therefore, r = 0 in this paper.g

The expression for ru is

(4.2) T l (-uIr'),u

where r = (x, y, z) is the position vector of the missile, r = (r.r)V
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is the distance of the missile from the origin of an inertial rec-
tangular coordinate system, and p is a gravitational constant. If r
is measured in feet and time in seconds, then p - 1.406559714 X 106

ft3/sec2.

The coordinate system used is right-handed, with origin at
the Earth's center (geocentric), x-y plane in the equatorial plane,
z-axis positive through the South Pole, and the x-axis aligned at
106020' west longitude at the instant missile position and velocity
data is obtained. Since this data is obtained in a non-inertial
(relative) coordinate system which rotates with the Earth, the veloc-

ity components xr, Yr' and zr of the relative velocity vector yr

must be converted to corresponding components x, y, and z of the in-

ertial velocity vector r by

(4.3) X + Wy, y = ;r - Wx, z Zr

where w - 7.29211583 X 107 5 rad/sec is the Earth's angular rate of

rotation.

The vector acceleration for atmospheric drag is given by

(4.4) rd = -(p(h)vr /2 r)vr

where vr is the velocity of the missile relative to the Earth's at-

mosphere in ft/sec, vr - (Vr * vr)/2, B is the ballistic coeffi-

cient of the missile in lbs/ft 2 , and p(h) is the density of the at-
mosphere in slugs/ft 3 at the current missile altitude h. The Earth's
atmosphere is assumed to rotate with the Earth, the effects due to
the wind are neglected, and 8 is assumed to be a constant for each
missile.

If r denotes the velocity of the missile in an inertial

coordinate system and W - (0, 0, -W), then the relative velocity vr

is given by

(4.5) v r r- w X .
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The atmospheric density is approximated by

2 r
(4.6) p(h) - A0 exp (Alh + A2h )

where A0 - 8.1283549 X 1072, A1 - -3.0319838 X 10- 5 , and A 2 -

-1.6214665 X 10710 for h < 70,000 ft; A0 - 1.7237156 X 10-1, A1

-5.4682878 X 10- , and A2 - 3.7544187 X 1011 for 70,000 ft < h <
150,000 ft; and A0 - 0 for h > 150,000 ft. The altitude h is given
by

(4.7) h - r - R + 4000

where R - 20929831.0 - 71303.68411(z/r)2 (cf. [1, p. 41]) is the
Earth radius of the Clarke Spheroid of 1866 at the same latitude as
the missile but at the 4000 ft altitude of WSMR.

5. Taylor Series Method. The Taylor series expressions

the missile's position r - r(t) and velocity r - r(t) at time t are

(5.1) r Z n (T i/i) (i) +E(t)
i-0

(5.2) n-1 + -
(52 r Z 1O (Ti/i~r E2(t0

where T - t - to is the time interval or step size for re-initiali-

zation of the series and (i) (t ) is the ith time derivative

of the position evaluated at epoch to . The error vectors E1 (t) and

E2 (t), due to the truncation of these Taylor series at the -n) term,

are given by

(5.3) 11(t) - (T n+I/(c] I)) 7(n )(&,), to 1-t,

(5.4) E2(0) - (Tn/nI) r (n 1) (E2D t o 
<  2 -

Following a rule of thumb, stated by Moore 125], of choosing n to be

approximately equal to the number of significant decimal digits that

can be carried by the computer, we choose n to have a maximum value
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of 6. However, for small values of the ballistic coefficient B,
smaller values of n with smaller step sizes T generally are prefer-
red.

The derivatives i) in (5.1) and (5.2) are obtained by
eI>

differentiating r u in (4.2) and rd in (4.4) with respect to time and

adding. Hence from (4.1), with r - 0,
g

(5.5) d /dtm - dmr /dtm + d r/dtm .
ud

In the development of the f and g series algorithm in [19],

the expressions for the second and higher derivatives of r failedU

to include the acceleration rd and its derivatives [19, p. 23, (6)],

resulting in the omission of a term in the expression for d
2r/dt2

[20, p. 301, (15)], and the omission of terms in all higher deriva-

tives of r. Therefore, it was decided to determine these higher deri-

vatives of ru and rd independently from [19] and [20], in order to

correct this omission.

Applying Leibnitz' Theorem for finding the nth derivative
of the product of two functions to (4.2), we obtain

d r u m (min (I)d-k-
(5.6) u - 7 (m'dtk-----

dtm k-0 dtk dtk

in which

d(l/r 3)/dt - 3r/r4

d2 (1/r3)/dt 2 - 3r/r 4 - 4r2/r5
(5.7)

d 3 (i/r3)/dt 3 - 3rYr4 - 36 ;r/r5 + 60 ;3/r6

d4 (1/r3)/dt4 - 3riv/r4 - 48 r;r 5 - 36 r2 /r5

+ 360 ;2r/r6 - 360 r3/r7
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Since ~-r T ) /2, we easily obtain

(5.8) r- + r rr +

r iv (-3 r 3 r r + iv

The corresponding higher derivatives of r d are determined

by applying Leibnitz' Theorem to (4.4), to obtain

(5.9 E k rn-k
dt _ 1( dt k dtm-k

where

k ( r kk dk-i

(5.10) r i (k\ dkP d r

dt i' dt k dt ki

From (4. 5), we have

(5.11) d m r/dt'~ - d' T/dt' -wX d' /dt'

Since v r (-V V 1/2, we easily obtain

r = r r r
.2

v r-(-v r -+ *.r v r +- v * v)/vr

(5.12) *** = ..3 V+ -

Vr (-3 r ..23vr r +vr vr/v r i

iv .. 2iv
V r (-4vr r -3v r +3v r.V r + 4v r *v r + -V r vr )/V.

The higher time derivatives of p in (5.10) are obtained by
repeated applications of the chain rule of differential calculus to
p(h(t)) in (4.6). We first note from (4.7) that the time derivatives
of the Earth's radius R are small compared with the time derivatives

of r -r. Therefore, we have

388



*KUZANEK

(5.13) dmh/dtm = dmr/dtm + elm

where iJe << Id r/dtmi.
m

Applying the chain rule to p(h(t)) and using (5.13), we obtain

dp/dt - ;Dp/Dh

d2p/dt2 = r2 ap/h 2 + r ap/h ,

(5.14) d3p/dt 3 = r3 3p/3h3 + 3 r r a2p/ah 2 +r p/ah

d~p/dt4 = r 4 a4 0 /;h4 + 6 r2r a3p/ah3

+ (3 r2 + 4 rj')a 2p/ah 2 + rv 9p/ah

Differentiating (4.6), we have

Dp/Dh = (Al + 2A2h)p

32p/ah 2 = 2A2p + (A1 + 2A2h)3/,/ah

( 3p/ph 3  = 4A2ap/3h + (A1 + 2A2h) a
2p/h 2

K4p/ah4 = 6A2 
2p/ah 2 + (A1 + 2A2h);

3p/3h 3

All quantities required for the computation of the deriva-
-(i)

tives ro), i 1 1, ..., 6, in the Taylor series (5.1) and (5.2) can
now be determined from the preceding equations. To implement the
Taylor series method, a value of n is choosen between 2 and 6 with
lower values corresponding to smaller values of a. The step size T

is determined such that the maximum number of steps permitted per
trajectory integration is not exceeded, and such that the local trun-

cation errors E1 in (5.3) and E2 in (5.4).are not exceeded. There-

fore, given the position r0 and velocity r0 of a missile at epoch to,

we obtain the position r and velocity r of a missile at time t from
(5.1) and (5.2). This process is repeated until impact time T, for
which r(T) - R(T).

Since the preceding computations were made in an inertial
coordinate system, the true impact coordinates x1, YI, and zI can
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be obtained from the coordinates XT, YT' and zT of the position vec-

tor r(T) at impact by a rotation through wT radians as followstx = xT cos wT - y sin wT ,

(5.16) Y, - XT sin wT + YT cos wT , -

Zl= T

6. Methods for Approximating Drag liPs between Computa-

tional Cycles. Ten times a second, or once every 100 milliseconds,
all data on a missile, such as its position, velocity, and drag lIP,

is updated. However, the computation of drag liPs for several mis-
siles cannot be completed in fewer than 100 milliseconds even using

the Taylor series method, because much of the computer's time is
spent making many other computations during each 100 millisecond
time period. For example, if drag liPs can be computed only once
every 500 milliseconds, then approximations to the drag lIPs are
required four times per 500 millisecond computational cycle. The
current method for obtaining these approximations is by a linear
extrapolation of previously computed drag lIPs, considered as fun-
ctions of range time. Unfortunately, this method does not account

for new values of the missile's initial position r0 and velocity r0

at these intermediate times and is much less accurate than the fol-

lowing improved methods.

The first improved method for approximating drag lIPs be-
tween computational cycles is by a quadratic extrapolation of the
components of previously computed drag liPs, considered as functions
of their corresponding components of the vacuum lIPs. Since vacuum
lIPs are always computed every 100 milliseconds anyway, no additional
computer time is required for their use in this method. In fact, it
requires about the same amount of computational time as the current
linear extrapolation method (one millisecond), yet is more accurate
by an average factor of 13. Furthermore, it does account for new
intermediate time values of the missile's initial position r0 and

velocity r0 since the vacuum lIPs at these times are functions of

ro0 and r0 . However, if consecutive pairs of components of vacuum

liPs are "close" together, then this quadratic extrapolation method
may yield erroneous drag UiP approximations. Therefore, the follow-
ing method which avoids this problem is recommended.
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The second improved method for approximating drag IIPs be-
tween computational cycles is by a quadratic extrapolation of the
differences between previously computed drag liPs and their cor-
responding vacuum liPs, considered as functions of range time. It
too requires about the same amount of computational time as the cur-
rent linear extrapolation method, yet is more accurate by an average
factor of 6.

In general, higher order extrapolations may yield increas-
ingly worse approximations to the drag liPs as the order is increased.
This would be especially true if the radar-determined position and
velocity of the missile were not following a smooth trajectory, in
which case an accurate drag lIP would be needed most. In fact, "If
polynomial extrapolation must be done with poorly behaved functions,
then very low degree extrapolation is usually the safest, but even
this should be carried out only for values of x very close to the
tabulated region," [26, p. 58].

7. Conclusions. The use of the Taylor series method re-
sulted in equivalent drag liPs being computed in two to ten times
less time than by the currently used Runge-Kutta method. The use of
the method of quadratic extrapolation of the differences between
previously computed drag liPs and their corresponding vacuum lIPs
resulted in approximations of drag lIPs between computational cycles
being computed over six times more accurately than by the currently
used linear extrapolation method, with about the same amount of com-
putational time, and without the possibility of erroneous approxi-
mations.
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