DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
MATERIALS RESEARCH LABORATORIES
MELBOURNE, VICTORIA
REPORT

MRL-R-777

INTERMEDIATE FREQUENCY SOUND ABSORPTION IN SEAWATER:
THE ROLE OF MAGNESIUM SULPHATE

Daniel J. Whelan

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORIZED TO
DUPLICATE AND SELL THIS REPORT

Approved for Public Release

© COMMONWEALTH OF AUSTRALIA 1980
JUNE, 1980
INTERMEDIATE FREQUENCY SOUND ABSORPTION IN SEAWATER:
THE ROLE OF MAGNESIUM SULPHATE

Daniel J. Whelan

ABSTRACT

The resonant absorption frequency, \(f_\text{res} \), and the excess absorption parameter, \((\alpha - \chi)_\text{res} \), for 0.014 M MgSO\(_4\) in water at 4°C and 100 atmosphere pressure have been calculated and agree quite closely with those values defined by the Thorp equation for deep ocean sound channel absorption at intermediate frequencies.

Approved for Public Release

© COMMONWEALTH OF AUSTRALIA 1980

POSTAL ADDRESS: Chief Superintendent, Materials Research Laboratories
P.O. Box 50, Ascot Vale, Victoria 3032, Australia
1. **DOCUMENT NUMBERS:**
 a. AR Number: AR-002-162
 b. Series & Number: REPORT MRL-R-777
 c. Report Number: MRL-R-777

2. **SECURITY CLASSIFICATION:**
 a. Complete document: UNCLASSIFIED
 b. Title in isolation: UNCLASSIFIED
 c. Abstract in isolation: UNCLASSIFIED

3. **TITLE:**
 INTERMEDIATE FREQUENCY SOUND ABSORPTION IN SEAWATER: THE ROLE OF MAGNESIUM SULPHATE

4. **PERSONAL AUTHOR(S):**
 WHELAN, Daniel J.

5. **DOCUMENT DATE:**
 JUNE, 1980

6. **TYPE OF REPORT & PERIOD COVERED:**

7. **CORPORATE AUTHOR(S):**
 Materials Research Laboratories

8. **REFERENCE NUMBERS:**
 a. Task: Marine Chemistry Research
 b. Sponsoring Agency: DST 78/150 Defence

9. **COST CODE:**
 284420

10. **IMPRINT (Publishing establishment):**
 Materials Research Laboratories,
 P.O. Box 50, Ascot Vale, Vic. 3032
 JUNE, 1980

12. **RELEASE LIMITATIONS (of the document):**
 Approved for Public Release

13. **ANNOUNCEMENT LIMITATIONS (of the information on this page):**
 No Limitation

14. **DESCRIPTORS:**
 630 Acoustic absorption 645 Magnesium sulphate
 Underwater sound transmission Sound attenuation SOFAR channel

15. **COSATI CODES:**
 2001 0704 0810

16. **ABSTRACT (if this is security classified, the announcement of this report will be similarly classified):**
 The resonant absorption frequency, f_r, and the excess absorption parameter, $(\alpha_x)_r$, for 0.014 m MgSO$_4$ in water at 4°C and 100 atmosphere pressure have been calculated and agree quite closely with those values defined by the Thorp equation for deep ocean sound channel absorption at intermediate frequencies.
CONTENTS

1. INTRODUCTION 1
2. ACOUSTICAL ABSORPTION IN SEAWATER 2
3. INTERMEDIATE FREQUENCY ABSORPTION, MgSO₄ 3
 (a) Field Measurements 3
 (b) Laboratory Measurements 4
 (c) Influence of Temperature and Pressure on f_{ri} 4
 (d) Excess Absorption Parameter $(a \lambda)_{ri}$ 5
4. SUMMARY 7
5. REFERENCES 8
 TABLE 1 11
 TABLE 2 11
 TABLE 3 12

* * *
1. INTRODUCTION

In the early fifties, Wilson and Leonard [1] and Kurtze, Tamm and Kaiser [2] established that magnesium sulphate is primarily responsible for the absorption of sound in seawater over the frequency range 50-500 kHz and that the sound absorption curve at ambient conditions for 0.014 m MgSO₄ in pure water is very similar to that from natural seawater. Subsequently Eigen and Tamm [3] proposed that this sound absorption is due to molecular relaxation arising from solvent separated MgSO₄ ion pairs with varying degrees of hydration and this concept has been analysed kinetically in considerable detail [4-6]. It has also been found to be consistent with results from electrical conductance [7], from H¹ nmr proton exchange [8] and from laser Raman spectroscopy [9].

In seawater (35% salinity), the averaged analytical concentration of Mg⁺⁺ (free and associated) is 0.052 m and that of SO₄⁻⁻ is 0.028 m [10]; hence, only portion of the total Mg⁺⁺ and total SO₄⁻⁻ present in seawater is involved in the sound absorption process [11]. This is hardly surprising as seawater can be regarded as a multi-electrolyte solution in which many ionic interactions occur [12].

In this report, it is intended to substantiate the role played by MgSO₄ in acoustic sound absorption in seawater under real conditions by comparing laboratory measurements with those observed in deep ocean sound channel experiments, an analysis which does not appear to have been done before.
2. ACOUSTICAL ABSORPTION IN SEAWATER

The absorption of sound in seawater can be defined over the whole spectrum by a series of relaxation phenomena, each of which can be described mathematically [2,6] by a Debye relationship of the form:

\[
a_i = \kappa_i \frac{f_{ri} f^2}{f_{ri}^2 + f^2}
\]

In this equation, \(a_i\) is the individual sound absorption coefficient (dB km\(^{-1}\)) with respect to the particular relaxation process, \(i\), under consideration, \(f\) is the observing frequency, usually in kHz, \(f_{ri}\) is the relaxation frequency of the medium under the conditions of measurement, and \(\kappa_i\), a characteristic of the medium, is a measure of its chemical compressibility under the influence of the perturbing process, in units of (dB km\(^{-1}\) kHz\(^{-1}\)).

When \(f = f_{ri}\),

\[
a = a_{ri} = \frac{1}{2} \cdot \kappa_i f_{ri}
\]

If \(v\) is the velocity of sound in the medium, in units of km msec\(^{-1}\),

\[
v = f_{ri} \lambda_{ri}
\]

where \(\lambda_{ri}\) is the wavelength of the acoustic wave at resonance, (km).

Thus, from (2) and (3)

\[
\kappa_i = \frac{2(a_{ri} \lambda_{ri})}{v}
\]

whence, from (1)

\[
a_i = \frac{2 a_{ri} \lambda_{ri}}{v} \cdot \frac{f_{ri} f^2}{f_{ri}^2 + f^2}
\]
It is common to discuss oceanographic acoustical data both in terms of "the excess absorption per wavelength at the resonant frequency", \((a_f \lambda_f)\), which is also written as \((a\lambda)_{rf}\), and in terms of \(f_r\), the resonant frequency.

In seawater, the principal absorption at low frequency (1-5 kHz) is attributed to borate and to magnesium-carbonate interactions [13-15] and that at high frequency (above 250 kHz) to the viscous relaxation of water [16,17]. It is over the intermediate range that absorption attributed to MgSO\(_4\) relaxation occurs but, to the author's knowledge, laboratory results have never been compared directly with field results.

3. INTERMEDIATE FREQUENCY ABSORPTION, MgSO\(_4\)

(a) Field Measurements

In 1967, Thorp presented a semi-empirical equation describing the low frequency and intermediate frequency sound absorption occurring in various deep ocean (SOFAR) sound channels in Northern Hemisphere waters [18,19], especially in the Atlantic Ocean. This equation summarised a wide body of previously isolated knowledge and is still the basis for current developmental work [20].

The Thorp term referring to intermediate frequency sound absorption is given by

\[
a_i = \frac{44 f^2}{4100 + f^2} \text{ dB km}^{-1} \tag{6a}
\]

where \(f\) is in kHz. This transforms to

\[
a_i = 0.68 \times \frac{64 f^2}{f^2 + 64^2} \tag{6b}
\]

applying to deep ocean sound channel transmission at 4°C and 35 \(^o\)/oo salinity.

If one assumes the speed of sound in the SOFAR channel is ca. 1.48 \times 10^{-3} \text{ km msec}^{-1}, [21], then, using equations 1, 4, 6, one can calculate under these conditions

\[
f_{ri} = 64 \text{ kHz}
\]

and

\[
(a\lambda)_{ri} = \frac{1}{2}(0.6875 \times 1.48 \times 10^{-3}) \text{ dB} = 5.09 \times 10^{-4} \text{ dB}
\]

(SOFAR channel, 4°C, North Atlantic)
Laboratory Measurements

In the laboratory, Atkinson and Petrucci [4] made a detailed study of the acoustic absorption spectrum of magnesium sulphate in water and determined both the resonant absorption frequency, \(f_{ri} \), and the excess absorption per wavelength, \((\alpha \lambda)_{ri} \), in pure water at 25°C and at various concentrations, (Table 1). From their work it appears that both these parameters are concentration dependent.

If both these dependencies are linear with concentration — and independently obtained evidence suggests that they are (2) — then one can calculate graphically from the data in Table 1, that, at effective concentration of 0.014 m \(\text{MgSO}_4 \) (the concentration of \(\text{MgSO}_4 \) in pure water which gives an absorption equivalent to that observed in seawater) and at 25°C,

\[
(\alpha \lambda)_{ri} = 5.5 \times 10^{-4} \text{ dB (25°C, 1 atmos.)}
\]

and

\[
f_{ri} = 127 \text{ kHz (25°C, 1 atmos.)}
\]

The laboratory measurements of Fisher and Simmons [13] and the field experiments of Bezdek [22,23] have shown that both the overall attenuation and the resonant frequency are pressure and temperature dependent to a marked degree.

(c) Influence of Temperature and Pressure on \(f_{ri} \)

From laboratory data reported by Mellen, Browning and Simmons [15] on the temperature dependence of the relaxation frequency of \(\text{MgSO}_4 \) at 0.014 m, the author has calculated that, over the range 2°-30°C and at atmospheric pressure,

\[
f_{ri} = 1.229 \times 10^7 \exp(-3415/T) \quad (7)
\]

where \(T \) is in °K, and \(f_{ri} \) is in kHz.

From this equation, it can be shown that

(i) at 25°C, \(f_{ri} \) equals 131 kHz, a value very similar to that of Atkinson and Petrucci (127 kHz), and

(ii) at 4°C, \(f_{ri} \) equals 55 kHz.

If one assumes that the same temperature dependence defined in eqn. 7 also applies to Atkinson and Petrucci's work, then their value of \(f_{ri} \) reduces to 51 kHz and the averaged value of these two extrapolations of laboratory data for 0.014 m \(\text{MgSO}_4 \) solutions is 53 kHz (1 atm., 4°C).
In 1973, Bezdek [23] studied the variation of f_{ri} and a_i with depth, in seawater, off the coast of Southern California. Although the observed relaxation frequencies which he reported were less than those observed from laboratory studies at atmospheric pressure (Table 2), he observed that the frequency of the MgSO$_4$ relaxation reaction increased with depth and could be approximated by a linear relation,

$$f_{ri}(d) = f_{ri}(0) + 7.5 \times 10^{-3} d$$

where d is the depth of the ocean channel in metres and $f_{ri}(d)$ is the relaxation frequency (in kHz) at this depth.

If one assumes that a similar pressure dependence applies in solutions of MgSO$_4$ and that, on average, the depth of the deep axis sound channel occurs around 1000 metres [21], then

$$f_{ri}(1000) = 53 + 7.5 \text{ kHz}$$

$$= 60.5 \text{ kHz, say 61 kHz},$$

where $f_{ri}(0)$ is the average value of Atkinson and Petrucci’s and Mellen, Browning and Simmons' data, based on our calculations. This figure is very similar to that determined semiempirically by Thorp, 64 kHz (equation 6).

The close agreement of these figures may be fortuitous or it may suggest that ionic strength effects and competing equilibria in seawater have only a small effect on the value of f_{ri} for magnesium sulphate.

(d) Excess Absorption Parameter ($a\lambda$)$_{ri}$

What is the effect of temperature and pressure on the excess absorption parameter, ($a\lambda$)$_{ri}$?

From Fisher’s original work in the laboratory and from Bezdeks’s field work [20], attenuation is pressure dependent, following an approximate relation,

$$a(d) = a(0)(1 - 10^{-4} d)$$

where $a(d)$ is the sound absorption coefficient of 0.014 m MgSO$_4$ at a depth, d (metre).

At a depth of 1000 m, this reduces to

$$a(1000) = a(0) \times 0.90$$
Millero and his co-workers [24] have established that the sound speed for 0.014 m MgSO₄ at 25°C and 1 atmosphere is very similar to that at 4°C and 100 atmosphere pressure, so that any change in \((\alpha \lambda)_{f_1}\) or \((\alpha \lambda)_{f_1}\) will correspond to changes in \(\left(\frac{\alpha \lambda}{f_1}\right)_{f_1}\) with temperature and pressure.

At 25°C (1 atm.), \(f_{r_1}\) is ca. 130 kHz, and at 4°C (100 atmos., 1000 m), \(f_{r_1}\) is ca. 60 kHz. Hence, considerable change in \((\alpha \lambda)_{f_1}\) will occur by virtue of a change in \(f_{r_1}\), unless there is an accompanying change in \(\alpha_i\).

Fisher and Simmons [13] have reported a relationship between temperature and pressure, based on experimental results in the laboratory, which in effect reduce to

\[
\alpha_i (25^\circ C, 1 \text{ atm.}) = \frac{108 f^2}{27536 + f^2} \text{ dB km}^{-1} \tag{10}
\]

and

\[
\alpha_i (4^\circ C, 100 \text{ atm.}) = \frac{33 f^2}{5046 + f^2} \text{ dB km}^{-1} \tag{11}
\]

The validity of using these equations out of context [13] has not been established but they are the best equations available for the purpose of this exercise.

Values of \(\alpha_{r_1}, \left(\frac{\alpha \lambda}{f_1}\right)_{f_1}\) and \((\alpha \lambda)_{f_1}\) based on calculations from these equations are given in Table 3.

The individual values of \(f_{r_1}\) and \((\alpha \lambda)_{r_1}\) used by Fisher and Simmons in their equations are different from those calculated in this report but this is another issue. It is the ratio of the two values of \((\alpha \lambda)_{r_1}\) under the conditions described by Thorp (4°C, 100 atm., 350/oo salinity) which is of interest here.

This ratio is given by

\[
\frac{(\alpha \lambda)_{f_1} [25^\circ C, 1 \text{ atm., } 130 \text{ kHz}]}{(\alpha \lambda)_{f_1} [4^\circ C, 100 \text{ atm., } 60 \text{ kHz}]} = \frac{4.68 \times 10^{-4}}{3.39 \times 10^{-4}} = 1.38
\]
Hence, Atkinson and Petrucci's laboratory results are reduced from

\[(\alpha \lambda)_{T1} [25^\circ C, 1 \text{ atm., } 0.014 \text{ m MgSO}_4] = 5.53 \times 10^{-4} \text{ dB}\]

by this factor, 1.38 to

\[(\alpha \lambda)_{T1} [4^\circ C, 100 \text{ atm., } 0.014 \text{ m MgSO}_4] = 4.01 \times 10^{-4} \text{ dB}\]

which compares with the Thorp value of

\[(\alpha \lambda)_{T1} [\text{SOFAR, } 4^\circ C, 35 \text{ °/oo salinity}] = 5.09 \times 10^{-4} \text{ dB}\]

In view of the many assumptions used to arrive at these comparisons and the inherent limitations in evaluating the experimental data both in the laboratory [25] and in the deep ocean [26], the agreement is surprisingly good. It confirms the commonly held belief that the intermediate frequency sound absorption in seawater is, in fact, dominated by MgSO$_4$ interactions and not artifacts associated with it.

4. SUMMARY

The resonant absorption frequency, f_{T1}, and the excess absorption parameter, $(\alpha \lambda)_{T1}$, as determined in the laboratory, for 0.014 m MgSO$_4$ in water at 25° C have the values of ca. 130 kHz and 5.53×10^{-4} respectively. Both these parameters depend on temperature and pressure.

Under conditions found in typical deep ocean sound channel axes (4° C, 100 atm., 35°/oo salinity), it has been calculated that f_{T1} should change to ca. 60 kHz and $(\alpha \lambda)_{T1}$ to 4.01×10^{-4} dB values which agree very closely with those actually observed in field experiments, namely

\[f_{T1} = 64 \text{ kHz}\]

and

\[(\alpha \lambda)_{T1} = 5.09 \times 10^{-4} \text{ dB},\]

based on the Thorp equation.
5. REFERENCES

(b) Elgquist, B. and Wedborg, M. (1978). "Stability constants of NaSO$_4^-$, MgSO$_4$, MgF$, MgCl^+$ ion pairs at the ionic strength of sea water by potentiometry". Marine Chemistry, 6, 243-252.

TABLE 1

RELAXATION PARAMETERS IN AQUEOUS MgSO₄ AT 25°C, AND 1 ATMOSPHERE PRESSURE, FOLLOWING ATKINSON AND PETRUCCI, (REF. 4)

<table>
<thead>
<tr>
<th>Conc. (M)</th>
<th>0.09889</th>
<th>0.1493</th>
<th>0.1965</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_r (kHz)</td>
<td>133</td>
<td>137</td>
<td>140</td>
</tr>
<tr>
<td>$(a\lambda)_r \times 10^4$ (Neper)</td>
<td>4.5</td>
<td>6.8</td>
<td>9.0</td>
</tr>
<tr>
<td>$(a\lambda)_r \times 10^3$ (dB)</td>
<td>3.91</td>
<td>5.91</td>
<td>7.82</td>
</tr>
</tbody>
</table>

TABLE 2

VARIATION OF RELAXATION FREQUENCY OF MgSO₄ IN SEAWATER, OFF SAN DIEGO, WITH DEPTH, FOLLOWING BEZDEK, (REF. 23)

<table>
<thead>
<tr>
<th>Depth (metre)</th>
<th>Relaxation Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>1000</td>
<td>52</td>
</tr>
<tr>
<td>2000</td>
<td>60</td>
</tr>
</tbody>
</table>
TABLE 3

DEPENDENCE OF ACOUSTICAL VARIABLES ON TEMPERATURE AND PRESSURE
AS CALCULATED BY FISHER-SIMMONS EQUATIONS (EQN. 10, 11)

\[
\alpha_i (25^\circ C, 1 \text{ atm.}) = \frac{108 f^2}{27536 + f^2} \quad \text{dB km}^{-1}
\]

\[
\alpha_i (4^\circ C, 100 \text{ atm.}) = \frac{33 f^2}{5046 + f^2} \quad \text{dB km}^{-1}
\]

Assume \(f_{\text{ri}} \) has values calculated from Ref. 4.

At 25\(^\circ\)C, 1 atm. with \(f = f_{\text{ri}} = 130 \text{ kHz} \)

\[
\alpha_i = 41.07 \text{ dB km}^{-1}
\]

\[
\frac{\alpha_i}{f_{\text{ri}}} = 0.316 \text{ dB km}^{-1} \text{ kHz}^{-1}
\]

\((\alpha\lambda)_{\text{ri}} = 4.68 \times 10^{-4} \text{ dB}\)

At 4\(^\circ\)C, 1000 atm. with \(f = f_{\text{ri}} = 60 \text{ kHz} \)

\[
\alpha_i = 13.74 \text{ dB km}^{-1}
\]

\[
\frac{\alpha_i}{f_{\text{ri}}} = 0.229 \text{ dB km}^{-1} \text{ kHz}^{-1}
\]

\((\alpha\lambda)_{\text{ri}} = 3.39 \times 10^{-4} \text{ dB}\)
DISTRIBUTION LIST

MATERIALS RESEARCH LABORATORIES

Chief Superintendent
Superintendent, Physical Chemistry Division
Mr. J. Bishop
Dr. D.J. Whelan
Library
Librarian, Materials Testing Laboratories, N.S.W. Branch
(Through Officer-in-Charge)

DEPARTMENT OF DEFENCE

Chief Defence Scientist
Deputy Chief Defence Scientist
Controller, Projects and Analytical Studies
Superintendent, Science and Technology Programmes
Controller, Service Laboratories and Trials
Superintendent, Services Research Laboratories
Superintendent, Propulsion and Marine Physics
Hydrographer, RAN
Scientific Adviser - Army
Air Force Scientific Adviser
Navy Scientific Adviser
Chief Superintendent, Aeronautical Research Laboratories
Chief Superintendent, Weapons Systems Research Laboratory,
Defence Research Centre
Chief Superintendent, Electronics Research Laboratory,
Defence Research Centre
Chief Superintendent, Advanced Engineering Laboratory,
Defence Research Centre
Superintendent, Trials Resources Laboratory, Defence Research
Centre
Senior Librarian, Defence Research Centre
Librarian, R.A.N. Research Laboratory (2 copies - one attention
Dr. M. Hall, Ocean Sciences Division)
Officer-in-Charge, Document Exchange Centre (16 copies)
Technical Reports Centre, Defence Central Library
Central Office, Directorate of Quality Assurance - Air Force
Deputy Director, Scientific and Technical Intelligence,
Joint Intelligence Organisation
Head, Engineering Development Establishment
Librarian, Bridges Library, Royal Military College
Officer-in-Charge, Joint Tropical Trials and Research
Establishment
DISTRIBUTION LIST

DEPARTMENT OF PRODUCTIVITY

NASA Canberra Office
Head of Staff, B.D.R.S.S. (Aust.)

OTHER FEDERAL AND STATE DEPARTMENTS AND INSTRUMENTALITIES

The Chief Librarian, Central Library, C.S.I.R.O.
Australian Atomic Energy Commission Research Establishment
Chief, Division of Chemical Technology, C.S.I.R.O.
Chief, Division of Chemical Physics, C.S.I.R.O.
Editor, "Search"
Secretary, Department of Science
Chief, Division of Fisheries and Oceanography, C.S.I.R.O.
Australian Institute of Marine Science
Marine Chemistry Section, School of Chemistry, University of Melbourne

MISCELLANEOUS - OVERSEAS

Assistant Director/Armour and Materials, Military Vehicles and Engineering Establishment, Chertsey, Surrey, England
Reports Centre, Directorate of Materials Aviation, Orpington, Kent, England
U.S. Army Standardization Representative, C/o DGAD (NSO), Canberra, A.C.T.
The Director, Defence Scientific Information and Documentation Centre, Delhi, India
Colonel B.C. Joshi, Military, Naval and Air Adviser, High Commission of India, Red Hill, A.C.T.
Director, Defence Research Centre, Kuala Lumpur, Malaysia
Exchange Section, British Library, Lending Division, Yorkshire, England
Library, Chemical Abstracts Service, Columbus, Ohio, U.S.A.
INSPEC: Acquisition Section, Institution of Electrical Engineers, Hitchin, Herts, England
Overseas Reports Section, Defence Research Information Centre, Orpington, Kent, England
Counsellor Defence Science, Embassy of Australia, Washington, U.S.A. (2 copies – one attention Dr. I. Hagen, one attention Dr. J. Stals)
Engineering Societies Library, New York, U.S.A.
DISTRIBUTION LIST
(Continued)

MISCELLANEOUS - OVERSEAS (Cont.)

Director, Admiralty Materials Laboratory, Poole, Dorset, England
(2 copies - one attention Dr. G. Jackson)

Director, National Physical Laboratory, Middlesex, England

Director, Admiralty Naval Dockyard, Portsmouth, U.K.

Director General, Defence Research Establishment Ottawa,
Ottawa, Ontario, Canada

Chief, Defence Research Analysis Establishment, Ottawa, Ontario,
Canada

Director General, Defence Research Establishment Toronto,
Ontario, Canada

Director General, Defence Research Establishment Atlantic,
Halifax, Nova Scotia, Canada

Director General, Defence Research Establishment Pacific,
British Columbia, Canada

Science Information Division, Department of Scientific and
Industrial Research, Wellington, New Zealand

Director General, Defence Research Establishment Valcartier,
Courcelette, Canada

Dr. J.R. Lovett, Environmental Acoustics Division, Naval Ocean
Systems Centre, California, U.S.A.

Dr. R.H. Mellen, Naval Underwater Systems Centre, New London,
Connecticut, U.S.A.

Dr. V. Simmons, Naval Underwater Systems Centre, New London,
Connecticut, U.S.A.

Dr. H.C. Box, Roswell Park Memorial Institute, Buffalo, New York,
U.S.A.

Dr. F.H. Fisher, Scripps Oceanographic Institute, University of
California, U.S.A.

Dr. D.G. Browning, Physics Dept., Naval Postgraduate Academy,
Monterey, California, U.S.A.

Dr. H. Medwin, Physics Dept., Naval Postgraduate Academy,
Monterey, California, U.S.A.

Dr. W.F. Forbes, Dept. of Mathematical Statistics, University of
Waterloo, Ontario, Canada

Dr. R. Shulkin, Applied Physics Laboratory, University of
Washington, U.S.A.

Prof. A.C. Kibblewhite, Dept. of Physics, University of Auckland,
New Zealand

Dr. F.R. Richards, Dept. of Oceanography, University of
Washington, U.S.A.

Central Dockyard Laboratory, HM Naval Base, Portsmouth, U.K.
(Attention: Dr. D. Houghton)

Naval Research Laboratory, Washington, U.S.A.
(Attention: Dr. R.R. Rojas)

Naval Undersea Center, San Diego, U.S.A. (Attention:
Dr. D.E. Andrews, Jnr.)
MISCELLANEOUS - OVERSEAS (Cont.)

Scripps Institute of Oceanography, La Jolla, U.S.A.
(Attention: Dr. E. Goldberg)
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts,
U.S.A. (Attention: Dr. P.G. Brewer)
Department of Oceanography, University of Southampton, U.K.
(Attention: Dr. J.D. Burton)
Department of Oceanography, University of Liverpool, U.K.
(Attention: Dr. J. Riley)
National Institute of Oceanographic Sciences, Wormley, Surrey, U.K.
(Attention: Dr. Culkin)
Defence Research Establishment Pacific, Fleet Mail Office, Victoria
B.C., Canada. (Attention: Mr. J. Carson)
Defence Scientific Establishment, H.M.N.Z Naval Dockyard, Auckland,
New Zealand. (Attention: Dr. D. Barnes)