SOME OPTIMAL CONTROL PROBLEMS FOR THE HELMHOLTZ EQUATION

UNCLASSIFIED
Radiation and scattering problems are formulated as optimal control problems in which either a current or surface impedance is sought from a class of admissible functions which optimizes a functional of the scattered far field. In both cases the existence of an optimal solution is proven. In the linear (radiation) case constructive algorithms for finding the optimal solution are presented.
SOME OPTIMAL CONTROL PROBLEMS FOR
THE HELMHOLTZ EQUATION

Thomas S. Angell
Department of Mathematical Sciences
University of Delaware
Newark, Delaware

July, 1980

Applied Mathematics Institute
Technical Report No. 87A

Dedicated to Professor Lamberto Cesari on the occasion
of his seventieth birthday.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

International Conference on Nonlinear Phenomena in Mathematical
Sciences, June 16-20, 1980, University of Texas at Arlington.
Abstract

Radiation and scattering problems are formulated as optimal control problems in which either a current or surface impedance is sought from a class of admissible functions which optimizes a functional of the scattered far field. In both cases the existence of an optimal solution is proven. In the linear (radiation) case constructive algorithms for finding the optimal solution are presented.
1. INTRODUCTION

In this paper, we review results obtained by the author in close collaboration with R.S. Kleinman [1], [2], [3], [4]. The class of problems referred to in the title arise in the study of time harmonic electromagnetic and acoustic radiation and scattering. As such, these problems are problems in exterior domains in contrast to the more common problems with bounded domains usually encountered in the literature of distributed parameter control systems. Such problems require, in addition to the usual boundary condition, a so-called "radiation condition" in order to guarantee that the problem has a unique solution. This condition at infinity can then be used, as in classical potential theory, to recast the problem which is originally stated in differential form, into a problem involving integral operators acting on appropriate spaces of functions defined on the boundary of the scattering obstacle or radiating structure. It is this formulation of the control problems in terms of boundary integral equations that we will use in our discussion of the scattering problem.

First, however, we will consider a simpler linear radiation problem with Dirichlet conditions under the assumption that we have available a Green's function appropriate to the exterior
domain. This will help to focus the nature of the boundary control problems we consider and will allow us to mention some numerical results for the control of radiation patterns. In the last section, we will turn to the more complicated non-linear optimization problem with a Robin boundary condition and without the assumption that the appropriate Green's function is available. In our treatment of this non-linear problem of optimal control, we will use a pair of boundary integral equations derived in [3], the unique solution to which affords a solution of the exterior boundary value problem. That we deal with a pair of boundary integral equations rather than a single equation is a result of the well-known non-uniqueness of solutions of the first of these equations at interior eigenvalues of the homogeneous Dirichlet problem. It must be emphasized that these exceptional values of the wave number do not correspond to exceptional values for the exterior scattering problem but are the result of the particular reformulation of the exterior boundary value problem in terms of integral equations. Various means have been proposed to circumvent this difficulty (see e.g. [6] and [7]). Here, we follow [8] by introducing a second equation involving the normal derivative of the double layer potential which restores uniqueness for real wave numbers.

2. FORMULATION OF THE LINEAR PROBLEM

Let \( C \) be a simple closed curve, sufficiently smooth (\( \mathbb{C}^2 \) is more than sufficient for our purposes) in \( \mathbb{R}^2 \), let \( \Omega \) be the unbounded region determined by \( C \) and let \( \Omega' \) denote the complementary region. In particular, the curve \( C \) will have a
a unit normal \( \hat{n}(q) \) which varies continuously on \( \Gamma \). We emphasize that we shall take \( \hat{n}(q) \) to be the outward drawn normal with respect to \( \Omega^c \). Further, we shall write \( \nabla \cdot \hat{n}_p^- \) and \( \nabla \cdot \hat{n}_p^+ \) to denote the normal derivative when \( P \rightarrow \partial \Gamma \) from \( \Omega^c \) and \( \Omega \) respectively.

We choose the origin of a rectangular coordinate system in the interior of \( \Omega^c \) and let \( (r, \theta) \) be polar coordinates of an arbitrary point \( P \in \Omega \). The three classical boundary value problems, Dirichlet (D), Neumann (N), and Robin (R) problems for the Helmholtz equation in the exterior domain \( \Omega \) consist of finding a function \( u \), defined in \( \Omega \), satisfying (1,i) and (1,iii) below as well as the appropriate boundary condition in (1,ii):

\[
(1) \quad (\nabla^2 + k^2) u = 0 \quad \text{in } \Omega; \\
(\text{D}) \quad u = h \\
(\text{ii}) \quad \left\{ \begin{array}{l}
(\text{N}) \quad \nabla u \cdot \hat{n} = h \\
(\text{R}) \quad \nabla u \cdot \hat{n} + \sigma u = h
\end{array} \right. \quad \text{on } \Gamma; \\
(\text{iii}) \quad \lim_{r \to \infty} \int_{S_r} \left| \nabla u / r - \text{i}ku \right|^2 \, ds = 0
\]

where \( S_r \) is a circle of radius \( r \) lying entirely in \( \Omega \). This last condition is the radiation condition referred to above.

For the problem of Dirichlet (D) the Green's function has the form

\[
(2) \quad G(P,Q) = \frac{1}{4\pi} \left[ H^{(1)}_0(k|P-Q|) + g(P,Q) \right]
\]

where \( g(P,Q) \in C^2(\Omega) \) and \( H^{(1)}_0 \) is the Hankel function of the first kind, the fundamental solution of the Helmholtz equation consistent with the radiation condition. Since \( \Gamma \) is bounded one may employ the asymptotic properties of \( G \) for large \( r \) viz. \( G(P,Q) = (e^{\text{i}kr}/r^2) \hat{h}(0,\cdot) + O(1/r) \) to represent the solution \( u \) in the far field as
The regularity of $u$ allows us to define the far field pattern $f \in L^2(0,2\pi)$ in terms of the Hilbert-Schmidt integral operator $\mathcal{K} : L^2(\Gamma) \to L^2(0,2\pi)$ generated by the kernel $\mathcal{G}(\theta,\varphi) = \int_{\Gamma} h(\mathbf{q}) \mathcal{G}(\theta,\varphi) \mathbf{e} \cdot \mathbf{n} \, d\mathbf{q}$.

Two of the problems commonly discussed in the engineering literature of antenna theory fit naturally into the present context. We refer to them as the identification problem and the synthesis problem. In the former, we are given an actual far field pattern and are asked to find the boundary data $h$ whose associated solution has $f$ as its far field. In the latter, we are given a desired far field pattern $\hat{f}$ and are asked to find the boundary data $h$ producing a far field closest to the desired pattern in the $L^2$ sense. In terms of the integral operator $\mathcal{K}$ introduced above, the first of these is the problem of solving the integral equation of the first kind $\mathcal{K}h = f$ with $f$ given in the range of $\mathcal{K}$, while the second is that of finding an absolute minimum for the form $\|h - \hat{f}\|^2$. Both of these problems fall into the class of problems called ill-posed in the sense of Hadamard. The interested reader may refer to the paper of Angell and Washiz [5] for a complete discussion of these problems as they arise in antenna theory.

Here, it is our purpose to present a different optimization problem in which the quantity to be optimized is the power radiated into a specified portion of the far field. Specifically,
Specifically, we define the far field power in a measurable set \( \alpha \subset [0, 2\pi] \) by

\[
q_{\alpha}(h) := \int_0^{2\pi} \alpha(\theta) \left| f(\theta) \right|^2 d\theta = \int_0^{2\pi} \alpha(\theta) \left| h(\theta) \right|^2 d\theta
\]

where \( \alpha(\theta) \) is the characteristic function of the set \( \alpha \).

Having introduced this quadratic functional, we may pose a meaningful optimization problem.

Let \( U \subseteq L^2(\mathbb{R}) \) be a closed, bounded, convex set. We will refer to the elements of \( U \) as admissible controls. The optimal control problem is now to find an \( h_o \in U \) giving the functional \( q_{\alpha}(h) \) its maximum value i.e. find \( h_o \in U \) such that \( q_{\alpha}(h_o) \geq q_{\alpha}(h) \), for all \( h \in U \).

Since the form \( q_{\alpha}(h) = (\alpha h, h)_{L^2(0, 2\pi)} \) is both convex and weakly continuous, it is easy to prove the following.

**Theorem 1:** If \( U \subseteq L^2(0, 2\pi) \) is closed, bounded and convex then there exists an element \( h_o \in \text{bdy} \ U \) which is optimal with respect to the performance index \( q_{\alpha} \) defined by (5).

We remark that this statement not only asserts the existence of an optimal solution, but also gives an additional condition which leads to a "bang-bang" result for certain special choices of the class \( U \) of admissible controls (see the appendix in [1] for details). The requirements that the set \( U \) be a closed, convex and bounded set in \( L^2(\mathbb{R}) \) still allows enough flexibility to allow us to model a number of constraints suggested by physical or design considerations. In the engineering literature, the former are usually referred
to as realizability conditions, and include constraint sets of the following forms:

(a) \( U = \{ h \in L^2(\mathbb{R}) \mid \| h \|_1 \} \) (inputs with bounded energy);

(b) \( U = \{ h \in H^1(\mathbb{R}) \mid \| h \|_2 \} \) (inputs with bounded energy and oscillation);

(c) \( U = \{ h \in L^2(\mathbb{R}) \mid \psi_0(q) \leq h(q) \leq \psi_1(q), \ \text{a.e.,} \ \psi_0, \psi_1 \in C(\mathbb{R}) \} \);

while design considerations may lead to control domains defined by state constraints, e.g.

(d) \( U = \{ h \in H^1(\mathbb{R}) \mid |(1 - \alpha(\theta)) f(\theta)| s_{-1} \} \) (bounded side lobes).

We remark that it is case (c) for which we can show that there exists a maximizing sequence of "bang-bang" controls since the extreme points of the set \( U \) in (c) are functions of the form

\[ \psi_0 \gamma_{\omega_0} + \psi_1 \gamma_{\omega_1} \]

where \( \{ \omega_0, \omega_1 \} \) is a measurable partition of \( \mathbb{R} \). For full proofs the reader is referred to [1].

In the case that \( U \) is the unit sphere in \( L^2(\mathbb{R}) \), the observation that the functional \( \lambda_0 \) can be expressed in terms of the symmetric operator \( \mathbb{R} = \mathbb{R}^*a \), where \( \mathbb{R}^* \) is the adjoint of \( \mathbb{R} \), leads to the following result.

**Theorem 2:** If \( \lambda_0 \) is the largest eigenvalue of the operator \( \mathbb{R} \) and \( \psi_0 \) is a corresponding normalized eigenvector, then

\[
\sup_{\| h \|_1 = 1} \langle \psi_0(h), h \rangle_{L^2(\mathbb{R})} = \lambda_0 = \langle \mathbb{R} \psi_0(h_0) \rangle.
\]

One may now implement constructive methods to compute the optimal control by considering a family of subspaces \( X_n \) of \( L^2(\mathbb{R}) \), ultimately dense in this function space, and considering the finite dimensional problems \( P_n(\lambda u - Ru) = 0, \ n = 1, 2, \ldots, \) where \( P_n \) is the projection associated with the
subspace \( \mathcal{N} \). Standard estimates for the rate of convergence are available e.g. one has the estimate

\[
| \lambda_{o,n} - \lambda_{o} | \leq \sqrt{\frac{1}{n+1}} \left( I - P_{n} \right) \mathcal{N}
\]

where \( \lambda_{o,n} \) is the eigenvalue for the finite dimensional problem and \( \lambda_{o} \) is the true eigenvalue (see Mikhlin [9]). This method has been implemented on the Burroughs 6800 at the University of Delaware using standard I3VL eigenvector-eigenvalue routines to produce highly directed single and double beam patterns for a circular antenna of radius \( a \) for various values of \( ka \) from 1 to 20.

2. THE NONLINEAR PROBLEM

In this section, we will consider, not a radiation problem, but a problem in scattering wherein we assume that an object, again with a sufficiently regular boundary, in \( \mathbb{R}^2 \), interacts with a known incident field, \( u^i \), to produce a scattered field \( u^s \). In this case, \( u^s \) is a solution of the Helmholtz equation in the unbounded region \( \Omega \) which satisfies the radiation condition, while \( u^i \) is assumed to be a solution of the Helmholtz equation in \( \Omega^c \).

The nonlinear character of the problem arises from the form of the boundary condition. Under suitable restrictions on the geometry of the scatterer and constitutive parameters, among which is the requirement that the radius of curvature be large relative to the skin depth (see e.g. [10]) the transition conditions at the surface of an imperfectly conducting scatterer may be replaced by what is usually called an impedance boundary condition. Here, such a condition takes the form of the
Robin boundary condition \( \partial u / \partial n + \sigma u = 0 \), where \( \sigma \in L^\infty(\Omega) \) represents the surface impedance. It is this surface impedance which we take as the control and, by requesting that \( \sigma \) lie in a preassigned closed, bounded and convex (and hence weak*-sequentially compact) subset of \( L^\infty(\Omega) \), we again consider the constrained optimization problem of finding that admissible control which affords an absolute maximum to the functional \( J_\alpha \) defined by (5).

In this problem, the expression for the far field depends explicitly on the product of the control and the scattered field and it is here that the nonlinearity arises. Our treatment is more complicated than that followed in the previous case not only due to this nonlinearity but also in that we do not assume that we have explicit knowledge of the Green's function for the region. Instead, we rely on the Helmholtz representation, knowing the fundamental solution \( \zeta(P,Q) = (-i/2) \frac{1}{|P-Q|} \), to derive boundary integral equations whose unique solution may then be used to construct the scattered field in the exterior domain \( \Omega \).

The scattered and incident fields being regular solutions of the Helmholtz equation in \( \Omega \) and \( \Omega^c \) respectively, we may write

\[
(7) \quad u^s = S(\partial u^s / \partial n) - D(u^s) \quad \text{and} \quad u^i = D(u^i) - S(\partial u^i / \partial n)
\]

where \( S \) and \( D \) are the usual single and double layer operators with kernels \( \zeta(P,Q) \) and \( \partial \zeta / \partial n_Q(P,Q) \) respectively. If \( K \) denotes the integral operator with kernel \( \partial \zeta / \partial n_Q(p,q) \), then \( K^* \) is the integral operator for \( D \) and the usual jump relations
for the normal derivative of the single layer and for the double layer with density $\mu$, namely

$$
\frac{\partial}{\partial n^+}(\mathbf{r} \mu^+)(p) = (I + \Lambda) \mu^+(p)
$$

$$
\frac{\partial}{\partial n^-}(\mathbf{r} \mu^-)(p) = (-I + \Lambda) \mu^-(p)
$$

$$
\lim_{p \to p^+}(D \mu^-)(P) = (-I + \Lambda)^* \mu^-(p)
$$

$$
\lim_{p \to p^-}(D \mu^+)(P) = (I + \Lambda)^* \mu^+(p)
$$

together with the relation (7) and the boundary condition lead easily to a pair of integral equations which may be written as

$$
(I + \mathbf{s} + \mathbf{r}^*)u = 2u^1
$$

$$
(-I + \mathbf{r}^* \sigma + \mathbf{D}_n^*)u = 2\partial u^1/\partial n
$$

where the operator $\mathbf{D}_n$ is defined by

$$
(\mathbf{D}_n^\mu)(p) := \frac{\partial}{\partial n_p} \int_{\Gamma} \mu(q) \frac{\partial}{\partial n_q} (p,q) \,d\Gamma_q.
$$

Note that the integral operators all depend on the wave number $k$ although we have not explicitly indicated such dependence. The values of the wave number for which there exist non-trivial solutions of $\mathbf{w} + \Lambda \mathbf{w} = 0$ will be called characteristic values of $(-\Lambda)$ and a classical result is that $k$ is such a characteristic value if and only if it is an eigenvalue of the interior homogeneous Dirichlet problem. As described above, while the exterior Robin problem has a unique solution, at interior eigenvalues of the Dirichlet problem the first of these boundary integral equations has a multiplicity of solutions and it is for this reason that we consider the pair of equations (9).

The analysis in [3] shows that, for appropriate choices of $k$, and in particular for $k$ real, the system (9) has a
unique solution which can then be used to construct a solution of the original scattering problem. Specifically, we have the following result [3]:

**Theorem 3:** Let \( \sigma \in L^2(\mathbb{R}) \) and suppose that \( k \) satisfies the conditions \( \Im k > 0, \Im(kc) > 0 \). Then there exists a unique solution \( \mathbf{f} \in L^2(\mathbb{R}) \) of the pair of boundary integral equations (9). Moreover, the function \( u = u^1 + u^S \) is a solution of the exterior Robin problem

\[
\begin{align*}
(1) & \quad u \in C^2(\mathbb{R}), \quad u, \partial u/\partial n \in L^2(\mathbb{R}); \\
(11) & \quad (\sigma^2 + k^2) u^S = 0 \text{ in } \mathbb{R}, \\
& \quad (\sigma^2 + k^2) u^1 = 0 \text{ in } \mathbb{R}^c; \\
(11) & \quad \lim_{r \to 0} \int_{S_r} (\partial u^S/\partial r - iku^S) \, dS_r = 0; \\
(iv) & \quad \partial u/\partial n + \sigma u = 0 \text{ a.e. on } \mathbb{R};
\end{align*}
\]

if and only if

\[
u^S = \frac{1}{\sigma}(-\partial u^1/\partial n - \sigma \hat{u}) - \frac{1}{\sigma}D(\hat{u} - u^1)
\]

where \( \hat{u} \) is the unique solution of the system of boundary integral equations (9).

Returning to the optimization problem, it is possible to represent the far scattered field in the form

\[
f(\hat{u}) = K_1(\partial u^1/\partial n + \sigma u) - K_2u^S
\]

where \( K_1 \) and \( K_2 \) are compact operators from \( L^2(\mathbb{R}) \) to \( L^2(0,2\pi) \). Using the cost functional given in (5), we can pose the following optimization problem:

Given \( U \in L^2(\mathbb{R}) \) a closed, bounded, convex set, find \( \sigma \in U \) for which \( J_2(\sigma) \geq J_2(\hat{u}) \) for all \( \sigma \in U \).

Note that the results described above guarantee that, given \( \sigma \in U \) there exists a unique solution \( u(\sigma) \) of the system (9).
If we let $A$ be the set of all pairs \( \{ \sigma, u(\sigma) \} \), $\sigma \in \mathcal{U}$, we may prove the following theorems (see [4] for complete details).

**Theorem 4:** The set $A = L^\infty(\mathbb{R}) \times L^2(\mathbb{R})$ is bounded in the product topology.

**Theorem 5:** The set $A$ is closed relative to weak*-convergence of the $\sigma$ and strong convergence of the $u$.

**Theorem 6:** The map $\sigma \mapsto f$ is continuous from the weak*-topology of $L^\infty(\mathbb{R})$ to the strong topology of $L^2(0,2\pi)$.

**Theorem 7:** There exists an element $\sigma_0 \in \mathcal{U}$ (and consequently a pair $\{ \sigma_0, u(\sigma_0) \} \in A$) such that $Q_\alpha(\sigma_0) = \mathcal{L}_\alpha(\sigma)$ for all $\sigma \in \mathcal{U}$.

Clearly, this last theorem follows immediately from Theorem 6 if one takes into account the form of the cost functional. The techniques used to establish Theorems 4, 5, and 6 are similar and we conclude our discussion with a sketch of the proof of Theorem 4 in the hope that it will give the reader sufficient insight.

**Proof of Theorem 4:** Suppose that the set $A$ were not bounded. Then, since $U$ is bounded, we may choose a sequence $\{ (\sigma_m, u_m) \} \subset A$ for which the set $\{ \sigma_m \}$ is bounded but $\| u_m \| \to \infty$.

Let $\psi_m := u_m / \| u_m \|$, and choose a subsequence for which

$$
\text{(relabeling)} \quad \sigma_m \overset{w^*}{\longrightarrow} \sigma, \quad \psi_m \overset{w}{\longrightarrow} \psi, \quad \text{and} \quad \sigma_m \psi_m \overset{w}{\longrightarrow} \rho L^2(\mathbb{R}).
$$

Then the functions $\psi_m$ satisfy the integral equation

$$
(I + S \sigma_m + C) \psi_m = 2u_m^1 / \| u_m \|,
$$

Now the right-hand member converges strongly to 0 in $L^2(\mathbb{R})$. 
since the incident field $u^1$ is fixed, while the compactness of the operators $D$ and $S$ insure that $\mathcal{N}_m \xrightarrow{S}\mathcal{D}$ and $S \mathcal{V}_m \xrightarrow{S}\mathcal{S}\phi$. But then, the relation (12) can be rewritten as

$$\psi_m = 2u^1/||u^1|| - 3\mathcal{V}_m - \mathcal{D}\psi$$

which shows that $\psi_m \xrightarrow{S}\psi$. Moreover, this strong convergence of the $\psi_m$ is enough to insure that the products $\mathcal{V}_m \psi \xrightarrow{W}\mathcal{V}\psi$ in $L^2(\Omega)$ and, consequently, that the function $\psi$ satisfies

$$(14) \ (I + S\sigma + D)\psi = 0.$$ 

Now, consider the second boundary integral equation

$$(-\sigma I + R^*\sigma + D) u = 2D_{u^1/\Omega^n}$$

and look at the sequence

$$D_n \psi_m = 2(\mathcal{D}u^1/\Omega^n) \mathcal{V}_m \psi_m^{-1} - (-\sigma_m + R^*\sigma_m) \psi_m.$$

Since the $\psi_m$ converge to $\psi$ strongly and the products $\sigma_m \psi_m$ converge to $\sigma\psi$ weakly in $L^2(\Omega)$, the functions $D_n \psi_m$ defined by (16) must converge weakly in this space to $\sigma\psi - R^*\sigma\psi$.

This fact, together with the estimates which appear in [3], shows that the function $\psi$, as a solution of the first equation (12), must lie in the domain of the operator $D_n$ and must satisfy the homogeneous equation

$$(17) \ (-\sigma I + R^*\sigma + D_n)\psi = 0.$$ 

Hence the function $\psi$, as the strong limit of elements of norm 1, must be a non-trivial solution to the homogeneous system of boundary integral equations, which contradicts the unique solvability of the system (9).

ACKNOWLEDGMENT: This work was supported by the U.S. Air Force under grant AFOSR 79-0085.
References


