INTERIM SCIENTIFIC REPORT

Air Force Office of Scientific Research Grant AFOSR-79-0094

Period: 1 February 1979 through 31 March 1980

Title of Research: NUMERICAL LINEAR ALGEBRA

Principal Investigators: Gene H. Golub
 James H. Wilkinson

Research Personnel: Paul Van Dooren
 Daniel L. Boley

Computer Science Department
Stanford University
Stanford, California 94305

Approved for public release; distribution unlimited.
Research in this program has concentrated on the generalized eigenvalue problem and its natural extension to the computation of the associated canonical form. Furthermore, there has been an extensive effort to study the matrix equation arising in control engineering such as controllability observability decomposition and the solution of the Riccati equations. In particular, error bounds for the computed eigenvalues and eigenvectors of the generalized eigenvalue problem have been devised.
In addition, a numerically stable algorithm has been developed for computing the orthonormal bases for any deflating subspace of a regular pencil. A method has been developed to obtain any desired ordering of eigenvalues in the quasi-triangular forms.
ABSTRACT

Research in this program has concentrated on the generalized eigenvalue problem and its natural extension to the computation of the associated canonical form. Furthermore, there has been an extensive effort to study the matrix equation arising in control engineering such as controllability observability decomposition and the solution of the Riccati equations. In particular, error bounds for the computed eigenvalues and eigenvectors of the generalized eigenvalue problem have been devised. In addition, a numerically stable algorithm has been developed for computing the orthonormal bases for any deflating subspace of a regular pencil. A method has been developed to obtain any desired ordering of eigenvalues in the quasi-triangular forms.

RESEARCH OBJECTIVES AND STATUS OF THE RESEARCH

James H. Wilkinson

I. The calculation of error bounds for computed eigenvalues and eigenvectors

In practice it is rare for the complete eigensystem of a large matrix to be required. Commonly, attention is focussed on a few key eigenvalues and eigenvectors. An algorithm is therefore desirable for deriving error bounds for a single eigenpair (i.e. value and vector) without requiring information on the remainder of the system. A method for deriving rigorous error bounds for such a pair \(\lambda \) and \(x \) was developed and is about to be published in Numerische Mathematik (a preliminary version appeared as a Stanford report [1]). A pleasing feature is that in the process of deriving the bounds an improved eigenpair was derived and the bound was
for this eigenpair.

A less pleasing feature was that the bound (and indeed the true performance) was limited by the condition number of a certain matrix C. This matrix C is ill-conditioned when λ is close to a double root. Multiple roots are not necessarily ill-conditioned and hence this is an inherent weakness of the method.

This weakness has been overcome by determining generators of the invariant subspace associated with clusters of eigenvalues. This material is to be presented as an invited lecture at an international symposium at Zürich in honour of H. Rutishauser and the paper [2] will be published in the proceedings of that symposium.

Extensions of the algorithm which make it computationally more efficient have been developed by J. Dongarra of Argonne National Laboratory in his Ph.D. thesis. A joint paper on these extensions by Dongarra, Moler and Wilkinson is in preparation. All algorithms apply both to the standard and the generalized problem.

II. The determination of the distance of a matrix A from the nearest defective matrix and the corresponding problem for $Ax = Bx$

This is a problem of considerable interest to control engineers. Early work in connection with the standard problem was done by Kahan, Ruhe and Wilkinson. The techniques developed by them have been greatly improved and extended to the generalized problem (the more important case). In the course of this work, rather general results were derived which should be of considerable value in the backward error analysis of eigenvalue algorithms. This work is to be presented as an invited lecture at an international meeting to be held in Winnipeg in October and the paper [3] will be published in the proceedings.
III. The double QR algorithm of Frances

This algorithm reduces a general real matrix A to quasi-triangular matrix T, which has two by two matrices on the diagonal corresponding to complex conjugate pairs of roots. A disadvantage of the algorithm is that the eigenvalues are not ordered in any systematic way and orderings are often required by control engineers.

Algorithms are required for interchanging the order of

(a) Adjacent diagonal elements
(b) A two by two block and an adjacent diagonal
(c) Two adjacent two by two blocks.

The first is almost trivial (it was first derived by Ruhe). The other problems have been referred to briefly by Golub and Wilkinson but no solutions were given. Methods for achieving the interchanges based on orthogonal similarities have been developed and will be the subject of a forthcoming paper when they have been fully tested.

References

Paul Van Dooren

I. Computation of zeros of linear multivariable systems

Several algorithms have been proposed in the literature for the computation of the zeros of a linear system described by a state-space model \(\{ \lambda I - A,B,C,D \} \). We have devised a new algorithm; the new approach handles both nonsquare and/or degenerate systems without difficulties whereas earlier methods either fail or require special treatment for these cases. The method is also backward stable in a rigorous sense.

II. A generalized eigenvalue approach for solving Riccati equations

A numerically stable algorithm has been derived to compute orthonormal bases for an deflating subspace of a regular pencil \(\lambda B - A \). The method is based on an update of the QZ algorithm, in order to obtain any desired ordering of eigenvalues in the quasi-triangular forms constructed by this algorithm.

The computation of deflating subspaces with specified spectrum is of crucial importance in solving Riccati equations arising in linear system theory.

Daniel Boley

I. Computing the controllability-observability decomposition of a linear time-invariant dynamic system, a numerical approach

Various numerical properties are involved in computing the complete Controllability-Observability (Kalman) Decomposition for a linear time-invariant dynamic system, of the form

\[\dot{x} = Ax + Bu \]
\[y = Cx \]
where A, B, C are matrices, and u, x, y are vector functions of time. In particular, we are investigating the numerical stability, the cost and the particular advantages of several algorithms.

PUBLICATIONS

PERSONNEL ASSOCIATED WITH RESEARCH EFFORT

Professor Gene H. Golub

Professor James H. Wilkinson

Dr. Paul Van Dooren, Post-doctoral Research Fellow, Philips Research Laboratory, Brussels

INTERACTIONS

Invited Papers

J. H. Wilkinson International Symposium in Honour of H. Rutishauser to be held at ETH-Zentrum, Zürich, October 1980.

J. H. Wilkinson International Symposium to be held at the University of Manitoba, October 1980.

Consultative and advisory functions