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I. INTRODUCTION

The objective of this analysis has been to develop a finite ele-
ment model to analyze dynamically loaded, laminated, orthotropic thick
plates with efficient numerical methods of solution. It is intended
to apply the analysis to relatively large magnitude forces which are
rapidly changing with time, consequently the materials are assumed to
be represented by elastic-plastic and elastic-viscoplastic models.

The finite element model assumes large transverse deflections of the
plate which lead to nonlinear strain-displacement relations. Because
the analysis is intended for predicting inter-laminar stresses and
thickness changes, basic plate theory will not suffice. However, full
three-dimensional analysis is much too cumbersome to use, so this me-
thod makes use of the plate-like characteristics, but still allows for
three-dimensional response. The finite element model leads to a set
of dynamic matrix equations representing the nodal plate displacements.
The basic approach to the solution of these equations consists of an
incremental approach in the time domain.!

The method of attack is to first calculate the internal forces
from the incremental stresses and deflections of the previous time in-
crement using the stiffness matrix. The external load is input and,
using the theory of virtual work, it is transformed to extsrnal nodal
forces. Using Newmark's beta finite difference technique,“ the de-
flections for the new time increment are calculated. From these new
deflections the stresses are calculated and these stresses are checked
to see if elastic-plastic or elastic-viscoplastic yielding has occurred.
The time is then incremented up and this technique marches on for the
desired length of time. Figure 1 shows a flow diagram of the computer
program with appropriate section references.

This report will first review the basic finite element formulation
of the problem which will include the development of the stiffness ma-
trix and the stress calculations. It will then discuss the development
of the external nodal forces, the dynamic analysis with a variable time
increment, and the orthotropic, elastic-plastic and elastic-viscoplastic
analysis. The remainder of the analysis will be devoted to the methods
used to increase the size of the time increment in the time integration
and the element equilibrium equations that resulted from this increase
in time increment size. Finally, a numerical example will be discussed,
and the accuracy of this method of analysis will be compared to actual
experimental results.



Review of Finite Element Formulation for Laminated Plates

Because of the physical characteristics of a thick laminated plate,
it is natural to use Cartesian coordinates and to align the plane of
the plate with the x] - x; coordinate plane and the thickness with the
x3 coordinate axis. The shape of the finite element will then be a gen-
eral quadrilateral defined in the x] - x, coordinate plane with a con-
stant thickness in the xz coordinate axis. To insure a homogeneous
element, there should be as many elements stacked in the xz direction as
there are different laminated layers. A typical numbering system and
axis location is shown in Figure 2. The mass of each element is lumped
at the nodes. The actual calculation of the mass at each node is cal-
culated by bisecting each side of the triangular element and joining
these center points to the center node which defines the apex of the four
triangular elements in Figure 3. Thus, the original quadrilateral has
been divided into four smaller ones which contain two of the eight nodes
of the large element. The mass of each smaller quadrilateral portion of
the element is found by multiplying the thickness of the element by the
density by the area of the smaller quadrilateral element, and the result
is distributed equally to the two nodes. The mass matrix is obtained by
summing masses at each structural node from the adjacent elements. The
resulting matrix is diagonal. -

For ease in calculating the stiffness matrix, each quadrilateral
element is subdivided into four triangular elements with the center node
not carrying any load so that it can later be removed by static conden-
sation when the triangular elements are summed to form the quadrilateral

element. A typical element and sub-element nodal numbering system is
shown in Figure 3.

Displacement Functions

The first step in finite element formulation is to choose a dis-
placement function. Since each traingular element has three degrees of
freedom at each node, the assumed displacement function for each ele-
ment should have eighteen generalized coordinates. The displacement
function, chosen to be linear in the xj - X, plane and to vary linearly
in the X3 direction, is shown below:

Up S0 P 0X) Xy + Xg (B *Byx +B X))

=1
1}

2 Gy + QeX) + QeX) + Xg (BytBox)+BcX,) 1.1

3 Gy * OgXy * GgXy *+ Xo (B +BeX +BgX,

where u; (i=1,3) are the Cartesian displacement components in terms of
xj directions and 0j and Bj (j=1,9), the eighteen unknown generalized
coordinates. Writing Equations 1.1 at each of the six nodes of a trian-
gular element results in eighteen equations which can be written as the
matrix shown below:
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where the forward superscripts on uj and X; quantities refer to one of
the six nodes and t represents the element thickness. Equation 1.2 can
be written in a short form as:

{6} = [E]{o} 1.3
Solving for the global coordinates gives:
{a} = [E]"*{6} 1.4

Because there are so many zeros, matric [E] can be inverted by hand in
the following manner. First, divide each column matrix in half so there
is an upper and lower generalized coordinate matrix (o,B) and an upper
and lower nodal displacement matrix (6u’62)‘ This changes Equation 1.3
to:

{Gu} [E;]1 [0] {a}

{62} [E,1t[E,] {B} 1.5

where the [E] matrix has been divided into four parts. Inverting Equa-
tion 1.5 by parts yields:

-1
{a} = [E, ] {Gu} 1.6
S }
{8y = ZIE,] {{62} - [E,]{al 7
Inserting Equation 1.6 into 1.7 yields:
_ 1l .-l P P | -1
{g} = +1E,] {62} +1E,] T[E,T[E,] {Gu} 1.8

Using Equations 1.6 and 1.8, it is apparent that Equation 1.4 can be
written as:

W _ | eI 0] | [Msy

8y |- 217t EITH sy g
Using the following notation:

a; ~ J"‘1m"2 ) mxlsz

b1 = sz . mxz

¢; = M- jxl )



where i,j,m are cyclic permutations either of 1 to 3 for b (bottom of

the element) or 4 to 6 for t (top of the element), the individual matri-

ces are as follows:
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Strain-Displacement Relation

The next step in the finite element formulation is to calculate the
internal work due to a virtual change in nodal displacement, The strains
must first be found in terms of the generalized coordinates. The non-
linear strain displacement relations in tensor notation are:

= %{u. 4+ U, .+ U 1.13

€ij 3" 5,1 7 Y%, 50
Making use of the fact that this analysis is for a plate, it is assumed
that deflections and rotations out of the plane of the plate are large
compared to those in the plane of the plate, or symbolically:

u, > u,,u

3 1’72

>
Yeom © MY

u 1.14

>
N L W

>
YN Mes ~ 98,5

Using the order of magnitude defined in Eduations 1.14 reduces Equations
1.13 to the following form:

€ = u e u?
11 0 © 2 Yai
= dy
€29 *F Lo T P od
€ = u + l-(u2 +uz _ ) 1.15
33 22 aSLE™ Ys
£ =l(u + u + u u )
12 2 Ba.g ¥ e S
1
€3 = 7 (Uy 5+ Uz )
€ = l-(u +u; L)
13 2 TGl | s

Since there are linear and nonlinear terms, Equation 1.15 can be re-
written in matrix notation as:

10



{e} = {82} + {eng} 1.16

where:

1
5 (ui’j+ uj,i) 1.17

{82} =

and:

2 T

= dp.2 2 2
{€n2} = 2[u3,1’u3,2’u1,3 + u2,3,u3,1u3,2,0,0] 1.18

- Performing the indicated operations in Equation 1.17 on 1.1 results in:

( 3 r . - i
€110 0100000000x,0000 00 0
00000100000 000x,00 O
€228 5
: r = /00000000000 0000 1 x X {a}
€339 0100000000x,0000 00 0
€100 00000100000 000x,00 0 1 78
€54 .? 0000000000 0000 1x; X, |
5132 ]
In matrix notation Equation 1.19 reduces to:
{32} = [Q] {a} 1.20
Substituting Equation 1.4 into 1.20 results in:
{e,} = [ [E]7H8) 1.21
Taking virtual changes, this can be written as:
d {el} = [By]d {8} 1522
where:
-1
[B,] = [Q] [E] . 1.23

and the symbol d in front of a matrix represents a virtual change,

Disregarding the zero terms, Equation 1.18 can be written as:

11



[ e ] B T ]
11ng u3’1 0 0 0 u3,1
e 1
| f22ms | = = ug, 0 0| Jug,|
€ 1.24
33n& 0 0 ul,3 2,3 ul’3
€
L "12nfJ HUS’Z u3’1 0 OJ Lu2,3J
In matrix notation Equation 1.24 reduces to:
= 1
{enz} = = [A] {6} 1.25

Since the virtual changes are considered in the finite element method,
it is necessary to investigate virtual changes in the nonlinear strain
which can be written as follows:

= 1 1
d {enl} = > [Ald {0} + =d [A] {o} 1.26
Clearly from Equation 1.24:

[A] 4 {6} = d [A] {6} 1.27
From Equations 1.26 and 1.27, the following result is true:

d {enl} = [A] d {6} 1.28

Performing the indicated operations in Equation 1.24 on 1.1 results in:

Cg

B1
d {6} = 1.29

d ! B,

Bs
Bs
Bs

and:

12



;80 0O 0 0 0 O O 830— 1 0 0 01
0 ag 0 0 0 0 0O O O Bg 0 1 0 O
AT = 1o 0 B, B.BsB,BsBO 0] |0 01 0
0g 0g 0 0 0 0 0 0 By B{J 0 0 Xl 0

0 0 x,0 1.30

0O 0 0 1

0 0 O Xl

0 0 O X2
p X3 0O 0 O

3)(30 0—

Combining Equations 1.28, 1.29 and 1.30 results in:

13



I¢°T

i
i
59
"9
€9
‘g
g
60

80

(6g )

ot |

o

o

(=

o 0 0
0o 0 0
0o 0 0
0 0 0
0o 0 0
mx NXHK NK
LI I Iy
NX ﬁx I
0o 0 0
0o o0 0

89 €9 0 0 0 0 0 0 %0 60
0 0° g "9 9% T9 0 0
9 0 0 0 0 0 0 0°%0 O
0% 0 0 0 0 0 O 080

= {(3p

14



Equation 1.31 can be written in a short form as follows:

d {e o} = [o] [2] d {o} 1.32
where the matrices [a], [Z] and d{o} are symbolic representation_of the
three matrices on the right hand side of Equation 1.31. Since [a] are
constants which can be written in terms of the rows of [E]~! correspon-

ding to the correct aj and {8} given in Equation 1.4, Equation 1.32 can
be rewritten as:

d {e_,} = [a] [z] [E] 4 {6} 1.33

nf

where [E] also consists of the rows corresponding to the correct 0. in
{a}. This is written as the normal strain-displacement relationship
below:

d {Enz} = [Bld {8} 1.34

where:
B = [a] [2] [E] | 1.35

Note that [Bn ] is dependent on displacements from [ ]. From Equations
1.16, 1.22 and 1.34, the complete strain-displacement relationship be-
comes:

d {e} = [B,] d {8} + [B o1 d {8} 1.36

which in general is written as:
d {e} = [B] d {8} 1.37

where:

[B] = [B,] +[B,,] 1.38

Stress-Strain Relationship

The only other calculation to be made before the virtual work is
evaluated is the stress-strain relationship. Since this analysis deals
with orthotropic material, only the orthotropic relationship will be
discussed since in the limit these equations become isotropic when the
modulus of elasticity and Poisson's ratio are input into the following
equations:

15



1
€11' = B [011'-V12022"-V13033"]

1
€22' = E, [022"-V21011"-V23033"]
1
€33' = Es [033'-V31011"-V320,2"']
1.39
O12'
€12' = =—==—
12 3G15
O23'
' = i
€23 2G23
O13'
€13' = 22—
13 2G13

where E; is the modulus of elasticity of the x; direction, Vij and
Gij are the Poisson's ratio and shear modulus along the xj-x; plane.
It should be noted that the prime in these equations refers %o the local

numbering system. Due to the plane of symmetry for orthotropic mater-
ials, the following is true:

<
—
N
|

V21
Ep

[e3]
-

<
o
(]

<
)
—

tr1
—
tr1
w

1.40

<
)
w
<
1
N

N
tm
w

Letting:
T = 1-V32V23-V12V21-V12V23V31-V13V32V21 1.41

the inverse of Equation 1.39 is:
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1

O11'= E{(l-vszvzs)E1€11'+(V12+V13V23)E2€zz'+(V13+V12V23)E3€33']
1

O22'= E{(V21+V23V31351€11'+(1'V13V31)Ez€22'+(V23+V21V13)E3€33']

. _
O33'= E{(V31+V32V21)E1€11'+(V32+V31V12)Ez€22'+(1'V12V21)E3€33']

O12' = 2G12€12!' 1.42
O23' = 2Gz3€z3'
013" = 2G13€13'

In matrix notation Equation 1.42 is:

{c'} = [c'] {e'} 1.43

Often, though, the axes for which the material properties are defined do
not align with those of the global coordinate system. When this happens,
the stresses of interest are those of the global system. Letting the
global system have the unprimed stresses and strains, an equation simi-
lar to Equation 1.43 can be written as follows:

{o} = [C] {&} 1.44

In order to transform {o'} to {0} the direction cosines between xj and

X; can be used. We define directional cosines by aj; as follows:

a.. = cos (x.,X.) 1.45
ij iy

and therefore from stress transformation relations, it follows that:

K2 = uikajloij 1.46

and:

ke - %ik%j2%ij : 1.47

17



Equations 1.46 and 1.47 can be rewritten in matrix form as:

{c'} = [R] {o} 1.48
and:
{e'} = [R] {e} 1.49
where:
o H 2 203,00 20110
ay) Q321 Q31 20,021 Q31021 11031
3 2 2 2 20y 200
012 azz a32 20012022 Q32022 12032
2 5 g 2 200y 30
a3 az3 033 2013023 033023 13033
[R] = Qy1012 O30z O31G32 G11022+021012 0110324031012 (210324031022 1.50
Q12013 Opa0lpz O3aflyy O 202 3+022013 (220334032023 O 2033+%320)3
Opplyy Qa30zs O310ay O pOa3+0p1013 0230334033023 0 1033+%31013
b -

The work done in either coordinate system must be equal, therefore:

d {e}T{o} = d {37 {0} 1.51
Substituting Equations 1.43, 1.44 and 1.49 into 1.51 results in:
d (e}’ [c] tet = {e}T RIT [C'] [R] {e} 1.52
Therefore, from Equation 1.52 the stress-strain matrix in global coor-
dinates can be written in terms of the material stress-strain relation-

ship and the transformation matrices. This can be written as:

el = [R¥ [c'1 [R] 1.53

In the computer program the transformation matrix is found by two
separate transformations. Figure 4 shows the orientation of the coordi-
nate systems and the two angles needed to describe the transformation.

18



Note that x) lies in the x;-x, plane. Using the a and B described
here, not to be confused with the subscripted generalized coordinates,
the transformation matrices can be calculated by the appropriate in-
sertion into the direction cosines.

Internal Force

It is now possible to calculate the virtual change in the internal
work of the structure due to a virtual change in the nodal displace-
ments. This can be written as:

dw, = J d {eff {o} av ‘ 1.54
v

Using Equations 1.37 in 1.54, the internal work is written as:

d ¥ = d {sir J [B]'r {o} av 1.55
Vv

In addition to the work done by internal work of the finite element,
there is external work done by the forces at the eight corners. De-
noting these forces by the matrix {f}, the external virtual work is:

dw, = d {6}'T {£} 1.56

Since external and internal forces on each element are in equilibrium,
it follows from virtual work that:

d WI +d WE = 0 1.57

Therefore, from Equations 1.55, 1.56 and 1.57:
T
{f} = - f [B] {o} av 1.58
v

The forces acting on any node resulting from the adjacent elements
are obtained from Equation 1.58. This summation will result in a ma-
trix of internal forces denoted by {F1}.

The next step in the analysis is to obtain the nodal equilibrium

equations for the total structure. Because this is a dynamic problem
the inertial effects must be considered. The equation of motion is:

19



M] {A} = {F;} + {F;} 1.59

where [M] is the diagonal mass matrix previously described, {A} is the

global displacement acceleration, and {FE} is the concentrated nodal
force matrix to be described in Section 2

. The solution of Equation
1.59 will be discussed in Section 3,

20



IT. EXTERNAL FORCE

Because of the varying types of distributed loads that could be
used in a problem of this type, a technique was developed that only
needed the input of the distributed external load at the nodal locations
that the load acts on. This is normally accomplished by adding a sub-
routine to the program which gives that data. Using the theory of vir-
tual work it is possible to transform these external distributed loads
to the effective concentrated forces {Fg} which are used in Equation
1.59.

Since the top of the plate which carries the distributed loads is
composed of triangular elements, as shown in Figure 3, the simplest re-
presentation of the distributed load L over the plate is:

L = &1 + Eax1 + E3x2 2.1

where gi are some suitable parameters defining the linear distribution.
Writing Equation 2.1 at the three nodes results in:

Ll r 1 1X1 IXJ El
Ly = |1 2%n %%y | 4Es R o2
L3 1 3X1 3)(2 Es

where forward superscripts in x, refer to nodal locations. -Using the
notation defined by Equation 1.10, the inverse of Equation 2.1 is writ-
ten in the following form:

£1 . a; a, ag L
€2} = Zal Py Py Pg L, 2,5
E3 cl c2 c3 L3

Substituting Equation 2.3 into 2.1 yields:

21



3 % 33| |k
5
L = 5K [1x1x2] b1 b2 b3 Lzr 2.4
S 2% I
- — L3 #
Letting:
[a] = [alaza3
[b] = [b;b,b,]
2.5
[c] = [c1c2c3]
L1
{L;} =7 L,
LS
Substituting 2.5 into 2.4 results in:
=4 L
L = A ([a] + [b]x1 + [C]XZ){Li} 2.6
Referring to Equation 1.1 it is apparent that when Xq is a constant,
Ue F 8, * Bg¥1 & Gep 2.7

Following a similar procedure to that above results in:

ug = g ([a) + DIy + [elx;)tuy ) 2.8

where {u3_} are nodal displacements of node i in the X3 direction, The
i

virtual work of the distributed load is:

T
dWL = L\du3 LdA 2.9

Substituting Equations 2.6 and 2.7 into 2,9 results in:

T T
W, = IA d {u3i} E%{[a]+[b]x1+[c]x2) 5%{[a]+[b]x1+[c]x2){Li}dA 2.10

22



The virtual work done by the distributed load L is now replaced by effec-
tive nodal forces which do virtual work as given by:

T
dwp = d{ug b {p} 2.11
i E

where Wg represents the work done by the effective concentrated forces

Fr . Since the effective forces are caused by the distributed loads,
it follows that: '

= d
dWE WL 2.12

Substituting Equations 2.10 and 2.11 into 2.12 gives:

Fed = 7m D] (L) 2,13
where:
(] = [a]' 0,1+ (] [p,]+ [e]" [D]
[Dl] = [a] + [b] foldA + [c] [szdA
[0,] = [a] JAxldA + [b] rszz dA + [c] [Axlxsz 2.14
[p,] = [a] JszdA + [b] rAxlxsz + [c] Jszsz

The reason for this method of writing the final result is that this
method was found computationally more efficient to calculate the final
forces. Section 6 will discuss the loading used in the test examples.
Knowing how to calculate the internal and external forces, the next
step is the solution of the nodal equilibrium equations.

23



ITI. DYNAMIC ANALYSIS

Because the use of a variable time increment would be advantageous
in analyzing a structure with a load applied over a specific length of
time, a method of analysis was developed to include the variable time
increment. This gives the programmer the responsibility to choose appro-
priate time increments over the length of time that the structure is
analyzed. Good engineering judgment will dictate the size of these
time increments. When there is a rapid change in external load, the
time increments should be small when compared to times when there is less
change in load or no load at all. Normally the initial analysis should
be very accurate so even smaller time increments could be used. The
numerical solution of Equation 1.59 by the finite difference method in-
volves the replacement of the time derivatives by their finite differ-
ence equivalents.z:3 For convenience the matrix notation will be drop-
ped and the displacement symbol (A) will be replaced by the quantity x
with a subscript defining the time interval. In this approach the time
history is divided into discrete time intervals whose length will be de-
noted by h with a subscript defining the time interval. From the gen-
eral theory of kinematics, the velocity and displacement relations are
written for the nth and (n+1)th time interval as follows:

= . l - Qs e
X X + h x 1 + (2 B)hnxn_1 + Bhnx

n n-1 n n n 3.2

iy 2
n+1 n hn+1xn * (2 B)hn+1xn + Bh

2 .e
n+1°n+1 5.3

where X, x and x represent acceleration, velocity, and displacement at
time intervals denoted by the subscript.

Equation 3.1 means that the velocity at the end of the interval is
equal to the sum of the velocity at the beginning of the interval and
the product of the time interval and the average of the acceleration at
the beginning and end of the interval. Equation 3.2 and similarly
Equation 3.3 are obtained by integrating Equation 3.1 and introducing a
weighted acceleration parameter, B, to express the average acceleration.
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For example, B=1/4 gives a linear estimation for the average accelera-
tion. The coefficient B is chosen so as to best represent the system
being analyzed. Newmark? discusses convergence and the values of beta
and shows that for dynamic problems, B=1/4 gives an infinite stability
Iimit and is the value used for most dynamic problems. At

n+l n n-1

t = Z h,, Z Ty z h respectively, the equations of motion become:
& 7k k k

k=1 = k=1 = k=1
M X1 = Fn+1 3.4
MX = F ’ 3.5

n n

M X1 ~ Fn_1 3.6
F = F +F 3.7

The unknowns in Equations 3.1 through 3.6 are x.i, X Ty, xn+1,
Xp-1. Equations 3.3 will be used to solve for displacement at time
n+l. Equations 3.4, 3.5, 3.6 give values of the accelerations in terms
of known forces and masses. The only unknown then is Xp- Rearranging
Equation 3.1 gives:

Xn,

LV h, hy hy
X, 5 h_ xn—1+2hn xn—1+§_-xn+8hnxn—1—83;.Xn—1+BH;.xn_Bhnxn S8

This can be rewritten as:

- _ _1 ¥ 1 D se 2ee . l _ o
*n T hn [h -1 ( B)h +Bhnxn]+8hnxn—1+(2 B)hnxn e

Combining Equations 3.2 and 3.9 results in the following:
X =2 (x-x ) +Bh¥ .+ (&-ph% 3.10
hn n n-1 n n-1 2 nn

n

Inserting Equation 3.10 into 3.3 yields:
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hn+1

= m SOEE = l _ e 2 .o .e
*n+l xn+ hn (xn kn—1)+(hn+1+hn)hn+1(2 B)Xn+Bhn+lxn+l+Bhn+lhnxn—1
3.11
Substituting Equations 3.4, 3.5, 3.6, 3.7 into 3.11 gives:
hn+1 1 -1
i SRt O I, o The e g @ BN (Ey SEp )
n n n
+gh2 M I(E.  4F_ )+gh h_ MI(E. +F. ) 3.12
n+l 1 E n n+l ‘1 E
n+l n+l n-1 n-1

Using the original matrix notation this becomes:

h
_ n+1 1 -1 -
{A}n+l_{A}n+ hn ({A}n_{A}n—l)+hn+l(hn+l+hn)(E'_B)[M] ({Fl}n {FE}n)

+Bh2

-1
n+l[M] ({Fl}n+l+{F } . )+ph

4
E'n+1 M1 " F g Fgh )

n+1hn

3.13

For this method to work, it is assumed that the internal forces are
known. But to know the internal forces, the stresses must be known as
indicated in Equation 1.58. To know incremental stress, the strain must
be known. To know strains, deflections must be known. If the time
steps are small enough, then there is not much change in stress from one
time increment to another. Thus, this method is extremely accurate.

But for larger time increments another approach must be used. This is
described in Sections 4 and 6.
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IV. MODIFICATION FOR LARGE TIME INCREMENTS

The limitations on the size of the integration time step are a di-
rect result of the finite element model which has a lumped mass at each
node. As the numerical integration proceeds, the masses move relative
to each other. If the time step is too large, the relative motion of
the masses is exaggerated and artificial oscillation is induced. In
order to combat this artificial oscillation, the xj-x, deflections are

coupled and the deflections in the xz direction are coupled through the
thickness.

First, then, the in-plane (u;-u,) displacements will be discussed.
In order to have a more convenient equation to work with, Equation 3.13
is written with a constant time increment as follows:

(8} = 2083 -(8}, _ +6n’[M] T [{F ) f(%—-Z){FI}n+{FI} ]

n+l n-1

2..-1 1
+8h" [M] "[{F.} +(% -2){F.} +{F_.} ] 4.1
= n+l B E n E n-1

where {A} is the displacement matrix, B is the acceleration parameter,
h is the time interval, {Fr} is the internal force matrix, {Fg} is the
external force matrix, [M] is the mass matrix, and the subscripts n,
n-1, and n+l denote time intervals.

In analyzing the uj; and u, displacements, it is assumed that they
are linearly dependent through the thickness. This forces plane sect-
ions to remain plane.

This first assumption results in the following equations:
Y T 9t

U T 937 29 4.2
where qy, k=1, 4, are unknown generalized coefficients called the trans-
formed displacements and z is the distance in the x, direction of the
node from the center of gravity. The importance of having z be the dis-
tance from the center of gravity will be discussed when the transformed
mass matrix is discussed. In matrix notation Equation 4.2 becomes:
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{A} = [tfl{q} 4.3
where {q} is the matrix of transformed displacements and [tf] is the
transformation matrix described below. Letting % be the number of

layers of material and i=9, 1+% be the nodal location in the thickness
direction, the transformation matrix can be written as:

[t£;]

ey = [¥6;] 4.4

[t€,,,]

wherer
[tf.] = 4.5

and z; is the distance of node i from the center of gravity. The nota-
tion i=1 is the node at the bottom of the plate and i=1+¢ is the node at
the top.

Since the displacements are written in terms of transformed dis-
placements, the forces should be written in terms of the transformed
forces. Letting {fg} be the matrix of external forces corresponding to
{q}, and {f1} be the internal forces also corresponding to {q}, the
principle of virtual work states:

a (8 Fry o= a7 g 4.6

Transposing Equation 4.3 yields:

i = fq)T res)” - 4.7

Substituting Equation 4.7 into 4.6 yields:

a @ 1ef) B3 = a ) g a8
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Therefore:

1

(£} = [t£]' {F)) 4.9

Similarly:

{£.}

i

[tf]T {FE} 4.10

Finding a transformed mass matrix [m] starts with:

-[M] {Z} = {F}

inertia “ald
By virtual work:
T N T
-d {A}" [M] {A} = d{a}” {Fl. . 4.12
inertia
-d {q)" ] {q} = d(al” (F)
. inertia 4.13
Therefore:
T . T .
d {a}" [M] {a} = d{q} [m] {q} 4.14
Substituting Equations 4.3 and 4.7 into 4.14 yields:
T 2 T T 5
d {q}" [m] {q} = d{q} [tf] [M][tf]{q} 4.15
Dividing out the unnecessary terms gives:
m] = [t£]T [M] [tf] 4.16

Now the reason for zj being the distance from the center of gravity
will become apparent. The calculations are much simplified by the mass
matrix being a diagonal matrix as in the case for the original mass ma-
trix. The original mass matrix was:

M = [M] 4.17

Performing the matrix multiplication in Equation 4.16 using Equations
4.4, 4.5 and 4.7 produces:



[1+4 1+% T
) M, ) M, 2z, 0 0
ig i=g
152 152 152
M. z. M. z? M.z, 0
jog i g2, jog 11
132 152 152
_ 0 M.z, M, M, z,
[m] = jog L 1~ ico i jog 11 4.18
1+2 1+%
2
0 0 1ZQMizl Z M, 22
But,
1+2 .
Mz, = 0 4.19
i=g, B2

by the definition of the center of gravity, thus causing [m] to be a
diagonal matrix.

Referring to Equation 4.1, the only elements that still must be
transformed are the deflections for past time intervals. From Equation
4.3:

_ =il
{q}n = [&f] {A}n 4.20

To find these generalized displacements, it is only necessary to know
four of the actual displacements to solve for four unknowns. This is
easily done by hand and results in:

..— 22 . zq = T
217% 2172,
il 1
0 - 0
BTy 2172,
Z Z
-1 _ 20 I 1
[tfl] 0 21—22 0 z,-2, 4.21
[tfz] ; ) ; ) )
By o 2%
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Substituting the transformed quantities into Equation 4.1 yields:

) L oy
{q} = 2{q}n—{q}n_1+sh [m] {fI} +{— -2]{f1} +{fI}

+
el n B n-1 n-2

1 A
{f.}  +|5 -2|{f .} +{f_}
E n+l [B E n E n-1

|
+Bh™ [m] 4.22

/

It should be noted that the internal transformed forces are displaced
by one time increment. Because these forces are small, even at large
time increments, this yields accurate results with small error. Equa-
tion 4.22 is thus solved and Equation 4.3 transforms the results to
global displacements.

Although this time lag is acceptable for the in-plane displacements,
it is not acceptable for the uz displacements. The reason for this is
that the external force is being applied in the uz direction, thus
making these internal forces more sensitive to larger time intervals.

In order to account for the change in the internal force, a model was
sought to couple the deflections through the thickness.

In finding a model to represent what happens through the thickness,
it is necessary to see what the unknowns are. From Equation 4.1 the un-
knowns are {A}n+ and {Fily4+1- All the other terms are known. In order
to predict what iFI}n+1 is, it is necessary to couple the deflections
through the thickness and to assume all strains small when compared to
the strain in the uz direction. This can be done by letting:

{F_} = {F.} + {AF. } 4.23
I I I
n+l n n+l

where {AF_}j+1 is the change of the internal force between time inter-
vals. Thé deflection in the uz direction is then coupled by the model
shown in Figure 5. This model assumes the stiffness between the nodal
points in the thickness direction is much greater than the stiffness be-
tween in-plane nodal points. As long as the external force is in the

ug direction this is a good assumption.

From Figure 5:

AFI. = ki[(A.
1i,n+l

A )-(a

i+l,n+l "i,n+1 i+1,nin,n)] - ki-—l

(A 17841 n+1? " @5 17851 ,0)] 2B

31




where i refers to the nodal location through the thickness and n refers
to the time increment. The predicted stiffness (k;) is found from the
orthotropic properties (Cij, i=1,6, j=1,6). In matrix notation:

N 1 G2 G5 0 0 0 ] r€11\
T2 Cop Cyp Gy 0 0 0 €22
19331 ° Cap C3p G335 O 0 0 €33 4.24
o, 0 0 0 Cy O 0 €1,
O,e 0 0 0 0  Ceg O €52
°13) 0 0 B 0 0 (G Fys

Using the assumption that all strains are small when compared to the
strain in the uz direction yields:

O35 = (33635 4.26

This gives the stiffness for a unit cube equal to Czz. Therefore:

CSSiAreai
k., = ——W—— 4.27
t

i
where t; is the thickness of layer i, Area; is the area used to compute
the mass of the nodal point, and Czz. is the orthotropic property of the
1

quadrilateral that the node lies in. Letting:

2

2
A7 =28, *A, *Bﬁ L +\g 2 fr, +B§ B
i,n+1 i,n 1i,n-1 ) i,n B i,n i,n-1 i i,n+1
y l--z FE +FE . 4.28
B i,n "i,n-1

and substituting Equations 4.23 and 4.28 into 4.1 produces:
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2
= A gh - ) -
Ai,n+1 Ai,n+1 ¥ Mi [ki(Ai+1,n+1 Ai,n+1) kial(Ai,n+1 Ai—l,n+1)

- ki(A. A, ) + k (a )] 4.29

= . . =A,
i+l,n "1i,n i-1*7i,n "i-1,n

where the only unknowns are the deflections at time n+l. This produces
i=1+2 (& is the number of layers) number of simultaneous equations

which can be solved for. The technique of coupling the motion of the

" masses in the thickness direction, as described in this section, per-
mits the use of larger time increments than otherwise possible. The
effect of this coupling is to reduce the numerical oscillations produced
by excessive, relative motion of the adjacent masses. However, the use
of larger time increments introduces an additional side effect for
rapidly varying external loads. If these loads vary by a great amount
from one time interval to another, then the transverse stresses from the
n-" time interval will be greatly out of balance with the external
forces at (n+1)th interval. This leads to large force unbalance which
can lead to numerical errors. The Section VI of the report will dis-
cuss a method for eliminating these large differences.
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V. PLASTICITY

Orthotropic Elastic-Plastic Yielding

The present analysis allows for permanent deformation to occur in
the structure. Because of the practical considerations each finite ele-
ment is assumed to be either elastic or plastic. The general method of
attack is to calculate the stresses as if they were elastic. Using

"Hill's orthotropic yield criterion,4 the stresses are checked to see if
they are physically compatible with the yield criterion. If they are
compatible the analysis continues with those values of stress. If they
are not compatible, then plastic flow has occurred and using the flow
rule and the yield criterion, the stresses are recalculated to account
for this plastic behavior.

The first step then is to calculate the stresses. Using tensor
notation, the incremental form of the stress-strain equation for elas-
tic case gives the stress change from time t, to tpj:

T _
4955 = C55x198K

where the superscript T indicates a test value. The total stress at a
time (tp+1):

OT. = 0g.. + dOT. 502
1) e 1]
where the stress 0.. 1is from time t .
14 n

This value is then put into Hill's yield criterion which requires six
yield stresses (Y;jj). Before showing the yield criterion, the following
constants are defined:

7 _ 1 1
IF = 52 o o2
Y11 Yo Va3
?éz = é ) % - é
Y Y Y
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Y = > - - 51

Then the yield criterion can be written as:

2 2 2 2 2 2
g g (e} g g g
e 722 955 . %2 %4 "%y = =
Ed(CEbi= R o 2 ¢ i 2 A = Y11922%3 * ¥22911%3
11 ‘22 Yzz Y12 taz iz
+ Y33011022 = 1 5.4

. T
Using Equation 5.2 in 5.4, and if 2f(ozj) <1, then Oij represents

the real stress at tn+l;

To calculate the stress for plastic flow, the strain increment is

but if 2f(ozj) > 1, yield has occurred.

divided into elastic (ee) and plastic (ep) strain.

- e P
deij = deij + deij 5.

The flow rule is written in the following manner:

v 3\

(o Y . o0,,+Y, .G
P _ 11 229337 733%2| _
deb = dx 2 + > T,
\"11 J 4
(o Y o,.+Y. . 0. .)
P _ 22 119337 733% 1| _
dey, = dA 2 7 daT,,
" 22 J
([ Y Y A
oP man |38, D% | o
€33 v 2 S
\" 33 J
[0}
P _ Az
de?, = da . AT,
12
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P _ gy 23 _
de23 dx Yz d)\T23
23
o
P 13 _
del3 dx ;3_ d)\T13 5.6
13

where T;; are defined by Equations 5.6 and, for the purpose of numeri-
cal calculatlons, they are assumed to be given by the stresses from
time tn. In short:

aeP. = aar.. : 5.7
ij ij

In view of Equation 5.5, the actual form of Equation 5.1 is:

e
g = 2
4%; = CijndSa 7ol

Substituting Equation 5.5 into 5.6 results in:

- deP

dog.. = X1

i Ci5x1 (e ) T

Now Equations 5.1 and 5.7 are substituted into 5.9 giving:

_ T
doij = doij Cijkld)\Tkl 5.10
Using Equation 5.10 to update the stress at tn gives stress at tn+1:
= e S dxC T 5.11
Oij i j ijk1k1 i
Letting Tij= Cijlekl’ Equation 5.11 becomes:
= A e
o'ij Gij d)\Tij | 5.12

Substituting Equation 5.12 into 5.4 results in a quadradic equation .in
d) as follows: :

AdA? - 2Bdp+C = 0 5.13

where:
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=2 =2 =2 =2 =2 =2
T
R o 11+T22+T33+T12+T23+T13+YTT_'_YTT+Y?T
YZ YZ Y2 YZ YZ YZ 11°22°33 221133 33722711
11 22 33 12 23 13

= il = T e | = T = = &L

s’ T22%2  T3s%s | Ti2%2 | Tas%s  Tis%is
y2 y2 y2 y? y2 2
11 22 33 12 23 13
- T = T — T — T — T = T
. T 122933 339, . T 1119333394 . T 101922*T2,2914
11 2 22 2 33 2
. .
C = 2f(c..) -1 5.14
i3 A

Solving Equation 5.13 results in:

2B+/(2B) -4AC
2A 5.15

dA

Because C is defined in Equation 5.14 as the yield criterion, as C
approaches 0, dA approaches 0. Clearly, the minus sign is the only sign
that is physically acceptable. Multiplying top and bottom of Equation
5.15 by B+vVB?-AC produces:

C

dA\ = — :
B+vVBZ-AC 5.16

This dA is substituted into Equation 5.12 to give the actual stress
at time t ;-

Orthotropic Elastic-Viscoplastic Yielding

Because of the nature of an impulsive load acting on a material, the
plastic yielding is such that it is history dependent. To be able to
handle materials with viscous coefficients, a viscoplastic analysis has
been developed.
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In this analysis it is assumed that the strain is divided into
elastic (de®) and viscoplastic (deVP) strain.

3 vp
dye = defe Bhde 5.17

Using Hill's Flow Rule, Equation 5.7 is modified to be:

R -
e s 5.18

It should be noted that the viscoplastic strain changes satisfy the in-
compressibility condition:

? 4P
izldeii 5.19

The quantities Tij represent six independent quantities and they can be
arranged in a matrix form and then can be related to a stress matrix as
follows:

{T} = [H]{o} 5.20
where:
1 Y33 Y22 0 0 0 ]
vz )
I . 2
Va3 1 B! 0 0 0
2 Y§2 2
Y22 11 1 0 0 0
= 2 Z .21
[H] 2 Y33 5
0 0 0 1 0 0
YZ
12
0 0 0 0 1 0
YZ
23
0 0 0 0 0 1
Y?Z
13
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By comparing the flow rule in Equation 5.18 to an isotropic case, it can
be noted that the quantities T;; have the same role as the deviatoric
stresses and €¥P strains as the deviatoric strains. In fact, it may be
noted that Equa%ion 5.18 reduces in the limit to the isotropic case when
the material properties are the same in all three directions. Conse-
quently, following the procedure developed for the Bingham material,®
the strain rate dependence is introduced by defining {TF}:

(1F} = {1} + n(&'F} 5.22

. where n represents viscous coefficient, and {T} is the quantity which

satisfies the yield criterion. By using Equation 5.20, a final stress is
defined as:

-1 F

{F} = [H] ~ {T} 5.23

If no yielding has occurred, the viscoplastic strain increment is zero.
So this analysis begins with a trial incremental stress where:

{do'} = [C] {de} | 5.24

and [C] is the orthotropic relationship between stress and strain.
Equation 5.24 is inserted into Equation 5.2 and this value is inserted
into the yield criterion in Equation 5.4. If yield does not occur, the
trial stress is equal to oF. However, if yield_does occur then Equa-
tions 5.22 and 5.23 must be used to calculate ¢ as follows:

From Equation 5.17 and 5.24:
{do'} = [C] {de}-[C] {de'P} 5.25
Then as in Equation 5.2:

@} = {o'}=[c] {ae'P} 5.26

Multiplying Equation 5.22 by [H]'1 and using Equation 5.23 and
5.24, one gets:

{F} = {a} + n]"! (&P} ' 5,127

From Equation 5.26 and 5.27, when solving for {o} one finds:

{o} = {o'}-[C]{de"P}-n[H] 1 (P} 5.28
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By using Equation 5.28 it is easily shown that:

RS L ., S !
{e'Py .- { it } = e {de *} = o {T} 5.29

Substituting 5.18 and 5.29 into 5.28 produces:

o} = {o"} - ax[cl{r} - BN 5.30

Defining another variable {T}:
{Ty = [C] {T} . 5.31

and using the inverse of Equation 5.20 and Equations 5.31 in 5.30 yields:

o} = (0"} - ax |{T} + (o'} 5.32

The question in a dynamic problem always arises as to what value of
stress is used for the flow rule. In this formulation the stress used
in the flow rule is approximated by the trial stress. A closer approxi-
mation can be formed by doing an iterative loop on this equation, but
little difference is found in the solution when this is done.

The {0} stress formed here in Equation 5.32 is input in the yield
criterion and results in the following equation:

Ad)\2 - 2BdA + C = 0 5.33
where:
=T n_ T
i = Tij + e o] 5.34

T2 @e "R R, rE G
11 %2 33 12 23 13
= +Y,
& y2 * v2 * v2 * i * 30 * y2 +Y11T22T33 22711733 Y33T22 11
11

22 33 12 23 13

5.35
T T A B I TR,
CT%1 0 T2%0  T33%3  Ti%1,  Taz%s  Tis%is
B = + + + + +
2 2 2 2 2
A Y22 Y33 12 Y33 LA
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T T CT T DT T
T52933*T339,, . v | T11%3T33%1 T11922*T22%11

+
11 2 22 2 33 2

5.36
g

C = 2f (0,.) -1 5.37
ij

where 2f(0 ) 1 is the yield function.

The proportlonallty constant dA can be SOlVed for and, as shown for
Equation 5.13, is:

C

dA = ————
B+/BZ-AC 5.38

This value of dA is then substituted into Equation 5.32. By using
Equations 5.28, 5.20 and 5.27:

{OF} = '1 + DQ% {o} 5.39

With this analysis completed, the problem of the oscillating
stress is reduced but still sometimes occurs. This then leads to the
next section which deals with the element equilibrium equations.
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V1. ELEMENT EQUILIBRIUM EQUAT1ONS

The previous analysis helped allow for the use of larger time
increments in the numerical time integration. Although the results
showed the deflection to be stable, there were normal stress oscilla-
tions. " In order to compensate for these small errors in strain, the
external pressure is used to develop element equilibrium equations.

The modification of the analysis involves the introduction of addi-
tional dynamic equations which express the transverse acceleration of
the elements as a whole, in addition to the nodal accelerations as ex-
pressed by Equation 1.56. Consider a small quadrilateral section of
the plate as illustrated in Figure 6. In general, this section will be
composed of N layers and loaded by external distributed force
p(x1,x2,t). The transverse acceleration of this plate section that is
accelerating in the x3 direction, is produced by two distinct forces.
The first of these is the external force p(xl,xz,t), and the second is
the bending force in the plate. As a matter of observation, it is logi-
cal to expect the external force to be predominant in the early stages
of the time history while the bending forces should become more impor-
tant as the deformation of the plate increases. Since the amount of
each contribution will vary with time, the relative amounts of acceler-
ation from each load will become one of the unknowns of the problem.

In order to take this into consideration, it is assumed that the amount
of acceleration due to the external force will be related to the total
average acceleration by a relation:

ap =k at 6.1

where a, is the acceleration due to the force p(xy,x5,t), a¢ is the
total acceleration, and k is an unknown parameter. It may be noted
that the accelerations in Equation 6.1 will vary through the plate thick-
ness. Consider now the acceleration in the x3 direction of the indivi-
dual layers in the plate sections of Figure 6. These layers are now
the actual finite elements. The normal stress in the xz direction will
vary from layer to layer, and the top and bottom values of this stress
will be equal to the applied surface loads. The plate elements through
the thickness of the plate are illustrated in Figure 7. The interface
stresses are denoted by ¢ with an appropriate subscript. Writing the
dynamic equations for each layer results in the following N equations:
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02 = 01 = ap pltl
1
05 -0y = a, 0t
2
___________________________ 6.2
o, -0, , = Oy 1t
N~ ON-1 Py_y N-1'N-1
ON+1” ON T aprNtN

where N represents the total number of layers, is the material density

and t is the thickness of each layer. It may be noted from the boundary
values that:

al
I
o

6.3

One1 = P(XpsXpt)

Using Equations 6.1 and 6.3 and adding Equation 6.2 results in the
solution of the unknown constant k:

.- P(xl,xz,t)
6.4

Z
a_ p.t.
L it 2

Since the finite element is formulated in terms of element stresses
rather than the interface stresses, the latter have to be expressed in
terms of the element stresses. This is done by linear extrapolation:

(0.+0. )
g. = _LJi_ .
J 2 6.5

where oj represents the stress o33 (normal stress in the x3 direction).
By using Equations 6.4 and 6.5 in Equation 6.2 it is possible to solve
for the element stresses 01 to oy. This procedure will yield the normal
stress in the x3 direction for each element in the plate. '
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In applying this analysis to the existing finite element model, it
must be realized that Equations 6.2 are not completely new dynamic equa-
tions; but rather the information contained in these equations is al-
ready contained, in a different form, in the original dynamic equation
represented by Equation 1.59. However, Equations 1.59 represent nodal
accelerations, but the accelerations in Equations 6.2 are some average
accelerations in the elements and therefore the two sets of accelera-
tions are related but are different quantities. 1In fact, in the present
analysis the element accelerations are defined by averaging the nodal
values. In order to see how Equations 6.2 are incorporated into the
analysis, it is useful to review how the original analysis proceeded.

- Equations 1.59 are solved by a finite difference procedure and the re-
sulting displacements are used to evaluate strains and therefore
stresses. The stresses are then used to check for yield and to evaluate
the body forces for the next time interval. In the modified approach
Equations 1.59 still solve for the displacements which are used to
evaluate all the strains. The displacements from Equations 1.59 are
also used to evaluate the element accelerations which are needed for
solution of Equations 6.2. The element accelerations are related to

the nodal displacements by averaging over all the corner nodes for each
element.

The value of the normal stress as calculated by this method is
stored, and the previous values of stress are used to solve for the
pPlastic yielding. After the completion of the plastic yielding, the
stresses are modified so that they remain on the yield surface, yet com-
ply with the element equilibrium equations. This is easily accomplish-

ed by referring to Hill's yield criterion (Equation 5.4) and rewriting
it as:

Y Y Y
. w2 Yz 2 BB L o2
2£(033)= = 5 (0557055) = 5 (055701 1) - 5 (071795
2 2 2
%e . %Gy g
+ + + = 1 6.6
y2 Y2, Y2
12 23 23

If the superscript N refers to values found by nodal equilibrium equa-
tions and E refers to the value found by the elements equilibrium
equations, the final stresses are solved for by the following equations:
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11

22 2~ 93 * 933
_ E
O'33 = O'33 6.7
N
92 T %2

oy = o

3

This analysis was then programmed and the results compared favor-
ably with an experiment. These findings and conclusions are discussed
in the next section.
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VII. RESULTS AND CONCLUSIONS

In order to check the accuracy of the previous analysis, runs were
made with this program that inputted the requirements of the following
experiment. The example used to check the program's accuracy was a
three-layered laminated plate.® The top and bottom layers were 1020
steel, 12.7 mm and 6.35 mm thick, respectively. The middle layer was
2024 aluminum, 12.7 mm thick. The plate was 22.86 cm by 45.72 cm. The
ends were simply supported and a large impulsive load was detonated on
the top of the plate. The results of the experiment compared favorably
to another computer code (acronym HEMP). The HEMP code is a Lagrangian
finite difference technique that utilised an elastic-perfectly plastic
model for solids. It is relatively time consuming and costly to run,
thus the need for a more efficient technique such as the one previously
described.

The input to this program which analyzed three-dimensional impul-
sively loaded plates (acronym TIP) is shown in Appendix A and is fol-
lowed by the actual input used. As was mentioned in Section 2, in
order to find the external force, a special subroutine must be input
which gives the external pressure at specific locations. For this ex-
ample a list of data was given for the external pressure at radial
distances from the center of the plate at discrete time intervals.
Figure 8 shows the data graphically for several times. Rather than in-
put this data and extrapolate answers, the pressure was averaged over
the plate at discrete time intervals using the formula:

.
) Ig p; (ry-T5 ;) >4
pave i=1 r2 :
N

where p; is the pressure at radial distance rj.
Bi i

This gives an area type average and Figure 9 shows graphically how
the results look. pgye Was then input in SUBROUTINE DISFOR; and knowing
the time, the proper pressure is extrapolated from these average values.
This cuts down considerably on the necessary input into SUBROUTINE
DISFOR.

With the DISFOR and the input shown at the end of Appendix B, the
program was executed with an elastic-plastic yield subroutine and exe-
cuted again with an elastic-viscoplastic subroutine.
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In the program with the elastic-plastic subroutine, the results
shown in Figure 10 were achieved when using a time step of two and one
half microseconds for the first twenty microseconds, then five micro-
seconds for twenty to sixty microseconds, and ten microseconds for the
remaining time. There was a four by six grid on the plate which is
quite simple. The results shown here have a maximum error of five per-
cent, which in all cases was less than the error of the HEMP code.

This lends credibility to this method of analysis.

Figure 11 gives the results of an elastic-viscoplastic analysis
for this example. Since there is damping in this type of analysis the
elastic-viscoplastic analysis was stiffer than the elastic-plastic
analysis.

Various techniques could be used to improve the error found in this
example. Smaller time steps could be used; and this would reduce the
error but increase the computation time. A smaller grid with more nodal
points could be used but it must be remembered that the more degrees of
freedom a problem has, the more mode shapes it will have and conse-
quently the more chances of it going into an unstable mode shape. Also
the approximations used in the large deflection analysis assume an ele-
ment that has plate-like characteristics,

This is a highly efficient way to handle a very difficult problem.
Its advantages are in the speed and accuracy it produces. The element
equilibrium equations, although simple in their calculation of the ele-
ment accelerations, allow for minor error corrections.
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MAIN

*Note:

LOAD {] DISFOR

STRESS
ZSTRESS
QUAD
YIELD
sTirF M quap

MESH {JPOINTS Establishes element and nodal
information

INIT Sets initial displacements and velocities

DIFF Time integration loop

Calculates external loads

Calculates stresses

Calculates stress in Z
direction

Stiffness for quadrilateral
elements

Checks for plastic yield

Establishes body forces

INT Integrates dynamic equations

Some minor subroutines which are called repeatedly are

omitted for clarity.

Figure 1. Flow Diagram of TIP/I Program
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APPENDIX A

COMPUTER PROGRAM INPUT CARD DESCRLPTION
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TITLE CARD
Format (20AY4) Title (Title for particular case)
CONTROL CARD

Format (4I5)

Columns 1-5 NUMMAT (Number of different materials; 6
maximum)
6-10 NUMLA (Numper of layers; 12 maximum)
11-15 NLINC (Number of load increments with time;
NLINC>1) '
16-20 IPLOT (Plot parameter, 1 if ploct required, 0 if

no plot required)
PRINT CARD

This card controls the output that is generated so that the
deflections are printed every NPRINT time increments.

Format (I5)
Columns 1-5 NPRINT

TIME INCREMENT CARD

Format (F10.5,5E10.4)

Columns 1-10 BET (B, acceleration parameter or Newmark's

parameter, 0.25)

11-20 First time step to be used

21-20 Second time step to be used

31=40 Third time step to be used

41-50 Time at which program begins using second time
step

51-60 Time at which program begins using third time
step

MESH GENERATLON CONTROL CARD

Format (5I5)

Columns 1-5 MAXI (Maximum value of I in mesh; 25 maximum)
5-10 MAXJ (Maximum value of J in mesh; 100 maximum)
10-15 NSEG (Number of line segment cards)
16=20 NBC (Number of boundary condition cards)
21-25 NMTL (Number of material block cards)
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LINE

SEGMENT CARDS

The order of line segment cards is immaterial, except when plots are

requested;

perimeter of solid

in this

case,
continuously.

the must define the

segment cards

cards
of 1line

line
The

segment
order

defining internal straight lines is always irrelevant.

Format (3(2I3,2F8.3),i5)

Columns

1f the number

1-3
4-6
7-14
15-22
23-25
26-28
29-36
37-44
45-47
48-50
51-58
59-66
67-71

in column
0

1
2

Note:

of
of
of
of
of
of
of
of
of
of

1st
1st
1st
1st
2nd
2nd
2nd
2nd
3rd
3rd

coordinate
coordinate
coordinate
coordinate
coordinate
coordinate

I point
Jd

R

Z

I

J

R coordinate
Z

I

Jd

R

Z

L

point
point
point
point
point
point
point
point
point
of 3rd point
of 3rd point
type parameter

coordinate
coordinate
coordinate
coordinate
coordinate
ine segment

71 is:

Point (input only 1st point)

Straight line (input only 1st and 2nd points)
Straight 1line as an internal diagonal (input
only 1st and 2nd points)

Circular arc specified by 1st and 2nd points at
the mid-point of the arc

Circular arc specified by 1st and 2nd points at
the ends of the arc with the
coordinates of the <center of tne arc given as

tne 3rd point (delete I and J for 3rd point)
Straignt line as a boundary diagonal for whicn 1
of 1st point is minimum for its row and/or i of
2nd point is minimum for its row (input only I1st
and 2nd points)

Straight line as a boundary aiagonal for whicn I
of 1st point and/or 2nd point is maximum for its
row ( input only 1st and 2nd points)

In specifying a circular arc, the points are
ordered - such that a counter-clockwise direction
about the center is obtained upon moving along
the boundary.
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BOUNDARY CONDITION CARDS

Each card assigns a boundary condition code to a block of succes-
sive nodal points starting with N1 and ending with N2, inclusive. (If
code is 0 no card necessary.) Displacements and velocities can be
prescribed at any node for a particular time through Subroutines BCDEL
and BCVEL.

Format (2I5,I10)

Columns 1-5 Starting node number N1
6-10 Ending node number N2
11-20 Boundary condition code

If the number in columns 11-20 is:

0 displacement is not prescribed (program assigns this code
automatically)

1 displacement is prescribed in x; direction

2 displacement is prescribed in x, direction

3 displacement is prescribed in x; direction

4 displacement is prescribed in x; and x; directions

5 .displacement is prescribed in x, and x; directions

6 displacement is prescribed in Xz and xj directions

7 displacement is prescribed in-x;, X, and x, directions

8 through 14, these codes parallel codes 1 through 7 except
velocities are prescribed instead of displacements for
chosen nodes

MATERIAL BLOCK ASSIGNMENT CARD

Each card assigns a material definition number to a block of
elements defined by the I, J coordinates, Two cards for each layer,

Card 1
Format (I5,3F10.0)
Columns 1-5 Material definition number (1 through 6)
6-15 Material principal property inclination angle
BETA in xp - X, Plane
16-25 Material principal property inclination angle
ALPHA in x'1 - x', plane
26-35 Bingham viscosity in this layer
Card 2**
Format (6E12.6)
Columns 1-12 Yield stress in direction

xl

13-24  Yield stress in x'; direction
25-36 Yield stress in x'3 direction
37-48 Yield stress in x'y x'y direction
49-60 Yield stress in x'z x', direction
61-72 Yield stress in x'1 x'3 direction
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'
Note: If material is isotropic, place yield stress in

first 12 spaces and leave the rest blank. when
tne program finds blanks in the 13-24 spaces it
assumes the material is isotropic and calculates
the other yield stresses.

MATERIAL PROPERTY INFORMATIQON CARDS

Tne following group of cards must be specified for each material

(Maximum of 6).

a.

|O"

MATERIAL IDENTLFICATION CARD

Format (I5,F10.0)

Columns 1-5 Material identification number
6=-15 Mass density of material (if required)

MATERIAL PROPERTY CARDS

First Card

Format (6F10.0)

Columns 1-10 Modulus of elasticity, £
11-20 Modulus of elasticity, E
21-30 Modulus of elasticity, E.
31-40 Poisson's ratio, v12 -
41-50 Poisson's ratio, v23
51-60 Poisson's ratio, Vj1

Second Card

Format (3F10.0)

Columns 1-10 Shear Modulus, G12
11-20 Shear Modulus, G23
21-30 Shear Modulus, 631

R THICKNESS CARD

Format (12F5.3)

Columns 1=5 TH(1) (Thickness of layer 1)
6-10 TH(2) (Thickness of layer 2)
11-15 TH(3) (Thickness of layer 3)

ete. up to TH (NUMLA)
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PLOT TITLE CARD*

Format (8A10)

Colunns 1-80 Title (Title printed under each plot)

PLOT GENERATION INFORMATION CARD¥

Format (2F10.0)

Columns 1-10 RMAX (Maximum x; coordinate of mesh)
11-20  ZXAX (Maximum x, coordinate of mesh)

*Note: use only if IPLOT = 1 (plot required)

INITIAL CONDITION CARDS

Card 1
Format (I5)

Columns 1-5 INIDV number of initial displacement and
velocities cards (see Card 2) specifying
initial displacements and velocities

Card 2

Each card assigns an initial displacement and/or initial velocity

to a specific nodal point.** The number of these cards is equal to
INIDIV.

Format (I5,2E12.6)

Coluans 1-5 Nodal Point
6-17 Initial Displacement
18-29  Initial Velocity

**Note: Used only if there are initial displacements or velocities,
otherwise the program initializes these values as zero and no input
is necessary.
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APPENDIX B

PROGRAM TIP FOLLOWED BY ITS INPUT
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PROGRAM TIPI(INPUT,OUTPUT,DATP,TAPES=INPUT,TAPE6=0UTPUT,TAPE1,

1TAPE2,TAPE3, TAPE4=DATP)

CH # % ¥ % % % % % % % % % % % % % ¥ ¥ % ¥ ¥ ¥ X X ¥ X X X X X X X X X ¥

C THREE DIMENSIONAU;ANALYSIS OF AN IMPULSIVELY LOADED LAMINATED PLATE
C BY THE FINITE ELEMENT METHOD WITH ORTHOTROPIC PLASTIC YIELDING

C AND NONLINEAR STRAINS
CH % % 3% % % % B % F % % ¥ B % % % B B N B E X X X K E E E X X X E X ¥

INTEGER CODE .

COMMON /BASIC/VOL ,NUMNP ,NUMEL ,NUMLA ,NCG

COMMON /NPR/NPRINT

COMMON /MATP/RO(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),X1(10),SIG(12),N,M

COMMON /NPDATA/X(200),Y(200),CODE(200) ,NPNUM(10,20)

COMMON /ELDATA/BETA(12),ALPHA(12),TH(12),IX(200,4) ,MATRIL(12)
COMMON /RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXI ,MAXJ ,NMTL ,NBC
COMMON /BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY, IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)

COMMON /DISP/DELN1(600),DELN (600) ,DEL(600) ,GNM1(600),GNM2(600)
COMMON /MASS/A(600),B(600),CM(8)

COMMON/FIRST/F0(600),DER(600)

COMMON /DELT /XDEL (4, 18)

COMMON /DELTRI/DELTA(Y4,13)
COMMON/PLYLD/SIGY(12,6),DEPS(6),EPS(12,50,6)

DIMENSION TITLE(20)

C******l**************l‘*****‘l‘********

v
Ck *

READ AND WRITE CONTROL INFORMATION
R R O B R % B B B ¥ X K B X X B X E X & B X X R K E X K B X ¥ ¥ ¥

50 READ(5,1000)TITLE,NUMMAT,NUMLA,NLINC,IPLOT

88

IF(EOF(5))920,88

READ (5, 1004 )NPRINT

IF(EOF(5).NE.0.)GO TO 920
WRITE(6,2000)TITLE,NUMLA ,NUMMAT,NLINC
WRITE(Y4)NLINC,NUMLA

READ(5,1002) BET,(HH(I),I=1,3),(HI(J),JI=1,2)
WRITE(6,2001)BET, (HH(I),I=1,3),(HT(J),J=1,2)
H=HH(1) ;

HN=0.0

TIME=0.00

NTIME=0

Cl % % % % % % % % % % % ¥ % % ¥ ¥ ¥ % ¥ X X X ¥ X X X X X X X X X X X %

C

GENERATE FINITE ELEMENT MESH

CE % % & % % % % % % % % % % % X % K X K X K % K X K X ¥ X B X B X B ¥ ¥
100 CALL MESH '

MPRINT=0

DO 230 N=1,NUMNP
IF(MPRINT.NE.O) GO TO 220
WRITE(6,2003)

MPRINT=59
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220 MPRINT=MPRINT-1
230 WRITE(6,2004) N,X(N),Y(N)
IT=NUMNP*(NUMLA+1)%*3
440 MPRINT=0
DO 460 N=1,NUMEL
IF(MPRINT.NE.O) GO TO 450
WRITE(6,2008)
MPRINT=59
450 MPRINT=MPRINT-1
IL=IX(N,1)
JJ=IX(N,2)
KK=IX(N,3)
LL=IX(N,4)
460 WRITE(6,2009) N, (IX(N,L),I=1,4)
C******!*****************************

c READ AND WRITE MATERIAL PROPERTIES
C************************************
500 CONTINUE

DO 510 M=1,NUMMAT

READ(5,1004) MTYPE, (RO(MTYPE))

WRITE(6,2010) MTYPE, RO(MTYPE)

READ(5,1005) (E(J,MTYPE),d=1,9)

WRITE(6,2011) (E(J,MTYPE),d=1,9)

510 CONTINUE
READ(5,1006)(TH(I),I=1,NUMLA)
WRITE(6,1007)

1007 FORMAT("OTHICKNESSES")
WRITE(6,1006)(TH(I),I=1,NUMLA)
WRITE(6,1008)

1008 FORMAT("OYIELD STRESSES")
WRITE(6,1009) ((S1GY(I1,J),Jd=1,6),I=1,NUMLA)

1009 FORMAT(6(2X,E15.7))
WRITE(6,1108)(ETA(L),I=1,NUMLA)

1108 FORMAT(//" COEFFICIENTS OF VISCOSITY"/6(2X,E12.6)/)
CALL USTART
CALL UDIMEN(10.,10.)

IF (IPLOT.EQ.1) CALL MPLOT
DO 800 I=1,NUMLA

DO 800 J=1,NUMEL

DO 800 K=1,6
SIGMA(I,J,K)=0.00

800 CONTINUE
CALL INIT
DO 900 NL=1,NLINC
IF(NL.GT.1) GO TO 721
DO 720 N=1,NUMLA
ALPHA(N)=ALPHA(N)/57.295780

720 BETA(N)=BETA(N)/57.295780

721 CONTINUE

c
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FORM STIFFNESS MATRIX

DO 850 I=1,4
DO 850 J=1,18 -
DELTA(I,J)=0.00
850 CONTINUE
CALL DIFF
900 CONTINUE
CALL UEND
910 GO TO 50
1000 FORMAT(20A4/615,F5.0,5I5)
1001 FORMAT(3F10.0)
1002 FORMAT(F10.5,5E10.4)
1004 FORMAT (I5,F10.0)
1005 FORMAT(6F10.0)
1006 FORMAT (12F5.3)
2000 FORMAT (2H1 ,20A4/

1 33H0 NUMBER OF LAYERS==ccoccmcaaaa- I4/
2 33H0O NUMBER OF MATERIALS-=—eceeeeea- 4/
3 33H0O NUMBER OF LOAD INCREMENTS===-- I4/)

2001 FORMAT(41HO ACCELERATION PARAMETER, BETA-==c=eea== F10.5/
148H0 TIME-STEP SIZE,HH-e=cccmmm oo 3(2X,E10.4)/
251H0 TIME TO CHANGE TIME STEP SIZE===ccccccccccccaa—- 2(2X,E10.4)
37/) .

2003 FORMAT (35H1 N X Y )

2004 FORMAT (I5,2F10.4)

2008 FORMAT (51H1 EL I J K L ANGLE BETA  ANGLE ALPHA)

2009 FORMAT (I5,4I4,2F13.3)
2010 FORMAT (1H1,"MATERIAL IDENTIFICATION NUMBER =",I2/
21H ,"MASS DENSITY =",£15.7)
2011 FORMAT (
11H ,"MODULUS OF ELASTICITY-EN =",E15.7/
21H ,"MODULUS OF ELASTICITY-ES =",E15.7/
31H ,"MODULUS OF ELASTICITY-ET =",E15.7/
41H ,"POISSON RATIO-NUNS =",E15.7/
51H ,"POISSON RATIO-NUNT =",E15.7/
61H ,"POISSON RATIO-NUST =",E15.7/
T1H ,"SHEAR MODULUS-GNS =",E15.7/
81H ,"SHEAR MODULUS-GST =",E15.7/
91H ,"SHEAR MODULUS-GIN =",E15.7/)
2016 FORMAT (26H THE SYSTEM CONVERGED IN I2,11H ITERATIONS)
2017 FORMAT (33H THE SYSTEM DID NOT CONVERGE IN I2,11H ITERATIONS)
920 STOP
END
SUBROUTINE ANGLE (R,Z,RC,ZC,ANG)
INTEGER CODE
COMMON/BASIC/VOL ,NUMNP,NUMEL ,NUMLA,NCG
COMMON/MATP/RO(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),XI(10),SIG(12),N,M
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COMMON/NPDATA/X (200),Y(200),CODE (200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12),ALPHA(12),TH(12),IX(200,4) ,MATRIL(12)
COMMON/RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN.100),IMAX(100),JMIN(25),JMAX(25),MAXI ,MAXJ ,NMTL ,NBC
COMMON/BASIC2/BET,H,HN,HH(3) ,HT(2),TIM3,NLAY,IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,5),DSIG(6),F(600)
COMMON/DISP/DELN1(600),DELN(600),DEL(530) ,GNM1(600),GNM2(600)
COMMON /MASS/A(600),B(600),CM(8)
C*********************'**************

c FIND ANGLE OF INCLINATION BETWEEN O AND 2%pPI
C*********************i**************

PI=3.1415927

D1=(Z-ZC)

D2=(R-RC)

IF(ABS(R-RC).GT.1.E-8) GO TO 100

ANG=PI/2.

IF(D1.GT.1.E-8) RETURN

ANG=-ANG

RETURN
C************************************

o ALLOW CIRCLE TO CROSS AXIS
C********************'****************

100 ANG=ATAN2(D1,D2)
RETURN
END
SUBROUTINE BAND (A,B,NROW,NCOL,NMID,NRES,KO)
DIMENSION A(13,3),B(13,1)
NL=NMID-1
NR=NCOL-NMID
NRM=NROW-1
DO 2 I=1,NRM
IF(A(L,NMID).EQ.0.0) GO TO 7
RE=1.0/A(I,NMID)
LL=NROW-I
LR=LL
IF(LL.GT.NL) LL=NL
IF(LR.GT.NR) LR=NR
DO 2 J=1,LL
JR=I+J
JC=NMID-J
RA=-A(JR,JC)*RE
DO 1 K=1,LR
KC=JC+K
IC=NMID+K

1 A(JR,KC)=A(JR,KC)+RA*A(I,IC)
DO 2 K=1,NRHS
2 B(JR,K)=B(JR,K)+RA*B(I,K)

LIF(A(NROW,NMID).EQ.0.0) GO TO 6
RE=1.0/A(NROW,NMID)
DO 3 I=1,NRHS
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3 B(NROW,I)=B(NROW,I)*RE
DO 5 I=1,NRM
IR=NROW-I
RE=1./A(IR,NMID)
LR=I ’
IF(LR.GT.NR) LR=NR
DO 4 J=1,LR
JR=IR+J
JC=NMID+J
DO 4 K=1,NRHS
4 B(IR,K)=B(IR,K)-A(IR,JC)*B(JR,K)
DO 5 J=1,NRHS
5 B(IR,J)=B(IR,J)*RE
KO=0
RETURN
I=NROW
T KO=I
WRITE(6,100) KO
RETURN
100 FORMAT(//" YOU GOOFED - - - THERE IS A ZERO ON THE PRINCIPAL DIAGO
INAL IN THE",I4," TH ROW."//)
END
SUBROUTINE BCDEL(I)
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON/DISP/DELN1(600),DELN(600),DEL(600),GNM1(600),GNM2(600)

(o))

#OE R OB R B B B B R B B B R R B B B B OE B E B E X B B B EEE N X X B
IF DISPLACEMENTS ARE GIVEN AT SPECIFIED NODES, THIS IS THE POINT IN
THE SUBROUTINE WHERE THAT SPECIFIC INPUT IS GIVEN WITH RESPECT TO
TIME AND NODAL LOCATION
B R OB OB OB OB OB % B B B B B OX R R B R BB E B E B B E B EEE K X B
DEL(I)=0.0
RETURN
END

SUBROUTINE BCVEL(I)
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON/DISP/DELN1(600) ,DELN(600),DEL(600) ,GNM1(600),GNM2(600)
COMMON/FIRST/FO(600),DER(600)
COMMON/MASS1/XMINV(600),EEKM(13),F1(600),F2(600)
DERN=DER(I)
# % % % ¥ ¥ % ¥ ¥ % % ¥ % % ¥ X X X % X ¥ R X X X X X X X ¥ £ X X % #
IF VELOCITIES ARE GIVEN AT SPECIFIED NODES, THIS IS THE POINT IN THE
SUBROUTINE WHERE THAT SPECIFIC INPUT IS GIVEN WITH RESPECT TO TIME
AND NODAL LOCATION
% % % B % X X B X ¥ ¥ % % X B X X ¥ ¥ X ¥ ¥ X ¥ # ¥ ¥ ¥ X ¥ % % ¥ ¥ #
DER(I)=0.0 :
DEL(I)=DELN(I)+(1.-2.%BET)*H{*DERN+2, *BET*H*DER(I)+(.5-2.%BET)
1 SH#EQEYMINV(I)*(GNM1(I)+F1(I))
RETURN
END
SUBROUTINE CIRCLE(ANG1,DELPHI,RSTRT,ZSTRT,RC,ZC,I,J)
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INTEGER CODE
COMMON/BASIC/VOL ,NUMNP ,NUMEL,NUMLA ,NCG
COMMON/MATP/RO(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),X1(10),SIG(12),N,M
COMMON/NPDATA/X(200),Y(200) ,CODE(200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12) ,ALPHA(12),TH(12),IX(200,4) ,MATRIL(12)
COMMON/RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXL ,MAXJ ,NMTL ,NBC
COMMON/BASIC2/BET ,H,HN,HH(3) ,HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON /SIGM/BSUM, TSUM(6) ,SIGMA(12,50,6),DSIG(6),F(600)
COMMON/DISP/DELN1(600) ,DELN(600),DEL(600),GNM1(600),GNM2(600)
COMMON/MASS/A(600) ,B(600),CM(8)
DIMENSION AR(10, 40),AZ(10, 40)
EQUIVALENCE (X(1),AR),(Y(1),AZ)
C**********************

o FIND INTERSECTION OF LINE AND CIRCLE
C*********************
ANG 1=ANG 1+DELPHI
RR=SQRT( (RSTRI-RC) ¥*#24+(ZSTRT-ZC)*¥2)
AR(I,J)=RC+RR*COS(ANG1)
AZ(I,J)=ZC+RR*SIN(ANG1)
RETURN
END
SUBROUTLINE DIFF
INTEGER CODE
COMMON/BASIC/VOL ,NUMNP ,NUMEL ,NUMLA ,NCG
COMMON/MATP/RO(12),E(9,12) ,EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRzZ(6,6),X1(10),SIG(12),N,M
COMMON/NPDATA/X(200),Y(200) ,CODE (200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12) ,ALPHA(12),TH(12),1X(200,4) ,MATRIL(12)
COMMON/RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXI ,MAXJ ,NMTL,NBC
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)
COMMON/DISP/DELN1(600),DELN(600) ,DEL(600),GNM1(600),GNM2(600)
COMMON /MASS/A(600) ,B(600),CM(8)
COMMON/FIRST/FQ(600),DER(600)
COMMON/MASS1/XMINV(600) ,EEKM(13),F1(600) ,F2(600)
COMMON/NPR/NPRINT
COMMON/PLYLD/SIGY(12,6),DEPS(6),EPS(12,50,6)
HN=H
TIME=TIME+H
NTIME=NTIME+1
DO 20 I=1,2
IF(TIME.LT .HT(I).OR.H.EQ.HH(I+1))GO TO 20
IF(TIME.GT.HT(2) .AND.H.EQ.HH(3))GO TO 30
H=HH(I+1)
TIME=TIME-HN+H

)
* Z
=3
* = %
* 0w
»® x> W
=
(e}
N
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WRITE(6,10)HN,H,TIME,HT(I)

10 FORMAT("0 TIMES ",4(2X,E10.4)/)
GO TO 30

20 CONTINUE

30 IF(NTIME.GT.1)GO TO 280
WRITE(6,999)

999 FORMAT("™1INITIAL FORCE VECTOR"/)
WRITE(6,1000)(FO(I),I=1,IT)
WRITE(6,998)

998 FORMAT("OINITIAL DISPLACEMENTS")
WRITE(6,1000) (DEL(I),I=1,IT)
WRITE(6,997)

997 FORMAT("OINITIAL VELOCITIES")
WRITE(6,1000)(DER(1),I=1,IT)
WRITE(6,996)

996 FORMAT(™1")

1000 FORMAT(9(2X,E12.6))

280 CONTINUE
DO 390 I=1,IT
IF(NTIME.EQ.1)GO TO 390
F2(I)=F1(I)

390 F1(I)=F(I)

CALL LOAD

CALL STRESS

CALL STIFF

CALL INT

IF(NTIME.EQ.1) GO TO 98

IF((NTIME/NPRINT)®*NPRINT.NE.NTIME) GO TO 99
98 CONTINUE

c WRITE(6,26)((I,J,(EPS(I,J,K),K=1,6),I=1,NUMLA),J=1,NUMEL)
C WRITE(6,25)((I,J,(SIGMA(I,J,K),K=1,6),I=1,NUMLA),J=1,NUMEL)
WRITE(6,1003)NTIME, TIME
1003 FORMAT(/"ODEFLECTION FOR CYCLE=",6I3," TIME =",E12.6/

1 " NODE",15X,"DEL X",15X,"DEL Y",15X,"DEL Z"/)
NUP=NUMLA+1
DO 1026 K=1,NUP
DO 1026 I=1,NUMNP
NP=I+(K-1)¥*NUMNP
NP3=3#NP
WRITE(6,1001)NP,DEL(NP3-2),DEL(NP3-2) ,DEL(NP3)
1001 FORMAT(16,3E20.10)
1026 CONTINUE
MI=NUMNP#*3
C WRITE(6,15) (MX,DEL(MX) ,DELN(MX),DELN1(MX),B(MX),GNM1(MX),
c 1 GNM2(MX),F(MX) ,MX=3,IT,MI)
15 FORMAT(/"  #",5X,"DEL N",8X,"DELN N-1",5X,"DELN1 N-2",8X,
1 "B N",8X,"GNM1 N-1",8X,"GNM2 N-2",8X,"F"
2 /(I4,2X,E12.6,2X,E12.6,2X,E12.6,2X,E12.6,2X,E12.6,2X,E12.6,
3 2X,E12.6))
25 FORMAT(//"™1  LAYER",2X,"ELEMENT",5X,"SIGMA X ",6X,"SIGMA Y ",6X,
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1 "SIGMA Z ",6X,"SIGMA XY",6X,"SIGMA YZ",6X,"SIGMA Xz"/(2I8,2X,6E14

2 .6))

26 FORMAT(//" LAYER",2X ,"ELEMENT",5X," EPS X ",6X," EPS Y ",6X,
1" EPS Z ",6X," EPS XY",6X," EPS YZ",6X," EPS XZ"/(218,2X,6E14
2 .6))

99 CONTINUE
C TTTTTTTTTTTTTTTTTTTTTTTTITTITTITTITTITTTITTITTTITTTTTTTTTITTTTTTTTT
NTOP=NUMLA¥*3*NUMNP+3
ETIM=TIME*1,0E+06
NL 1=3*NUMNP
NL2= (NUMLA+1)*NUMNP#*3
WRITE(Y4)DEL(3),DEL(NTOP),(DEL(IJ),IJ=4,NL2,NL1),ETIM
C TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTITTITTITTITTITTITTTTTITTTTTTTTTITTTITTTTTTIT
IF((NTIME/5)*5,NE.NTIME)GO TO 1039 )
CALL MPLOT
1039 CONTINUE
RETURN
END
SUBROUTINE DISFOR
COMMON /BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY, IFLAG,IT ,NTIME
COMMON/FOR/FF(5),FC{5)
COMMON/ARG/XXX(10),1YY(10),S(24),XX(3),YY(3),
1CRZ(6,6),X1(10),SIG{12),N,M
COMMON/NUMB/NITER,HDAT, TO
DIMENSION DIST(5)
DIMENSION FF1(19)
DATA (FF1(I),I=1,19)/1.4628564£-1,8.561575E-2,2.2316T69E-2,
1 6.0124041E-3,2.2297T04E-3,1.1280587E-3,6.0944 14254,
1 3.5506404E-U,2,26655T1E-4,1.5336139E-4,1.0736918E-4,
1 8.1057611E-5,6.5648474E-5,5,5056944E-5,5.0003866E-5,
1 4.4950788E-5,3.9897700E-5,3.6072003E-5, 3.2246295E-5/
11 NITER=19
TNITER=42.0E-6
HDAT=2.0E-6
TO=6.0E-6
DO 10 I=1,5
DIST(I)=SQRT(XXX(I)**¥24YYY(I)%**2)
10 CONTINUE
YBLAST=,2362%(TIME*1,0E+06)
IF(TIME.GT.TO) GO TO 40
DO 45 I=1,4
45 FF(I)=-FF1(1)*14,5E€
GO TO 18
40 IF(TIME-TNITER) 15,16,16
15 CALL POINT(TIME,NUM,TN)
DO 12 I=1,4
FF(I)=-(FF1(NUM)+(FF1(NUM+1)-FF1(NUM) )*(TIME-TN)/HDAT)*14 ,5E6
12 CONTINUE
GO TO 18
16 DO 17 I=1,4

80



FF(I)==(FF1(NITER)+(FF1(NITER)=-FF1(NITER-1))®*(TIME-TNITER)/HDAT)
1 %14 ,5E6
IF(FF(I).GT.0.0) FF(1)=0.0
17T CONTINUE ,
18 CONTINUE f
FF(5)=(FF(1)+FF(2)+FF(3)+FF(4))/4.0
DO 30 I=1,5
IF(DIST(I).GT.YBLAST) FF(I)=0.0
30 CONTINUE
RETURN
END
SUBROUTINE INIT
INTEGER CODE
COMMON/MASS1/XMINV(600),EEKM(13),F1(600),F2(600)
COMMON/FIRST/F0(600),DER(600)
COMMON/BASIC/VOL,NUMNP ,NUMEL , NUMLA ,NCG
COMMON/MATP/RO(12),£(9,12),EE(9),ETA(12)
COMMON /ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),X1(10),SIG(12),N,M
COMMON/NPDATA/X(200),Y(200),CODE(200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12),ALPHA(12),TH(12),IX(200,4),MATRIL(12)
COMMON/RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXT ,MAXJ ,NMTL ,NBC
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)
COMMON/DISP/DELN1(600),DELN(600),DEL(600),GNM1(600),GNM2(600)
COMMON /MASS/A(600),B(600),CM(8)
COMMON/PLYLD/SIGY(12,6),DEPS(6),EPS(12,50,6)
C LET INITIAL DEFLECTION, VELOCITY, AND STRESS BE ZERO
C LET INITIAL FORCE BE LINC
DO 100 I=1,IT
DELN(I)=0.00
DER(I)=0.00
DEL(I)=0.0
F1(I)=0.0
F2(I)=0.0
DELN1(I)=0.0
F(1)=0.0
B(I)=0.0
GNM1(1)=0.00
GNM2(1)=0.0
FO(I)=0.00
A(1)=0.0
100 CONTINUE
DO 110 I=1,NUMLA
DO 110 J=1,NUMEL
DO 110 K=1,6
110 EPS(I,J,K)=0.0
READ(5,200)INIDV
IF(EOF(5).NE.0.0)GO TO 220
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200 FORMAT(215)

210
220

READ(5,210) ((ND,DEL(ND) ,DER(ND)),I=1,INIDV)

FORMAT(I5,2E12.6)

CONTINUE
RETURN
END
SUBROUTINE INT

INTEGER CODE

COMMON/FIRST/F0(600),DER(600)

COMMON /MASS1/XMINV(600) ,EEKM(13),F1(600),F2(600)

COMMON/BASIC/VOL,NUMNP ,NUMEL ,NUMLA,NCG
COMMON/MATP/RO(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),XI(10), SIG(12) N, M

COMMON/NPDATA/X(ZOO) Y(200) CODE (200), NPNUM(1O 20)

COMMON/ELDATA/BETA(12) ALPHA(12) TH(12) IX(200,4),MATRIL(12)

COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25),MAXI,MAXJ,NMTL,NBC
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY ,IFLAG,IT,NTIME

COMMON /SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)

COMMON/DISP/DELN1(600) ,DELN(600) ,DEL(600),GNM1(600),GNM2(600)

COMMON /MASS/A(600),B(600),CM(8)

COMMON/DISP1/TF(39,4),TFI(4,4) .

DIMENSION THT(25),A0T(25),BOT(4),FOT(4),DERT(4),DELNT(4),A0(13,3),
1 AFT(25,4) ,GNM1T(Y4),GNM2T(4),SM(4),DELN1T(Y4),DELT (4),BU(13,1)
1 ,EKM(13)

BH=BET ¥H¥¥2
DIF1=0.50-BET
BHN=BET*H¥HN

TTTTTTTTTTTTTTTTTTITTITITTTTTTTTTTI TTTTTTTTTTTITITTITTITTITTITITITITTTTIT

789

IF(NTIME.GT.1)GO TO 789

EMIT=0.0

DHET=0.0

NTOP=NUMLA¥*3¥*NUMNP +3

NL1=NUMNP*3

NL2=NL 1¥(NUMLA+1)
WRITE(Y4)DEL(3),DEL(NTOP),(DEL(IJ),IJ=4,NL2,NL1),EMIT
CONTINUE

TTTTTTTTTTTTTTTTITTTTITTTTTTTTTTTTTTITTITTTTTTITTTTTTTTTTTITTTITTITITT
H AND BETA ARE INPUT VARIABLES STORED IN COMMON

100

NUP=NUMLA+1
NPT=(NUMLA+1)¥NUMNP

DO 100 I=1,IT
DELN1(I)=DELN(I)
DELN(I)=DEL(I)

CONTINUE
IF(NTIME.GT.1)GO TO 180

OBTAIN INVERSE OF MASS MATRIX,XMINV

120

DO 120 I=1,IT
XMINV(I)=1/A(1)
CONTINUE
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C STARTING PROCEDURE
C DELN AND DER ARE INITIAL CONDITIONS ON DISPLACEMENT
C GNM1 IS INPUT VECTOR
DO 160 K=1,NPT .
ID=CODE(K) ’
I=3%
IF(ID.EQ.0)GO TO 140
IF(ID.EQ.3.0R.ID.EQ.5.0R.ID.EQ.6.0R.ID.EQ.7) GO TO 125
IF(ID.EQ.10.0R.ID.EQ.12.0R.ID.EQ.13.0R.ID.EQ.14) GO TO 130
GO TO 140
125 CALL BCDEL(I)
GO TO 160
130 CALL BCVEL(I)
GO TO 160
140 DEL(I)=DELN(I)+H*DER(I)
DEL(I)=DEL(I)+XMINV(I)*(BH*B(I)-DIF 1%H*%2%GNM1(I))
DEL(I)=DEL(I)+XMINV(I)*(DIF1#H##2%FQ(I)+BH*F(I))
160 CONTINUE
GO TO 240
180 CONTINUE
KK=0
C CALCULATE DEL BY FINITE DIFFERENCE EQUATIONS
DO 220 K=1,NPT
ID=CODE(K)
I=3%K
IF(ID.EQ.0) GO TO 200
IF(ID.EQ.3.0R.ID.EQ.5.0R.ID.EQ.6.0R.ID.EQ.7) GO TO 185
IF(ID.EQ.10.0R.ID.EQ.12.0R.ID.EQ.13.0R.ID.EQ.14) GO TO 190
GO TO 200
185 CALL BCDEL(I)
GO TO 220
190 CALL BCVEL(I)
GO TO 220
200 DEL(I)=DELN(I)+(DELN(I)-DELN1(I))*H/HN
DEL(I)=DEL(I)+XMINV(I)*(BH*B(I)+(H+HN)*H*DIF1#B(I)+BHN*GNM1(I))
DEL(I)=DEL(L)+XMINV(I)*(BH*F(I)+(H+HN)*H*DIF1%F1(I)+BHN*F2(I))
220 CONTINUE
240 DO 480 K=1,NUMNP _
C FIND PREDICTED STIFFNESS (EEKM)
260 IF(NTIME.GT.1) GO TO 300
IF(K.GT.1) GO TO 300
I1=IX(1,1)
12=IX(1,2)
I13=IX(1,3)
I4=IX(1,4) .
AR=SQRT ((X(I2)-X(I1))%%¥2+(Y(I2)-Y(I1))*%2)
BR=SQRT((X(I2)-X(I3))*#2+(Y(I2)-Y(I3))#*2)
CR=SQRT((X(I4)-X(I3))*%2+(Y(I4)-Y(I3))**2)
FR=SQRT ((X(I4)-X(I1))%#%24+(Y(IU4)-Y(I1))"%2)
PR=SQRT ((X(I3)-X(I1))**#24+(Y(I3)=-Y(I1))*%2)
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280
300

340

QR=SQRT((X(I2)-X(I4))**2+(Y(I2)-Y(IL))**2)
AREA=SQRT (4 .Q¥PR*#2#QR¥%2_ (BR¥ ¥2+FR¥#2_AR¥¥2_CR¥¥2)%#2) /4 0
REWIND 1

READ(1)((CRZ(KJ,J),J=1,6),KJ=1,6)

DO 280 I=1,NUMLA
EEKM(I)=CRZ(3,3)*(AREA/4.0)/TH(I)

DO 280 L=1,NUMEL
READ(1)((CRZ(KJ,J),J=1,6),KJ=1,6)

DO 340 I=1,NUMLA
EKM(I)=EEKM(I)*A(K*3)/A(3)

CONTINUE

FIND NEW COEFFICIENTS DUE TO STIFFNESS (KM)

THIS IS DONE BY SOLVING THE SIMULTANEOUS EQUATIONS THROUGH THE
THICKNESS BY USE OF A NONSYMMETRIC BANDED MATRIX

350
360

370

371

372

380

400

DO 400 I=1,NUP

II=K¥*3+(I-1)%NUMNP#*3

ID=CODE (K+(I-1)%NUMNP)

IF(ID.EQ.0)GO TO 370
IF(ID.EQ.3.0R.ID.EQ.5.0R.ID.EQ.6.0R.ID.EQ.7)GO TO 350
IF(ID.EQ.10.0R.ID.EQ.12.0R.ID.EQ.13.0R.ID.EQ. 14)GO TO 360
GO TO 370

CALL BCDEL(II)

GO TO 380

CALL BCVEL(II)

GO TO 380

IF(I.EQ.1)GO TO 371

IF(I.EQ.NUP)GO TO 372

AU(L,1)=-BH¥XMINV(II)¥*EKM(I-1)
AU(I,2)=1.0+BH*XMINV(IL)*(EKM(I)+EKM(I-1))
AU(I,3)=-BH¥XMINV(IL)%*EKM(I)
BU(I,1)=DEL(II)-BH*XMINV(II)*(EKM(I)*DELN(II+NUMNP¥*3)-(EKM(I)
1 +EKM(I-1))¥*DELN(II)+EKM(I-1)*DELN(II-NUMNP#¥*3))

GO TO 400

AU(I,1)=0.

AU(I,2)=1.0+BH*XMINV(II)*EKM(I)
AU(L,3)=-BH*XMINV(II)*ZKM(I)
BU(L,1)=DEL(II)-BH*XMINV(II)*EKM(I)*(DELN(II+NUMNP*3)-DELN(I1))
GO TO 400

AU(L,1)=-BH*XMINV(II)*EKM(I-1)
AU(L,2)=1.0+BH*XMINV(II)*EKM(I-1)

AU(I,3)=0.
BU(I,1)=DEL(IL)+BH¥*XMINV(LI)*EKM(I-1)*(DELN(II)-DELN(II-3%NUMNP))
GO TO 400

AU(I,1)=0.

AU(I,2)=1.

AU(IL,3)=0.

BU(I,1)=DEL(II)

CONTINUE

CALL BAND(AU,BU,NUP,3,2,1,K0)

IF(KO.NE.0)GO TO 1230
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DO 420 I=1,NUP
LI=K*3+(I-1)*NUMNP#*3
420 DEL(II)=BU(L,1)
480 CONTINUE 3
500 CONTINUE
NVD=NUP*2
DO 1220 K=1,NUMNP
FIND THE CENTER OF GRAVITY
IF(NTIME.GT.1) GO TO 780
IF(K.GT.1) GO TO 780
AT=A((K-1)%3+1)
ZCGT=0.0
THT(1)=0.0
JL=NUMNP#3+(K-1)%3+1
DO 520 I=2,NUP
THT(I)=THT (I-1)+TH(I-1)
ZCGT=ZCGT+THT (I)*A(JL)
AT=AT+A(JL)
520 JL=JL+NUMNP#*3
ZCG=ZCGT/AT
DO 560 I=1,NUMLA
560 IF(ZCG.LT.THT(I+1))GO TO 580
580 NCG=I
WRITE(6,600)NCG
600 FORMAT("™ CENTER OF GRAVITY IS IN THE ",I5," TH LAYER")
FIND THE TRANSFORM MATRIX
DO 620 I=1,NVD
DO 620 J=1,4
TF(I,d)=0.0
IF (I.GT.4) GO TO 620
TFI1(1,Jd)=0.0
620 CONTINUE
DO 660 I=1,NUP
II=2%(I-1)
DO 660 J=1,2
JJ=2%(J=-1)+1
TF(II+J,Jdd)=1.0
KK=(J- 1)*2+2
660 TF(IL+J,KK)=(THT(I)- zcu)
II=1
IF (TF(1,2).EQ.TF(3,2)) GO TO 700
DO 680 I=1,2
TFI(II,I)=1.0-(TF(1,2)/(TF(1,2)-TF(3,2)))
J=II+1 .
TFI(J,1)==1.0/(TF(3,2)-TF(1,2))
III=I+2
TFI(II,II1)=-TF(1,2)/(TF(3,2)-TF(1,2))
II=I1+2
680 TFI(J,ILI)=1.0/(TF(3,2)-TF(1,2))
GO TO 760
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700 DO 720 I=1,2
TFI(II,1)=1.0=-(TF(5,2)/(TF(5,2)-TF(7,2)))

J=II+1

TFI(J,I)==1. 0/(rF(7 2)-TF(5,2))

III= 1+2
TFI(IL,III)=-TF(5,2)/(TF(7,2)=TF(5,2))
II=II+2

720 TFI1(J,III)=1.0/(TF(5,2)=-TF(7,2))
760 CONTINUE :
C TRANSFURM FORCES AND INITIAL DISPLACEMENTS AND VELOCITIES
780 DO 800 I=1,4
BOT(I1)=0.0
FOT(I1)=0.0
DELN1T(I)=0.
DERT(I)=0.0
DELNT(I)=
GNM1T(I)=
800 GNM2T(I)=
DO 900 J
I=0 )
DO 880 IJ=1,NUP
DO 880 L=1,2
I=I+1
NJ=L+3%(K=1)+(IJ-1)*NUMNP*3
IF (J.GT.1) GO TO 820
AOT(I)=A(NJ)
820 BOT(J)=B(NJ)*TF(I,J)+BOT(J)
FOT (J )=FO(NJ)*TF(I,J)+FOT(J)
GNM1T(J)=GNM1(NJ)*TF(I,J)+GNM1T(J)
IF (NTIME.LT.2) GO TO 860
GNM2T (J )=GNM2(NJ)*TF (I,J)+GNM2T(J)
860 CONTINUE
880 CONTINUE
900 CONTINUE
DO 960 J=1,4
I=0
DO 940 IJ=1,2
DO 940 L=1,2
I=I+1
NJ=(K-1)%3+L+(IJ-1)*NUMNP*3
DERT(J)=DER(NJ)*TFI(J,I)+DERT(J)
DELNT (J)=DELN(NJ)*TF1(J,I)+DELNT(J)
IF (NTIME.LT.2) GO TO 920
DELN1T(J)= DELN1(NJ)*TFI(J I)+DELN1T(J)
920 CONTINUE
940 CONTINUE
960 CONTINUE
C FIND NEW MASS MATRIX
DO 980 I=1,NVD
DO 980 J=1,4

0.0
0.0
0. 0

4
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980 AFT(I,J)=AOT(I)*TF(I ,J)
DO 1000 I=1,4

1000 SM(I)=0.0
DO 1120 I=1,4
DO 1120 J=1,NVD

1120 SM(I)=SM(I)+TF(J,I)*AFT(J,I)

C FIND DELT

BH=BET #{ ##2
DIF=H*¥#2%(1 ,0-2,0%BET)
DIF1=.5-BET
DO 1180 I=1,4
IF(NTIME.GT.1) GO TO 1140
DELT(I) DELNT(I)+H*DERT(I)+(BH*BOT(I)-DIF1*H**Z*GNM1T(I)+DIF1
.1 H¥¥2¥ROT (1)) /SM(I)
GO TO 1180

1140 DELT(I)=DELNT(I)+(DELNT(I)-DELN1T(I))*H/HN
DELT(I)=DELT(I)+(BH*BOT(I)+(H+HN)*H*DIF1¥GNM1T(I)+BHN*GNM2T (L))
1 /SM(I)

1180 CONTINUE

C TRANSFORM DELT TO DEL

I=0
DO 1220 IJ=1,NUP
KJ=K+(IJ-1)*NUMNP
DO 1220 L=1,2
II=(K-1)#*3+L+(IJ-1)*NUMNP#¥3
DEL(II)=0.0
I=I+1
ID=CODE (KJ)
IF(ID.EQ.0)GO TO 1195
IF((LD.EQ.1.0R.ID.EQ.6) .AND.L.EQ.1)GO TO 1185
IF((ID.EQ.2.0R.ID.EQ.5).AND.L.EQ.2)GO TO 1185
IF(ID.EQ.4.0R.ID.EQ.7)GO TO 1185
IF((LD.EQ.8.0R.ID.EQ.13).AND.L.EQ.1)GO TO 1190
IF((ID.EQ.9.0R.ID.EQ.12).AND.L.EQ.2)GO TO 1190
IF(ID.EQ.11.0R.ID.EQ.14)GO TO 1190
GO TO 1195

1185 CALL BCDEL(II)
GO TO 1220

1190 CALL BCVEL(iI)
GO TO 1220

1195 DO 1200 J=1,4

1200 DEL(II)=DEL(II)+TF(I,J)*DELT(J)

1220 CONTINUE
RETURN

1230 WRITE(6,1250)

1250 FORMAT(" % % % ¥ ® FRROR IN SUBROUTINE BAND # # % ¥ #uy
1 " % % % % % CHECK KO OR BOUNDARY CONDITIONS * # # # *")
END
SUBROUTINE INTER
INTEGER CODE
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100

300

400

500

50

COMMON /BASIC/VOL , NUMNP ,NUMEL ,NUMLA ,NCG
COMMON/MATP/RO(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),X1(1Q),SIG(12),N,M
COMMON/ELDATA/BETA(12),ALPHA(12),TH(12),1X(200,4) ,MATRIL(12)
COMMON /RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXI ,MAXJ ,NMTL ,NBC
COMMON /BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON /SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)
COMMON/DISP/DELN1(600),DELN(600),DEL(600),GNM1(600),GNM2(600)
COMMON /MASS/A(600),B(600),CM(8)

DIMENSION X(7),Y(7),QQ(9)
DATA QQ/3*. 1259391805448 3%, 1323941527884 .225,

1 .696140478028,.410426192314/

X7 )= (xx(1)+xx(2)+xx(3))/3 0
Y(7)=(YY(1)+YY(2)+YY(3))/3.0

DO 100 I=1,3

Jd=I+3
X(I)=QQ(8)*XX(I1)+(1.00-QQ(8))*X(7)
X(J)=QQ(9)*XX(I)+(1.00-QQ(9))*X(7)
Y(I)=QQ(8)*YY(I)+(1.00-QQ(8))*Y(7)
Y(J)=QQ(9)*YY(I)+(1.00-QQ(9))*Y(7)
DO 300 I=1,10

XI(I)=0.00
AREA=.50%(XX(1)*(YY(2)-YY(3))+XX(2)*(YY(3)-YY(1))+XX(3)*(YY(1)
1 =YY(2)))

DO 400 I=1,7
XI(1)=XI(1)+QQ(I)
XI(2)=XI(2)+QQ(I)*X(I)
XI(3)=XL(3)+QQ(I)*Y(I)

XI(4)=XI(4)+QQ(I)*X(I)*Y(I)
XI(5)=XI(5)+QQ(L)*X (L )**2
XI(6)=XI(6)+QQ(I)*Y(I)%*2
DO 500 I=1,10
XI(I)=XI(I)*AREA
RETURN
END
SUBROUTINE LOAD
INTEGER CODE
COMMON/BASIC/VOL ,NUMNP ,NUMEL ,NUMLA ,NCG
COMMON/ARG/XXX(10) YYY(10) s(2u) xx(3) YY(3),

1CRZ(6,6),X1(10), SIG(12) N,M
COMMON/NPDATA/X(ZOO) Y(200) , CODE (200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12),ALPHA(12),TH(12),1X(200,4),MATRIL(12)
COMMON /BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT ,NTIME
COMMON/SIGM/B3UM,TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)
COMMON/FOR/FF(5),FC(5)

DO 50 I=1,IT
F(I)=0.00
CONTINUE
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NUMBER NODES OF THE RECTANGULAR ELEMENTS

DO 20 N=1,NUMEL

I1=IX(N,1)

I2=IX(N,2)

I3=IX(N,3)

I4=LIX(N,U)

DESIGNATE COORDINATES

XXX(1)=X(11)

XXX(2)=X(I12)

XXX (3)=X(I3)

XXX (4)=X(I4)
XXX(5)=1.0/4 . 0% (XXX (1)+XXX (2)+XXX (3)+XXX(4))
YYY(1)=Y(I1)

YYY(2)=Y(I2)

YYY(3)=Y(I3)

YYY(4)=Y(IH)
YYY(5)=1.0/4.0%(YYY(1)+YYY(2)+YYY(3)+YYY (L))
CALL DISFOR
IF(FF(1).EQ.0.0.AND.FF(2).EQ.0.0.AND.FF(3).EQ.0.0.AND.FF(4).EQ.0.0
1) GO TO 20

CALL LOADS OF TRIANGLES

DO 9 I=1,5

FC(I)=0.00

CONTINUE

CALL LOT(1,2)

CALL LOT(2,3)

CALL LOT(3,4)

CALL LOT(4,1)

DO 21 I=1,4

FC(I)=FC(L)+FC(5)/4.0

CONTINUE

CHANGE TO GLOBAL FORCES IN W-DIRECTION
II1=NUMLA*NUMNP¥*3+[1#%3
II2=NUMLA*NUMNP*3+I2#3
II3=NUMLA*NUMNP*3+L3%3
II4=NUMLA*NUMNP*¥3+14¥3

F(II1)=F(II1)+FC(1)

F(I12)=F(II2)+FC(2)

F(II3)=F(II3)+FC(3)

F(II4)=F(IIU)+FC(Y)

CONTINUE

RETURN

END

SUBROUTINE LOT(II,JJ)

INTEGER CODE :
COMMON/BASIC/VOL ,NUMNP ,NUMEL , NUMLA ,NCG
COMMON/ARG/XXX(10),YYY(10),3(24),XX(3),YY(3),
1CRZ(6,6),XI(10),SIG(12),N,M
COMMON/NPDATA/X(200),Y(200),CODE(200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12) ,ALPHA(12),TH(12),IX(200,4) ,MATRIL(12)
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COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY, IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(600)
COMMON /FOR/FF(5),FC(5)

DIMENSION DD1(3),bD2(3),DbD3(3),bD(3,3),FE(3),FFF(3)

DIMENSION AA(3),BB(3),CC(3)

DESIGNATE THE TRIANGULAR DISTRIBUTED FORCES

FFF(1)=FF(II)

FFF(2)=FF(JJ)

FFF(3)=FF(5)

XX(1)=XXX(II)

XX(2)=XXX(JJ)

XX(3)=XXX(5)

YY(1)=YYY(II)

YY(2)=YYY(JJ)

YY(3)=YYY(5)

AA(1)=XX(2)*YY(3)-XX(3)*YY(2)

AA(2)=XX(3)*YY(1)-XX(1)*YY(3)

AA(3)=XX(1)%¥YY(2)-XX(2)¥*YY(1)

BB(1)=YY(2)-YY(3)

BB(2)=YY(3)-YY(1)

BB(3)=YY(1)-YY(2)

CC(3)=XX(2)-XX(1)

CC(2)=XX(1)-XX(3)

CC(1)=XX(3)-XX(2)

INTEGRATE XX AND YY

CALL INTER

DO 12 1I=1,3

DD1(I)=AA(I)*XI(1)+BB(I)*XI(2)+CC(I)*XI(3)

DD2(I)=AA(I)*XI(2)+BB(I)*XI(5)+CC(I)*XI(}4)

DD3(I)=AA(I)*XI(3)+BB(I)*¥XI(4)+CC(L)*XI(6)
12 CONTINUE

DO 18 I=1,3

DO 18 J=1,3

DD(I,J)=AA(I)*DD1(J)+BB(I)*DD2(J)+CC(I)*DD3(J)
18 CONTINUE

CALCULATE EQUIVELENT CONCENTRATED FORCES

AREA=.50% (XX (1)*¥(YY(2)-YY(3))+XX(2)*¥(YY(3)-YY(1))+XX(3)*(YY(1)

1 =YY(2)))

DO 99 I=1,3
€E§§)=1.0/(4.0*AREA**2)*(DD(I,1)*FFF(1)+DD(I,2)*FFF(2)+DD(I,3)*FFF

1(3

99 CONTINUE
FC(II)=FC(IL)+FE(1)
FC(JJ)=FC(JJ)+FE(2)
FC(5)=FC(5)+FE(3)
RETURN
END
SUBROUTINE MESH
INTEGER CODE
DIMENSION AR(10, 40),AZ(10, 40),NCODE(10, 40)
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COMMON/BASIC/VOL ,NUMNP ,NUMEL ,NUMLA ,NCG
COMMON/MATP/R0O(12),E(9,12),EE(9),ETA(12)
COMMON/ARG/XXX(10),YYY(10),S(24),XX(3),YY(3),
1CRZ(6,6),XI(10),S1G(12),N,M
COMMON /NPDATA/X(200),Y(200),CODE (200) ,NPNUM(10,20)
COMMON/ELDATA/BETA(12) ,ALPHA(12),TH(12),IX(200,4) ,MATRIL(12)
COMMON/RESULT/D(6,6),C(6,6),CNS(6,6)
COMMON/TD/IMIN(100),IMAX(100),JMIN(25),JMAX(25) ,MAXI ,MAXJ ,NMTL ,NBC
COMMON/BASIC2/BET,H,HN,HH(3),HT(2),TIME,NLAY,IFLAG,IT,NTIME
COMMON/SIGM/BSUM, TSUM(6),SIGMA(12,50,6),DSIG(6),F(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>