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SUMMARY PAGE

THE PROBLEM

Legibility of displays moving with the head and body can be degraded
by the vestibulo-ocular reflex (VOR). The purpose of the present study
is to examine characteristics of motion in the peripheral visual field
that interact with vestibular stimuli and alter the visibility of head-
fixed displays.

FINDINGS

The main experiment employed three different velocities (relative
to the head) of background movement (peripheral visual stimuli); they
were +18 deg/sec, 0 deg/sec, and -18 deg/sec at the end of proionged
deceleratory vestibular stimuli. Control experiments indicated tnat a
small part of differences in visual suppression of vestibular nystagmus
previously attributed to differences in background motion during angular
accelerations and angular decelerations may have been attributable
either to secondary nystagmus or to some as yet unaccounted for difference
in response to acceleratory and deceleratory stimuli. However, considered
together, the results of the main study and of the control studies
clearly support the conclusion previously reached that visual suppression
of the VOR and visual performance are inferior when peripheral optokinetic
stimuli and vestibular stimuli are discordant (i.e., presented separately,
these stimuli would produce nystagmus of opposite directions) and superior
when they are concordant. Following prolonged acceleratory vestibular
stimuli in our studies, the velocity of background movement relative to
the head was 180 deg/sec. Thus, our observations encompass a range of
background velocities from -18 deg/sec to 180 deg/sec. The results
indicate that peripheral optokinetic stimuli are effective in interacting
with vestibular stimuli over a range of velocities far exceeding the
range that is effective in inducing maximal optokinetic nystagmus in
man. This finding suggests a functional role for peripheral retinal
smear in visual function in addition to the generation of optokinetic
nystagmus and circularvection effects.

Dr. Jeil is a member of the Department of Physiology, Faculty of Medicine,
The University of Manitoba, Winnipeg, Canada.
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INTRODUCT ION

Visual suppression of the vestibulo-ocu.ar reflex (VOR) 1s particular-
1y important when an individual views head-fixed visual targets during
whole-body motion. Relatively unexplored are visual-vestibular interactions
in which there is prominent background m_vement relative to a head-fixed
target during vestibular stimulation, and this is an arca of potential rele-
vance to control of modern high-performance aircraft especially when helmet-
mounted (head-up) instrument displays are used.

In a previous study (5), we reported that visual performance and
nystagmus suppression were superior when relative background movement was
concordant with the vestibular stimulus and substantially poorer when opto-
kinetic and vestibular inputs were discordant. This was accomplished by
rotating the subject whose task required fixation of a head-fixed display
on a turntable, while an external (Earth-fixed) surround was visible,

During acceleration, Earth-fixed peripheral visual stimuli constitute an
optokinetic drive that would be concordant with (i.e., direction-

ally the same as) vestibular nystagmus, a condition that had been shown
(2,10) to augment vestibular nystagmus; yet under our circumstance, in which
subjects sought to view a head-fixed display, vestibular nystagmus was
visually suppressed very effectively. During deceleration, however, yestibu-
lar nystagmus is of opposite direction to the optokinetic drive by the
relative movement of the Earth-fixed surround, and under this circumstance,

a number of subjects were unable to suppress vestibular nystagmus by volun-
tary effort to view the head-fixed display. The present experiment further
explores these visual-vestibular interactions. By cummencing deceleration
from different offset angular valocities, essentially equivalent deceleratory
vestibular stimuli can be generated with different rates and directions of
Earth-fixed background movement. This study seeks to determine whether or
not low rates of background movement, +18 deg/sec, 0 deg/sec, -18 dey/sec,
would differentially affect visual suppression of a strong vestibular
stimulus induced by an 180 deg/sec velocity change. Thus, the question i~
whether or not a strong vestibular stimulus is differentially suppressed by
voluntary visual fixation of a head-fixed target when it is viewed against
different background movements, none of which matches the vestibular input,
but one of which is directionally concordant with it. A planned feature of
particular importance in this experiiient was that the differences in peripheral
background movement wouid be introduced when the vestibular nystagmus was of
about the same magnitude for each of three conditions of background moyement.

PROCEDURE
SUBJECTS

Twelve naval aviation officer candidates volunteered to serve as sub-
jects. A1l had recently passed a flight physical examination and were in
good health (none required corrective lenses). A1l subjects indicated that
they were free of drugs or medication for the 24 hours preceding the testing.
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APPARATUS AND METHOD

Electironystagmography was used to record eye movements. Electrodes
were affixed in the standard position for recording horizontal eye position
and were allowed to stabilize for 30 min before recording commenced.

The subject was seated erectly on a Stille-Werner RS-3 rotation device
with an open circular frame superstructure. Within the device a visual acu-
ity chart (Figure 1) was fixed at a distance of 68 cm directly in front uf
the seated subject approximately at eye level and was transilluminated.

The light emitted by the continually transilluminated display was maintained
at a low level to reduce 1ight reflected onto the Earth-fixed peripheral
surround and also to reduce contrast level within the display to facilitate
visual blurring during vestibular nystagmus. To further reduce the disper-
sion of Tight onto the external surround, flat black baffles (9 cm x 9.5 cm)
were mounted on the left and right sides of the acuity chart and extended
perpendicularly from the chart approximately 9.0 cm (Fiqgure 2). The chart
consisted of six numbered rows of black stripes which had a target bright-
ness of 0.074 fL/white space and 0.009 fL/black stripe. Within a row each
black stripe and each white space between stripes subtended a specific visu-
al angle: row 1 = 5 min, row 2 = 6 min, row 3 = 8 min, row 4 = 10 min.

row 5 = 14 min, row 6 = 21 min. The six rows of black and white stripes
were centered in a white rectanale, 7.5 cm x 10 cm, which itself was centered
in a black square, 38 c¢cm x 38 cm (25 deg x 25 deg). The entire rotating
device was surrounded by vertical Earth-fixed black and white boards (the

optokinetic surround), each subtending a horizontal visual angle of 12.86 deg.

At selected times the Earth-fixed optokinetic surround was illuminated by two
sets of lights which provided a brightness of 0.0074 fL/black board and
0.075 fL/white board.

S's task was to report changes in visual acuity by calling out the
number which corresponded to the lowest numbered row on the transillumina-
ted display that was clearly visible. Clearly visible was defined as being
of the same visual clarity as that of the lowest visible row before rota-
tion commenced. If S detected any blurring in this row, he was to advance
to larger nunbered rows until one restored initial visibility. In a few
cases blurring occurred so rapidly that S found it necessary to skip sever-
al rows in order to recover acuity. When row 6, the uppermost row, blurred,
a report of "7" was used and an arbitrary acuity score of 30 min was as-
signed. As vestibular input subsided and vision cleared, Ss then signaled
lower numbered rows. This procedure yielded a curve (or step function)
representing the visual angle required to sustain clear vision, commencing
at the onset of the vestibular nystagmus.

In addition to this method of assessing visior, magnitude estimates of
blurring associated with the acceleraticn and magnitude estimates associated
with the deceleration were obtained after each period of rotation. These
retrospective magnitude estimates were obtained without benefit of practice.
S was simply told that 1 would represent no btlurring and 10 would represent
maximal blurring, and to use rumbers within this range to rate the magnitude
of blurring exparienced.
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Figure 1

Head-fixed visual acuity chart. The narrow black border as shown here
represents a much broacer black background that surrounds thre acuity chart.
] See text for dimensions.

Figure 3 is a representation of the thres rotational sequences *o
which each S was exposed. The sequence test order was counterbaianced
with the qua11f1er that any given S always started each A, B, and C
X sequince in the sane direction (half of the Ss started counterc]ockw1se)
‘ Throughout each sequence, S viewed the transilluminated 'visual acuity
chart. In each sequence S signaled acu1ty during each 180 deg/sec velocity
change and for 3C sec after each change (or until acuity for row 1 was
regained after the velocity change).

At selected points in each sequence, the Earth-fixed optokinetic sur-
round was illurinated. The initial acceleration in Sequences A, B, and C
was 15 deg/sec* applied for 12 sec to accomplish a velocity change from 0
to 180 deg/sec. As soon as a constant velocity of 180 deg/sec was reached,
illumination by the surround 1ights (see Figure 2) was commenced and sus-
tained for 30 sec. Surround 1ights were then extinguished until the end of
the prolonged deceleratory velocity change.

In Sequence A the prolonged deceleration, during and after which acu-
ty was assessed, was from 180 deg/sec tn 0 deg/sec. Therefore, when the
optokinetic surround was illuminated, it was stationary relative to S, and
only the eye movement from vestibular nystagmus generated an optok1net1c-




SURROUND LIGHT AND
LIGHT SHIELD

TRANSILLUMINATED  CHART

I1lustration of rotating structure,
of Earth-fixed stripes.
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Figure ?

head-fixed target, and peripheral view
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Tike stimulus to the peripheral retina. In Sequence B an 18 deg/sec increment
in velocity was introduced 60 sec prior to deceleration. Therefore, in this
sequence the prolonged deceleration, during and after which acuity was assessed,
was from 198 deg/sec to 18 deg/sec, yielding an 18 deg/sec peripheral opto-
kinetic stimulus from the reiative motion of the illuminated survound that

was directionally opposite the vestibular response from this stimulus. In
Sequence ¢ an 18 deg/sec mid-course velocity decrenient allowed the subsequent
prolonged deceleration (180 deg/sec velocity change) to start at 162 dey/sec
in one direction and to terrinate at 18 deg/sec in the opposite rotation
direction. Therefore, at the end of this prolonged velocity change, illumi-
nation of the surround induced peripheral optokinetic stimulation that was
directionally concordant with the vestibular stimulus from the 180 deg/sec
velocity change. Thus, in each sequence an equivalent semicircular canal
stimulus wag delivered by the deceleratory 180 deg/sec velocity change

(15 deg/sect for 12 sec), but because of the different initial velocities
when the deceleration commenced, there were different terminal velocities

(+18 deg/sec, 0, -18 deg/sec) wnen the surround was illuminated and there-
fore, different degrzes of concordance/discordance of the visual and
vestibular inputs.

RESULTS

Sequence A, which involyed both directions of rotation for each S, was
employed for two reasons: 1) to duplicate part of a motion profile used in our
previous study (5) to determine whether or not visual performance and nystag-
mus measures would yield patterns of results similar to those of the pre-
vious study which employed a different visual display and a different time
of introduction of the background illumination; and 2) to detect individuals
who might have pronounced directional differences in vestibular responses.

The results in Sequence A were remarkably similar to the results of the
Sequonce A counterpart of the previous study. Visual acuity loss and yisually
suppressed vestibular nystagmus during deceleration were markedly greater than
luring acceleration. No exceptional directional differences were observed in
any S, and no S was eliminated for this reason.

The crucial comparison in the present study pertains to the effects of
differences in background movement on visual acuity and vestibular nystag-
mus, differences which were introduced just after the prolonged decelera-
tions in Sequences A, B, and C. Figures 4 and 5 present, respectively, plots
of visually suppressed vestibular nystagmus and of visual acuity loss during
and after the prolonged deceleration in Sequences A, B, and C. During the
prolonged deceleration in each sequence, only the central display was visible,
and the velocity change was equal (magnitude and direction) in the three
sequences. Therefore, it was expected that responses during deceleration
(before the optokinetic surround was 1ntroducedg would be roughly equal. To
test this expectaticn, a 5-sec interval (7 sec - 11 sec) was selected for
response summation to yield measures to compare Sequence A, B, and C re-
sponses just before the differential background movement was introduced.
Within this interval for each sequence, nystagmus slow phase displacement
of each S was summed to obtain a measure characterizing S's VOR within the
interval. A similar sum of the visual angle required to sustain clear
vision was obtained for each subject during the interval. Slight differ-
ences in responses among Sequences A, B, and C during this 5-sec interval
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(7 sec - 11 sec) were not statistically significant for either slow phase

eye velocity (F = 0.39, N.S.) or visual acuity loss (F = 0.83, K.S.).

Thus, prior to the introduction of the surround 1ights, visually suppressed
vestibuiar nystagmus and visual acuity were essentially equal. Background
ilNlumination xas switched on manually at 12 sec. Allowing for human error

in timing, the onset of background i1lumination is probably best represented
by an interval ¢ = 12 + 7.2 sec; therefore, responses at 12 sec were

omitted, and the interval selected for summation and statistical comparison
during differential background movement was the 5-sec interval, 13 sec -

17 sec (Table I). During this interval the residual vestibular signal ¥rom
the prolonged deczleration would still be strong and the surround 1lights would
be on throughout. Analysis of variance indicated significant differences among
Sequences A, %, and C fir boch s ow phas> eye velocity {5 = 6.49, p < .01)

and visual acuity los- LE_- 6.08, 5_< .01) during this interval of back-
ground illumination by the surround 1ights., Differences among sequences for
the other respe'.se measure, retrospective estimates of blurring, were also
significant (F = 7.93, p < .C1).

A1l of the mean differences in the two response measures compared in
Table I by t-tests were in the expected directions: B > A, B > C, and
A > C, although some of the mean differences were of margina. statistical
significance. In Sequence B, background movement was in a direction to pro-
duce optokinetic nystagmus {(OKN) opposite in direction to vestibular nystagmus,
and Sequence B produced significantly more vestibular nystagmus and sig-
nificantly more acuity loss than did Sequence C in which background move-
me:t would produce OKN of the same direction as the vestibular nystagmus.
Acuity lu-s in Sequence A during the interval 13-17 sec was significantly
less than in Sequence B (although the difference in vestibular nystagmus
between A and ¢ fafled to reach substantial statistical significance).
Thus, a fixed background yielded less acuity loss for the central display
than did a background noving at 18 deg/sec in a direction opposite to the
ongoing vestibular nystagmus. On the other hand, background movement
in the same a,rection as the ongoing vestibular nystagmus, Sequence C,
yielded less nystagmus (more visual suppression) and better visual acuity

than were obtained with a fixed background (Sequence A) in the 13-17 sec
interval.
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Table I

Comparison of Response Measures for the Interval 13-17 Sec

Sequence A B C
Mean Slow Phase Displacement 54.6 68.2 33.2
Mean Total Visual Decrement 98.6 110.0 84.8

t-tests] (for related measures) A vs B Avs C B vs C

Visual acuity loss 2,27** 1.88* 2. 85%*x
Nystagmus 1.48 3.88%%x* 2 78k
1

One-tail test, df = 11, *p < .05, **p < .02, ***p < .01

DISCUSSION

The results of this experiment support the conclusion that uniform
motion over the peripheral visual fields can either enhance or degrade ability
to see a head-fixed target, depending upon the relative direction of a con-
comitant vestibular stimulus. When a peripheral optokinetic stimulus and
a vestibular stimulus are concordant in that each stimulus would produce
nystagmus of l1ike direction, voluntary effort to see a head-fixed target
(and visual suppression of vestibular nystagmus) is enhanced. When
peripheral optokinetic and vestibular stimuli are discordant in that the
two sources of stimulation would produce opposite directions of nystag-
mus, voluntary ability to see a head-fixed target and visual suppression
of vestibular nystagmus are degraded. Our results are consistent with
and extend the findings of Benson and Ciine (1).

It is to be noted that our results are exactly opposite what might
be expected from the enhanced nystagmus gain reported by Bohmer and
Pfaltz (2) and by Melvill-Jones (10) for a concordant vestibular and
optokinetic drive to nystagnus. Our apparently paradoxical findings are
of course dependent upon the presence of a head-fixed target and upon
what our Ss were attempting to do. In our study, S's task required
voluntary effort to see a head-fixed target throughout each period of
vestibular response which, at the end of the prolonged deceleratory stim-
ulus in each sequence, required visual suppression of strong vestibular
nystagnus. The mean slow phase velocity of visually suppressed vestibular
nystagmus over Sequences A, B, and C at the end of the 12-sec deceler-
atory stimuli was 11 deg/sec, but without visual suppression (i.e., in
darkness), the mean slow phase velocity would be on the order of 100 deg/sec.
Considering the visually suppressed response at 12 sec, when the surround
lights were turned on, tiiere were discrepancies between background velocity
and mean eye velocity approximately as shown in Table II.
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. data. We must first account for the fact that nystagmus and acuity loss

Table 11

Comparison of Eye and Background Velocities at 12 Sec

Sequence (wB)* (me)** (wB - me)***
A 0 11 deg/sec -11 deg/sec
B -18 deg/sec 11 derg/sec -29 deg/sec
C +18 deg/sec 11 deg/sec 7 deg/sec

*Background velocity (wg) that is directionally the same ac vestibular
slow phase velocity is designated as positive.

**Eye velocity (wg) at end of deceleration assumed to be equal in A, B, and C
for the sake of discussion.

***Peripheral retinal slip (wp - we). When negative, OKN and vestibular
inputs are discordant.

Considering the figures in Table II alone, one might conclude either that
it is the lesser magnitude of the difference between eye and background
velocity or it is the sign of the difference between eye and background
velocity that enhances the visual suppression of the vestibular nystag-
mus in Sequence C. However, when we consider results obtained during the
prolonged accelerations of Sequences A, B, and C, we become inclined to
believe that it is the relative direction rather than the magnitude of the
velocity difference that is important. At the end of the acceleration,
velocity of the background relative to the head was 180 deg/sec. With a
slow phase eye velocity of 11 deg/sec, the difference between background
and eye velocity would be +169 deg/sec, yet ability to suppress vestibular
nystagmus and to see the head-/ixed target was quite good. Actually, the !
|

average slow phase velocity at the end of acceleration was only about

5 deg/sec, so that the mean difrerence between eye velocity and background
velocity was +175 « j/sec. The visual acuity loss during this stimulus
was minimal; as a matter of fact, 1t was less than that found during and
after the prolonged deceleration in Sequence C. This would suggest that
the more nearly the background velocity matches the rate of turn signaled
by the vestibular input, the better the suppression of vestibuiar nystag-
mus; but, though this may be true, the conclusion is unwarranted from our

did not reach yreater magnitudes during the 12 sec of acceleration when
the surround lights were off.

We nrow suspect that very dim peripheral motion cues are capable of
generating differential effects on visual suppression, depending upon
their direction relative to vestibular input, and that this at least par-
tially accounts for the low nystagmus output during and after our pro-
Tonged accelerations in the present experiment. The 1ight baffles along-
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side the transilluminated display (Figure 2) limated illumination of the
external surround to a level thav rendered S unaware of the external sur-
round as he concentrated on the tranc<:lluminaied display. However, the
light from the display, as refiecteid bv 5, was sufficient for the str1ped
surrcund to be faintly visible to a dark- adapted (5-10 min) observer whose
attention was directed to deteciion of the surrrund. I view of the fact
that optokinetic nrefagmus can be elicited in man when illumination levels
are below the levels of stripe detection (6), it is not unlikely that our
results were influenced by a very faint illumination of the background

even wh.a our surround lights were off. This would at least partially
account for the higher magnitude slow phase velocity during deceleration

as compared with acceleration before the surround 1ights were switched on.
Close inspection of Figure 4 shows that the slow phase velocity of visually
suppressed vestibular nystagmus was. roughly equal in Sequences A, B, and C
up to 10 sec of deceleration. In Sequence C the background movement

became concordant in direction with the vestibular input just after 10.8 sec.
It may be a chance event, but the slow phase velocity of Sequence C appears
to diminish systematically below that of Sequences A and B after 10 sec.
This dropoff in response in Sequence C of 11 sec and 12 sec, just after

the velocity zero-crossing but just before the surround 1ights were turned
on, may be due to iLhe very low-level, directionally concordant, peripheral
optokinetic stimulation that was present during that brief interval.

As a further check to determine whether or not the acceleration/decel-
eration differences apparent in the present study and in our previous study
might be due to factors other than differences in peripheral background
movement, we made additional observations with other groups of subjects
(see Appendix A). In one of these studies, 5 min of constant velocity
elapsed between the acceleration and the deceleration, and there was no
visual task or illumination during the initial acce]eration Visual acuity
loss, assessed during deceleration with peripheral visual surround visible,
was pronounced and equivalent to that found in the deceleration of Sequence
A. Then after a rest period of at least 5 min, acceleration was com-
menced, with the visual surround visible, and visual acuity loss was slight,
like that of the acceleration trials in the present study. This observation
seems to eliminate secondary vestibular effects, which are dissipated in
about 5 min, as a primary cause of the acceleration/deceleration differ-
ences we have found.

In another brief study (see Appendix A) probing our acceleration/decel-
eration differences, subjects were completely encapsulated. Under these
circumstances, the visible background was the interior o7 the rotary structure
and was, therefore, fixed relative to the head and to the transiiluminated
visual display during and after both the prolonged accelerations and
decelerations. Under these circumstances, visually suppressed nystagmus
and visual acuity loss were roughly equal during acceleration and deceleration,
but differences were in the direction of greater responses (acuity loss and
nystagmus) from the deceleration as compared with responses from the accel-
eration, with earlier peaking of the deceleratory response. The deceleration/
acceleration response ratios for total slow phase displacement and total
acuity loss were, respectively, 1.11 and 1.06 with the fixed background;
whereas in the present study with the moving backgrounds, the ratios were

12




1.59 and 2.47 in Sequence A, 1.77 and 3.07 in Sequence B, and 1.32 and 1.70
in Sequence C. Thus, we conclude that part of the acceleration/deceleration
differences 1n each sequence of the present study may have been due to some
effect (perhar: secondary vestibular reactions) other than differences in
background motion stimuli, but we believe that differences in background
motion account for the major portion of the acceleration/deceleration
differences in visual performance and oculomotor control in the present

and in our previous (5) study.

Still to be determined are the critical features of the sensory
inputs that control the differences in visual suppression and visual
acuity in these experiments. The panel containing cur transilluminated
display subtended an arc ra2lative to S of 25 deg x 25 deg, a sufficient
visual area to maintain foveal vision within its boundaries, while S was
attempting to fixate the central display. Thus, velocity of foveal images
was that of the eye relative to the head-fixed display (w_ in Table II),
whereas velocity of the peripherai image was the a]gebrais difference
between eye velocity and background velocity (wg, - w_ in Table II). If
this is the critical information used in this ogulomStor control, then it
is when the foveal image velocity and the peripheral image velocity are
directionally the same that ability to suppress vestibular nystagmus is
enhanced, whereas when foveal and periphera® velocities are directionally
opposite, then visual suppression i1s degraded. The sustained good visual
suppression during the very high peripheral retinal velocities encountered at
the end of our accelerations indicates that detectors of direction of motion
over the peripheral retina must remain effective in fixation control at
velocities greater than those that maximize optokinetic nystagmus. The
critical sensory information may then be the relative inputs to the focal
and ambient visual systems (cf. 7-9,13) which are compared in the central
nervous system. However, there are alternative possibilities which may
involve different sets of neural pathways from those employed by a central
comparison of direction of foveal and peripheral retinal velocities. For
example, it may be the perceived direction (cf. 11,12,14§ of whole-body
turn (in our experiments ontrolled by vestibular inputs) that presets the
direction of peripheral » :tinal information that will enhance (or degrade)
visual suppression of vestibular nystagmus when the individual is attempt-
ing to fixate a head-fixed target. Otherwise expressed, when the circular-
vection effects from stimulation of the peripheral retina (3,4) correspond

in direction to the vestibular input, then visual fixation of a head-fixed
target is enhanced.
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APPENDIX A

Baseline Studies
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INTRODUCT ION

In several experiments on visual-vestibular interactions and legi-
bility of head-fixed displays in motion environments we have emphasized
potential influence of peripheral visual field motion on visual suppression
of the VOR. In the experiment described in the main text, all comparisons
of the effects of background movement involved deceleratory vestibular
stimuli. Results indicated that relatively low rates of background
movement had differential effects on suppression of the VOR by a head-
fixed central dispiay, depending upon the concordance or discordarce of
vestibular and peripheral optokinetic inputs, despite the fact that all
vestibular stimuli were primarily deceleratory. However, in our initial
experiments (5) we reported that visuel suppression of the VOR and
visual performance were disrupted far more during deceleration, when
vestibular inputs and peripheral optokinatic inputs were uiscordant,
than during acceleration, when they were concu~dant. Because the great-
ast differential effects we had observed were produced by comparison of
acceleratory and deceleratory stimuli, we bacame concerned that some
subtle difference between acceleratory and deceleratory stimuli or some
miscalculation of secondary effects might have contributed to the large
acceleration-deceleration differences we had found. The two experiments
described in this appendix were control- or baseline-type observations
conducted to check the potential influence on our results of effects
other than differences in motion in the peripheral visual field.

EXPERIMENT Al

Having completed several experiments in which direction of visual
background movement seemed to control the visual suppression of vestibular
nystagmus and vision for a head-fixed target, we became concerned about
the possibility that secondary vestibular effects might be contributing
to our results, especially when the results of a ~celeration (down-
ramp) were being compared with results of an acceleration (up-ramp) in a
velocity trapezoid waveform stimulus. The following testing sequence
was run to determine whether the differential effect would still occur
when substantial time for secondary vestibular effects to dissipate was
provided.

SUBJECTS

Four laboratory personnel participated as volunteers for this
testing sequence,

APPARATUS AND METHOD

The apparatus is described in the body o7 the foregoing text. The
acceleration/deceleration profile is shown in Figure Al. Prolonged (300
sec) constant velocity periods prior to each stimulus (I and II) were
introduced to allow secondary effects to dissipate to ineffective levels.

The transilluminated visual acuity display light was first turned
on approximately 10 sec prior to the first deceleration labeled I in

. Figure Al. The surround 1ights which illuminated the Earth-fixed external
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black and white striped boards were turned on just as this deceleration
; commenced. Forty seconds after the deceleration (I), surround lights
{ and display lights were turned off and 300 sec of rest at zero velocity !
F‘ were given prior to the acceleration labeled II in Figure Al. Ten seconds ;
before this acceleration, the transilluminated display was turned on and !
then, as the acceleration commenced, the surround 1i_ts were turned on.
Loss of visual acuity during and immediately following the stimuli
labeled I and Il was the only response recorded for this experiment.

RESULTS AND DISCUSSION

S

A plot of the mean visual angle sustaining clear vision is presented
in Figure A2. Each of the four subjects had acuity loss associated with
the deceleration that was substantially greater than the acuity loss
associated with the acceleration.

‘ Since Stimulus Trials I and Il were preceded by at least 30 sec of

| . constant velocity rotation (actually zero velocity before Stimulus II),

? it seems unlikely that secondary effects could account for the differences
in blurred vision in the deceleration versus the acceleration stimulus.
It should also be noted that there was no optokinetic stimulus preceding
either I or II, and so it is unlikely that either optokinetic aftereffects
or vestibular secondary effects were of any substantial significance in
the response measured. The results of this brief experiment support the
notion that it is the concordance or discordance in the direction of
vestibular and peripheral visual stimuli that has a differential effect

. on acuity for a head-fixed target.

i i e Pt it St S

EXPERIMENT A2

This experiment was conducted following our initial study on visual-

vestibular interactions (5) and uses the stimulus profile of Experiment

2 of that report. The primary focus of this control experiment was to
measure visual suppression of nystagmus and visual acuity losses while
the subject and his head-fixed visual display were totally encapsulated.
This condition specifically eliminates differences in peripheral back-

! ground movement during acceleration and deceleration since the visible

1 background as well as the target was head-fixed throughout the study

and the only movement over the retina was that engendered by vestibular
nystagmus.

T W —g

SUBJECTS

Eighteen individuals (naval aviation officer candidates and laboratory
| personnel) participated as volunteers. All Ss indicated that they were
: free of drugs or medication for the 24 hours preceding the testing. The
. results from one S were not included in the data analysis due to an

N apparent vestibular imbalance (directional difference) of which he was
g unaware.
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APPARATUS AND METHOD

Apparatus and method details were identical to the study described
in the main text, with two exceptions. 7The first pertained tn the rota-
tion device. The circular frame superstructure on the Stille-Werner
rotator was fitted with a heavy black shroud to encapsulate the subject
and exclude visual reference to the stationary Earth-fixed surround.
The first ten Ss were tested on this rotator, and a second set of eight
, Ss were tested, encapsulated, in the Human Disorientation Device.* The
f; second exception involved a change in the rotational stimulus prufile

1

|

(Figure A3). This stimulus sequence was used in our previous study (5)

on this tog1f In br1ef, all accelerations had the following characteristics:
15 deg/secc, 12 sec in duration to accomplish velocity changes from 0 to

180 deg/sec or from 180 deg/sec to 0. Intervals between accelerations

and decelerations were 90 sec.

RESULTS AND DISCUSSION

ii Results of the two subject groups were nearly identical, and they
‘ have been combined for presentution. In the stimulus sequence used in
this study, if secondary effects are estimated from an approximation of
an adaptation model prcposed by Young and Oman (15), primary responses

as augmented by secondary effects would be very nearly equalized on
Trials 3, 4, 7, and 8 (assuming a cupula long time constant of 16 sec
and an adaptation time constant of 80 sec). Comparing Trials 3 and 7,
both accelerations, with Trials 4 and 8, both decelerations, yields a
comparison of effects of dirferential background movement when primary
and secondary vestibular reactions are theoretically equivalent.

s Figure A4 presents a plot of mean nystagmic slow phase eye velocities
* for these trials under the encapsulated condition (this control study)

and a plot from the previous study (5) with external reference. A
comparison of acceleration to deceleration responses in the encapsulated
condition using total slow phase displacement summated across 40 sec
yielded a difference of marginal statistical significance (t (related
measures) = 1.83, df = 16, p > .05 two-tail, p <.05 one-tail). As is
; apparent in F1gure A4, the differences between the acceleration and :
¥ deceleration trials w1th encapsulation were much less than the differences i
! found in our previous study (5) with external reference. The large
P differences between acceleration and deceleration responses with the
external reference were clearly statistically significant (p < .01).

Figure A4 also presents a plot of the mean visual angle (min of
i arc) necessary to sustain clear vision. The comparison of acceleration
b to deceleration responses for the total visual acuity loss summated
%; across 40 sec again produced a difference of marginal statistical
: | significance (t (reiated measures) = 2.05, df = 16, p > .05 two-tail,
' p < .05 one-tail), and the contrast with the results of our previous
study is again pronounced. Differences between acceleration and decel- ;
eration responses witn the external reference were large and statis- 4
tically significant (p < .001). :
*Hixson, W. C., and Niven, J. I., A bioinstrumentation control center for the
Human Disorientation Device. NSAM-848, Pensacola, FL: Naval School of
Aviation Medicine, 1963. 1
A-5
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There was a statistically significant difference between acceleration
and deceleration trials with regard to retrospective blurring estimates
{t (related measures) = 4.61, df = 16, p < .001). The average retrospective
blurring estimate for accelerations was 4.06 (S.D. = [.95) and for
decelerations was 5.41 (S.D. = 1.78). However, this difference (5.4 -
4.1) is small relative to the difference (7.8 - 2.3) found previously
(5) with an external visual reference.

The elimination of background movement relative to the head-iixed
display by encapsulating the subject roduced acceleration/deceleration
difrerences in visual acuity loss and ir suppressed vestibular nystagmus
to levels that were of marginal statistical significance. Considering
the results of this control experiment with encapsulated subjects in
relation to results obtained in our other observations with an external
refesence, we retain our conclusion that uwiform motion over the pe-
ripheral visual fields can either enhance or degrade zbility to suppress
vestibular nystagmus and to see a head-fixed target, depending upon the
relative direction of the concomitant vestibular response. However, our
control study results suggest that some other factor or factors may have
contributed to the differences in visually suppressed nystagmus we found
in comparing acceleration and deceleration responses.
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Legibility of a head-fixed display and visual suppression of the vestibulo-
ocular reflex (VOR) were found to be superior when vestibular stimuli and
optokinetic stimuli were of like direction (i.e., would produce the same direc-
tion of nystagmus) and inferior when they were opposite in direction. Veloc-
ities (relating to the head) of peripheral optokinetic stimulj ranging between
-18 deg/sec and +180 deg/sec interacted effectively with vestibular stimuli to
influence visibility of a head-fixed display. This indicates that perioheral ;>(T“.onu/
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optokinetic stimulation can influence visual suppression of the VOR at
velocities that far surpass effective production of optokinetic nystagmus.
Twelve men participated in the main experiment and a total of 22 men partici-
pated in two control studies.
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