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FORMEORD

Under daylight nap-of-the-earth (NOE) flight conditions, little time is
available for the correct detection of obstacles and targets. The helicopter
pilot's detection and reaction time is greatly reduced when NOR flight oust be
performed at night. Previous ARI research on NOE has addressed various fac-
tors involved in obstacle detection, recognition, and avoidance, such as pilot
response time as a function of aircraft velocity, obstacle shape, and distances
and accuracy of judgments based on the perception of absolute distances. This
report is the first of three reports on experiments designed to determine the
behavioral requirements for a helicopter electro-optical display system for
use in night NOE flight. The experiment described here is specifically con-
cerned with determining the effects on display requirements of display size,
system goma function (a contrast/brightness function), and type of terrain
overflown.

This experiment resulted from an in-house, technology-based research ef-
fort begun under the direction of Dr. Aaron Hyman. It is responsive to the
requirements of Army Project 2Q162722A765. The results of this experiment
are also responsive to Human Resources Need 77-311 from the Deputy Chief of
Staff for Plans and Operations.
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HELICOPTER ELECTRO-OPTICAL SYSTEM DISPLAY REQUIREMENTS: I- THE EFFETS
OF CRT DISPLAY SIZE, SYSTD GAMMA FUNCTION, AND TERRAIN TYPE ON PILOTS'
REQUIRED DISPLAY LUMINANCE

BRIEF

Requirement:

To reduce the hazards of flying in high-threat environments, the Army has
emphasized low-level flying and night operations. In nap-of-the-earth (NOE)
flight, the aviator stays as close to the ground as vegetation and other ob-
stacles will permit. This is a stressful task, and the problems associated
with using this tactic during daylight hours are intensified at night. For
nighttime NOE operations to be successful, usable visual aids need to be de-
veloped, and the specification of their related display parameters is a neces-
sary first step.

Procedure:

Twenty-four Army rotary wing pilots viewed videotaped segments of low-
level and NOR helicopter flights, presented on television monitors designed
to simulate a low-light-level television display system for helicopters. They
were asked to set the display luminance at the lowest level that they judged
would permit successful flight over the terrain. Each subject adjusted the
luminance level for eight different display conditions derived from the com-
bination of two different display sizes (13- or 26-cm CRTs viewed at 69 cm),
two types of terrain (wooded or semi-arid with sparse vegetation), and two
different system gamma functions (normal contrast or enhancement of contrast
in darker portion of display luminance range). Participants were also asked
for their subjective impressions of the various display conditions.

Findings:

Pilots were able to use significantly lower luminance settings with the
26-cm display than they were with the 13-cm display. They also used signifi-
cantly lower settings when viewing videotapes of wooded terrain presented on
displays with enhanced contrast in the darker areas (i.e., system gamma mod-
ification). The pilots' subjective impressions and indicated preferences
agreed with their measured settings. Pilots preferred a 26-cm over a 13-cm
display.
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Utilization of Findings:

Pilots are able to use larger displays at lower luminance levels. The
fact that the utility of modifying the system gamma functions was terrain-
specific opens up the possibility of developing optimal object-luminance to
display-luminance transfer functions for different types of terrain. However,
before specific recommendations for display luminance requirements can be
made, dark-adaptation losses with larger but dimmer displays need to be de-
termined so that an objective evaluation of the utility of low-luminance
displays can be established.
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HELICOPTER ELECTRO-OPTICAL SYSTEM DISPLAY REQUIREMENTS: I. THE
EFFECTS OF CRT DISPLAY SIZE, SYSTEM GAMMA FUNCTION, AND

TERRAIN TYPE ON PILOTS' REQUIRED DISPLAY LUMINANCE

INTRODUCTION

Technological advances in enemy visual and sensor surveillance systems
threaten combat survivability of the Army helicopter. As a countermeasure,
the Army has emphasized using low-level flying and night operations. More
specifically, nap-of-the-earth (NOE) flight is the tactic of choice for heli-
copters in this high-threat environment (U.S. Army, 1976; Abbey & Carson,
1978). In NOE flight, the aviator stays as close to the earth's surface as
vegetation and obstacles permit. Thus the use of natural terrain features
as a mask increases the probability of avoiding detection by the enemy.

Performing NOE flight is a difficult and fatiguing task for the pilot,
and the margin for pilot error is extremely small. Since NOE flight is much
more difficult at night, effective night vision aids and displays are important
to successful nighttime NOE flight.

This research was directed toward obtaining data to aid in specifying
display parameters for a low-light-level television (LLLTV) system as a visual
aid in night NOE flight. An LLLTV camera is an image-intensifying device
capable of responding to low-intensity radiation in the visible and near in-
frared regions of the electromagnetic spectrum. The radiation is first con-
verted to a highly amplified electrical signal and then reconverted to a raster-
scan visual display on a cathode ray tube (CRT). A suitably mounted LLLTV
camera on a helicopter and an accompanying display of the output on a monitor
in the cockpit can provide the pilot with a real-time television picture of
the terrain in front of the helicopter. But for safe and effective use of
such an LLLTV display, optimal display parameters need to be specified. Be-
fore the specific parameters to be investigated in this research effort were
selected, several germane factors were analyzed.

Rectangular TV displays usually have a 3-by-4 aspect ratio. Thus a CRT
display that is 15.6 cm high is 20.8 cm wide; and its diagonal is 26 cm; and
it is characteristically described in terms of its maximum linear dimension,
namely, the diagonal: a 26-cm display. Similarly, a rectangular CRT dis-
play 7.8 cm high and 10.4 cm wide is called a 13-cm display. When the latter
display is viewed from 69 cm, its height subtends approximately 388 arc min-
utes. If the viewer has the normal visual acuity of 20/20 Snellen (i.e, 2
arc minutes per line pair or 1 arc minute per TV line) and the display has a
resolution of 400 TV lines per picture height, there is good matching of eye
and display resolution.

Visual acuity, however, depends partly on display luminance level (Shlaer,
19371 Riggs, 19651 Kaufman & Christensen, 1972). For example, when the lumi-
nance of the background is about 0.2 footlambert (fL) and the target has high
contrast, acuity is approximately 20/20 Snellen; when background luminance is

1
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about 0.015 fL, acuity is approximately 20/40 Snellen (i.e., 4 arc minutes
per line pair). In the latter case, retaining the resolution match between
display and the eye now requires a 26-cm CRT with 400 TV lines per picture
height resolution.

There is an advantage in flying with a dim TV display at night, because
as visual dark adaptation increases, the pilot is better able to see the ex-
ternal environment when looking through the windscreen. Research by Baker
(1953, 1963), also described by Bartlett (1965) and by Brown and Mueller
(1965), shows that dark adaptation recovers at a very rapid rate during the
first 1/2 second after an adapting luminance is turned off. The question
is, can one set cockpit TV displays for night flying so they are bright
enough to permit acceptable form perception when flying "heads-down" (i.e.,
looking at the instrument panel) and yet dim enough to allow rapid acquisi-
tion of the visual world when flying "heads-up" (i.e., looking through the
windscreen)?

Another variable to be considered when using a dim display is the object-
luminance to display-luminance transfer function, usually called system gamma
function (where gamma is the slope of the curve describing the object to dis-
play luminance functional relation when the coordinates are in log units).
The advantage in having a nonlinear gamma function with dim displays arises
from the fact that the minimum perceptible luminance difference (i.e., con-
trast discrimination) is a nonlinear function of background luminance (Mueller,
1951; Brown & Mueller, 1965; Kaufman & Christensen, 1972). For a given ratio
of luminances, contrast discrimination is poorer for the lower portion of the
associated log-luminance range when the display is dim, whereas contrast dis-
crimination is almost linear for a comparable log-luminance range in a bright
display. In Figure 1, the upper drawing shows the perceptual nonlinearity
in contrast discrimination for dim display luminance levels as compared to
bright display luminance levels. The lower drawing in Figure 1 shows how
this can be compensated for, by modifying the system gamma function. Curve A
shows an object-luminance to display-luminance transfer function useful with
a bright TV-generated display. Curve B shows an object-luminance to display-
luminance transfer function useful with a dim TV-generated display. It is
designed to counteract the nonlinearity in contrast perception at dim luminance
levels, as demonstrated by the curve in the upper panel. "Gamma" is the term
used to designate the slope of the object-luminance to display-luminance trans-
fer function, for displays originating from TV cameras, when coordinates are
plotted in log units.

Thus, for a given range of input signals, to obtain a relatively uniform
perceptual discrimination of contrast such as can be achieved with a bright dis-
play and the transfer function defined by curve A, the transfer function defined
by curve B is needed for a dim display. To evaluate this, two representative
system gamma functions have been selected for comparison in this research.
These are shown in Figure 2. Curve N in Figure 2 describes the system gamma
function identified in this report as "normal." Curve M describes the system
gamma function identified in this report as "modified." Photometric measure-
ments were made of the display face from input obtained using an EIA Logarith-
mic Reflectance Chart. Three different levels of display highlight luminance
were used. Obtained logarithmic values were then averaged, and the sets of
data were shifted vertically to represent the case where highlight luminance
is 0.2 fL

2

V,._ , J+



HDinm Bright
Region [Region]

BACKGROUND LUMINANCE (Log fL)

'A

-,O b

0

z

0

Is 4

W"LTIVE OBJE.CT LUMINANCE (Log fL)

Figure 1. Functional relations illustrating advantage in modifying
the system gamma function when luminance level of
television display is decreased.

3



-0.8-

S-1.0-

-1.4 M
0 1.4

' -1.6

04

.. -2.0-

-2.2-.

0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35

Relative Luminance of Bars on EIA Logrithmic
Reflectance Chart, in Log fL

Figure 2. system galmma functions used in present research.

4



Based on the findings of other investigators (e.g., Baker, 1953, 1963;
Mueller, 1951; Shlaer, 1937), it was estimated that a TV display having a
highlight luminance of about 0.05 fL might provide a pilot with an acceptable
presentation with which to perform night NOE flights and also have an accep-
tably low impact on dark adaptation. The data in the literature are reported
in trolands; in converting them to footlamberts, it was assumed that the ob-
server would have a pupil diameter of 5 mm and that retinal integration time
would be 0.1 second.

A special simulation facility was developed, and three display parameters
were selected for initial investigation. The first parameter was CRT display
size. Because of limited panel space in the helicopter cockpit, the smallest
CRT that can be safely used by a pilot must be selected. Therefore CRT dis-
plays with an aspect ratio of 3:4 and diagonals of 13 cm and 26 cm were com-
pared. With reference to real-world visual angles and rate of closure on
obstacles, these CRT displays, when viewed at about 69 cm, represented about
a 6x and 3x minification respectively.

The second parameter investigated was display luminance. Because the
pilot or copilot may periodically have to look through the windscreen, the CRT
display must be dim enough to optimize dark adaptation and bright enough to
permit adequate form perception when viewing the cockpit display.

The electro-optical system gamma function (i.e., the transfer function of
input luminance to CRT display luminance) was the third parameter studied. The
gamma function can be readily manipulated electronically in a TV system; such
manipulation, through local contrast variation, can enhance the visibility of
selected features (e.g., trees and green foliage).

The specific objective in studying the effects of the above parameters
is to provide data for developing some critical display requirements for a
helicopter-mounted LLLTV system.

METHOD

Research Facility

A flexible NOE visual flight simulation facility was developed at the U.S.
Army Research Institute for the Behavioral and Social Sciences (ARI) to provide
various modes of presentation of stimulus materials to the participant pilots.
The three configurations used in the present series of research efforts are
described below.

Configuration I. A 16-mm filmchain projector (Bell and Howell model 652),1

together with an optical projection system, was used to present the partici-
pant with both a full-color windscreen display, which simulated real-world
visual angles, and a panel CRT display of the same scene but minified and in
monochrome. The windscreen display, which could be presented at various lumi-
nance levels, was projected on a rear-projection screen and viewed through a

ICommercial names are used in this report for purposes of clarity only and do
not represent endorsement by the Department of the Army.
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Fresnel lens that placed the image at optical infinity for the observer. A
television camera (GBC model CTC 6000), mounted in line with the 16-am pro-
jector, was used to generate a simulated LLLTV display to the participants.
The use of a beam splitter suitably placed in the optical train provided the
participant simultaneously with the simulated windscreen display and the cor-
related LLLTV display. The size, luminance level, and system gamma function
of the simulated LLLTV display could be adjusted by the experimenter. A
schematic view of this system is shown in Figure 3.

In Figure 3, panel A is a plan view of the arrangement in which the simu-
lated TV camera is fixed with respect to the aircraft. For this configura-
tion, the TV camera must have its vertical sweep reversed. Panel B is a plan
view of the arrangement in which the simulated TV camera can be moved in azi-
muth and elevation with respect to the aircraft coordinate axes. Because of
the relatively low screen luminance and the need for using a small lens aper-
ture to obtain depth of field, a silicon-intensified TV camera (SIT) (GBC
model NVC 100) was used here. Panel C shows a side view of the participant's
work station, which is the same for either of the above arrangements. In
panel A, focal length of the projection lens is 25 mm, faces of the beam-
splitter are 50 mm by 50 mm, and the relay lens system used for converging
the rays to form an image on the TV camera tube comprises an Erfle eyepiece
of 37 mm focal length plus a Barlow lens of minus 44 mm focal length. The
Fresnel lens shown in panel C is 38 cm in diameter and has 49 grooves per cm
and a focal length of 32 cm. It images the projection screen (i.e., windscreen
display) at optical infinity. Also shown is the two-mirror arrangement for
presenting a virtual image of the cockpit monitor at 69 cm from the observer.

Configuration II. The windscreen stimulus materials in this configura-
tion were presented by means of a CONRAC RQA 17 television monitor instead of
a rear-projection screen. The resultant monochrome windscreen display was col-
limated and provided the observer with a 36-by-48-degree field of view (FOV)
presented at real-world angular subtense. The observer looked at this display
through goggles mounted on a light-tight viewing hood. Display luminance was
varied by one of two methods. With the first method, only the experimenter
controlled the luminance of the display, and the luminance level was discretely
varied by inserting neutral density filters into the goggles. With the second
method, the goggles were fitted with a fixed and a rotating polaroid filter
that permitted the subject to continuously vary the luminance level; the set-
ting could also be remotely monitored by the experimenter. Stimulus material
could be generated from an on-line TV camera or from videotape recordings played
back on a SONY videotape recorder (model VO 1800). Directly below the viewing
hood was another CRT monitor simulating a cockpit panel display viewed at 69 cm
and presenting the same material as that generated for the windscreen display.
The size of the panel display could be varied by the experimenter, and its lumi-
nance level was controlled by the participant, who set the angular position of
the rotating member of a pair of polaroid filters mounted in front of the simu-
lated panel area. The panel display luminance level was continuously adjustable
and was remotely monitored by the experimenter. The participant's work station
environment was an enclosed, dark-walled, sound-attenuating chamber.

Configuration III. The participant's environment was the same as that
used in Configuration II. The source for the stimulus material, however, was
a 1.22 m by 1.83 m, three-dimensional, full-color terrain model designed to

6
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simulate partially wooded terrain at a 1:300 scale. It was used in conjunc-
tion with an optical probe mounted on a TV camera (GBC model NVC 10U) that
had a SIT camera tube to provide the video output. The probe (see Figure 4),
with its symmetrical optical system and telecentric aperture stop, was de-
signed to have unit magnification, a 60-degree circular instantaneous FOV,
good color correction, and very little distortion. A scanning mirror, rotat-
able on two orthogonal axes and located at the cntrance pupil of the probe,
was used to set the pitch and the heading of the simulated aircraft. Roll
angle and any needed derotation was obtained by rotating a Pechan prism about
the optic axis. (Rotational servo controls had not then been incorporated in
the probe, so that for a given simulated flight, the pitch, heading, and roll
settings remained fixed.)

When viewing directly through the probe, with entrance pupil set at about
0.5 mm and probe focus set for an object 26 cm from the entrance pupil, the
20/30 line of the Snellen eye chart (suitably reduced) was resolved for chart
placements anywhere in the FOV. Depth of field for this 20/30 resolution was
from 20 cm to infinity (i.e., for a 1:300 scale, from 60 m simulated to in-
finity), and at 5 cm (i.e., at 15 m simulated for a 1:300 scale) resolution
was about 20/70 Snellen. When the probe was interfaced with the TV camera,
the display monitor provided the observer with a 42-degree horizontal and a
31-degree vertical real-world FOV, and resolution was degraded to about 20/90
Snellen (equivalent to about 400 TV lines per picture height).

The participant controlled the probe altitude (from 0 to 61 m simulated)
and forward groundspeed (from 0 to 45 knots simulated). To obtain the 3 de-
grees of translational freedom (continuously varied), the position of the
terrain model (which could be moved in X and Y), and the position of the probe
(which could be moved in Z) were controlled through an INTER DATA 90 computer
and associated peripherals and electromechanical equipment. The computer was
also used to record and display the participant's altitude, airspeed, flight
path, and number of crashes during simulated helicopter runs over the terrain
model. A schematic diagram of the probe is presented in Figure 4, and the re-
lationship between probe and terrain model is shown in Figure 5.

Direct visual viewing of the display, with unit magnification, was ob-
tained by removing the TV camera shown in Figures 4 and 5 and placing the
observer's eye at the exit pupil of the probe (i.e., behind relay lens 3).
Image focusing was accomplished through small axial movement of relay lens 2.
The objective and relay lens 3 are alike, each being an Erfle eyepiece of
20 mm focal length; and relay lenses 1 and 2 are each Schneider-Kreuznach
Componon lenses of 50 nu focal length. Field-of-view is 60 degrees and circular.

As shown in Figure 5, the 3 degrees of translation are controlled through
servo drives. In the present series of investigations, simulated movement of
the helicopter was simplified to closed loop control of translation only.

Participants

The research participants were 24 rated Army helicopter pilots who volun-
teered to serve in the study. All participants had normal or corrected normal
vision.
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Procedure

Prior to the start of data collection, all participants were shown a simu-
lated windscreen display of NOE flight in conjunction with a correlated instru-
ment panel CRT presentation. The Configuration I apparatus (see Figure 3,
panels A and C) was used for this demonstration. The windscreen view was
presented at approximately full-moon luminance levels (scene highlight lumi-
nance of 0.01 to 0.02 fL). While the participants viewed this display, the
experimenter brought to their attention the angular minification present with
the 13-cm CRT monitor (6x minification) and the 26-cm CRT monitor (3x minifi-
cation) in comparison to the real-world visual angles as seen in the windscreen
view. The experimenter also explained the potentially detrimental effect of a
bright CRT display on dark adaptation.

After the familiarization demonstrations, CRT display luminance was varied,
so that the participants could judge the dimmest setting they could use for the
displays and still feel they could fly safely using such a system.

In the formal experiment, the Configuration II facility was used, and only
the panel display was presented. The participants viewed two 10-minute seg-
ments of NOE flight, recorded on videotape. One segment was filmed at the
Hunter-Liggett, Calif., ntilitary reservation, and the other segment was filmed
near Fort Rucker, Ala. The tapes were viewed by each participant pilot on the
13-cm and the 26-cm CRT displays. They could attenuate the display luminance
by rotating one of a pair of polaroid filters while the other remained fixed.
This permitted scene highlight variation of from 0.01 fL to 0.20 fL. Partici-
pants also viewed each display with a normal system gamma function or with a
modified system gamma function designed to enhance detail in the luminance
range of terrain features such as trees and other green foliage. Thus, each
subject made judgments in eight different conditions: 13- or 26-cm CRT dis-
play, Hunter-Liggett or Fort Rucker terrain, and normal or modified display
system gamma function.

The pilots were instructed to view each display as though it were being
used to perform NOE flight at night. They were asked to make the display as
dim as possible without sacrificing any information necessary to conduct a safe
and effective mission. Each participant made six judgments with each display
condition, rotating the polaroid filter in alternate directions for successive
judgments to minimize positional cues in setting the display luminance. At
the end of the experiment, the participants were fully debriefed, their ques-
tions were answered, and any of their observations concerning the displays
were recorded. Each participant was asked to indicate a preference for either
the 13-cm or the 26-cm display and to comment on the desirability and utility
of having a system gaimma control.

RESULTS AND DISCUSSION

A 2 x 2 x 2 factorial ANOVA with repeated measures on all factors was
used to evaluate'the effects of CRT size, system gamma function modification,
and type of terrain on display luminance levels used by pilots to maximize
visual dark adaptation when flying with an LLLTV system. The independent
variables were CRT size (13 cm vs. 26 cm), system gamma function (normal vs.
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modified), and type of terrain (semi-arid as at Hunter-Liggett vs. heavily
wooded as at Fort Rucker). The dependent measure was the mean of the six
luminance judgments (in fL) made by each of the 24 pilots for each of the
eight display conditions.

The overall mean luminance judgments made by the 24 pilots for each dis-
play condition are presented in Table 1, and some pooled means for these data
are presented in Table 2. As indicated in these tables, the pilots felt that
they could tolerate a 29% dimmer display when using the 26-cm as compared to
the 13-cm CRT monitor (F (1,23) = 40.58, p < .01). It can also be seen that
with a normal system gamma function, pilots required a brighter (i.e., higher
luminance) display when flying over heavily wooded terrain than when flying
over the semi-arid terrain of Hunter-Liggett (F (1,23) = 60.89, P < .01).
A significant effect for system gamma function modification was also obtained
(F (1,23) = 51.03, 2 < .01) however, this effect was mainly manifested in a
terrain by contrast interaction (F (1,23) = 40.58, p < .01).

Table 1 shows that system gamma function modification had little if any
effect for semi-arid terrain, but allowed for a 29% dimmer display during
flights over heavily wooded terrain. No other interactions were statistically
significant. Also, when a 26-cm display size was used in conjunction with a
modified system gamma function, mean display highlight luminance, selected by
pilots as adequate for night flying, was 0.06 fL or less. This compares
favorably with the extrapolation of 0.05 fL obtained from previous research
(e.g., Baker, 1953, 1963; Mueller, 1951; Shlaer, 1937).

During debriefing, 92% of the pilots felt that they would be more com-
fortable using the 26-cm display, 4% preferred the 13-cm display, and the re-
mainder had no preference. All the pilots felt that the modified system gamma
function would be of value when flying over heavily wooded terrain.

CONCLUSIONS

Two general conclusions can be drawn from the results of the present study.
First, both the empirical and subjective data from the pilots support the use
of a 26-cm CRT display when using an airborne LLLTV system. When using the
26-cm display as opposed to the 13-cm CRT display, pilots could tolerate a
dimmer display, thus reducing the adverse effects of display-viewing on visual
dark adaptation. In addition, the pilots felt more comfortable when using the
26-cm display. Preference was usually expressed in terms of a feeling of having
a larger real-world field of view, even though the 26-cm and the 13-cm displays
both presented the same real-world field of view. The "larger," subjective
visual FOV provided by the 26-cm display gave pilots greater visual comfort,
perhaps because the 26-cm display reduced the restriction on scanning eye
movements.
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Table 1

Mean Highlight Luminance Settings (in Footlamberts) for Display
Size, System Gamma Function, and Terrain Type

System gama function

Normal Modified
Heavily Heavily

Semi-arid wooded Semi-arid wooded
Display size terrain terrain terrain terrain

13 cm 0.066 0.119 0.066 0.093

26 cm 0.046 0.096 0.044 0.060

Table 2

Means Pooled Across Conditions for Mean Highlight
Luminance Settings Listed in Table I

Mean setting
Independent variable (in footlamberts)

Display size

13 cm 0.086
26 cm 0.061

System gamma function

Normal 0.082

Modified 0.066

Terrain type

Semi-arid 0.056
Heavily wooded 0.092

13
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A second general conclusion is that the modified system gaimna function
may be useful when flying over heavily wooded terrain. The pilots thought
that the fine structure of the forest canopy was more easily discriminable
with this modification. Furthermore, they adjusted their displays to a lower
luminance when using the modified system gama function. They were apparently
able to discern the needed detail in the heavily wooded areas, even though
they were using a lower display luminance. The lack of differences with system
gamma function modification when flying over semi-arid terrain is not surprising,
since this terrain is comprised of high-contrast elements for either of the two
gamma functions used. This finding is important because it indicates that the
effect of system gamma function modification is terrain-specific and opens up
the possibility of developing optimal real-world-luminance to display-luminance
transfer functions for other characteristic terrain types.

A third conclusion, although tentative, is that pilots flying in moonlight
can set their cockpit CRT display at a luminance level high enough to provide
them with an adequate cockpit flight display and yet low enough to permit them
to have relatively rapid visual acquisition when subsequently viewing directly
through the windscreen (i.e., adequate visual dark adaptation for heads-up
viewing).
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