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ABSTRACT /
% This paper is composed of two parts. In the first part ‘closedness and
f compactness results are given for a sequence of nonlinear elliptic operators:
< of the form
E ¢
- al_a
f Lu = (-1)| ID Aq(x,u,Vu,...,Vmu) '
3 § la]<m
1 §
- § “Pwith monotone type assumptionq.on~the“ A&‘S\ These results are then used in
; the second part to derive existence theorems for a quasi variational
3 inequality related to some questions from nonlinear heat flow. This quasi
] variational inequality involves a second order operator as above and an
/ i
] ;! . implicit obstacle of the Signorini type on the boundary. L

AMS (MOS) Subject Classifications: 35325, 35340, 47H05, 47H17
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operator, convergence of nonlinear operators, guasi variational
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SIGNIFICANCE AND EXPLANATION

Quasi variational problems are characterized by the fact that the

-
-

constraints are not given in advance. Typically, given a differential
operator T acting on some function space V and a varying constraints set

Q(u) C V, one asks for ue€e V satisfying

ue Q(u) ,

(Tu,u = v) € 0 for all v e Q(u) .

Variational inequalities correspond to Q(u) = Q. Such quasi variational
inequalities were introduced by Bensoussan and Lions for the study of some
stochastic optimal control problems.

J The quasi variational inequality considered in this paper is related to
nonlinear heat flow. The constraints arise in the following way: the
boundary temperature is reguired to remain at least equal to the exterior
temperature, while the latter itself is influenced by the heat flux crossing
the boundary. Existence theorems for stationary solutions are established
under rather general nonlinear constitutive assumptions. They extend and
sharpen previously known results relative to the linear case. One feature of

i this problem is the dependence of the constraints set on the derivatives of

the temperature at the houndary. This precludes the use in the nonlinear case

of the standard approach for solving quasi variational inequalities.

g The responsibility for the wording and views expressed in this deseriptive
k2 summary lies with MRC, and not with the authors of this report.
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0. INTRODUCTION |
. -
The purpose of this paper is to study the existence of solutions for a second order
nonlinear elliptic equation with implicit Signorini type boundary conditions. The equation
3 we consider is of the form -
4 3.4
S N N 4
. (0.1) Lu = - ] DA (xu,%u) + A (xu,Vu) = £ in &,
i=1
@ a bounded open set of RY with boundary TI'. The boundary conditions are the
following: 4
(0.2) u?» ¥(u) on T,
(0.3) Yau >0 on T,
(0.4) Y,u * (u ~¥() =0 on T, .
where Y¥(u), the obstacle on I, will be defined by means of an integro-differential 4
' operator ¥ on T. Ya denotes the conormal derivative associated to L: ‘
N ;
{0.5) Yus= ] A(xuVYu, , ‘
a i i
i=1 !
with Vi the components of the unit exterior normal to T.
Equations and boundary conditions of this kind are related to some gquestions of a
nonlinear heat flow (see [21]). Consider a homogeneous rigid material i and let u
]
1Istituto Matematico "G. Castelnuovo", Universita di Roma, N0100 Roma, Ttaly.
3
2Departement de Mathématique, C.P.214, Université Libre de Bruxelles, 1050 )

Rruxelles, Belgium, partially sponsored by the I!Inited States Army under
Contract Nos, DAAG29~75-C-0024 and DAAG29-80-~C-0041.
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denote the temperatare inside ., s the heat production and a the heat flux. One
wishes to Yeep u on [ at least ecual to some reference temperature h fe.a. the
exterior temrerature). For that murpose we assume that oev, the flux acress T,
vanishes whenever u > h and is nonpositive whenever u = h, The first law of
thermodynamics requires, for a stationary solution,

divg=s in 2.
Thus, for constitutive assumptions of the form

a, = ai(u,Vu)

and s = 51(u,Vu) + 52(X)' we obtain a problem as (0.1)-(0.4) with ¥(u) = h (the s,
term here is partly for mathematical convenience; see section 2.5.e). Replacina now o
h{x) above by an exnression Y(u)(x) which may demend on u or its derivatives means
that one takes into account a possible variation of the reference temperature. This g

variation will be assumed to he proportional to the average flux qe*v = —Yau across [:

(0.6) ¥(ul(x) = h(x) - [ y uly)e(y)dl
r a v

or more generally

(0.7) Yla)(x) = h(x) - [ Yy uly)elx,y)al ,
T a v

where b and ¢ are given on T. A denendence like (0,7) occurs for instance in the
following situation: 1let .. be surrounded hv another materia? Hp and assure that o
and . satisfy the Foarier law; then the nexterior temperature nn I  is qiven hv (N,7)

e
with ¢ (x,y) a “reen's funrtinn assnciated to ﬂp. firilar prohlems mav arice in fl1njA
mechanics, when ore Adeals with eemi=npermeahle memhranes (=see '7,2n]),

Fristence results fnr prohlem (N.1)=(N,4), with ¥ af tre forr (0.5Y, . Yinear

s 2,. Aant ie 03

and? f in L (L), were ortained hy Inlv=Mogeco [12,00) when ¢ je N, AnAd b

1/2
H / (MY is snfficientlv amall. omr

RoccarAo=Nolcetta (27 when the narm nf ¢ (in
purrane here ie tn stud rthe nonlinear case, in particunlar that one corresponding in the

ahave rodnl +9 constitutive assumntinng of the form

A PP TRy 170 = SrfBY R e Py SO A v o ame s

-




du

a, = -kK(|vuD) I

with, for instance, X(r) = rp-2' 1 < p < ®®, The coefficients Ai(x,u,Vu) and

Ao(x,u,Vu) of L will be assumed to verify either the usual (full) monotonicity
conditions or conditions which are similar to but slightly stronger than the Leray-Lions
conditions. These conditions involve among other things an exponent 1 < p ¢ =
(polynomial growth, coercivity, ...). We will prove the existence of solutions to problem
(0.1)-(0.4), with Y of the form (0.6) and £ 1in Lp'(n) (or more generally in a
subspace @p,(n) of the order dual of wg'p(g)), when either 1 < p <2 or p > 2 and

1-1
the negative part of ¢ has a sufficiently small norm (in W /PP

(T))e A similar result
holds for an obstacle of the form (0.7).

Our general approach is classical in the theory of quasi variational inequalities in
that the given problem is transformed into a fixed point eauation via the resolution of an
auxiliary variétional inequality (the so-called variational selection). (For the theory
and applications of quasi variational inequalities, see e.g. [1]). However a difficulty
arises here due to the fact that ¥(u) explicitly contains the conormal derivative YU
which, as is well-known, can only he defined via Green's formula under certain informations
on Lu (see section 2.1). This difficulty is easily overcome in the linear case by
working ‘= the space

Bl) = (v e n'(@; e L2t0)
(cf. 12,12,27)), but it is not clear how to adapt this method to the nonlinear case (for
example, what are then the properties of the set corresponding to H;(Q) ?). To get around
this difficulty, we consider the whole inteqral in V¥(u) as the parameter leading to the
construction »f the variational selection. (Another possibility is indicated in section
2,5.c, which is inspired by the variational formulation of the Neumann problems). The
monotone case can then be treated rather simply. The problem is reduced to a fixed point
equation in R when ¢ has the form (0.6), in w1-1/p,p(r) when Y has the form

(1.7). 1In tie ronmonotone case, in order to maintain a minimum of eonvexity, we are lead

to replace in the auxiliary variational inequality the operator T hy an operator L,
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obtained from L by freezing some of its terms (as e.g. in {2})). A second parameter
is thus introduced in the variational selection. To study then the dependence of the
solutions of the auxiliary variational inequality with respect to w, we apply general
closedness and compactness theorems relative to the convergence of a sequence of nonlinear
elliptic operators of the form

(0.8) ) (-1)'“'D“Aa(x,u,Vu,...,v”u) .

la]<m
These theorems, which are proved in the first part of this paper and which seem to be of
some interest in their own right, are somehow related to various recent results about
stability, G-convergence, I'-convergence, ... (see the references in [6]).

The authors wish to thank J. L. Lions for several stimulating comments about a
preliminary version of this paper, and P. Villagio for his remarks about the physical
meaning of (0.1)=(0.4). This research was started while the second author was visitina the
University of Roma through a grant of the C.N.R.

The plan is as follows:

1. Closedness and compactness theorems

1.1. Preliminaries

1.2, Closedness theorems

1.3. Compactness theorem
2. A quasi-variational inequality with obstacle on the houndary

2.1, Conormal derivative

2.2, Statement of the problem

2.3. MNonmonotone case

2.4. Monotone case

2.5. Variations
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1. CLOSEDNESS AND COMPACTNESS THEOREMS

1.1. PRELIMINARIES
Let V be a real reflexive Banach space. We denote by V' the dual of Vv, ( , )
the pairing between V' and V, + (resp. — ) norm (resp. weak) convergence in V
or V'.
DEFINITIONS t.1. Let Tp,e D = 1,2,... and T be mappings from V to V'. We say
that Tn -, T when (i) the T,'s are equibounded (i.e. LJ Tn(B) is bounded in V'
n

whenever B 1is bounded in V), (ii) for each sequence kn + o, u —+u in V with

T, u ——>y* in V' and
kn n

[ ]
(1.1) lim sup(Tknun,un) € (u',u) ,

one has Tu = u' and <'1‘k “n'un) + (u',u). We say that T =S, T when (i) holds and for
n

each sequence kn' u . as above, one has Tu = u' and u, +u in V.

n
These definitions are closely related to the notion of pseudo monotone homotopy which
is used in the study of some strongly nonlinear problems (see [5,9,10)).
We recall that a sequence of sets K, C Vv is said to converge in the Mosco sense to a
set KCV (briefly X — K) when
5 s-1lim inf X, = w-lim sup K, = kK,

where

-

s-1im inf K = {ve V; there exist v € XK with v + v} ,
n n n n

w-lim inf X = {v € V; there exist k + ® and v € K, with v —_—
n n n n "

(see ([19]).
One then has the following simple result concerning the converaence of s~lutiosms oF
variational inequalities (see e.g. [14]).

\
THEOREM 1.2. Let X, and K be closed convex sets in V with K, —= X, ler 7

and T be mappings from V to V' with Tn o, T. Let u; *u' in VY, tmagee et

B u, satisfies




o 2SS,

u € K,
(1.2) n n
{(Tu,u =v)<(u',u - v) for all ve K ,
nn’’n n’"n —_— n

and that u —u in V. Then u gatisfies

ue X,
t1.3) i
{ (Tu,u = v)< (u',u-v) for all ve K, ¥

S
and (T u ,u ) * (Tu,u). If moreover T ~—> T, then u *+ u in V.
—_— nn’'n —— 'n — n -
PROOF. Passing to a subsequence, one can assume 'I‘nun — u', Since u € K, there
exists w, € K with woot replacing in (1.2), we obtain
im s u )y < '
lim up('!‘n LN {(u’,u),

so that, by the convergence property of T,, Tu = u' and (Tnun,un) + {Tu,v). Let now

v € X. Taking v, € K, with v + v and replacing in (1.2), we get (1.3). Q.E.D.

1.2. CLOSEDNESS THEOREMS

We now give sufficient conditions for a sequence of mappings Th associated with
operators of the form (0.8) to converge in the above sense.
Consider, on a bounded open set { of RY for which the Sobolev imbedding theorem

holds, the operators

~ m
(1.4) Luz (-1)'°'D°A:(x,u,Vu,...,V W, n=1,2,...
Ja]<m
(1.5) Lu = (—1)'u‘DuAa(x,u,Vu,...,Vmu) .
lal&m

e will make the fnllowiing assumptions, Adenoting as usual by g = (g (respe.

)
a lal=m

the top (resp. lower) nrder part of a vector £ = (f )

= :
n ‘nq) a!(m) a faltm

n
(1.6) erach fuanction Aq(x,&) and Aq(x,&) satisfies the Caratheodory conditions;

.
(1.7) there exist 1 < p < », k1(x) € Lp (2) where p' = p/(p = 1) and a constant 4

such that

-1
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all g all a, n, and similarly for A‘(x,i), lal € m ;
R

for a.e. x, g,
(1.8) for a.e. x, all n, all n, one *ras
TN x,n, s - ATk, =i s
“ X R a Q
lal=m
for g # ', and similarly fer A Ix,m, I, faf = m ;
X kn
(1.9) for a.e. x and al! a, if % =+ > and I + I, then A (x,7 ) * A (x,£) .
n n a n [+1

In the case of a sinzle crerazor, (1.6%'-(1,8) are exactly the Leray-Lions conditions

(see [16,17,41" such as they wera seneralized recently hy Landes [15]. Assumption (1.9)

expresses the conwverczen ccefficients of L, to those of L.

Let vV Ye 3 cleosed gursrace of Km'p(i) containing WE'P(Q), and define

T V> V' be she usual forrmula

Lm

nu,v) = an(u,v) for u,veée Vv

where a_(u,v) is the 2irichlet form associated to L,:

a (u,v) = [ § AM(x,u,%,..., 9 00" ;
n a
Q lal€m

agssociated to L.

M
THEOREM 1.3. Assume (1.6)~{1.9). Then 'I‘n 4N T,

one similarly has T : V » v' and af(u,v)

The following additional condition yields a stronger conclusion:

(1.10) there exist d1 > 0, <, 2 0 and k1(x) € L1(9) such that

n P _ P _
Aa(xvnl;":a 4 d,lCl C,lﬂl 21(’()

for a.e. x, all n, g, all n, and similarly for Aq(x,n,c), lal = m .

Note that this condition is implied by an inequality of the form

n p
(1.11) LOAAREVE > d el - 2 (x) .
lalsm a o 1 1

S
THEOREM 1.4, Assume (1.6)-(1.10). Then Tn —+ T.
Theorem 1.3 is, up to the use of [15], a particular case of theorem 5.1 of [9] which

deals with a similar convergence problem (with a parameter t € (0,1] instead of

n=1,2,.es) 1in Orlicz-Sohnlev spares. In order to allow certain referenrces and also to

PRI P T PR R S
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avoid to the reader the technicalities inherent to the situation considered in [93!
(unbounded and non everywhere defined mappings, in nonreflexive spaces, ...), we will aqive
below the main points of the proof. The result of theorem 1.4 is related to the notion of
mapping of type (S,) which was considered by F. E. Browder in some of his works (see e.7.
(41).

PROOF OF THEOREM 1,3. Let w —u in vV, kn e, T ou —> f in V' wi%h
n
(1.12) lim sup(Tknun,un) S(f,u).
We must show that Tu = £ and (Tk un,un) +{(f,u), For brevity, we will write T

n

n

instead of Tk .
n
L
As AZ(E(un)) remains bounded in LP (), we can assume, passing to a subsequevce,
n \ X p'
that Au(C(un)) ha in LW (Q); thus

(1.13) gy = 1 n an’y
2 lal<m

for all v € V. We can also assume, passing to a further subsequence, that for Ja| < =,
Daun > Dau in LP(Q) and a.e. in Q. We will show that this a.e. convergence alsc ~olis
for |al = m. It then follows that Az(g(un)) > Aq(E(u)) a.e. for all a, so that, bhv
lemma 1.5 below, Aa(E(u)) = ha' and consequently, by (1.,13), Tu = €,

We first note that

. N n - n > x - a
{(1.14) 1im sup é 1af=n (A (Nt ),gla 1) = A (nlu),5(w)))(Du =Dwu) €0 .

Indead the iategral in (1.14) is equal t»

- N n a - Y n (<3
(Tuud =[] A Eta 1IDTu = [ 1 A(E(a )Ty
Q lal<m 2 lal=m

o AT, % - p%a
a n n
Q lal

=m

and since the last integral above converges to zero, (1.14) can be deluced from {1,127 -

H (1.13). As the integrand in (1.14) is > 0 a.e. by (1.R), it converges to zero 1=

1 . .
1. (2), and so, by passing to a subsequence, a.e. in .

i




n n a a :
(1.15) |u%=m (Aa(n(un),c(un)) - Aa(n(un),c(u)))(D u - Du) +0 a.e. in .

Fix %, €  (a.e.) and let us show that ¢(un)(xo) remains bounded. Suppose the

contrary. Then, writing En = E(un)(xo)

and £ = E(u)(xo), we get, for a subseguence,

g, - &l >1 and €, - C)/lCn - ) *g* #0; but it follows from (1.8) that

n n
|a%=m (A (n g +Z -2 ~A o =g

n n
totem (A (n T+ (3 - C)/|Cn -z - A nwei(g =L )20,

and so we deduce from (1.15), after dividing by Icn -¢l, that

3 (A (NG +5%) = A (N,5))Ld =0 ;
lal=m

consequently, by (1.8), g* = 0, a contradiction. We can thus assume, passing to a

subsequence (depending a priori on x,),

that ;(un)(xo ) > ;0; it then follows from

(1.15) that at Xge

a
I (A (na),zg) - A (n(w),Llw)) (g, - Du) =0,
lal=m
and consequently, by (1.8), COa = Duu(xo) for lal = m. So c(un)(xo) converges for the
original sequence to C(u)(xo). We have thus proved that for

lal = m, Daun + p% a.e.
It remains to see that (Tnun,un) + (Tu,u). As

[ 1 acwaw® s T A g,

L
2 [af<m Q lal<m
it suffices by (1.12) to show that
(1.16) lim anf [ ] ANEuDYa 3 [ T A (5’ .
2 lal=m 2 {al=m

But (1.8) implies

n n , a - [a ]
£ |a%=m (A (n(u ) ,glu)) = A (n(u ), 5w ((Du_=Du) >0,

and (1.16) follnws by passing to the limit,

Q.E.D.




LEMMA 1.5 (cf. [16]). Let rn(x) be a bounded sequence in LP(Q), 1 <p< ™ with

rn(x) * r(x) a.e. in Q. Then r(x)e Lp(ﬂ) and for each s(x)e P ), r s > rs in

L1(Q).

PROOF OF THEOREM 1.4. We must show, using the notations of the above proof, that if
(1.10) holds, then u + u in V. It clearly suffices to see that Daun + n% in P2
for Jal = m, and since we already have a.e. convergence, it is enough to prove, by Vitali
theorem, that the IDO‘unIp are equi absolutely integrable. Let E C . By (1.10),

J 1 M Pcef T aMeun® o+cf T 0% P+ e £,00
E la|=m n E la|=m o n n E lal<m n E !
where ¢ denotes a constant independent of n and E. Given € > 0, one deduces from
(1.14) that there exists n, (independent of E) such that for n » ne
[ ] AEeno®s <e+ [ T aMtgta nnta
E |lal=m @ n n E |lal=m @ n

s AZ(n(un).;(umD“u1 - o*w) ;
lal=m )

but each integrand on the right hand side converges in L‘(Q), the first by lemma 1.5 and
the second by a preceding argument. The conclusion follows. Q.E.D.
REMARK 1.6. The conclusion of theorems 1.3 and 1.4 still holds if the growth
assumption (1.7) is weakened in the following way: it suffices that (i) the inequalities
in (1.7) be verified with a constant <y and a function k1(x) possibly depending on
s : : . N, P, . n :
n, (ii) if u remains bounded in W (8 and n = 1,2,..., then Aq(ﬁ(u)) remains

L}
bounded in Lp (2), (iii) for Ja|l = m, if u remains bounded in wm'P(l), v is fixed
: mep,, n ; ; . P
in w () and n = 1,2,..., then Au(n(u),;(v)) varies in a compact set of L° ().

similar remark applies to theorem 1.2 helow.

REMARK 1.7, Similar results, with simpler proofs, can he given when Ty Aanl I ara
monntnne. Assume (1.6), (1.7), (1.9),. and

. n n
£) = AUREINE = 6% »
|qT<m (Aa(x,,) M AL ! 0

~10-
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for a.e. x, all £, &' and all n, and similarly for Aa(x,E), ja] € m. Then

PM
Tn —+ T. Moreover if the condition

n a a
é Iu%<m (A, (E(u )) = A (E(w))(Du =Du)+0

implies un +u in V (this will be the case if the coefficients AZ verify a strong

S
monotonicity condition which is uniform with respect to n), then Tn - T,

EXAMPLE 1.8. Consider

2
=
m

N . :
- 7 pra"tx,w 1P 3ty + al(x,u, V0,
i=1 i 0

N .
Lu = - p*(a, (x,u} |Vul® 2D"u) + ao(x,u.Vu) P
i=1 *

a satisfy the Caratheodory conditions

n n
where 1 < p < ® and the functions ai, ao, ai, o

together with:

v
(1.17) there are constants A and Cqs k1(x) € Lp {) such that

Iag(x,n)l and |ai(x,n)| <A,
-1 -1
lagtx,n,e) | and lagtx,n,e) ] < e It 4 e 1gtPT 4 k00,

for a.e. x, all n, g, all i, n;

(1.18) for a.e. x and all i, if kn + « and (nn,cn) + (n,z), then

k k
n n
a, (x.nn) + ai(x,n) and a, (x.nn.cn) hd ao(x.n.c)-

Let T :V+V' and T : V » V' be the corresponding mappings (m = 1 here). If for
n

a.e. x, all n, all i, n,

a:(x,n) and ai(x.n) >0,

then Tn 2, T. &and if

a:(x,n) and ai(x,n) A0

S .
(A a constant) for a.e. x, all n, all i, n, then Tn -—+ T, Related results in the

latter case have been obtained for p = 2 by Boccardo-Dolcetta [3].

-11=-
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1.3. COMPACTNESS THEOREM

In some applications (see section 2.3), one has a sequence of operators L, as above
for which the lower order coefficients A:, lal < m, do not necessarily converge in the
sense of (1.9). The following theorem yields a compactness result in this situation.

Let L. be as in (1.4), n=1,2,..., and let Aa(x,g), lal = m, be functions. We
will assume among other things:

(1.19) each function A:(x,i), lal € m, Aa(x,E), lal| = m satisfies the Caratheodory
conditions;

(1.20) each function A:(X,E), lal € m, Aa(x,E), la] = m satisfies a growth condition
such as (1.7), with a constant c; and a function k1(x) independent of n:

(1.21) :or a.e. x and all J|al =m, if kn + o and En + £, then
A (xE ) > A (x,E)

Let Tn : V+ V' be the mapping associated to A

THEOREM 1.9. Assume (1.19), (1.20), (1.8), (1.10) and (1.21). If u —u in V
and Tu ——f in V' with

1lim sup(Tnun,un) < (f,u),
then u *u in v.

PROOF. The arguments are essentially the same as those in the proof of theorems 1.3

and 1.4 and we will not repeat them. Q.E.D.
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2. A QUASI VARIATIONAL INEQUALITY WITH OBSTACLE ON THE BOUNDARY

2.1. CONORMAL DERIVATIVE

In this section we make precise the notion of conormal derivative for an operator of

the form
N i

(2.1) Lu 2 - ) DA (x,u,Vu) + A (x,u,Vu)
i=1 i [

on a bounded open set  of RY with locally Lipschitzian boundary T.

We assume:

(2.2) the functions Ai(x,i) and Ao(x,E) satisfy the Caratheodory conditions;

L]
(2.3) there exist 1 < p < =, k1(x) € Lp (®) and cy such that

p~1
Ia, (x,£)| and |A0(x.5)l < c,lél + ky(x)

for a.e. x, all §, all i.

- )
L is considered as a mapping from w1,p(9) into W 1P (Q); so

{Lu,v) = a(u,v) for u€ w"p(n), v € w;'p(ﬂ) '

where a(u,v) is the Dirichlet form associated to L and ( , ) denotes the pairing in

the distribution sense. T : w1'P(sz) + (w""(m)' is defined by
({Tu,v)) = a(u,v) for u and v € w"P(n) R

denotes the pairing between (w"p(ﬂ))' and w”p(ﬂ). We will also

- - L) -
denote by ( , )} the pairing between W (=1/p).p (I'Y and W1 1/p'p(l‘).

where (¢ , )}

T x> (@ P@)) be a

-9 L}
PROPOSITION 2.1. Let X be a subspace of W ‘P (R) and

linear mapping such that for f € X,

(2.4) (Cngvdm(Ew) for ve P

(i.e. ©f ig an extension of the linear form f to w"p(n)). Take u € w"p(ﬁ) with

-(1-1 '
Lu € X. Then there exists an unique element in W ( /P)ep (T), denoted by Yau' such

that
(2.5) a(u,v) = {((nLu,v)) + (Yau'an> for v ew 'p(ﬂ) ,

where Yo denotes the usual trace on I'. Moreover (2.5) is the unique decomposition of

the form

13~
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2(u,v) = ((F,v)) + (@, v) for ve w'tey

- - 1
with F in the rangce of 7 and ¢ in W (*=1/p).m tr.

—

PROOF. The expression
afu,v) - ({(mLu,v)) for v ¢ w"”un

depends only, and continuously, on the trace YnV (use a riaght inverse of Yn). This
implies the existence of Yau and its uniqueness. The last nart of the proposition
follows easily from (2.4). O.E.D.

If for € smooth in X, one has
(2.6) Wnfw)) = 6v for ve w '™y,

2

then it is rather natural to call (2.5) the Green's formula associated to the extension
mapping n.

FXAMPLE 2.2. Take X = L” () and define 71 by formula (2.6). Wa then write
1,n(:2

L]
(f,v) instead of ({((nf,v)). Formula (2.5) becomes, for u e W ) with ILu € Lp (),

(2.7 atu,v) = (Lu,v) + (Y u, ¥ v) for ve wPy
EXAMPLE 2.3. Denote by 9;,(9) cw P (2)  the set of all restrictions to w;'“(n)
of the positive continuous linear forms on W1'p(ﬂ), and write Hp‘(i) = H;,(Q) -(4n'(Q).
This space has been introduced and studied for n = 2 by Hanouzet=Joly [11] in relation
with the interpretation of solutinns nf some variational inemalities., Same n€ thejr
results extend easilv to the racre p 2 2, as remarked in [R), In particrular one can
Adefine an extension mapninag m Hn.(ﬁ) - (W1'p(3)1' which verifies (2.R) by writing, for
f 5(9;,(2) and v e w"h(i), v 2N a.e.,
(2.8) (Cnf,u)) = sunl( F,w); we w;’“(.’z) and 0 < w Ny oa.e.
For 1. linear with smonth coeffirients, Hanouret=Joly proved that Yn Aefined hy (D,.8) by
nsina thic 1 ie the continnnus evtensinn o€ the ucual conormal derivative operator (0,5)
@

nn 2 {3). Dennting Pv FY*  the arder dual of T (j.e. the msat of di€ferancer nf rasitive

continunns linecar forms), nne has tvn following strict inclasinns:

-1~
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1, 1, ’
O, () C (W Paans c oy 'P@) ana » B () C w''Peyr c w''PR))';  moreover

. Lp'(ﬂ) < Gp,(sz) strictly, and (2.6) holds for f ¢ LP'(sz). See [11,8].
% In the following we will use the extension mapping of example 2.2. The more general
i result obtained by considering the extension mapping of example 2.3 will be mentioned in
¢ section 2.5.d.
2.2. STATEMENT OF THE PROBLEM
We now start the study of problem (0.1)-(0.4) itself, with ¥ of the form (0.6). The
case of the obstacle (0.7) will be treated in section 2.5.a.
Let L be given hv (2.1), with coefficients satisfying (2.2) and (2.3). The
} functions h and ¢ are given in w"'/p'p(r) and we consider, for we w"P(n) with
; p'
, Lw € L° (), the obstacle
(2.9) ¥(w) = h - (Yaw, v)
T where Yaw is defined by (2.7). Let
4
: {2.10) o(w) = {ve w P, YoV > ¥(w) a.e. on T}
be the corresponding closed convex set. We are also given f in Lp'(ﬂ).
For u € w"p(n), equation (0.1) is interpretated in the distribution sense in ,
condition (0.2) as You > ¥(u) a.e. on T, condition (0.3) in the sense of the dual of
? ‘ 1-1/p,p . :
! W ('), and condition (0.4) as (yau,yo(u = ¥(u))) = 0. Then one easily verifies
| that stated in this way, the problem of finding wu € w1'p(ﬂ) verifying (0.1)-(0.4) is
! i equivalent to solving the quasi variational inequality
] & uew P(2) with Lu e tP () ,

{(2.11) u € ofu) ,
{({(Tu,u = v)) € {(f,u = v) for all v € Q(u) .
Examples can easily be constructed (for N =1 and ULu : =-u” + u) which show that

this problem may have no, one, two or infinitely many solutions.

n 2.3. NONMONOTONE CASE

It will be useful (sec cxample 2.5 below) to distinquish in the coefficient

Ao(x,u,Vu) a dependence on u which yields monotonicity and coercivity from one of

-lf-
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perturbation type. We write for this purpose Ao(x,u,u,Vu) instead of Ao(x,u,Vu). so

that the operator L becomes

N
Luz - J pia (x,u,%) + A (x,u,u,Vu) .
i=1 i 0

We will make the following assumptions (compare with the standard Leray-Lions

conditions):

(2.12) each function Ai(x.i) and Ao(x.n1.n2.c) satisfies the Caratheodory conditions;

1 ]
(2.13) there exists 1 < p ¢ =, kz(x) € Lp () and a constant ¢y such that

p-1
lAi(x.n.c)l < e, 1zl + kytx) ,

p=1
ag(x,n 0,801 € czln‘l + ky(x)

for a.e. x, all n, n1, nz, z, all {;

(2.14) for a.e. x, all n,

N
) - ' -t
121 (A (x,n,8) = A (x,n,8" (T, = 5f) >0
: if ¢ # §'; for a.e. x, all n1, n;, nz, )
(Ao(x,ﬂ1,n2:C) - Ab(xln;'nle))(ﬂ1 - n;) >0 ;

(2.15) there exist d2 >0 and lz(x) € L’(Q) such that

N
|
121 Ai(x,n'C)Ci > dz|C| 22(X) ’

P _
Ag(x,ny,n,,800, 2 dzln1| L,(x) ,

for a.e. x, all n, n1, n2. .

THEOREM 2.4. Let the conditions (2.12)=(2.15) be satisfied, and let h and he

1=1 '
given in W' ~"/P'P(r), £ in LP (). Then problem (2.11) has a solution when either

L
7
:
i

1¢p<2 or p»2 and I¢ ¥ is sufficiently small (depending on ., h,
- - w'"V/PePp)

f and the various constants and functions in (2.13) and (2.15)).

-16~
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PROOF. Let us write, for A ¢ R,

QA = {v e w"p(ﬂ); yov >h=-X a..on T},
and for w € w"p(ﬂ).
¥y

L () =~ ] DA {xwVu)+a (xuwWw,

w 41 i 0
and let T : w"p(ﬂ) +> (w"p(ﬂ))' be the mapping corresponding to L,. By (2.12)-
(2.15), Tw is monotone, continuous and coercive, so that the variational inequality

ue Q
(2.16) A

((Twu,u = v)) K(f,u ~v) for all v € Qx
has solutions. Defining

0{A,w) = {((Ya u,¥},u); u solution of (2.16)} C R x w1,p(9)

w

where Ya denotes the conormal derivative associated to Lw' we are reduced to finding a
w
fixed point of the multivalued mapping (A,w) * 6(A,w) in R x W"p(ﬁ).

8(A,w) is closed and convex. Indeed the set of solutions of (2.16) is closed,
convex, and if wuy and u, are two such solutions, then (2.14) implies that Vu1 = Yu
so that, using (2.7) for L,s we see that Ya (u,) = Ya (uz).

1
w

\J
A priori estimate. Denote by v + v, from w ’/p'p(r)

into w"p(nj, a right
inverse of the trace mapping YO' Let X 20 and let u be a solution of (2.16) with
A>-% and we w'P(2), Then, if we put v = b = (=1) in (2.16), we deduce from (.13
and (2.15) that
ahar] < c+ clul§.1 + ci“uls-1 *cluig + ek,
where ¢ denotes various constants independent of u, A, X and w, and ”g denotes
the norm in w"p(ﬂ). Consequently

(2.17) flul, € ch + ¢ ,

Q2
so that, using (2.7) for L, and (2.13),

“17-




G oo = 3 ¥

. =p=-1
(2.18) "Yaw“"r- < ckp +c,

- - 1]
where |k | denotes the norm in W (1=1/p).p (.

I Thus 6 transforms

- 1
{=A, +o{x W 'p(ﬂ) into a bcunded set. Moreover, since Ya u is a positive element of
w

1-1 .
/PiP (1) (enis follows from (2.16) by taking v = u + 3 with

the dual of W
1=-1/p,p n i
ze W (T), 2> 0 ave. on T, and using (2.7) for Lw), we deduce from (2.18) that

R - =p=1 -
(Yawu,-,> > =(cy) +cy)ly

r°’

: - : -1
where we have written ¢ = ;+ - and denoted by | Hr the norm in w' /p,p(r).

Consequently, if 1 < p < 2, then, ¢y being given, there exists i such that

(Ya u,g ) ? -i. Such a X also exists when p ? 2 provided uw-ﬂr is sufficiently
w
small:

r < max X/(c1kp-1 + cz) .
A>0

Ho i

In any case we have found X 20 and R > 0 such that 9 transforms [-X,R] x BP into
1
it gelf, where BR denotes the closed ball centered at zero of radius R in W 'p(ﬂ).
6 transforms a bounded set into a relatively compact set. Indeed, let An + A and

1
w —y in w 'P(Q), and let u, be a corresponding solution of {2.16):

u € QA ’
n
(2.19)
((Tw (un),un - v)) < (f,un - v) for all v ¢ QA B
n n
where T, is associated to the operator
n

Lw (u) =

i
] . n ﬁi(x,wn(x),u) + An(x,u,wn(x),an(x)) .

e 1

1

M
—_

. . 1.,
One immediately has o) Moreover u, remains bounded in W '‘'(i), as seen

)\
n 1.p
before, so that, passing to a subhzequence, we can assume u —> 4 in W '"(R) and,
. . )
using (2.13), Tw (un) —> g in (¥
n

(2))'. We first deduce v € OX' and then the




o P N

existence of v, € QA with v + u; replacing in (2.19) and going to the limit, we

n
obtain

lim sup((Twn(un),un>) < ((g,u)) .

We can now apply theorem 1.9 (after passing to a further subsequence to have v

1
and conclude that u +u in W Py,

+ W a.e.)

Let us write C = cl conv 6([-X,R] x BR). C is convex, compact, and 68(C) C C. 1In

order to apply Kakutani's theorem and thus complete the proof, we must verify that the

1
graph of 8 is closed. Let An * A, v, +w in W P n

(), and let u be a solution of

. 1.p - M
(2.19) with u *u in w () and r (Ya (un),¢) + r. As above, QA“ — Q.

w

Moreover, passing to a subsequence so that wn »Mw  ana an + Vw a.e., we deduce from

theorem 1.4 that ’1‘w =, Tw. It then follows from theorem 1.2 that u satisfies

n -f = [}
(2.16). Finally (2.7) implies that Ya (un) * Y, (u) in W (=1/pdep (r'y, and
w w
consequently r = (Ya {(u), ). n Q.E.D,

w
EXAMPLE 2.5. The assumptions of theorem 2.4 are satisfied by the operator

Vo -2 4 -2
tuz- } D (ai(x,u)Wulp D'u) + ao(x,u,Vu)lqu u
i=1

if the functions a; and a, verify the Caratheodory conditions together with

0<A<ai(x,n)</\,

0 <A< ao(x,n,c) <A,

for some constants A and A, a.e. x, all n, g, all i.
2.4. MONOTONE CASE
We suppose now that L, given by (2.1), satisfies (2.2), (2.3), and

(2.20) for a.e. x, all £, £,

M
b

- ' - - ] - .
L (Ai(x,C) Ai(x,i ))(Ci C{) + (An(xaﬁ) Ao(x.§ M(n=n*) >0

i=1
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(2.21) there exist d2 > 0 and lz(x) € L1(9) such that

N
P
I A5, + Aj(x,EIn > d 1817 - 2,(x)

i=1

for a.e. x, all £.
w TVPeP(ry,

THEOREM 2.6. Assume (2.2), (2.3), (2.20) and (2.21), let h,¢ €

L]
f e Lp (). Then the conclusion of theorem 2.4 holds.

Define QA as before and consider the variational inequality

PROOF .
ue€Q .,
(2.22) A
((Tu,u = v)) € (f,u - v) for all v € QA .
Writing

8(x) = ((Yau,w); u solution of (2.22)} C R,

we are reduced to finding a fixed point of the multivalued mapping A + 6(A) in R. The

arguments are rather similar to those in the proof of theorem 2.4, but simpler, and we will

Let us just mention that the convexity of 6(A) follows

not describe them any furhter.

from the fact that since Ya is continuous on the (convex) set of solutions of (2.22),

{Yau; u solution of (2.22)} C w““‘/P"P'(r)

is connected. Q.E.D.

REMARK 2.7. Assume (2.2), (2.3), (2.20) or (2.23), and (2.21), where:

(2.23) for a.e. x, all n,

- . - 1]
121 (A (x,n,8) = A (x,n,8°))(g, =C1) >0

if ¢ # 1z,
Let “A be a solution of (2.22). Then Yauk —>0 in w-(1-1/p),p'(r) ags A > 4+ (3n3
congsequently 6(A) + 0 as A + +®). Indeed, for a subsequence, uy ——>u i ter 2

and Tu, —>g in (w"p(ﬂ))'. Taking v, € O, with v, *u (e.a.

-20-
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e q-vmw-wi

L2

b
¢
b

vy, = sup(u,g - 1)) and replacing in (2.22), we obtain
. lim sup((Tux,ux)) € ((g,u)) .,
and consequently, by the pseudo-monotonicity of T, g = Tu and (( Tux,ux)) + ((Tu,m)).
Take now any v € w"p(n), and v, € QX with vy, + v; replacing again in (2.22), we
deduce
({(Tu,v)) = (£f,v) ,
so that Y u = 0. But by (2.7), Yt e Yu in w'“'”—""p'(r). It thus follows
that, without passing to any subsequence, ’.“x —0.
EXAMPLE 2.8. The assumptions of theorem 2.6 (as well as those of theorem 2.4) are
verified in the linear case
N .
Lu 2 - Z Di(aij(x)DJu) + ao(x)u ’
1,9=1
where aij and a, are in L'(n) and satisfy the uniform ellipticity condition
. ‘ X 2
1,§=1 a,4(x1E.E, > el
’ together with
ao(x) > A,

A a strictly positive constant. Theorem 2,6 thus includes the results of [12,20,2]
referred to in the introduction,
2.5, VARIATIONS

a. Consider the obstacle (0.7), or more generally an obstacle of the form
(2.24) ¥(u) = hix) = (05 (y,w) = ¢7(y w3

w-(1-1/p).p‘

where h € w"‘/P'P(r) and Qt are mappinas from (TY into ¥

assume Ot contimious, compact, vrositive (i.e. Qt(a\ >0 a.,e. on T when a is a

'1-1/b,n

positive element of the dual of W (T}), with an estimate of the forr

e aYs ~a a L, +a

.t

- o




Ll
We look for a solution u of (2,11), where f ¢ Lp () and Q(w) is defined by (2.10),
¥ being now given by (2.24). Then, under the assumptions (2.12)-(2.15), this problem has

a solution when either o(p - 1) <1 or o(p - 1) 21 and a, is sufficiently small.

The proof of theorem 2.4 can be adapted to this situation. One replaces QA by QE'

where Qk is defined for & € w1-1/p,p(r) by
1,p
Q£={vew ()5 Ygv > h = L a.e. on T} ;
: . 1-1/p,p 1.p
: the mapping 6 now operates in W (ry xw (). One also has an analogous result

in the monotone case, i.e., under the assumptions (2.2), (2.3), (2.20) and (2.21}., However

here we are led to impose the strict monotonicity in (2.20) in order to guarantee that §

is convex valued.

b. The method of sections 2.3 and 2,4 can also be applied to the situation where T

is composed of two parts P1 and F2 separated by a third part F3 and one requires

(0.2)-(0.4) on F1, (0.2)-(0.4) with reverse inequality signs on T and the Neumann

2'
boundary condition on Fa- In the language of fluid mechanics, one has a pipe with a semi-

permeable membrane at each extremity:

¢€ianorini problems of this tyre, with obstacles which do not depend on the solution, were

considerad recently hy Kawohl ([13].
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c. As remarked in the introduction, the obstacle (2.9) is not defined for an
; 1 s as ; '
arbitrary w € W 'p(ﬂ). One way of avoiding talking about ¥(w) wunless Lw € Lp () is

described in sections 2.3 and 2.4. Here is another possibility. Write, for w € w1'p(Q),

h = ((Tw,2)) + (£,2),

g(w) =
P(w) = {v ¢ w1’p(ﬁ): Yo > ¥(w) a.e. on T},

and congider the problem of finding u solution of the quasi variational inequality

u e w"p(Q) ’
(2.25) u € P(u) ,

{Ta,u - ) € (f,u - v) for all v e P(u) .
Problems (2.11) and (2.25) are equivalent because, by (2.7), P(w) and Q(w) coincide
when w € w1’p(9) verifies Lw = f, Formulation (2.25) allows a more traditional
approach, by defining (in, say, the nonmonotone case) the variational selection #8(w),
w € W1'p(ﬂ), as the set of all solutions u of the variational inequality

u € P(w),

((Twu,u - v))< (f,u ~v) for all v € P(w) .
The results for (2.11) that we have obtained along these lines are however weaker than
those in sections 2.3 and 2.4. But the ahove approach has pruved useful in other similar
problems.

4, By using in (2.9) the conormal derivative corresponding to the extension mapping
r of example 2.3, one can get the conclusion of theorems 2.4 and 2.6 for a right hand
side ¢ in Hp,(ﬂ). More precisely, for h and ¢ in w"’/p'P(r), f in @p'(Q), the
problem of finding u verifying
wew Py with tue o,
(2.26) u € Q(u) ,
{ ({Tu,m = v)) < {{nf,u - v)) for all v e D{u)

has a snlution when either 1 ¢ p <2 or p 22 and "¢-“Y is sufficiently small. HNnte

that (2.26) can still be shown to be in this mnre general situation equivalent to (0.1)-

(0.4), see [8].

=23~
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e. Coming back to the heat flow problem described in the introduction, we see that
the 31(u,Vu) term represents in our results some cooling effect inside & (e.g.
-2
s1(u,Vu) = -|u|p u). The need for such a term is physically understandable since no

restriction has been imposed on the forcing term sz(x). The case s, 2 0 will be studije”d

elsewhere.

f. We conclude with a regularity result in the case where L 1is of the form

N : i
uz- J Dl(ai(x)IVuIp 2Dlu) + ao(x)llﬂp 4.
i=1

Assume I of class C3, a e w1'“(Q), a_e€ L”(Q), a;(x) and ao(x) 2 A>0,

0
1+ - - ]
ne WVPPry, e wVPPry ana fe w TV/PP(Q). It then follows from proposition

3 in [8] that any solution u of (2.11) satisfies
141 -1 -
e VPP e 2 cpcp,

1+(p~
e ' TPN/PP gy e p<p<2,

where ; and p are given by
~ 3 - 2
(p=1) =p=0=(p=~1)yp-1
c
and where Bq'P(ﬂ), o > 0 different from an integer, 1 < p < ®, 1< g <€ ®, jg the Resov

space defined by interpolation: - °

[a),p

o, w1+(c],n Pan

oy = Piay,
B, (%) = (2, 1+161-0,q

see [18]).
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