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ABSTRACT

The initial=-value problem is studied for evolution equations in Hilbert

where A and B are maximal monotone operators. Existence of a solution is
proved when A is a subgradient and either A 1is strongly-monotone or B is
coercive; existence is established also in the case where A is strongly-
monotone and B is subgradient. Uniqueness is proved when one of A or B
is continuous self-adjoint and the sum is strictly-monotone; examples of non-
uniqueness are given., Applications are indicated for various classes of
degenerate nonlinear partial differential equations or systems of mixed
elliptic-parabolic~pseudoparabolic types and problems with non-local

nonlinearity.
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SIGNIFICANCE AND EXPLANATION
. A variety of models of physical phenomena can be written in a unified way
as
g; Au + Bu 2 £
where A and B are monotone operators between Hilbert spaces. Therefore it
seems convenient to study questions of existence and uniqueness for abstract
equations as the above in view of their range of applications.

We will divide the applications in two categories: problems with local
non-linearities and problems with global non-linearities. The former occur
when at some point of the region where the process occur, the function
describing the process either jumps or degenerates. Typical are the Stefan
problem, diffusion in porous med;a, diffusion in partially saturated porous
media. They include also certain kinds of diffusion in a medium with a
sinqularity due to a crack or fissure.

Problems with global non-linearities are typical of processes where a
threshold (which separates the different aspects of the phenomenon, say for

example elliptic-parabolic) is given through the global measure of the energy

(or the variation of the energy).
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. IMPLICIT DEGENERATE EVOLUTION EQUATIONS AND APPLICATIONS
Emmanuele DiBenedetto and R. E. showalter'
l. Introduction.
Let A and B be maximal monotone operators from a Hilbert space V to its dual
V'. Such operators are in general multi-valued andtheir basic properties will be recalled
below. We shall consider initial-value problems of the form
d
(1.1) ry A(u)) +Bw) > £, u(0) 3 v,
where f € Lz(o,r;v') and v, € V' are given. It is assumed throughout our work
that A is a compact operator from V to v'. 1t applications to partial differential
equations this assumption limits the order of the operator A to be strictly lower than
that of B. Both operators will be required to satisfy boundedness conditions and one or
- the other is assumed to be a subgradient.
ﬁ The objective of this work is to prove existence of a solution of (1.1) when A

and B are possibly degenerate. Observe that we must in general assume some condition of
coercivity on the pair of operators. To see this, we note that if one of them is
identically zero then (1.1) is equivalent to a une-parameter ianily of "stationary"

. problems of the form M(u(t)) 3 F(t) where M is maximal monotone. But if M is, e.g.,
a subgradient in a space of finite dimension, it is surjective only; if it is coercive.
Thus it is appropriate to assume at least one of A or B is coercive. 1In accord with

' this remark our work will proceed as follows. First we replace A by the coercive operator

“r -
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A+ ¢eR, where € >0 and R: Vv + v' is the Riesz isomorphism determined by the scalar
product on V, and we solve the initial-value problem for the "regularized” equation
(1.2) S A+ eRiu) + Blu) ot .

Here we may take € = 1 with no loss of generality and we make no coercivity assumptions
on either A or B. Next we assume B is coercive and let ¢ + 0+ in order to recover
(1.1) with (possibly) degenerate A. Since R is of the same order as B this
reqularization is analogous to the Yoshida approximation. The operator A is assumed to
be a subgradient in the above. Finally, we show the initial value problem can be solved
for (1.2) when B (but not necessrily A) is a subgradient.

We mention some related work on equations of the form in (1.1). The theory of such
implicit evolution equations divides historically into three cases. The first and
certainly the easiest is where B o A-1 is Lipschitz or monotone in some space [6, 23].
The second is that one of the operators is (linear) self-adjoint, and this case includes
the majority of the applications to problems where singular or degenerate behavior arises
due to spatial coefficients or geometry (2, 25]., These situvations are described in the
book (9] to which we refer for details and a very extensive bibliography. The third case
is that wherein both operators are possibly nonlinear. This considerably more difficult
case has been investigated by Grange and Mignot [12) and more recently by Barbu [4]. 1In
both of these studies a compactness assumption similar to ours is made. Our boundedness
assumptions are more restrictive than those in the papers above, but they assume f is
smooth and that both operators are subgradients. By not requiring that 8 be a
subgradient in (1l.1) we obtain a significantly larger class of applications to partial
differential equations, especially to systems.

Our work is organized as follows. 1In Section 2 we recall certain information on
maximal monotone operators and then state our results on the existence of solutions of the
initial-value problems (l.1) and for (l1.2). The proofs are given in Sections 3 and 4.
Section 5 contains elementary examples of how non-uniqueness occurs, and we show there that
uniqueness holds in the situation where one of the operators is self-adjoint. Section 6 is

concerned with the structure and construction of maximal monotone operators between Hilbert

-2




. spaces which characterize certain partial differential equations and associated boundary i
conditions. These operators are used to present in Section 7 a collection of initial-

!
boundary-value problems for partial differential equations which illustrate the g
|

applications of our results to the existence theory of such problems.
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2. Preliminaries and Main Results.

We begin by reviewing information on maximal monotone operators. Refer to [1, 3, 11)
for additional related material and proofs. Then we shall state our existence theorems for
the Cauchy problem (1.1).

Let V be real Hilbert space and A a subset of the product V x V. We regard A
as a function from V to 2V, the set of subsets of V, or as a mvlti-valued mapping or
operator from V 4into V; thus, f € A(u) means {u,f] € A, We define the domain

D(A) = {u € V: Au non-empty}, range Rg(A) = U {Aut u e vV} and inverse

A-1(u) = {veV:iue AlvI}] of A as indicated. The operator A is monotone if

(f1 - fz, u, - uz)v ? 0 whenever [uj,fj] € A for 3 = 1,2. This is equivalent to

(I + M)'l being a contraction for every )\ > 0, We call A maximal monntone if it is
maximal in the sense of inclusion of graphs. Then we have a monotone A maximal monotone
if and only if Rg(I + AA) =V for some (hence, al)l) A > 0., If A 4is maximal monotone
we can define its resolvent JA 2 (1 + XA)-", a contraction defined on all V, and its
Yoshida approximation Ak - X-1(I - JX)' a8 monotone Lipschitz function defined on all V.
For ue V we have AA(“) € A(Jx(u)). We denote weak convergence of X to x by

xn * Xe

Lemma 2.1. Let A be maximal monotone, I[x lea for n>1, Xt % ¥y *y and

n*¥n
lim inf(yn,xn)v < (y,x)v. Then ([x,yl e A. If in addition 1lim lup(yn,xn)v < (y,x)v,
then (y“,xﬂ)v * (y,x)v. We observe that A induces on Lz(O,Tyv) a maximal monotone
operator (denoted also by A) defined by v ¢ A{u) if and only if

v(t) € A(u(t)) for a.e. t e [0,T]).

A special class of maximal monotone operators arises as follows. If ¢:V + (-%,®] jg

a proper, convex and lower semicontinuous function we define the subgradient 3¢C V x V by
W(x) = {2z ¢ V: ply) = ¢(x) > (2,y=x) for all y € V} .

The operator 3 is maximal monotone. Furthermore it is useful to consider the convex

conjugate of ¢ defined by

»
¢ (2) T sup{(z,y), = ¥(y), ye v} . .




The following are equivalent: ze d(x), x¢€ 3¢.(z), and p(x) + ¢"(2) = (x,2)y: thus
"r] * is the inverse of 3. We mention the following chain rule. [1]. Let H‘(o,'r;v)
denote the space of absolutely continuous V-valued functions on [0,T) whose derivatives
belong to L2(0,T:V).
Lemma 2.2. If ue H'(0,TiV), v e L2(0,T:V) and [ul(t),v(t)] € 3y for a.e. t e [0,T],
then the function t * ¢{(u(t)) is absolutely continuous on ([0,T] and

S oetute) = (wuttr) , all we deule))
for a.e. t ¢ [0,T].

There is a version of monotone operator from V to its dual space v* which is
equivalent to the above through the Riesz map R: v + V.. Thus, ACV x v' is monotone
if and only if A = R" 0 A is monotone in V x V and maximal monotone if and only if
Rg(R + A) = v" in addition. We shall use these two equivalent notions interchangeably.
Our applications to partial differential equations will lead to operators on V x v". Also

-

the subgradient is naturally constructed in the W - W duality of a Banach (or

topological vector) space W . Finally we cite the following chain rule.

Lemma 2.3. lLet V and W be locally convex spaces with duals v* and w'. Let
A: V+W be continuous and linear with dual A' : w' e v'. If ¢: W=+ (-2 |is
proper, convex and lower semicontinuous then so also i8 ¢ O A : V + (~»,»), and if ¢ is
continuous at some point of Rg(A) we have [11)
e oM =A oo,

Our results on the existence of solutions of the Cauchy problem (1.1) are stated as
follows.
Theorem 1. Let W be a reflexive Banach space and V a Hilbert space which is dense and
imbedded compactly in W. Denote the injection by i : V + W and the dual (restriction)
operator by 1' s w' * v'. Assume the following:
lA,] The real-valued ¢ is proper, convex and lower semicontinuous on W, continuous at

gome point of V, and 3dp 04i : V + w' is bounded.

-5
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[81] The operator B: V + V is maximal monotone and bounded.

-
Define A= i 0 3/ © i, Then for each given f € LZ(O,T;V.) and [uo,vole A there

exists a triple u € H1(0,T;V), v € H1(0,T;V'), and w ¢ Lz(O,T;V.) such that

(2.1.a) L Rute) + vie)) + wie) = £(8)
(2.1.b) vit) € A(u(t)), wit) € B(ul(t)), a.e. te [0,T] ,
(2.1.¢c) Ru(0) + v(0) = Ruo + v

Theorem 2. In addition to the above, assume
(A, 3 0 i: 12(0,Tv) » t2(0, W)
2 : Ay} 2N 8 bounded

n 2 *
[52) b: L7(0,T;V) » L2(O,T;V ) is bounded and coercive, i.e.,

[ Totercucerae
0

Ll lim ToT - 4o,
>400 2
L?(0,m3v) L7(0,T:v)
(u,v]eB

Then for each given f ¢ L(0,T:v") and vy e Rg(A) there exists a triple

uwe t2(0,75v), ve w'(0,Tsv"), we 12(0,73v") such that

-]
(2.2.a) at vit) + w(t) = f(¢t) ,
(2.2.b) v(t) € Afu(t)), wit) € Blu(t)), a.e. te [0,T) ,
(2.2.¢) v(0) = Yo+

Remarks. From Lemma 2.3 it follows that A = 3(¢|v) where wlv = ¢ 0i is the
restriction of v to V. Since A : V +V  is bounded it follows D(A) = V, hence,
V C D(d) C domiy) C W

and ¥ is continuous on the space V. Also, since y¢{(0) ¢ ® we may assume with no loss
of generality that ¢ (0) € 0 and thus ¢'(z) >0 for all z ¢ V.

From the compactness of 1' B w' » v' it follows A: v + V' is compact, i.e., maps
bounded sets into relatively compact sets.

Since B is bounded and maximal monotone we have D(B) = V. It is important for our
applications that we have made no assumptions which directly relate A and B.

Specifically, we do not compare A(x) and B(x) in angle or in norm.

-6=
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Finally, we give a variation on Theorem 1l in which only the second operator B is a

subgradient. The compactness assumption on A is retained.

Theorem 3. Let the spaces V and W be given as before. Assume the following:

[A3] The operator A: v » V. is maximal monotone with RgLM Cw ana A: v w' is
boundead.

[33] The real-valued Y is proper, convex and lower semicontinuous on V and

B =3p: VvV V* is bounded.

Then for given £ ¢ L2 (O,va.) and [uo,vole A there exists a triple u € H‘(O,T;V),

v e H’(O,T;V'), and w € L2(0,T;v.) satisfying (2.1).
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3. Proofs of Theorem 1 and Theorem 3.

These proofs are very similar; let us consider first the Theorem 1. We formulate

(2.1) in the space V. Set A = R o A, B=R"'oB, etc, and consider the equivalent

equation
(3.1.a) L(ue) + we)) + we) = £e)
(3.1.b) v(t) € AMul(t)), wit) ¢ B(u(t)), a.e. ¢t ¢ [0,T] .

Let A > 0 and consider the approximation of (3.1) by

d -
(3.2.a) 3t (9 (E) + (vy(t)) + By (u,(t)) = £(¢) ,
(3.2.b) vx(t) € A(ux(t)), t e [0,T} .

Since (I + A)'1 and B are both Lipschitz continuous from V to V, (3.2) has a

A

unique absolutely continuous solution “A with “X(O) + vx(O) =u, + Vo Since

(1 + ) isa function, we have ux(O) =y, and vA(O) = vy
We derive a priori estimates on Uy - Take the scalar product in V of (3.2.,a) with
ux(t) and note

(vie) u (e, = v v
Wiela,thy = & A

*
by Lemma 2.2 where v is the conjugate of ¢|v in V. Integrating the resulting

identity gives
Yollu (o) + o (v, (t) <Yllu 2 + o (v)
ey A oy 0
t

+ g (llf(s)llv + IIBA(O)IIV)llu)‘(s)“vds, 0<t<T.

*
Since (s)‘(o)} is bounded by the fact that 0 € D(B}, ¢ » 0 and £ € L2(0,T;V), we have

proved the first part of the following.

Lemma 3.1. The following are bounded independent of A > 0:

(RS e vall ® . ¢
(2) L (0,T:V) L0, W )
1, tu,) , B qu i ,
VA0, mv) AN L0, mv)
(b) hatll A N
Mito,mvy M i2o,mwy




1.2 A g A e e RN R R Y

A gt e e e e e e e L s rame e < o, s v AR ST S AT

*
Proof: The second and third terms of (a) are bounded because the operators A: V + W

ana 3, = @ +m”

the last term in (a) is bounded.

+ V+ V are bounded. Since BA(“X) € B(JA(“A)) and B is bounded,

To obtain (b) we take the scalar product of (3.2.a) by ui(t), note that
(vi(t), ui(t))v >0 by (3.2.b) and monotonicity of A, and thereby obtain

2
lui(t)lv < (Hf(t)ﬂv + IBA(uA(t)HV)Iui(t)HV ’

so we bound the first term in (b). The second follows from (3.2.a).

Note that we have {va} bounded in L2(0,T;Ww') and {Rvi} bounded in

P

L2¢0,7;v"). Since W' is compact in v' it follows from [17, p. 58] that {va} is

(strongly) relatively compact in LZ(O,T:V'). From this observation and Lemma 3.1 it

T e e e o s e

follows we may pass to a subsequence, again denoted by Uy oYy for which we have

{(3.3.a}) “X -, Bk(uk) > w, ui ~u'
(3.3.b) vy + v (strongly), vi ~ v' in L2(0,T;V) B
(3.3.c) ux(t) + u(t) and vx(t) + v(t), all t e [0,T] .

Since uy - Jx(ux) = ABX(“X) + 0 there follows

(3.3.d) JX(UX) ~u in LZ(O.T;V) .

It remains to show that u, v, w satisfy (3.1) and the initial condition. First we
use (3.3.a) and (3.3.b) and Lemma 2.1 to obtain Vv € A(u). Next take the scalar product of

(3.2.a) with any x € V and integrate to get

t

l t
! (ux(t) + v)‘(t),x)v + g (BA(QX(S))'X)VdS = g (f(s),x)vds + (u0 + vo,x)v .

Taking the limit as X + 0 gives (since x is arbitrary)

—— e

...-5.& g A Tt S,

t
ult) + v(t) + [ (w=-flds=u_ + v, 0<t<T,
5 o © Vo

From this identity we obtain (3.1.a) and u(0) + v(0) = uy + vgai  since v(0) € A(u(0))

1

and (1 + A)™ is a function we have u(0) = Uy In order to show w ¢ B(u), and thereby

Je1 te show

finish the proof of Theorem 1, it suffices W lemma
p
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Remark 3.1. From Lemma 2.1 we find that

lim sup (B,(u,),J, (u,) = u) <0,
- APTAT Y

2

A+0 L (0,TiV)

We note further that 1
(BX(uX)' JX(“X)) - (Bk(ul)' JX(UA) - ux) + (BX(“X)'uX)

= -X(Bx(ux). Bx(ux)) + (Bx(u )

A) ey

so it suffices to show

(3.4) lim sup (B, (u,),u, = u) <0 .
a0 A AT T2 ey

By (3.2.a) it follows (3.4) is equivalent to
(3.5) lim inf (u! + v!, u, - uv) >0 .
A+0 A T 206,
Define Y(x) = t@ Ixﬂs + ¢{x), x €V so that 3y =1 + Ip. From (3.2.b) and Lemma

2.2 we obtain

(w (£) + viee),u (o)), = =y (u, (8) + v (¢))

u VAlE ey =k v (9 x ’
and by integrating there follows

* *
(ui + vi. “A) = (uA(T) + VX(T)) -9 (uo + vo) .

t2(0,1:v)

Similarly we have from (3.1.a)
* -
(u' + v',u) = ¢ (u(T) + v(T)) = ¢V (uo + VO) .
L7(0,T;V)
*

By (3.3.c) and weak lower semicontinuity of ¢ we have

* *

Y (ul(T) + v(T)) € lim inf (ux(T) + VX(T)) .

A+0

and our preceding calculations show this ig equivalent to (3.5).

(B ‘“x" Jx(“x” 2 * (w,u) .

A 13(0,7:v) r2(0,11v)

If we also have B (or B) strongly monotone then we can take the limit in the estimate

10 =
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Remark 3.2. It is clear that we actually have v(t) € Alu{t)) for every t ¢ [0,T).

(B, {u,) - w, Jx(ux) - u) > cly {u,) - uﬂz

ATTA 2 AT 2

L*(0,T:V) L7(0,T:V)

to conclude {JA(“X} and {ux} converge strongly to u in L2(0,T;V).

The proof of Theorem 3 closely follows the preceding pattern. That is, formulate
(2.1) as the equivalent initial value problem for (3.1) and approximate this by (3.2) with
ux(O) + vx(O) = u, + Ys for each X > 0.

To derive a priori bounds we take the scalar product of (3.2.a) with ui(t) and
integrate to obtain

T T
2
(3.6) [ g+ ¥y (uy (T)) < 9y (ug) + { (£(e),u5(e)) ar .

0 Av
Here wk is the Yoshida approximation of . We may assume y is non-negative and the
same holds for wx, so we have the first part of the following.

Lemma 5.1. The following are bounded independent of XA > 0:

{a) lluxll - . Ilu}" I , "Rv/\ L .
L (0,T;V) L7 (0,T:V) L (0,T:;W )
I, (a )1 B B, (u ) - B
A L0, vy A0, iv)
(b) AL , “viﬂ .
L (0,T:V) L (0,T;V)

Proof: The bound on the first two terms in (a) follow from (3.6) and the remaining terms
in (a) are bounded by [A3] and [53]. Next take the scalar product of (3.2.a) with vi(t)
and obtain (b) as was done in Lemma 3.1.

We may pass to a subsequence satisfying (3.3) and we obtain as in Theorem 1 the triple
u, v, w satisfying the equation (3.1.,a) and initial condition and v(t) € Au(t),
t € [0,T]. It remains to show w € B{u) and this is equivalent to showing (c.f. (3.5))

3 3 . L] L)
{(3.7) lim inf (uA + VA'UA) 2 (v',u) 2 .

A0 £2(0,T:v) 0,1y




Since ui € I.z(o,'r;V) we may integrate by parts to compute

2 2
(u} + vl,u,) = ()00, (1) - 1 1f)

={v, ,ul) + (v, (T),u, (T)), = (v,,u )
AT Lz(o’,m” A A \'4 0’0

and similarly, since u' € LZ(O;TIV)a

(' + v, u) = (g0 - nuid)
(3.8.b) L (0, T17)

= {v,u") + Av(T),u(T)), = (v, ,u ). .
t3(0,mv) v.ooerew

Finally we observe that (3.7) follows immediately from (3.3) and (3.8).




4. Proof of Theorem 2.

Choose u, € A"(vo). For each A > 0 let u,,v, € H‘(O,T:V), w, € LZ(O,T;V)

satisfy
L] . =
(4.1.a) Xux(t) + vx(t) + “X(t) f(e) ,
{4.1.D) vx(t) € A(“A(t))' wx(t) € B(ux(t)), a.e. t € (0,7 ,
(4.1.¢c) Aux(o) + vX(D) - Auo + vo *
The problem (4.1) has such a solution by Theorem 1, and our plan is to show that we may g
&
take the limit as A * 0 in (4.1) to obtain a solution u,w € LZ(O,T)V), v e H'(O,Trv) of
(4.2.a) vi(t) + wit) = £f(t) ,
(4.2.b) vit) € Alu(t)), wit) € B(u(t)), a.e. t e [0,T],
(4.2.¢) vi0) = v, .
0 4
- H
with our notation A =R LS A, etc., (4.2) is equivalent to (2.2). E
We proceed to derive a priori estimates. Consider first the initial condition. Since !
(AT + A)-1 is a function it follows from (4.1.c) that '
(4.3) ux(O) = u,, vx(o) = v , A>0.,
Lemma 4.1. The following are bounded independent of A > 0 : ;
1
(a) t, ¥, TN )
L7(0,T;V) L (0,T:V)
1
(b) hw, . MRv. A . -
A2 (0,mv) M 2e0,mw) i

Proof: Take the scalar product of (4.1.a) with ux(t) and integrate to obtain

t
2 *
/2, (831 +¢ (v () + [ (w ,u)
(4.4) ATV A o AMAV
t
| <2t votvy 4 [ tfuy,, OctsT
ov 0 o av! *

H ‘! We drop the second (non-negative) term in (4.4) and note by monotonicity of B that

(wx, u)‘)v > (E,u)‘)V for some £ € B(0). Thus (4.4) gives
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[ tw a0y € UEN fu, | +c,
o AV t?t0,mv) 120, 15v)

and the coercivity of B implies the boundedness of the first term in (a). The second now

follows from (4.4) and now part (b) follows from our assumptions Ay and By.

Lemma 4.2. The following are bounded independent of A > 0:

(RT3 ’ A A .
Ae20,mv) M 20,mv)

Proof: Take the scalar product of (4.1.a) with vi(t). Since (ui(t), vi(t))v >0 by
monotonicity of A we obtain
nvi(t)ll‘z, < (llf(t)ﬂv + ll'a)‘(t)Ilv)lv')‘(t:)lv
from which the first bound is immediate. To obtain the second we take the scalar-product
of (4.1.a) with ui(t) and drop the non~negative term (ui(t),vi(t))v. This gives
Anui(t)ﬂé S RE(E)N, + Bw, (£} ) Tu) (R) 1,
and hence the desired bound.

We have now shown that {va} is bounded in L2(0,T/w") and that {Rvi} is bounded
in r2¢0,7;v"). Stnce W' is compact in v" it follows that {va) is strongly compact
in LZ(O,T;V.). From this observation, Lemma 4.1, and Lemma 4.2 it follows we may pass to
a subsequence (which we denote again by {uk}' {vx}, {VA}) for which in L2(0,T:V) we
have

uy - u, vy

vA * v, vi -~ v,

- w,

Note that X“A + 0 and it follows Aui « 0 by standard arguments. Furthermore we may
assume v, (t) * v(t) in V for all t € [0,T] by equi-continuity of (vx}, and
similarly Aux(t) + 0 in Vv for all t € {0,T].

It remains to show that the triple u, v, w obtained above constitutes a sclution of

/
(4.2). Let x €V, take the scalar product of x with (4.1.a) and integrate to obtain

-lg-




t t
Oy (8) + vy (8),x), + (f, (wy(8),x) ds = g (£(s),x) ds + Dug + vy X,

Since weak convergence in LZ(O,T;V) implies weak convergence in LZ(O,t:V{. it follows by
letting A + 0 that

t

N t
i . (vie) ), + g (w(s),x) ds = g (£(8),x) ds + v, xevVv, tel0,T .

That is,

t t
vit) + [ wis)das = [ f(s)as + v., a .e. t e [0,T],
0 0

0

and this implies (4.2.a) and (4.2.c). From Lemma 2.1 there follows v ¢ A{u) so it

remains only to establish w € B(u). For this it suffices by Lemma 2.1 to show

(4.4) lim sup ("A'“A) 2 € (w,u) 2 .
A+0 L°(0,7;V) L°(0,T:V)

In order to prove (4.4) we first note by (4.1.a) and (4.2.a) that it is equivalent to

(4.5) lim inf (Au! + v!,u ) 2 (v',u)
A>0 YA 20,1 t20, 7:v)

- *
. Since ux(t) € A 1(v)‘(t)) = 3¢ (vx(t)) a.e, on (0,T], where w' is the conjugate of

¢[v, we obtain from Lemma 2.2

’ \ q 2 *
N Gujle) + vile)ute))y = 2= {O/2) I, (a1 + ¢ (v, (e}

s0 we integrate and obtain

2 * 2 .
{(Au}! + vi,u,) = (A/2)I (TIR + ¢ (v, (T)) = (A/2)hu do = ¢ (v,)
A APTA L2(0,T;V) A v A n'v 0

> ¢ 52 *
L4 (VX(T)) - ()\/Z)Iu0 v- ¥ (vo) .

Similarly we compute

-1G=
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(v',u) 2 =9 (V(T)) = ¢ (vo) .
L (o,?’v)

Since {v)‘} are equi-uniformly~continuous we have vx(t) + v(t) at every t € [0,T], so

the lower semicontinuity of v' gives

*
lim inf w.(vx('!')) >0 (v(T)) .
A+0

In view of the preceding computations this is exactly (4.5),

——
- o v
P———
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5. Remarks on !Iniqueness.

We first present an example which shows that gross non-uniqueness of solutions of
{1.1) can occur, even if both operators are strongly monotone subgradients. Moreover the
non-uniqueness occurs in each term of the triple, u, v, w, not just in the latter two
terms selected, respectively, from A(u) and B(u). Next we shall show that unigueness
does hold for (1.1) when at least one of the operators is continuous, linear and symmetric
and the sum of the operators is strictly monotone. Our last example shows that symmetry of
the linear operator is essential.

Example 1. Let V = W = R, the space of real numbers, and define

Als) = B(a) = g + H(s-1),

{1 , r>l
where H(r) = fo,11 , r=0,
.90 ' r <1

denotes the Heaviside function and f ¥ 0. Consider the initial-value problem (1.1} which

takes the form

{ wvige) + wir) = 0, v(0) = 2
(s.1)
I wv(t) = ul(t) € H(ult) - 1), wit) - u(t) € H(u(t) -~ 1) .

Let a be any maximal monotoue graph or eontinuous function from R to R such that

als) = s for s ¢ [1,2) and a(s) € [1,2) for s € [1,2). Then, if v is a solution
of
(5.2) vi(t) +# glvit)) =0, t 20, v(0)=2,

it follows that with u(t) = A (v(t)) and w(t) = -v'(t) we have a solution of (5.1).
This procedure yields an abhundance of solutions.

We display some special cases of the above. Pick ¢ € ﬂ@,11 and define g, to ro
that maximal monotone grach such that g (t) = {c-1}, te(1,2), and g (t) = {t},

t £ 11,2). The corresponding solution v, of (5.2) is aiven by

v (t) =2 - t/e, 0<CtCe, v ()= oS, e

-17=




With the two functions u, and w. given by

u(t) =1, w(t) =1/c for 0 < t £ c
< c

w(t) =w(t) =% eac,
[ C

this provides a continuum of solutions of (5.1).

We can give the following elementary sufficient conditions for uniqueness to hold for
(1.1) or, equivalently, for (4.2).
Theorem 4. Let A and B be monotone operators on a Hilbert space V. Suppose A + B i
is strictly monotone and that one of A or B is continuous, linear and symmetric. Then
for each function € : (0,T) +V and Vg€ V there is at most one solution wu, v, w of
(4.2).
Proof: Suppose A is continuous, linear and symmetric. For j = 1,2 let uj, Vj, wj be
a solution of (4.2). Take the scalar product of the difference of (4.2.a) with uy = u,
to obtain

4
A —_— - - - - =
(L) 3¢ (Alu,(x) uz(t)).u1(t) u, (t)), + (w,(¢) wz(t),u1(t) uz(t))v 0.
Integrating this identity and using (4.2.c) gives

M, - “Z)Vds =0, 0<t<T

t
U - - -
(4 (Al () = u (e)) ule) - uy(e)), +g (wy = w,.u,

and this implies
Au1(t) = Auz(t), (w1(t) - wztt), u1(t) - uz(t))v =0 a.e. t e [0,T).
Since A + B is strictly monotone we have u, (t) = uy{t), hence
v‘(t) = Au,(t) = Auz(t) = vz(t), and, by (4.1.a), wq(t) = wy(t) a.e. on [0,T).
Suppose now B is continuous linear and symmetric., Starting with two solutions as
above we integrate the corresponding equations {(4.2.a) to obtain
t

+ [ £, §=1,2

(5.3) v (e) + BB (t)) = v
3 3 LU
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where Sj(t) H uj. Taking the difference of (5.3) for j = 1,2, then scalar-product

f
J
0
with 6; - 65 and integrating gives us

(5.4) gt vy = vy, 81 = 850, + (K )(BIO () = 0,(¢)), B,(t) - 8,(t)), =0 .
Since vj(t) € A(G;(t)) a.e., each term is non-negative. It follows that

8(91(t) - ez(t)) =0 on [0,T] and thus from (5.4) that

(v,(t) - vz(t), u‘(t) - uz(t”v =N a.e. t € [0,T) ,
80 the desired results follows by strict monotonicity of A + B,
Finally we cite an example to show that the symmetry condition cannot be eliminated
from Theorem 4.
Examglé 2., Let H1(0,1) be the Sobolev space of those absolutely continuous functions on
the interval (0,1) whose first derivatives belong to L2(0,1); set
V= {ve H1(0,1) : v(1) = 0} and note that V C L2(0,1) C v*., Dpefine A : v + v' by
A(v) = =v'. Clearly A is linear and we have
1

(VI(v) = =f vivas = (p)lvior]? 50
0

80 A is monotone. Let 8 be given by

r/2, r<f0 or ro>1,
B(r) =
\K r2/2, ACr<l,
N *
and define 0 : v » Vv by
1
BluYtv) = [ atu'(s))v'(s)ds, u,v LV,
0

It is easy to check that B is a strictly monotone subaradient on V.

-0
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Consider the Cauchy problem
(5.5) & (Ata)) + By = 0,  Au(0) = -1
with the above operators. A solution u of (5.5) is a weak solution of the initial-

boundary-~value problem

(5.6.a) (-ux)t - (B(ux))x =0, 0 ¢<x< 1, 0<¢t,
{5.6.b) ux(o,t) = u(1,t) =0 ,
(5.6.c) -ux(x,O) = =1

where the subscripts denote partial derivatives. Consider the following two functions:

N (xz + tz)/zt -1, 0<x<t<1,
u (x,t) =
x~-1, 0 ¢t <x<t,
(2) t/2 -1, b<x<t/2<¢y,
u (x,t) =
x=-1, 0<t/2<¢cx<1, ¢£<1t .,

(1 (2)

It is a straightforward computation to check that both u and u are solutions of
(5.6), hence, both are solutions of (5.5). Note that the only condition of Theorem 4 not
met in this example is the symmetry of A. It shows also that B being a subgradient is

not a satisfactory substitute for B to be continuous and self-adjoint.

=20~
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6. Construction of Differential Operators.

We have been discussing evolution equations which contain a pair of nonlinear
operators from a Hilbert space V ¢to its dual v'. In our applications the generalired
solutions obtained in our theorems may satisfy natural or variational boundary conditions
(e.g., of Neumann type) which are implicit in the functional identity
(6.1) % Alu(t)) + Blu(e)) f£(t)
in v'. Such boundary conditions are classically recovered by Green's formula so we shall
describe an appropriate extension of this formula which requires a minimum of regularity of
the generalized solution. The objective is to resolve each term in (6.1) into two parts, a
differential operator in distributions over a region {, the formal operator, and a
constraint on the boundary [, the boundary operator. Then we briefly recall basic facts
on Sobolev spaces and construct a rather general nonlinear operator B which will be used
in the next section to illustrate our Theorems in some examples of initial-boundary-value
problems.

Assume we are given a linear surject;on Y : V+T, called a "trace" operator, which
is a strict homomorphism onto its range T, called "boundary values” of V. Let V, be
the kernel of Y and note that the dual operator, Y.(g) = goO Y, is an isomorphism of
the dual space 7 onto the annihilator Vo in v, Suppose there is given a continuous
gseminorm |°*] on V for which Vo is dense in the seminorm space U = {v,l«1}. Then we
naturally identify u* simultaneocusly as a subspace of v* and of V;.

*

We resolve the operator A: V *> 2v into a formal part in V_ and a boundary part

0
in T. For each u ¢ D[A] set A&u)’ {Flvo : Fe A(u)}, the set of restrictions to Vo
of functlona:s in A(u). Then set D(Aoj 2 {ue v Ao(u) n U' * ¢} and define

AO s v e 2Y by Ao(u) = Aytw) N u*. That is, A, is the set of those functionals in
Ag(u) which have (unique) continuous extensions in u" cv'. Nowlet u e D[Aol and

*
F e A(u) with F_ = FIV € U, hence, Fy € Ag(u). Then in Vo we have

0

O *
F - Fo = Y'(q) for a unique g € T', so we can define BA(u) cr to be the set of
«
all such g. Thus, for each F € A(u) for which FO = F|v € U , there is a unique
0

g€ " for which
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F(v) = Fo(v) + glyv), ve VvV
and we indicate this by
(6.2 Atw) = Ajtw) + ¥ (3,0a)),  uwe DAY .
Ir. our applications V; is a space of distributions over @ and T is the space of
boundary values of the Sobolev space V, so (6.2) is the abstract Green's formula for the
operator A.
In many examples the solutions of (6.1) will have the additional regqularity properties

described below.

-
Lemma 6.1. Let v € H‘(O,T;v ) with vi(t) ¢ A(u(t)) a.e. on [0,T], and set

vott) = v(t)lV for each ¢t € [0,T). Let vo(t) e U" and define g(t) € ™ by
0
vit) = vo(t) + Y (g(t)) for te [0,7). 1f va(e) ev’ a.e.on [0,T] then
1 *
ge H (0,7;5T ) and
*
vi(t) = v&(t) + Y (g'(t})), a.e. t € (0O,T] .

The preceding situation occurs, for example, in the case of linear symmetric A  and in

certain other special cases (2, 92, 17, 25},
>

Suppose the operator A is given as above and let a second operator B: Vv » 2V be

given. Resolve it likewise into two parts,
-
(6.3) B(u) = Bo(u) + v (3gluw)), u e D[BO] .
-

Let there be given f,e¢ L2(0,T:u"), gge L2(0, 7)), vye RgiAg) ana g ¢ ™ with
Yo + Y.(go) € Rq[&O]. Congider a solution of the Cauchy problem

4 .

o Alule)) + Blult)) 5 £4(t) + ¥ (gyle)), a.e. t e [0,T] ,

A(u(0)) > v

*
0*7(90),

that is, a triple u, v, w for which

I[ vit) € Afult)), wit) € Blult)) ,
H »
(6.4) { viiE) + wlt) = f(E) + ¥ (g(t)), a.e. te (0,7,
t -
U v(0) = v 4y (a,) .

By restricting the above functionals to V, we obtain




( vo(t) € Ajfult)), w (t) € Bo(u(t)) ,

*

(6.5) vb(t) + wo(t) = fo(t) in V a.e. t € (0,T) ,

o’

vo(O) = Y

If Lemma 6.1 applies then we obtain wo(t) € U' and the identities (6.2) and (6.3) give

rqA(t) € aA(u(m, qu € BB(u(t))

(6.6) iqk(t) +gg(t) = g(8) in T S ace. te (0,7,

gA(O) =9,

Thus (6.4) implies (6.5) and, in the situation of Lemma 6.1, also (6.6), so we call a
solution of (6.4) a weak solution of the pair (6.5), (6.6). The first will give a partial
differential equation and the second yields variational boundary conditions in our
examples.

Let § be a bounded open set in R® which lies locally on one side of its smooth

boundary T. H’(Q) is the space of functions ¢ in Lz(ﬂ) for which each of the partial

-

3 ;
derivatives Dj¢ = 5&- belongs to LZ(Q), 1 <€ j € n. Letting Dy denote the identity on
3
1
Lz(ﬂ), we can express the norm on H (R) by

n 1
el ;=] upa®, )72,
H () j=0 I 1@

We shall let V be a closed subspace of H’(ﬂ) containing c:(Q) and let Yy : V + Lz(P)
be the indicated restriction to V of the trace map [19]. We let T be the range of Y

1
{a subspace of l«l/2 (T')) and denote the kernel by V,k = H;(Q). Since T is smooth there

0
is a unit outward normal vector nis) = [n,(s),...,nn(s)] at each point s e I'. Note that
the test functions C:(Q) are dense in Vg, so the dual V; is the space of (first order)
distributions on {. We refer to [19] for information on these Sobolev spaces.
Specifically, we shall use the trace operator between Sobolev spaces of fractional order.
*

We shall construct an operator B:v-~ 2v which will occur in many of our

examples. For each integer k, -1 € k € n, let there be given a continuous, convex

function wk : R + R whose subgradient, Bk =z a¢k, satisfies

-23-
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(6.7) lwl € CCIsl + %) 4if chk(l), s €R, ~1<k<n,
where C 1is some large constant. Then define V¢ : V + R by

n

y(u) = I [ ¥ (D utx))ax + [ ¢ (y(u(s)))ds, uev.
k k -1

k=0 & r
From the estimates (6.7) it follows that y 1is a sum of continuous convex functions so we
can compute its subgradient term~by-term. Recall that the subgradient F of the convex
function v — [ Wk(V)dx at w e Lz(ﬂ) is determined by F(x) e B (w(x)), a.e. xe Q.
Since Dk : V> Lz(ﬂ) is continuous lineax, the subgradient of the convex function

»
v—+ [ ¢ (Dvidx at ue V is givenby {D.F : Fe B (D u) a.e.}. See {11, pp. 26-28]
o k' k )3 | 2

and [1, p. 47) for proofs of these facts. These observations show that the subgradient of

¥y is

n * -
(6.8) B(u) =3y(u) = ] DB (Du)+7vyB_(yul, uev.,
k=0 k"k Tk 1

To be precise, we have F ¢ 8{u) 1if and only if there exists fk € Bk(Dku) in Lzm),

0<k<n, and f__ ¢ 8_1(yu) in Lz(l‘) for which

1

n
F(v) = [ ] £ (0D

vixiax + [ £_ (s)v(s)ds, ve V.
2 k=0

k r
By restricting the above to v € V0 - H;(Q) we see the formal part is the distribution

L]

n
=-1 D e eV,

0 k4

Fi

v

We denote this by the equality (of sets)

n
By(u) = ~ ] D, B8, (D, u) + B (u) .
k=1

B an‘fy,’
E TS

Wy
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Let's interpret (6.3) with U = Lz(ﬂ). First, if Dkfk €U for 1< k< n, then by the

classical Green's theorem we have from above

n
F(v) =Fl_(v) = [ {] £(s)n(s) + £ (s)lvislas, vev.
Yo R -1

Thus u ¢ D(B) and we have shown

n
k§1 g0+ £, €3 (u with £ € B (D) .

k

) That is, when the terms are as regqular as indicated we have

(6.10) aglu) = E Bk(Dku)nk + 8w .

k=1
} . Furthermore, BB (u) is defined without these regularity assumptions on tre individual
termg; it is sufficient to have F|v0e U.. Finally, we note that from (6.7) it follows
that £ satisfies the assumptions [31] of Theorem 1 and [le of Theorem 3. It is also
bounded from L2(0,T;v) to L2(0,T;V") and it will satisfy (B,] of Theorem 2 if, in
. addition there is a pair of numbers K, ¢ > 0 such that ‘
¥ (s) 2 clsl2 -X, s8€ R, 1<k<€n
and one of the following:

(6.11) (a) the estimate holds for k = 0, or

(b) the estimate holds for k = -1, or

(¢} v €V and v = constant imply v = 0 .

From (6.11) we can show that

2
Yiv) > ci'v"v -K, , Ve VvV,

1

"
— .
T o e

and this implies the coercivity condition in 18,1,
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7. Examples of Partial Differential Equations.

We shall describe some examples of initial-boundary-value problems for partial
differential equations to illustrate the applications of our results. These examples were
chosen merely to suagest a variety of problems that can be resolved by our Theorems, and
they are not intended to be best possible in any sense.

(a). Elliptic-Parabolic Equations. For k = 0 and -1 , let ¢k : R+ R be convex and

} continuous with gubgradient, ak H Bck, satisfying

lwl € clls]l + 1) if we dk(S)' s €R. !

¢

set w=HU(V,Hhe<rc1, va= #'(2), and note that V + W is compact and
| Y : W= L2(F) is continuous {19] . Thus we can define by

Q

i (v) = [ ¥otvlxdax + [ ¢_ (y(v(s)))ds, vew
. T
a continuous and convex function ¥ : W + R with subgradient
L]

(u) = 3¢ (u) = as(u) + ¥ (a_ (yu))

bounded from W to w. That is, F € (u) 4if and only if there exist f_ ¢ ao(u) in

0

Lz(ﬂ) and f_1 € a-1(Y(u)) in LZ(T) for which

(7.1) Fiv) = [ g (0vixiax + [ £ (s)vis)as, vevV,
a r

s0 the formal and boundary parts of A are given, respectively, by

(7.2) Ao(u) - ao(u), BA(u) = 0_1(Yu) .
, From Theorem 2 we obtain the existence of a weak solution of the initial-boundary-value
J

problem
i ] 2 -1
' 3T Ao(u) + Bo(u) 2 £, in L7(0,T:H (R)),

Aou(O) 3 Vo o
(7.3) q

-
%E ptu) + 3 (w > 9 in Lz(O,T;H 2 rn»,

-

. ar—
N AL 3
. gt ~

GAU(O) 3 b0 .

This is made precise in the form (6.5) and (6.6) where the operators are specified in

1 \
y

(6.9), (6.10) and (7.2).
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Remarks, By our choice of V = H’(ﬂ), all boundary conditions in (7.3) are of variational
type. Dirichlet-type constraints are obtained by taking subspaces of H’(Q).
We require that f, and g, be square-summable with values in H-1(Q) and
H b& (I'), respectively, and we assume (6.11) to obtain coercivity of B. The boundedness

assumptions on ak (k = 0,~1) can be relaxed somewhat by using embedding theorems, e.q.,
of W into LP(R).

There is no bound on the degeneracy permitted in the operator A; we include even the
(uninteresting) elliptic case A Z 0. The case of Ay = 0 leads to an evolution on the

boundary subject to an elliptic equation in the interior: such problems arise from

diffusion in a medium bounded by material of markedly lower diffusivity [25).

The classical porous-media~equation and the weak form of the two-phase Stefan free-

boundary problem are included in {7.3). 1In the latter, the enthalpy is given by
ao(s) = (1 + cH(s))s + LH(8) where L > 0 1is the latent heat of fusion and H(+*) is the
Heaviside function [14, 16]. Such problems arise in welding with the nonlinear term
Bo(u) representing a source of heat due to electrical resistance.
Note that each solution of (5.1) is also a (spatially independent) solution of (7.3)

so there is much non-uniqueness in (7.3).

{b) Pseudo-parabolic Equations. Here we set V = H;(Q). so T = {0} and all houndary

conditions are of Dirichlet type. The operator A is given as above by (7.2); the

! operator B is also given as before but we shall only assume (6.7), not (6.11)., On the

—

space V we take the (equivalent) scalar product and corresponding Riesz map ‘
'i:
i 1 [ n
‘ 3 Ru(v) = [ ] D ulx)d vix)dx, u,ve v,
. k k
! Q k=1
'
3
! T2 2 -1 1
so we have R = =A_ = - ' DU, Aassume f_ ¢ L°(0,T:H (D)) and v ¢ a,(u ), u, ¢ H (Q)
n k=1 n 0 0" 0 0 0

are given. Then from either Theorem 1 or from Theorem 3 we nhtain existence of a solution

- .
s i agls

TSR - e Yok

of the problem
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( u € H‘(OIT’H;‘Q))I u(0) = uo []

1 -
ve H(0,T:H Hﬂ)), v(0) Vg

(7.4) < w e t20,mm @)

9
Y (v(t) - AnU(t)) + wit) = fo(t) ’

vi(t) € Ao(u(t)), w(t) e Bo(u(t)) .

The operators Ao and By are given by (7.2) and (6.9) respectively.

Remarks. The partial differential equation in (7.4) is of the form of a nonlinear
parabolic plus the term %: Anu(x,t). Such equations are known to arise in various
diffusion problems and are called g-eudoggzabolic [9, 15, 28]). Similar problems with
variational boundary conditions can be considered; we obtain weak solutions in the form
(6.4). However, since Rg(Ao + R) = H-‘(Q), we cannot use Len;a 6.1, in general, to
deduce (6.6). This situation occurs even in the linear case (26]).

The operator -An in (7.4) can be replaced by the Riesz operator of any equivalent
scalar product on H;(Q). This trivial observation is useful in introducing elliptic
linear operators in its place.

We have not made use of the fact that only one of the operators A,B need be a
subgradient. 1In particular, we are free to add toone of A or B any linear combination
of first order derivatives. (See Example (d) below.)

Non-uniqueness of solutions of (7.4) follows from that of solutions of (S5.t1).

In the preceding examples the nonlinearity arises from the local dependence on the
solution, e.g., from nonlinear functions of the values of u or Vu at each point of Q.
We next display examples of global nonlinearity arising from the "total energy” or the

“total flux" in the system. The following preliminary result will be useful.

Lemma 7.1. Let a{e¢,*) and b(e,*) be continuous, bilinear, symmetric and nonnegative

real-valued functions on the Hilbert space V. Then for a,B ¢ R, the function
¢(u) = Vhmax{a(u,u) + a,b(u,u) + 8), uev

is convex, continuous and its subgradient is given by
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{a(w)} if a(u,u) + a > b(u,u) + 8
dp(u) = {(aa + (1=2)BY(u), 0 € A € 1} if a(u,u) + a = b(u,u) + B
{B(w)}, if a(u,u) + a < b{u,u) + B

where Au(v) = a(u,v), Bu(v) = blu,v), ve V,
Proof: We need only to compute 3dy(u). For the first and last cases we compute the
Gateaux derivative 1lim {p(u + tv) - p(u))/t} to obtain the desired results. Now assume
>
a(u,u) + a= b(u,u)t-boa. An easy computation gives
£ (plurty) - p(u) = max{atu,v) + § a(v,v),b(u,v) + £ blv,v))

so we have the equivalence of f € d¢(u),

£v) € t Nelurtw) - o(u)), veV, t>0,
and of

f(v) < max{a(u,v),b{u,v}, ve v,

This is equivalent to £ = XAu + (1 = A)Bu for some X, 0 < ) < 1,
(c) Energy~Dependent Elliptic-Parabolic Equation. We shall use Theorem 2 with the
operator B given by (6.8), so we assume (6.7) and (6.11). Choose V = H’(m so the

1
space of boundary values is T = H/2 (I'Ys Define on W = Lz(m the function

e(u) =Yhmax{1, [ lux) 1 %ax},  uwew.
Q

The subgradient A = 3¢ is given by Lemma 7.1 and we have A = Ay = Ao, Rq(A) - Lz(ﬂ).

-1
Finally, let voe L2(@, £, e L2(0,m:z2(on, g, ¢ t2c0,mim 2(I')) be given and define

0 0

£(0)(v) = [ £o(x,0)vix)dx + go(e)lyv), ve V.
Q

Then we ohtain a weak solution of

%{ +Bglu) 3 £, in L20,mn " @)
(7.5) vix,0) = voix) in 122
-1
as(u) 3 9, in Lz(O,'r:H /2(1‘))

where v is determined by
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{0}, i£ f talax < 1,
2
veE {xu:0< <1} if f |u|2dx =1,
Q
2
{u}, it [ lulfax > 1.
Q

Thug, the type of the equation is eithex elliptic (with parameter t) or parabolic and

depends on the total energy f |u|2dx.
Q

(d) A Flux-Dependent Equation. Take V = H;(Q), W = Lz(ﬂ) and T = {0}. Let the convex

function ¢, and its bounded subgradient a = 3¢

a 0 be given as above in (a), and define

A= %y in Lz(Q); cf. (7.2), Denoting the gradient of u by 3u, we define the

continuous convex

Y(u) = b@max{N, f Ieu(x)lzdx}, uev.,
]

Let b ¢ R® and define B: v+ 2 by

B »
B(u) = b » Yu + 3P(u) .
Note that B is maximal monotone, bounded and coercive. Let Vg € Rg(A) and

fo € LZ(O,T;H-1(Q)). From Theorem 2 we ohtain existence of a solution of the problem

(ue 20, men) @), v e w0, m T @), w e Lio,mm T (@)

! - -~ -
e Y- x(f qu!zdx)Anu = f
Q

(7.6) it 0

vix,t) € oo(u(x,t), vi{x,0) = vo(x)

where the maximal monotone X : R+ R is given by

({0} , sc<n,

K(s) = ﬁ 10,11, s=N,
i1, s>N.

Remarks. In the region where f Ieulzdx < N the equation in (7.6) is a conservation law

0
of the form
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3v - -~
. 7.7 —
1 ( ) 3t + b Vglv) 3 fo
where the maximal monotone g : R+ R is the inverse to ao. Thus (7.6) suggests a
. penalty method [18] to approximate solutions of (7.7). We shall develop these observations
elsewhere.

In order to consider (7.6) in the form (6.1) it is essential that B is not required

to be a subgradient.

1 (e) Elliptic-Parabolic Systems. Our final example consists of a pair of equations of the
type given above in (a) that are (nonlinearly) coupled. For i= 0,1 and k = 0,-1, let
v; : R* R be convex and continuous with subgradient, ai =z Svi,
(7.8) lwl € C(ls| + 1) for we a:(s), 8 € R

satisfying

On the product space W = HI(Q) x Hr(Q),t@< r < 1, we have the continuous trace operator

! Y([u‘,uzl) = [Y(u1),Y(u2)] which maps W into L2(P) x LZ(F). Thus we define by

eliwvitenas, vae v WP ew,

[

a continuous and convex function whoge subgradient is given by
1,1 * 1 1 2 * 2
A(u) = d¢(u) = [ao(u ) + ¥ (3_1(Y(u M), a;(u ) + Y (031(Y(u w1,
u = [u1,u2] € W .

w
The operator A : W *+ 2 is bounded; its formal and boundary parts are given,

j respectively, by (see (7.2))
* 1, 1 2,2 _ 1 1 2 2
(7.9} Aglu) = [aptul), ag(u™)), BA(u) = la_y(ylu)), a_ (Y(u™))] .
1 1
" Hereafter we restrict Y to the product space V Z H (Q) x H (2), Assume we are given a
‘ ' set of continuous and convex functions w: : R* R for i=1,2, -1< %k < n, whose
‘ ! subgradients Bi = Bw: all satisfy the estimate (6.7). For i = 1,2 we define

{ wi s H1(ﬂ) + R as in Section 6; its subgradient is then given by (see (6.8))

. n o,
Bwhy = ayteahy = | o8l
k=0

. .
b e vl o, wte wla




e

E

The formal and boundary parts of B! are given by (6.9) and (6.10) for each of i = 1,2,
Thus we have two pairs of operators similar to the pair in Example (a). The coupling of
the corresponding equations will be attained by a maximal monotone graph u : R + 2R which
is bounded, i.e., (7.8) holds for w ¢ u(s). Then we define a maximal monotone operator
M on Rx R by
Mils;8,)) = {{w,=w] : v ¢ uls, - 8}, (s,8,] e Rx R .
This operator M induces a corresponding operator on Lz(ﬂ) x Lzlﬂ), hence, from V
into v%, which we also denote by M. Finally we define
B(lag,u)0) = 18'(u), B2uy)l + My uy),  lugiugde v
This B 4is the sum of maximal monotone operators, each of which is defined on all of V,
so B is maximal monotone. Similarly B is bounded, and we note that B is coercive if
both of 81 and 82 are coercive.
Assume that we are given the following data:

- -1
£l e @, o e ko2, 1e012,

0

1 2 1 2
[Vo.vb] € Rg(Ao), (v_1,v_1] € Rg(aA) .

If the functions {ei : =1 € k €< n} satisfy (6.11) for both i = 1 and i = 2, then from

Theorem 2 it follows there exists a weak solution of the system

(7.10)<

3

(3

3
ot

2
it

a;(uitx,O)) E] vé(x) ’

Lol ovtes,on 0 vtce

1
%

(' oeen) + B ta' e + ue'(xt) - wexen 0 f;(x,c) ,
2
ag(u (x,t)) + Bg(uz(x.t)) - u(u‘(x,t) - uz(x.t)) ? fg(x.t) P
in i, e
1
ol tvuts,en) + 0 wiieen s gh. 1= 12, an tioamT 2,
8

”
i=1,2, in LY,

t=1,2, in 134M .
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Remarks. All of the operators in this system are (possibly) multi-valued so each of the

“equations” should be made precise as was done in our preceding examples. See (6.9),
(6.10), (7.2) and (7.9) for related computations.

The only requirement on the a: is that they be maximal monotone graphs in R which
satisfy the bound (7.8). Thus much degeneracy is possible in the leading operator
given by (7.9). Related Stefan-type free boundary problems can be so considered,

Interesting examples of the coupling term arise in applications to diffusion
problems. These include problems with a semi-permeable membrane, u(s) = st (where s*
denotes s if 8 > 0 and 0 otherwise), or those with a threshold phenomena,

u(s) = (s ~ )t < (-8 - e)*. The operator M as given above is a subgradient; this is
easily verified by showing it is cyclic monotone (1]. However we may add to M non-
symmetric monotone terms, for example, [-52,31], and thereby obtain systems of the form

(6.1) in which B is not a subgradient.

Systems of equations of pseudoparabolic type can be resolved similarly by Theorem 1.

For example we can choose V = H;(Q) x H;(Q) with scalar-product on each factor as given

in Example (b) and obtain existence of a solution of the problem

- mloeen - ptoeen ¢ Bl oue ¢ el - wieuen s ge),

i & epd e - sl + Bpd e - uloner - witxen 5 g,
} (7.11) < in 10,7 a0,
i
¢ wde w0, mmgan, w0 = w0, w0 s vy, 3= 12,
b \
P in Lz(ﬂ)

where the data is qiven as above with mje Ao(uj) for 3= 1,2.

— —
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