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ABSTRACT

This is the first of our survey reports on the spectral theory of

matrices. The report is self contained from the matrix point of view. The

main subject of this paper is the theory of analytic similarity of matrices.

This topic of matrix theory is very important in the study of systems of

ordinary differential equations having singularities either in time or a

parameter.
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SIONIFICAN'F~ ANT' rXPLAMATION

In this survey paper we summarize the recent vroqress on the problem of

analytic similarity of matrices. That is, qiven n x n complex values

matrices A(x) - (aij(x)), P(x) - (bij(x)), whose entries aij(w), 'ij(x),

i,j = 1,.°.,n are analytic functions in some domain Q, when

B(x) = X(x)A(x)X-1 (x), where X(x) and X-1(x) are analytic in x? What Is

the canonical form of A under the analytic similarity? These nroblems are

related closely to the study of systems of ordinary differential emuations

having sinqularities either in time or a parameter. To make this survey varer

to be self contained we had to recall some basic facts in theory of rina.t,

functions of one and several compplex variables. Also we , d reneat an#

extend some basic facts in theory of matrices in order to ainlv them for the

analytic similarity problem and the related cuestions.
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Introduction

Matrix theory is constantly gaining popularity in pure and applied mathe-

matics and as well as in other branches of sciences. Perhaps the best book on

the subject is the well known book of Gantmacher - "The Theory of Matrices" which

was printed in the beginning of the fifties in U.S.S.R. . Since then the litera-

ture on the subject expanded enormously. There are recent books on the subject

e.g., Berman-Plemmons [1979] which usually treat special topics in theory of

matrices. It is my personal belief that the time is ripe for writing a compre-

hensive treatise on the main developments in theory of matrices.

I decided to write a series of survey reports on the most a:tractive and

important subjects in theory of ma, ats - Spectral Theory. This paper is the

first one in the series. It deals with general types of matrices. The climax

of this paper are Section 1.29 - 1.36 which are dealing with the concept of

analytic similarity of matrices. This subject arises naturally in the study of

ordinary differential equations having singularities either in time or a parameter.

See for example Wasow 11963], 11977], 11978] and the references therein. As the

reader can see, the subject of analytic similarities of matrices is far from being

completed. The main reason for the difficulties in this problem is the non-Iexistence of a simple canonical form. Clearly the topic of the analytic similarit.

of matrices is a part of a more general algebraic problem of similarity of matrices

over the integral domains. That is the reason I started the book with several

sections on rings, domains and fields and their properties.

I tried to make this paper (and the following ones) to be self contained as

much as possible from the matrix point of view. However, in dealing with some

problems in matrix theory one needs to use various kinds of techniques - theory

of functions of one and several complex variables, methods of alqebraic geometry

and non-linear analysis. Whenever these tools are used the reader is referred

to appropriate references. The basic knowledge for this paper are basic results

j .,q



in matrix theory (e.g., a few first chapters in Gantmacher [1959]) and basic

knowledge in function of one complex variable (e.g., Rudin [1974]). Since I E

tried to make these papers self contained from the matrix point of view, I did

repeat some standard facts in theory of matrices as the Jordan canonical form.

In that case I tried to make the exposition short and concise. Note that the

problems appearing in the end of each section are an integral part of the paper

and sometime they are used in the main text. Finally let me apologize to those

authors whose results were not mentioned or improperly cited.

The four other papers in this survey series are planned to be as follows:

2. Cones, convex sets and norms,

3. Nonnegative matrices,

4. Symmetric and hermitian matrices,

5. Inverse eigenvalue problems.

Also these reports will be eventually collected to a book.
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Special Notation

D - an integral domain.

r - a field, sometimes the division field of D.

C - complex numbers.

R - real numbers.

Z - integers.

2, - non-negative integers.

3DD - Bezout domain.

GCCD - greatest common divisor domain.

EDD - elementary divisor domain.

DD - unique factorization domain.

PID - principal ideal domain.

I - ideal in D.

an - a set of column vectors with n coordinates in D.

- a set of points in c'.

H() - the class of all analytic functions in R.

H -HO() for { c

M(i2) - the quotient field of H(O), for connected sets a.

DOx1,...,Xn] - the ring of all polynomials in n variables with the coeffients in D.

alb - a divides b.

(al,...,ak) - the greatest common divisor of

N - a D-module.

[x k - a D-module generated by the elements xl,...,xk C M.

dim M - the dimension of a D-module.

Hom(N,N) - the set of homomorphismes T M N.

V - a vector space over F.

L(V) - the set of linear operators T : V + V.

Mmn (D) - m x n matrices with entries in D.

M n(D) - Mnn(D).

rCA) -the rank of A C M mn(D).

IAI- the determinant of A c M D).

n
Mn (D) - the set of all invertible matrices in Mn(D).

A - B - A and B are left equivalent.

A B - A and S are right equivalent.
r

A - B - A and P are equivalent.

-iii-
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k
diag(A 1 , .... Ak) A - the direct sum of A1 .... Ak.

A 2 B - the tensor (Kronecker product).

At - the transpose of A.

Qk,n - totality of strictly increasing sequences of k integers chosen from I... n.

A[asS] - submatrix of A using row numbered a and columns numbered 8.

I,I(n), In - identity matrix of order n.

6 k(A) - the k-th determinant invariant of A.

ik(A) - the k-th invariant factor of A.

n(A),n(A,B) - the indices of A(x) and I 2 A - St  m respectively, A c M(H
n a mrsetvlAC MM(

B C M n(H )
(A), K A,B) - the number of local invariant polynomials of degree p of A and

p p
I n 2 A - Bt 9 Im  respectively.

r(A,B) - the rank of 1n 9 A - B t 8 i m, A c M (D), B C M (D).m n
V(A,B) - the nullity of In 9 A - Bt 9 1m

A 1 B - A and B are similar.

A(x) Z B(x) - A(x) and B(x) are strictly equivalent.
A

A(x) B(x) - A(x) and B(x) are strictly similar.
A(x) 5 (x) - A(x) and 5(x) are analytically similar

a

A(x) B(x) - A(x) and B(x) are pointwise similar.
p

A(x) f B(x) - A(x) and B(x) are rationally similar.
r

deg p - the degree of a polynomial p.

C(p) - the companion matrix of p.

H(m) - the matrix (6 ) i'j ,
(i+1 )j

C(A,B) - the set of matrices X, AX - XB.

C(A) - the set of matrices commuting with A.

D(A,p) - a p neighborhood of A.

zij(A) - the components of A.

p(A) - the spectral radius of A.

o(A), ad(A) - the spectrum and the distinct spectrum of A.

a (A), a (A) - the peripherial and the distinct peripheral spectrum of A.
d dp

index (X) - the index of A, X c a(A).

index (A) - the index of 4.

hAil - the X norm of A.

R(X,A) - the resolvent of A.

F(A0 ,•.., As) - Toeplitz upper triangular matrices.

F(A0,...,AS. I ) Z F(B-,...,BS_ ) - strong similarity of Toeplitz upper triangular matrices.

-iv-
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oI) - quantities which tend to zero as r * 0.

01) - quantities which are uniformly bounded.
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SPECTRAL THEORY OF MATRICES

I. GENERAL MATRICES

Shmuel Friedland

1.1 Rings, Domains and Fields.

Definition 1.1.1. A non-empty set S is said to be a ring if there are defined two

operations addition and multiplication such that for all a,b,c in S

(1.1.2) a + b r S;

(1.1.3) a + b = b + a (the commutative law);

(1.1.4) (a+b) + c = a + (b+c) (the associative law);

(1.1.5) there exists an element 0 in S such that a + 0 = 0 + a = a for every a E S;

(1.1.6) there exists an element -a such that a + (-a) = 0;

(1.1.7) ab E S;

(1.1.8) a(bc) = (ab)c, (the associative law);

(1.1.9) a(b+c) = ab + ac, (b+c)a = ba +ca (the distributive laws).

S is said to have an identity element 1 if al = la for all a c S. S is called

commutative if

(1.1.10) ab = ba, for all a,b c S.

Note that the properties (1.1.3)-(1.1.9) imply that aO = 0a = 0. It may happen that

(1.1.11) ab = 0

without a or b equal to 0. In that case we say that a and b are zero divisors.

Definition 1.1.12. D is called an integral domain if 3) is a commutative ring without zero

divisors containing identity 1.

The classical example of an integral domain is Z - set of integers. In what follows we

shall use frequently another example of integral domains.

Example 1.1.13. Let 2 c n be a set of points. Denote by H1(Q) the class of all analytic

functions f(z .. Zn) which are analytic in the neighborhood of any point

= (;I .... n) £ :.. If .. is open then we assume that f is defined only in Q. In case

that - consists of one point denote H(") by H.

Sponsored by the United States Army under Contract Nos. DAAC29-75-C-0024 and
DAAG29-80-C-0041.
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The properties of analytic functions implj that H(§?) is an integral domai. u:,

addition and multiplication of functions, provided that is connected. We shall al.

assume that . is connected except where otherwise stated. The element ( is tn z,- i

function and the identity is the function f 1. For properties of analytic function

one or several variables, consult for examlh Rudi r (1974) and 1;unnina-Rossi 119CI).

Let a,b I). W,- say tnat a divid,- i.(a b) if L = al 1 , I I . An cle :.t

callud invertible if all. For an inv--itileI, a nt,b': a tht e -ement such :at

-l -I
(i.1.14) ,a A 3 a

In Il(-,) the invertible elements ar onl, t!-st, tui,.t .wn:- : h not vanisn. at av :

Definition 1.1.15. A field F is an inteural domain. sI m that ar.. r.on-z-r) *,1enent i-

invertible.

The familiar examples of fields are tne set , _a' ci : i.--< ; ire set of -al :.;-

bers IR , and the set of complex number C .. r' r t. :nmar IU t ire us a st-

way to obtain the field of its cuotients. That 1 , : . 5et _t :Jt lents

b $ 0 such that

(1.1.16) a c ad + bc

Thus the set of the rational numbers C it; thO , t fil. i of the intecers Z

Definition 1.1.17. Let . Denote Lv 1 , the " eotLint fleld of H(, By I

denote the quotient field of H. That is I( ) is the set of meromorphic functions in

Definition 1.1.18. By ID (x .... x I denote the rino of all polynomials in n variables '

the coefficients in UD

(1.1.19) p)(x1 . xn 1 a x"n

J ( 1.1.20) a , (a ~ E**a Z n n 1

I . . n  xn + , i = L 1i  
'  

...x

i ~ -

. .



Thus T [x] is the ring of polynomials in one variable with complex coefficients. We say: that

the degree of p(xl, ... ,xn ) (deg p) is m if there exists a # 0 such that la m. A

polynomial p is called homogeneous if a = 0 for ll I deg p. It is a standard fact that

D [x I .x n) is an integral domain (see Problems 1.1.22-1.1.23).

Problems

(1.1.21) Let C[a,b] denote the set of real valued continuous functions on the interval

[a,b]. Show that C[a,b] is a commutative ring with an identity and zero divisors.

(1.1.22) Prove that 1)[x] is an integral domain

(1.1.23) Prove that 1D[x I , .... xn] is an integral domain. (Use the previous problem and the

identity D(Xl,...,Xn] (DI[X 1 ,... ,Xn-11) xn]

(1.1.24) Let p(xl,...,x n ) C ]D(xl,...,x J. Show that
n n

(1.1.25) p = p
a<deg p

where either pa 0 or p is a homogeneous polynomial of degree a. Moreover,

if m = deg p > 1 then p m 0. The polynomial Pm(Xl,...,xn) is called the

principal part of p and is denoted by p,. (In case that p is a constant Foly-

nomial p. = p.)

(1.1.26) Let p,q £ XD)xI .... ,Xn]. Show

(1.1.27) (pq)n = p q

11 T

h I

-3-
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1.2 Bezout Domains

An element d 1) is called the greatest common divisor (g.c.d.) of al,...,a n  if

dla i, i = 1.. n, and for an%, d' such that d'Jai, i = l,...,n we have d'Id. We denote

d = (a1 ,'.'a) if 1.c.d. of a1, . ..,an exists. Clearly (al,...,an) is unique up to a

multiple of an invertible element. The elements a1, .. .,an are called co-prime if

(al ... a ) = 1.
1 n

Definition 1.2.1. D is called a greatest common divisor domain (G MD 3D) if any two ele-

ments in D have g.c.d.

A trivial example of GTPUD is Z.

Definition 1.2.2. A subset I c U is called ideal if for any a,b c I and p,q c ID the

element pa + qb belongs to I.

In Z any ideal is the set of all numbers divisible by an integer k 9 0. In H(Q), the

set of functions which vanish on a prescribed set U c P2, i.e.

(1.2.3) I(u) = {fjf(C) = 0, C C U, f E H(Q)}

form an ideal. An ideal I is called prime if the fact ab e I implies that either a E I

or b t I. In Z the prime ideals are the set of all integers divided by a certain prime p.

An ideal I is said to be maximal if the only ideals which contain I are I and U). 1 is

called finitely generated if there exists k elements (generators) PI'''Pk. .  I such that

any 1 i I is of the form

(1.2.4) i = a 1p I + a2p2 +..-+akPk

for some a I1....ak in U. For example, in Dix,y] the set of all polynomials p(x,y)

V such that

(1.2.5) p(0,0) = 0

is an ideal which is generated by the polynomials x and y. An ideal I is called principal

1
ideal if it is generated by one element p.

Definition 1.2.6. U is called a Bezout domain (1 3) if any two elements ab c 1D have a

q.c.. (a,h 1) Nuch that

• i -4-
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(1.2.7) (a,b) -pa + qb

for some p,q e D.

It is easy to show by induction that for al...a D one has

n

(1.2.8) (al,...,a) ai
i=l

We give another characterization of BD.

Lemma 1.2.9. An integral domain is a Bezout domain if and only if any finitely generated ideal

is principal.

Proof. Assume that an ideal I of BD is generated by a1 ,... ,a. Then (1.2.8) implies that

(a., ... an) I. Clearly (a1 .... ,an ) is the generator of I. Assume now that any finitely

generated ideal of D is principal. For a given a,b c D let I be generated by a and b.

Let d be the generator of I. So

(1.2.10) d = pa + qb

Also dia and dib since d generates I. Obviously if d'ja and d'Ib then (1.2.10)

implies that d'Id. Thus d = (a,b). So D is BD.

03

Consider the ideal I c Dfx,y] given by (1.2.5). Obviously (x,y) - 1. As 1 o I, I

* is not principal. Since x,y generate I we showed that D[x,y] is not 3D. In particular

F x 1l,...xn] are not 3 1 for n > 2. The same arguments show that H(Q) are not 33D in

case that D : Cn for n > 2. It is a standard fact that F[x] is a Bezout domain (e.g. Lang,

[1967]) and we shall demonstrate it later on. For C, H(Q) is BD. This result is implied

.1 by the following interpolation of open sets in 0 (e.g. Rudin [1974, Thrs 15.11,15.151).

Theorem 1.2.11. Suppose that 0 is an open set in C, A c Q, A has no limit point in n,

and to each C E A then are associated a non-negative integer m(C) and complex numbers

Wn, 0 < n < m(,). Then there exists f E H(Q) such that
n, _________

(n)

f() = n w , r c A, 0 < n < m(M)

Moreover of all w = 0 then it is possible to choose f such that all zeros of f are

in A and f has a zero of order m( ) at each c £ A.

-5-
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Theorem 1.2.12. Let 2Q be an open connected set in T.

For given functions a,b E H(21) there exists a function p e H(-.) such that

(1.2.13) c =pa+ b

and

(1.2.14) a =a 1c, b b c, ae1 , F H(2)

Iz

That is c =(a,b).

Proof.

In case that a or b are zero functions choose p =1 and the theorem trivial!-..

holds.

Assume that ab 34 0. Let A be the set of common zeros of a(z) and b(z). Thus A i

at most countable. For each c A lt m(z) be the common multiplicity of zero in a(Z

and b(z) at z = z. Let f(z) r H02); whose only zeros 4 are in A such that ,has

multiplicity m(z). The existence of tuch a function implied by Theorem 1.2.11. Put

a = af, b = bf, a,b E H()

Thus a and b do not have common zeros. Let B be the set of zeros of a such that -

has the multiplicity n( ). According to Theorem 1.2.11 there exists a " H( such that

dk (z) (k)
S(1.2.15) k (eg))z= W(), k = 0,. n()-l, B

Since b( ) 9 0 for c E B. Put

(1.2.16) P (eg-b) a, c = f e g

and (1.2.13) holds. So cia, cib and in view of (1.2.13) c 
= 

(a,b).

Corollary 1.2.17. Let Q c T. Then H( .) is a Bezout domain.

-6-
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Proof. Let a,b E H(Q). By the definition of H(Q) there exists an open domain 0

such that a,b E H(M0). (In case that 0 is open 00 = Q.) Consider the functions

p,c E H(Q0) which are constructed in Theorem 1.2.12. Clearly pc H(U) and (1.2.13)-(1.2.14)

implies that H(Q) is IBnf.

Problems

(1.2.18) Let a,b,c C EBD. Assume that (a,b) = 1 and (a,c) = 1. Shows that (a,bc) 1.

(1.2.19) Let I be a prime ideal in 1 . Show that fD/I (that is the set of all cosets of

the form I + a) is an integral domain.

(1.2.20) Let I be an ideal in X). Denote by I(p) the following set

I (p) = [a I a - bp + q, b C ID, q E II

Show that I(p) is an ideal. Prove that I is a maximal ideal in 3D if and only

if for any p 0 I, I(p) = 3.

(1.2.21) Show that an ideal I is maximal if and only if fD/I is a field.

if

I-7-
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1. 3 UrID, P 1D and EID domains

A non-zero, non-invertible element p c ID is called irreducible (prime) if the only ele-

ments which divide p are p itself and the invertible elements. For example a positive

integer p Z is irreducible if and only if p is prime. A linear polynomial is irreducible

in DXlx ..... Xn]. For C T it is possible to determine all irreducible elements in H(Q).

Lemma 1.3.1. Let c T. Then all the irreducible elements of H(Q) are of the form z - C,

L

Proof. Let f H(..) be not invertible. Then there exists C £ Q such that f(C) = 0. So

z - divides f(z). Therefore the only irreducible elements (up to multiplication by the

invertible elements) are z - , . Clearly z-n is analytic in Q if and only ifz-4

= 4 (k A). This proves the lemma.

0

In particular if T . then H has one prime element z -

Definition 1.3.2. 1) is called unique factori-ation domain (OFID) if any non-zero, non-

invertible element a can be factored as a product of irreducible elements

(1.3.3) a = pl'-'pr

and those primes are uniquely determined up to invertible factors.

Again the ring of integers is obviously U I 1). Another example of unique factorization

domain is IF[xl, ... xn ] for any n. (e.g. Lang [19671).

Lemma 1.3.4. Let it be an open set. Then H('?) is not unique factorization domain.

Proof. Let a(z) E H(.) be a non-zero function which has an infinite number of zeros in 12.

I Such functions exist in view of Theorem 1.2.1g. if (1.3.3) was holding then according to Lemma

1.3.1 a(z) would have a finite number of zero s which contradicts the choice of a.

A straightforward cor.e'iuene !f Lemma 1.3.4 that for an oprnr, s:t , II(',) i; nt

U IF. See Problem 1. 3.17.

Definition 1.3.r. L i, - .__,_ 9 j1 ,ie.l ,'lemair (1 P11)) if _r,/ .ij.I .I I, U .

principal.

V a
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The standard examples of P ID are the ring of integers and the ring of polynomials in

one variable over a field. It is known that any PID) is UFD (e.g. Lang [19671 or v.d.

Waerden [19591). Thus H() for an open set 21 is not ]PIZ . A very useful and even more

restrictive class of P D is the class of Euclidean domains.

Definition 1.3.6. D is called Euclidean domain (E]D) if for every a ' 0 there is defined

a non-negative integer d(a) such that

(1.3.7) for all a,b e D, ab 3 0 d(a) < d(ab)

(1.3.8) for any a,b c D), ab # 0, there exists t,r E 1) such that

(1.3.9) a = tb + r, where either r 0 or d(r) < d(b)

The ring of integers is ED with

(1.3.10) d(a) = jal

The ring F[x] is ED with d(p) - the degree of the polynomial p(x). It is well

known that any EM is P ID). Indeed, consider an ideal I c EM. Choose a £ I with the

minimal d(a). In view of (1.3.9) alb for any b E I. Thus a generates I. This argument

show that W[x] is P1 I3. We also have

Lemma 1.3.11. Let 1 be a compact connected domain in C. Then H(SI) is XM. Here d(a)

is the number of zeros of a(z) in Q counted with their multiplicities.

Proof. Let a # 0. Then a(z) must have a finite number of zeros in fl. Otherwise there

will be a sequence of zeros f;kI of a(z) which converge to some point ; C a. Since a is

analytic in the neighborhood of a is the zero function in the neighborhood. The con-

nectivity of 2 implies e - 0 contrary to our assumptions. Let pa(z) be a polynomial such
a

that - does not vanish in i. By the definition d(a) = d(p ). Let a,b £ H(n) ab % 0.
Pa a

Since L[z] is ED

(1.3.12) pa (z) = t(z)pb(z) + r(z), r = 0 or d(r) < d(Pb)

Sso

-9-
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(1.3.13) a = (a) = b-t) + ()r d(ar = d(r)
P a Pa a Pa

Let a a EED. Assume that d(a I ) > d(a ) . The Euclid algorithm consists of a sequenc
1 2 1 2

(a.) which is defined recursively as follows:
1

(1.3.14) ai = ti ai+1 + ai+2 ' ai42 = 0 or d(a i+ 2 ) < d(ai+ )

Since d(a) > 0 the Euclid algorithm must terminate. That is

(1.3.15) a1 ... ak # 0, ak+l =0

It is a standard fact that

(1.3.16) (al,a2) = ak

See Problem 1.3.18. That is the g.c.d. of a and a 2 can be found explicitly in a fnte

number of steps. While for an open set ' c t the construction of (a,b) may involve

infinite number of steps, i.e. limits, which appear in the proof of Theorem 1.2.11.

P-oblems

(1.3.17) Let 2 c n be an open set in Tn. Construct a function f dependinc on one

variable in Q which has an infinite number of zeros in u"(f 5 ). Prove that f cannot bc

decomposed to a finite product of irreducible elements. That is H(7) is not VI D.

(1.3.18) Consider the equality (1.3.9) for r - 1. Sh.w tl'at , = (b,r). 'sing this

result prove (1.3.16).

J

I
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1.4 Factorizations in Df[xJ.

Let F be the field of quotients of D. Assume that p(x) c DIx] . Suppose that

(1.4.1) p(x) = P1 (X)p2 (x), Pi(X) C F[x ), i = 1,2

Our problem is to find conditions which yield that pi(x) I)[x], i = 1,2. Clearly that if

(1.4.1) holds then we can multiply p (x) by a e F, a # 0, and divide p2(x) by a. So

we must compose some normalizations on p1 and p2. Clearly for any q(x) c Fix)

(1.4.2) q(x) - p(x)/a, p(x) c D[x], a c 3

In case that 3D is a GTVD the decomposition (1.4.2) can be unique (up to multiplication

of invertible elements in ).

Definition 1.4.3. Let p(x) be a polynomial of degree m in DIx]

(1.4.4) p(x) - a0xm+-+& m

The polynomial p(x) is called normalized if a0 . 1. If D) is the greatest common divisor

domain then let c(p) - (a0 ,... am). The polynomial p(x) is said to be primitive if c(p) = 1.

The following result is obvious.

Lemma 1.4.5. Let F be the field of quotients of GTIDD. Then for any q(x) E Fix] we

have the decomposition (1.4.2) when c(p) and a are co-prime. The polynomial p(x) is

uniquely defined up to an invertible factor in GMDD. Moreover q(x) decomposes to

(1.4.6) q(x) - b r(x), r(x) e Gl3D[x], b,a c GrDD

when (b,a) = 1 and r(x) is primitive.

The crucial step in proving that WFDI[x] is OFED is the Gauss lemma.

Lemma 1.4.7. Let p(x),q(x) e rUPI[x] be primitive then p(x)q(x) is primitive.

Using this lemma one easily gets

Lemma 1.4.8. Let p(x) e OF)[x be primitive. Assume that p(x) is irreducible in Fix]

where F is the quotient field of UF3. Then p(x) is irreducible in UFM)Ix]. See Lana

(1967] and Problems 1.4.17-1.4.18.
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Thus any p(x) - UFM[x] has the unique decomposition

(1.4.9) p(x) = a q1 (x)...q x)

where ql(x),....qs(x) are primitive and irreducible in Fix] and a has the decomposition

(1.3.3). I fact (1.4.9) is the decomposition of p(x) to irreducible factors in F[x] . Thus

we proved (e.g. Lang [1967]).

Theorem 1.4.10. UFDlx] is a unique factorization domain.

Normalization 1.4.11. Let F be a field and assume that p(x) is a normalized non-constant

polynomial in F[x]. Let (1.4.9) be a decomposition of p(x) to irreducible factors. Then

normalize the decomposition (1.4.9) by the assumption that ql(x),...,qs(x) are normalized

irreducible polynomials in F[x]. (This implies that a = 1.)

It is not difficult to show that Lemmas 1.4.7-1.4.8 yield

Theorem 1.4.12. Let p(x) be a normalized non-constant polynomial in UFD[x]. Let (1.4.9)

be a normalized decomposition of p(x) in F[x], where F is the quotient field aFD. Then

each qj(x) is an irreducible polynomial belonging to UFJDjx].

See Problem 1.4.191t turns out that Theorem 1.4.12 holds for any H(Q), 0 c In.

Theorem 1.4.13. Let p(x) be a normalized non-constant polynomial in H(Q)x]. Let (1.4.9)

be a normalized decomposition in kf[x], where Al is the field of meromorphic functions in Q.

Then each q.(x) is an irreducible polynomial in H(Q).

Proof. By the definition of H(s) we may assume that p(x) E H(%0) for some open domain 0

containing So q)(x) F. MV(0)[x], j 1,...s. Let

(1.4.14) q(x,z) = x + Ct-r(z ) t -r (z),Bi(z) C H(0) , i =
r=1 It-r(z)

Thus -(x,z) is analytic on - where r is given by

It t
(1.4.1) F = {zlz r 20' 7T 8r(z) = 0}

r1l

It is known that is a closed se:t of zero mcasure in Cn. See for example Gunning-Rssi

1'3651].

-12-
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Consider xi(z),...,xt(z) the roots of

(1.4.16) q(x,z) = 0

Clearly x(z),...,xt(z) are well defined functions on Q0 r. Suppose that each
0

xk(z) is bounded when z tends to any ; e r. Then each a (z) is bounded on anyI B (z)

compact domain in a 0 This would imply that a (z)/O (z) £ H(Q ), j-1,...,t, i.e.
a j j 0

q(x,z) £ H(Q ) (e.g. Gunning-Rossi (1965]). Thus, if q(x,z) 0 H(fl) there exists a

sequence z(k) e r such that xr(z (k) To this end assume that

qj(x) H(0) for some j. Then, we have qj(xr(z(k))) 0,

(k) x(k)
z cSI X(z ) -, as k w.

The assumption that p(x) £ H(a) implies that all the coefficients of the normalized

polynomial p(x,z) are bounded in the neighborhood of ;, so the roots of the equation

p(x(z),z) - 0 are bounded in the neighborhood of ;. This contradicts the equality

p(x(z(k) ),z(k )) = 0. That is qj(x,z) C H( 0 ) for J-1,...,s.

Problems$ (1.4.17) Let p(x) be given by (1.4.4) and put q(x) - b xn+...bn, r(x) - p(x)q(x) -

m+n
c0 x +...+C m+n* Assume that p(x),q(x) £ FD[x]. Let 7f be an irreducible element in
0 such that 1rlai, i=0,.. .,a, w]b 0, J-0,...,8, 71ck , k = 0, a + 0+2. Then either

wlaa+ or wib+ .
nja , Orn~b0+1

(1.4.18) Prove that if p(x),q(x) C UFD[x], then c(pq) = c(p)c(q).

Deduce from the above inequality Lemma 1.4.7. Also if p(x) and q(x) are

normalized polynomials then p(x)q(x) is primitive.

(1.4.19) Prove Theorem 1.4.12.

(1.4.20) Using the equality

(D[x 1,,....x n ll])[x n]  D [xl,...,x n ]

prove that UWD[x 1 ,...,x n] is UD. Deduce that FCx 1 ,...,x n] is UrD.

-13-
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1.5 Elementary Divisor Domain

Definition 1.5.1. D is called elementary divisor domain MDD) if for any three elements

a,b,c e D there exist p,q,x,y C D such that

(1.5.2) (a,b,c) = (px)a + (py)b + (qy)c

By letting c = 0 we obtain that (a,b) is a linear combination of a and b. So

elementary divisor domain is Bezovt domain.

Theorem 1.5.3. Let D be a principal ideal domain. Then D is elementary divisor

domain.

Proof. Without the loss of generality we may assume that abc # 0, (a,b,c) = 1. Let

(a,c) = d. Since D is UIF (e.g. Lang [19671) decompose a = a'a", where in the prime

decomposition (1.3.3) of a,a' contains all the irreducible elements of a which appear

in the decomposition of d to irreducible factors. So

(1.5.4) a = a's", (a',a") = 1, (a',c) - (a,c), (a",c) - 1

and if a',f are not co-prime then c,f are not co-prime. Thus, there exists q and

a such that

(1.5.5) b - 1 = -qc + aa"

Let d' = (a,b+qc). The above equality implies that (d',a") = 1. Suppose that d' is

not co-prime with a'. So, there exists a non-invertible f such that f divides d'

and a'. According to (1.5.4) (f,c) - f' and f' is not invertible. Thus f'fb which

implies that fV divides a,c, and b. This contradicts our assumption (a,bc) = 1.

So (d',a') = 1 which means (d',a) 1. Therefore there exists x,y C D such that xa +

y(b+qc) 1.

-14-



This establishes (1.5.2) with p - 1.

Theorem 1.5.6. Let 9 c C. Then HIQ) is elementary divisor domain.

Proof. Given a,bc, C H(M) we may assume that a,b,c, C H(M0 ) for some open set

(0 _3Q. According to Theorem 1.2.12

(1.5.7) (a,b,c) = (a,(b,c)) - xa + (b,c) = xa + (b+yc)

Problems

(1.5.8) D is called adequate if for any a,c C D, ac ' 0, (1.5.4) holds. Use the proof

of Theorem 1.5.6 to show that any adequate BD domain is RDD.

(1.5.9) Prove that H(Q), n cC, is an adequate domain (Helmer [1943]).

I -15-
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1.6 Aloehraicallv closed fields

Definition I.A.1. A field F js called alaehraicallv closed if any olvnomial

p(x) C F~x of the form (1.4.4) splits to linear factors in P

m

(1.6.2) p(x) = a0 TT (x-i), F I C F, j=1 .... m, a i n

The classical example of an aloebraicallv closed field is the field o the comnlex

numbers C . The field of the real numbers R is not aloperalcallv closed.

Definition 1.6.3. Let K and F be fields. Assume that K c T. Then i is called an

extension field of F. X is called a finite extension of P if K Is a finite

dimensional vector space over F.

Thus C is a finite extension of R of the Aimension 7. Tt is inown (p.o. Tana

(19671).

Theorem 1.6.4. Let p(x) £ Fx. Then there exists a finite extension V of P such

that (x) splits to linear factors in KXxl.

The classical Weierstrass preparation theorem in two comnlex variable is an explicit

example of the above theorem. We state the WeJerstrass preparation theorem in the form

needed later. (See for example Gunnina-Rossi f14651.)

Theorem I.A. . Let Rn he the rino of analytic functions in one variaNIP analvtic in f-he

neiohhorhood of the orinin. Let ,(X) £ P 0 ()l he a nmrmalIze nolvnomial of A
4
eoree n

n n-i
(..)n(X,z) )~+ Z a ,() a~ Ii (z .Pn

Then there exists a nOritive intener s 4 n!, s-eh that

(1.6.7) p(o,w
5 
) O l A .(w)), I (w) E ....

Lit,-

Oi=

o#



Thus, in that particular case, the extension field of H0  is the set of multivalued

functions which are analytic in z /s  in the neighborhood of the origin. Algebraically

speaking, K is H0 [w] together with the identity

(1.6.8) v5 - z •

The vector dimension of K over F is a.

1

I I

4 -17-



1.7 The ring Ff[x....x n]

We already pointed out in Section 1.2 that for n ) 2 FIXI,".xn] is not RD.

However r[x 1 ,...exn] has some nice properties. An important property is that any

Fix I . .Xnl is Noetherian ring (e.g. Lang [1967]).

Definition 1.7.1. D is said to be Noetherian (ND) if any ideal of D is finitely

generated.

In what follows we shall assume that F is an algebraically closed. Let

p 1,...pk £ FIx1 ,...,x ]. Denote by U(p1,...,pk) the common set of zeros of p1,...,pk.

(1.7.2) U(p ,...,p k) ( {zlz = (x,. .X n), p (z) = 0, J-1,....k)

U(P.....,p k ) may be an empty set. U(PI,....' k )  is called an algebraic variety in Cn.

It is known (e.g. Lang [1958]) that any non-empty algebraic variety U in F splits

k
(1.7.3) U - U V

i=1

where each Vi is an irreducible algebraic variety. Over the complex numbers each

irreducible algebraic variety V is a closed connected set which almost everywhere

(in V) is an analytic manifold in Cn of a fixed (complex) dimension d which is called

the dimension of V. If d - 0 then V consists of one point. For any set U F
n

let (U) be the ideal of polynomials in Fix ,...,Xn] vanishing on U

(1.7.4) I(U) - {pp c F[x..x 1, p(z) - 0, z C U}

1 n

Consider an ideal I c F[x1,...,xn]. Suppose that the ideal generated by p1,...,pk.

Clearly I _I(U(p1 ,...,Pk)).

The celebrated Hilbert Nullstellensatz gives the other relation between the above two

ideals (e.g. Lang [19671).

.I -18-
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Theorem 1.7.5. Let F be an algebraically closed field. Consider an ideal

Ij
I c Ftxl,...,xn] generated by pl,...,pc. Let q c F[X,...,xn]. Then g c I for some

poeitive integer j if and only if

(1.7.6) c I(U(p1...Pk))

Corollary 1.7.7. Let plC...,pk C FEX ,...,xn], where P is an algebraically closed

field. Then pl'...'Pk generate V[X1 ,...,Xn] if and only if

(1.7.8) U(P 1O... pk) -

-19-
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1.8 Modules

Definition 1.8.1. Let S be a ring with identity. An abelian group N (which has an

operation + satisfying the conditions (1.1.2) - (1.1.6)) is called a (left) S-module if

for each r C S, u C N the product ru is defined to be an element in N such that the

following properties hold.

(1.8.2) r(vl+v 2) rv1+rv2 , (rl+r 2 )v = r~v+r 2v, (rs)v =r(sv), 1v =v

A standard example of a S-module is

(1.8.3) Sm [v v = (Vl.. v~ S. , .,m

where

(1.8.4) u + v = (u1 +v1 ,... ,Um+v m
t

t(..)ru = (ru1 ,....,rum) , r C S

K is said to be finitely generated if there exist n-elements (generators)

v,1...,vn such that any vs cN is of the form

n
(1.8.6) V= aiv 5, a 5 , i1l,...,n

I'If each v can be expressed uniquely in the above form then v 1 ,...,Vn is called a

basis in N and M is said to have a finite basis. N is called a submodule if 9 N

and N is a S-module.

-20-



For example, consider a linear homogeneous system

n
(1.8.7) a =0, c 0, i=.,m, j1l,...,n

J=1 ijxj aj

Thus the set of all x - (x .... ,Xn
)t 

is a submodule of Dn. In what follows we shall

assume that S is an integral domain D. Let F be a field. Then a F-module is called a

vector space (M) over r. It is a standard fact in linear algebra (e.g. Gantmacher

(1959]) that if V is finitely generated then V has a finite basis. In that case V is

called finite dimensional vector space. The number of vectors in any basis of V is

called the dimension of V and by dim V. A submodule of V is called a subspace of

V. Let N be a D-module with a finite basis. Let F be the quotient ring of D. It is

possible to imbed 1 in a vector space V over F by considering all vectors v of the

form (1.8.6) when a i C F, i=1,...,n. Thus dim V - n. Using this fact we get

Lema 1.8.8. Any two finite basis of a D-module contain the same number of elements.

This number is called the dimension of lN - and denoted by dim N.

Problems

(1.8.9) Let N be a - D module with a finite basis. Let H be a submodule of N.I Prove that if D is PID then N has a finite basis.

(1.8.10) Let N be a - D module with a finite basis. Assume that I is a finitely

generated submodule of N. Prove that if D is ND then N has a finite basis.

-21-
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1.9 Matrices and homomorjphismes

Notation 1.9.1. Denote by Mmn(D) the set of all m x n matrice s A -(aj where

aij E D, i-i,...,m, J-1,...,n. The set Mnn(D) is denoted by Mn(D). Let N and X

be D-modules. Let T :N N. T is called a homomorphism if

(1.9.2) T(au+bv) - aTu + bTv, u,v c M, ab £ D

for all u,v and a,b. As usual, let

(1.9.3) range (T) - {vjv = Tu, u C M, v C NI, ker (T) - fuITu - 0, u £ NJ

be the range and the kernel of T. Denote by Hom(MN) the set of all homomorphismes of

N to N. It is a standard fact that Hom(M,N) is a D-module by letting

(aS+bT)u - aSu + bTu

for any S,T c Hom(M,N), a,b c D, u c M. Assume that M and N have finite bases. Let

u,..,u and v,...,vn  be bases in M and N respectively. Then we can set a

natural isomorphism between Hom(M,N) and Mmn(D). Namely, for each T £ Hom(M,N) let

A - (a j) M mn(D) be defined as follows

S.n

(1.9.4) Tui  Z a..v 3, i-I
i=I 1) e'I.] Conversely, for any A £ Mn (D) there exists a unique T C Hom(M,N) which satisfies

(1.9.4). The matrix A is called a representation of T in bases u 1,...,u m and

,...,v . The rank of A - denoted by r(A) - is defined as the size of the largest

minor of A(IA[aOI], a £ Q 0 E Qkn which do not vanish. Thus if A is the

-22-
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representation matrix of T E Hom(M,N) then r(A) - dim T1 if TN has a finite basis.

Let A e N (D). We shall view A as an element in Hom(Dn,de) by letting A(x) = Ax
n

for x e D
n

We now study the relations between the representations of a fixed homomorphism

T C Hom(M,N) with respect to different choices of bases in N and f.

Definition 1.9.5. A matrix U Mn (D) iA called unimodular if 1Ui
n

(the determinant of U) is an invertible element in 0.

The above definition is equivalent to the existence of V c M (D) such that
n

(1.9.6) UV - VU - I

when I is the identity matrix. Indeed jui is invertible then U
" 1 

exists in the

division ring F. Moreover the standard formula for U
" 1 

in terms of the minors of U

-1
implies that V - U M n (D). Vice versa if (1.9.6) holds then lUhIVI = I so Iul isn

invertible. Also U is unimodular if and only if the transpose of U - Ut is unimodular.

Notation 1.9.7. Denote by UMn(D) the set of unimodular matrices in Mn(D).

Clearly UMn(D) is a multiplicative group under the ordinary multiplication of the

matrices. Unimodular matrices appear naturally when we change bases in D-module.

Lema 1.9.8. Let M be a D-module with a finite basis u ....,u
m 

. Then ,...u
m )

is a basis in M if and only if the matrix Q (q M (D) given Py the equalities

m

(1.9.9) U q i1,...,
i-li

is a unimodular matrix.

Proof. Suppose first that {u .... u is a basis in N. Then

m

(1.9.10) u - ) r k , J-1... m

4k l

-23-
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Put R = (rjk). Insert (1.9.10) to (1.9.8) to get QR - I - as {u ,..., .u is a basis.

This shows that Q is unimodular. Assume now that Q C UMn D). Let R = A-1 . So

(1.9.10) holds. Also u ,...,u linearly independent over D, i.e. 0-cannot be written

as a non-trivial combination of u ,...,u , since otherwise we deduce the linear

dependence of ul,...,U m . But this is impossible as ul,...,um is a basis in N. So

(U ..... Um } is also a basis in M.

Definition 1.9.11. Let A,B C M (D). We say that A is right equivalent to B(A-B) if
mn r -

(1.9.12) B = AP

for some P c UM (D); A is left equivalent to B(AIB) ifn

(1.9.13) B = QA

for some Q C UM (D); A is equivalent to B(A-B) if
m

(1.9.14) B QAP

for some Q c UM (D), P UM (D)m n

Obviusly, all the above relations are equivalence relations.

Theorem 1.9.15. :,et M and N be D-modules with finite bases having m and n

elements respectively. Then A,B 6 M are (i) left equivalent (ii) right equivalent;
mn

(iii) equivalent; if correspondingly there exists T C Hom(M,N) such that A and B are

the representation matrices of T in the following bases

(i)' {uI ... u I, {v .....vn }  
and {u ... ,u {v

1
,...,v

n  
;

-24-
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n u .. . ... .nm,, i

(ill' {u ,...,u } , {v1 ,...,v }  and {u1 ,...,u 1, iv ,...,v I}

(iii) {u
1 ....u I, (v .... v }  and {u ...... UmI, (Z .... vn }

Proof. Let A be the representation matrix of T in the be#" u,...,U m  and
V1 n .1 -

,...,v
n 

*Assume that the relation between the bases U,....u
m  

and {u,...,u I is

given by (1.9.9). Then the reresentation matrix 3 in bases {u,...,ulm) and

{v1,.-°.'n }  is given by (1.9.13). Indeed

m gi~J M,n
Tui I -=m qjja Vk, i-ie... m

u .1i-I jfk. j1

11Jn
which proves (1.9.13). On the other hand if we change the basis {v ,...,v n } to

-n ~
iv1,...,v n } according to vj - pjv, J-1,....n, P - (pg) E UMn(D) then a similar

i=1

computation shows that T is represented in {u
I
,...,u

m }  
and { .,... ,vn} by AP.

Combine the above two results to deduce that the representation matrix B of T is bases

u ... ,u1 and (v1,... ,vm ) is given by (1.9.14). The proof of the theorem is

concluded.

0
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1.10 Hermite normal form

The notions of equivalence of A,B C M (D) give rise to the following problems.

Problem 1.10.1. Given A,B £ M mn(D). When A and B are (i) left eivalentL (ii) right

equivalent; (iii) equivalent.

Problem 1.10.2. For a given A C M (D) characterize the equivalence classes
mn

corresponding to A for (i) left equivalence; (ii) right equivalence; (iii) equivalence.

Clearly a satisfying solution of Problem 1.10.2 would automatically solve Problem

1.10.1. However, if the solution of Problem 1.10.2 is unknown or is complicated there is a

point to solve Problem 1.10.1 separately.

We first note that for GCDD the equivalence relations have certain obvious

invariants.

Lemma 1.10.3. For A M mn(GCDD) let

W(a,A) = g.c.d.{IAOI8] I, e £ Qk,n" a C Qk,m

v(B,A) = g.c.d.(IA[IB] I, 0 £ Qk,m}, C Q Qk,n

(1.10.4) 6k(A) g.c.d.{IA0Ile1 I, E Q£ m 9 Qkn

(6 k(A) is called the k-th determinant invariant of A.) Then

p(A = u(a,B), Va £ Q if A-Bkm r

V(8,A) = V(B,B), VO £ Qkf if AZB

6 (A) = 6 (B) if A-BI

k-l,..., min(m,n).
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Proof. Suppose that (1.9.12) holds. The Cauchy-Binet formula (e.g. Gantmacher [1959))

implies IB[ , ]i - I IA(0,6]I IP[O,YlI. So P(a,A) divides u(a,B). As A = BP-

QCQkn

j(C,B) Iu(aA). Thus 1( ,A) - a(a,B). (Recall that P(a,A) and U(a,B) are determined

up to invertible elements). The other equalities in (1.10.5) are established in a similar

way.

Note that

(1.10.6) At-S, A,B M M
9. r mn

Thus it is enough to consider the left equivalence relation. In what follows we

characterize the equivalence class for left (right) equivalence relation in case that D

is a Sezout domain. To do so we need a few notations.

Recall that P e M (D) is called a permutation matrix if P is a matrix having at
n

each row and column one non-zero element which is the identity element 1. Clearly

P UN () since P-1 pt.
n

Definition 1.10.7. A unimodular matrix U e M n(M is called simple if there exist

permutation matrices P,Q such that

(1.10.8) U - P(V 6 In_2)Q

rwhere V is a unimodular 2 x 2 matrix

ias
(1.10.9) V = (Y 6) UM 2D)

-27-
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i.e. *6 - By is invertible. U is said to be elementary if V is of the form

(1.10.10) V = a ), m,6 - invertible

Definition 1.10.11. Let A Mmn (D). The following row (column) operations are called

elementary

(i) interchange any two rows (columns) of A;

(ii) multiply row (column) i by an invertible element a;

(iii) add to row (column) j b times row (column) i(i~ij).

The following row (column) operation is called simple.

(iv) replace row (column) i by a times row (column) i plus b times row (column)

j; and row (column) j y c times row (column) i plus d times row (column) j;

where ad-bc is an invertible element in D.

It is not difficult to see that elementary row (column) operations can be carried out

by multiplication of A by a suitable elementary matrix U from left (right), and the

simple row (column) operations are carried out by multiplication of A by a simple

matrix U from left (right).

Theorem 1.10.12. Let D be a Bezout domain. Consider A c M (D). Assume that

r(A) - r. Then there exists B = (b ) e M mnD) which is left equivalent to A and

satisfies

S(1.10.13) bj = 0 for i > r

if bin, is the first non-zero entry in 1th row then

Ei

(1.10.14) 1 nI < n2 <***< n r n

-28-
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The numbers n1,...,nr are uniquely determined and the elements bln ,, i=1,...,r are

uniquely determined, apart from arbitrary invertible factors, by the conditi? 1

v((n1,...,ni),A )  b bn... bn ,  1..,

(1.1 .15)V(Q,A) =0, a e Qi,(ni1-l), - ... , •

The elements bin (j < i) are then successively uniquely determined apart from the

addition of arbitrary multiples of b The remaining elements bi are now uni ely

determined. Moreover, the unimodular matrix Q which satisfied (1.9.13) can be given as a

product of finite number of simple matrices.

Proof. Our proof is by induction on n and m. For n = m = I the theorem is

obvious. Let n - 1 and assume that for a given m ) I there exists a matrix Q which

is a finite product of simple matrices such that the entries (i,I) of QA are equal to

zero for I - 2,...,m. Let A I M(m+I) (D) and assume that A = (a,,), i-1,...,m.

Put 1= Q S IV Then A2 = QjA, and the (i,1) entries of A2  are zero for

i=2,...,m. Interchange the second and the last row of A2 to obtain A3. Clearly,
•(3),

A Q2 A where 2 is an appropriate permutation matrix. Let

(3) (3) t
A4 - (a11 ( a21 Since D was assumed to be Bezout domain, there exists a,B C D such

that

(3) (3) (3) (3)

(1.10.16) a1l + $a 2 1  = (al 1 ,a21  =

As (a,B) = I there exists Y,d C 0 such that

(1.10.17) a6 - ay = 1

dLet V be a 2 x 2 unimodular matrix given by (1.10.9). Rut A = VA = (d.).
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According to Lemma 1.10.3 v((1),A f V((1),A5)o As V((1),A 4 ) f d we must have4 54

did'. That is d' pd. Thus

d W W w U 1)00 5 -P 1)  U2(

Let

Q3 (W Im_ 1 )(V 9 Im-1 )

(6) (6)

Then the last m rows of A6 = (a ) = Q3A3 are zero. So a1  ((l),A 6 ) V((l),A)

and the theorem is proved in this case.

Assume now that we proved the theorem for all AI c M mn(D) where n 4 p. Let

n = p+1 and A CM M(p+C)(D). Call A, (aij), i=l,...,m, j-l,..,.,p. The induction

assumption implies the existence of Q1 C UM (D) which is a product of simple matrices

such that B (b M) = QIA satisfies the assumptions of the theorem. Let n,...,n'
ij 1 11 a

be the integers defined by A1 . If b(1 ) = 0 for i > a then ni = n', i1,...,s and
in I

B - Q1 A is in the right form. Suppose now that bin If 0 at least for some i,in

s < i 4 m. Let B = (b()) is+1. m. According to what we proved, there exists
2 in

Q2 c UM (D) such that =Q282 (cO,...,0)t, where c is the g.c.d. of

b (1 )  b (1). So 93 (1s 8 Q2})BI is in the right form, where a -

nbi - n, i=,. r-l, n = n. Next we prove (1.10.15). First if a C Q i,(n 1) then

any matrix B[SIL, 0 C Qi'm has at least one zero row, so JB[810]I - 0. Thus

v(a,B) = 0. Lemma 1.10.3 yields that v(a,A) - 0. Let a (n I .. . ni). Then B1I1l

has at least one zero row unless 8 equals to y (1,2...). Therefore v(a,A) =

vla,B) - IBEYtlul] b ... b 0. This establishes (1.10.15). So n,....nr are
ln in;

determined by (1.10.15). It is obvious that blnl,...,brnr  are determined up invertible

elements. Suppose that n = nr Then we can add to th row (j < r) any multiple of

rth  row without changing the first n - I columns of B while the last n - r rows of

a remain zero rows. This argument shows that bjni(j < i) can be only determined up to

• I -30-
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the addition of multiples of bin,* It is left to prove that once bjn i are chosen within

the above freedom for jI,...,i, iI,...,r, then all the remaining elements are uniquely

determined. Let C C Mn (D) such that the nl,...,nr columns of C and B are the samemn

and

Ckj 0 for ni < J < i+1, i < k, i0O,...,r (no - -1 if n1 > 1, and

nr+1 - n if nr < n)

$ Assume that

C -UB, U M (D)

We claim that

(1.10.18) u = , i-1,...,m, j=1,...,r
uii ii,

We prove this result by induction on n. For n = I it is obvious. Suppose that the

assertion holds for n = p. Let n = p+1. Put B = (b ij), C (cj), i 1,...,m,

J-1,.. p. So C - U;. If nr < p+1 then the induction hypothesis implies (1.10.18).

Assume that n = nr. Then (1.10.18) holds for j-1,...,p. The equality C UB
implies crnr =urrbrnr As brnr  Crnr # 0 we have urr 1. Now

Cinr =binr + uirbn i.l,...r-1 Cn r - uirbrnr , i-r+1,...,m

By our assumption cmn r  bin r  for I 4 r-1 so the above equalities yield Uir - 0 for

i = r-1. Also the assumption that c inr  0 for i > r implies uir 0. Since the
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last m - r rows of C and B are equal to zero we finally deduce that C - B. This

establishes the uniqueness of B provided that the elements bjni ... ,1 were chosen

as above.

A matrix B C M (D) is said to be in the Hermite normal form if it satisfies the
mn

conditions (1.10.13) - (1.10.14). In what follows we shall always assume the specified

normalizations.

Normalization 1.10.19. If bin is an invertible element we choose bin i = I and bjn i

0 for j < i.

Theorem 1.10.20. Let U be a unimodular matrix over a Bezout domain. Then U is a

finite product of simple matrices.

Proof. Since 1UI is invertible according to Theorem 1.10.12 each bij is an invertible

element. Thus the Normalization 1.10.19 implies that Hermite normal form of U is the

identity matrix. Thus the inverse of U is a finite product of simple matrices.

Therefore U itself is a finite product of simple matrices.

Normalization 1.10.21. For Euclidean domains assume

(1.10.22) either b. 0 or d(b. ) < d(bini) for

For F~x] we choose bin tc be a normalized polynomial.

Combining Normalization 1.10.21 with Theorem 1.10.12 we get

Corollary 1.10.23. Over the ring F(x] the Hermite normal form of A e Mn (I[xl) is
Amn

Junique provided that the Normalization 1.10.21 holds.

1 i It is a well known fact that over Euclidean domains Hermits normal form can be

achieved by performing elementary rows operations. This result follows by considering

2 x 2 matrices.

Theorem 1.10.24. Let A E M 2(ED). Then A can be brought to its Hermite normal form by a

finite number of elementary rows operations.
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Proof. Suppose that

A I b A ,) 1= A

Let us comrute ai+2 by (1.3.1d). So Aj is eEruivalent to

1 ~ +1 b + ) 2  +i I~a+, l+ ) ai+2 al tia:1'i:l 2 t ll+

a 1+2 =n or Afa 1+2 1 < M(all

Thus Ai is left ecuivalent to Ai+1. AS the P-ucliA alaorithm teorinateq after a finl4e

number of steps we obtain that ak+l = 0. If ak 0 n, Ak is in the Fermite normal

form. Otherwise, al = 52 = n anA we perform the Puc]I a7aorithm on hj, h9, tn nftain

the Hermite form.

Corollary 1.10.25. Let U E TIM (RD). Then TI is a finite nroduct of elementarv
2

unimodular matrices.

Corollar1.10.. Let 17 C 17M (ND). Then T? is s finite orouct of eleenterv uimoafular

matrices.

Problems

(1.10.27) Let T c Fovi(M,F) where IM and IN are 19t mnules. sptume that N =An".

t Let In(T) he the imace of T in N. I'en tue moAuP Tmt(' ) es saa a -a...

14 such that

, c i v ntc..,

i-I
ii .

on.



(1.10.29) Let A C M (BD) and assume the B is the Hermite normal form. Let n j <
an

ni+ 1. Prove that for a = (n I...,n ilJ), v(a,A) = blnl...b (i b.)ni lb i j (no = 0).

1.11 Systems of linear equations over Bezout domains

Consider a system of m linear equations in n unknowns.

n
(1.11.1) 1 aixj, i...., m, a*b I £ D, i-I....m, j-1....n

J=1 
ij i

In a matrix notation (1.11.1) is equivalent to

(1.11.2) Ax = b, A £ M4 (D), x c M (D), b £ M (D)
an n1 ml

Let

(1.11.3) A = (A,b) C M4 ()D)
m(n+l)

f The matrix A is called the coefficient matrix and the matrix A is called the augmented

coefficient matrix. In case that D is a field the classical Kronecker-Capelli theorem

states (e.g. Gantmacher [19591) that (1.11.1) is solvable if and only if

(1.11.4) r(A) ,= rCA)

Let F be the quotient field of D. Thus if (1.11.1) is solvable over D it is also

solvable over F. Therefore (1.11.4) is a necessary condition for the solvability of

(1.11.1) over D. Clearly, even in the case where m n - I this condition is not

sufficient.

-
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In this section we give necessary and sufficient condition on A for the solvability

of (1.11.1) over D in case that D is a Bezout domain. To do so we need the following

lemma.

Lemma 1.11.5. Let A e Mn (BD), A p 0. Then there exists an m x m permutation matrix

P and an n x n unimodular matrix U such that

(1.11.6) C (cij) - PAU, cij - 0 for j > i, cii 0,-

cij 0 for j > r, r = rA)

Proof. Consider the matrix At° By interchanging the columns of At, i.e. multiplying

At from right by some permutation matrix Pt, we can assume that in the Hermits normal

form of AtPt, ni - i, i-1,...,r. This establishes (1.11.6)

Theorem 1.11.7. Consider the system (1.11.1). If D is a Bezout domain. Then (1.11.1)

is solvable if and only if

(1.11.8) r - r(A) = r(A), 6 (A) 6 (A)

r r

Proof. Assume first the existence of x e Mn (D) which satisfies 1.11.2. As we pointed

out already this assumption implies the equality (1.11.4). Also from (1.11.2) we deduce

that b is a linear combination of the columns of A. Consider any r x r minor of A

which contains the column b. Since b is a linear combination of the other columns of

A we deduce that this minor is a linear combination of r x r minors of A. So 6 (A)
r

1$divides the minor in question. In view of the definition (1.10.4) of 6 r(A) clearly

(A)16 (A). Thus we proved that the condition (1.11.8) is necessary for the solution of

(1.11.1) over Bezout domain (in fact over GOcD). Suppose now that the condition (1.11,8)

holds. By changing the order of the equations in (1.11.1) and considering a new set of

* variables
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-1
(1.11.9) y U1 x, U e UM (D)

nI

we may assume that A = C where C is given in Lemma 1.11.5. In view of (1.11.6) and the

condition (1.11.4) the last m - r are linear combinations of the first r equations

(possibly the coefficients of the linear combinations are in the quotient field of D).

Therefore it is enough to show the solvability of the system

i
(1.11.10) cx = b, i=1,...,m, c*. =/0, i=1,...,m

j 1) J 11

Let m = 1. Clearly, in this case 6 c() f cli and 61(C) = (cbl). The second
1 11 11 1

equality in (1.11.8) means c 1 1 1b1  so (1.11.10) is solvable over D. Assume that (1.11.8)

holds for the system (1.11.10) (r = m). Consider an m x m minor of C composed from

the m rows and the columns 2,..., n+l. This minor is equal to (-1)m-lb c22 .. .Cmm Since

this minor is divided by 61 (C) = c11 ...c we have that c divides b. SO

xI = bl/C 11 e D. Thus it is left to show that the system

I
(1.11,11) cijxj  bi -c cbl/C1, i2,...,n

J=2 " b ii 1 11

4is solvable over D. Put C - (cj), i=2,...,m, Jf2,...,m, b = (bi - ci1b11/c11),

i=2,...,m. The induction hypothesis would imply the solvability of (1.11.11) if

6 m-1(E) = 6m- (C). That is, it is enough to show that c22 ...cmm divides any

(m-1) x m-1) minor 1J3 of C which is composed of 2,...,m rows and 2,...,I-1,

i+I,... ,m+1 columns of C. Consider the minor IJl of C which is composed of the

rows 1,...,m and the columns 1,2,...,i-I, i+1,...,m+1. substract from the last column

-36-
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the first column times b1 /C 1 1 . qo C1 1 I. nce UP "we e that

c 1 1 *.cmc 111J1. Therefore 6(,-ni)(ll which finally implies that (1.11.11) is solvahle

over D. This completes the proof of the theorem.

0

Theorem 1.11.12. Let A C M (BD). Then rance (A) and ker (A) are modules in ri

and D
n  

having finite bases with r(A) and n-r(A) Plements resectlvelv. moreover, the

base of ker (A) can he completed to the base in D".

Proof. As in the proof of Theorem 1.11.7 we may assume that A = r where r is olven hv

(1.11.6). Let L
i 

= ( . in )t. Clearlv ACL,...,Acr is a basis in ranoe (A) and

r+ 
,  ,

n is a basis for ker (A).

0

Let A C Mmn(GCDD). Tf we expand any o x a minor of A bv any o - n rows,

I 4 p < q, we immediatelv deduce that

(1.11.13) (A)16 (A) for 1 4 n 4 c ( min(m,n)

Definition 1.11.14. ror A C (GCDD) denote i1 (A),...,ir(A) (rr(A)) the Invariant

factors of A.

(1.11.15) i (A) = 6 (A)/6 (A), 1f1. r(A),(() = 1)j j '-1

Then invariant factor ii(A) is cAlled trivial if ij(A) is invertible.

From (1.11.14) anA (1.11.17) wp AeAuce

Suppose that (1.11.1) is so1lahle nver n. ttycna the fAri -hAt "I Is a linear combinatinn

of the columns of A and Theorem 1.11.7 we aet a weaker version of Theorem 1.11.7.
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Corollary 1.11.17. Let A C Mn(BD). Then the system (1.11.11 is solvable over RD if

and only if

(1.11.19) r = r(A) = r(A), ik(A) 
= 

ik(A), k-i,. ..,r

Problems

(1.11.19) Let A C Mn(GCDD). Prove that

(1.11.20) AIl i1( ) .. nlA)-

-31
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1.12 Smith normal form

According to Lemma 1.10.3 and Definition 1.11.14 for A C Mmn(GCDD) the rank of

A - r and the invariant factors i(A)...Ir(A) are the invariants with respect to the

equivalence relation. It turns out the if D is elementary divisor domain then the above

invariants characterize the equivalence class of A with respect to the relation A - B.

Theorem 1.12.1. Let 0 0 A e M mn(D). Assume that D is elementary divisor domain. The

A is equivalent to a diagonal matrix of the form

(1.12.2) B = diag(il(A),...,ir(A), 0,...,0)

where r is the rank of A.

Proof. Recall that if D is EDD then D is BD. For n - I the Nermite normal form

of A is a diagonal matrix where i (A) - 8(A). So the theorem is established in this

case. Next we show that the theorem holds for m n - 2. we may assume that A is in

the Hermite normal form

A( b)

According to the Definition 1.5.1 there exist p,qx,y C D which satisfy (1.5.2).

Clearly (p,q) - (x,y) 1 1. So there exist p,q, xy such that

pp-qq xx-yy=1

Let
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Then (1.5.2) and the above equalities imply

S= VA (61 (A) g12G VAU \qg2 1  g22/

Since 61 (G) = 6 1(A) we deduce that 6 1(A) divides g12  and g2,. By applying

appropriate elementary row and column operations we deduce that A is equivalent to a

diagonal matrix

C = diag(i1 (A),d 2 )

Since 6 2(C) = i (A)d2 = 62 (A) we obtain that C is in the form (1.12.2). We now

prove the case m > 3, n = 2 by the induction on m. Let A = (a.j), i=1,...,m-1,

j=1,2. We can assume that A is in the form (1.12.2). In particular a1 1 is the g.c.d.

of all elements of A. Interchange the second row with the last one to obtain A1 . Apply

simple row and column operations on the first two rows and columns of A1  to obtain

(2) (2)
A a2 - (ij ), where a11  = i1 (A). Now use the elementary row and column operations to

obtain A3  of the form

(1.12.3) A3 = i1 (A) * A4

Since A4 has one column we bring it to a diagonal form. So A is equivalent to a matrix

r= diag(i1 (A), i1 (A4 ), 0,... ,0)

We claim that C is in the form (1.12.2). Indeed
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6 (C) = i (A)i (A4) = 62(A)
2 1 1 4 2

So

2 (A) 62 (A)
i1 (A4 ) 1 (A )  61 (A) 2(A)

For n > 3 we prove the theorem by the induction. Thus we may assume that A= (aij.i ij
i=1,...,m, j1,...,n-1 is already in the form (1.12.2). So a1 1  is the g.c.d..of all the

elements of A. Interchange the second column with the last column in A to obtain
(1). (2),

A, . (a (). Then A is equivalent to a matrix A2  (a )2 ) such that the first two
1 ij 2 ij

columns of A2  form the canonical form of A This in particular implies that

(2)=
11 = i (A). Perform elementary row and column operations to bring A2  to a matrixa11 12

A3  of the form (1.12.3). As i1 (A3 ) = i1 (A) we obtain that ,(A) divides all entries

of A4 . The induction hypothesis implies that A is equivalent to a diagonal matrix

C = iiag(ilA),i(A4),...,ir_(A4),w...,0)

It is left to show that C is the matrix (1.12.2). Indeed, as i1 (A)i (A4 ) and

ij(A 4 )Iij+1 (A4 ) we immediately deduce that

S6(C) = i (A) 1 (A 4). i-1 (A4

So

it(C) = i1 (A), ik(C) = ik_1(A4 ), k-2,...,r
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This shows that A is equivalent to the matrix B given by (1.12.2). The proof of the

theorem is completed.

The matrix (1.12.2) is called Smith normal form of A.

Corollary 1.12.4. Let A,B C Mmn(EDD). Then A and B are equivalent if and only if

A and B have the same rank and the same invariant factors.

Over elementary divisor domain the system (1.11.2) is equivalent to very simple system

(1.12.5) ik(A)ym c., k=1,..-,r(A), 0 = ck, k=1,...,m

(1.12.6) y = P-x, c = Qb

where P and Q are the unimodular matrices appearing in (1.9.14) and B is of the form

(1.12.2). For the system (1.12.5) Theorems 1.11.7 and 1.11.12 are quite obvious. We also

have

Theorem 1.12.7. Let A Mn (EDD). Assume that all the invariant factors of A are

trivial. The the basis of range (A) can be completed to a basis of Dn.

In what follows we adopt

Normalization (1.12.8). Let A C Mmn(P[x]). Then the invariant polynomials (the invariant

factors) of A(x) are assumed to be normalized polynomials.

Problems

(1.12.9) Let A = diag(p,q) E M2 (BD). Then A is equivalent to diag((p,q), -
(n,a) "

(1.12.10) Let A E Mn (D), B M (D) and assume that D is GCDD. Suppose that,m pg

either i5 (A)flit(B) or it(B)Iis(A) for s-=,...,r(A) * a, t1. r(P) * 8. Show the

set of the invariant factors of A O B is {i1 (A),...,i (A), i ( ),...,iB)).

(1.12.11) Let N c H be D modules with finite bases. Assume that D is EDD. Prove

that there exists a basis u1,...,un in N such that ilU1,...,i rUr is a basis in N

when 11, c D and ilij+1 , j=1,...,r-1.
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(1.12.12) Let N be a D module and N1 ,N2 c X be submodules. N1 and N2 are called

-1
equivalent if there exists T E Hom(M,N), T isomorphism (i.e. T 1 Hom(M,M)) such that

TN I = N2 o Suppose that M, NI and N2  have bases fu1 .- Unj, fv1 ,...,v mJ and

{w1' I.,wm) respectively. Let

n n
(1.12.13) Vi = , u, = b ,, iI ... ,m, A = (a..), B = (b)i I .au"

w i = i-"1)

Show that N1 and N2 are equivalent if and only if A B.

(1.12.14) Let N c M be D modules with bases. Assume that N has a division

property. That is if ax e N for 0 30 a c D, x C M then x c N. Show that if D is

3DO and N has a division property then any basis in N can be completed to a basis in

N.
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1.13 Applications to the ring of local anayltic functions in one variable

In this section we consider the applications of the Smith normal form to the system of

linear equations over the ring of local analytic functions in one variable in the

neighborhood of the origin. According to (1.1.13) this ring is denoted by H0. In Section

1.3 we showed that the only irreducible element in H0  is z. Let A c Mmn (H 0). Then

A = A(z) and A(z) has the McLaurin expansion

(1.13.1) A(z) = kz k

k=0

which converges in some disc Izi < R(A). Here R(A) is a positive number which depends

on A. That is each entry a.j(z) of A has convergent McLaurin series at least for

Izi < R(A).

Notations and Definitions. Let A c M mn(H 0). Then the local invariant polynomials

(the invariant factors) of A are normalized to be

ik

(1.13.3) i(A)= z , 0 i..i, r=r(A)
k 1 r

The number 'r is called the index of A and is denoted by n n(A). For a non-

negative p denote by C (A) - the number oflocal invariant polynomials of A whose

degree equals to n.

We start with the following perturbation result.

Lemma 1.13.4. Let A, . M (H ). Consider the matrix

(1.13.5) C(z) - A(z) + zk+IB(z)
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where k is a non-negative integer. Then A and B have the same local invariant

polynomials up to the degree k. Moreover if k is equal to the index of A, and A

and B have the same ranks then A is equivalent to B.

Proof. Without restriction in generality we may assume that A is in the diagonal form

i ir
(1.13.6) A(z) = diag(z 1,.. 0,...,0)

5k
Let s = [ cj(A). For t 4 s any t x t minor of C(z) = (cij(z)) which does not

j=0
contain the first t diagonal elements c1 1 (z),...,ctt(z) is divisible at least by

i1 ...+jt_ + k+1
z 1 t1 On the other hand the minor of C(z) which is composed of the

first t rows and columns of C(z) is of the form z t(1+z 0(z)).

So

(1.13.7) 6 t(C) = 6 t(A), t =

This proves

(1.13.8) it(C) = it(A), t 
= I .... s •

As s K K.(A) and is =k it follows

K (C) = K(A), j < k, K (A) Kk (C)

Interchange the roles of A and C to deduce
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(1.13.9) c (C) = (A), j -

This shows that A(z) and C(z) have the same local invariant polynomials up to the

degree k. Suppose that r(A) = r(C). Then (1.13.8) implies that A(z) and C(z) have

the same invariant polynomials. That proves that A - C.

Consider a system of linear equations over H0 .

(1.13.10) A(z)u = b(z), A(Z) c M (H ), b(z) c M (Hfmo 0 ml 0

where we look for a solution u(z) Mn I(H 0). According to Theorem 1.11.7 the system

(1.13.10) is solvable if and only if r(A) - r(A) and the q.c.d. of all r x r minors

of A and A are the same. In theory of analytic functions it is common to try to solve

(1.3.10) by the method of power series. That is assume that A(z) has an expansion

(1.13.1) and b(z) has an expansion

(1.13.11) b(z) = ) b(k)zk.

k-0

Then one looks for a formal solution

(1.13.12) u(z) = uk) zk, u
(
k) M mn(C), k = 0,1,....

jl k=O

which satisfies
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kM
(1.13.13) 0 A kju(j - b

for k - 0,1,2,.... A vector u(z) is called a formal solution of (1.13.10) if (1.13.1')

holds for any non-negative k. A vector u(z) is called (analytic) solution if u(z) is

a formal solution and the series (1.13,12) converge in some neighborhood of the origin,

i.e. u(z) E Mn (H ). We now give the precise conditions under which the system (1.13.13)

is solvable for k - 0,1,...,q.

Theorem 1.13.14. Consider the system (1.13.13) for k - 0,1,...,q. Then this system is

solvable if and only if A(z) and A(a) have the same local invariant polynomials up to

the degree q, that is

(1.13.15) K (A) K j(A), j " 0

Assume that the system (1.3.10) is solvable over H0 . Let q = T(A) and suppose that

u(O),.. .,u (q) satisfies (1.13.13) for k - 0,. ,q. Then there exists u(z) E Mnl(H 0 )

satisfying (1.13.10) such that u(0) - u(0 ) .

Let Wqc CP be the subspace of all vectors w such that w .... w(q) isa

solution of the homogeneous system.

~k
(1.13.16) A ) 0

Then

(1.13.17) dim W - n - (A)
4J-0
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In parlicular if T1 rl1(A) then for any w (0 W T1there exists w(x) C Mnj(HO) such

that

(1.13.18) A(x)w(x) =0, wCO) = wO

Proof. We first establish the theorem when A(z) is in the Smith normal form (1.13.6).

In that case the system (1.13.13) reduces to

(k-i) 1

(1.13.19)u =b ()if i s k, 0 - b M) if either i > k or s > r(A)

s sis

The the above equations are solvable for k - 0,...,q if and only if z Sdivides

b (z) for all i s q and for is > q zq+1 divides b a(Z). If i 8 q then substract

from the lest column of A the 8 - the column times b 5 (z)1is. So A is equivalent to

the matrix

A I(Z) - diag(zil.. 1 I***, 0 zq1A 2(z)' Y , 1 0 K(A), A1 £ M ( L)(n+1L9) (

According to Problem (1.12.10) the local invariant polynomials of A1(z) whose degree does

not exceed q are z ,.. .,z *So A(z) and A1 (z) have the same local invariant

polynomials up to degree q. Thus we proved that (1.13.19) is solvable for k - ,.,

if and only if A(z) and A(z) have the same local invariant polynomials up to degree

q. Assume next that (1.13.10) is solvable. since A(z) Is of the form (1.13.6) the

general solution of (1.13.10) in that case is

(z) b i~)z J=1,...,r(A), -jz arbitrary for j -r(A) +1,.n
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So

(i)
uj(0) - b , j=1,...,r(A), u.(0) - arbitrary for j-r(A) + 1 .... n

(0)

Clearly (1.13.19) implies us  - u (0) for k = is . The solvability of (1.3.10) implies
a

that bs(z) - 0 for a > r(A). So u(0 ) is not determined from (1.13.19) for s >
8

r(A). This proves the existence of u(z) satisfying (1.13.10) such that u(O) = u(0 ).

(0)Consider the homogeneous system corresponding to (1.13.19) for k - 0,...,q. So u = 0a

for is 4 q and otherwise u 0 ) is a free variable. This verifies (1.13.17). Finally as6 s

the homogeneous system (1.13.18) is solvable then for q = n(A) if w(0 ) C Wq, that is we

have a solution of the homogeneous system corresponding to (1.13.19) of the form

w(0),...,w~q) , then as we proved above (1.13.18) follows.

It is left to show that the general case can be reduced to the special one discussed

above. According to Theorem 1.12.1 there exist matrices P M n(H0 Q C Mm(H0 ) such

that

Q(z)A(z)P(z) =B(z) = diag(zi,...,zi
, 0,...,0), r r(A), P(z) Pkz

k=0

Q(z) - k lk )1, 0 0, IQOi 0.
k=O

Introduce a new set of variables

fk

v(z), V(
01

, V('),..., u(z) = P(z)v(z), u(k) 1 P v
( j)

, k = 0,1 ..... Sincet " ' .,k-j

IP0 I # 0 we can express v(z) and v ( 0 ) , v( 1 ). n terms of u(z) and uC0 ) ,

u(1), .... correspondingly. Thus (1.13.10) and (1.13.13) is equivalent to

k

B(z)v(z) c(z), c(z) Q(z)b(z), I Bk-jv(j) c k ) k01,...,q.
J=0

-49-
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Now the theorem follows since A - B and A B - (Bc) as B - QA(P * I1).

Problems

(1.13.20) Consider the system (1.13.10). This system is said to be solvable in the

punctured disc if the system.

(1.13.21) A(z0 )u(z0 ) - b(z0 )

is solvable for any point 0 < 1z01 < R (as a linear system over C) for some positive

R. Prove that (1.13.10) is solvable in the punctured disc if and only if

(1.13.22) r(A(z)) = rA(s))

That is (1.13.10) is solvable over the quotient field M0.

(1.13.23) Consider the system (1.13.10). This system is said to be pointwise solvable if

the system (1.13.21) is solvable for all Iz0l < R for some positive R. Prove that

(1.13.10) is pointwise solvable if and only if in addition to (1.13.22) the equality

(1.13.24) r(A(0)) r(A(0))

holds.

(1.13.25) Let A(z) M mn(H ). A(z) is call generic if whenever the system (1.13.10) is

pointwise solvable then it is analytically solvable (i.e. there exists u(z) £ MN )

such that (1.13.10) holds). Prove that A(z) is generic if and only if n(A) 4 1.

(1.13.26) Let A(Z) £ Mm (H1()), b(z) c M (H(Q)), 0 c C. Consider the equation
mn m-

(1.13.10). Show that (1.13.10) has a solution u(z) M nI (H(Q)) if and only if for any

* £ e) the equation (1.13.10) is solvable over H , i.e. there exists u() c M n(14

which satisfies (1.13.10). (Use the fact that H(Q)) is UDO so as in Section 1.12 one

may assume that A is in Smith normal form.)

(1.13.27) Let A(z) and b(z) satisfy the assumptions of Problem (1.13.26). A(z) is

called generic if whenever the system (1.13.10) is pointwise solvable, i.e. 1.13.21 is

-s -
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solvable for any z0 C n, then there exists a solution u(z) e M n(H()). Prove that

A(z) is generic if and only if the invariant functions (factors) of A(z) have only

simple zeros. ( is called a simple zero of f c H(R) if f(C) = 0 and f'(;) ¥ 0).

(1.13.28) Let A c M (H(O)), 11 c C. Prove that all the invariant factors of A are

trivial if and only if

(1.13.29) r(A(;)) = r(A) for all C C 9 •

(1.13.30) Let A e Mn ( f)), Q c C. Assume that (1.13.29) holds. Using Theorem 1.12.7
1m

prove the existence of n vectors x ,...,x C M Wl), such that

Ix1 (;),..., xm ()1 0 for all c a and ACn = [xI ...,xr], r - r(A).
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1.14 Strict equivalence of pencils

Definition 1.14.1. A matrix A(x) C M mn(Dx]) is called pencil if

(1.14.2) A(X) =A0 + xA1 , A0 ,A I c Mmn(D)

A pencil A(x) is called regular if

(1.14.3) A(x) E M (D[x]), IA(x) 1 3 0 

Otherwise the pencil is called singular. Two pencils A(x),B(x) C Mmn(D[x]) are called

strictly equivalent if

(1.14.4) B(x) = QA(x)P, P C UMn(D), Q C UMM (D)

We denote this relation by A(x) ; B(x).

The classical works of Weierstrass [1867] and Kronecker [18901, see also Gantmacher

[1959], classify the equivalence classes of pencils under the strict equivalence relation

in case that D is a field F.

We now give a short account of their main results. First we note that if

A(x) B(x) then A(x) - B(x) over the domain DjxI. In fact we have little more. Put
s

(1.14.5) B(x) = B0 + xB1

Then the condition (1.14.4) is equivalent to

(1.14.6) BO QAoP, B, = QAIP, P C UMn(D), Q £ UM(D)

So we can interchange A0 with A1 and B. with BI without affecting the strict

equivalence relation. Thus it is natural to consider a homogeneoun pencil
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(1.14.7) A(xo,'c 1) = xoAO + xlA1

Suppose that D is a unique factorization domain. So (e.g. Lang [1967]) D[x0,x1 ] is

UFD which implies that D[x0 ,xj[ is GCDD. So we can define the invariant determinants

k (x ,x ) and the invariant factors ik(xOXl), k = 1,...,r(A), for the homogeneous

pencil A(x 0 ,x I ).

Lemma 1.14.8. Let A(x0 ,x1 ) be a homogeneous pencil over UFD[x0 ,xlJ. Then the invariant

determinants 6k(xOX I ) and the invariants factors ik(xOxl), k = 1,...,r(A) are

homogeneous polynomials. Moreover, If 6(x) and Ikx) are the invariant determinants

and factors of the pencil A(x), k - 1,...,r(A), then

(1.14.9) 6 (X) = 6 k(1,x), i k X) = i k(1,x), k = 1,...,r(A)

Proof. Clearly any k x k minor of A(x0 ,xl) is either zero or a homogeneous polynomial

of degree k. Thus, in view of Problem 1.14.24 we deduce that the g.c.d. of all non-

vanishing k x k minors is a homogeneous polynomial 
6
k (x0 ,X). As ik(xOxl) =

6 k(x0 ,X1 )/6 k1(x ,xI ) Problem 1.14.24 implies that i k(xOx I) is a homogeneous

polynomial. Consider the pencil A(x) which is given in terms of the homogeneous pencil

A(x 0 ,x I ) as

(1.14.10) A(x) - A(1,x)

So 6k (x) - the g.c.d. of k x k minors of A(x) is obviously divisible by 6 k(1,x). On

the other hand we have the following relation between the minors of A(x0,x1 ) and A(x)

(1.14.11) A(x o x1 0x ") l] x0 , , E Qk,n
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0k XlPk xI
This shows that x 6 (-) (P - dog 6 (x)) divides any k x k minor of A(x0 ,x1 ). So

Pk x1  0
x 6 -) 6 (x0,X ). This proves the first part of (1.14.9). So

k x 0 k 01

;kPk XlI

(1.14.12) 
6 k(X 0 x) = x0 [x 0 6k(-)] ] k - deg 6k(X), k 0.

Now the equality

Ck(XX 1 = 6k(X,x l/6k (0, 1

k (x I k (x OI 16 k-1 (x ,Ix1

implies

Ok k xl
(1.14.13) i (xo,X 1 ) = x0 Ox0 ik( )], ok = deg ik(x), 'k ) 0

This establishes the lemma.

We call 
6
k(xOXl) and ik(x0,xl) the invariant homogeneous determinants and the

invariant homogeneous polynomials (fac ors) respectively.

The classical result due to Weierstrass [1867] states:

Theorem 1.14.14. Let A(x) c M (F[x]) be a regular pencil. Then a pencil B(x) is~n
strictly equivalent to A(x) if and only if A(x) and B(x) have the same invariant

homogeneous polynomials.

Proof. The necessary part of the theorem holds for any A(x), B(x) which are strictly

equivalent. Suppose now that A(x) and B(x) have the same invariant homogeneous

polynomials. According to (1.14.9) the pencils A(x) and B(x) have the same invariant

* polynomials. So A(x) B(x) over FVx]. Therefore

(1.14.15) W(x)B(x) = A(x)U(x), Ulx),W(x) c M (F[x]),
n

IU(x)I = Const 3 0, IW(x)I = Const @ 0

.-
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Assume now that A, and B1 are non-singular. Then (see Problem 1.14.25) it is rossible

to divide W(x) by A(x) from right and U(x) by B(X) from left

(1.14.16) W(x) - A(x)W 1(x) + R, U(x) = U 1(x)B(x) + P

where P and R are constant matrices. So

A(x)(W 1 (x) - U,(x))B(x) = A(x)P - RB(x)

As 1A11 B 1 1 # 0 we must have Wj(x) - Ul(x) otherwise the left-hand side of the above

equality would be of degree at least 2 (see Definition 1.14.19) while the right-hand side

of this equality is at most of degree 1. So

(1.14.17) W1 (x)U(x), RB(x) - A(x)P

It is left to show that P and R are non-singular. As W(x) is unimodular there

exists v(x) c uM (Fxi) such that I W(x)u(x).
n

Let

V(x) = B(x)V1 (x) + S

So

I (A(X)Wi(x) + R)V(x) A(X)W1 (X)V(x) + RV(x)

- A(x)W1 (x)V(x) + RB(x)Vl(X) + RS =

= A(x)W1 (x)V(x) + A(x)PVl(X) + RS

- A(x)[W 1 (X)V(x) + PV,(x)] + RS

where we used the second equality in (1.14.17). Since JA 1  0 the above equalitv

implies
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W1(x)V(x) + PV 1 (x) = 0, RS = T

So R is invertible. The same arguments show that P is invertible. Thus A(x) and

B(x) are strictly equivalent if 1A1B11 # 0.

Consider now the general case. Introduce a new variables y0 ,y1

=xy0 = +ax0 +bx1' Y = cx0 
+ 

dx 1 ad - cb 0

Then

A(y0 ,y) = y0 A0
' 
+ yIA 1

'
, B(y0 ,yl) = y0 B0 ' + YjBl'

Clearly A(y0 ,y1 ) and B(y 0 ,y,) have the same invariant homogeneous polynomials. Also

A(Y0 ,y) B(y0 ,y1 ) if and only if A(x0 ,x,) - B(x0 ,x,). Since A(x,,xl) and

B(x0 ,x) are regular pencils it is possible to choose a,b,c,d such that A, ' and B '

are non-singular. This shows that A(y0 ,y1 ) B(y0 ,y,) according to the previous case.

So A(x) ; B(x).

In fact, we also proved

Corollary 1.14.18. Let A(x),B(x) C M n(F[x]). Assume that A, and B, are non-

singular. Then the pencils A(x) and B(x) are strictly equivalent if and only if

A(x) and B(x) are equivalent.

For singular pencils the invariant homogeneous polynomials alone do not determine the

class of strictly equivalent pencils as in the case of regular pencils.

We now introduce the notion of column and row indices for A(x) Mn(F[x]). Consider

the system (1.13.18). The set of all solutions w(x) is a P[x)-module N with a finite

basis w1 (x),...,w s(x). (Theorem 1.11.12).

To specify a choice of basis we need the following definition.
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Definition 1.14.19. Let A c M mnD[xl,...,xk]l. So

A(x . xA x a A c - (D)A~x 1 . .. x k )  Q mn
Iai~d a n

(1 k k 14.2
a (a,., C Z + - il x a x ""k

i,,1

Then the degree of A(x1 ,...,xk) (deg A) is d if there exists A 0 with lal - d.

Definition 1.14.21. Let A C M (VWx]) and consider the module M c r[x]n of all
- Sn

solutions of (1.13.18). Choose a basis w1(x),...ws(x), s - n - r(A) in M such that

w k(x) £ M has the lowest degree among w(x) c M which are linearly independent (over the

quotient field of F[x]) of w1(x), ....wkl(x) for k - 1,...,s. Then the column indices

01 4 a2 (a.. 4a of A(x) are given as

(1.14.22) ak = deg wk(x), k = 1.,

The row indices 0 4 1 4...( t, t = m-r(A), of A(x) are the column indices of the
t

transposed matrix At(x).

It can be shown (e.g. Gantmacher [1959]) that the column (row) indices are independent

of a particular choice of a basis wl(x),...,ws(x). We now state the Kronecker result

[1890].

Theorem 1.14.23. The pencils A(x),B(x) c M mn(Fx]) are strictly equivalent if and only

if they have the same invariant homogeneous polynomials and the same row and column

j indices.

See for example Gantmacher [1959] for a proof of this theorem.

Problems

(1.14.24) Using the fact UFD[x1,..., cn] is UFD and the equality (1.1.26) show that if

a FD[x 1 ,...,x is a homogeneous polynomials then in the decomposition (1.3.3) each

Pi is a homogeneous polynomial.

.f -5 7 -
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(1.14.25) Let

(1.14.26) W(x) WO 
k , U(x) = Ukxk

k=0 k=0

Assume that A(x) is a pencil (1.14.2) such that A1  is a square non-singular matrix.

Show that if p,q 1 1 then

W(x) = A(x)A1
1 
[WqX

q -
l] + W(x), U(x) = [ P'I]A11A(x) + U(x)

where

deg W(x) < q, deg U(x) < p

Prove the equalities (1.14.16) where R and P are constant matrices. Suppose that

A1 = I. Show that R and P in (1.14.16) can be given as

(1.14.27) R = ) ( AW)kwk, P = k (-A0
) k

k=0 k=0

(1.14.28) Let A(x) be a regular pencil such that JAI 91 0. Prove that in (1.14.12) and

(1.14.13) = k 0, k - 1,...,n. (Use the equality (1.11.20) for A(x) and A(x,,x I )(11.2) kan Ax 0 x)

(1.14.29) Consider the following two pencils

2 +x 1+x 3+2x /2+x 1+x l+x

over R[x]. Show that A(x) and Bx) are equivalent but not strictly equivalent.
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(1.14.30) Let

A(X) = A Xk C M (CIx)
k=O

Put

qAkx x1q q-k k
A(xox I) = q

k=O

where q = 0 if A(X) = 0 and A. qf 0, Ak = 0, q < k 4 p if A(x) ¥ 0. Let ik(xO,×x1 ,

k = 1,...,r(A) be the invariant factors of A(x0,xl). Prove that ik(xOxl) is a

homogeneous polynomial, k = 1,...,r(A). Show that ik(l,x), k = 1,...,r(A), are the

invariant factors of A(x).

(1.14.31) Let A(x),B(x) C M (Cjx]). A(x) and P(x) are called strictly eallivalent
min

(A - B) if B(x) = PA(x)Q, P P M(C), Q S M (C), ((P1 IQ( 0). Prove that iF
s m n

A ; B then the A(x0,x I ) and B(x0,x I )

have the same invariant factors.

(1.14.32) Prove that the pencils A(X) and B(x) are strictly equivalent if an,I onI%- i

At(x) - Ct(x).
S

! r

l5C

4!
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1.11 Similarity of matrices

Definition 1.1S.I. Let A,P c m (D. '"he matrices A and S are calleA similar

(A q) if

(1.15.2) P = OAO-1

for some 0 c TIM ().

Clearlv the similarity relation is an ecnuivalence relation. Sn m (P) is eiviAeA to

equivalence classes which are called the similarity classes. It Is a standard fact that

each similarity class corresponds to all possible representations of some ' C Pom(S,M),

where N is a D-module havino a hasis of n elements. InAeeA, let ul...i"]' h- a

basis in M. Then T is represented hv A = (a ) C M (0)

(1.15.3) Tui = a iu', i = 1..... m

Let h be another basis in M. Assume that 0 is a unimoAular matrix which is

aiven by (1.9.). Then accordina to (1.1R.3) and the arauments of Rection 1.0, the

representation of I in the basis u1,...,u is aiven bv the matrix 5 of the form

(1.15.2).

The similaritv notion of "atrices is closelv related to the strirt Penivalenocv of

certain reaular pencils.

Lemma 1.15.4. Let A,n C , (D anA associate with these matrices the followina reaular

pencils

(1.15.5) A(X) = -A+x, P(x) =-PxT

-OnI
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Then A and B are similar if and only if the pencils A(x) and B(x) are strictly

equivalent.

Proof. Assume first that A
% 

B. Then (1.15.2) implies (1.14.4) where P = Q- . Suppose

now that A(x) B(x). So
s

B-QAP QP=I

That is P= Q- and At B.

0

Clearly is A(x) B(x) then A(x) - B(x). So we haveS

Corollary 1.15.6. Let A,B £ M nD). Assume that D is a unique factorization domain.~n
Assume that A and B are similar then the corresponding pencils A(x) and B(x) given

b (1.15.5) have the same invariant polynomials.

In case that D - F the above condition is also a sufficient condition in view of

Lemma 1.15.4 and Corollary 1.14.18.

Theorem 1.15.7. Let A,B C M (F). Then A and B are similar if and only if the

pencils A(x) and B(x) given by (1.15.5) have the same invariant polynomials.

It can be shown (see Problem 1.15.8) that even over Euclidean domains the condition

that A(x) and B(x) have the same invariant polynomials does not imply in general that

A f B.

Problems

(1.15.8) Let

0 5), B = (0 5) £ M2(Z)

Show that A(x) and B(x) given by (1.15.5) have the same invariant polynomials over

WZx). Prove that A and B are not similar over Z.
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(1.15.9) Let A(x) e M (ULD~x]) be given by (1.15.5). Let il(x),...,in(x) be then

invariant polynomials of A(x). Using the equality (1.11.20) prove that each ik(X) can

be assumed to be normalized polynomial and

n
(1.15.10) deg ik(x) = n

k1 k

(1.15.11) Let A C M (F). Show that A At.n

I

1I -62-

, r .. ..



1.16 The companion matrix

Theorem 1.15.7 shows that the invariant polynomials of xI-A determine te similariJt.

class of A. We now show that any set of normalized polynomials i1 (x),...,in(x) f UFD'x×

such that i (x) ij+1(x) , j = 1,...,n-i and which satisfy (1.15.10) are invariant

polynomials of xi-A for some A C Mn(UFD). To do so we introduce the notion of I

companion matrix.

Definition 1.16.1. Let p(x) E D[x] be a normalized polynomial

p(x) = xm+ alxm-'+...+am

Then C(p) = Cci) m C M (D) is called the comoanion matrix of p(x) if
iji1 m ___________

(1.16.2) cj 6 (i+1)j , i = 1...m-l, j = .m, Cmj = -am_j+, j .

Lemma 1.16.3. Let p(x) c UFD[xl be a normalized polynomial of degree m. Consider te

pencil C(x) xI - C(p). Then the invariant polynomials of C(x) are

(1.16.4) i(C) ...=im_1(C) = 1, im(C) = p(x)

Proof. For k < m consider a minor of C(x) composel of the rows 1. k and colun-r

2,...,k+I. Since this minor is the determinant of a lower triangular matrix with -1 0?,

the main diagonal we deduce that its value is (-1)k So (C(x)) 1, k = .....k

This establishes the first equality in (1.16.4). Clearly, l (C(x)) IxI-Cl. Exrani t'
0

determinant of C(x) by the first row and use the induction hypothesis to prove

1j IxI-CI = p(x). This shows im(C) = (C) / m I (C) = p(x).

Using the results of Problem 1.12.10 and Lemma 1.16.3 we aet

Theorem 1.16.5. Let p.(x) C UFD~xj, b 1. k he nor-alinei polynomial,

degrees such that p,(x)lrj+l(x), i 1.,-1. Consider the matrix
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k
(1.16.6) C(P,...pk) = * C(p.)

j=1

Then the non-trivial invariant polynomials of xI - C(pl1,..,pk) (i.e. those polynomials

which are not the identity element) are p1 (x),...,pk(x).

Combining Theorems 1.15.7 and 1.16.5 we obtain a canonical representation for the

similarity class in Mn(F).

Theorem 1.16.7. Let A C M (F) .a, assume that pj(x) £ F[x], j 1,...,k are the non-

trivial normalized polynomials of xI-A. Then A is similar to C(pl,...,pk).

Definition 1.16.8. For A C M n(P) the matrix C(Pl,...,pk) is called the rational

canonical form of A.

Let D be an integral domain and denote by F its quotient field. Let A C M(D).

So A C M (F) and let C(Pl.'pk) be the rational canonical form of A. We now examinen

the case when A(p, . ... ,pk) C Mn(D). Assume first that D is UFD. Let 6k be the

g.c.d. of k x k xI-A. So 6k divides a minor of p(x) = (xI-A)[IMJ], , = (1,...,k}.

Clearly p(x) is a normalized polynomial of degree k. Recall that D[x] is also UVD.

(See Section 1.4.)

According to Theorem 1.4.12 the decomposition of p(x) into irreducible factors in

DIx] if of the form (1.4.9) where a 1 1 and each qi(x) is a non-trivial normalized and

irreducible polynomial in D[x]. Since 6 k is a product of some irreducible factors of

p(x) then either 6. = 1 or 6 is a non-trivial normalized polynomial in D[x]. The
k k

same argument shows that i = 6 k/6k- is either identity or a non-trivial polynomial in

D[x]. Thus we demonstrated.

Theorem 1.16.9. Let A C M (D). Assume that D is a unique factorization domain. Theni -- n
11 the rational canonical form C(Pl,...,pk ) 

over the quotient field F belongs to Mn(D).

In particular, we have

Corollary 1.16.10. -Let A C M n (C[x 1 ,...,xm]). Then the rational canonical form A

belongs to Mn(C[x ... ,xnJ).
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Using the results of Theorem 1.4.13 we deduce that Theorem 1.16.9 applies to the ring

of analytic functions in several variables although this ring is not UD (see Section

1.3).

Theorem 1.16.11. Let A Mn (H(Q))(l C ?). Then the rational canonical form of A over
n

the field of meromorphic functions belongs to Mn (H(Q)).

Problems

(1.16.12) Let p(x) C UFD[x] be a normalized non-trivial polynomial. Assume p(x) =

P1 (x)P2 (x). where pi(x) is normalized non-trivial polynomial in UFD[x for i 1,2.

Using Problems 1.12.9 and 1.12.10 show that xI - C(PlP 2 ) given by 1.16.6 has the same

invariant polynomials as xI - C(p) if and only if (plP 2 ) - 1,

(1.16.13) Let A C M (UFD) and assume that pl(X),...,pk(x) are the non-trivialn

normalized invariant polynomials of xI-A. Let

m ijm
(1.16.14) pj(x) [ 1 (x)] l ...[p ( ,  j W ,

where o1 (x),...,- (x) are non-trivial normalized irreducible polynomials in UFD[x] such

that bpi,j 1 for i # j. Prove that

ik ik i(k_1). i 0

(1.16.15) Xk
i [~ * i j =1

m~

ThepolnomalsP i, for mu > 0 are called the elementary divisors of ,.I-A. Using

i ij
the above problem show that xI-A and xI-E where

m i
.

( 1 .1 6 .1 6 ) C = m ( r

mij>O

have the same invariant polynomials. Thus over a field F A E. Sometimes E is called

the rational canonical form of A.
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1.17 Splitting to invariant subspaces

Let V be a vector space of dimension m over a field F. Denote by L(V] the

vector apace of all linear transformations T V + V. That is

(1.17.1) L(V) = Hom(V,V]

Let T E L(V). As we pointed out in Section 1.15 the set of all matrices A Mm(F) which

represent T in different bases is exactly an equivalence class of matrices with respect

to the similarity relation. Theorem 1.15.7 shows that the class A is characterized by

the invariant polynomials of xI-A for some A E A. Since xI-A and xI-B have the same

invariant polynomials if and only if A B we define.

Definition 1.17.2. Let T c L(V) and let A C M (F) be a representation matrix of T in

mm
a basis ul,...,um given by the equality (1.15.3). Then the invariant polynomials

Pl(X),...,P(x) of T are defined as the invariant polynomials of xl-A. The

characteristic polynomials of T - is the polynomial JxI-AI.

The fact that the characteristic polynomial of T is independent of a representation

matrix A follows from the identity (1.11.20)

(1.17.3) IxI-AI = Pl(X)...pxlx)

where P1 (x),.Pk(x) are non-trivial invariant polynomials of xI-A. In Section 1.16 we

proved that the matrix C(P1 ,.. .,Pk) is a representation matrix of T. In this section we

shall consider another representation matrix A of T which is closely related to the

matrix E (1.16.16). This form will he achieved by splitting V to a direct sum

( (1.17.4) V - U 0 9

where each U is an invariant subspace of T.

Definition 1.17.5. A subspace U C V is an invariant subspace of T if
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(1.17.6) TU c U

U is called trivial if U - 0]. U is called proper if U c V. U is called irreducible

if U cannot be expressed as a direct sum of two non-trivial invariant subspaces of T.

Thus if V splits to a direct sum of non-trivial invariant subspaces of T then a

direct sum of matrix representations of the restrictions of T to Uj gives a

representation matrix of T. So, a simple representation of T can be achieved by

splitting V to a direct sum of irreducible invariant subspaces. To do so we need to

introduce the notion of the minimal polynomial of T. Consider the linear operators

2 2
ITT

2
,

.  
Tm , where I is the identity operator (Ix-x). Since the dimension of L(V)

is m
2  

these + 1 operators are linearly dependent. So there exists an integer q

such that I,T,...,T
q
-l are independent and I,T,...,T

q  
are linearly dependent.

Definition 1.17.7. A polynomial *(x) e F[x] is called the minimal polynomial of T if

(x) is a normalized polynomial of the smallest degree satisfying

(1.17.8) i(T) - 0

Here

O(T) c i Oi iXE(T) ciT[ *(x) = [ cix c F[xI

and 0 is the zero operator (0x-0). By the definition deg 1 ) 1. The minimal

polynomial is characterized by the following property.

Lemma 1.17.9. Assume that T annihilates € £ F~x]. That is O(T) = 0. Then ,Jk.

Proof. Divide * by

0(x) X(x)=(x) + p(x), deg P < deg
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Now (1.17.8) and the assumption of the lemma imply that p(T) = 0. As deg p < deg *J from

the definition of the minimal polynomial we deduce that p(x) = 0.
0

Since F~x] is a unique factorization domain, let

(1.17.10) ip(x) = I(x) **~(x) sr',~. 1, for 1 4 i1 j 4 X.,

where each 2.(x) is a normalized irreducible polynom ial in F[x].

Theorem 1.17.11. Let (x) be the minimal polynomial of T. Assume that Jsplits to a

product of co-prime factors as given in (1.17.10). Then the space V splits to a direct

S.

sume (1.17.4) where each U.i is a non-trivial invariant subspace of T. Moreover Ip1 (x)

is the minimal polynomial of the restriction of T to U..*

The proof of the theorem follows immediately from the lemma below.

Lemma 1. 17.12. Let , be the minimal polynomial of T. Assume that ~,splits to a

product of two co-prime factors

(1.17.13) O~,x) I = i(1 2(xW, deg ip ' i, 1 1,2, 1' 2 1

w here each 
is normalized. 

Then

(1.17.14) V =U 1 * U2

where each U.i is a non-trivial invariant subspace of T and W is the minimal

polynomial of~ the restriction of T to U J,

Proof. The assumption of the lemma imply the existence of polynomials 0 x) and 0 (x)

1 2

sucht that

(1.17.15) a1(x)I (x) + 62 (X)J2 (x) 1*
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Define

(1.17.16) U ( {ulu C V, (T)u - 01, J - 1,2

Since any two polynomials in T commute, i.e.

L(T)V(T) - v(T)ij(T)

we clearly have that each Uj is an invariant subspace of T. The equality (1.17.15)

implies

I = e(T Ie(T) + 2 (T) 2 (T)

That is, for any u C V we have

U UI + u2 , u M 2 (T)M2 (T)u C UIU 2 - W1 (T)eI(T)u c U2

So

U 1 + U2  -V

Suppose that u C UI  U2. Then

(T)u = 2 (Tu 
0

Thus

4 aI(T)6ITu = 2 (T) 2 (T)u 
0
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Finally

u = [B 1(T)p 1 (T) + 02 (T) 2 (T)lu = 0

which proves that U1 I U2 = (01. This establishes (1.17.14). Let Tj be the restriction

of T of U. By the definition of U. (1.17.16) T. annihilates ;. Let be the

minimal polynomial of T. So 1jiS,, j 
= 

1,2. Now

3 in

4(T) (T)u = ,(ThJ, (T)(u + u,) = ,(T)IP (Tu, + i,(T)4, MTu =0
1 2 1 2 1 2 2 1 1 1 2 2

Therefore (1.17.14) yields that T annihilates 2 Since i(x) is the minimal

polynomial of T we have iS 1 2I21, J2
• 

This finally implies 4, . jj = 1,2. Also as

deg 1, ) 1 it follows that dim U.3) 1.

Problems

(1.17.17) Assume that (1.17.14) holds, where TU3 - U3, j = 1,2. Let ? be the minimal

polynomial of the restriction of T to Uj, J = 1,2. Prove that the minimal polynomial

of T is equal to 1I2 /( i, I,2p).

(1.17.18) Let the assumptions of Problem (1.17.17) hold. Assume furthermore that =

where ; is irreducible over F(xl. Then either = ip1 or V = .' .

(1.17.19) Let C C(p) £ M (D) be the companion matrix given by (1.16.2). Let
m

Ci = (Sill .... 5Im t' i 1 1 ...... , be a standard basis in Di. Show

(1.17.20) C£i  = - i = I ..... n (C0 = 0)i i-I am-i+1 €m'

Prove that p(C) = 0 and that any polynomial 0 ' q(x) t D:x, ea q < m, is not

annihilated by C. (Consider q(C)£. and use (1.17.20).l That is p(x) is the minimal

polynomial of C(p).
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(1.17.21) Let A c M (F). Using Theorem 1.16.7 and Problems 1.17.17 and 1.17.19 show thia
m

the minimal polynomial , of A is the last invariant polynomial xI-A. That is

(1.17.22) P(x) - IxI-Al/6 (x)

where 6 M_(x) is g.c.d. of all (m-i) x (m-1) minor of xI-A.

(1.17.23) Show that the r-sults of Problem 1.17.22 apply to A C M (UFD). In particular

if A B then A and B have the same minimal polynomials.

(1.17.24) Deduce from Problem (1.17.21) the Cayley-Hamilton theorem which states that

T c L(V) annihilates its characteristic polynomial.

(1.17.25) Let A E M (D). Prove that A annihilates its characteristic polynomial.m

(Prove this result by considering the quotient field of D.)

(1.17.26) Use Problem (1.17.24) and Lemma 1.17.9 to show

(1.17.27) deg i 4 dim V

(1.17.28) Let U, = ;s where is irreducible in F[x] and assume that deg . = dim V.

Use Problem (1.17.18) and (1.17.26) to show that V is an irreducible invariant subspace

of T.

(1.17.29) Let p(x) e F[x] be a non-trivial normalized polynomial such that 1, = -s

where P(x) is irreducible in Fix]. Let T C L(V) be represented by C(p). 'se !roble.

(1.17.28) to prove that V is an irreducible invariant subspace of T..1 (1.17.30) Let T c L(V) and let E be the matrix given by (1.16.161 which is determinei

by the elementary divisors of T. Using Problem (1.17.29) prove that the representation

E of T corresponds to a splitting of V to a direct sume of irreducile invariant

subspaces of T.

(1.17.31) Deduce from Problems (1.1'.28} a,A (1.1-.301 t!'at V ., a"r

invariant suhspace if and only if the minimal n or',.A', s, ',,, t!" AFSU-- 'ti¢':
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1.18 An upper triangular form

Definition 1.18.1. Let M be a D-module and assume that T e Hom(M,M). A C D is called

an eigenvalue if there exist 0 # u C M such that

(1.18.2) Tu = Xu

The element (vector) u is called eigenelement (eigenvector) corresponding to A. An

element 0 ' u is called generalized eigenelement (eigenvector) if

k
(1.18.3) (I-T) u = 0

* for some positive integer k where X is an eigenvalue of T. For T E M (D) A isd m

called eigenvalue if (1.18.2) holds for some 0 # u e D
m . 

The element u is called

eigenelement (eigenvector) or generalized eigenvector if (1.18.2) or (1.18.3) holds

respectively.

Lemma 1.18.4. Let T e M (D). Then X is an eigenvalue of T if and only if X is a

root of the characteristic polynomial IxI-TI.

Proof. Let F be the quotient field of D. As (1.18.2) is equivalent to

(XI-T)u = 0

by the definition u 3 0, so the above system has a non-trivial solution. Therefore

IAI-T = 0. That is A is a root of the characteristic polynomial of T. Vice versa, if

m
1AI-TI = 0 then the above system has a non-trivial solution u c F . Clearly au, a C D

also satisfies the above equality. Choose a # 0 such that au C D . Thus A is an

eigenvalue of T.

Theorem 1.18.5. Let T C M (D). Assume that the characteristic polynomial of T splits

to linear factors over D
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m

(1.18.6) IxI-TI = n (x-)' Xi C D, i = 1.m
i1

Suppose that D is a Bezout domain. Then

(1.18.7) T QAQ
-

, Q £ UM (D)m

where A = (aij)m, is an upper triangular matrix (i.e. aij = 0 for J < i) such that

a1 1'...,amm are the eigenvalues X 1...,Xm appearing in any specified order.

m
Proof. Let X be an eigenvalue of T and consider the set of all u c D which

satisfies (1.18.2). Clearly this set is a D-module X. According to Lemma 1.18.4 N

contains non-zero vectors. Assume that D is BD. Then according to Theorem 1.11.12 N

has a basis ul,...,u
k  

which can be completed to a basis ul,...,um in EP. Let

(1.18.8) Tu
i 

= mb u i 1I....m, B (bi) C M (D)
jji m

A straightforward computation shows that T B.

As Tu Xu 
i , i 1,...,k, we have that b11 = A and bjl - 0 for j > 1. So

IxI-TI IxI-Br - (x-X)xIZ-B, (b ), ij 2,...,m

6 where the last equality follows by expanding IxI-BI by the first column. So IxI-BI

splits over D. Using the induction assumption B - A, where Al is an (m-1) x (m-i)

upper triangular matrix with the eigenvalues of B on the main diagonal of A1  appearing

in any prescribed order. This establishes the theorem.
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Clearly, the upper triangular form of A is not unique unless A = al. See Problem

1.18.9. In what follows we shall use the definitions given below.

Definition 1.18.9. Let T e M (D) and assume that (1.18.6) holds. Then the spectrum ofm

T - 0(T) is defined to be the set

(1.18.10) O(T) = { I. I

mi denote the multiplicity of X., that the number of times that X. is appearing in

O(T). The eigenvalue A, is called algebraically simple if m. = 1. Let A1 .  A be

all the distinct eigenvalues of T. That is

£
(1.18.11) 7 mi  m, A. o(T), i = ,. £

i=1I 1

B 0d(T) we denote the distinct spectrum of T

(1.18.12) 0 (T) = (A . }

Problems

(1.18.13). Let Q correspond to the elementary row operation described in Defini-ion

1.10.11 - (iii). Assume that A is an upper triangular matrix. Show that if j < i

then QAQ
- I 

is also an upper triangular matrix.

(1.18.14) Prove that if T C M (D) is similar to an upper triangular matrix A C Mm(D)
m

then the characteristic polynomial of T splits to linear factors.

(1.18.15) Let T C. M (D) and put
.~ m

(1.18.16) IxI-TI xm + [ am jx]
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Assume that the assumptions of Theorem 1.18.5 hold. Show that

(1.18.17) ( 1 )k a = I T[Qal] = Sk Am)

k,m

where Sk(Xl,...,m) is the k-th symmetric polynomial of x l , ... ,xm . The coefficient

-a 1  is called the trace of A(tr(A)). That is

m m
(1.18. 18) tr(A)- ) ai =

i-l i=l

(1.18.19) Let T C M (D) and suppose that the assumptions of Theorem 1.18.5 hold. Assume

that D is OrD. Using the results of Theorem 1.18.5 and Problem 1.17.23 prove th,.t the

minimal polynomial *(x) of T is of the form

(1.18.20) *(x) - R (x- ) , M A for i # J, 1 4 si 1 mi, i,j - I . .
i-I.

where a d(T) - {(A,...'A 1. (Hint: Consider the diagonal elements of *(A).)

(1.18.21) Let T C M (UFD) and assume that the minimal polynomial of T is given by

(1.18.20). Using Problem 1.17.21 and the equality (1.17.3) prove

£ m
(1.18.22) IxI-TI R U (x-AX) ' Ai A for i J, i,j = 1..

i-1
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1.19 Jordan canonical form

Theorem 1.18.5 and Problem 1.18.14 shows that T c M (D) is similar to an upper
m

triangular matrix A if and only if the characteristic polynomial of T splits to linear

factors. Unfortunately the upper triangular form of T is not unique. In case that D is

a field there exists an upper triangular matrix A which depends only on the eigenvvalues

of T and this matrix is essentially unique. For convenience we state the theorem of an

operator T c L(V).

Theorem 1.19.1. Let T C L(V). Assume that the minimal polynomial (x) of T splits to

a product of linear factors as given in (1.18.20). Then V splits to a direct sum of non-

trivial irreducible invariant subspaces of T

(1.19.2) V = W e---ew1 q

In each subspace W it is possible to choose a basis consisting of generalized

eigenvectors xl,...,x
r  

such that

(1.19.3) Tx
1  = )0x

k+1 k+1 k
(1.19.4) Tx =Ax + x , k 1,...,r - 1

where X0 is equal to A. for some i and r 4 s. (in case that r = 1 (1.19.4) is

void). Moreover for each X., i 1,..,,£, there exists an invariant subspace of W

whose basis satisfies (1.19.3) - (1.19.4) with = and r = si .

*I Proof. Assume first that the minimal polynomial of T is of the form

s
(1.19.5) W(x) = x

So T
s  

0 and T
s
- 1 0. Let x '

1  
In1

= ,...,x span the range of T
-

. -76-



TS-I [x 11,...,x
n

In en
In particular x

I 
,.. ,x 1 are linearly independent. Let x 1 be the pre-

images of ...,x for the map Ts81 : V * V. So

Te- xJ x x J, j 1,...,n I

Denote

x(s-k)j = TkxsJ, k - 1,...,s - 2, j

As = 0 we have Tx1 J 
- 0, j - 1,...,n I. The two equalities above are equivalent to

(1.19.6) Tx1 J = 0. Tx(k+l)j . xk j, k -1,...,s , j1,...,n1

in, sn1

We claim that x1,...,x ...,x ,...,x are linearly independent. Indeed, suppose

that

i- i-i
I[ I aljx l  0

i-l J-=l

Apply T
s
-
1 

to this equality. The (1.19.6) yields

a si 0

A s 1  en1  0.Nxtapl -e 2

As x11...,x are linearly independent a., ... a n 0. Next apply T to

Obtain 
5 s1)1 -. )nl = 0. Continuing in the same manner we deduce that
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x j i 1. S, j = 1,...,n are linearly independent. Assume now that we have found

linear independent vectors

x i = 1,..,s-r+1, j = mr1+1,. mr, r = 1,.,p

(1.19.7)

m m0 =0, m r = n1+...+nr, t n 1,. 1p n> 1, n 2  -0,...,n p 0,

for 1 4 p , s such that (1.19.6) holds for k = 
1,00.,s-r, j = mr 1+1...,mr,

r 1,...,p and

(1.19.8) Ts-p= V tx1 1 ... Im . , pm , x1(m1 +1). lm2 .

(P-1)(M11+1) (P-1)m 2  1(m 1+1) lm
x ,...,X ,**o, 1 p . p1

For p = s we found the needed basis of V. For p < a consider the subspace VsP 1 =
lm ,(1~)1 (p+l )mI  1 (rap,+1) Ima

TS-p-1V. Clearly x11 ,...,x' ,.. ,...,x ,...,x ,...,x ,

x (m 1+1) x belong to Vs-pi* Recall that these vectors were assumed to be a

linearly independent. If the above vectors span V.-p_1  put rp+1 = 0, mp 1  mp.

Otherwise, let

11m (,+). ml 1(mp_+1) mp

Vs-p-1 Ixl m x(ll .p.1  a, l+) 1x

'i2(mp , I ),. 2m , xl(mp+l), . xl p lx ,. . x ,, ., l  + 1

Since Tx j F Vsp, = mp + 1,...,mp+1  In view of (1.19.8) and (1.19.6) we can

assume that Txl J = 0, j mp + 1,...,mp+I  (by addinq to xlj  a linear combination of

vectors appearing in (1.19.7)). Denote x(s=P) J  the pre-images of xl j  for the map

S-p-2.
T :V +V for j -ml.. Also let ~Pki=I

Thus (1.19.6) holds for k - 1. s-r, j = mr1+i,...,mr, r = 1,...,p+l. We claim that
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the vectors appearing in (1.19.7) for r I,...,p+I linearly independent. This follows

by applying T a-P',...,T1, T
0 

- I to the given vectors and using the identities (1.19.6)

for all the involved vectors and taking in account that the vectors which span Vs-p,1 are

linearly independent. For each p such that mp > mp_1 let

E 1 j ,  x2j ... .x($-p 1)j 1 -M - + 1 m .

So (1.9.3) - (1.9.4) holds for X0 . 0 and r - a-p+1. As all x"
, 
i -

j .r-1 + l"'..'mr* r - 1,...,s, the equality (1.19.2) holds. Also m I - nI > 0 and

dim W I - a. It is left to show that Vj is an irreducible invariant subspace of T. From

the equalities (1.19.6) we get that if x 
(e

£
p )j 

e U, where U is an invariant subspace

of V then x e U for k - a-p~l,...,lo So U - Vj and Wj is irreducible. This

prove. the theorem in case that the minimal polynomial of T is of the form (1.19.5).

Assume that the minimal polynomial of T is of the form (1.18.20), According to Theorem

1.17.11 V splits to the direct sum of non-tt.vial invariant subspaces (1.17.4) such that

the minimal polynomial of Tj - the restriction of T to Uj is (x-A)
s . 

Call

-~ -j * j•u uj =I... .

Tj A jI Q % Ui UJI

Clearly, the minimal polynomial of Qj is xs J . So we can apply our results for Qj,

j - 1,...,L. This immediately implies the theorem.

Let H(n) be the following n x n matrix

(1.19.9) H(n) - (hij) h 6(i+)j

That is H(n) is 0-1 matrix of the form
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0 1 ..... 0 0

H(n)=

0 0 ..... 0
(0 0 0 ..... 0 0

We shall also denote H(n) by Hn  or simply H in case that the dimension of H is well

defined. Let V = (v,...,v
r I when v

i 
= x

r - i +
, i = 1,...,r and xl,...,x

r  
satisfy

(1.19.3) - (1.19.4). Then in this basis T is represented by a Jordan block XI + H of

dimension r. Thus Theorem 1.19.1 implies:

Theorem 1.19.10. Let A C M (F). Assume that the minjimal polynomial 4(x) of A splits

to linear factors as given in (1.18.20). The there exists a non-singular matrix

P C M (F) such that
n

1i q

P-Ap = J, J = * (XiI(m. ) + H(mi))

(1.19.11) i=1 j=1

1 m. mii i i l for i j
g iq.- 1 ii i

Definition 1.19.12. The matrix J appearing in (1.19.11) is called the Jordan canonical

form of A(T). The polynomials

(1.19.12) C. (x) = (x-X i ) ji

are called the elementary divisors of A(T).

Remark 1.19.13. In case that the minimal polynomial of A does not split to linear

factors in F we can find a finite extension field K such that splits in K. Then

(1.19.11) holds for P E M (K). e shall refer to J as the Jordan canonical form of A.~n

Y Theorem 1.19.14. Let A C Mn (F). Assume that the minimal polynomial of A is of the form

given by (1.1S.20). The the elementary polynomials of A are the elementary divisors

of xI-A defined in Problem 1.16.13. That is, put



.iq .+ in 0, ,

Then the invariant polynomials i1(X),...in(X) of xI-A are given by the equalities

z m (n 1)
(1.19.16) i Cx) = I (x-A i) , r 1,...,n

In particular if Pl(x) ... ,pk(x) are the non-trivial invariant polynomials of xI-A then

m mij '
(1.19.17) Pk.j+l(x) 0 n (x-Xi)  J - 1,...,k

.I1

Proof. Assume first that A - A 1(m) + H(m) . Then for 1 4 k 4 m-1 the minor of

xI-A composed of the rows 1,...,k and the columns 2,...,k+ is equal to (-I) k . So

mthe first m-1 determinant invariants are trivial. Also 6 (xI-A) = IxI-Aj - (x-A
m 0

Hence

X. i m i
xI-A - xI-J - 0 diag(l,...,1, (x-XA) ii)

i-i J-I

Applying the results of Problems (1.12.9) - (1.12.10) we deduce the equality (1.19.16).

Clearly (1.19.16) is equivalent to (1.19.17).

0

This theorem shows that the Jordan canonical form of A(T is unique up to

permutation of Jordan blocks.

Problems

(1.19.18) Show directly that to each eigenvalue A of a companion matrix C(p)
0

n-i t
corresponds one linear independent vector of the form 0
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(1.19.19) Let A e M (C). Assume that X C 0(A). Let UI,U 2 c C
n 

be the subspaces ofn

all eigenvectors of A and At respectively corresponding to X. Show that there exists

bases xl,...,x
m  

in U, and yl,.,.,ym in U2 such that (yi )txJ = ij,

i,j = 1. m.

(Hint Assume first that A is in the Jordan canonical form.)

(1.19.20) Let

Ax Xx, A ty = Py, A c M (C), 0 ' x,y E C
n

n

Show that if X Pi then ytx = 0.

(1.19.21) Verify directly that J annihilates its characteristic polynomial. Using the

fact that any A C M (F) is similar to its Jordan canonical form over a finite extension0

field K deduce the Cayley-Hamilton theorem.

(1.19.22) Let A,B C M (F) show that A B if and only if A and B have the samen

Jordan canonical form.

1
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1.20 Some applications of Jordan canonical form.

Definition 1.20.1. Let A C M (F) and assume that IxT-Al snlits in 1. L~e '-eq.'

eienvalue of A. Then the number of factors of te omr (x-X a s'ri1e, i n e i-i-a'

polynomial 4? (x) of A is called the index of A anM is denote lhv index (In). -v o

number of linearly independent elaenvectors of A corresoondina to In Is calleA tl

aeometric multiplicity of At.

tsina the results of the previous section we ret

Lemma 1.20.2. Let the assumptions o
' 

Inefinition 1.2M.1 Iole. "en index ( I 14 t"

size of the largest Jordan block corresnondina to A (i.e. of t1 e for' VT4.U and tl*,p

aeometric multiplicitv of An is the number of the Jnrsan hloces corresonAionc to An

which appear in the Jordan canonical form of A.

Let T C I.(V), X c o() and consider invariant suhaaces
0

(1.20.3) X - {xlx £ V, (A _,)rx - n1, r - 0,,.

Usina the decomrosition (1.19.21 and the definition of .Jordan form of T we o'tai

Theorem 1.20.4. Let T c L(V) and assume that \ is an eioenvalue of -. let I ex

M > ) in... m ) Ic he the dimensions of all 'ordan "locks eorrepann.lno to 1 wif
I0

appear in Jordan canonical form of '. Then

(1.2n.5) aim Xr = min(r,im , r = 0,,.

I In particular

(1.2.~) 01 ~ z'C ' *. 'C 'Cinde'c (\n)

X2 X -

A ______
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Thus (I . 20.61 a1ves \et another characterization of the index of A Also note in view of

Definition 1.18.1 each Xz consists of generalized eigenvectors of T.

Definition 1.20.7. An oierator T : L(V) is said to have a simple structure if there

exists a basis in V wich consists entirely of eienvectors of T. That is any

representation matrix A of T is diagonable (i.e., similar to Q diagonal matrix).

For such T we must have = X. Theorem 1.19.1 yields.

Theorem 1.20.8. Let T z L(VI. Then T has a simple structure if and only if the minimal

polynomial y of T splits to linear factors such that any two factors in ' are

relatively prime. That :s the index of any eigenvalue of T equals to I.

Definition 1.20.9. Let T - Hom(M,M) where M is a D-module. T is called nilpotent

if T
s 
= 0 for some positive integer s.

We need in the sequel the followini result.

Theorem 1.20.10. Let T c L(V) be nilpotent. Assume that U is a non-trivial invariant

subspace of T such that

(1.20.11) TV _ U

Then it is possible to split V to the direct sum of invariant subspaces (1.19.2) and to

choose in each invariant subspace W i basis yil...,y
i r i  

s atisfying (1.19.3) - (1.19.4)

ii ir
(withN 

= 
0) such that the vectors r, ... y ,r-1 ' r. ri, I I. form a

basis in U.

Proof. The proof of the theorem is a modification of the proof of Theorem 1.19.1 and we

point out the chanoes one needs to make. Let x'
j
, i = 1,...,s-r+1 = mr_1+1,...,mr, r

1. s be a basis of V satisfyin,, (1.10.6). Then the condition (1.20.11) implies

x U, i .1 ...,s-r, j . 1.s-1. We choose now the vectors

"01
x in the followino way. The vectors x

1 1 .... x are picked up to satisfy in addition

1, S-I[x , n I (n' =0 if T 
=

• i -84-
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We claim that the vectors x can be chosen in each stige to satisfy also

TSP U  11 1mI  .  (P-1) (p-1)m 1  pn
T U= rx ...,

x  
x,, l...,x , Xple., 

x  
,,

1(mp2 +1) Im 2(m p-2+1) 2(mp2 +n'p-1

1(mp_+n')-x P- p p

where 0 n' n . (If n' 0 then x -Pu). Suppose we already proved

the claim for q = p-1. Let

ii- T _ U  [x11 ImI  ,x(PI)1 (p 1m 1n

T , 
x 

.... x ...
(m p 2 +I) Im p 1  2(m p -+1) 2(m p-2+n; _) I

x .... 0,z .. x ... ,x ,Y ... ,y]

As in the proof of Theorem 1.19.1 we may assume that Ty = 0, j = 1. t. To finish the

proof we have to show that the vectors x
12

, i = 1,...,p-r+1, j = mr1 +1,...,mr'

r = 1,...,p-, yl,...,yt are linearly independent. Suppose that these vectors are

linearly dependent. Applying T to the vector in question and using the fact that x
ij

are linearly independent we deduce that x 1,...,xxlm1 x
I
(m

I
+
I  

x lm ,

y ,...,yt have to be linearly independent. This is impossible since these vectors are

part of the basis vectors for Ts-P. So t 4 n and we can choose vectors(m_+np )

x
(m p - + ,

...
,
x p-

1
P such that the first n' vectors coincide with yl,...,y The

equality (1.20.12) establishes the theorem.

f .5
0
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tnow

1.21 The equation AX - XB - 0.

Let A,B C M (D). A possible way to determine whether All B over MnCD) is to
n n

consider the matrix equation

(1.21.1) AX - XB = 0

Then A B if and only if there exists a solution X such that lXi is an invertible

element. If we consider X as a column vector X composed of n columns of X then the

equation (1.21.1) has a simple form in the tensor notation (e.g. Marcus-Minc [1964], see

also Problem 1.21.17)

t

(1.21.2) (I 8 A - B 0 I)X = 0

Thus is D is a Bezout domain then the set of all X Mn(D) satisfying (1.21.1)

form a D-module with a basis X ,...,XV, (Theorem 1.11.12). So any matrix X which

satisfies (1.21.1) is of the form

V
X i tX xt c D, i =1,...,i-1

Thus it is "left" to find whether a function

V
6(x1 .... ,x) = I xixil

has an invertible value. In such a generality this is a difficult problem. A more modest

task is to find the value V and to determine if 6(x ,...,x ) vanish identically. For

that purpose it is enough to assume that D is actually a field F (for example the

quotient field of D). Also, we may replace F by a finite extension K in which the

characteristic polynomials of A and B split to linear factors. Finally, we are goino

to study slightly more general case

-86-



A CM (K), B M (), X C M (K)

Let *J(x) and (x) and J and K be the minimal polynomials and Jordan canonical

forms of A and B respectively.

*(x) =(-ll...lx-A ) Xt VE A for i ,

t t
I k

'P(x) - (x- I1 ) ...(x-I ) 0 I for i € j
(1.21.3)

P k - K -= J
k P L0'IBQ - K - 1 • K1, K, " (M • (ln ) + Hlntl), lcntpl(.<l ti

J~j j

Lot

y = CY), C Mm (K), = p'lx i,..L, -,..,

Then the syste (1.21.1) is equivalent to

( )Y - .

We partition Y conformally to the partion of J and X as given in (1.21.3). So

q i p
Y = (Y IJ 1

) Yije m tn (K), M" m nir nJ n jrp = .. 
m  

..

Sr-1 r.1

Thus, the matrix equation for Y reduces to Ik matrix equations

(1.21.4) JtYij - YJKJ - 0, i1...##- 1,...,k

The following two lemma analyze the equations ( 1.21.4]).

Lemma 1.21.S. Consider a matrix equation 1.21.4 for some choice-o~f 1 4 1 4 X and

14(j (k. If A1 I jj the_n Yij-" O

Proof_. Put q

t! 
Pi

XJ,=U ~ + iiJ, K 0= H(nm)

r-1

Ip -87 -
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Note that J.u= K.v 0 for u m n. and v ) n Then (1.21.4) becomes

(A i- )Y - -JYiJ + YjKJ

Thus

i 2 Y i i i )y ij 
+ (Ai-Pj)YjK j

= -Ji (-J iYj + Y jKj) + (-JiYij + Yij K )K -

- 2 + 2(-J )2Yj +2(-J )Y Kj + y jK 2 •

i )Yij + (5i )yiiKi + ij i

Continuing this procedure we get

~ -~r~ = r (r)( )U r-U
(i- i ) ii (u)(i)Yi

Whence, for r-mi+nj either J or Kr-u is a zero matrix. Since 9' 1A we deduce
Whneio = m~ j ete o j Kj

that YiJ = 0.

0

Lemma 1.21.6. Let Z = (z a) Mmn (F) satisfy the equation

(1.21.7) H(m)Z = Z H(n)

Then the entries of Z are of the form

zEO = 0 for 8 < M+n - min(m,n)~(1.21.8)
z = z(+1)(8+1) for 8 # t+n - min(m,n)

In particular the subspace of all m x n matrices Z satisfying (1.21.7) has the

dimension min(m,n).

Proof. As the last row of H(m) and the first column of H(n) are equal to zero row and

column respectively, in view of the equality (1.21.7) the last row of ZH(n) and the first

-SR-
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column of H(m)7 vanish. That is -zal ,. all

other cases by ecruatina the (a, ) entries of H(mW7 and *?(n) we awl ( I)R =

z a - 1,...,m-1, C L 2,...,n. The above set of ecualities imply the condition

(1.21.8).

Combine the two lemmas to obtain

Theorem 1.21.Q. Consider the system of matrix eauations (1.21.4). Then VIA . A if

J (i.e., Ji and Kj do not have a common elaenvalue). Assume that U1.

Partition Yij conformally with the partition of Ji an I as aiven in (1.21.3).

. (~f(uv) .('v)

ii ii ) ij £Mlu.IV ,* = , v

Then each Y ) is of the form prescribed in Lemma 1.21.f with m = miu a n - n.A

Assume that

(1.21,1 A, 1 ... Xl''t " it't X 0. tJ i +,.,,4 +,.,

Then the dimension of the linear suhapace mn(X) of matrices v (vii),

i J1,...,, J = 1,...,k satisfvinq (1.21.4) is aiven bv the formula

t 'i Ili

(1.21.11) dim V = min(mi,ni)
1=1 UVIi

Let us consider a special case of (1.21.1)

(1.21.12) AX - XA - n , A c m (D)

In that case, a D-module of all matrices X C ' (ml) n at.s~ino (1.1.1i) is In $art a rinan

(non-commutative In aeneral) with an identity 1. Denote

t

-- q



(1.21.13) C(A) {XIX M n(D). AX = XA}

In case that D is a field F or more generally when C(A) has a finite basis (accordin1

to Theorem 1.11.12 this assumption holds if D is a Bezout domain) then according to

Theorem 1.21.9

9 qti

dim C(A) = I minlmiu miv

i-1 Uy-1

(Clearly the dimension of C(A) is not changed if we let X E M (K)). As {muI is a
n itI

decreasing sequence we have

q i q imin(miu~miv) - Uu + I m v

v-1 v-u+1

So

qi

(1.21.14) dim C(A) - Y (2u-1)m u
i 1 u-1 i

Let il(x),...,in(x) be the invariant polynomials of xI-A. Use (1.19.15)-(1.19.16) to

deduce

n
(1.21.15) dim C(A) I (2u-1) deg i(nu+l) (x)

u-1

ji With the help of the above formula we can determine when any commuting matrix with A is aI
polynomial in A. Clearly, the dimension of the subsapce spanned by the powers of A is

equal to the degree of the minimal polynomial of A.

Corollary 1.21.16. Let A c M (F). Then each commuting matrix with A can be expressed
n

as a polynomial in A if and only if the minimal and the characterisitc polynomialp of
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A are identical. That is, A is similar to a companion matrix C(p), where

p(x) - IxI-Al.

A matrix for which the minimal and the characteristic polynomial coincide is called

nonderogatory, otherwise derogatory.

Problems

(1.21.17) Let P M mn (D) M Cn)I(D), such that

W x - (X) - 1,...,mn, xj xik for j - (k-Nm + i

i - 1,...,m, I 1, n

Prove

(1.21.18) W(AX) - ((n) 2 A)(X), i(XB) - (B 
t  

I (m)P(X), A Mm (D), B E M (D)

Here A 0 B is the Kronecker product

(1.21.19)A 9 B - (aiBI C M (mp(nq (D), A - (a ) M mn(D), B (bk ) M (D)

Prove

(1.21.20) (A1 I a )(B1 0 B2) (A B ) A2, Ai Mmi ni D), Bi  C Mn pi(D),

rA2 1m i -1,2

(1.21.21) Let P C M (F), Q C M (F), R M n(F). Put
m n m

4 P R B-P 0 1 M (F)

0 Q 0 Q m+n

Assume that the characteristic polynomials of P and Q are coprime. Show that there

exits marixX Im) Y
exists a matrix X 1O i() which satisfies (1.21.1). This in particular implies

A B.

-91-



(1.21.22) Let A = * A. Mn(F). Prove that
i=1

X
(1.21.23) dim C(A) ; I dim C(A.)

S-I 1

and the equality sign holds if and only if

(IXI-Ail, IxI-Ajt) = 1 for i I j, i,j = 1..

3J

(1.21.24) Let A C M (D). Show that the ring C(A) is a commutative ring if and onlyn

if A satisfies the conditions of Corollary 1.21.16 where F is the quotient field of D.

(1.21.25) Let A C M (). Let Bc C(A). Then B is an invertible element in the ringn

C(A) if and only if B is a unimodular matrix.
p

(1.21.26) Let

(1.21.27) C(A,B) {XIX C M (), AX-XB - 0) A c M (D0, B Mn (D)
mn m n

Show that C(A,B) is a left (right) module of C(A) (C(B)) under the matrix

multiplications.

(1.21.28) Let A,B c M (). Prove that A m B if and only if (i) C(AB) is a C(A)-n

, module with a basis containing one element U; (I11) any element basis U is a unimodular

r matrix.

.I

I.
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1.22 A criterion for similarity of two matrices.

Definition 1.22.1. Let A C M (D) and B E M (D). Denote by r(A,B) and v(A,B) the

rank and the nullify of the matrix I(n) Q A - Bt a 1(m) viewed as a matrix over Mn,(V)

where F is the quotient field of D.

According to Theorem 1.21.9 we have

t ql 'Pi

v(A,B) " min(m ,n

(1.22.2) i"1 u'v"
t qi 'Pi

r(A,B) - mn - min(miu,n

i-I u,V ui

Theorem 1.22.3. Let A C M(D), B c Mn D). Then

V(A,B) 4 !-[V(A,A) + V(B,B)j

The( eguality sign holds if and only if m - n and A and B are .siilar over the

qluotient field F.

Proof. without loss of generality we may assume that D - F and the characteristic

polynomials of A and B splits in F[x]. For x,y C R consider the function min(x,y)

(the minimum of the values x and y). Clearly, min(x,y) is a homogeneous concave

un2min(axay) - a min(xy), a )o 0, min(-- 2min(x,y) + min(u,v)]

fh untio s
2  

hldsx~y if : *nvxCy , a) vl(-.--, B ar iia
)

oe h

so

!I

(1.22.4) min(a+b,c+d) 0 V[min(a,c) + min(b,d) + min(a,d) + min(bc)]

Moreover, a straightforward calculation shows that if a = c and b - d the equality sign

holds if and only if a - b. Let

N1" max(m,n), mu n- - 0, for q 
< 
u N,P 

< 
v 4 N, i - 1,...,L,
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Then

ZN k,N t,N
V(A,A) + V(B,B) = (2u-Im + I (2u-1)n. > I (2u-1)(m. + n

ilu=1  j,u= U i,U= U l

and the equality sign holds if and only if I = k = t. Next consider the inequality

t,N t N
I (2u-1)(m iu+ ni)- I min(m. u +n 'u m ivn i v)

i,u=l uV=l

t N
I I min(m iu,mv) + min(n u,nv) + min(m iu,n iv) + min(niu,mlv

i=1 u,v=1

1 t,N t qi'pi
2 (2u-)(miu + niu) + I I min(msu.nv)

i,u=1 i.1 u,v-1

By looking at the terms where u - v from the equality case in (1.22.4) we deduce that the

equality sign in the above inequality holds if and only if miu - niu, u =,...,N,

i = l,...,t. The above inequality is equivalent to

1 ,t qi'P
I (2u-1)(miu + n iu) ) I min(miun)iv

i,u.1 i.I u,v-I

Combining all these results we obtain the inequality (1.22.3). The equality sign in

(1.22.3) holds if and only if A and B have the same Jordan canonical forms. That is

m = n and A is similar to B over F.

Suppose that A f B. That is (1.15.2) holds. Then the rules for the tensor products

(Problem 1.21.20) imply

SI A-B t a I = (Qt 1 I(1 R A - At a 1)[Qt a I]

(1.22.5)
iI I

I 6 B - Bt a I = ((Qt QI(I 6 A - At 0 1 )[Qt * Q- )

That it is the three matrices
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(1.22.6) I 9 A - A B I, I 0 A - Bt  I, 1 - B
t  I

are similar. In particular these matrices are equivalent. over a field F the above

matrices are equivalent if and only if they have the same nullity. Hence Theorem 1.22.3

yields.

Theorem 1.22.7. Let A,B e M (r). Then A and B are similar if and only if the three

matrices in (1.22.6) are equivalent.

The obvious part of Theorem 1.22.7 extends trivially to any integral domain D.

Lem a 1.22.8. Let A,B e M (D). If A and B are similar over D then the three

matrices in (1.22.6) are equivalent over D.

However, this condition is not sufficient for the similarity of A and B even in

case D - Z. (See Problem 1.22.16.) The disadvantage of the similarity criterion stated

in Theorem 1.22.7 is due to the appearance of the matrix I 9 A - Bt 9 I which depends

on A and B. It is interesting to note that the equivalence of just two matrices in

(1.22.6) does not imply the similarity of A and B. Indeed I B A - At B I -

I B (A + Al) - (A + AI) t 8 I for any A, but A is not similar to A + X! for X 0 0.

(Problem 1.22.17.) Also if A - H(n) and B - 0 then v(A,A) - v(A,B) a n (Problem

1.22.18). However, under certain assumptions the equality V(A,A) - v(A,B) implies that

A % B.

Theorem 1.22.9. Let A H n(C). Then tMere exists a neighborbood of A (aij)
n

(1.22.10) D(AP) -[SB - (b j) e 14 n(C),, I b -a j2 I p 0 < pI,

where p depends on A such that if

(1.22.11) v(A,B) v(A,A), B c DCA,p)

then B is similar to A.
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Proof. Let r he the rank of I R A -At 0 1. So there exists indices

OL= ((a 11 12 r 12 11, 21 1r' 02r -)cNxN

)V fi ni

such that 1(1 9 A - A t, 1)[a1] 0. Also 1(1 0 A - A t I)11y[1] = 0 for

Y,6 C Q 2. Here we identify the sets N x N and {1,. . .,n 21. First choose a

positive p such that

(1.22.12) 1(1 B A - B t a I)[aJIJ yd 0, B C D(A,p)

Next consider the system of r equations in variables xij, i,j,. ..,n, out of n2

equations of (1.21.11) (X =(xij)) which correspond to set a

n
(1.22.13) 1 (a k x j xik bk 0, i d 111 j a 0211 I 1,..,

kc.1 b.

Let

(1.22.14) x 6 for (k,j) (81.82) 1,...,
kj kj21

in view of (1.22.12) the system (1.22.13)-(1.22.14) has a unique solution for B C D(AP).

Also X(A) = 1. Using the continuity argument we deduce the existence of a small positive

p such that IX(B)I 0 0 for B C D(A,p). We choose such p. Let V be the set of

matrices B which satisfy

(1.22.15) 1(1 B A -B B I )[yJ11 0, r,6 C Q 2
(r+ 1),.n

-96-



Thus V is an algebraic variety. We claim that V n D(A,p) is exa.tly the set of

matrices of the form (1.22.11). Indeed, let B C V ,n D(A,p). Then according to (1.22.15)

v(A,B) 4 r. On the other hand (1.22.12) implies that r(A,B) ) r. These inequalities

yield (1.22.11). Assume that B satisfies (1.22.11). So (1.22.15) holds. Whence

B e V n D(A,p). Finally, in view of (1.22.15) we deduce that for B C V n D(A,p) the

equalities (1.22.13) imply AX(B) - X(B)B - 0.

As IX() I 0 0 we get that A % B.

0

Problems

(1.22.16) Show that for A and B given in Problem 1.15.8 the three matrices in (1.22.6)

are equivalent over Z however A and B are not similar over Z (see Problem 1.15.8).

(1.22.17) Show that for A £ M (), A - A + XI if and only if X - 0. (Compare then

traces of A and A + XI.)

(1.22.18) Show that if A = H(n) and B = 0 then v(A,A) = V(A,B) - n.

(1.22.19) Let A,B c N (D). Assume that the three matrices in (1.22.6) are equivalent.
n

Let I be a maximal ideal in D. Let r = D/I and we may view A,B as matrices over

F. Prove that A and B are similar over F. (Note that the matrices in (1.22.6) are

equivalent over F.)
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1.23 The equation AX - XB C.

A related equation to (1.21.1) is a non-homogeneous equation

(1.23.1) AX - XB = C, A c Mm(F), B e M (F), C E M (F)mn mn

which is written in the tensor notation as

t(1.23.2) (I(n) 2 A - B 6 I(m))X = C

A necessary and sufficient condition for the solvability of (1.23.2) can be stated as

follows. Consider a homogeneous system whose coefficient is the transposed coefficient

matrix of (1.23.2) (see Problem 1.23.9)

(I(n) 2 A
t 

- B S I(m)); = 0

Then (1.23.2) is solvable if and only if any solution Y is orthogonal to C (e.g.

Problem 1.23.10). In matrix the above equality is equivalent to

Aty - YBt = 0

The orthogonality of Y and C is written as tr(YtC) = 0 (see Problem 1.23.11).

Thus we proved

Theorem 1.23.3. Let A C M (F), B C M (F). Then (1.23.1) is solvablq if and only if

(1.23.4) tr(ZC) = 0

for all Z E M (F) sotisfying
nm

*(1.23.'i) ZA - BZ 0

I-



Using Theorem 1.23.3 we can obtain a stronger version of Problem 1.21.22.

Theorem 1.23.6. Lt G - (Gij), Gij C Mnin (F), Gj- 0 for j < i, ij - 1,... £.

Then

(1.23.7) dim C(G) ) dim C(G
i- 1i

Proof. Consider first the case 1 2. Let G - ~ ).Consider a matriX T 0 ( X )
which commutes with G. So

(1.23.8) AU - UA, BV - VB, AX - XB - UE - EV

According to Theorem 1.23.3 the matrices U e C(A) and V C C(S) satisfy the last

equation of (1.23.8) if and only if tr(Z(UE-EV)] for all Z satisfying (1.23.5). Thus

the dimension of the subspace of pairs (U,V) satisfying (1.23.8) is at least

dim C(A) + dim C(S) - dim C(B,A)

On the other hand if U - V - 0 then the dimension of the subspace of matrices X

satisfying (1.23.8) is dim C(A,B). The equality (1.21.11) implies dim C(A,B) -

dim C(BA). Hence we established (1.23.7) for I - 2. The general case immediately

follows by induction on 1.

We remark that contrary to the results given in Problem 1.21.22 the equality in

(1.23.7) may occur even if Gii - Gjj for some i p J. See Problem (1.23.12).

Problems

(1.23.9) Let A 2 B be defined as in (1.21.19). Prove (A 2 B)t - At 9 Bt.

(1.23.10) Consider a system
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Ax =b, A c M(F), b c () 

Prove that the above system is solvable if and only if ytb - 0 where y is a solution of

t
the system A y = 0. (Hint: Change varibles to obtain A in its diagonal form as in

Section 1.12).

(1.23.11) Let X,Y c M mnD). Let u(X),j(Y) c M (mn)(D) be defined as in Problem

1.21.17. Prove that

t t
u(Y) t(x) = tr(Y X)

(1.23.12) Assume in Theorem 1.23.6 L = 2, G 11 - G22  0, G 12 - I. Show that in this case

tn. equality sign holds in (1.23.7).

(1.23.13) Let A £ Mn (F), i = 1,2 and suppose that A1  and A2  do not have a common

eigenvalue. Assume that A - Al * A2. Let C - (Cij), X - (Xij), Cij,Xij C Mn

i,j - 1,2. Using Problem 1.21.22 prove that the equation AX - XA = C is solvable if and

only if the equations AiXii - XiiAi Ci, i 1,2.

1

I,,

) . .
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1.24 A case of two nilpotent matrices.

The following result is needed later.

Theorem 1.24.1. Let A C M n(F) be a nilpotent matrix. Put

XX . {xlx C in, A kx = 0), k - 0,1 ......

Assume that

o - x 0 x x 2 X... xp rn

Suppose that B c M (F) satisfiesn

(1.24.1) BXi 1 cXi i = ,..,p- •

Then

(1.24.3) v(AA) ( V(BB)

The equality sign holds if and only if B is similar to A.

Proof. We prove the lemma by induction on p. For p - 1 the theorem is trivial since

A - B - 0. Suppose that the lemma holds for p - q - I and we prove it for p - q. A,

and B1  be the restrictions of A and B to X. Assume that A,A and B1 ,B have

the following Jordan canonical forms

-101-

,.. - . .. . ... . . .. . .



p1AP 1  * H(m), P-AP" 0 H(mi)

Vv V
j=1 =

1 0 H(n'), Q -Q 0 H(np

1.

i=l =

I=
V

m m 2' >... >m n I > n 2>... n V > mi = n, = dim Xq = n
)m?..mi=lnI i=1ii

Clearly the Jordan canonical form of A, and A is determined completely by the

dimensions of the subspaces X , ...,Xq. 1* Indeed, put

i = dim Xi, e = 1i+ 1 - i' i = 0,1'....

Then eiI - e is the number of the Jordan blocks of order i in the Jordan canonical

form of A and AV. So

(1.
2 4

,
5

) U = ' m -, i m! .... , m=m for i > e
ii q ' I q-1'

e =n -dim X
q-1 q-1

Formula (1.21.14) yields

r#

I LI *q-1
(1.24.6) V(A,A) = (2u-1)m = (2u-1)m' + [ (2U-l) = v(A,A') + ea

u1 u= u u=1

According to Theorem 1.20.10 we have the following relations between the Jordan canonical

form of B and B'

./ -102- O
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v > V', n + 1 ; ni  nj, i - 1,...,v', ni - 1, i - v-v'+l,...,v (if V > vI).

So

VV'
(1.24.7)v(B,B) I ) (2u-l)n I ? I (2u-l)n t + (2u-1) - v(B',B') + 82

J.1 i-1 u-1 -

and the equality sign holds if and only if n i = n' + 1, ± - 1,..., 1  Combine (1.24.6)

with (1.24.7) to deduce (1.24.3) by induction. Suppose that the equality sign holds in

(1.24.3). Since

V(A',A') - V(B*,B'), ni " n. + 1, i 1,..,q-1

The induction assumptions imply that A' B B'. Use (1.24.5) and the above equalities to

get A B.

1

i4"
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1.25 Components of a matrix and functions of matrices.

From this section and through the end of this chapter we shall assume that all the

matrices are complex valued unless otherwise stated. Let '(x) be a polynomial

(P(x) £ Cfx'). T1'z following relations are easily established:

-I -1

&(B) = P (A)P , B = PAP A,B,P C M (C)
(1.25.1) (A 0 A2 ) =' (A ) S(A2), A.£ M IIC), i = 1,2

1 2 1 2 n.
1

It often pays to know the explicit formula for (A) in terms of the Jordan canonical form

of A. In view of (1.25.1) it is enough to consider the case where J is composed of one

Jordan block.

Lema 1.25.2. Let J = A0 1 + H Mn (C). Then for any P e CCx] we have

n-1 (k 0) HkX

'P()_k1 0 0 H

N ~()
Proof. For any p we have the Taylor expansion P (x) I *k (x-X k

z. k,"
k=O=0 I

N - max(deq P,n). As H -0 for X > n from the above equality we deduce the lemma.

Ii 0

Using Jordan canonical form of A we obtain

Theorem 1.25.3. Let A E M n(C). Assume that Jordan canonical form of A is given by

(1.19.11). Then for P(x) C Ctxl we have

j S (k) (k()k

(1.25.4) P(A) , Pn s 0 [ H (m )iPe
i-i j=1 k-0 k1 ij

t'
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Definition 1.25.5. Let the assumptions of Theorem 1.25.3 prevail. Then Zik = Zik(A) is

called the (i,k) component of A and is given by

i k
Z ik ' POO ... 001 1 0 H (M ij HOO... O0}P

- I 
k - 0,...,s I1-- 8, miI

(1.25.6) J-1

Compare (1.25.4) with (1.25.6) to deduce

L ai-1 (Ji)

(1.25.7) 1(A 1 1 1 Z

Definition 1.25.8. Let f2 c C be.an open set such that V(A) c (, where A e Ms (C).

Then for c c H(a) define (A) by the equality (1.25.7).

Using (1.25.6) it is easy to verify that the components of A satisfy

(1.25.9) z - j 0...,s- 1, are linearly independent
Zij, ,. , ,J I O . S

Z Z I0 if/ i- , Z =0 if j + k si, ZZ Z
iizM , ij ik i ij ik Zi(k+j)'

I for j+k 4 a- I

A =P( i ioi + Z iI)PI

Consider the component Zi(si_1 ) The relations (1.25.9) imply

~~(1.25.10) AZ( zi1 =  i _) A =  1

Thus the col)n ofs Z an

Thus the columns of Zi(si-1) and Zti(si-1) are the eigenvectors of A and At

respectively. Clearly, Z ) v 0. More precisely we have
ii
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Lemma 1.25.11. Let A C Mn(C). Suppose that Ai  is an eigenvalue of A. Let Xi  be the

generalized eigenapace of A corresponding to Xi

si

(1.25.12) Xi = {xx C
n
'(, (iI-A) x =0

Then

ai-1

(1.25.13) r(Zi(s -1)) dimU(AiI-A) X I

Proof. It is enough to assume that A is in its Jordan form. Then Xi  is the subspace

i-I qu Q qQ,

of all x= (xl ... ,x n)t where the first I and the last Imc

0-1 i-1 i ai+1 J=1

s -1
vanish. So (A iI-A) X contains only those eigenvectors which correspond to Jordan

blocks of the length si. Obviously, the rank Zi(s .1) is exactly the number of such

blocks.

C

Definition 1.15.14. Let A M (C). Then the spectralradius of A - - defined
n

(1.25.15) p(A) = max IlX
r, Aca(A)

The peripherial spectrum of A - a (A) - is the set of all eigenvalues {A . I (each

p 1 m

one appearing according to its multiplicity) which are on the spectral circle lxi = p(A).

The district peripherial spectrum of A - ad (A) - is given

(1.25.16) a (A) = a (A) n a (A)

dp dp

The index A -index (A) is defined by
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(1.25.17) index (A) - max index (A)
Aea (A)

p

Problems

(1.25.18) Let A C Mn (C), (x) C C[x] be the minimal polynomial of A. Assume that Q

is an open set in C such that O(A) c n. Let 0 C H(O). Then the values

(1.25.19) 0(k) (A), k - 0,1,..., index (X) - 1, A £ a d(A)

are called the values of 0 on the spectrum of A (M(A)). Two functions, 0,8 are said

to be coinciding on a(A) if they have the same values on 0(A). Assume that - e C[x]

and let

%(x) = w(x)*(x) + 8(x), deg e < deg

Prove that e(x) coincides with O(x) on a(A). Let

i + (x) W + index ( i) i .
(x) (x ~ i-1 J-1 (x-X i) "' " '

where *(x) is given by (1.18.20). Show that ai - si ,  -
1

,...,
8
i-P are determined

recursively by 0(N j - 0,...,p. (Multiply the above equality by *(x) and evaluate

this identity and its derivatives at Xi .) Thus for any 0 C H(n) define e(x) by the

equality

(1.25.20) ONx)t (x) I
t1 j-I (x-XilJ

The polynomial 6(x) is called the Lagrange-Sylvester (L-S) interpolation polynomial

of 0 (corresponding to 4). Prove that
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(1.25.21) ; (A) , e(A) •

Let 6(x) be L-S polynomials of P. C H(Q), j = 1,2. Show that 8 (x)8 (x) coincides

1 2

with L-S polynomial of V 1(X)V2 (x) on a(A). Use this fact to prove the identity

(1.25.22) 01 (A)P 2 (A) = P(A), (x) - 0 1 (x)' 2 (x) 

(1.25.23) Prove (1.25.22) by using the definition (1.25.7) and the relations (1.25.9).

(1.25.24) Let the assumptions f Problem 1.25.18 prevail. Assume that a sequence

m c H(Q), converges to € C H(Q). That is 0m(x), m = 1,2,..., converge uniformly

to P(x) on any compact set of Q. This in particular implies

lim P(J) (A) (J)( ), j C 0, ,a.
mM i

Use the definition (1.25.7) to show

(1.25.25) lim (A) = (A)
T m+ m

Apply this result to prove

m N m
r(1.25 .26 ) e

A  
L -A = li

N ! m0 ml

Am

(12.7 =A=0) fm-- for JAI > p(A)
I]= x= N m

ism
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1.26 Cesaro convergence of matrices

Let

(k).
(1.26.1) A = (a.. ) e M (C), k = 0,1,2....

be a sequence of matrices. The p-th Cesaro sequence is defined as

kp k

(1.26.2) Ak'O = ' ,p (a ij I Ao /(k+l),k 0,1,....,
J=0

Definition 1.26.3. A sequence {Ak} is said to be convergent to A - (ajj) if

(k)
lim aij - aij, i 1I....m, j - ..... n, ii Ak = A
k - k

A sequence (Ak} is said to be p(O) - Cesaro convergent to A

lim Ak  - A
Sk e '~p

and exactly poll) - Cesaro convergent if in addition to the above equality the sequence

Ak,p_1 , k - 0,1 .... is not convergent.

It is a standard fact (e.g. Hardy [1949]) that if { Ak) is p-Cesaro convergent then

{Ak) is (p+l) - Cesaro convergent. A standard example of exactly I - Cesaro convergence

sequence is (Ak}, IA! - 1, A 9 1. More precisely we have (e.g. Hardy (1949) or Problem

1.26.11).

Lemma 1.26.4. Let 1XJ = 1, A 9 1. Then the sequence (k )Ak, k = 0,1,.... isLe-1 )A k 01a.. i exactly

p-Cesaro convergent to zero for p > 1.

We now show how to recover the component Z for 09' A c a(A) by using the* ca(sa-1) op

notion of Cesaro convergence.
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Theorem 1.26.5. Let A C M (C). Assume that P(A) > 0 and X C 0 (A). Put
S - C a p -

k s -1
(1.26.6) Ak  (s -1)! (X A/I a I ] /k , = index (X)

Then

(1.26.7) lim Ak,p = Za(S -1)' p = index (A) - index (X) + 1

aa

The sequence Ak is exactly p-Cesaro convergent unless dp (A) = {a} or

index (X) < index (Ns) for any X C a (A), X X 2

In that case the sequence {Ak} converges to Z -(s W

Proof. It is enought to consider the case where X p(A) = 1. By letting %(x) = x
k  

in

(1.25.7) we get

s.-1

(1.26.8) Ak = X (k) k-j
1=1 j=0 J i ij

So

r

Ak k(k-ll, ,lk-jt.l) Xk-jZ

i=1 J=O a J! ) ZiJ

Since the components Zj, i = X.£, j = 1...,s i.- 1, are linearly independent it is
(s -I)l
a Q-M k k- Ienouqh to analyze the sequence k -1 , k JJ+1... Clearly for 10 1

ka
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and any j or for [X1 = 1 and j < a -1 this sequence converges to zero. For

A, I and j = sa-1 the above sequence converges to 1. For

-x -1, X 1 and J ) s-I the given sequence is exactly j-s +2 Cesaro

convergent to zero in view of Lema 1.26.4. These arguments establish the theorem.

Corollary 1.26.9. Let the assumptions of Theorem 1.26.5 hold. Then

N -1 k si1
(1.26.10) lim I (s-I)l (P' (A)A) /k -/(N+1) - Z, a = index (A)

N- k-0

where Z - 0 unless A, - p(A) e O(A) and index (A1 ) - index (A) in which case Z =

Z1(s-1)"

Problems

(1.26.11) Let IA! - 1, A X 1 be fixed. Using the formula

k-i k

J-0

prove by differentiating the above equality r times

k-I r-1 k-I k-i, +_,r k_ -1IJA I jIA(J)Aj = k[ 2 a(A,r,k) (l)Ak1 + (-1) rk1 k ) 1
J-0 r .O

where a(A,r,X) are some fixed non-zero functions. Use the induction on r to prove

Lemma 1.26.4.

(1.26.12) Let (x) be a normalized polynomial of degree p-1. Prove that the sequence

( (k)Xk}, IA! = 1, A 3 1, is exactly p-Cesaro converqent.
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(1.26.13) Let A C M (C). Putn

(ij)
(1.26.14) Z.j(A) = (z ) i,v 1 ..... n, X C ad(A), j = 0... index (X.) " I

Denote

(1.26.15) index (Xi) = 1 + max(j : z
_  

9 0, j = 0...,index (Xi ) - I} where

index (A.) 0 if z = 0, j = 0,....index (X,) -I

(1.26.16) p V(A) = max{[IXi I index v(K) > 0) where p V(A) = if

index (X.) = 0 for all X. E 0(A).
liv 1 1

(1.26.17)

index (A) = max{index Ov index UV( ) > 0, IXiA I p (A))

Here index (A) = 0 if p (A) = -. The quantities index (Xi),

index (A), p (A) are called the (v,v) index of X., the (N,v) index of A and the
iV !JV I

(p,v) spectral radius of A respectively. Or shortly the local indices of A. and A

and the local spectral radius of A. Show that Theorem 1.26.5 and Corollary 1.16.9 could

be stated in a local form. That is for I < p,v 4 n assume that

A),= s = index 'A), A) ), A
k  

= = (a ) where Ak is
IX Pi li ), A, = (lv.k)' X,p ,Ivkp

given by (1.26.6) and Akp by (1.26.2). Prove

(W(s -1))a
(1.26.7)' lim a z p index (A) - index (A) + I

k - iv,kp liv lv 1V a

N -1 k s-1
(1.26. 10)' lim{ (s-1) [pW (A)] a uv/k }/(N+1) = z W

N+- k=0

s - index v(A), p (A)> 0

where z = 0 unless XA = p W(A) C a(A) and index (A 1 index V(A) in which case

* I (s-i)
z v z z *V Finally A is called irreducible if p V(A) = p(A) for w,v = 1,...,n.

Thus for irreducible A the local and the global versions of Theorem 1.26.5 and Corollary

1.26.9 coincide.
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1.27 An iteratiLon process

Consider an iteration given by

(1.27.1) xi+ 1 
= Ax

i 
+ b, i 0,1,...

iwhere A E Mn (C), x ,b c Mn1 (C). Such an iteration can be used to solve a system

(1.27.2) x -Ax + b .

Also, the iteration (1.27.1) appears naturally in certain physical instances where a given

physical system evolves discretely in time according to (1.27.1) (e.g. Berman-Plemmons

[1979]. Assume that x is the only solution of (1.27.2) and put yi . xi - x. Then

(1.27.3) yi+1 = Ayi, i = 0,1,2,...

We would like to know under what conditions lim yi - 0, regardless of the initial

condition y . This is equivalent to the statement that x(  converges to x for any

initial condition x(0 ) . In some other instances the evolusion of a certain physical

system is given by (1.27.3). In that case it is important to know whether the system would

not blow up. That is there exists a constant M(y0 ) (depending on yo) such that

(1.27.4) By 1 4 M(y0), i = 0,1,...

Here for B e M (C) we define the norm of B - IBI - as
mn n

(1.27.5) 1B11 = max lbij 1, B - (b ij) C (C) 
l4if-m J-1 m

Definition 1.27.6. The system (1.27.3) is called stable if the sequence yi, i

0,1,..., converges to zero for all choices of y0 . The system (1.27.3) is called bounded

if the sequence yi, i = 0,1,..., is bounded for all choices of y0, i.e. (1.27.4) holds.

Clearly, the solution to (1.27.3) is

yi = Aiy0, i - 0,1,...,

so (1.27.3) is stable if and only if

(1.27.7) lim A = 0

and (1.27.3) is bounded if and only if

(1.27.8) IA It M, i = 0,1,...,

for some positive number M.

Theorem 1.27.9 Let A £ M (C). Then the powers Ai , i - 0,1, converge to zero matrix

if and only if,! -113-
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(1.27.10) o(A) < I

These powers are bounded if and only if :

(1.27.11) P(A) 4 1, and index (A) = I if p(A) = I

Proof. Consider the formula (1.26.8). Since all the components of A are linearly

independent (1.27.7) is equivalent to

lim (k)X kj = 0, Xi E a (A), j = 0,1,..., index (X.) - 1
j i i dik+

Of course, the above conditions are equivalent to (1.27.10). The condition (1.27.8) is
k ,Xk-j

equivalent to the statement that the sequence )Ai  , k = 0,,. is bounded. This

immediately yields that P(A) 4 1. If p(A) < 1 then (1.27.7) holds which implies

(1.27.8). Suppose that p(A) = I and let Xi E a (A), i.e. IA.I - 1. Then the sequence
i p i

(k)Ak-j is bounded if and only if j = 0. That is we must have index (X.) = 1. This
31 1

establishes (1.27.11).

Problems

(1.27.12) Let A E M (C) and P(x) the minimal polynomial of A is given byn

(1.18.20). Verify

At e

(1.27.13) eAt = - Z
i=1 j=0 J i

Use (1.25.9) or (1.25.26) to prove

d Atd At At

(1.27.14) d(e 
At

) =Ae e A

Prove that the systemdx x C

(1.27.15) = Ax, xlt) E Mn(C)
dt ni

has a solution
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A( t-t 0

(1.27.16) x(t) - 0 x(t 0

The system (1.27.15) is called stable if lim x(t) - 0 for any solution (1.27.16). The

system (1.27.15) is called bounded if any solution (1.27.16) satisfies

Ix(t)I M, t > to, M -(x(t 0))

Prove that (1.27.15) is stable if and only if

(1.27.17) Re{X) < 0 for ) C o(A)

and (1.27.15) is bounded if and only if

(1.27.18) Re{M} 4 0, index (X) 1 if Re{X} - 0

I

'II
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1.28 The Cauchy formula for functions of matrices.

Let A c M (C), E H(Q), where Q is an open domain in C. Here we do not assume

that 2 is connected. If 0(A) c Q then it is possible to define (A) by (1.25.7). It

is possible to give an integral formula for (A) by using the Cauchy integration formula

for AX). The resulting expressior. is simply looking and very useful in theoretical

studies of W(A). Moreover, this formula remains valid for bounded operators in Banach

-1
spaces (e.g. Kato [1970]). To do so we consider the function (x,A) = (X-x)

-
. The

domain of the analycity of (x,X) is the whole complex plane C punctured at X. Thus

if A 9 0(A) according to (1.25.7)

-1-i

(1.28.1) (XI-A)-, = 1 10 (X-x )-zij

i=1 j.0 i

-1

Definition 1.28.2. The function (A-A) is called the resolvent of A and is denoted

by
-1

(1.28.3) R(X,A) = (XI-A)

Let r = {r1,...,r be a set of disjoint simply connected rectifiable curves such that

F forms a boundary aD of an open domain where

(1.28.4) D I, r c , r = aD

For p c H(Q) the classical Cauchy integration formula states (e.g. Rudin [1974])

1 (1.28.5) '() = 2 X-) (X)dx, X C D

By differentiating the above equality j times we get

I) r (x-) - ( j + l ) (x)dx, x c t

(1.28.6) r2i ( A
We now are ready to state the Cauchy integration formula for O(A).

Theorem 1.28.7. Let ;2 be an open domain in the complex plane. Assume that

S{ 1 ,. .. I be a set of disjoint simple connected rectifiable curves such that r
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is a boundary of an open domain D, and r u D c Q. Let A E M (C) and assume that

o(A) c D. Then for any O(x) analytic in Q we have

(1.28.8) t(A) - -- f R(x,A)O(x)dx
21rr

Proof. Insert the expression (1.28.1) into the above integral to get

1X3 k I-(J+1)
if R(XA)O(X)dX - I I (-( ) (x)dx]Zr k-1 J-0 r Ik

Now use the identity (1.28.6) to deduce

1 a1 k- (i) (A
f-- " R(x,A),,(X)dx I I zk .

r k-1 J-0

The definition (1.25.7) of O(A) yields the equality (1.28.8).

We illustrate the usefulness of Cauchy integral formula (1.28.8) by two examples.

Theorem 1.28.9. Let A c- M (C) and assume that X E O(A). Let. -n p -

(1.28.10) CL £ D, X 9 D u r for X C O(A), X f X
p p

where D is an open domain in C and r satisfies the assumptions of Theorem 1.28.7.

Then the pq component of A is given by

(1.28.11) z Pq(A) f R(x,A)(xAp d
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Proof. AS in the proof of Theorem 1.28.7

1 - f R(x,A)(x-X )q-1 dx = x I-rpk~L j-0 2 r (x-A k) dxjZ kj

(x-~ (x-X )q
Suppose that Ak # X . Then is analytic in r u D c 2. Put q (x) = k•p(X-lk) J (X-Xk "

k k

and use (1.28.5) to deduce that the corresponding

Integral which appears in the above equality vanishes. The same result applies for

Xk = X and j ( 
q-1. For j ) q+l, put (x) = 1 then

( x - X )q -1 ( X

(-(x-t : ) •+l : Apply :1.28.6) to deduce also that the corresponding integral

with t~is term is equal to zero. Hence

f ) dx ]Zpq

t-,7 r ' A(-P "+ 21t ' r X-X p3 pq z .

Our next example generalize the first part of Theorem 1.27.9 to a compact set of

4) matrices.

Definition 1.28.12. A set AC Mn(C) is called stable if

(1.28.13) lim sup IA k = 0

Theoem .28.14. k+- AEA

tTheorem 1.28.14. Let A c Mn (C) be a compact set. Then A is stable if and only ifin

*~ I (A) < 1 for any A C A.-

To prove the theorem we need a well known result on the roots of normalized

polynomials in C[x] (e.g. Ostrowski (19661).
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Lemna 1.28.15. Consider a normalized polynomial

m M-i
p(x) - xs + a six e C~xj. Then the zeros t. . of p(x) are continuous

functions of its m coefficients. That s for a given c > 0 there exists 6(c)

depending on a1 ..... am, such that if b i-a I < 6(c),
m

1,...,m, it is possible to enumerate the zeros of q(x) - xm+ I b x.

i-1

1 ... ,m, where Int - tiI < C, i a 1,...,m. In particular the function

(1.28.16) p(p)- max IC I
liCm

is a continuous function of al,...,a m .

Corollary 1.28.17. For A e M (C) the function p(A) _is a continuous function of A.n

That is, for a given c > 0 there exists 6(C,A) > 0 such that

IP(B) - P(A)l < C for Is-Al < 6(e,A)

Prof of Theorem 1.28.14. Suppose that (1.28.13) holds. Then by Theorem 1.27.9 p(A) C I

for all A e Assume now that A is compact and

p(A) ( 1 for A e A. According to Corollary 1.28.17

p = max p(A) - P(A )< 1, A £ A
AcA

Recall that (xl-A)-1 (pij(x)/Ixl-AI) where pi,(x) are the (i,j) cofactors of the

matrix (xI-A). So

I IxI-AIj - tJI(x-X)i)1 . [IxI - p(A)]n ) - )n for Ixi >p

CO A)

Let p < p' < 1. Then the above inequality and the expression of

(xi-A)
1  

in terms of its cofactors imply that I(x!-A) 1 4 K, IxI p',

since A is a bounded set. Apply (1.28.8) to get

(1.2A.18) A = W (xI-A)-xpdx
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Combine this equality and the estimate 11I(xI -A) 1)I ( K to get RfAPS I KC) P+I.

As pI < 1 we obtain (1.28.13).

A generalization of the second part of Theorem 1.27.9 to compact sets A c P40CC) is a

far more complicated result and will be stated in the next chapter.

Problems

(1.28.19) Let A C M n (C). Using (1.28.1) deduce that

(1.28.20) Z i =.1 lim Cx-X i) 2.(xI-A) J

Put R(x,A) ( r Cx) ). Using the definitions of Problem (1.26.13) show

i~s-1) s
(1.28.21) z W = lim (x-N i) r C x), a = index 11V(Xi. > 0

( 1.28.22) A set A c ?4(c) is called exponentially stable if

At
(1.28.23) lim sup le 1 0

T+- t)-T,AcA

Prove that a compact A is exponentially stable if and only if Re{)il < 0, X~ C O(A) for

any A.

(1.28.24) A matrix B c M CC) is called projection Cidempotent) if

8 2 = B. Let r be a set of simply connected rectifiable curves such that

r form a boundry aD of an open domain D. Let A C M CC) and assume that

r n oC(A) = . Put

(1.28.25) P C(A) = f R(x,A)dx, A(D) f R(x,A)x dx, a (A) O(aA) nl DD 27Ti r 27ti r
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Show that PD(A) is a projection. PD(A) is called the projection of A on D and

A(D) is called the restriction of A to D. Prove

(1.28.26) PD (A) Z i, A(D) - z ( i + Z il
i CO D(A) Xi COD (A)

Show that the rank of PD(A) is equal to the number of sigenvalues in D counted with

their multiplicities. Prove that there exists a neighborhood of A such that PD(B)

and B(D) are analytic functions in 8 in this neighborhood. In particular, if D

satisfies the assumptions of Theorem 1.28.9 then PD(A) is called the projection of A on

)p. According to

(1.28.26) PD(A) - Zp0.

(1.28.7) Let B - QAQ-  C C (C). Assume that D satisfies the assumptions of Problemn

1.28.24. Prove that PD(B) - QPD(A)Q "1 .

(1.28.28) Let A C M (C) and assume that the minimal polynomial *(x) of A is given byn

(1.18.20). Let

Cn - U1 ... W

where each U is an invariant subspace of A, i.e. AU c U , such that the minimalp8

polynomial of the restriction of A to Up is (x-l) P. Prove that

(1.28.29) up - ZpeCP .

(It is enough to consider the case when A is in Jordan canonical form.)

(1.28.30) Let Di, i-i,...,k satisfy the assumptions of Problem (1.28.4). Assume that

D i  Dj i €, for i ) J, i,j 1,...,k. Prove that PDi(A)Cn . PDj(A) n - [0) for

i J. Assume furthermore that Di n UA) U *, ,* O(Ac U Di. Let
i- i

IP (ACn [i) Ci) (1) (1) W.n

. ..... n , i=1,...,k, X = ( .1  (I),y . ) C n(C). Show that1 1 iI n nk n

k

(1.28.31) AX = * Bi, o(Bi) - Di 0 o(A), i 1,...,k

i-i
1

(1.28.32) Let A C M (C) and A C 0(A). Prove that
n p
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S. S.

Zp0 (A-X .I) 3 /pX-X.) S. = index (.)

XE d (A), Xj p

if index (X) = 1. (Use the Jordan canonical form of A.)
p

1

.1 -122-



1.29 A canonical form over HA

2
Consider the space Mn(C). Clearly Mn(C) can be identified with As in Example

1.1.13 denote by HA the set of analytic functions f(B) where B ranges over the

neighborhood D(A,p) of the form (1.22.10) (p - p(f) > 0). Thus the B - (b1 j) is an

element in Mn(H A). Let C C M n(H A ) and assume that C - C(B) is similar to B over

HA Then

(1.29.1) C(B) - X1 (B)BX(B)

where X(B) Mn (HA) and IX(A)I # 0. Our problem is to find a "simple" form for C(B)

(simpler than B itselft). Let MA denote the quotient field of HA - i.e., the set of

meromorphic functions in the neighborhood of A. Thus if we let X Mn (M A ) then we may

take C(B) to be R(B) - the rational canonical form of B (1.16.6). According to

Theorem 1.16.11 R(B) E M (H A). However B and R(B) are not similar over HA in

general and we shall give the necessary and sufficient conditions for S f R(B). Thus,

if C(B) - (cij(B)), we may ask how many independent variables are amont the functions

cij(B), i,J - 1,...,n. For X(B) - I the number of independent variables in C(B) B is

obviously n2 . Therefore it is reasonable to define C(B) to be simpler then B if

C(B) contains less independent variables than B. Given C(B) we can view C(B) as a

map

(1.29.2) C(B) ; D(A,p) + M (C)n

where D(A,p) is given by (1.22.10), for some p > 0. It is a well known result (e.g.

(Gunning-Rossi (1965]) that the number of independent variables in C(B) is equal to the

rank of the Jacobian of JC(S) of C(B)
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(1.29.3) JC(B) = - [C(B)] , i,j 1 ,. n c M 2 (HA)13 n

where u is the map given by (1.21.17).

Definition 1.29.4. Let r(JC) be the rank of the Jacobian JC(B), i.e. the number of3C(B)
linearly independent matrices in the set - -, , = 1,...,n, over the field M A.

.3
Let r(JC(A)) be the rank of the Jacobian JC(A), i.e. the number of linearly independent

matrices in the set aC(A) n, over C.

1)

Lemma 1.29.5. Let C(B) be a similar to B over HA. Then

(1.29.6) r(JC(A)) ) v(A,A)

Proof. Differentiating the relation X-I(B)X(B) I with respect to bij we get

ax- I 
(B) -1 ax -

3b = _ bibij i

So

4 (1.29.7) b = _ I + B +

Lj

where

t ;
(1.29.8) E.j = (6 j6) 6 M (C), i = . , j =1,...,nIIj ia ja mn

and m =n. So

aC(A)" iA+ J()XI)

X(A) 7 X (A) = -Pj Ej,Pij
bi
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Clearly, AP1  - P.i A is in range (A) where

(1.29.9) A=(1 2 A -xA 0 1) :M (C) M (C)
n n

AccordJ~ig to Definition 1.22.1

dim ranae ()=r(A,A)

Let

(1.29.10) M n(C) - range (A) e (r I r(AA

As Ei i,j,.1 is basis in 
TM
n (C)

n
r = E. , p =1,... ,V(A,A)
p L j i)

Therefore

n
T r Q(p) DC(A) _ -C~~ -1p, pc ag

T L i. ab -x ()Q +rQ ag A
ij

According to (1.29.10) T1,. ... T (AA ) are linearly independent. That is the inequality

(1.29.6) holds.

Clearly the rank of the Jacobian JC(B) is at least the rank of JC(A) so according

to Lemma (1.29.6) C(B) has to contain at least V(A,A) independent variables. In fact

this number can be achieved.

Theorem 1.29.11. Let A E M1n (C) and assume that r I.,r _____e__yvA,) arie

satisfying (1.29.10). Then for any non-singular matrix P E M4 MC it is possible to find
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V (A, A)

(1.29.12) X-I(B)BX(B) = AP + (B)p P-1

fi(B) E HA, f i(A) = 0, i = I,...V(A,A)

Proof. Let RI,...,Rr(A,A) be a basis in range (A). So there exist Ti  such that

AT. - TjA = Rj, j = 1,....r(A,A)

Let us assume that X(B) is of the form

(1.29.13) X(B)P = I + r(AA) g.(B)T., g(A) = 0, j = 1...r(A,A)
j=1

Thus the theorem will follow if we can prove that the system

r(A,A,) r(A,A) r(A,A)
(1.29.14) B(I + g (B)T] = [I + g (B)T ] [A + f.(B)r.]

j=1 j=1 i 

is solvable in some disc D(A,P). This is a system of n
2  

scalar equalities in n
2

unknowns f,1 .f V(A,A)' 1, ...,gr(A,A). Since fi(A) = 9j(A) - 0, i = 1,...,V(A,A),

j = 1,...,v(A,A) the above system is trivially satisfied for B = A. According to the

implicit function theorem the above system is uniquely solvable in some neighborhood of

A if the Jacobian of these n
2 

equation is non-sinular (e.g. Gunning-Rossi [19651). Let

B = A + F. Since all fi, gj are analytic in HA we can expand these function in power

series in the entries of F = (f i). Let a F) and 8 (F) be the linear terms in the

expansions of fi and gj respectively. Then the Jacobian of the system (1.29.14) R

non-singular if and only if the first terms a. and 8 are uniquely determined by F.

~The linear part mf (1.29.14) reduces to

r(Ai A' r(A,A) v(A,A)F + a .8 AT . 0 T= 1 j jA + i= I r .

j=1 j i=18TA r

That is
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r(A,A) v(A A)F o~~jRj +ar
:1-1 i-1

In view of (1.29.10) a ,.... v(A,A) and ,...r(A,A) are determined uniquely. So

(1.29.14) is solvable in D(A,P) for some positive p.

This establishes the theorem.

Note that if A - al the form (1.29.12) is not simpler than B. Also by mapping

T + P- TP we get

(1.29.15) Mn C - range (P 1 AP) 0 [P-1rIP,...,r- I(AA)

Next we consider the rational form R(B) of B.

Lemma 1.29.16. Let B Mn (H ). The rational canonical form of B over MA '_.a

companion matrix C(p) Mn (H A), where p(x) - IxI-BI.

Proof. The rational canonical form of B is C(PI,...,pk) given by (1.16.6). We claim

that k - 1. Otherwise p(x) and p'(x) have a common factor over MA which in view of

Theorem 1.4.13 implies that p(x) and pl(x) have a common factor over HA . That is for

any B E D(A,p) IxI-BI has at least one multiple eigenvalue. Evidently, this cannot be

true. Indeed consider C - PI BP where P e M (C) and J - P-1 AP is the Jordann

canonical form of A. So C £ D(J'). Choose C to be an upper diagonal (this is

possible since J is an upper diagonal matrix). So the eigenvalues of C are

c11,...,cnn, and we can choose them to be distinct. Thus p(x) and p'(x) are co-prime

over M A and therefore k - 1. So P1 (x) - IxI-C(p1 )I - 1xI-BI.

Theorem 1.29.17. Let A £ M (C). Then B Mn (H A ) is similar to the companion matrix

C(p), p(x) - IxI-BI, over HA if and only if v(A,A) - n, that is the minimal and the

characteristic rx1vnomials of A coincide, i.e. A is nonderogatory.
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Proof. Assume first that C(n) in (12.)can he chopen to be r(r,). mhpn, for 1 -

we cfet that A is similar to A comnanion matrix. Accor
4
in to Vroolarv .11

V(A,A) = n. Assume now t-hat \'(A,A) = n. ACorAilo to 1.15)we must halve tbat

il(x). l-,n-1(x) are eouial to 1. That is, the minimal andi the characteristic

polynomials of A coinc-iAp. S~o A is similar to a comnanion matrix. rrm the for-. of

(1.20.12) we ran assum'e A is a comndnion matrix. rhoope r i= rn j = I ......... hey

Fi are defines4 in (~P

It is left, to show that rancip (A) INr~ =m. Cunno5e

r = aFr . ranaie (A). Accoriinci to Theorem 1.23.1 an'i rorollarv 1.11 this

assumrition is emuivalent +'o tr(rAk, = n, k~=01. -. T t n = ( .a 1% wine

the first n - 1 rows of r are zero we have

k k 17
n = tr(rA )=CiA C E =(S5.'

For k = n the ahove eaualitv imnlips a n . Puysoose we alremA'v rrve' that these
n

eaualities for k C.. imply that an=**.=Ci,,k = . onsfP'er the Peoualltv

trirA~ n. Ilse Problem (1.17.2n) to cieiuce

A E+ E f

n n-t-1 j (2+1).j ri-l

Slo tr(rA ) ln as Cx= . ..Ctt n . Thus n m nA we ,,rov, that rno

.6 (A)mn
1  

= i.

Ac-corrilna to Theorem (1.10.11i

rfs) Y-) (PnTl(n) I%7 + 7f (Rr "i

Fo r(P) is a companion matrix. As (IY-C'(P)I = IxT-RI, rfP) = UO).

c-or the next theorp- we nepA the fnllowinnT lemma which is Anc immeAiAtP vnn9MenrOnc of



Lemma 1.29.18. Let Ai C M (C), i = 1,2 and assume

I
V(A ,A)

(C) = range (A ) *, i = 1,2.
j: 1'

Suppose that A1  and A2  do not have a common eigenvalue. Then

vMA1 , 1 v) (A2 ,A 2 )

M (C) = range (A * A ) A r e [r )  0 e [o e r
1 1 2 ): j=1

Theorem 1.29.19. Let A C Mn (C). Assume that a d(A) consists of I distinct eigenvalues

All,...,A, where ni  is the multiplicity of X i = i,.... Then B is similar

over HA to the following matrix

I n
C(B) C Ci (B), C i(B) Mn (HA), A i I(n - Ci(A)]  0

(1.29.20) i1 . .

Moreover C(A) is the Jordan canonical form of A.

Proof. Choose P in the equality (1.29.12) such that P- AP is the Jordan canonical form

r Then the equality (1.29.12) yields the theorem.
i=I

Problems
k k

(1.29.21) Let A = 0 H(n ), n = n Partition any B £ M (C) conformally with
i-In

A, B = (B ij), Bij C Mninj(C), i,j 1,...,k. Using the results of Theorems 1.21.9 and

1.23.3 prove that the matrices
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r, )= (ri~ r ), r = n if (a,P) V (i,), ,=
(a,FY) aii pr

y = . na,), a,p

satisfy (1.29.1N).

(1.29.22) Let A be a matrix aiven hv (1.21.3). TTse Theorem 1.20.10 and PrOn1pm 1.10.11

to find a set of matrices ,.*..V ,A) which satisfv (1.20.1n).

(1.29.23) Let A C "n(C) and assume that ) i  is a simple root of the characrterli"lc-

polynomial of A. Use Theorem 1.21.4 to prove the existence of X(P) E V such tha4

X(R) is an eienvalue of T and X(A) =

(1.20.24.) Let A satisfv the assumntions of heorei 1.10.10. nennte hv n. a Anmair

satisfyino the assumptions of 'heorem 1.25.q, , =. . Let PV(P) be a nrniprnti n'

S C Mn(HA )  on P),, k X . . Accordina to Problem 1.2Q.24 D"(D,

TO n),
k = 1... Let p,(P)C = rx. X C, = 1 . c n(A,P) here 0 is sor-

positive number. Let X(P) he formed hv the columns

()x , P) k = 1. . Prove that C(s) alven hv (1.20.1) saisf'ies

(1.20.20). This aives another nroof to Theorem 1.20.10.

Ii

-13n-



1.30. Analytic. pointwise and rational similarity.

Definition 1.30.1. Let n c and A,B M n (H(n)). Then

(i) A and B are called analytically similar (A f B) if A and B are similara

over H(O),

(ii) A and B are called pointwise similar if A(x) and B(x) are similar over

C for all x e Q00 where 0 i some open domain 0 -,  ,
0 - 00

(iii) A and B are called rationally similar (A f B) if A and B are similar

over the field of meromorphic functions M().

Theorem 1.30.2. Let n c Cm  and asswte that A,B c Mn (()). Then the following

applications hold. A f B - A * B *A f B.
a p r

Proof. Suppose that

(1.30.3) B(x) - P'l(x)A(x)P(x)

where P,P-1 C Mn (M()). Let x0 e 0. Then (1.30.3) is holding in some neighborhood of

x0 . So A B. Assume now that A B. C(p,...) and C(ql,...,qe) be the

rational canonical forms of A and B respectively over the field of meromorphic

functions M(Q). C(Pl,...,pk) - S(x)1 IA(x)S(x), C(ql,...,q e ) - T(x)'1B(x)T(x),

S(x),T(x) e Mn (H(W)), IS(x)I T 0, IT(x)l F 0. According to Theorem 1.16.11 C(pl,...,p) ,

C(qi,...,qI ) Mn(H()). Let 0 c0 be an open connected domain such that

A,B,S,T Mn (H()) and A(x) and B(x) are similar over C for any x E c 0 Let

X C0 such that IS(xo)Tox0 )I # 0. Then for all x £ D(xo,P)
00

C(Pl, ....,p )(x) - C(q1, ....,gX)(x) •

Now the analyticity of C(pl,...,pk) and C(q1,...,q,) imply that these matrices are

identical in H(n). That is A B.
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Assume that A - R. Then according to Lemma 1.22.8 the three matricesa

(1.30.4) 1 0 A(x) - At (x) 0 1, I 9 A(X) - Bt(x) a I, I 9 5(x) - Pt(x) J I

are equivalent over H(P). Theorem 1.22.7 vields

Theorem 1.30.5. Let A,B C M (H(Q)). Assume that the three matrices in (1.30.4) are

equivalent over H(Q). Then A - B.

In case that Q c C, H(Q) is EDD (see Section 1.5). So we can determine when these

three matrices are equivalent.

The problem of finding a canonical form of A c Mn (H(Sl)) under the analyticn

similarity is a very hard problem which will be discussed in the next few sections for the

ring of local analytic functions in one variable. In what follows we determine when A is

analytically similar to its rational canonical form over H -the ring of local analytic

functions in tw neighborhood of C e C

For A,B £ M (H(Q)) denote by r(A,B) and v(A,B) the rank and the nullity of the
n

matrix C - I 9 A - B
t 
0 I over the field M(a). By r(A(x),Blx)) and v1A(x),P(x%)

denote the rank and the nullity of C(x) over C. As the rank of C(x) is determined by

the largest size of a non-vanishing minor, we clearly have

(1.30.6) r(A( ),B()) < r(A(x),B(x)) < r(A,B); v(A,B) 1 VCA(x),B(x)) C v(A(;),B()),

x £ D( ,p)

I

for some positive p. Moreover for any p > 0 there exist at least one x0 £ D(4,p) such

that

(1.30.7) r(A(x 0),H(x0)) = r(A,R), v(A(x0),f(xo)) v v (A,B)
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Theorem 1.30.P. Let A 6 Mn(C). Assume t$,at r,....,. I )  Is the rational canonical

form of A over a (o.9.... ) is the rational canonical form of A(C) over

C. That is P, = Pi
(
X
'
X) and C , = oa( are normalized .olvnomials in I helonaina to

H [X3 and CrX] resnectivelv for I = 1,...,V, i = X. "hen (1 p 9 V anA

m m
(ii) 1T o£i( ) I T pkI((.,) for m = f,1. k-1. Moreover £ = i an

j=Il i=l

pi = aI(C) for i = 1,...,k if and only if

(1.30.0) r(A(C),A(C)) = r(A,A), V(A(C),A(C)) = V(A,),

which is ecuivalent to the condition

(1.30.10) r(A(C),A(C)) = r(A(y),A(x)), v(A(C),A(C)) = v(A(x),A(x)), x C 
0
(Cp)

for some positive p.

Proof. Let

i *
u0A,x) V IT O,x), VMk = T a mk, i = lj-
n-k~i a- n-1+1 8 .I

u (,X=v = 1, for a < n-k, n

So u (X,x) and v I M are the a.c.d. of all minors of order Iof th~e mat-rices XT A

and XI - A(4) over the rinos M )Il and Cf)j resnectivelv. (See Section 1.1.) As

u (X,x) C H1Xl it iq clear that I ivides all minors o ,T - Afr) of orA@r

I i. So ui (x,)Ivf (), i = 1,...,n. Since v _. (A) 1 we must have that In (Xl =

1. That is k ( X. Also

,1 (X,x) I XT - A(Yi) , 1 A) = IXT -A(I .
n n
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Vn(X) u Un(-'I

Whence U(X,) = Vn(X). Therefore n i. This establishes claim (ii) of the

theorem. Clearly if C(q1 ... ,q) = C(P1 .... pk)(4) then k 
= 

X and pi( ) ,

i = 1. .. Assume now that (1.30.9) holds. According to (1.21.15)

k 9

V(A,A) = [ (2i-1)deg pk 1 (A,x), V(A(4),A()) = [ (2j-1)deg q +A)
i=1 =1m=

Note that the degrees of the invariant polynomials of (XI - A) and (XI - A( )) are

satisfying the assumptions of Problem 1.30.13. From the results of Problem 1.30.13 it

follows that the second equality in (1.30.9) holds if and only if k = Z and

deg pi (X,x) = deg q ( M, i = 1,...,k. Since p i(,x) and qi(x) are normalized

polynomials in X the conditions (ii) yield pi(X,;) = qg((), i = 1,...,k. Finally

(1.30.6)-(1.30.7) imply the equivalence of the conditions of (1.30.9) and (1.30.10).

Corollary 1.30.11. Let A C M (H ). Assume that (1.30.10) holds. Then A' B if and

only if A~B
p

Proof. According to Theorem 1.30.2 it is enouch to show that A I B implies A P.

Since A satisfies (1.30.10) then the assumption that A B implies that B alsoIP
satisfies (1.30.10). According to Theorem 1.30.8 A and B are analytically similar to

their rational canonical form. From Theorem 1.30.2 it follows that A and R have the

same rational canonical form.

Problems

(1.30.12) Let

A(X) X) B (x) 0 (\ x2)
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Show that A(x) and B(x) are rationally similar over the ring of rational functions to

H(2). Prove that A 0 H(2), B H(2). Show that A1 B over CIx]. Prove that the

matrices given in (1.30.4) are not equivalent over C[x]. That is A T B(x).

(1.30.13) Let n be a positive integer and assume that {m )n and {I I
n 

are two

sequences of non-negative integers satisfying 0 4 mn 4 mn C.4m

k k n n
0 4 t n 4 9 n- mi k c 1,.n1 1, . il in n. Prove (by

i-I in i-I

induction) that

n n
(2i-1)m 1 4 (21-I)L i

and the equality holds if and only if mi - ' i - 1,...,n.

(1.30.14) Let rn e C, n - 1,2...... . Assume that limn C. Suppose that
nn

c C, such that C C C, n - 1,2,..., , ; e 0. Using the fact that if C H(O)
n

satisfies (4nI - 0, n 1,.°., implies E 0 prove that for A,B e Mn (Q) the

assumption A(4n ) B(Cn), n = 1,2,..., implies that Af B.
n n r
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1.31. A global splittino

From this section throuh the end of the chapter we shall restrict ourselves to the

matrices whose entries are analytic in domains S c C. In what follows we give a global

version of Theorem 1.29.19.

Theorem 1.31.1. Let A(x) Mn (H(P)), where 2 is a connected set in C. Suppose that
n

(1.31.2) lXI - A(x) = ( , (X)(,x)

where P (X,x) and 2(X,x) are two nontrivial normalized polynomials in H(SI)[xl of the

degrees n, and n2  respectively such that (l (A,x 0),02 (A,x0)) = I for any x0 C S.

Then there exists a unimodular matrix X(x) such that

X- (x)A(x)X(x) = C 1(x) C2(x), X(x),X- 1(x) Mn (H(Q))

(1.31.3)
C i(x) C Mn i(H(Q)), XI - Ci (x)l = .i(X,x), i = 1,2

Proof. Let Pi(x) be the projection of A(x) on the eigenvalues of A(x) satisfying

=(,x) - 0. Since (-1 x(,x0 ), P2(X,x0 )) 1 clearly P.(x) C M (H(n)) for i 1,2.

(See Problem 1.28.24.) Also for any x0  the rank of Pi(x0) is ni. Since H(Q) isI each Pi(x) can be brought to the Smith normal form

P(x) = U (x) diag(C M(x)b..., C(x),0 ....,0)ViCx),

1-
n i

U , Vil ,U ,V £ M n(HCQ))

As r(Pi(x0)) = ni for any x0 c we immediately deduce that c M)(x) 1, j l,...,ni.0 J

1 1,2. Let u1 MCx),...,u M(x) be the columns of U1 (x), I = 1,2. Since
I n-1

V (x) e Mn (H(1)) we qet that
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(1 31 4) P ix)c " u l xl ,. . u J ( )

for any x c P mut

X(x) = (u(1 ) (x),...,u (x), U1  )(xl,...,u (x )

Accordina to Problem (1.2P.30) fX(xn)l # n for any xn c P. go V-1 (xl £ I (Mlp)). vlow

(1.31.3) follows from (1.2P.31).

,I
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1.32. First variation of a geometrically simple eigenvalue.

Theorem 1.32.1. Let A(x) be a continuous family of n x n complex values matrices fer

Ix - x0 1 < 6, where the parameter x is either real or complex. Suppose that

(1.32.2) A(x) = A0 + (x - x0 )A I + Ix - x0 Io(l)

Assume furthermore that X is a geometricallyt simple eigenvalue of multiplicity m. Let

1 m and y,
.  

m be the eigenvectors of A0  and At corresponding to \ whic&

t
form a biorthonormal system (yl) x3 i i,j = 1.... Then it is possible to

ij'

enumerate the eigenvalues of A(x) by X (x), i =I .... n, such that
1

(1.32.3) X.(x) = X + (x - x )Ii + Ix - x0 o(1), i = I.m
10 0

where 0, m are the eigenvalues of the matrix

t

(1.32.4) S = (s ij) E M (C), s. = (y') A IX
2  

i,j = 1. m

Proof. By considering the matrix P-IA(x)P, where P Mn (C) we can assume that A0  isn

in the Jordan canonical form such that the first m diagonal entries of A0  are

From the proofs of Theorems 1.29.11 and 1.29.19 we have the existence of

X(B) = I + Z(B), Z C Mn (H0), z0) = 0

such that

ii -

(1.32.5) X ()(AO + B)X(5) = = * C (B), C (0) = \I(m)
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Substituting

B(x) = A(x) - = (x-x )A + Ix-xYo01o),

Xfx) - X(B(x)) - I + (x-x )X, + Ix-x 0oi()

we get

CCx) - (x)A(x)X(x) = Ao + (x-x0 )(A1 + A0X1 - X1 Ao ) + Ix-x0 1o(1)

According to (1.32.5) X (x),...,m (x) are the eigenvalues of C(B(x)). An

CB(xo)) - XI(m) by considering the matrix (C(B(x)) - AI(m)]/(x - x ) we deduce that

(i (x) - X)/(x - x 0 ) are continuous functions at x - x0 . Also

it

[C1 (B(x)) - Xl(m)]/(x - x0) - ((ri ) (A1 + A0X 1 -X 1A )0) + 0(1)

where y = i ,.6 in),i . 1,...,M. Now note that sinca E and 7 are the

eigenvectors of A0 and At respectively corresponding to X for i - 1.,

(i ) (A0X1 - X1 A0 )CE - 0 for 1 ( i,4 J m. This establishes the result for a particular

choice of igenvectors and ... ,. It is left to note that any other

choice of the eigenvectors x1 ,..., 0 and y,.,ym which form a biorthoaonal syste

amounts to a new matrix S1  which is similar to S. In particular S and S have the

same eigenvalues.

Problems

(1.32.6) Let

A~)-(: :
t, -1 30 -

0 ,

A _ _ _)
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Find the eigenvalues and the eigenvectors of A(x) in terms of Fx. Show that (1.32.3)

does not apply for x0 = 0 in this case. Let B(x) = A(x
2
). Verify that (1.32.3) holds

for x= 0 even though X = 0 is not geometrically simple eigenvalue for B(0).

1

I
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1.33. Analytic similarity over H0 .

Let A,R C H (H 0). That is

k=A(X) A k x IxI < r(A)

(1.33.1) k=O

Sk
B(x) = L Bkx IxI < r(B)

k-0

Definition 1.33.2. Let A,B £ M (H ). Denote by n(A,B) the index and K (A,B) the
n p

number of local invariant polynomials of degree p of the matrix I 6 A(x) - Bt(x) 0 I.

Theorem 1.33.3. Let A,R M n(H0 ). Then A and B are analytically similar over H0 1f

and only if A and B are rationally similar and there exist n(A,A) + 1 matrices

T0,...,T E M n(C), (T) = n(A,A)) such that 1T01 0 0 and

k
(1.33.4) 1 (A Tk_ - Tk_i,) = 0, k = 0,1,.0.,n(A,A)

1-0

Proof. The necessary part of the theorem is obvious. Assume now that A(x) B B(x) andr

the matrices T., ....,T nsatisfy (1.33.4) and T 0  is non-singular. Put

-1 k
C(x) = T(x)B(x)T- (x), T(x) = Tkx

k.0!
As IT01 9 0, B(x) a C(x), so Ax r C(x). This in particular means that r(AA) -

r(A,C). Also (1.33.4) is equivalent to A(x) - C(x) = x r+0(1). Hence

(I a A(x) - A t(x) 9 I) - (I 9 A(x) - Ct (x) 9 I) x +10(1)
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In view of Lemma 1.13.4 the matrices I Q Alx) - At x) a I, I 9 A(x) - Ct(x) a T aTf,

equivalent over H0 . In particular ri(A,A) 
= 

n(A,C). Also 1,0...n satisfy the sys.

(1.33.4) where Bi = Ci, = 0,.. Accordinq to Theorem 1.13.14 there exists

P~x) t Mn(H ) such that

A(x)P(x) - P(x)C(x) = 0, P(O) = I

This shows that A(x) - C(x). By the constriction C(x) 5 P(x), so A(x) 5 (x).
a a a

Note that if n(AA) = 0 then the assumptions of Theorem 1.33.3 are ecauivalent

Ax) B(x). Then the implication that A(x) 5 B(x) follows from Corollary 1.30.11.
p a

Suppose that the characteristic polynomials of A(x) splits over H0 . That is

n
(1.33.5) INI - A(x)l = IT (X - X.(x)), X.(x) C Hn, i = 1.

j1 1 1i=1

As H0  is ED according to Theorem 1.18.5 A(x) is similar to an upper triangular

matrix. Using Theorem 1.2Q.1I and Theorem 1.18.5 we get that A(x) is analytically

similar to

9. n.

C(x) = 0 C(x), C (x) E M CH0 ) (CiI(ni) - C(0)) 1 0

(1.33.6)

a = 1(0), a v a. for i ¥ ', ij = 1.

and each C(x) is an upper triangular matrix. In this case w- an hP more specific abovei1

the form of the upper triangular matrix.

Theorem 1.33.7. Let A(x) £ Mn( )). Assume that the chararteristic polynomial of A(x)

splits in H0 . Then A(x) is analytically similar to a block diagonal matrix C(x) ofI I
the form (1.33.6) such that each Ci(x) is an upper trianaular matrix whose off-iiaoonal

entries are polynomials in x. Moreover, the degree of each polvnomial entry above the

diagonal in the matrix Ci(x) do not exceed ,n(Ci c0, j = I.
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Proof. Clearly, in view of Theorem 1.29.19 we may assure that I - 1. That is A(0 has

one eigenvalue a 0 Furthermore by considering A(x) - a we may assume that A(0) is

nilpotent. Also by Theorem 1.18.15 we may assume that A(x) is already in the upper

triayiqular form. Suppose now that in addition to all the above assumptions A(x) is

nilpotent. Define

x (y I A y = 0, y E n (H0), k = 0,1.....k n1 0

So

(0] - x o  X1 X2 ... xp - l1(H0 )

According to Theorem 1.11.12 it is easy to show the existence of a basis y (x),...,yn(x)

in Mn(H0 ) such that y1 (x),..,y k(x) is a basis in Xk . As A(x)Xk I c Xk we have

A(x)yi - * g y (x),

Define gijCx) - 0 for i > *k  and k  j ( *k+1.  Put

G(x) - (gl(x))1 , Tlx) (y lx),...,yn(x)) C Mn(H0 )

Since yl(x),...,yn(x) is a basis T- (x) C Mn (H ). So

G(x) T- TI(x)Ax)T(x), s = n(A,A) = n(G,G)

Put

G(X) - GjxJ G(Ic) - G) J
"~x G xi k -0,1,..., .
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We claim that G(S)(x) G(x). First note that
a

(I a G(x) - G tx) 0 I) - {I 0 G s)(x) - Gs) (x)] I} = x 0(1)

From Lemma 1.13.4 it follows that the matrices I 0 G(x) - Gt(x) I1, D G(S) X)-

CG(sx)]
t ID I have the same local invariant polynomials up to the degrees. So

(s) Cs)
r(G,G) 4 r(G ,G

which is equivalent to the inequality

(1.33.8) V(G(s),G
(s )) 

4 V(G,G)

Let

Yk . {y I y = (Y I.. . .. Yn ) t  
= 0 for j > k

Clearly if gj(x) = 0 then the (i,j) entry of G(s)(x) is also equal to zero. By the

construction gj(x) - 0 for i > k and *k ' j 4 *k+l
° 

So G )x)Yk+ Y k"

k - 0,...,p-1. By Theorem 1.24.1

(1.33.9) j(G(x 0 ),G(x 0)) V(G(S) (x0 )I,G (x 0))

for all x0  in the neighborhood of the origin. So

v(G,,) 4 O Gs),Ci)

-1 A4-



This proves that the equality sign holds in (1.33.8) which in return implies the equality

sign in (1.33.9) for 0 r Ix I < 0. By Theorem 1.24.1 G(x0 ) G(s)(x 0 ) for

0 ( Ix0 1 < P. Using Theorem 1.30.2 we deduce that G f G
s  

As

G(x)I - IG(S)(x) - x +o(1)

Theorem 1.33.3 implies that G(x) -G- (Slx). This establishes the theorem in case that

A(x) is a nilpotent matrix. Next consider the case where A(x) is an upper triangular

matrix whose diagonal entries (the eigenvalues of A(x)) are arranged in the following

order

A(x) (Aij(x)) , Ai (x) £ Mnj (H ) ,

in

(1.33.10) A ijx) - 0 for j < i, (A i(x) - l (x)l(nl)) 0,

Ai (x) X i (x), for i 9 j, i,j .

We already showed

A (x) - T 1(x)F (x)T (x), Ti,Ti 1 C M (H0  ,
ii i ii i n0

and each r' (x) - A (x)I(n i ) is a nilpotent upper triangular matrix with polynomialii i

entries of the form described above. Put

G(x) = (G (x))1 I T- I(x)A(x)T(x), T(x)- * T (x)
ii=

A X fx) rx) for i 0 j Problem 1.21.21 implies

v(G,G) r v(G ,G
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Let G(k) (x) be defined as above. According to Theorem 1.23.6

£
(Gk(k)k) M v k) _k),

V(G G L (G Gii
i=I

Using Theorem 1.24.1 as before we get

(k) _(k).
Vo(G ii, Gii) V(G. ,i .

II I
Combine the above inequalities to deduce that

(s) (s)v(G,G) < v(G ,G

Compare the above inequality with (1.33.8) to obtain the equality sign in (1.33.8). So

(5) (5)
(1.33.11) V(Gi ,Gii ) = v(G ,Gi, i = 1s.) .G

iiii

Let

j (k)
D.(x) = .(x)I(n.) = D x

j  
D (x) = D . i 1.2,

j=1 j=0

(1.33.12) (k))

D(x) = *D (x), D (x = D (xi

So

vG(s) D(s) G(a) (s) vG. Ti
ii i ii i i i Gii
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(a) (5)SD ~ (SDIG i  i.e.,
As before using Theorem 1.24.1 we deduce that G - D Gi i

(a) C a)G ) Di + D G * Since X (x) X ).(x) for i 0 j we finally deduce that
iii ir i i j

G f G(B
) 
- D18

) + D. Also GI - I(G
) 

- D
(s ) 

-- ) - x8+
10(0). Therefore according to

Theorem 1.33.3 G ' G( e ) - D( s ) + D. The proof of the theorem is completed.
aD

Theorem 1.33.13. Let P(x) and Q(x) be matrices of the form (1.33.6)

m
?(x) - * PW(x), P (x) C M (H0 1, (a I(mi) - Pi(0) 0J.1 i m i

U for i 0 J, i,j I...,p

(1.33.14)

Q(x) = * Q x), Q1 C Mn (H), (0))n,) -Q 1 (OI) - 0

8t ' 8j for i 10 J, i,j

Assume furthermore that

(1.33.15) i= 81 i - 1....,ta , i = t+1,...,p,j - t+1,....q,

0 4 t 4 min(p,q)

Then the non-constant local invariant polynomials of I I P(x) - Qt(x) I I consist of the

non-constant local invariant polynomials of I I P (x) - Q(x) i 1,...,t. That is

t
(1.33.16) Kp(P,Q) - p(PiQi)

, 
p - 1,2 .....

In particular if C(x) is of the form (1.33.6) then

(1.33.17) ni(C,C) - max n(C ,C
-1 4 -

t -147-



Proof. According to Theorem 1.13.14

KP(P.Q) = dim W - dim l

where Wp Mn (C) is the subspace of n x n matrices X such that

ni

k
(1.33.18) '(P *Xj - XjQk_ j ) =0, k 0,...,p

3=0

Here

Px Px P(X) P. x P = OP

(x) = ' QjxJ * (x) = Q ()x P* =j=0 j= J i= J

Q(xl) QxlJ) X i jQ

Partition X. to (X( ) x (j M (C), a = 1,...,p, 8 = 1,...,q. We claim that
J a CL aB mn a

X = 0 for if either a > t+1 or S > t+1 or a # B. This statement follows easily

by induction since in view of Lemma 1.21.5 the equation

(a) - B)
P Y-YQ0  0

r has only the trivial solution for those a and B. Thus (1.33.18) splits to the systems

k°, .(i)_(j) . x(I)Q(i))=,i

'J -jii ii k-j
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Apply the characterizations of p(P,Q) and K (P,Qi), i = 1,...,t to deduce

(1.33.16). Clearly (1.33.16) implies (1.33.17).

0

We close this section by remarking that the main assumption of Theorem 1.33.7 that the

characteristic polynomial of A(x) splits in H0  is not a heavy restriction in view of

the Weierstrass preparation theorem, Theorem 1.6.5. That is the eigenvalues of A(y
m )

split in H0 . If we choose m = ni then this statement holds for all A(x) C M n (H 0).

According to Problem 1.33.19 A(x) B(x) if and only if A(y
m
) f B(ym). Therefore the

classification problem of analytic similarity classes reduces by Theorem 1.33.7 to

determine the structure of the polynomial entries which are lying above the main

diagonal. Thus given the rational canonical form of A(x) and the index (A,A the set

of all possible analytic similarity classes which may correspond to A is a certain finite

dimensional variety.

The case n - 2 is classified completely (Problem 1.33.20). In this case to a given

rational canonical form there are at most countable number of analytic similarity classes.

For n = 3 we already have examples in which to a given rational canonical form there

may correspond a finite dimensional variety of distinct similarity classes (Problem

1.33.21).

Froblems

(1.33.19) Let A(x),B(x) £ M n(H 0). Let m be a positive integer. Assume that A(yM)T(y)

- T(y)B(ym), T(y) M n(H 0). Show thatinO

A(x)Q(x) Q(x)B(x), Q(ym) = m T (ve )

QW(x) c Mn (H

Prove that A(x) B(x) if and only if A(ym) C R(y).

aa
(1.33.20) Let A(x) E M (H0 ) and assume that

2 0
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I, A(x)l (-A I x)) ( C- 2(x)), XI(x),A 2 (x) C H ).

X ( x ) X j X l , i 1 ,2 , 0 1 ) X (2 ) = 0 . . . , , (2 )

j=0 3 j P+
1  P+'

-1 p -(p = means X(x) 2(x))

Prove that either A(x) is similar to a diagonal matrix or A(x) is similar to

/

(x) A1 (x) xk

(x) k = 0,1,...,p (p > -1)
2(

In the second casL O(A,A) = k. (Hint: Use a similarity transformation of the form

DAD
-  

where D is a diagonal matrix.)

(1.33.21) Let A e M (H ). Assume that Ax) t C(p), p(X,x) - A(-x 2m)(-x 4m), m .

Prove that A(x) is analytically similar to a matrix

0 x I a(x)

B(x,a) x 2 m  
, 0 ( kl, k2  (x- 

= 
0)

0 0 4m/

where a(x) is a polynomial such that deg a < 4m. (Use the previous problem.) Assume

that = 2  m. Show that B(x,a) B(x,b) if and only if

(i) b-a is divided by xm in case that a(O) 9 1.

(ii) b-a is divided by x
m+ k  

in case that a(O) = I and a(i)(0) = 0, i 1 ,...,k-1

a k)(0) 9 0 for 1 k < m.

(iii) b-a is divided by x
2
m if a(O) = 1, a(i)(0), i = 1,...,m-1.

That is for kI = = m the set of all analytic similarity classes of matrices PNx,al

can be regarded as a union of m + I copies of C
m

- {0, which are m nonfixed

coefficients of bx).
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(1.33.22) Let P and Q satisfy the assumptions of Theorem 1.33.13. Show that P and

Q are analytically similar if and only if p - q - t, i - ni, i = 1,.... t and

Pi ( x ) 
11Qi for i-1...t

Ii
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1.34. Similaritv to dianonal matrices.

Theorem 1.34.1. Let A(x) c Mn(H 0 ) and assume that the characteristic polynomial splits

in H0  as given in (1.33.5). Let

(1.34.2) B(x) = diaq(X (x) . X (x))
7n

Then A(x) and B(x) are not analytically similar if and only if there exists a non-

neoative integer p such that

K (A,A) + < (B,B) < 2K (A,B)
(1.34.3) p p p

K(A,A) + K(B,B) = 2Kj(AB), j = 0,...,p-i, if p ) I

In particular A(x) and B(x) are analytically similar if and only if the three matrices

given (1.22.6) are equivalent over HO.

Proof. Suppose first that (1.34.3) holds. Then the three matrices in (1.22.6) are not

equivalent. Hence A(x) g B(x). Assume now that A(x) 9 B(x). Without a restriction in

the generality we may assume that A(x) = C(x) where C(x) is given in (1.33.6). Let

£

B(x) = B (x), B.(.0) = jI(n), j = 1,...,£, m n0 +...n (n0-0)

j I

We prove (1.34.3) by induction on the dimension n. For n= I the theorem is obvious.

j Assume that the theoren holds for n 4 N-i. Let n N. If A(O) Y B(0) then Theorem

1.22.3 implies the inequality (1.34.3) for p = 0 and the theorem is proved. Suppose now

that A(O) B(0). That is A(0) = 5(0) = I(n), j-i. £. Suppose that £ > 1.

'3 Py Theorer 1.33.13

-1 ;2-
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- (AA) - K (A.,A.), c (AI) = C (Aj,Aj)

j=1 P 3 ] p j.1

PC(BP) - K: < SB ),p I

Since A(X) B(x) if and only if Aj(X) f B (x) for some j (Problem 1.33.22), using

the induction hypothesis we deduce (1.34.3). It is left to consider the case

A(N) B(0) - , < 0 (AA) . (0(AB) - (BIB) - 0

Put

(1)(1
A (x) (Ax) - 1*0I)/x, B (x) x ((x) - s0I/x

0 0

Clearly

= p(A(1) , <CA,B) <p (A(1) ,(1)) c(B,E) -
p I - , - p 

( (1)P-1( IB p 1,2,,...

Also A(x) B(x) if and only if A(1 )(x) t B(1 )(x). We now continue the process as5i
above. If at stage k either A~k)(0) B(O) or A(k)(0) has more than one

eigenvalue we conclude the theorem as before. The only possibility which is left is

A(x) - B(x) = X(x)l, X(x) C H

However this case violates the assurnption A(x) P(x). The proof of the theorem is

€' completed.
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1.35. Strict similarity to diaaonal matrices.

Let A(x) C Mn (H 0). According to the Weierstrass preparation theorem (Theorem 1.4.%)

the eigenvalues of A(ym) are analytic in y for some 1 ( m ( n. That is the

eigenvalues X1 (x)
'
.. ,A

n
(x) of A(x) are multivalued analytic functions in x which

have the expansion

~x) = X ki .n/mL j x , j 1,I...,.n

k=O

In particular each X.(x) has at most m branches. For more properties of the

eigenvalues \j(x), j = 1,...,n see Kato, (1976, Chapter 2]. Let A(x) C M (C[x!). So
j n

m k

(1.35.1) A(x) = M(C k = 0,1 .... m
k= 0

The eigenvalues of A(x) satisfy the equation

n
(1.35.2)JAZ - = An = 0, a.(x) E C[x, j = .... n

Thus the eigenvalues X1 (x),...,Xn x) are algebraic functions of x (see for example

Gunnigig-Rossi [19651). The equation (1.35.2) describes one or several compact Riemann

manifolds according to the polynomial (1.35.2) is irreducible or reducible in Cfx,)2.

According to the Weierstrass preparation theorem X jx) has the followina expansion aroun!

Xj

4 - k/m
(1.35.3) .(x) X jk((x- / J 1,...,n

The number m can be chosen to be independent of C. For example m = n! will always be

correct. These expansions are called the Puiseaux expansion of X (x). Since A(x) ir a

polynomial matrix each A x) can be expanded in the neiahhorhood of -. To do so we n tr

that

-154-



= m I
AWx XBC;'), B(Y) A yk'O

Expand now the eigenvalues of B(y) at y = 0 to get

(1.35.4) Xj(x) = x m k jk()x- = 1.n
k=0

Definition 1.35.5. Let A(x),B(x) C M (CEX]). Then Ax) and B(x) are called strictly
n

similar (A B) if there exists P C M (C), IPI 9 0 such that B(x) - PA~x)P-1 .
n

From Lemma 1.22.8 it follows that if A(x) B B(x) then the three matrices in (1.30.4)

are equivalent over C[x]. To take in account the point x we need to homogenize as in

Section 1.14.

Definition 1.35.6. Let A(x) be given by (1.35.1). Denote by A(x0 ,x1 ) the

corresponding homogeneous matrix

(1.35.7) A(x0 ,x 1 ) A -kk C. Mn (C[x 0 ,XI])

where m' = 0 if Alx) = 0 and Amp 9 0, Aj = 0 for m' < J m i if Alx) 9' 0.

Clearly if B(x) = PA(x)P -  then B(x 0 ,x 1 1 - PA(x 0 ,x 1 IP "
. According to Lemma 1.22.8

the matrices

(1.35.8) 1 Q A(x0 ,x 1 ) - At(x 0 ,x1 ) a 1, I 0 A(x0 ,x 1 ) - Bt(x 0 ,x 1 ) a I

tt Ia B(X0,x 1) B 8 ( xOx) I I

are equivalent over C[x0 ,x1 . Thus from Lemma 1.10.3 it follows

Lemma 1.35.9. Let A~x),Bx) c M (C[xl). Assume that A(x) P(x). Then the three-- n

matrices in (1.35.8) have the same invariant polynomials over Cx 0 ,x11.
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Definition 1.35.10. Let A(x),B(x) E M (Cxf). And assume that A(xoK Ix) and B(X 0 ,XI )

are the homogeneous matrices correspondinq to A(x) and B(x) respectively. Denote by

ik(xO,Xl), k = 1,...,r(A,B) the invariant factors of the matrix I 9 A(x0 ,xI ) -

B t(x 0 ,xI) a I.

As in the proof of Lemma 1.14.8 we have that ik(x0,XI) is a homogeneous polynomial

for k = 1,...,r(A,B). moreover ik(1,x), k = 1,...,r(A,B), are the invariant factors

of I 9 A(x) - Bt(x) a I. (See Problems 1.14.30 - 1.14.31.)

We now answer the problem when A(x) is strictly similar to a diagonal matrix

B(x) C M (Clx]) of the form (1.34.2).
n

Theorem 1.35.11. Let A(x) c M (C[x]). Assume that the characteristic polynomial of~n
A(x) splits to linear factors over Clx]. Then A(x) is strictly similar to the diagonal

matrix given by (1.34.2) if and only if the three matrices in (1.34.8) have the same

invariant factors over C[x 0 ,xl].

Proof. Without loss of generality we may assume that B(x) is of the form

(1.35.72) BIX) = Ai(x)I(n.) .IAx) - A.(X) foe i j, i,j = 1..
1i1 3

Thus for all C except a finite number of points we have

(1.35.13) A i() # Aj{(4), i,j = I..

Let Pj(x) be the projection of A(x) on X i(x), j E 1... Suppose that (1.35.13) is

satisfied at x0. According to Problem 1.28.24 each Pj(x) is analytic in theAI neighborhood of c. Assume that (1.35.13) does not hold for C £ C. The assumption that

the three matrices in (1.35.8) have the same invariant polynomials imply that the matrices

y in (1.30.4) are equivalent over H • Now use Theorem 1.34.1 to get that Ax) and B(x)

are analytically similar over H . Clearly P (B) the projection of 9(x) on X J(x) is

equal to 0 e I(n.) e 0. From Problem (1.28.27) we deduce that Pj(x) Is also analytic in

1' -156-
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the neighborhood of The same arguments apply for = . This follows by considering

the matrices A(x0,1) and B(x0,1). Thus Pj(x) is analytic on the Riemann sphere. In

particular P1 (x) is bounded. The Liouville theorem (e.g. Rudin (1974]) implies that

P. is a constant matrix. Let

SM(C)
n

According to Problem 1.28.28 X 1 A(X)X - B(x) for ; which satisfy (1.35.13). Finally

the analyticity of A(x) and B(x) implies the validity of the above equality for all x.

0

Let A(x) e M (C). Suppose that A(x) is strictly similar to a diagonal matrixn

B(x). Consider the corresponding homogeous matrix A(x0 ,x,). Then we obviously have that

for any ;0,; E C, A(;0,;1) is similar to a diagonal matrix, i.e., A(C0,o I  is

diagonable. However if A( 0 1 1 ) is diagonable this does not imply that A(x) is

strictly equivalent to some diagonal matrix. For example

(1.35.14) A(x) 0 + ax+ (0 x

See Problem 1.35.24. We now give a sufficient condition on A(x), such that A(0 I ) is

diagonable for any C0,4I, which implies that A(x) is strictly similar to a diagonal

matrix.

.Definition 1.35.15. Let A(x) c M (C[x) be of the form (1.35.1) normalized by the-- n

condition Am # 0 if m ) 1. Let X (x) and X (x) be two eigenvalues of A(x). The

eigenvalues X (x) and X (x) are said to touch at C if the Puiseaux series of A x)

and A (x) at x - 4 satisfy the following relations
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. . . . . . .. ..~T,.... .

(1.35.16) X pk X qk(0, k -0...,s

for a finite or infinite €.

Theorem 1.35.17. Let A(x) E M (Cfx]) be of the form (1.35.1) normalized by the~n
condition Am # 0 if m ; 1. Assume that the corresponding homogeneous matrix A(x0 ,x1 )

is diagonable for any , C. Suppose furthermore that no two distinct eigenvalues

of A(x) touch at any finite or infinite point of the Riemann sphere. Then there exists a

constant matrix X C M (C), lXi 0 0 such that
n

m

(1.35.18) X-IA(x)X k

k=0

where DO,...,Dm are diagonal matrices.
Proof. Clearly we can view A(x) as a matrix in n (M), where M is the field of

rational functions. Let K be a finite extension of all such that II - A(x)l splits to

linear factors over K. Thus A(x) 9 distinct eigenvalues X I(x),...it(x), such that

Xk(x) has multiplicity nk, k = k ,...,i. Thus for all except a finite number of points

(1.35.13) holds. Assume that satisfies (1.35.13). Denote by Pj(C) the projection

of A(x) on X (4), j = 1,...,X. According to Problem 1.28.24 P.(x) is analytic in the] J

neighborhood of C. Also in view of Problem 1.28.32 Pj () is given by the formula

Ij

(1.35.19) P () = U [A(C) - A ()I]/[X.() - Xk ()]
k-1,k#J

We claim that in the neighborhood of any point P, Pj(y+ C) is analytic in y. (In case

that = (y is analytic in y in the neighborhood of the origin.) Clearly it is

enough to consider the points at which (1.35.13) is violated. For simplicity of

notation we consider P1 (x) in the neighbornood of . Assume first that is finite.

Suppose that

• r - -- 15 -



n - C(i)...-,u(C), Xk() 10 X1 (C), k - u+1,..., .

According to Theorem 1.29.19 there exists Q(x) C Mn(H ), IQ(0)I Pf 0 such that

Q (x)A(x)Q(x) - CO(X) * C2 (x), C1 (x) Mm 1(H

U
C (x) C M (H ), m1 '2 m  n

'' 
m

Moreover the eigenvalues of CI(x) and C2 (x) are (1 (x)x...,Au(X) and

X u+(X),...,x AI(x) with the multiplicities nl,...,n u  and n u+ 1 ...,n£ respectively.

Since A(x) is diaqonable for each x, Cl(x) and C2 (x) are also diagonable in the

neighborhood of C. So

11 (C2 (x) - )klx)I) - 0
k-u+l

which yields

It (A(x) - Ak(x)I)/[ (x) - A k(X]
k Ic k

'1-l(x){ TI [C1 x) - x)Xl]/EA1Cx) - (xkl1 * 0}Qlx)
k-2

The assumption that n - (C)...A ( ) and the diagonability of C1 (x) imply

C (x) - Ti + (x-0CC3 (x)

Therefore the Puiseaux series of XI(X),..., u(x) satisfy Xj(C) - 0, k - 1. s-i,

J - 1,...,u. As no two distinct eigenvalues of A(x) touch at C we get that

Xs (C) ¥ X (C), for j 2,....u. So

t.s
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S[C(vS+) . (ys+C)Il/[%l(S - (SyS+.)]

3=2

3(s+) -s0 (;)yk-s )I]/{ ( [1k( - k-s
}

j=2 ks k=s
s S -1 SAlso ((ys+) - X (v +0) C H for j = u+1,..., This shows that P (ys+ ) isAlso

analytic in H0  for any finite . y considering A(x) = x mA(-!) we transform to
x

0 and the same result applies to C . In particular we have that Pl(x) is bounded on

(1) (1) (1)the Riemann sphere. Put P (x) = (P.. (x)l. Let maxpi. (xI = lp ( i U.
1 1j J ij ij

(.ij may be -). As p1)(4i + y') is analytic in y the maximum principle implies
a1) p i

that p ij( ij + y ) is constant in the neighborhood of the origin (e.g. Rudin (1974]).
(1)

The analytic continuation principle yields that pij (x) is constant. Hence P1  Pl(x)

is constant and in the same manner we deduce that all P.(x) are constant. Define the

matrix X as in the proof of Theorem 1.35.11 to deduce (1.35.18).

0

Corollary 1.35.20. Let A(x) be of the form (1.35.1). Assume that the matrices

A0 ,...,Am are diagonable and AiA, 9 AjA i  for some 0 4 i < j 4 m. Then either there

exist l, I e C such that A( 0,C I ) is not diagonable or there exists a point 0 on

the Riemann sphere (possible . = ) and two distinct eigenvalues of A(x) which touch

at 0

It can be shown that for the matrix (1.35.14) the two distinct eigenvalues of A(x)

touch at 1. (Problem 1.35.25.) However if A(x) is a pencil, i.e., A(x) - Aa + xA I

then two conditions of Theorem 1.35.17 are redundant. More precisely we have

Theorem 1.35.21. Let A(x) - A0 + xA I be a pencil in Mn(C[x]). Assume that for any

, C, A(4) is a diagonable matrix. Then the eigenvalues of A(x) are linear functions

in x

(1.35.22) X (x) = a, + six, j =

In particular no two distinct eigenvalues of A(x) intersect at any point of the Riemann

sphere.
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Proof. Consider a multivalued function X.(x) which has the Piiseaux series (1.35.3)-- 3

clearly X'(x) is also multivalued functions which is given by

(x) = M()(x-;) k/s-1

i kO s jk

As A(C) is a diagonable matrix any X (;) is a geometrically simple. According to

Theorem 1.32.1 X . 0, k = 1. s-1. So X'(x) is bounded in the neighborhood of .
jk

Let = . Then the Puiseaux series of X i(x) are of the form

) Cx) =k 0 CJ}x (S-k)/s

So (x) is also bounded at the neighborhood of *. Now use the arguments of the last

part of the proof of Theorem 1.35.17 to deduce that X;(x) - %. J 1,...,n. This of

course implies (1.35.22). In view of (1.35.22) the equalities (1.35.16) imply that

a - a , i.e. X Cx) ( ) Cx) for all x.
P q p q p q

Problems

(1.35.23) Let A[X) c M (C[x]). Assume that there exists an infinite sequence of distinct
n

points { k} such that A( k is diagonable, for k - 1,2,.... Show that A(x) is

diagonable for all but a finite number of points. (Hint - Consider the rational canonical

form of A(x) over the field of rational functions.).

(1.35.24) Let A(x0, I I- A x, A, E M n(C[x,x I). Show that if A(x0 ,x1 ) is

diagonable for any x0 ,xI E C then (1.35.18) holds (m - 1).

(1.35.25) Consider the mat ix (1.35.14). Show that the eigenvalues of A(x0 .xI ) are

.XX 2 (x) , x , xI. Prove fnr x0 ,0 A(x°.x,) is diaqonable. As A(OX - I

A(x0 ,xI ) is diaeonable for all xn,x, E C. Show that the elgenvalues of A(1,x) touch at
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1.36. Strict similarity of pencils.

Let A(x) and s(x) be two linear pencils

A(x) = A0 + xA1 , B(x) B0 + xB1 C Mn(C[xl)

Assume that A(x) and B(x) are strictly similar. That is

(1.36.1) B0  - PA0p 
-I  

BI  = PAP
I

for some non-singular P £ M (C). From (1.22.5) it followsn

Lemma 1.36.2. Let A(x) and B(x) be two pencils in Mn(Clx]) which are strictly

similar. Then the three pencils in (1.30.4) are strictly equivalent.

Using the Kronecker's result (Theorem 1.14.23) we can determine whether the pencils in

(1.30.4) are strictly equivalent. We now study the implications of the assumption that the

three pencils in (1.30.4) are strictly equivalent. More precisely we have

Lemma 1.36.3. Let A(x) and B(x) be two pencils in M n(C[x]) such that the first two

pencils in (1.30.4) are strictly equivalent. Then there exist two constant non-zero

matrices U,V c Mn (C) such that

n

(1.36.4) A(x)tl - UR(W) - 0, VA(x) - B(x)V - 0

In particular

(1.36.5) A0 ker(V), AI ker(V) C ker(V), B0 ker(U), B1 ker(U) _ker(U)

Proof. Aa

A(x)I - IA(x) 0
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the strict equivalence of the first two pencils in (1.30.4) implies that C(A,B) and

C(B,A) contains at least one non-zero matrix as the first row and column index of I 9 A -

At * I is 0. Assume that c £ ker(U). That is U& - 0. From the first ecmality in

(1.36.4) we deduce U(B(x)&) - 0. So B(x) ker U c ker U which is equivalent to the

second part of the inequality (1.36.5). The first part of (1.36.5) is established in a

similar way.

Theorem 1.36.6. Let A(x) - A0 + xA1 , B(x) - B0 + xBI , Ails n Mn(C), i = 1,2 be two

given pencils. Suppose that either A0 ,A1  ME B0,B i do not have a common invariant

subspace different from [0] or Cn  (the trivial subspaces). Then A(x) ' B(x) if and
5

only if the first two pencils in (1.30.4) are strictly equivalent.

Proof. Assume that A0  and Al do not have in common non-trivial invariant subspace.

Then the matrix V 9 0 in (1.36.4) must be non-singular in view of (1.36.5). So

A(X) B(x). In case that B0 and B, do not have a common non-trivial invariant

subspace we get that lU! 0 0.

A simple criterion for AO and A, not have a common non-trivial subspace is that

the polynomial 1XI - A(x)I is irreducible over C[x,AT. (Problem 1.36.17.)

Next we show the connection between the notions of analytic similarity of matrices

over H0  and strict similarity of pencils. Let A(x),B(x) c M n(H 0 ) and assume that

n(A,A) = 1. Suppose that A(x) I B(x). According to Theorem 1.33.3 A(x) B B(x) if andr

only if there exist two matrices T0 ,T,, IT0 1 91 0 such that

A0 T0 - T0 0 , AIT0 + A0 T1 - T0 B I + TIB 0

Let

(1.36.7) F(AA1) (A( I C (C)
1 0 A M)2n(-6
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Then (1.33.4) in this case is equivalent to

(1.36.S) F(A0,A 1)r(TQT 1 ) = F(T 0,T 1 )F(B0 ,B 1)

As IF(T 0 ,T)I = 1T0 12 , To is non-sinqular if and only if F(T0 ,T1 ) is non-singular.

Definition 1.36.9. Let Ai,B i c Mn(C), i = 1,2. Then F(A 0,A I ) and F(B0,B I ) are called

strongly similar (F(A0 ,Al) ! F(B9 ,BI)) if there exists a non-singular matrix F(T0 ,T1 )

which satisfies (1.36.S).

Clearly if F(A0 ,A1) F(B 0 ,B ) then F(A0 ,A I) - F(B0 ,B). It can be shown that the

notion of the strong similarity is stronger than the ordinary notion of similarity.

(Problem 1.36.24.)

Lemma 1.36.10. The matrices F(A0 ,A1 ) and F(B0 ,B I) are strongly similar if and only if

the pencils

A(x) - F(0,I) + x F(A0,AI), B(X) - F(0,I) + x F(B0,B 1 )

are strictly similar.

Proof. Let P - (P ), P c M (C), i,j = 1,2. Then F(O,I)P = PF(0,I) if and only if

jij ij n

P11 p p22 ' P2 1 = 0. That is P - F(PI1 ,P12 ) and the lemma follows.

Clearly if F(A0 ,A1 ) and F(,1B1) are strongly similar then A0  8, B. Without the

restriction in generality we may assume that A0 - B.. (See Problem 1.36.19.) Consider

all matrices T0,T, satisfying (1.36.7). For B. - A0 (1.36.8) reduces to A0T0 = TOA0 ,

AoT 1 - TIA 0 - T0 1 - A1T0 . According to Theorem 1.23.3 the set of all matrices TO which

satisfies the above requirements is of the form

(1.36.11) P(AI' I) I T 0IT0 C C(A ) tr(V(TB1 - AIT 0 )) - 0,

0 0 -164-
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we also otserve

Lemma 1.36.12. Suppose that F(A 0 ,A I ) t F(A0,,I). Then

(1.36.131 dim P(A1 ,A I ) - dim P(A1 ,P I) - dim r(BI,B I )

As in Theorem 1.22.9 for a fixeA AO,A there exists a neihborhood D(A,P) such that

the first two equalities in (1.36.13) imply that F(A0 ,A1 ) F(A 0,A) for B c D(A,c)

(Problem 1.36.1S).

Next we consider a splittina result analoaous to Theorem 1.29.19.

Theorem 1.36.14. Assume that

(0) (0) (0)(1.36.15) Ao diao(A ) A ii (C) i 1,20 11 '22 
)
' Au Mn(), -1,

i

where A11(0) and A 
(0

) do not have a common eigenvalue. Let
11 - 22

A (A(;). 2, '1=

be the conformal partition of A1  and B, with A0 . Then

(1.36.16) r(All (A (f )(1) P(A,2 2A11 , 11  22 ,B22

Moreover, F(A 0 ,A1 ) t F(A 0 ,BI ) if And only if F(A ,I ) F(A ) for 1 1,2.

Proof. According to Problem (1.21.22)

C(0 ((0) (0)
C(A C(A ) I C(A2)

0 1 2

Then Ohe trace condition in (1.36.11) reduces to

-16r-
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tr[v( (0B (1) _ A ()T(0)) + V2(T ( -A T )] = 01 11 11 2 22 22 2

Here

V V V2 To = )(0) ,(0) C(A )) 0 C(A22 )

i T T1  T2 2

Choosing either V1 = 0 or V2 = 0 we obtain (1.36.16). As IT0 1 = IT1  I IT 1, T

is onsiguarif ndony f ( 0 )  
( 0)

is non-singular if and only if T0  and T2  are non-singular. This establishes the

last claim of the theorem.

E

Thus, the classification of strong similarity classes for the matrices F(A0 ,A1 )

reduces to the case where A0  is nilpotent (Problem 1.36.20). In case that A0 = 0 the

notion of the strong similarity reduces to the standard notion of similarity. In case

that A0 = H(n) the strong similarity classes of F(A0,A1 ) are classified completely

(Problem 1.36.23). This case corresponds to the case discussed in Theorem 1.29.17. The

case A0 = H(n) * H(n) can be also classified completely using the results of Problem

1.33.20 (Problem 1.36.25).

Problems

(1.36.17) Let A(x) E M (Cx]) and assume that A(x)U c U where U is a subspace of
n

Cn, 1 dim U 4 n-1. Let p(X,x) e C[X,x] be the minimal polynomial of the restriction

of A(x) to U. Thus deg p(X,x) c n-1. Prove that p(%,x) divides IXI - A(x)l. TI'at

is IXI - A(x)I is reducible over C[X,x].

(1.36.18) Modify the proof of Theorem 1.22.9 to show that for fixed A0 ,A1  then there

exist 0 > 0 such that the first two ecualities in (1.36.13) for B £ N(A,P) imply tat

F(Ao,A 1 ) L F(AOB 1 ).

(1.36.19) Prove that F(Ao,A I ) Z F(BoB I) if and only if F(A0,AI) Z F(PFoP ',PF 1P
I

for any non-singular P. Suppose that F(A0 ,A1 ) F(B8,B1 ). Show that it is Possible to

* choose P such that A0 = PP1 .

-1 (6- T
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(1.36.20) Prove that N(A0,A1  F(B0 ),B1 ) if and only if F(A 0 )XI,A 1 F(R - XI, R

for any A~.

(1.36.21) Let F(A,...,A_) - (F ), F, ' Mn(C), i'j F 7,..s . = A.j- for

1 4 -- j 4 S, Fij 0 for 1 4 j < i 4 a. F(A0 ,. A,_1 ) and F(B0 ,.. ,B,5 ) are

called strongly similar (F(A,....,A S-1) ZF(B0 '.. ,Bs_ if there exist

F(T0 '.  T5,. 1 ) such that F(AO,...,As51 )F(T 0.... ,T5 1I) F(T0 '.. ,T5 1 )F(B0 '..  EBsi).

Prove that F(A 0,...,A S 1 ) f-F(B0,...,B S-1) if and only if the equalities (1.33.4) hold

for k = 0,1,.s-I where 1T01 I 0.

(.36.22) Let

Z = H(nlS ... H(n), X = (X ),Y =(Y C M (C), m =anpq pg m

X = (X(pq) M ( )EMC), ~ = 1,...,
pg ij pg~ ij n 4C, ~ .

Define

A - (a (), B=(b () CM(CM
r pq r pg 5

a +r (pq ~ (r) r+ ~ pq)
pq(-~-~lpq y (Cn-r+i-1)i'r 0 n

Using Theorem 1.2t.9 prove that F(Z,X) Z F(Z,Y) if and only if F(AO,.. ,An 1 )Z

.(o,.-Bn-1 ) (To do that one needs the following auxiliary result. Consider X =(X pq

of the above form. Assume that each Xp is an upper triangular matrix. Expand the

determinant of X by the rows n,2n,...*,sn and use the 'iduction to show

n (p s

r=1nI~ rr pq

(1.36.23) Use the two preceding problems to prove that F(H(n),X) Z F(H(n),Y), X (xj=

Y -(y~~ C M(CM if arnd only if

-n7



r r
i -Xn-r+i)i i Y(n-r+i)i for r .. n

(1.36.24) Let X = (x ij) M 2(C). Prove that if x2 1 9 0 then F(H(2),X)2z H(4).

Combine this result with Problem 1.35.23 to show the existence of Y e M 2(C) such that

F(H(2),X) F(H(2)Y) but F(H(2),X) ?. F(H(2),Y).

(1.36.25) Assume in Problem (1.36.22) s = 2. Let

n-1 n-1
A(x) A x, R(x) R Bx C M2( 0(

A~ =0i 2 0
i=0 i

Using the results of Problems (1.36.21) - (1.36.22), Section 1.33.3 and Problem 1.33.20

prove that F(Z,X) Z F(Z,X) if and only if the three matrices in (1.30.4) have the same

local invariant polynomials up to the deoree n-1.

A

.1J



1.37. %Ntes

-cst of t-e -3terial in Sections 1.1 - 1.8 is standard. See Lang [1967] and van der

Waerden 1-99 for the algebraic concepts. Consult Gunning-Rossi [1965] and Rudin 11974]

for the material concerning the analytic functions. See Kaplansky [1949] for the

properties of elementary divisor domains. It is an open problem whether there exists a

Bezout domain which is not an elementary divisor domain. Theorem 1.5.6 for a - C is due

to Helmer [1940]. A nice introduction to the theory of algebraic varieties can be found in

Lange [1958).

Section 1.9 is standard, e.g. Curtis and Reiner [1962] and MacDuffee [1933]. Most of

the content of Section 1.10 is well know, e.g. MacDuffee (1933]. Perhaps Lema 1.10.3 is

not common. The content of Section 1.11 seems to be new since the underlying ring is

assumed to be only a Bezout domain. In case that the underlying is EDD, i.e., A is

ecuivalent to a diagonal matrix. Theorems 1.11.7 and 1.11.12 are well know. It would be

interesting to generalize Theorem 1.11.7 for D = Fxl,...,x p], for p ) 2. The fact that

the Smith normal form can be achieved for the elementary divisor domain is due to Helmer

(1943). Consult also Kaplansky (1949].

Most of the results of Section 1.13 are from Friedland (1979b]. It is in open problem

whether the results of Problem 1.13.26 hold for any 0 c C
p
. In case that 0 - D(O,p),

{ p = < p
} 

the results of Problem 1.13.26 apply. This follows

from the Cartan theorem b, e.g. Gunning and Rossi [1965]. This result is due to

J. Mather (unpublished).

The exposition of Section 1.14 is close to Gantmacher (1959]. The content of Section

1.15 is standard. Theorem 1.16.7 is well known (e.g. Gantmacher (1959]). Other results of

Section 1.16 are not common and some of them may be new. Section 1.17 is standard and its

exposition is close to Gantmacher [1959]. Theorem 1.18.5 is probably know of EDO (see

Leavitt (1948] for the case n = H(Q), 0 c C). Perhaps it is new for Bezout domains. The
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results of Section 1.19 are standard. Theorem 1.20.10 appears implicitly in Friedland

[1979b]. The exposition of Section 1.21 is close to Gantmacher [1959]. For additional

properties of the tensor product of matrices see, for example, Marcus and Minc [1964).

Problem 1.21.28 is close to the results of Faddeev [1Q66] for necessary and sufficient

conditions for the similarity of A and B over Z. See also Guralnick [1980] for a

arbitrary integral domain D. The results of Section 1.22 are recent. Theorems 1.22.3 and

1.22.7 are taken from Friedland [1979b]. See Gauger and Byrnes (1977] for a weaker version

of Theorem 1.22.7. Some of the results of Section 1.23 seem to be new. Theorem 1.23.3 was

taken out of Friedland [1979a]. Theorem 1.24.1 is due to Friedland [1979b].

The exposition of Section 1.25 is close to Gantmacher [1959]. The results of Section

1.26 were inspired by the paper of Rothblum [1980). The notions of local indices can be

found in Friedland-Schneider [1980]. The content of Section 1.27 is standard. Theorem

1.27.9 can be found for example in Wielandt [1967 and Problem 1.27.12 in Gantmacher

[1959]. The use of the Cauchy integration formula to study the properties of the analytic

functions of A is well accepted. See for example Kato [1976]. The results of Section

1.29 are due to Arnold [1971). See also Wasow [1977]. See Wasow [1963), [1977] and (19781

for the notions of analytic and pointwise similarity and their importance in theory of

differential equations in the neighborhood of singularities. Theorem 1.30.8 in case of one

complex variable appears in Friedland [1979b]. Corollary 1.30.11 goes back to Wasow

[1963]. Theorem 1.31.1 for simply connected domains is due to Ginqold [1978). See Wasow

[1978] for the extension of Theorem 1.31.1 to certain domains Q _ C
p
. It is shown there

that Theorem 1.31.1 fails even for some simply connected domains in C3 .

Theorem 1.32.1 can be found in Kato [19761 or Friedland [1Q78]. The results of

Sections 1.33 - 1.34 were taken from Friedland [1n79b]. It is worthwhile to mention the

conjecture stated there that A(x) and B(x) are analytically similar over H. if the

three matrices in 1.30.4 are equivalent over H0 . Theorem 1.35.11 is new. Theorem 1.35.17

is taken form Friedland [1980]. Theorem 1.35.21 and Problem 1.35.24 are due to Motzkin-

Tausaky [1955]. See also Kato [1976] for a proof of these results using the method of

* analytic functions. Most of the results of Section 1.36 are taken from Friedland
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[1979a-b]. Some results and references on the problem of strict similarity of pairs

(A,B) of matrices under the simultaneous similarity can be found in Brenner [19751. See

also Procesi for the extensive treatise on the invariants of pairs (A,B) under the strict

similarity.
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