AD=A089 635 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/6 1271
SPECTRAL THEORY OF MATRICES. I+ GENERAL MATRICES, (V)
MAY 80 S FRIEOLAND DAAG29=T5=C-0024
UNCLASSIFIED MRC-TSR-2082 NL




1 28 5
= w K g2 -
——— :_" m g

o 20

. L ST
=—— m 1.8
=
HL2s s s
= —_— ==
MEROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A 1




T~ Mg e e

Cadii

AD A0O89635

<;dK{Technical summary Repart‘&?OSZ
Jy

| SPECTRAL THEORY OF MATRICES, \

Ll
; I. GENERAL MATRICES \

Shmuel; Friedland !

Mathematics Research Center

- - ~
University of Wisconsin—Madison 4
610 Walnut Street e
Madison, Wisconsin 53706 U
ST ;7 /
/May 1980 [ )
(Received February 12, 1980) o ,
. ! ] / 5 -
mS e A
Gt e
. S
¢ 12y -
s
L]
: Approved for public release

Distribution unlimited

. Sponsored by

U. S. Army Research Office
P. 0. Box 12211

Research Triangle Park
North Carolina 27709

(>, SEP 29 1980

W




o gt e o

e pomi

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SPECTRAL THEORY OF MATRICES
I. GENERAL MATRICES

Shmuel Friedland

Technical Summary Report #2082
May 1980

‘Z ABSTRACT

This is the first of our survey reports on the spectral theory of
matrices. The report is self contained from the matrix point of view. The
main subject of this paper is the theory of analytic similarity of matrices.
This topic of matrix theory is very important in the study of systems of

ordinary differential equations having singularities either in time or a

parameter.
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SIGNIFICANCE AND FXPLANATION

In this survey paper we summarize the recent progress on the prohlem of
analytic similaritv of matrices. That is, given n x n complex values
matrices A(x) = (ajj(x)), B(x) = (hjj(x)), whose entries aj(x), hii(x)'
i,3 = 1,.¢.,n are analytic functions in some domain &, when
B(x) = X{(x)A(x)X~1(x), where X(x) and X~-V(x) are analvtic in x? What is
the canonical form of A under the analytic similaritv? These nroblems are
related closely to the study of systems of ordinarv differential ecuations
having singqularities either in time or a parameter. To make this survev paner
to be self contained we had to recall some basic facts in theorv of rinas,
functions of one and several compplex variakles. Also we Aid reneat anAd
extend some basic facts in theory of matrices in order to amnlv them for the

analytic similarity problem and the related questions.
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Introduction

v Matrix theory is constantly gaining popularity in pure and applied mathe-
matics and as well as in other branches of sciences. Perhaps the best book on
the subject is the well known book of Gantmacher - "The Theory of Matrices" which
was printed in the beginning of the fifties in U.S.S.R. . Since then the litera-
ture on the subject expanded enormously. There are recent books on the subject
e.g., Berman-Plemmons [1979] which usually treat special topics in theory of
matrices. It is my personal belief that the time is ripe for writing a compre-
hensive treatise on the main developments in theory of matrices.

I decided to write a series of survey reports on the most attractive and
important subjects in theory of ma. . .2:s - Spectral Theory. This paper is the
first one in the series. It deals with general types of matrices. The climax
of this paper are Section 1.29 - 1.36 which are dealing with the concept of
analytic similarity of matrices. This subject arises naturally in the study of

. ordinary differential equations having singularities either in time or a parameter.

See for example Wasow [1963], [1977]), [1978] and the references therein. As the
. reader can see, the subject of analytic similarities of matrices is far from being

completed. The main reason for the difficulties in this problem is the non-

existence of a simple canonical form. Clearly the topic of the analytic similarity

" L e

of matrices is a part of a more general algebraic problem of similarity of matrices

over the integral domains. That is the reason 1 started the book with several

.
T

sections on rings, domains and fields and their properties.

I tried to make this paper (and the following ones) to be self contained as
u ’ much as possible from the matrix point of view. However, in dealing with some
problems in matrix theory one needs to use various kinds of techniques -~ theory
of functions of one and several complex variables, methods of algebraic geometry

and non-linear analysis. Whenever these tools are used the reader is referred

L f to appropriate references. The basic knowledge for this paper are basic results

-i-




in matrix theory (e.g., a few first chapters in Gantmacher [1959]) and basic

knowledge in function of one complex variable (e.g., Rudin [1974])). Since I

tried to make these papers self contained from the matrix point of view, I did

repeat some standard facts in theory of matrices as the Jordan canonical form.

In that case I tried to make the exposition short and concise. Note that the

problems appearing in the end of each section are an integral part of the paper

and sometime they are used in the main text. Finally let me apologize to those

authors whose results were not mentioned or improperly cited.

The four other papers in this survey series are planned to be as follows:

2. Cones, convex sets and norms,

3. Nonnegative matrices,

4. Symmetric and hermitian matrices,
5. Inverse eigenvalue problems.

Also these reports will be eventually

collected to a book.

2
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Special Notation

- an integral domain.
a field, sometimes the division field of D.

= complex numbers.

» O N O
]

real numbers.
Z - integers.

Z,_ - non-negative integers.

BD - Bezout domain.

GCCD - greatest common divisor domain.
BDD -~ elementary divisor domain.

UFD - unique factorization domain.
PID - principal ideal domain.

I - ideal in D.

P - a set of column vectors with n coordinates in

i R - a set of points in C".

H(R) - the class of all analytic functions in .
HC - H(Q) for R ={z}c .

M(Q) - the quotient field of H(Q),
alb - a divides b.

B - a D-module.

[x',...,xk] « a D-module generated by the elements
dim M ~ the dimension of a D=module.
Hom(M,N) « the set of homomorphismes < :
V = a vector space over F.

L(V) - the set of linear operators T :
an(D) - m x n matrices with entries
M (D) ~ M (D).

r(A) - the rank of A € an(D).

Ial = the determinant of A€ Mn(D).

tr(A) ~ the trace of A« MnlD).

UM_(D) - the set of all invertihle matrices in M (D)

n

A 1 B~A and B are left enquivalent.
A ; B~A and B are right equivalent.
A~B-A and B are equivalent.

-iii-
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D.

for connected sets {.

D[x1,...,xn] - the ring of all polynomials in n variables with the coeffients in
(‘1"""k) - the greatest common divisor of g een 8y

x’,...,xk € M.

D.
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diag(Ry,eeerB), ] @ A, - the direct sum of Ay, ....h,.
i=1

A @ B - the tensor (Kronecker product).

At

= the transpose of A.

Qk,n - totality of strictly increasing sequences of k integers chosen from 1,...,n.

Af{alB] ~ submatrix of A using row numbered a and columns numbered 8.

I,I(n), I, - identity matrix of order n.

Gk(A) = the k=-th determinant invariant of A.

ik(A) - the k=th invariant factor of A.

n(A),n(A,B) - the indices of A(x) and 1, @A~ Bt @ I, Tespectively, Ae Mm(Ho),
B e Mn(Ho).

KP(A), KPA,B) - the number of local invariant polynomials of degree p of A and

In @A- Bt e In respectively.

r(A,B) - the rank of I, @ A-B*®1I,, AcM (D), BecM (D).
m n

V(A,B) - the nullity of I @A -B* @ I .

A~B-A and B are similar.

A(x) 3 B(x) - A(x) and B(x) are strictly equivalent.

A(x)

A(x)

B(x) ~ A(x) and B(x) are strictly similar.
B(x) - A(x) and B(x) are analytically similar
Al x) - A(x) and B(x) are pointwise simjlar.

A(x) B(x) - A(x) and B(x) are rationally similar.

"y ol P Ll
=
LJ

deg p - the degree of a polynomial p.

C(p) - the companion matrix of p.

H(m) -~ the matrix (6(1+1)j) i, = 1,.00,m.

C(A,B) - the set of matrices X, AX = XB.

C(A) = the set of matrices commuting with A.

D(A,p) - a p neighborhood of A.

zij(A) ~ the components of A.

p(A) = the spectral radius of A.

o(A), od(A) - the spectrum and the distinct spectrum of A.
cd(A). OdP(A) - the peripherial and the distinct peripheral spectrum of A.
index (X) - the index of A, X £ dg(A).

index (A) - the index of A.

|Ia]l - the £, norm of A.

R(A,A) - the resolvent of A.

F(Agress,A _,) - Toeplitz upper triangular matrices.

F(Ao,...,A T F(Bo,...,Bs_1) - strong similarity of Toeplitz triangular matrices.

s-1) X
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o(1) - gquantities which tend to zero as r + 0.
0(1) - quantities which are uniformly bounded.

-—y-




L N L S b a6 Tt St e Atk s pa i s L e ek i VD dan o [

SPECTRAL THEORY OF MATRICES
I. GENERAL MATRICES

Shmuel Friedland

1.1 Rings, Domains and Fields.

Definition 1.1.1. A non-empty set S is said to be a ring if there are defined two

operations addition and multiplication such that for all a,b,c in s

(1.1.2) a+bes;

(1.1.3) a+b=D>b+ a (the commutative law);

(1.1.4) (a+b) + ¢ = a + (b+c) (the associative law);

(1.1.5) there exists an element O in S such that a + 0 =0+ a = a for every a € S;

(1.1.6) there exists an element =-a such that a + (-a) = 0;

(1.1.7) ab € S;

(1.1.8) a(bc) = (ab)c, (the associative law);

(1.1.9) a(b+c) = ab + ac, (b+c)a = ba +ca (the distributive laws).

S 1is said to have an identity element 1 if al = la for all a € S. S 1is called
commutative if
(1.1.10) ab = ba, for all a,b ¢ S.
Note that the properties (1.1.3)-(1.1.9) imply that a0 = 0a = 0. It may happen that
(1.1.11) ab =0
without a or b equal to 0. In that case we say that a and b are zero divisors.

Definition 1.1.12. D 1is called an integral domain if D is a commutative ring without zero

divisors containing identity 1.

The classical example of an integral domain is Z - set of integers. In what follows we
shall use frequently another example of integral domains.

Example 1.1.13. Let I ¢ t" be a set of points. Denote by H(R) the class of all analytic

functions f(zl""'zn) which are analytic in the neighborhood of any point

L = (gl,...,;n) £ .. I1f . is open then we assume that f is defined only in Q. In case

that .. consists of one point ¢ denote H(D) by HC.

sponsored by thc United States Army under Contract MNos. DAAG29-75-C-0024 and
DAAG29-80-C=-0041.




The properties of analytic functions imply that H(Z) is an integral domain under o

addition and multiplication of functions, provided that . 1s connected. We shall alws
——— »
assume that .. 1is connected except wherce otherwise stated. The element 6 is the zoy .
function and the identity is the function f = 1. For properties of analytic functinons f
one or several variables, consult for example Rudin {1974} and dunning-Rossi {19¢3].
Let a,b D . We say that a divides L{a i) 1Y b= ab], bl . D . An element
. . . . . . -1 .
i called invertible if aél. For an invertaibile a  denote byooa the element such tnat
4 -1 -
1 H {(i.1.14) aa = 4 a = |
1 ¢
E { In H(.) the invertible clements arc only those funotions woioh o not vanish at ars roins
14
: ¥
) ,
Definition 1.1.15. A field F is an inteagral doma:ir. I such that anv non-zero colement is
invertible.
The familiar examples of fields are tne set »f vas! il amders tihe set of real nume-
bers R, and the set of complex numbers ¢, ave oo trnre ran domasrn Dothere 1€ oa wta
: . . . . N a
way to obtain the ficld of its guotients. That @ wo w3 hr T set of zuctients e
-
b # 0 such that
a c ad + bc a, o ac
1.1.16 e T e O I ST
{ ) b4 bd T .

Thus the set of the rational numbers € 1is the guotient fireld of the integers 2.

\ Definition 1.1.17. Let .. ¢ En . Denote by M) the guotient ficld of H( ). By N

St 54

) denote the quotient field of H_. That is M( ) 1is the set of meromorphic functions in
5

i Definition 1.1.18. By I)[xl....,xn] denotc the ring of all polynomials in n  varlables wiv'

the coefficients in D

.
e

¢ = - .
(1.1.19) p(xl....,xn) % a]x B
i

. n .
noouor ! ER
(1.1.20) @ = (@ eea ) €2, (ol = g apewtom kg Teeex U




Thus {(x]

Problems

(l.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

: (1.1.26)

the degree of p(xl,...,xn) (deg p)

polynomial p is called homogeneous if a, = 0 for la] < deg p.

is the ring of polynomials in one variable with complex coefficients. We say that

is m if there exists aa # 0 such that lu, = m., &

It is a standard fact that

D [xl,...,xn] is an integral domain (see Problems 1.1.22-1.1.23).

let C[a,b] denote the set of real valued continuous functions on the interval
[a,b]. show that C[a,b] is a commutative ring with an identity and zero divisors.
Prove that D[x] is an integral domain

Prove that D[xl,....xn] is an integral domain. (Use the previous problem and the

N x1 .

identity D[xl,...,xn] = (D[xl,...,x a

n-1

Let p(xl,...,xn) € D(xl,....xn]. Show that

p= 1 p,

a<deg p
where either P, = 0 or P, is a homogeneous polynomial of degree a. Moreover,
if m=degp >1 then Pp ¥ 0. The polynomial pm(xl,...,xn) is called the

principal part of p and is denoted by p.. (In case that p is a constant polv~

nomial Py = pP.)
Let p,q € Dlxl,...,xn]. Show

(paly = ppqp -
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1.2 Bezout Domains

cessd@ if

An element d : D is called the greatest common divisor (g.c.d.) of a. n

»
diai, i=1,...,n, and for any d' such that d'lai, i=1,...,n we have d'ld. We denote
d = (al,...,an) if g.c.d. of al""’an exists. Clearly (al,...,an) is unique up to a
multiple of an invertible element. The elements al,...,an are called co-prime if
(al,...,an) = 1.
Definition 1.2.1. D is called a greatest common divisor domain (GC D D) if any two ele-
ments in D have g.c.d.
A trivial example of GE& DD is 2.
Definition 1.2.2. A subset I ¢ D is called ideal if for any a,be¢ I and p,q € D the
element pa + gb belongs to 1I.
In Z any ideal is the set of all numbers divisible by an integer k # 0. In H(Q), the
set of functions which vanish on a prescribed set U c¢c Q, i.e.
- h
(1.2.3) 1{U) = {f|f(z) =0, £ e U, £€H(D)
form an ideal. An ideal I is called prime if the fact ab € I implies that either a ¢ I *
or b . I. In Z the prime ideals are the set of all integers divided by a certain prime p.
An ideal I is said to be maximal if the only ideals which contain I are I and D. 1 is *
called finitely generated if there exists k elements (generators) pl""'pk ¢ I such that
any 1 ¢ I 1is of the form
(1.2.4) i= alpl + azp24---+akpk
for some al""'ak in D. For example, in DI[x,y] the set of all polynomials p(x,y)
such that
(1.2.5) p{n,0) =0
is an ideal which is generated by the polynomials x and y. An ideal 1 is called ErinciEI
ideal if it is generated by one element .
Definition 1.2.6. D 1is called a Bezout domain (B D) if any two elements a,b ¢ D have a ‘
g.c.d.  {a,b) such that i
-4~ -




paan G ppmitirgeronniiiildurns

A e .

et Bl |

.~

(1.2.7) (a,b) = pa + gb

for some p,q € D.

It is easy to show by induction that for al,...,an ¢ BD one has

n
(1.2.8) (as .., ) = 'Z p;a; -
i=]

We give another characterization of BD.

Lemma 1.2.9. An _integral domain is a Bezout domain if and only if any finitely generated ideal

is principal.

Proof. Assume that an ideal I of BD is generated by al,...,an. Then (1.2.8) implies that
(al,...,an) € I. Clearly (al,...,an) is the generator of I. Assume now that any finitely
generated ideal of D is principal. For a given a,b ¢ D let I be generated by a and b.

Let 4 be the generator of I. So
(1.2.10) d=pa+gb

Also dja and d|b since & generates I. Obviously if d'|a and d'lb then (1.2.10)
implies that d'|d. Thus d = (a,b). So D is BD.
a
Consider the ideal I < D{x,y] given by (1.2.5). Obviously (x,y) =1l. As 1 ¢1, 1

is not principal. Since x,y generate 1 we showed that D[x,y] is not BD. In particular

F{xl,...xn] are not BD for n > 2. The same arguments show that H(Q) are not BD in

case that @ = & for n > 2. It is a standard fact that F[x]) is a Bezout domain (e.g. Lang,

[1967]) and we shall demonstrate it later on. For ¢ T, H(Q) is BD. This result is implied

by the following interpolation of open sets in € (e.g. Rudin [1974, Thrs 15.11,15.151).

Theorem 1.2.11. Suppose that Q is an open set in &, A = Q, A has no limit point in ,

and to each ¢ € A then are associated a non-negative integer m(Z) and complex numbers

W, 0<n<m(z). Then there exists f ¢ H(Q2) such that

n,g
f(n)(;)=n!w , L eA, 0 <n<m(g) .
n,t - -
Moreover of all w = 0 then it is possible to chocse f such that all zeros of f are

n,:;

in A and f has a zero of order m(Z) at each § ¢ A.

-5~
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Theorem 1.2.12. Let <2 be an open connected set in (.

For given functions a,b ¢ H({) there exists a function p ¢ H(7) such that

(1.2.13) c=pa+b ,
and

= = I
(1.2.14) a=apc, b blc, al.b1 e H(D)

That is ¢ = (a,b).

Proof.

In case that a or b are zero functions choose p =1 and the theorem triviall+

holds.

Assume that ab ¥ 0. Let A be the set of common zeros of a(z) and b(z). Thus A
\
at most countable. For each T € A let m(z) be the common multiplicity of zero in a{z)
and b(z) at z = z. Let f£{z) € H{R}) whose only zeros & are in A such that 1 has

multiplicity m(z). The existence of such a function implied by Theorem 1.2.11. Put

a =af, b =bf, a,b ¢ H(D)

Thus ; and B do not have common zeros. Let B be the set of zeros of a such that -

has the multiplicity n(gZ). According to Theorem 1.2.11 there exists g ¢ H(.) suci that
(1.2.15) 51; @y =™y, k=o0,...m0-1, 5 B
dz z=t

Since b{z) # 0 for f £ B. Put

(1.2.16) p= (e9-b)ja, c = £

and (1.2.13) holds. So cla, c¢{b and in view of (1.2.13) ¢ = (a,b).

Corollary 1.2.17. Let Q ¢ @&. Then H() is a Bezout domain.

-y

-/




Proof. Let a,b &£ H{(Q). By the definition of H()) there exists an open domain '—'O e
such that a,b ¢ H(Qo). (In case that Q is open 90 = Q.) Consider the functions
p.c € H(Qo) which are constructed in Theorem 1.2.12. Clearly p,c ¢ H(?2) and (1.2.13)-(1.2.14)

implies that H(Q) is BD.

03

Problems
{1.2.18) Let a,b,c £ BD. Assume that (a,b) =1 and (a,c) = 1. Shows that (a,bc) = 1.
(1.2.19) Let I be a prime ideal in D . Show that D/I (that is the set of all cosets of
the form I + a) is an integral domain.
(1.2.20) Let I be an ideal in D. Denote by I(p) the following set
Ip) ={a|a=bp+q, beD qgelIl .
show that I(p) is an ideal. Prove that I is a maximal ideal in D if and only
if for any p ¢ I, I(p) = D.

(1.2.21) show that an ideal I is maximal if and only if D/I is a field.

]
]
i
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1.3 UOFD, PID and EIDD domains

A non-zero, non-invertible element p ¢ P is called irreducible (prime) if the only ele-

~
ments which divide p are p itself and the invertible elements. For example a positive
integer p ¢ 2 1is irreducible if and only if p is prime. A linear polynomial is irreducible
in Dlxl,...,xn]. For i ¢ € it is possible to determine all irreducible elements in H(Q).
Lemma 1.3.1. Let . c €. Then all the irreducible elements of H(Q) are of the form =z - ¢,
3
Froof. Let f . H(.) be not invertible. Then there exists { € @ such that f(f) = 0. So
z - ; divides f(z). Therefore the only irreducible elements (up to multiplication by the
invertible elements) are 2z - 4, 7 € .. Clearly EE% is analytic in Q if and only if
n=2=¢ (3¢ .). This proves the lemma.
[
In particular if ¢ < & then HL has one prime element 2z - L.

Definition 1.3.2. D is called unigue factori.ation domain (UFD) if any non-zero, non- ‘
invertible element a can be factored as a product of irreducible elements

-
(1.3.3) a=p *ep,
and those primes are uniquely determined up to invertible factors. -

Again the ring of integers is obviously O TF D. Another example of unique factorization

domain is Eﬂxl,...,xn] for any n. (e.g. Lang [1967]).

Lemma 1.3.4. Let . = € be an open set. Then H(:) is not unique factorization domain.

Proof. Let a(z) ¢ H(.) be a non-zero function which has an infinite number of zeros in .
Such functions exist in view of Theorem 1.2.17. If (1.3.3) was holding then according to Lemma

1.3.1 a{z) would have a finite number of zcros which contradicts the choice of a.

0]
A straightforwarc conscriuence of Lomma 1.3.4 that for an open set o0 En, H(/) is not 3
U ¥ D. See Problem 1.2.17.
Definition 1.3.3. L i+ =alled a jrirzipsl adeal domain (RID) if _any ideal of Do .
principal. .
-y «




The standard examples of PID are the ring of integers and the ring of polynomials in
one variable over a field. It is known that any PID is UFD (e.g. Lang [1967] or v.d.
Waerden [1959]). Thus H(.l) for an open set 2 is not PID. A very useful and even more
restrictive class of PID is the class of Euclidean domains.

Definition 1.3.6. D is called Euclidean domain (ED) if for every a ¥ 0 there is defined

a non-negative integer d{a) such that

(1.3.7) for all a,be D, ab # 0 d{a) < d(ab) ;

(1.3.8) for any a,b = D, ab # 0, there exists t,r ¢ D such that
(1.3.9) a=tb + r, where either r =0 or d(r) < d(b) .

The ring of integers is ED with

(1.3.10) da(a) = |a] .

The ring F(x] is ED with d(p) - the degree of the polynomial pi(x). It is well
known that any ED is PI D. Indeed, consider an ideal I < ED. Choose a €I with the
minimal d(a). In view of (1.3.9) alb for any b € I. Thus a generates I. This argument
show that TF[x] is PI D. We also have

Lemma 1.3.11. Let 0Q be a compact connected domain in €. Then H(Q) is ED. Here d(a)

is the number of zeros of a(z) in Q counted with their multiplicities.

Proof. Let a # 0. Then a(z) must have a finite number of zeros in Q. Otherwise there
will be a sequence of zeros {;k} of a(z) which converge to some point g € Q. Since a is
analytic in the neighborhood of ¢ a is the zero function in the neighborhood. The con-
nectivity of  implies 2 I 0 contrary to our assumptions. Let pa(z) be a polynomial such
that g: does not vanish in 0. By the definition d(a) = d(p). Let a,b €H(Q) ab # 0.
Since (€[z] is ED

(1.3.12) pa(z) = t(z)pb(z) +r(z), r= 0_ or d(r) < d(pb) .

S0

-9«




TR e Y

uiomguecaghovmppnadtyey

bibewabaumav-rugbtigint gt

- 5
c Paa me -

.3. = (2= = (2
(1 13) a ( )pa (p

P

Fb t) + (Sr, aE) = a)
P
a a

C
Let al,a2 € ED. Assume that d(al) > d(az). The Euclid algorithm consists of a sequence

{ai} which is defined recursively as follows:

(1.3.14) a; = tja,.) YAy 34, T 0 or dla; ) <dla; ) -

Since d(a) > 0 the Euclid algorithm must terminate. That is

(1.3.15) ayreceeay #0, aa - 0
It is a standard fact that
(1.3.16) (al,az) = ak .

See Problem 1.3.18. That is the g.c.d. of a; and a, can be found explicitly in a finite

number of steps. While for an open set i ¢ € the construction of (a,b) may involve

infinite number of steps, i.e. limits, which appear in the proof of Theorem 1.2.11.

P-oblems
(1.3.17) Let Q¢ t" be an open set in t”. construct a function £ depending on one

variable in § which has an infinite number of zeros in (£

£ M. Prove that £ cannot be
decomposed to a finite product of irreducible elements. That is =(7) 1is not TTFD.
(1.3.18) Consider the equality (1.3.9) for r = 0, 3Show that .a,r) = (b,r). Using this

result prove (1.3.10).
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1.4 Factorizations in DI(x].

Let F be the field of quotients of D . Assume that p(x) € D[x] . Suppose that
(1.4.1) p(x) = pl(x)pz(x), pi(x) e Flx), i=1,2 .
Our problem is to find conditions which yield that P; (x) ¢ DP[x], i =1,2. Clearly that if
{1.4.1) holds then we can multiply pl(x) by a ¢ F, a ¥ 0, and divide p2(x) by a. So
we must compose some normalizations on pl and Py Clearly for any gq(x) € F[x]
(1.4.2) qi(x) = p(x)/a, p(x) ¢ DIX), ae D .

In case that D is a GIDD the decomposition (1.4.2) can be unique (up to multiplication
of invertible elements in D).

Definition 1.4.3. Llat p(x) be a polynomial of degree m in DIx])

(1.4.4) pix) = a xm+---+am .

0

The polynomial p(x) is called normalized if a, = 1. If D is the greatest common divisor

domain then let c(p) = (ao,...,am). The polynomial p(x) is said to be primitive if c(p) = 1.
The following result is obvious.

Lemma 1.4.5. Let F Dbe the field of quotients of GEDD. Then for any g(x) £ Flx] we

have the decomposition (1.4.2) when c(p) and a are co-prime. The polynomial p(x) is

uniquely defined up to an invertible factor in GIDD. Moreover q(x) decomposes to

(1.4.6) a(x) -gr(x). r(x) € GEDDIx), b.,a ¢ GIDD

when (b,a) =1 and r(x) is primitive.
The crucial step in proving that UFD(x] is UFD is the Gauss lemma.

Lemma 1.4.7. Let p(x),q(x) ¢ OFD(x] be primitive then p(x)g(x) is primitive.

Using this lemma one easily gets

Lemma 1.4.8. Let p(x) ¢ OFDI[x] be primitive. Assume that p(x) is irreducible in F(x] ,

where F is the quotient field of WFD,., Then p(x) is irreducible in WFD(x]. See Lang

[1967] and Problems 1.4.17-1.4.18.
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Thus any p(x) - UFDI[x] has the unique decomposition

(1.4.9) pi{x) = a ql(x)---qs(x)

where ql(x).---,qs(x‘ are primitive and irreducible in F[x) and a has the decomposition

(1.3.3). I fact (1.4.9) is the decomposition of p{x) to irreducible factors in F[x] . Thus

we proved (e.g. Lang [1967]).

Theorem 1.4.10. OFD{x] is a unique factorization domain.

Normalization 1.4.11. Let F be a field and assume that p(x) is a normalized non-constant

polynomial in TF([x]. Let (1.4.9) be a decomposition of p(x) to irreducible factors. Then

normalize the decomposition (1.4.9) by the assumption that ql(x),...,qs(x) are normalized

irreducible polynomials in F[x]. (This implies that a = 1.)

It is not difficult to show that Lemmas 1.4.7-1.4.8 yielad

Theorem 1.4.12. Let p(x) be a normalized non-constant polynomial in UFD(x]. Let (1.4.9)

be a normalized decomposition of p(x) in ¥[x], where F is the quotient field UFD. Then

each qj(x) is an irreducible polynomial belonging to OFD[x].

See Problem 1.4.191It turns out that Theorem 1.4.12 holds for any H(Q), Q ¢ L

Theorem 1.4.13. Let p(x) be a normalized non-constant polynomial in H(Q) [x}. Let (1.4.9)

be a normalized decomposition in M([x], where M is the field of meromorphic functions in Q.

Then each qj(x) is an irreducible polynomial in H{(Q).

Proof. By the definition of H() we may assume that p(x) € H(Qo) for some open domain QO

containing .. So qj(x) 3 M(io)[x]. j=~1,...,s8. Let
t a
(1.4.14) qix,z) = x"+ § EEEL LTI, (2),8.(2) € HIQ) L, i=1,...,t .
8 i i 0
r=1 "t-r(z)
Thus g{x,2} 1is analytic on 0" ' where T is given by
t
(1.4.15) r={zlz s o, T 8_t2) = o0}
r
r=1
It is known that [ 1is a closed set of zero measure in t". see for example Gunning-Rossi

[1965].

-12-
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Problems

Consider x1(z),...,xt(z) the roots of

(l.4.16) qi{x,z) =0 .

Clearly x4(2),400,x,.(2) are well defined functions on Q, - I'. Suppose that each

0
xk(z) is bounded when =z tends to any & € ['. Then each aj (z) is bounded on any :
8, (2)

3

compact domain in ﬂo. This would imply that uj(z)/ﬁj(z) € H(Qo), j=1,.0.,t, i.e.

qi(x,z) € H(Qo) (e.g. Gunning~Rossi [1965])). Thus, if q(x,z) ¢ H(ﬂo) there exists a

(k) (k)

sequence z + Z ¢l such that xr(z ) + ®, To this end assume that

qj(x) ' H(Qo) for some 3j. Then, we have qj(xr(z(k))) =0,

z(k) (k)) + o, ag k * =,

+ g e 90, x(z
The assumption that p(x) ¢ H(Qo) implies that all the coefficients of the normalized
polynomial p{x,z) are bounded in the neighborhood of [, 80 the roots of the equation

p(x(z),z) = 0 are bounded in the nejighborhood of §. This contradicts the equality

pix(z{%)), 2Ky = 0, That is ay(%,2) € HQ)) for I=1,...,s.

(1.4.17) Let p(x) be given by (1.4.4) and put q(x) = boxn+‘--bn, r(x) = p{x)qg(x) =
coxm+n+---+cm+n. Assume that p(x),q(x) € UPD[x). Let 7 be an irreducible element in
UPD such that nlai, i=0,4..,4a, wlbo, 4=0,...,8, nlck, Xk =0, a + B+2. Then either
n!aa+1 or "|b8+1'

(1.4.18) Prove that if p(x),q(x) € UPDI{x], then c(pq) = c(p)c(q).

Deduce from the above inequality Lemma 1.4.7. Also if p(x) and q(x) are

normalized polynomials then p(x)g{(x) is primitive.

(1.4.19) Prove Theorem 1.4.12,

(1.4.20) Using the equality

(Dlxqseeeexy 1) (%] = Dlxg,eee,xp]

prove that uro[x1,...,xn] is UPD. Deduce that r{x1,...,xn] is UFD.

13-
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1.5 Elementary Divisor Domain

Definition 1.5.1. D is called elementary divisor domain (BDD) if for any three elements

a,b,c € D there exist p,q,x,y € D such that

(1.5.2) (a,b,c) = (px)a + (py)b + (gy)c .

By letting ¢ = 0 we obtain that (a,b) is a linear combination of a and b. So

elementary divisor domain is Bezowt domain.

Theorem 1,.5.3. Let D be a principal ideal domain. Then D is elementary divisor

domain.

Proof. Without the loss of generality we may assume that abc # 0, (a,b,c) = 1. Let

(a,c) = & Since D is UPD (e.g. Lang [1967]) decompose a = a'a", where in the prime
decomposition (1.3.3) of a,a' contains all the irreducible elements of a which appear

in the decomposition of 4 to irreducible factors. So

(1.5.4) a=a'a", (a',a") = 1, (a',c) = (a,c), (a",c} =1 ,

and if a',f are not co-prime then c,f are not co-prime. Thus, there exists q and

a such that

(1.5.5) b=1=~qc + aa" .

Let d4' = (a,btqc). The above equality implies that (d4',a") = 1. Suppose that 4d' is
not co-prime with a'. So, there exists a non-invertible f such that f divides 4a'
and a'. According to (1.5.4) (f,c) = f' and f' is not invertible., Thus f'|b which
implies that f°' divides a,c, and b. This contradicts our assumption (a,b,c) = 1.

So (4d',2') = ' which means (Q',a) = 1, Therefore there exists x,y € D such that xa +

y(b+qc) = 1,

ndibian e,
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This establishes (1.5.2) with p = 1,

Theorem 1.5.6. Let £ ¢ C. Then H(R) is elementary divisor domain.

Qo 5. According to Theorem 1,2.12

(1.5.7) (a,b,c) = (a,{(b,¢c)) = xa + (b,c) = xa + (b+yc) .

Problems

(1.5.8) D is called adequate if for any a,c e D, ac # 0, (1.5.4) holds.
of Theorem 1.5.6 to show that any adequate BD domain is EDD.

(1.5.9) Prove that H(2), @ c C, is an adequate domain (Helmer ([1943]).

Proof. Given a,b,c, € H(R) we may assume that a,b,c, ¢ H(QO) for some open set

Use the proof




e e
Rt L R

1.6 Alagebraicallv closed fields

Definition 1.A.%. A field F is called alaehraicallv closed if anv nolvnomial

p(x) € P(x] of the form (1.4.4) splits to linear factors in ¥

m
(1.6.2) p(x) = a n (x-Ei), F, e F, i=1,.0..,m, aj £#0 .

The classical example of an alaebraicallv closed field is the field of the comnlex

numhers € . The field of the rea)l numbhers R is not alaehraicallv clnsed.

-

NDefinition 1.6,3, Let K and F he fields. Assume that X € F. Then X 1is called an

extension field of F. X 1is called a finite extension of P if K ig a finite

dimensional vector space over F. 1

Thus € 1is a finite extension of R oaf the Aimension 2, Tt is ¥nown (e.a. Tana ]

[19671).

Theorem 1.6.4, Let p(x) € F(x]. Then there exists a finite extension X of P such

that ©n(x) splits to l:near factors in K[xl. i

The classical Weierstrass preparation theorem in two comnlex variahle is an exrlicit
example of the above theorem, We state the Wejerstrass nreparation theorem in the form

needed later., (See for example Gunnina-Rossi [1965]1.)

Theorem 1.A.5. TLet Hy bhe the rina of analvtic functions in one variahle analvtic in the

3 neighhborhood of the oriain, Let n(l) € Fn[X1 he a nnrmalized® nolvnomial of Aearee n

! n

| (1.6.6) pid,z) = A"+ ai<z)x“‘*, a,(2) € W, =1, .

1

n 3

4

b ——

Then there exists a nositive integer & € n!, such that

= |

, . (1.6.7) POLWTY = TS (W), A tw) £ M, d=1,...,m .
: h] %

1

ne
4

"
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Thus, in that particular case, the extension field of H, is the set of multivalued

functions which are analytic in z’/’ in the neighborhood of the origin. Algebraically

speaking, K is Ho[w] together with the identity

{1.6.8) o

The vector dimension of K over F is s.




1.7 The ring P[x',...,xn]
-

We already pointed out in Section 1.2 that for n ? 2 P[x,,...,xn] is not BD.
However P[x1,...,xn] has some nice properties. An important property is that any
P[x‘,..-,xn] is Noetherian ring (e.g. Lang [1967)).

Definition 1.7.1. D is said to be Noetherian (ND) if any ideal of D is finitely

>

generated.
In what follows we ghall assume that P is an algebraically closed., Let
k § p1,...,pk € F[x1,...,xn]. Denote by U(p1,...,pk) the common set of zeros of PyseesiPys
, (1.7.2) U(p’,...,pk) = {zlz = (x1,..-,xn), pj(z) =0, 3=1,...,k} .

) U(p1,..-,pk) may be an empty set. U(p,,...,pk) is called an algebraic variety in ",

It is known (e.g. Lang [1958)) that any non-empty algebraic variety U in r splits
(1.7.3) v= U VvV ¢

where each V, is an irreducible algebraic varjety. Over the complex numbers each
irreducible algebraic variety V is a closed connected set which almost everywhere

(in V) 1is an analytic manifold in c® of a fixed (complex) dimension d which is called
n

the dimension of V. If d =0 then V consists of one point. For any set U . F

let 1(U) be the ideal of polynomials in r[x,,...,xn] vanishing on U

(1.7.4) 1(u) = {plp ¢ F[x,,...,xn], plz) =0, z ¢ U} .

Congider an ideal I ¢ F[x1,-..,xn]. Suppose that the ideal generated by py,es«,P-

~ -
R P RN

Clearly 1 g_I(U(p1,...,pk)).

The celebrated Hilbert Nullstellensatz gives the other relation between the above two -

ideals (e.g. Lang [1967]).

]
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Theorem 1.7.5. Let F be an algebrajically closed field. Consider an ideal
Ic r[x,,...,xn] generated by Pyrecsspy. Let ge F[x1,...,xn]. Then gj €1l for some

positive integer 3j if and only if

(1.7.6) g e I(U(p1,...,pk)) .

Corollary 1.7.7. Let Pyrese Py € F[x1,...,xn]. where P is an algebraically closed

field., Then Pyrecs,py generate ![x1,...,xn] if and only if

(10708) U(P1'ooo'pk) - ' .

-19-




1.8 Modules

Definition 1.8.1., Let S be a ring with identity. An abelian group M (which has an

operation + satisfying the conditions (1.1.2) -~ (1.1.6)) is called a (left) S-module if

for each r € S, ue M the product ru is defined to be an element in M such that the

following properties hold.

r(v1+v2) = tv1+tv2, (r1+r2)v = r1v+r2v, (rs)v = r(sv), \v=v ,

A standard example of a S-module is

m t
s = {Vl v = (V11'-01Vm) : vV

i € S, i=1l..'lm}

u+vs= (u1+v1,...,um+vm)t '

t
(1.8.5) ru = (ru1,...,rum) s, TES .

M is said to be finitely generated if there exist n-elements (generators)

v1,...,vn such that any v &€ M is of the form

n
v= 1 a vi, a

€S, i=1,.¢0,n .
=1 i i

If each v can be expressed uniquely in the above form then v1,...,v" is called a
bagis in M and M is said to have a finite basis. N is called a submodule if W cm

and N is a S-module.




T - o

For example, consider a linear homogeneous system

€ D, i=1,.¢e.,m, 3=1,0e.,n .

n
- .7 =
(1.8.7) i a,.x o, aij'xj

Thus the set of all x = (x1....,xn)t is a submodule of D", In what follows we shall
assume that S is an integral domain D. Let ¥ be a field. Then a F-module is called a
vector space (V) over F. It is a standard fact in linear algebra (e.g. Gantmacher
[1959]) that if V is finitely generated then V has a finite basis. 1In that case V |is

called finite dimensional vector space. The number of vectors in any basis of V is

called the dimension of V and by dim V. A submodule of V is called a subspace of

¥. Let M be a D-module with a finite basis. Let F be the quotient ring of D. It is
possible to imbed M in a vector space V over F by considering all vectors v of the
form (1.8.6) when ‘1 € P, i=1,.00,n¢ Thus dim V = n. Using this fact we get

Lemma 1.8.8. Any two finite basis of a D-module contain the same number of elements.

This number is called the dimension of M - and denoted by dim M.
Problems
(1.8.9) Let M be 3 - D module with a finite basis. Let N be a submodule of N.
Prove that if D is PID then N has a finite basis.
(1.8.10) Let M be a - D module with a finite basis. Assume that W is a finitely

generated submodule of M. Prove that if D is BD then W has a finite basis.
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1.9 Matrices and homomorphismes

Notation 1.9.1. Denote by an(b) the set of all m x n matrices A = ('1j)' where
alj €D, i=1,,.,.,m, j=1,,..,n. The set "nn(o) is denoted by M.(D). Let M and W
be D~modules, Let T : M+ N. T is called a homomorphism if

(1.9.2) T(autbv) = aTu + bTv, u,ve M, a,be b ,

for all u,v and a,b. BAas usual, let

(1.9.3) range (T) = {vlv=Tu, ue M, ve N}, ker (T) = {v|Tu =0, ue M} ,

be the range and the kernel of T. Denote by Hom(M,N) the set of all homomorphismes of

M to N. It is a standard fact that Hom(M,N) is a D-module by letting
(aS+bT)u = aSu + bTu
for any S,T ¢ Hom(M,N), a,b € D, u € M. Assume that M and N have finite bases. Let

u',...,um and v1,...,vn be bases in M and N respectively. Then we can set a

natural isomorphism between Hom(M,N) and Myn(D). Namely, for each T & Hom(M,N) let

A= (a, ) e M (D) be defined as follows
ij mn
i n N
(1.9.4) Tu = I a,.vJ, i=1,.00,m
=1 I

Conversely, for any A ¢ an(b) there exists a unique T € Hom(M,N) which satisfies
(1.9.4). The matrix A is called a representation of T in bases u1,...,um and
v‘,...,v" + The rank of A =~ denoted by r(A) - is defined as the size of the largest

minor of A(|A[alBl], a € O m 8 € 0 n) which do not vanish. Thus if A is the
’ ’
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Pgvignoni b o (o i o

pyeiniditoingubiietnsmidinan sy

- v

W._.,
PR o o O SN

T wa——

representation matrix of T € Hom(M,N) then r(A) = dim ™ if TM has a finite basis.
Let A€M (D). We shall view A as an element in Hom(D",D™) by letting A(x) = Ax
for x ¢ Dn.

We now study the relations between the representations of a fixed homomorphism

T ¢ Hom(M,N) with respect to different choices of bases in M and N.

Definition 1.9.5., A matrix U ¢ Hn(D) ig called unimodular {f |U}

(the determinant of U) is an invertible element in D.

The above definition is equivalent to the existence of V ¢ Mn(b) such that

(1.9.6) Ws=VWs=1 ,

when I is the identity matrix. Indeed {U| is invertible then u!

exists in the
division ring PF. Moreover the standard formula for U"1 in terms of the minors of U
implies that V = U-1 € Mn(D). Vice versa if (1.9.6) holds then |UlIV] = 1 so |U] is
invertible. Also U 4is unimodular if and only if the transpose of U = u* is unimodular.

Notation 1.9.7. Denote by UM, (D) the set of unimodular matrices in M, (D).

Clearly UM (D) is a multiplicative group under the ordinary multiplication of the
matrices. Unimodular matrices appear naturally when we change bases in D-module.

Lemma 1.9.8. Let M be a D-module with a finite basis u',...,u™ . Then {G‘,...,Gm)

is a basis in M if and only if the matrix Q = (qij) € Mm(b) given by the equalities

~f n j
(1.9.9) u' = 7 qqus =leem
js

is a unimodular matrix.

Proof. Suppose first that {;1'...';m} is a basis in M. Then

(1.9.10) uj = r,.u, i=l,eee,m .

-23-
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Put R = (rj). Insert (1.9.10) to (1.9.8) to get QR = I - as &', ....5™ is a basis.
This shows that Q is unimodular. Assume now that Q € UM (D). Let R = a”l. so .
~1
(1.9.10) holds. Also u '"”';m linearly independent over D, i.e. O=-cannot be written
~1
as a non-trivial combination of u ,....Gm, since otherwise we deduce the linear
dependence of u‘,...,um. But this is impossible as u’,...,um is a basis in M. So
~1
{u',...,0"} is also a basis in M.
. b Definition 1.9.11. Let A,B € an(D). We say that A is right equivalent to B(A';B) if
3 (1.9.12) B = AP
i
]
“ for some P e UM (D); A is left equivalent to B(AyB) if
It
{
+
(1.9.13) B = QA
»
2 for some Q € UMm(D).' A is equivalent to B(A~B) if
? — -
i
: (1.9.14) B = QAP ,
|
for some Q € UMm(D), P e UMn(D) .
; A Obviusly, all the above relations are equivalence relations.
‘ L
, P
1 ‘ : Theorem 1.9.15, Let M and N be D-modules with finite bases having m and n 4
, . — - 3
0
f ! elements respectively. Then A,B ¢ an are (i) left equivalent; (ii) right equivalent;
I . —
. )
‘; . 'i' (iii) equivalent; if correspondingly there exists T € Hom(M,N) such that A and B are
'
i R 1}
l -'6 the repregentation matrices of T in the following bases
2
]
1 m 1 ~1 ~m 1 n
‘ (i) (U peeest ™l v seeeov™ and {0 eee,t}, Vv seee, v} -
¢
ki .
f i -24- .ﬂ
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(11)° {u‘,...,um}, {v‘,...,vn} and (u‘,...,um), {;1'.'.';n} '

1 ~ ~ ~
(1i4)* {u‘,...,um}, {v ,...,vn} and {“1'...';m}' (v‘,...,vn} .

Proof. Let A be the representation matrix of T in the bases u‘,...,um and
v1,...,vn . Assume that the relation between the bases u‘,...,um and {;1,...,;m} is

given by (1.9.9). Then the reresentation matrix B in bases (;1,...,:m} and

1
(v ,eee '} is given by (1.9.13). Indeed

~i m 3 m,n k
T = z qijTu - 2 qij‘jkv , I=1,.00,m ,
=1 3§, k=1

which proves (1.9.13). On the other hand if we change the basis {v‘,...,vn} to

n

{;1,...,;n} according to v - ! p

~4
oL jlv ¢y 31,4000, P (pjz) € UMD(D) then a similar

computation shows that T is represented in {u1,...,um} and {;1,...,;n} by AP.
Combine the above two results to deduce that the representation matrix B of T is bases
3',...,5™ and (¥',...,7") is given by (1.9.14). The proof of the theorem is

concluded.
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1.10 Hermite normal form

The notions of equivalence of A,B ¢ an(D) give rise to the following problems.

Problem 1.10.1. Given A,B € an(D). When A and B are (i) left equivalent; (ii) right

equivalent; (iii) _equivalent.

Problem 1.10.2. For a given A € an(n) characterize the equivalence classes

corresponding to A for (i) left equivalence; (ii) right equivalence; (iii) equivalence.

Clearly a satisfying solution of Problem 1.10.2 would automatically solve Problem
1.10.1. However, if the solution of Problem 1.10.2 is unknown or is complicated there is a
point to solve Problem 1.10.1 separately.

We first note that for GCDD the equivalence relations have certain obvious

invariants.

Lemma 1,10.3. For A ¢ an(GCDB) let

u(a,A) = g.c.d.{|AlalB)}, 0 € Q n), «aEQ v
’ ’

V(B,A) = g.c.d.{|A[IRI], v € Qk'm}, BeQ .

(1.10.4)

Gk(A) g.c.d.{|a[¢lB8)], p € Qk,m' 6 € Qk,n} .
| (Gk(A) is called the k=-th determinant invariant of A.) Then
|

py(a,r) = p(a,B), ¥a ¢ Qk'm if A;B ,
v(8,A) = v(B,B), V¥8 € Q if ayB |,
(1.10.5) kin %

5, (a) =8 (8) if AR,

k=1,.¢., min(m,n).
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Proof. Suppose that (1.9.12) holds. The Cauchy-Binet formula (e.g. Gantmacher [1959))

-1

implies |Bla,Yl| = ! Iata,8)] IP[6,v)]. So wu(a,A) divides u(a,B). As A = BP
QGQk'n

w(a,B) ju(a,A). Thus u(a,A) = p(a,B). (Recall that u(a,A) and u(a,B) are determined

up to invertible elements). The other equalities in (1.10.5) are established in a similar

way.

Note that

t t
~p = ~
(1.10.6) AlB A rB s A,BeM (D) .

Thus it is enough to consider the left equivalence relation. In what follows we
characterize the equivalence class for left (right) equivalence relation in case that D
is a Bezout domain. To do so we need a few notations.

Recall that P ¢ Mn(b) is called a permutation matrix if P is a matrix having at
each row and column one non-zero element which is the identity element 1. Clearly

P UM (D) since p~! =pt,

Definition 1.10.7. A unimodular matrix U ¢ Mn(D) is called simple if there exist

permutation matrices P,0 such that

®

(1.10,.8) U =p(Vve In_z)Q ’

) where V is a unimodular 2 x 2 matrix

a 8
(1.10.9) V= (y 68 e UMZ(D) ’
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i.e. af - By is invertible., U is said to be elementary if V is of the form

a g
(1.10.10) v = (; 6), a,§ - invertible .

Definition 1.10.11. Let A € an(b). The following row (column) operations are called

elementary

(i) interchange any two rows {columns) of A;

(i) multiply row (column) i by an invertible element a;

(iii) add to row {(column) j b times row (column) i(i#j).

The following row (column) operation is called simple.

(iv) replace row (column) i by a times row (column) i plus b times row (column)

j: and row (column) 3 by ¢ times row (column}) i plus & times row (column) j:

where ad-bc is an invertible element in D.

It is not difficult to see that elementary row (column) operations can be carried out
by multiplication of A by a suitable elementary matrix U from left (right), and the
simple row (column) operations are carried out by multiplication of A by a simple

matrix U from left (right).

Theorem 1.10.12, Let D be a Bezout domain. Consider A ¢ an(n). Assume that

r(A) = r., Then there exists B = (bi ) € an(D) which is left equivalent to A and

3

satisfies
(1.10.13) blj =0 for i>r ;

if bin ig the first non=-zero entry in Lﬁﬂ row then
- i

(1.10.14) 1< n1 < n, Ceesg nr <£n .

~-28~-
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The numbers Nyseee,n, are uniquely determined and the elements bini' i=1,...,r are

uniguely determined, apart from arbitrary invertible factors, by the conditiony

v((nl,...,ni),A) = b1n ...b1n e i=t,.00,r ,

1 i
(1.10.15) .

via,A) = 0 Q€ 1,000 .
{a ) [ Qil(ni-1)l i 24

(j < i) are then guccessively uniquely determined apart from the

The elements bjni

addition of arbitrary multiples of bini‘ The remaining elements bik are now uniquely r

determined. Moreover, the unimodular matrix Q whiéh_satisfied (1.9.13) can be given as a

product of finite number of simple matrices.

Proof. Our proof is by induction on n and m. For n =m = 1 the theorem is
obvious. Let n = 1 and assume that for a given m 2 1 there exists a matrix Q which
is a finite product of simple matrices such that the entries (i,1) of QA are equal to
zaro for i = 2,...,ms Let A1 £ M(m+1)1'D
Put Q1 =08 I,. Then A2 = Q1A’ and the (i,1) entries of Az are zero for

) and assume that A = (ai,), i=1,.400,me

i=2,...,m. Interchange the second and the last row of Az to obtain A3' Clearly,

A3 = (aii)) = QZA2 where Q, 1is an appropriate permutation matrix. Let

AZ = (agi),a;i))t. Since D was assumed to be Bezout domain, there exists a,B8 € D such
that
¢
4
. 3 3) _ . (3) (3, _ .
l.i (1,10.16) aa + Ba21 = (a11 13, ) i . ]
“ o
A :
g As (a,8) = 1 there exists Y,8 ¢ D such that
; i ‘
(1.10.17) ad - By =1 .,
! ' Let V be a 2 x 2" unimodular matrix given by (1.10.9). But A, = VA, = (:,).

T2 Pty
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According to Lemma 1.10.3 v((l),A4‘ = v((1),A5). As v((1),A4) = d we must have

d{d'. That is 4d' = pd. Thus

Let

;= (We I _ver . .

_ (6), _ (6) _ =
Then the last m rows of AG = (ai1 ) = 93A3 are zero. So a1 = v((1),A6) vi(1),n)

and the theorem is proved in this case.

Assume now that we proved the theorem for all A ¢ an(D) where n < p. Let

1

n=ptl and A€ Mm(p*1)(n)' Call Ay = (aij), i=1,.0.,m, i=1,.,.,ps The induction
assumption implies the existence of Q1 € UMm(D) which is a product of simple matrices
such that B, = (b(1)) = Q1A1 satisfies the assumptions of the theorem. Let n‘,...,n;

1 ij 1

1
be the integers defined by A,. If b( ) . 0 for i >s then n, = n'!, i=1,,..,5 and

in i i
1
B = 0,A is in the right form. Suppose now that bin) ¥ 0 at least for some 1,

s < 1i<m£ Llet B2 = (b;:)), i=g+1,,..,m. According to what we proved, there exists

Q2 € UMm-s(D) such that Q,B, = (c,O,...,O)t, where ¢ is the g.c.d. of

(N (1 - : - v -
b(s+1)m,..., bmn « So By (Is ® 92)31 is in the right form, where s r 1,

ni = n;, i=1l,e004,r=1, n,=n, Next we prove (1.10.15), First if a € Qi,(ni-1) then
any matrix B(Bla), B ¢ Qi,m has at least one zero row, so IB[Bla)]| = 0., Thus

v(a,B) = 0. Lemma 1.10.3 yields that v(a,A) = 0. Let a = (n ,e..,n ). Then B(Blal
has at least one zero row unless B equals to Y = (1,2,...,1). Therefore v(a,A) =
v(a,B) = [Blyla)l] = b1n '..bin. # 0. This establishes (1.10.15). So Nyrees,n, are
determined by (1.10.15). It 1s‘obvious that b1n1""'btnt are determined up invertible
elements. Suppose that n = ne. Then we can add to jﬁh row (j < r) any multiple of
N row without changing the firast n - 1 columns of B while the last n - r rows of

B remain zero rows. This argument shows that bjni(j < i) can be only determined up to

-30~
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the addition of multiples of bini' It is left to prove that once bj“i are chosen within
the above freedom for 3j=1,...,i, i=1,...,r, then all the remaining elements are uniquely
determined. Let C € an(b) such that the ng,...,n columns of C and B are the same

r

and
ckj = 0 for ny < 3 < Niyqe 1 < Ky i=0,...,r (no =~1 if ny>1, and

el = D if n!<n) .

Assume that
C=UyUB, Ue M (D) .
m
We claim that

{1.10.18) VIR I FUPIE S LPEVRIL TS LA PRRRYE I

We prove this result by induction on n. For n = 1 it is obvious. Suppose that the
assertion holds for n=p, Let n = p+t1. Put B = (bij)' C= (cij)' i=1,..0,m,
j=1,.. p. So C=UB. If n_ < p+l then the induction hypothesis implies (1.10.18).

Assume that n = nee Then (1.10.18) holds for 3j=1,...,p. The equality C = UB

¥ 0 we have u = 1, Now

u, b rr

implies ¢ = « As b = c
P rn, rrorn, rn,

rn,
C4n_ = binr + “1rbrnr' i=1,.00,r=1, cinr - “irbrnr' imr+1,...,m .

By our assumption ¢ = b for 1 < r=-1 so the above equalities yield u, = 0 for
in, ing ir

{ = r=1. Also the assumption that Cin_ =0 for 4> r implies wu;, = 0. Since the
r

-31=




- . ottt S

Normalization 1.10.19. If bin is an invertible element we choose bin = 1 and b; =
—————— _ i i _— n

last m - r rows of C and B are equal to zero we finally deduce that C = B. This
establishes the uniqueness of B provided that the elements bjni' j=i,¢es,1 were chosen

as above.

O

A matrix B ¢ an(D) is said to be in the Hermite normal form if it satisfies the
conditions (1.10.13) = {(1.10.14). In what follows we shall always assume the specified

normalizations,

i
0 for j < i.

Theorem 1.10.20. Let U be a unimodular matrix over a Bezout domain. Then U is a

finite product of simple matrices.

Proof. Since |Ul is invertible according to Theorem 1.10.12 each bij is an invertible
element. Thus the Normalization 1.10.19 implies that Hermite normal form of U is the
identity matrix. Thus the inverse of U is a finite product of simple matrices.

Therefore U itself is a finite product of simple matrices.

Normalization 1.10.21. For Euclidean domains assume

(1,10.22) either bjni =0 or d(bjni) < d(bini) for j < i .
For F[x] we choose b, . tc be a normalized polynomial.
- - i

Combining Normalization 1.10,21 with Theorem 1.10.12 we get

Corollary 1.10.23, Over the ring F[x] the Hermite normal form of A ¢ an(r(x]) is

unique provided that the Normalization 1.10.21 holds.

It is a well known fact that over Euclidean domains Hermite normal form can be
achieved by performing elementary rows operations. This result follows by considering
2 x 2 matrices.

Theorem 1,10,24. Let A ¢ MZ(BD). Then A can be brought to its Hermite normal form by a

finite number of elementary rows operations.
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Proof. Suppose that

h
Ai’ 1 hj 1A1=A.
a1+1 i+1

Let us compute ajiy bv (1.3,14). So A; is equivalent to
- h h - L.
102 7% T 5% i TNy T Y e

n .
ai+2 = or d(ai+2) < ﬂ(aj+1)

Thus A;y is left equivalent to Aj+1. As the Fuclid alaorithm terminates after a finire
number of steps we ohtain that ax+1 = 0, If ax ¥ 0, A, is in the Hermite norma?
form. Otherwise, ay = a5 = 0 and we perform the Puclid algorithm on hi1, k3 +n ohtain

the Hermite form.

Corollary 1.10.25. tet U € UMQ(ID). Then U is a finite nroduct of elementarv

unimodular matrices,

Corollary 1.10.26, Let U € "Mn(BD). Then " is a finite orouct of elementarv unimofular

matrices.

Problems

(1.10,27) Let T ¢ Hom(M,M) where {M and [N are IBN mndules., Assume that ™ = RO,
Let Im(T) bhe the image of M in W, Then the module Im(™) has a hasis Tu',...,”u”

such that

(1.10,29) wl - covi e #n, amt, iy,

14 11

¢

im =1, i00,m iAn

where v',...,v™ is a parmutation n® the =tandard hasie 16",....5

BD".

-l




(1.10.29) Let A ¢ an(BD) and assume the B is the Hermite normal form. Let n; ¢ 3«

Nitqe Prove that for a = (n1,...,n

1aq, 300 VM@Y= b1n1...b b. (ng = 0).

(4=1in,_ "i3

1.11 Systems of linear eqguations over Bezout domains

Congider a system of m linear equations in n unknowns.

(1.11.1) ) a %, i=1,.c0um, a b, €D, i=1,00,m, 3=1,0c0,n .

3=1 373 ijoi

In a matrix notation (1.11.1) is equivalent to

(1,11.2) AX = b, AceM (D), xeM (D), beM (D) .
mn ni m1
. Let
i
(1.11.3) A = (A,b) ¢ Mm(n+1)(b) .

! The matrix A is called the coefficient matrix and the matrix A is called the augmented
i coefficient matrix. In case that D is a field the classical Kronecker~Capelli theorem

; . states (e.g. Gantmacher [1959]) that (1.11.1) is solvable if and only if
{(1.11.4) r(a) = r(A) .

(3
' ‘ Let P be the quotient field of D. Thus if (1.11.1) is solvable over D it is also

r solvable over P. Therefore (1,11.4) is a necessary condition for the solvability of

(1.11.1) over D. Clearly, even in the case where m = n = 1 this condition is not

sufficient.
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In this section we give necessary and sufficient condition on A for the solvability
of (1.11.1) over D in case that D is a Bezout domain. To do so we need the following

lemma.

Lemma 1,11.5. Let A € Hmn(nb), A ¥ 0. Then there exists an m x m permutation matrix

P and an n x n unimodular matrix U such that

(1.11.6) C = (cij) = PAU, cij =0 for 3> 1, S44 ¥ 0, i=1,,..,xr ,

c1j =0 for j>r, r=r(A) .
Proof. Consider the matrix At. By interchanging the columns of At, i.e. multiplying
At from right by some permutation matrix pt, we can assume that in the Hermite normal

form of A%P%, n, = i, i=1,...,r. This establishes (1.11.6)

Theorem 1.11.7. Consider the system (1.11.1). If D is a Bezout domain. Then (1.11.1)

is solvable if and only if

(1.11.8) r=r(A) = x(A), §_(a) =& _(A) .
r r

Proof. Assume first the existence of x ¢ Mn (D) which satisfies 1.11.2. As we pointed

1
out already this assumption implies the equality (1.11.4). Also from (1.11.2) we deduce
that b is a linear combination of the columns of A. Consider any r x r minor of A
which contains the column b. Since b is a linear combination of the other columns of
A we deduce that this minor is a linear combination of r x r minors of A. So Gr(A)
divides the minor in question. In view of the definition (1.10.4) of Gr(A) clearly
Gt(i)|6r(n). Thus we proved that the condition (1.11.,8) is necessary for the solution of
(1.11.1) over Bezout domain (in fact over GCDD). Suppose now that the condition (1.1%,8)

holds. By changing the order of the equations in (1.11.1) and considering a new set of

variables




T

(1.11.9) v=0'x, ve UM (D)

we may assume that A = C where C is given in Lemma 1.11.5. 1In view of (1.11.6) and the
condition (1.11.4) the last m - r are linear combinations of the first r equations
(possibly the coefficients of the linear combinations are in the quotient field of D).

Therefore it is enough to show the solvability of the system

(1.11.10)

[ e 121

c,..x, =b,, i=1,.0e,m, ¢c,, =/0, i=1,00.,m
j=1 ij 3 i ii

Let m = 1, Clearly, in this case 61(&) =<y and 61(c) = (c11,b1). The second
equality in (1.11.8) means c11|b1 80 (1.11.10) is solvable over D. Assume that (1.11.8)
holds for the system (1.11.10) (r = m), Consider an m x m minor of E composed from
the m rows and the columns 2,...,m+1, This minor is equal to (-1)“"b1c22...cmm. Since
this minor is divided by 61(0) =c

11°°"%p we have that ¢y, divides b,. So

X = b1/c11 € D. Thus it is left to show that the system

i
(1.11.11) jzz ° 4%y = b, - ¢ b, /c s 122,000

is solvable over D. Put C = (cij)' i=2,¢0e,m, §=2,¢00,m, b= (b‘ - c11b11/c11),
i=2,...,m. The induction hypothesis would imply the solvability of (1.11.11) if
ém_1(C) = Gm_1(C). That is, it is enough to show that Cye***%om divides any

(m=1) x m=1) minor |3} of C which is compogsed of 2,...,m rows and 2,...,i=1,

i+1,¢0.,m+1 columns of ¢. Cconsider the minor |J| of ¢ which is composed of the

rows 1,.e.,m and the columns 1,2,...,i=1, i+1,...,m 1. Substract from the last column
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the first column times by/c11. So 1al = c11|3l. Since Gm(r) = GM(C\ we have that

c11~°°cm|c11|3|. Therefore Sn_1(F) I3 which finally implies that (1.11.11) §is solvahle
over D. This completes the proof of the theorem.
(m]
Theorem 1.11.12. Let R € anlBD). Then ranage (A) and ker (A) are modules in DM

and D" having finite bases with r(A) and n=r(2) elements respectivelv. Moreover, the

base of ker (A) can he completed to the hase in D",

Proof. As in the proof of Theorem 1.11.7 we mav assume that A = where ¢ {is aiven hv
(1.11.6). Let ¢l = (6“,...,6in)t. Clearlv Re',...,ac’ ie a hasis in rance (A} and
r+1

e, . 0 €™ is a basis for ker (a).

let A e M,,(GCDD). TFf we expand anv a x @ minor of A hv anv a - p rows,

1<p<aqg, we immediately deduce that

(1.11.13) GD(A)IGG(A) for 1 < p € a € min(m,n) .

Definition 1.11.14, For A ¢ (GCDD) denote 11(A),...,ir(A) (r=r(A)) the invariant

factors of A.

(1.11.15) 1j(A) = Gj(h)/5j_1(A), 1=1,...,r(!),(60(ﬂ) =1 .

Then invariant factor {;(A) is called trivial if §4(A) is invertjhle.

Prom (1,11.14) and {1.11,17) we Aeduce

(1.11.16) 500t g0y, 4=2,000,v(8)

Suppose that (1.11.1) is solvahle over N, MNsina the fact that % iz a Vinear comhinatinn

of the columns of A and Theorem 1.11.7 we cet a weaker version of ™heorem 1,11.7.
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Corollary 1.11.17. Let A€ L%m(BD). Then the system (1.11.1) is solvable over BD if
and only if by
(1.11.18) r = x(A) = r(A), i, (A} = L, (A}, k=1, 0,7 .
Problems
(1.11,19) Let A ¢ Mn(GG)D). Prove that
(1.11.20)  |Al = 14(B)..ei (A).
|
t Y
b
4
I‘j
L]
]
0
H .
1 .
i
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1.12 Smith normal form

According to Lemma 1.10.3 and Definition 1.11.14 for A ¢ Mnn(GCDD) the rank of
A = r and the invariant factors 14(A),eee,i,(A) are the invariants with respect to the
equivalence relation. It turns out the if D is elementary divisor domain then the above
invariants characterize the equivalence class of A with respect to the relation A ~ B.

Theorem 1.12.1. Let 0 ¥ A ¢ an(o). Assume that D is elementary divisor domain. The

A is equivalent to a diagonal matrix of the form

(1.12.2) B = diag(i«'(A)n--air(A), 0,00-,0)

where r is the rank of a.

Proof. Recall that if D is EDD then D is BD. For n = 1 the Hermite normal form
of A is a diagonal matrix where 11(A) - 61(A). So the theorem is established in this
case. Next we ghow that the theorem holds for m = n = 2, We may assume that A is in

the Hermite normal form

a3 :).

According to the Definition 1.5.1 there exist p,q,x,y € D which satisfy (1.5.2).

Clearly (p,q) = (x,y) = 1. So there exist ;,a. ;,; such that
PP - Q3 = xx = yy = 1.

Let

3 )
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Then (1.5.2) and the above equalities imply

§ (A) g
G =vau = ! 2],
91 922

Since 61(6) = 61(A) we deduce that 61(A) divides 945 and g,4. By applying
appropriate elementary row and column operations we deduce that A is equivalent to a

diagonal matrix
C = diag(i,(a),d,) .

Since 62(C) = i1(A)d2 = 62(A) we obtain that C is in the form (1.12.2). We now

prove the case m » 3, n =2 by the induction on m. Let 2= (ai Yo i=1, 000 ,m=1,

3
j=1,2. We can assume that 2 is in the form (1.12.2). 1In particular ag, is the g.c.d.
of all elements of A. Interchange the second row with the last one to obtain Aqe Apply
simple row and column operations on the first two rows and columns of A, to obtain

A2 - (aij)), where a:f) = i1(A). Now use the elementary row and column operations to

obtain Aq of the form

(1.12.3) Ay = i,(A) e A, .

Since A, has one column we bring it to a diagonal form. So A is equivalent to a matrix
© = diag(i (A), i,(A,), 0,000,0) &

We claim that C 1is in the form (1.12.2). Indeed
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GZ(C) = i1(A)i1(A4) = 62(A) .

So

For n » 3 we prove the theorem by the induction. Thus we may assume that 2= (aij),

i=1,4ee,m, 3=1,...,n=1 1is already in the form (1.12.2). So a ., is the g.c.d..of all the

elements of 2. Interchange the second column with the last column in A to obtain

(n Then A is equivalent to a matrix A = (aii)

2 ) such that the first two

A1 = (aij Ye
columns of A, form the canonical form of 31. This in particular implies that

a:f) = 11(A). Perform elementary row and column operations to bring A, to a matrix
Ay of the form (1.12.3). As 11(A3) = i,(B) we obtain that .,(A) divides all entries

of A4. The induction hypothesis implies that A is equivalent to a diagonal matrix
C = diaq(i1(A),i1(A4),...,ir_1(A4),D,...,0) .

It is left to show that C is the matrix (1.12.2). Indeed, as i,(A)Iij(A4) and

ij(A4)|ij+1(A4) we immediately deduce that

(A,) .

Gk(C) = ii(A)i1(A4)°°-i 4

k=1

So

1400) = 1,(A), 1,(C) = i, (R}, k=2,000,r .
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This shows that A is equivalent to the matrix B given by (1.12.2). The proof of the

theorem is completed.

The matrix (1.12.2) is called Smith normal form of A.

Corollary 1.12.4. Let A,B ¢ an(lDD). Then A and B are equivalent if and only if

A and B have the same rank and the same invariant factors.

Over elementary divisor domain the system (1.11.2) is equivalent to very simple system
(1.12.5) ik(A)yk = Cps k=1,...,r(A), 0 = Cp s k=1,e0.,m ,
(1.12.6) y=P x, c=¢b

where P and Q are the unimodular matrices appearing in (1.9.14) and B is of the form

(1.12.2). For the system (1.12.5) Theorems t.11.7 and 1.11.12 are quite obvious. We also

have

Theorem 1.12.7. let A ¢ an(!DD). Assume that all the invariant factors of A are

trivial. The the basis of range (A) can be completed to a basis of p".

In what follows we adopt

Normalization (1.12.8). Let A ¢ an(![x]). Then the invariant polynomials (the invariant

factors) of A(x) are assumed to be normalized polynomials.

Problems
(1.12.9) Let A = diaglp,q) € M,(BD). Then A is equivalent to diag{(p,q), 75337).
e

(1.12.10) Let A ¢ an(D), B¢ Mpq(D) and assume that D is GCDD. Suppose that
either SS(A)Iit(B) or it(B)lis(A) for s=1,...,r(A) = a, t=1,...,r(R) = B, Show the
set of the invariant factors of A @ B is {11(A),...,ia(A), ‘1(§)""’ie(s))‘
(1.12.11) Let W c M be D modules with finite bases. Assume that D is BEDD. Prove

that there exists a basis LEYRRRRL in M such that i.‘u‘,...,irur is a hasis in N

when i‘,...,lr € D and ijlij+1' 321,400, r=1.




(1,12.12) Let M be a D module and NN, M be submodules. N, and N, are called
-1
equivalent if there exists T € Hom(M,M), T isomorphism (i.e. T ¢ Hom(M,M)) such that
TN, = N,. Suppose that M, N, and N, have bases f{u_,...,u }, (v ,seee,v } and
1 2 1 2 1 n 1 m

{w1,...,wm} respectively., Let

n n
(1.12.13) v, = ] a .u,,w, = ) b .u,, i=1,...,m, A= f{a, ), B= (b ) .
- - ij 3 ij ij

Show that N, and N, are equivalent if and only if A ~ B.
(1.12.14) Let N c M be D modules with bases. Assume that N has a division
property. That is if ax e N for 0 ¥ ae D, x € M then x € N. Show that if D is
EDD and N has a division property then any basis in N can be completed to a basis in
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1.13 Applications to the ring of local anayltic functions in one variable

In this section we consider the applications of the Smith normal form to the system of
linear equations over the ring of local analytic functions in one variable in the
neighborhood of the origin. According to (1.1.13) this ring is denoted by Hy. In Section
1.3 we showed that the only irreducible element in Hy is z. Let A€ an(Ho). Then

A = A(z) and A(z) has the McLaurir expansion
o0
{1.13.1) Alz) = | Az

which converges in some disc |z| < R(A). Here R(A) is a positive number which depends

on A. That is each entry aij(z) of A has convergent MclLaurin series at least for

lz]l < R(A).

Notations and Definitions. Let A ¢ an(Ho). Then the local invariant polynomials

{(the invariant factors) of A are normalized to be

i

. k
(1.13.1) xk(A) =2z , 0<% 11‘.-.<ir, r = r(A) .

The number 1, is called the index of A and _is denoted by n = n(A). For a non-

negative p denote by ‘p - xp(A) - the number oflocal invariant polynomials of A whose

degree equals to n.

We start with the following perturbation result,

Lemma 1.13.4. Let A,B ¢ an(Ho)- Consider the matrix

(1.13.5) clz) = atz) + zK*1B(2)
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where k is a non-negative integer. Then A and B have the same local invarijant

polynomials up to the degree k. Moreover if k 1is equal to the index of A, and A

and B have the same ranks then A is equivalent to B.

Proof., Without restriction in generality we may assume that A is in the diagonal form

i, ip
(1.13.6) Alz) = diag(z ",.4e,2 ",0,00.,0)

k

Let s = 2 Kj(A). For t € s any t x t minor of C(2) = (cij(z)) which does not
=0

contain the first t diagonal elements c11‘z)""'°tt(2) is divisible at least by

T U S

z « On the other hand the minor of C(z) which is composed of the
i beeej
first t rows and columns of C(z) is of the form =2 (1+z 0(z)).
So
(1.13.7) Gt(c) = Gt(A), t=1,.008 .

This proves

(1.13.8) 1,(C) = i (A), £t = 1,008

A8 s = ] «_(R) and ig = k it follows
3=1

K (Q) =k (R), 3 ¢ ke K (A) € g ()

Interchange the roles of A and C to deduce
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(1.13.9)

This shows that A(z)

degree k. Suppose that

and C(z)

r{A) =

the same invariant polynomials.

k,(C) = x_(RA) = 0,000,k
j j ’ j ’ ,
have the same local invariant polynomials up to the
Then (1.13.8) implies that

That proves that A ~ C.

Consider a system of linear equations over HO'

(1.13.10)

where we look for a solution u(z) € Mn1(H

A{z)u

of A and A are the same.

(1.3.10) by the method of power series.

(1.13.1) and@ b(z) has an expansion

(1.13.11)

Then one looks for a formal solution

(1.13.12)

which satisfies

blz), A(z) ¢ M (H_ )}, blz) e M__(H )
mn O m 0

In theory of analytic functions it is common to try to solve

0
(1.13.10) is solvable if and only if r(A) = r{A)

1

That is assume that A(z)

L
7 ALY
k=0

eM (O, k=0,1,...,

-4 6=

.

). According to Theorem 1,11.7 the system

and the g.c.d. of all

has an expansion

|
i‘




(1.13.13) T oA wldapt®

for k = 0,1,2,... « A vector u(z) is called a formal solution of (1.13.10) if (1.13.17)
holds for any non-negative k. A vector u(z) is called (analytic) solution if u(z) is
a formal solution and the series (1.13,12) converge in gome neighborhood of the origin,
i.e. u(z) € F%1(Ho). We now give the precise conditions under which the system (1.13.13)
is solvable for k = 0,1,...,q.

Theorem 1.13.14. Consider the system (1.13.13) for k = 0,1,...,9. Then this system is

solvable if and only if A(z) and i(z) have the same local invariant polynomials up to

the deqree q, that is

(1.13.15) Ky (A = zj(ﬁ), J = 0ye00,q

Assume that the system (1.3.10) is solvable over H;. Let g = n(A) and suppose that

u(O),...,u(q) gatisfies (1.13.13) for k = 0,...,9. Then there exists u(z) ¢ M1 (Bg)

satisfying (1.13.10) such that wu(0) = u‘0),

Let W, ¢ c" be the subspace of all vectors w(®, gsuch that {0, ..., wld 45 a

solution of the homogeneous system.

’2‘ (9

(1.13.16) w =0 .
1m0 X3

Then

(1.13.17) dim W= n - E ENE I

.




In particular if n = n(A)

that

(1.13.18)

Proof .,

In that case the system (1.13.13) reduces to

(k-is)

(1.13.19)us = b(k)

-]

The the above equations are solvable for

bs(z) for all is < q

- i -
from the last column of A the s = the column times bs(z)lz S, so A is equivalent tc

the matrix

i1
A1(z) = diag(z ,eee,2

According to Problem (1.12.10) the local jinvariant polynomials of A1(z)

i
not exceed q are z

D T )

then for any w € wn

i

polynomials up to degree q.

if and only if A(2)

qe.

We first establish the theorem when

if i <k, 0=0b
s s

and for 1,> q

B RN T T

(0) there exists w(x) such

€ Hn‘ (Ho)

AlX)w(x) = 0, w(0) = wi0)

A(z) is in the Smith normal form (1.13.6).

(k)

if either is >k or s > r{A) .

i
k =0,.0.,9 if and only if z S divides

23*' divides b(z). If 1, € q then substract

a+1 -
) ® z Az(z), 2 % Kj(A), A1 € M(m-!)(n+1-£)(ﬂo) .

3=0 .

whose degree does

i

pesesZ

and A(z)

Assume next that (1.13.10) is solvable. Since a(z)

¢« So A(z) and A1(z) have the same local invariant

Thus we proved that (1.13.19) is solvable for k = 0,...,q
have the same local invariant polynomials up to degree

is of the form (1.13.6) the

general solution of (1.13.10) in that case is

i
uy(2) = by(z)/z 3, 3=1,...,1(8), uy(z) - arbitrary for 3 = r(A) + 1,..,n .
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(i)
uj(O) =bp J ¢y 3=1,e40,r(R), uj(O) - arbitrary for J=r(A) + 1,...,n .,

Clearly {(1.13.19) implies u;o) = us(O) for k = is' The solvability of (1.3.10) implies

that bs(z) =0 for s > r{(A). So uio) is not determined from (1,13.19) for s >

r(d). This proves the existence of u(z) satisfying (1.13,10) such that u(0) = u(O).

Consider the homogeneous system corresponding to (1.13.19) for k = 0,...,q9. So u(O) = 0

s
;0) is a free variable. This verifies (1.13.17). Finally as
w(O)

for ig < g and otherwise u

the homogeneous system (1.13.18) is solvable then for gq = n(A) if € wq, that is we

have a solution of the homogeneous system corresponding to (1.13.19) of the form
w®), ..., wl9), then as we proved above (1.13.18) follows.
It is left to show that the general case can be reduced to the special one discussed

above. According to Theorem 1.12.1 there exist matrices P ¢ Mn(Ho), Q¢ Mm(Ho) such

that

11 ir had k
Q(2)A(2)P(z) =B(z) = diaglz ,+..,z °y 0,...,0), T = r(A), P(z) = ] P.2X,
k=0

otz) = [ oz, Ipg) # 0, Igyl # 0.

k=0
Introduce a new set of variables

X (3

viz), v(o), v(1),..., u(z) = p(z)viz), u(k’ = z P s kK =0,1,000 & Since

v
. k=-j
=0
1)J

°), vl sess, in terms of u(z) and ul

IPOI # 0 we can express v(z) and vl 0),

w{1,..., correspondingly. Thus (1.13.10) and (1.13.13) is equivalent to

(3 (k)

B{z)v(z) = clz), clz) = Q(z)b(2), = ¢ s k= 0,1,000,9

[ Rk
w
<

j=0
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Now the theorem follows since A ~ B and A~B= (B,c) as B = Qi(P [ ] 11).

Problems

(1.13.,20) Consider the system (1.13.10). This system is said to be solvable in the
punctured disc if the system.

{1.13.21) Alzg)ulzy) = blzg)

is solvable for any point 0 < Izo| < R (as a linear system over C) for some positive

R. Prove that (1.13.10) is solvable in the punctured disc if and only if

(1.13.22) r(A(z)) = r(A(z)) .

That is (1.13.10) is solvable over the quotient field MO'
(1.13.23) Consider the system (1.13.10). This system is said to be pointwise solvable if
the system (1.13.21) is solvable for all Izol < R for some positive R. Prove that

(1.13.10) is pointwise solvable if and only if in addition to (1.13.22) the equality

(1.13.24) r(a(0)) = r(a(0))

holds.

(1.13.25) Let A(z2) ¢ an(Ho). A(z) is call generic if whenever the system (1.13.10) is
pointwise solvable then it is analytically solvable (i.e. there exists u(z) ¢ M, q(Hy)
such that (1.13.10) holds). Prove that A(2) is generic if and only if n(A) < 1,

| (1.13.26) Let A(z) € an(H(Q)), b(z) € Mm1(H(ﬂ))' QccC. Consider the equation
(1.13.10). Show that (1.13.10) has a solution u(z) € Mn1(H(Q)) if and only if for any

Z £ 2 the equation (1.13,10) is solvable over H i.e. there exists u(l) ¢ Mn (HC)

g’ 1
which satisfies (1.13.10). (Use the fact that H({) is BEDD so as in Section 1.12 one
may assume that A 1is in Smith normal form.)

(1.13.27) Let A(z) and b(z) satisfy the assumptions of Problem (1.13.26). A(2) is

. called generic if whenever the system (1.13.10) is pointwise solvable, i.e. 1.13.21 is
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solvable for any z, € @, then there exists a solution u(z) € Mn1(H(Q))- Prove that
A(z) 18 generic if and only if the invariant functions (factors) of A{z) have only
simple zeros. (I 1is called a simple 2zero of £ € H(R) if €(fZ) = 0 and f£f'(3) # 0).
(1.13.28) Let A ¢ an(H(ﬂ)), f ¢ C. Prove that all the invariant factors of A are
trivial if and only if

(1.13.29) r(A(f)) = r(A) for all § € Q& .

(1.13.30) Let A ¢ an(ﬂ(ﬂ)), Q2 € C. BAssume that (1.13.29) holds. Using Theorem 1.12.7

1
prove the existence of n vectors x ,...,xm € Mm1(H(Q)), such that

157 (0) eee,X™(Z)] # 0 for all ¢ € 9 and AC" = (x',+ee,xT], r = r(A).
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1.14 Strict equivalence of pencils

Definition 1.14.1. A matrix A{(x) € Mm"(ntx]) is called pencil if

(1.14.2) A(x) =A0 + xA , A (A

1 o 1cMm(D) .

A pencil A(x) is called regular if

(1.14.3) Al(x) € Mh(D[x]), Ia(x)| #0 .

Otherwise the pencil is called singqular. Two pencils A(x),B(x) € an(D[x]) are called

strictly equivalent if

(1.14.4) B(x) = QAX)P, P € UM (D), Q € UM (D) .

We denote this relation by A(x) ; B(x).

The classical works of Weierstrass [1867] and Kronecker [1890]}, see also Gantmacher
[1959], classify the equivalence classes of pencils under the strict equivalence relation
in case that D is a field F.

We now give a short account of their main results. First we note that if

A(x) 3 B(x) then A(x) ~ B(x) over the domain D{x]. In fact we have little more. Put

(1.14.5) B(x) = By + XBy .

Then the condition (1.14.4) is equivalent to

(1.14.6) B, = QAOP, B, = QA1P, Pe UMn(D). Qe UHm(D) .

So we can interchange A, with A, and B, with By without affecting the strict

equivalence relation. Thus it is natural to consider a homogeneous pencil

“w§2 -
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(1.14.7) AlXgixq) = XgAy + XAy

Suppose that D is a unique factorization domain. So (e.g. Lang [1967]) D[xo,x1) is

UFD which implies that D[xo,x1) is GCDD. So we can define the invariant determinants

Gk(xo,x1) and the invariant factors 1k(x°,x1), k = 1,.¢.,r{A), for the homogeneous
pencil A(xo,x1).

Lemma 1.14.8. Let A(xo,x1) be & homogeneous pencil over UPD[xo,x1]. Then the invariant

care me

determinants Gk(xo,x1) and the invariants factors ik(xo,x1), k= 1,...,r(A) are

e

homogeneous polynomials. Moreover, if Gk(x) and 1k(x) are the invariant determinants

and factors of the pencil A(x), k = 1,...,r(A), then

(1.14.9) Gk(x) = Gk(1,x), ik(x) = ik(l,x), k = 1,ee0,r{RA) .

Proof. Clearly any k x kX minor of A(xo,x1) is either zero or a homogeneous polynomial
of degree k. Thus, in view of Problem f.14.24 we deduce that the g.c.d. of all non~
vanishing %k x k minors is a homogeneous polynomial Gk(xo,x1). As 1k(x0,x1) =

Gk(xo,x1)/6k_1(x ,x1) Problem 1.14.24 implies that 1k(x0,x1) is a homogeneous

0
polynomial. Consider the pencil A(x) which is given in terms of the homogeneous pencil

A(xg,xq) as
(1.14.10) A(x) = A(1,x) .

So Gk(x) - the g.c.d. of k x k minors of A(x) is obviously divisible by Gk(1,x). on

the other hand we have the following relation between the minors of A(xo,x1) and A(x)

X
k 1
(1.14.11) A(xo,x1)[a|81 = xOA(xo)(“IB]' a,B € Qk,n

o NI, TN TN i e




A

4] x
This shows that xok6k(;l) (Dk = deg dk(x)) divides any k x k minor of Alxy,xq). So
P X 0
x kG (—1) 8§ (x. ,x. ). This proves the first part of (1.14,9). So
k xo k "0°1
e P, %

. . . = - ’ = . ¥ > .
(1.14,.12) Gk(x0 x1) X, [xo Gk(xo)] L deg Gk(x) 2" 0
Now the equality

ik(xo,x1) = 6k(x0,x’)/6k_1(x0,x1)
implies
. %, %

< 14. ’ = -1, = > .

(1.14.13) ik(x0 x1) X, [x0 ik(xo)] o deg ik(x), wk 0

This establishes the lemma.
We call Gk(xo,x1) and ik(XO'xl) the invariant homogeneous determinants and the
invariant homogeneous polynomials (fac ors) respectively.

The classical result due to Weierstrass [1867] states:

Theorem 1,14.14, Let A(x) ¢ Mn(P[x]) be a reqular pencil. Then a pencil B(x) is

strictly equivalent to A(x) if and only if A(x) and B(x) have the same jnvariant

homogeneous polynomials.

Proof. The necessary part of the theorem holds for any A(x), B(x) which are strictly

equivalent. Suppose now that A{(x) and B(x) have the same invariant homogeneous

polynomials. According to (1.14.9) the pencils A(x) and B{x) have the same invariant

polynomials. So A(x) ~ B{x) over F(x]. Therefore

(1.14.15)  W(x)B(x) = A(X)U(x), U{x),W(x) ¢ Mn(F[x]),
lu(x)| = Const # 0, |W(x)| = Const ¥ 0 .
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Assume now that A, and B,; are non-singular. Then (see Problem 1.14.25) it is possitle

to divide W(x) by A(x) from right and U(x) by B(x) from left

(1.14.16) Wix) = A(x)W,(x) + R, U(x) = U (x)B(x} + P , i

where P and R are constant matrices. So

A(x)(Wy(x) = Uy(x))B(x) = A(x)P - RB(x) .

As |aql |Byl # 0 we must have W (x) = U;(x) otherwise the left~hand side of the above

equality would be of degree at least 2 (see Definition 1.14.19) while the right-hand side

of this equality is at most of degree 1. So

(1.14.17) w1(x)Ul(x), RB(x) = A(x)P .

It is left to show that P and R are non-singular. As W(x) is unimodular there

exists V(x) ¢ UMn(r[x?) such that I = W(x)U(x).

Let
Vix) = B(x)V,(x) +§ .
i
!
So
§
by T = (A(XIWy(x) + RIV(X) = A(X)Wy(x)V(x) + RV(x) =

é =MxWﬂﬂwx)+MﬂWﬂx)¢m=
= A(x)[w'(x)V(x) + PV,(x)] + RS ,
where we used the second equality in (1.14.17). Since |A1I # 0 the above equality

implies




-d

W (x)V(x) + PV,(x) =0, RS =1 .

So R is invertible. The same arguments show that P is invertible. Thus A(x) and
B(x) are strictly equivalent if |[A,B,| # 0.

Consider now the general case. Introduce a new variables Yor¥y

+ dx,, ad = cb #0 .

Yo = aXg * by, vy, = X, 1

Then

Alyg,¥q) = YoRg' + vqAq', Blyg,vq) = yoBg' + ¥4By'

Clearly Alyg.,y,) and B(yo,y1) have the same invariant homogeneous polynomials. Also
A(yo,y1) T B(yo,y1) if and only if A(xo,x1) 5 B(xo,x1). Since A(x,,x,) and

B(xo,x1) are regular pencils it is possible to choose a,b,c,d such that A,' and B,'
are non-singular. This shows that A(yo,y1) s B(yo,y1) according to the previous case.

So A(x) 3 B(x).

In fact, we also proved
Corollary 1.14.18. Let A(x),B(x) ¢ Mn(r[x]). Assume that A, and B, are non-

singular. Then the pencils A(x) and B(x) are strictly equivalent if and only if

A(x) and B{(x) are equivalent.

For singular pencils the invariant homogeneous polynomials alone do not determine the
class of strictly equivalent pencils as in the case of regular pencils.

We now introduce the notion of column and row indices for A(x) ¢ an(F[x]). Consider
the system (1.13.18), The set of all solutions w(x) is a PF[x]-module M with a finite
basis w1(x),...,ws(x). (Theorem 1.11.12).

To specify a choice of basis we need the following definition.
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Definition 1,14.19. Let A ¢ an(D[x’,...,xk]). So

iy a
A(x1,...,xk) = M Ax , A M (D)
(1.14,20)

k
a = (A, 60 } € zk lal = s a X = X 1... .
1ty +! sy 4 1 %

Then the degree of AlxXy,«..,x,) (deg A) is d if there exists A ¥ 0 with |al = 4,

Definition 1.14.21, Let A ¢ an(rlx]) and consider the module M < PIx]" of all

solutions of (1,13,18). Choose a basis w1(x),...ws(x), s =n=~r(A) in M such that

wk(x) € M has the lowest degree among w(x) € M which are linearly independent {over the

gquotient field of F[x]) of wy(x),v..,w_4(x) for k = 1,...,s. Then the column indices

a, € a, €...C of A(x) are given as
1 2 s ~—

(1.14,.22) ak = deg wk(x), K= 1, ¢e00,8 .

The row indices 0 ¢ 8,€...<8 ., t = m-r(A), of A(x) are the column indices of the

transposed matrix A (x).

It can be shown (e.g. Gantmacher [1959])) that the column (row) indices are independent
of a particular choice of a basis w1(x),....ws(x). We now state the Kronecker result

{1890].

Theorem 1.14.23. The pencils A(x),B(x) ¢ an(r[x]) are strictly equivalent if and only

if they have the same invariant homogeneous polynomials and the same row and column

Aindices.
See for example Gantmacher [1959] for a proof of this theorem.
Problems
(1.,14.24) VUsing the fact UPD[x1,...,xn] is UPD and the equality (1.1.26) show that if
a < UFD{xq,+..,%x,] 1s a homogeneous polynomials then in the decomposition (1.3.3) each

Py is a homogeneous polynomial.
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(1.14,25) Let

I IS
(1.14,26) W(x) E wx ., Ulx) ox .

k=0 k=0

Assume that A(x) is a pencil (1.14.2) such that A, is a square non-singular matrix.

Show that if p,q » 1 then
-1 q-1 ~ p~1,. -1 ~
W(x) = A(X)A1 [qu 1 + wW(x), U(x) = [pr ]A1 A{x) + U(x) ,
where

deg Wix) < q, deg Uix) < p -

Prove the equalities (1.14.16) where R and P are constant matrices. Suppose that

Ay = I. Show that R and P in (1.14,16) can be given as

(1.14.27) R = g (-Ao)kwk, P = E Uk(-AO)k .
k=0 k=0

{(1.14,28) Let A(x) be a regular pencil such that lA,I # 0. Prove that in

(1.14.13) k= wk =0, k= 1,...,n. (Use the equality (1.11.20) for A(x)
(1.14,29) Consider the following two pencils
2¢x  1+x  342x ’/,2+x 14x 14x
A(x) = 3+x 2+x S+2x |, B(x) = 1+x 24x 1+x
3+x  2+x 6+3x/ T+x 1+x  1+x

(1.14,12) and

and A(xo,x1).

over Rix]. Show that A(x) and B(x) are equivalent but not strictly equivalent.
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(1.14.30) Let

Alx) = E AxSem (ctx) .

Put

%
A(xo,x1) = i A x

where g =0 if A(x) =0 and A  #0, A =0, g< k <p if A(x) # 0. Let 1 (xq.xq),

k= 1,...,r(A) be the invariant factors of A(xo,x1).

homogeneous polynomial, % = 1,...,r(A). Show that

invariant factors of A(x]).

Prove that ik(xo.x1) is a

i (1,x), k= 1,...,2(A), are the

(1.14.31) Let A(x),R(x) ¢ an(c[x]). A(x) and R(x)

(A 3 B) if B(x) = PA(x)Q, P ¢ M (C), 0 eM (O, (el

A~B then the A( XO,X“‘
have the same invariant factors.

(1.14.32) Prove that the pencils A(x) and B(x)

At(x) ~ Bt(x).
s

-50.
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and

are

are called strictly ecquivalent

101 # 0). Prove that if

B(xo,x1)

strictly equivalent if and onlv ¢
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1.15 Similaritvy of matrices

Definition 1.15.1. Let A,R ¢ “m(D). The matrices A and R are called gimilar

(A m) if

(1.15.2) R = OAn=1

.

for some O ¢ UMM(D).

Clearlv the similaritv relation is an eciivalence relation. So Ma(M)  is Aivided to
equivalence classes which are called the similarity classes. Tt is a standard fact that
each similarity class corresponds to all possible representations of some T € Hom(M,M),

where M is a D-module havina a hasis of n elements. Indeed, let u',...,u™ he a

basis in M. Then T is represented hy A = (aiﬁ) € Mm(n)
™
(1.15.3) ol = a Wi =,
=1 .

Let U',...,%™ be another basis in M. Assume that O is a unimodular matrix which is
given bv (1.9.9). Then accordina to (1.15,3) and the araquments of Section 1.9, the
representation of ™ in the bhasis 31,...,5" is aiven hv the matrix R of the form
(1.15.2).

The similarity notion of matrices is closelv related to the strict ecuivalencv of
certain redgular pencils.

Lemma 1.15.4, Let A,R € "m(n) and associate with these matrices the followina reaular

pencils

(1.15.5) Alx) = ~p4+xT, R(x) = =R4xT




equivalent.

now that A(x) ; B(x). So

B=QAP, QP = I .,

-1

That is P = Q and A * B,

Clearly is A(x) s B(x) then A(x) ~ B(x). So we have

Then A and B are similar if and only if the pencils A(x) and B(x) are strictly

Proof. Assume first that A S B. Then (1.15.,2) implies (1.14.4) where P = Q". Suppose

Corollarx t1.15.6. Let A,B ¢ Mn(D)- Assume that D is a unique factorization domain.

Assume that A and B are similar then the corresponding pencils A(x) and B(x) given

by (1.15.5) have the same invariant polynomials.

Lemma 1.15.4 and Corollary 1.14.18.

In case that D = F the above condition is also a sufficient condition in view of

Theorem 1.15.7. Let A,B ¢ Mn(P). Then A and B are similar if and only if the

pencils A(x) and B(x) given by (1.15.5) have the same invariant polynomials.

j A = B.
] Problems
(1.15.8) Let

0 11

), B = (0 5) € MZ(Z)

' s Z(x]. Prove that A and B are not similar over Z.

It can be shown (see Problem 1.15.8) that even over Euclidean domains the condition

that A(x) and B(x) have the same invariant polynomials does not imply in general that

Show that A(x) and B(x) given by (1.15.5) have the same invariant polynomials over




(1.15.9) Let A(x) € Mn(urD(x]) be given by (1.15.5). Let i,(x),...,in(x) be the
invariant polynomials of A(x). Using the equality (1.11.20) prove that each ik(x) can P

be assumed to be normalized polynomial and

n
(1.15.10) ] deg i (x) =n .
k=1 k

(1.15.11) Let Ae M (P). Show that A =~ at.
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1,16 The companion matrix

Theorem 1,15.7 shows that the invariant polynomials nf xI=-A determine the similarity
class of A. We now show that any set of normalized polynomials i1(x),...,xn(x) i UPD' x’
such that ij(x)lij+1(x), j=1,.e.,n=1 and which satisfy (1.15.10) are invariant
polynomials of xI-A for some A € Mn(UPD). To do so we introduce the notiorn of a
companion matrix.

Definition 1.16.1. Let p(x) € D[(x! be a normalized polynomial

p(x) = x™ + a1xm-1+...+am .

_ m
Then C(p) = (cij)

1 € Mm(D) is called the companion matrix of p(x) if

(1.16.2) cij = 6(i+1)j' i=1,.e0,m=1, 3 =1,,0.,m, cmj = -am-j+1' j =

Lemma 1.16.3. Let p(x) € UFD[x] be a normalized polynomial of degree m. Consider the

pencil C(x) = xI - C(p). Then the invariant polynomials of C(x) are

(1.16.4) i1(C) =.-.=im_1(c) =1, im(C) = p(x) .

Proof. For k < m consider a minor of CC(x) composed of the rows 1,...,kXx and columns
2,s0e,k+1. Since this minor is the determinant of a lower triangular matrix with =1 on
the main diagonal we deduce that its value is (-1)k. So Sk(C(x)) =1, k¥ = 1,..,.,m=1,
This establishes the first equality in (1.16.4). <Clearly, Sm(c(x)) = |[xI=C]. Expani t"»
determinant of C(x) by the first row and use the induction hypothesis to jprove

= . i i (o) = 6 c) = .
|x1=~C]| p(x). This shows 1m( ) m(C)/sm-l(L) pix)

Using the results of Problem 1.12.10 and Lemma 1.16.3 we aget

Theorem 1.,16.5. Let pj(x) € UPD!x!, 7 = 1,..0,% be normalized polynomials ~F positjye

degrees such that pj(x)lpj+1(x), 3 %= 1,e00,k=1. Consider the matrix

-6 3=
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(1.16.6) C(p1,.-.,pk)= ] ®cip .
3=1 J

Then the non-trivial invariant polynomials of xI = C(p1,...,pk) (i.e. those polynomials

which are not the identity element) are P1{x)seee,pp(x).

Combining Theorems 1.15.7 and 1.16.5 we obtain a canonical representation for the

: : : P -
similarity class in Mn(P). Dy

P :'."'—‘-.
Theorem 1.16.7. Let A € M“(F)‘ﬂaﬂﬂ'assume that pj(x) € P[x], j = 1,44s,k are the non-

trivial normalized polynomials of xI-A, Then A is similar to C(p,,...,pk).

Definition 1.16.8. For A ¢ Mn(P) the matrix C(p1.---,pk) is called the rational

canonical form of A.

Let D be an integral domain and denote by F its quotient field. Let A € M (D).
So A€ Mn(r) and let C(p1,....pk) be the rational canonical form of A. We now examine
the case when A(pqrses/Py) € Mn(D). Assume first that D is UPD. Let 6k be the
ge.cedse of k x k xI-A. So Gk divides a minor of p(x) = (xI-A){alal, a = {1,...,k}. .
Clearly p{x) is a normalized polynomial of degree k. Recall that D[x] is also UPD.
(See Section 1.4.)
According to Theorem 1.4.12 the decomposition of p(x) into irreducible factors in
D(x] if of the form (1.4.9) where a =1 and each qi(x) is a non-trivial normalized and

irreducible polynomial in D{x]. Since Gk is a product of some irreducible factors of

p(x) then either Gk =1 or Gk is a non-trivial normalized polynomial in D(x]. The

same argument shows that ik = 5k/6k_1 is either identity or a non-trivial polynomial in

D(x]. Thus we demonstrated.

Theorem 1.16.9., Let A € Mn(D). Assume that D is a unique factorization domain. Then

the rational canonical form C(p1,...,pk) over the quotient field P belongs to Mn(D).

In particular, we have

Corollary 1.16.10. Let A€ Mn(C[x1,...,xm]). Then the rational canonical form A

belongs to Mn(C[x1,...,an). .

-64~




Using the results of Theorem 1.4.13 we deduce that Theorem 1.16.9 applies to the ring
of analytic functions in several variables although this ring is not UFD (see Section

1.3).

Theorem 1.16.11. Let A € Mn(H(Q))(ﬂ < c™). Then the rational canonical form of A over

the field of meromorphic functions belongs to M“(H(Q)).

Problems

(1.16.12) Let p(x) € UFD{x] be a normalized non-trivial polynomial. Assume p(x) =

p1(x)p2(x). where pi(x) is normalized non-trivial polynomial in UPD[{x) for i = 1,2.

Using Problems 1.12.9 and 1.12.10 show that xI =~ C(py.py) given by 1.16.6 hag the same

invariant polynomials as xI =~ C(p) if and only if (py.py) = 1.

(1.16.13) Let A € Mn(U!D) and assume that p1(x),.-.,pk(x) are the non~trivial ;
normalized invariant polynomials of xI-A. Let i

m m
(1.16.14) py(x) = [0, (x)] [N TN S L I

where ¢1(x),...,w£(x) are non-trivial normalized irreducible polynomials in UPD(x] such

that (wi.wj) =1 for i ¥ j. Prove that

; > = 1.4, > >.00m 2
; M 2t T Tk My 22T 2 0
: (1.16.15) 1,k

§ m.=n .

i,9=1 17

o~
T o Y
3

The polynomials wiij, for ™5 > 0 are called the elementary divisors of xI-A. Using

| ] the above problem show that xI-A and xI-E where

: | ¢ (1.16.16) E= J ec

-l y

have the same invariant polynomials. Thus over a field F A = E., Sometimes E is called

the rational canonical form of A.
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1.17 Splitting to invariant subspaces
Let V be a vector space of dimension m over a field P. Denote by L(V] the -

vector space of all linear transformations T : V + V. That is

(1.17. 1) L(V) = Hom(V,V] .

Let T € L(V). As we pointed out in Section 1.15 the set of all matrices A < Mm(P) which
represent T in different bases is exactly an equivalence class of matrices with respect
to the simjlarity relation. Theorem 1.15.7 shows that the class A is characterized by
the invariant polynomials of xI~A for some A € A, Since xI-A and xI-B have the same

invariant polynomials if and only if A ® B we define.

Definition 1.17.2., Let T € L(V) and let A ¢ Mm(r) be a representation matrix of T in

a basis u‘,...,uln given by the equality (1.15.3). Then the invariant polynomials

p1(x),...,pm(x) of T are defined as the invariant polynomials of xI-A. The

characteristic polynomials of T - is the polynomial |xI-al.

The fact that the characteristic polynomial of T is independent of a representation

matrix A follows from the identity (1.11.20)

(1.17.3) IxI-A] = py(x)ecap,(x)

where p‘(x),...,pk(x) are non-trivial invariant polynomials of xI-A. In Section 1.16 we

proved that the matrix c(p,,...,pk) is a representation matrix of T. 1In this section we

- — . —
. - -
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shall consider another representation matrix A of T which is closely related to the

matrix E (1.16.16). This form will he achieved by splitting ¥V to a direct sum

(1.17.4) V= 010 eoi

where each Uj is an invariant subspace of T.

Definition 1.17.5. A subspace U ¢ V is an invariant subspace of T if
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(1.17.6) ™WcU .

U is called trivial if U = [0]. U is called proper if © g V. U is called irreducible

if U cannot be expressed as a direct sum of two non-trivial invariant subspaces of T.

Thus if V splits to a direct sum of non-trivial invariant subspaces of T then a
direct sum of matrix representations of the restrictions of T to Uj gives a
representation matrix of T. So, a simple representation of T can be achieved by
splitting V to a direct sum of irreducible invariant subspaces. To do so we need to
introduce the notion of the minimal polynomial of T. Consider the linear operators
I,T,Tz,...,Tmz, where 1 1is the identity operator (Ix»x). Since the dimension of L(V)
is m? these w o+ 1 operators are linearly dependent. So there exists an integer g

such that I,T,...,T3"' are independent and 1I,T,...,T? are linearly dependent.

Definition 1.17.7. A polynomial ¥(x) € F[x] is called the minimal polynomial of T if

Y(x) is a normalized polynomial of the smallest degree satisfving

(1.17.8) viT) =0
Here
L i . i
$(T) = Z C1T , d(x) = E ex € F(x]
i=0 i=0

and 0 {is the zero operator (0x=0). By the definition deg y » 1. The minimal
polynomial is characterized by the following property.

Lemma 1.17.9. Assume that T annihilates ¢ € P[x]. That is ¢(T) = 0. Then |&.

Proof. Divide ¢ by ¢

$(x) = x(xIp(x) + p(x), deg p < deg v .

Bl LR
Eofar 00




Now (1.17.8) and the assumption of the lemma imply that p(T)

0, As deg p < deg ¥ from

the definition of the minimal polynomial we deduce that p(x) = 0.
0
Since F(x] 1is a unique factorization domain, let
54 52
(1.17.10) VXY = Vo(x) v (x) T, (¢i,¢j) =1, for 1<i<¢ jc<3§,

deg ¥, > 1, i = 1,..,k

where each wi(x) is a normalized irreducible polynomial in F[x].

Theorem 1.17.11. Let ¥(x) be the minimal polynomial of T. Assume that { splits to a

product of co-prime factors as given in (1.17.10). Then the space V splits to a direct

sume (1.17.4) where each U

-3
5 is a non-trivial invariant subspace of T. Moreover ¢j3(x)

is the minimal polynomial of the restriction of T to Uj'

The proof of the theorem follows immediately from the lemma below.

Lemma 1.17.12., Let V¥ be the minimal polynomial of T. Assume that y splits to a

product of two co-prime factors

(1.17.13) V) = g, (xhy, (x), deg y, > 1, 4= 1,2, (y,,9,) =1 ,

where each wi is normalized. Then

(1.17.14) v=u,eu, ,

where each Uj is a non-trivial invariant subspace of T and wj is the minimal

polynomial of the restriction of T to Uj'
Proof. The assumption of the lemma imply the existence of polynomials 91(x) and Oz(x)

sucht that

(1.17.15) 01(x)¢1(x) + Bz(x)wz(x) =1 .
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Define

(1.17.16) uj = {ulu g v, wj(r)u =0}, 3 =1,2 .

Since any two polynomials in T commute, i.e.

LIT)V(T) = V{T)u(T)

we clearly have that each Uj is an invariant subspace of T. The equality (1.17.15)

implies

I= W‘(T)91(T) + VZ(T)GZ(T) .

That is, for any u £ V we have

u=u +u,u

I 5 = %2(T)82(T)u e U .,u, = w1(T)81(T)u €U

1772

1 2

So

U1+02-V .

Suppose that u € U1 n Uz' Then

W,(T)u - wz(T)u -0

Thus

81(T)V1(T)u = 92(T)v2(T)u =0 .

-69 -
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Finally
= + V Ty =
u [91(T)w1(l) 92(T)v2(T),u o]

which proves that U, » 02 = [0]. This establishes (1.17.14). Let Tj be the restriction

of T of Uj’ By the definition of Uj (1.17.16) 'I‘j annihilates wj. Let Ej be the

minimal polynomial of Tj' So Ejle, j = 1,2. Now

w‘(T)wZ(T)u = w1(T)¢2(T)(u‘ + uz) = WZ(T)W1(T)U1 + wl(T)WZ(T’uz =0

Therefore (1.17.14) yields that T annihilates E,Ez. Since Y(x) is the minimal

<|

polynomial of T we have w102|51@2- This finally implies wj = , 3 =1,2. Also as

3
deg °1 > 1 it follows that dim Uj > 1.

Problems

(1.17.17) Assume that (1.17.14) holds, where TU, : U j = 1,2, Let vy be the minimal

3

polynomial of the restriction of T to U j = 1,2. Prove that the minimal polynomial

. Y u boow Y.
vy of T is equal to v1v2/(v1.¢2)

3

(1.17.18) Let the assumptions of Problem (1.17.17) hold. Assume furthermore that 1 = ¥
where v is irreducible over F(x]. Then either y = v1 or y = 02.
{1.17.19) Let C = C(p) ¢ Mm(D) be the companion matrix given by (1.16.2}. Let
€, = (511,...,5 )t, i=1...,m Dbe a standard basis in p™. Show

1m

(1.17.20) tti = ei_1 - am—1+1€m' i= 1,,e0,m (eo =0) .
Prove that p(C) = 0 and that any polynomial 0 # q(x) ¢ D/x), Jdea q < m, 1is not
annihilated by C. (Consider q(C)z‘i and use (1.17,20).} That is p(x) s the minimal

polynomial of C(p).
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(1.17.21) Let A € Mm(r). Using Theorem 1.16.7 and Problems 1.17.17 and 1.17.19 show tha*

the minimal polynomial y of A is the last invariant polynomial xI-A. That is

(1.17.22) VO = IxI-al/8 _ (x)

where Gm_1(x) is g.c.d. of all (m=1) x (m=1) minor of xI-A.
(1.17.23) Show that the r~sults of Problem 1.17.22 apply to A ¢ Mm(UPD). In particular
if A B then A and B have the same minimal polvnomials.

(1.17.24) Deduce from Problem (1.17.21) the Cayley-Hamilton theorem which states that

T € L(V) annihilates its characteristic polynomial.

(1.17.25) Let A ¢ Mm(D). Prove that A annihilates its characteristic polynomial.

(Prove this result by considering the quotient field of D.)

(1.17.26) Use Problem (1.17.24) and Lemma 1.17.9 to show

(1.17.27) deg ¥ € dim V .

(1.17.28) Let ¢y = ¢s where ¢ 1is irreducible in F[x] and assume that deg y = dim V.
Use Problem (1.17,18) and (1.17.26) to show that V 1is an irreducible invariant subspace
of T.

(1.17.29) Let p(x) € P[x] be a non-trivial normalized polynomial such that p =+
where ¢(x) is irreducible in P[x]. Let T € L(V) be represented by C(p). Use Problex
(1.17.28) to prove that V is an irreducible invariant subspace of T.

(1.17.30) Let T ¢ L(V) and let E be the matrix given by (1.16.16) which is Jdetermine?l
by the elementary divisors of T. Using Problem (1.17.29) prove that the representatiocn

E of T corresponds to a splitting of V to a direct sume of irreducible invariant
subspaces of T,

(1.17.31) Deduce from Problems (1.17.28) and (1.17.30) that VvV i3 an irveducitle
invariant subspace if and only if the minimal polynomial 0 satisfies the assumptions oFf

Problem (1,117,380,
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1.18 An upper triangular form

Definition 1,18.1. Let M be a D-module and assume that T € Hom(M,M). X € D is called

an eigenvalue if there exist 0 # u € M such that

(1.18,2) Tu = Au .

The element (vector) u is called eigenelement (eigenvector) corresponding to A. An

element 0 # u is called generalized eigenelement (eigenvector) if

(1.18.3) (XI-T)ku =0

for some positive integer k where XA is an eigenvalue of T. For T € Mm(D) A is

called eigenvalue if (1.18.2) holds for some 0 # u € D". The element u is called

eigenelement (eigenvector) or generalized eigenvector if (1.18.2) or (1.18.3) holds

respectively.

Lemma 1.18.4., lLet T € Mm(D). Then X is an eigenvalue of T if and only if A is a

root of the characteristic polynomial |xI-T].

Proof. Let F be the quotient field of D. As (1.18.2) is equivalent to

(AI-T)u = 0

by the definition wu # 0, so the above system has a non=-trivial solution. Therefore

|A1-7) 0. That is X is a root of the characteristic polynomial of T. Vice versa, if

m

| A1~-T) 0 then the above system has a non-trivial solution ue F, Clearly au, a € D
m

also satisfies the above equality. Choose a # 0 such that aue D, Thus X 1is an

eigenvalue of T,

Theorem 1,18.5., Let T € Mm(D). Assume that the characteristic polynomial of T splits

t» linear factors over D

-72=




m
(1.18.6) |xX~T| = 1 (x-Xi), Xi €ED, i=1,,0a,m .
i=1

Suppose that D is a Bezout domain. Then

(1.18.7) T=0m0" ', Q¢ uM_(D)

where A = (aij)m, is an upper triangular matrix (i.e. aij =0 for 3 < i) such that

ayqs0se,85, are the eigenvalues X1,...,Xm appearing in any specified order.

Proof. Let A be an eigenvalue of T and consider the set of all u € Dm which
satisfies (1.18,2). Clearly this set is a D-module M. According to Lemma 1.18.4 M
contains non-zero vectors. Assume that D is BD. Then according to Theorem 1.11.12 N

has a basis u1,...,uk which can be completed to a basis u‘,...,um in D". Let

(1.18.8) ral= 7 b, oud, 1 =1,.00m B=(b,)eM (D .
i m

A straightforward computation shows that T =~ B.
As Tui = Xui, i=1,...,k, we have that b,y = A and bj1 =0 for j > 1. So

[x1T = [x1-Bl = (x=A)IxI-Bl, B = (b ), L,§ = 2,cse,m ,

3
where the last equality follows by expanding [xI=B| by the first column. So IxI-EI
splits over D. Using the induction assumption E ] A1 where A1 is an (m=1) x (m=1)

upper triangular matrix with the eigenvalues of B on the main diagonal of A, appearing

in any prescribed order. This establishes the theorem.




P

Problems

Clearly, the upper triangular form of A is not unique unless A = al. See Problem

1.18.9, In what follows we shall use the definitions given below. b

Definition 1.18.9., Let T € Mm(D) and _assume that (1.18.6) holds. Then the spectrum of

T = o{(T) 1is defined to be the set

(1.18.10) (T = {A,,eee, A }
1 m

By my denote the multiplicity of Xi, that the number of times that Xi is appearing in

o(T). The eigenvalue Xi is called algebraically simple if m, = 1. Let X1,...,A£ be

all the distinct eigenvalues of T. That is

L
(1.18.11) S om o= om, A€ aT), i = e, h

By od(T) we denote the distinct spectrum of T

(1.18.12) 04(T) = (X1,...,Az} .

(1.18.13). Let Q correspond to the elementary row operation described in Defini*ion
1.10.11 - (iii). Assume that A 1is an upper triangular matrix. Show that if j < i
then Q}\Q'1 is also an upper triangular matrix.

(1.18.14) Prove that if T ¢ Mm(D) is similar to an upper triangular matrix A € (D)

then the characteristic polynomial of T splits to linear factors.

(1.18.15) Let T ¢ Mm(D) and put

n m . -
(1.18.16) Ixt-1} = x" + § a .’
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Assume that the assumptions of Theorem 1.18.5 hold. Show that

(1.18.17) (-n*a = [ rala - 8 Agreerd)

GCQk m

where sk(x1,...,xm) is the k-th symmetric polynomjial of XqseeesXpe The coefficient

-a, is called the trace of A(tr(A)). That is

m

m
(1.18.18) tr(A) = J a, = T, .
=1 M ge

(1.18.19) Let T ¢ Mm(D) and suppose that the assumptions of Theorem 1,18.5 hold. Assume
that D is UFD. Using the results of Theorem 1.18.5 and Problem 1.17.23 prove that the

minimal polynomial y(x) of T is of the form

L ]

i i =
(1.18.20) (%) = 1lll(x-ki) , Ai ¥ Aj for 1 # 3, 1 ¢ s, < m i, 1,000,

where cd(T) = {X1,...,Az}. (Hint: Consider the diagonal elements of Y(A).)
(1.18.21) Let T ¢ Mm(UrD) and assume that the minimal polynomial of T is given by

(1.18.20). Using Problem 1,17.21 and the equality (1.17.3) prove

£ m
(1.18.22) Ix1=r| = 1 (x-Xi) i, xi #A, for 4 ¥ 3, 4,3 = 1,000,
i=1

3
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1.19 Jordan canonical form

Theorem 1,18.5 and Problem 1.18.14 shows that T ¢ Mm(D) is similar to an upper
triangular matrix A if and only if the characteristic polynomial of T splits to linear
factors. Unfortunately the upper triangular form of T is not unique. In case that D is
a field there exists an upper triangular matrix A which depends only on the eigenvvalues
of T and this matrix is essentially unique. For convenience we state the theorem of an
operator T € L(V).

Theorem 1.19.1., Let T € L(V). Assume that the minimal polynomial ¢(x) of T splits to

a product of linear factors as given in (1.18.20). Then V splits to a direct sum of non-

trivial irreducible invariant subspaces of T

(1.19.2) V= WoeeW .
1 q

In each subspace W it is possible to choose a basis consisting of generalized

eigenvectors x', ..., x¥ such that

(1.19.3) Tx1 = A X .
(1.19.4) T = Xox +%x , k=1400,r =1

where AO is equal to Ai for some i and r € s, (in cage that r = 1 (1.19.4) is

void). Moreover for each Ai' i=1..,,2, there exists an invariant subspace of W

. whose basis satisfies (1.19.3) = (1.19.4) with A =X, and r = s;.

' Proof. Assume first that the minimal polynomial of T is of the form

(1.192.5) P(x) = % .

n -
! # 0, Let x11,--.,x 1 span the range of 78 1

so T =0 and 1%




1n,

s=1 1.

T V= [x“,...,x

1 n,y

sn
In particular x 1,...,x are linearly independent. Let Xx !

LA be the pre-

1 ny s-1
images of x ,.¢es,X for the map T : ¥V+V., So

787183 o '3, BT PRPI. P

Denote

x(87K)3 o ohy8Y k2 q,...,8 -2, = Treoe,ny o

As T3 =0 we have Tx1j =0, §= 1,...,n1. The two equalities above are equivalent to

(1.19.6) L T e N P T T I PRSRUs
{
11 ny 81 snq
We claim that X ,.¢¢,X% seee X sess X are linearly independent., Indeed, suppose
that
n
s 1
i3
z Z aijx o .

apply T°°' to this equality. The (1.19,6) yields
n
1
2 a x'j =0 .
j=1 o
1 ny g=2
AS X ,eee,X are linearly independent agy -"‘-asn1 = 0. Next apply T to

obtain 3(5-1)1""’((5-1)n1 = 0, Continuing in the same manner we deduce that
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xij, i=1,.00y8, J=1.0.,n are linearly independent. Assume now that we have found

linear independent vectors

xlj, i=1,ce0,8=r+1, j =m _1+1,...,m

r r=1,ee0,p

rl
(1.19.7)

my = 0, m_ = n1+...+nr, Y= 1,¢eee,p, n, 2 1, n

1

r » 0,..-,np >0 ,

2

for 1 < p < s, such that (1.19.6) holds for k = 1,.,..,8=r, j = m +1,000,m

r-1 T’
r=1,¢...,p and
- im pm 1(my+1) 1m.
(1.19.8) P =v=x i e xPlix L, x0T eeex 2.,
(p=1)(my+1) (p-1)m2 HUm_ .+
1) im
x AR soresx P 1 Leee,x PV

For p = s we found the needed basis of V. For p < s consider the subspace V

—ry— m (pt1)m 1(m, _,+1) 1m
rsPly, Clearly M eix Lo xE 1 Tp~1 senesx P,

2(m__,+1)
X p‘

Jese X

2
gese X mp belong to V Recall that these vectors were assumed to be

s-p-1*
linearly independent. If the above vectors span Vs_p_1 put Tpey = 0, Moeq = Mye

Otherwige, let

1m (pt1)m 1{m,_q+1) 1
vs-p-1 = Ix11,...,x 1,...,x(p+1)1,...,x 1,...,x mp 1 seee X mp’
2(m__,+1) 2m 1(m +1) im
x P X P,x PO, .x PYY
Since Tx'D £V, d=m + 1,e00,m in view of (1.19.8) and (1.19.6) we can
s-~p P p+?

assume that Tx1j =0, §= mp + 1,600,m (by adding to x1j a linear combination of

o1

vectors appearing in (1,19.7)). Denote x{5°P)I the pre-images of x'3 for the map

Ts-p-1: vV+V for j= mp+1,...,mp+1.

Thus (1.19.6) holds for kX = 1,...,8-r,

j=m 1+1,...,mr, r=1,...,pt1. We claim that

-
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s=p~-1 =

Also let x(3°P~X)3 _ gk (s~p)3 . 1,000,8=p=2.

|
|
|




the vectors appearing in (1.19.7) for r = 1,...,p+! 1linearly independent. This follows
0

by applying Lt LT LI |

= I to the given vectors and using the identities (1.19.6)

for all the involved vectors and taking in account that the vectors which span V,

s-p-1 8T®

linearly independent. For each p such that my > L let

. = [x1jl xzth'le('-r1)j]' mp

+ 1« <m .
b} 3 p

-1
S0 (1.9.3) = (1.9.4) holds for A =0 and r = s=pt1. Az all x'3, 4 =4, mere,
=, Voeoomy, = 1,000,8, the equality (1.19.2) holds. Also my = n, >0 and
dim W, = s. It is left to show that Ij is an irreducible invariant subspace of T. From
the equalities (1.19.6) we get that if x('-p*1)j € U, where U is an invariant subspace
of 'j then xkj €U for k= g~p+l,.se,1s SO0 U= 'j and wj igs irreducible. This
proves the theorem in case that the minimal polynomial of T is of the form (1.19.5).
Assume that the minimal polynomial of T is of the form (1.18.20). According to Theorem
1.17.11 ¥V gsplits to the direct sum of non-t:i!vial invariant subspaces (1.17.4) such that

s
the minimal polynomial of Tj = the restriction of T to Uj is (x-Aj) j. Call
T, ~AI=Q :U >0, j=1,¢0e,% .

3 3 3 3 3

8
Clearly, the minimal polynomial of Qj is x 3. So we can apply our results for Qj,

3=1,.0.,8 This immediately implies the theorem.
Let H{(n) bDe the following n x n matrix
n
(1.19,9) H{n) (hij)1' h13 = 6(1+1)j' 1,3 T,eea,n &

That is H(n) is 0-1 matrix of the form
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H(n) =

We shall also denote H(n)} by H

defined. Let V = [v1,...,vr] when v© =

n

1 0 ¢eees O 0

0 T veeee O 0

0 0 seees O 1
0 (U 0

O Cree OO
-

or simply H in case that the dimension of H is well

1 xr"+1, i=1,1es,r and x‘,...,xr satisfy

(1.19.3) - (1.19.4). Then in this basis T is represented by a Jordan block X I + H of

0

dimension r. Thus Theorem 1.19.1 implies:

Theorem 1.19.10. Let A ¢ Mn(F).

Assume that the minimal polynomial y{(x) of A splits

to linear factors as given in (1.18.20). The there exists a non-singular matrix

P e Mn(?) such that

_ L 9
3 AP=J,J=‘E { & (\I(m ) + Him, )
(1.19.11) i=1 =1
1< miqi < miqi°1 <...$ mg =85, i= 1,e00,%, Xi ¥ Xj, for i # 3 .

Definition 1.19.12. The matrix J appearing in (1.19.11) is called the Jordan canonical
form of A(T). The polynomials

m
(1.19.12) 5500 = (x=2) ), 3= Teensgye = a2,

are called the elementary divisors of A(T). .

Remark 1.19.13. 1In case that the minimal polynomial of A does not split to linear

factors in F we can find a finite extension field K such that y splits in K. Then

{1.19.11) holds for P ¢ Mn(x). We shall refeér to J as the Jordan canonical form of A,

Theorem 1.19.14, Let A © Mn(P).

Assume that the minimal polynomial of A is of the form

given by (1.18.20). The the elementary polynomials of A are the elementary divisors

of xI=A defined in Problem 1.16.13, That is, put

-R0 -
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(1-19.15) m1q1+1 -'..-min - 0, i = 1,.0-,2 .

Then the invariant polynomials 11(x),...,1n(x) of xI-A are given by the equalities

R m
(1.19.16) L0 = T (xe)) UnertD) oy, ien

=1

In particular if py(x),«..,py(x) are the non-trivial invariant polynomials of xI-A then

L m
(x) = T (x-Xi)
i=1

i3

(1.19.17) r 3= e,k

Pragei

Proof. Assume first that A = AOI(m) + H(m) . Then for 1 € k € m=1 the minor of
xI-A composed of the rows 1,...,k and the columns 2,...,k+1 is equal to (-1)k. So
the first m-1 determinant invariants are trivial. Also 6m(xI-A) = |xI-A| = (x-Ao)m.
Hence

qi m

L
XI-A ~ xI-3~ } T @ aiag(1,...,1, (x=x,)
imt qmi

1,y .

Applying the results of Problems (1.12.9) = (1,12.10) we deduce the equality (1,19.16).

Clearly (1.19.16) is equivalent to (1.19,17).

This theorem shows that the Jordan canonical form of A(T) 4is unique up to
permutation of Jordan blocks.
Problems
(1.19,18) Show directly that to each eigenvalue Xo of a companion matrix C(p)

corresponds one linear independent vector of the form (\,xo,...,xo“")‘.

-aB1=




Let A ¢ M (C). Assume that X € 0(A). Let U,,Uyc €" be the subspaces of

all eigenvectors of A and at respectively corresponding to A. Show that there exists -

x',eeex™ dn Uy and y',...y™ in U, such that (yhtxI =6,

(Hint Assume first that A is in the Jordan canonical form.)

- s e

B by ool

Show that if
Verify directly that J annihilates its characteristic polynomial. Using the
fact that any

field K deduce the Cayley-Hamilton theorem.

Jordan canonical form.

ij

Ax = Ax, Aty = uy, A€ Mn(c), 0 # x,vy € "o
t, -
A #u then y-x = 0.
Ac Mn(P) is similar to its Jordan canonical form over a finite extension

A,B € Mn(r) show that A * B if and only if A and B have the same




e 72 5 035 M i AL,

1.20 Some applicationg of Jordan canonical form.

Definition 1.20.1., let A ¢ Mn(r) and assume that IxT-al snlits in w. ter y  *e ar

eigenvalue of A. Then the number of factors of the *orm (x-\ﬂ\ aprearing in the mini=al

polynomial U¢(x) of A is called the index of \n and is Aenoted hv index Y. The

—

number of linearlv independent eigenvectors of A correspondina to \n is calle? the

geometric multiplicity of Xn.

U'sina the results of the previcus section we aet

Lemma 1.20.2. Let the assumptions of Definition 1.20,1 holA, ™hen index (\n\ ia the

size of the largest Jordan hlock corresmonding to \n (i.8, of the form 1, Ty and the

geometric multiplicitv of Xn is the number of the Jordan hlocke corresmondina to )\

n

which appear in the Jordan canonical form of A,

Let T ¢ L(V), Xn € o(™) and consider invariant suhspaces

(1.20,3) xr- {xIx e v, (\nx-m"x-n‘. r=o0,1,... =

Usina the decomposition (1.19,.2) and the Adefinition of Jordan form of T we oRtain

Theorem 1.20.4. Let T ¢ L(V) and assume that \n is an ejcenvalue of ™, Tet intex

=mn 2 m1>...5n > 1ﬂ he the dimensiong of all Jordan Wlocke corresnonding te 1\, which

appear in Jordan canonical form of ™, Then

(1.20,5) Aaim !r - g win(r,n‘\, r=N,%, ...
j=1

In particular

(1.20.6) X = X REERTL M index ‘\n‘ .

e \d ™ m“‘
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Thus (1.20.6) gives vet another characterization of the index of A_ . Also note in view of

0
Definition 1.18.1 each Xy consists of generalized eigenvectors of T.
Pefinition 1.20.7. An operator T ¢ L(V) is said to have a simple structure if there

exists a basis in V which consists entirely of eigenvectors of T. That is any

representation matrix A of T is diagonable (i.e., similar to a diagonal matrix).

For such T we must have X, = X . Theorem 1.19,1 vields.
1

Theorem 1.20.8., Let T + L{(V'. Then T has a simple structure if and only if the minimal

polynomial y of T splits to linear factors such that any two factors in y are

relatively prime. That is the index of any eigenvalue of T equals to 1.

Definition 1.20.9, Let T : Hom(M,M}) where M is a D-module. T 1is called nilpotent

if T%5 =0 for some positive integer s.

We need in the sequel the following result.

Theorem 1.20.10. Let T ¢ L(V) be nilpotent. Assume that U is a non-trivial invariant

subspace of T such that

(1.20.11) ™ U .

Then it is possible to split V to the direct sum of invariant subspaces (1.19.2) and to

. ir,
choose in each invariant subspace W; basis y11,...,y 1 satisfying (1.19.3) - (1.19.4)

3 .
i1 u'i

{with 1\, = 0) such that the vectors y'', ...,y , r1-1 < ri' $r.i=1,...,q, forma

0

basis in U.

Proof. The proof of the theorem is a modification of the proof of Theorem 1.19.1 and we

point out the changes one needs to make. Let x11, 4 = 1,00, 811, j = mr_1+1.---.mr, r =

1,e0.,8 be a basis of VvV satisfyinag (1,19,6). Then the condition (1.20,11) implies

i . :
x“T s U, 1 7 Y, ee.,8r, 3% mr_1‘1,...,mr, ¥ = 1,ese,8=-1. We choose now the vectors

C s n
x!?7  in the following wav. The vectors w"....,x are picked up to satisfy in addition

a=1 1 -
P P VLA USSR nytSn, (ngt =00 if 5% = o




R R R T e ) e s et R

We claim that the vectors x'7 can be chosen in each stige to satisfy also

m (p=1)m pn!
s= 1" 1 ~1)1 1 1 1
T pU= [X  ,eee,% rooe, x(p ) seeesX ’ seee,X seeey,
Hm _+1) m 2(m +1) 2(m +n' )
(1.20.12) x Pk P oe2 P et
2 ! 1{m_ _ #n')
1 : X p ] .
: : Timp gt 1) s=p
1 N where 0 < né < np. (1f n; = 0 then x 7T U, Suppose we already proved
‘ f the claim for q = p~-1. Let
i
m (p=1)m pn!
t s 1 ~-1)1 1 1 1
T pU = (X ,e0asX ,...,x(p resesX R sene X seeey
' i{m +1) im 2(m +1) 2(
-2 1 -2 -2 -1
4 X reve,Z P . X P seee X P P Y seees¥ ] e

As in the proof of Theorem 1.19.1 we may assume that TyJ =0, 3=1,.e.,ts To finish the

proof we have to show that the vectors xij, i=1,ie0,p=r+1, j = mr_1+1,...,mr,

r=1,...,p=1, y’,...,yt are linearly independent. Suppose that these vectors are

[ : linearly dependent. Applying T to the vector in question and using the fact that x1j
. im, 1(mq+1) m 1

b ' are linearly independent we deduce that x11,...,x 1,x 1 seee X 2,...,x mp.l,

' y‘,...,yt have to be linearly independent. This is impossible since these vectors are

part of the basis vectors for TS Py, so t < np and we can choose vectors

THm 4+ Hm_y+n ) 1 t
x P yeee,x P P’ such that the first né vectors coincide with y',...,y%. The

equality (1.20.12) establishes the theorem.
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1.21 The equation AX - XB = 0.

Let A,B ¢ Mn(n). A possible way to determine whether A= B over Mn(D) is to

consider the matrix equation
(1.21.1) AX = XB =0 .,

Then A ~ B if and only if there exists a solution X such that |[X| is an invertible
element. If we consider X as a column vector X composed of n columns of X then the
equation (1.21.1) has a simple form in the tensor notation (e.g. Marcus-Minc [1964], see

also Problem 1.21.17)
t a
(1.21.2) (IeaaA-B @I)X=0 .
Thus is D is a Bezout domain then the set of all X M,(D) satisfying (1.21.1)
form a D-module with a basis x1,...,xv, (Theorem 1.11.12). So any matrix X which

satisfies (1.21.1) 1is of the form

)
X = x. X
i=1 1

, X, €D, i=1,..0,v .

i 71

Thus it is "left” to find whether a function

v
S0x seeex ) = | ) x, X

i=1 i

has an invertible value. In such a generality this is a difficult problem. A more modest
task is to find the value Vv and to determine if 6(x1,...,xv) vanish identically. For

that purpose it is enough to assume that D is actually a field F (for example the

guotient field of D). Also, we may replace F by a finite extension K in which the

characteristic polynomials of A and B split to linear factors. Finally, we are qoino

to study slightly more general case

e




P A Dt o g 6 5t s

Py
tee

be
T

i

i

ARy gy - - - -

Ac Mm(!), B e Mn(t), X e an(x) .
Let Y(x) and y(x) and J and K be the minimal polynomials and Jordan canonical

forms of A and B respectively.

l’ -l
W(x) - (x-l1) ...(x-)‘z) . Xi o Xj for | # j v
t x
P(x) = (x-u1) ...(x-uk) . My # uj for 1i¥ 3 ,
(1.21.3)
- % %Y
P AP=3= ] @ 3.9 = Il e (A Tm ) + Hm ), Smy Cooulmy =8,
i=1 $=1 i
» X Py
Q BQ =KX= 121 ex , K = 1 e (b Tn ) + Hng )y, 160, Cooulnyy =t
= j-] i
Let
v=p%0 .

Then the system (1.21.1) is equivalent to
JY -YK=0 ,

We partition Y conformally to the partitions of J and X as given in (1.21.3). So

9 Py
Y = "13" "13 € Hminj(‘,' m = 21 LI rZ‘ nyp 121,000, , §=1,000,8

Thus, the matrix equation for Y reduces to £k matrix equations

(1.21.4) Jiyij - vijxj

The following two lemms analyze the equations (1.21.4).

w0, 1= 1,000,8,9 = 1,000,k

Lemma 1.21.5. Consider a matrix equation 1.21.4 for some choice of 1< { < £ and

1<€3<ke If A oy, then Y;y=0.

b
Proof. Put

9

I o= UMy + 3,3 - 1 e H(m ),
r=1
Py

K, =y, I +X.X = J on .
j u’ (nj) j j !:1 (hir)
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Proof. As the last row of H{m) and the first column of H(n)

- -v
Note that Jiu= Kj =0 for wu? mi and v » nj. Then (1.21.4) becomes

Thus

2 - -
A - = = - - =
( N Hj) Yij Ji(X1 uj)Yij + (Xi uj)Yinj

= J (=T Y +Y K )+ (=3 +yY XK)K =
1( iij i3 j) ¢ iYij Yijxj) u
= (3%, + 2(~3Y, K, + ¥ K2
i’ 743 SRR S 1 B 5 b
Continuing this procedure we get
r, ¥ r -uY-r-u
(A, -u Yy, = t)t=3,) X .
17y Py uzo w TN gy
-u =r~u
Whence, for r = mi+nj either J1 or Kj is a zero matrix. Since Ai ¥ u, we deduce

that Yij = 0.

Lemma 1.21.6. Let 2 = (zuB) € an(r) satisfy the equation

(1.21.7) H(m)Z = Z H(n) .

Then the entries of 2 are of the form

zae =0 for B < a+n = min(m,n)
(1.21.8)

Z08 z(a+1)(8+1) for B » a+n = min{m,n)

In particular the subspace of all m x n matrices 2 satisfying (1.21.7) has the

———

dimension min(m,n).

are equal to zero row and

column respectively, in view of the equality (1.21.7) the last row of 2ZH(n) and the first

-aR-




column of H(m)? vanish. That is zm8 = 2“1 =0, R=1,,,0,n=1, 0% 2,.,0,mc TIn all
other cases hy ecquatina the (a,R) entries of H(m)7” and 7H(n) we qet z(a+1)ﬂ -
Z,(8=-1)" & = 1,e0e,m=1, B = 2,,,,,ns The above set of ecqualities implv the condition
(1.21.8),

Combine the two lemmas to obtain

Theorem 1.21.9, Consider the system of matrix ecuations (1.21.4). Then Viq = 0 4F

Ay ¥ My (L.e., J4 and x4 do not have a common eigenvalue), Assume that xj = uy.

Partition Yj4 conformally with the partition of J; and X4 Aas aiven in (1.21.3),

(uv) (uv)
Y,, = (Y ), ¥ EM (), u=1,,,0,0, , v=1,,,.,,56 .
i3 13 13 miuniv i 4

Then each Yi:V) is of the form prescribed in Lemma 1.21.f with m = My and n = ngo,

Assume that

(1.21.10) I N SRR LV TS VRN P I L PRPOL

Then the dimension of the linear subspace Man(K)  of matrices v = (V44), j
i

1=1,...,2, 3=1,...,k satisfving (1.21.,4) is given hv the formula

J
3
i
t 1Py
(1.21.11) aim ¥V = § ¥ min(m o0 )
i=1 v,v=1
Let us consider a special case of (1.21.1) ]
|
(1.21.12) AX = XAa=0 , Ace Mﬂ(D) .

In that case, a D-module of all matrijces X ¢ "n(n) satisfvinag (1.21.12%) ig in ®act a rina

(non-commutative in general) with an jdentitvy I. Denote

-f0-




(1.21.13) cam) = {xIx e M (D), AX = xa} .
In case that D is a field P or more generally when C(A)
to Theorem 1.11.12 this assumption holds if D is a Bezout domain) then according to

Theorem 1.21.9

U
dim C(A) = ] 7  min(m, ,miv) .
i=1 u,v=1 iu
9
{Clearly the dimension of C(A) is not changed if we let X ¢ Mn(x)). as {miu}1 is

decreasing sequence we have

y :
min(m, ,m, )} = um + m .
va1 iu’iv iu eyt iv
So

g Y
(1.21.14) dimc(ay = § ¥ (2u=t)m, .

i=1 u=1

Let 11(x),...,1n(x) be the invariant polynomials of xI-A.

deduce
n
(1.21.15) aim C(R) = uZ1 (2u-1) deg & .. .(x) .

With the help of the above formula we can determine when any commuting matrix with A

polynomial in A. Clearly, the dimension of the subsapce spanned by the powers of A

equal to the degree of the minimal polynomial of A.

Corollary 1.21.16. Let A« Mn(r)- Then each commuting matrix with A can be express

Use (1.19.15)=(1.19.16) to

is

is

ed

A

as a polynomial in if and only if the minimal and the characterisitc polynomials of

has a finite basis (accordinag
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B e T =

A are identical. That is, A is similar to a companion matrix C(p), where

p{x) = [xI-A|.
A matrix for which the minimal and the characteristic polynomial coincide is called

nonderogatory, otherwise derogatory.

Problems

(1.21.17) Let u : Hmn(b) + M (D), such that

(mn)1

a -

H(X) = X = (xj), j= 1,.00,mn, xj -, for j = (k-1)m + {

’

i=1,ee0,m k= 1,00,n .

Prove

(1.21.18) W(AX) = (I(n) @ A(X), u(xB) = (3° @ I(Mu(X), Ac M (D), B e M (D)

Here A ® B is the Kronecker product

(1.21.19)A 9 B = ('135) € H(mp)(nq)(n)' A= (aij) € an(b), B = (bkl) € Mpq(b) .

Prove

(1.21.20) (A1 ] A:)(B1 o Bz) = (A1B1) ] (A232)' Al € Mmini(b)' Bi € Hni 1(D).

i=1,2 .
(1.21.21) Let P ¢ %“(P), Qe Mn(P), R € an(P). Put

P R R
A=ty olr Bl QleM (m .

Assume that the characteristic polynomials of P and Q are coprime. Show that there

exists a matrix X = (Iém) :(n)) which satisfies (1.21.1). This in parcicular implies

A B.
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(1.21,22) Let A =

W1,

® Ai € Mn(P). Prove that

i=1

£
(1.21,23) dim C(A) » § dim C(A))
i=1

and the equality sign holds if and only if
(IxI-AiI, |xI-Aj|) =1 for 1 # 3, 1,3 = 1,00,

(1.21,24) Let A ¢ Mn(D). Show that the ring C(A) is a commutative ring if and only

if A satisfies the conditions of Corollary 1.21.16 where P is the quotient field of

(1.21,25) Let A€ Mn(b). Let Be C(A). Then B 1is an invertible element in the ring
C(A) 4if and only if B is a unimodular matrix.

{1.21.26) Let

(1.21.27) C(A,B) = {X|X € M (D), AX-XB = 0} Aem (D), Be M (D) .

Show that C{A,B) is a left (right) module of C(A) (C(B)) under the matrix
multiplications.

(1.21.,28) Let A,B ¢ Mn(b). Prove that A =~ B if and only if (i) C(A,B) is a C(A)-

module with a basis containing one element U; (ii) any element basis U is a unimodular

matrix.
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1.22 A criterion for similarity of two matrices.

Definition 1.22.1., let A ¢ Mm(b) and B¢ Mn(D). Denote by r(A,B) and V(A,B) the

rank and the nullify of the matrix I(n) @ A ~ Bt @ I(m) viewed as a matrix over M, (F)

where F is the quotient field of D.

According to Theorem 1.21.9 we have

t 9Py
V(A,B) = 121 5-1 min(m, 0 ),
(1.22.2) hald
t YPy
r(A,B) = mn - J ) min(m, ,n ) .
i=1 u,v=1

Theorem 1.22.3, Let A ¢ Mm(D), B¢ Mn(D). Then
V(A,B) < %[v(A,A) + v(B,B)) .

The equality sign holds if and only if m=n and A and B are similar over the

quotient field F.

Proof; wWithout loss of generality we may assume that D = F and the characteristic
polynomials of A and B splits in P[x]. For 'x,y € R consider the function min(x,y)
(the minimum of the values x and y). Clearly, min{(x,y) is a homogeneous concave
function on R2 min(ax,ay) = a min(x,y), a > 0, min(Egs, Z%!) > %[min(x,y) + min(u,v)] .

So
(1.22.4) min(a+d,c+d) > %[min(a,c) + min(b,d) + min(a,d) + min(b,c)] .

Moreover, a straightforward calculation shows that if a = ¢ and b = 4 the equality sign

holds if and only if a = b. Let

N = max{m,n), miu = njv =0, for 9y Cuc<N, p1 Cv<EN i=1,...,,%,

3= 1000,k .

g3
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Then

L,N K, N t,N
V(A,A) + V(B,B) = ) (2u=t)m, + ) (2u-tyn, > } (u=1)(m, +n ),
i,u=1 jou=1 i,u=1

and the equality sign holds if and only if £ = k = t. Next consider the inequality

t,N t N

- = ’
. z (2u 1)(miu + niu) 2 I min(miu + niu’ miv+ niv)
i,u=1 i=1 u,v=1

1 t

2 g Z min(miu,mi N
, EN v 9Py .

T2 1,§=1(2u-”(m1“ M CUN 121 u,wzr-l B Tt

+ + + mi
v) min(niu,n v) min(mi“,niv) mxn(ni“,m, )

e

) .

By looking at the terms where u = v from the equality case in (1.22.4) we deduce that the
equality sign in the above inequality holds if and only if My ™ Biyr U= 0o, N,

i=1,...,t. The above inequality is equivalent to

) EN e 40Py
3 ) (2u-1)(miu + niu) > ] i min(miu,niv) .
i,u=1 i=1 u,v=1

Combining all these results we obtain the inequality (1.22.3). The equality sign in
(1.22.3) holds if and only if A and B have the same Jordan canonical forms. That is

m=n and A is similar to B over F. o

' Suppose that A = B. That is (1.15.2) holds. Then the rules for the tensor products

(Problem 1.21.20) imply

- ——

tea-ter=-(0H 'anreaa-atenitern ,

-
e

(1.22.5)

-—

t

1ee-pter=(otecoiraan-atenteo .

That it is the three matrices

I




(1.22.6) 1ea-a*e1,70a-8%e1, 1eB-8%01

are similar. 1In particular these matrices are equivalent. Over a field P the above

matrices are equivalent if and only if they have the same nullity. Hence Theorem 1.22,3

yields.

Theorem 1.22.7. Let A,B ¢ Mn(r). Then A and B are similar if and only if the three

matrices in (1.22.6) are equivalent.
The obvious part of Theorem 1.22.7 extends trivially to any integral domain D.

Lemma 1.22.8. Let A,B ¢ Mn(D). If A and B are similar over D then the three

matrices in (1.22.6) are equivalent over D.

However, this condition is not sufficient for the similarity of A and B even in
case D = Z., (See Problem 1,22.16.) The disadvantage of the similarity criterion stated
in Theorem 1.22.7 is due to the appearance of the matrix I @ A - B® # 1 which depends
on A and B. It is interesting to note that the equivalence of just two matrices in
(1.22.6) does not imply the similarity of A and B, Indeed I @A - At ez -
I@(A+AI) = (A + XI)t @I for any A, but A is not similar to A + AI for A ¥ 0.
(Problem 1.22.17.) Also if A = H(n) and B =0 then V(A,A) = V(A,B) = n (Problem
1.22.,18). However, under certain assumptions the equality V(A,A) = V(A,B) implies that

A~ B.

Theorem 1.22.9, Let A ¢ Mn(C). Then there exists a neighborhood of A = (‘ij)

n
2 2
(1.22.10) D(Ap) = (BIB = (b)) € M (C), ) Ibyy=a, 1" <01, 0 <0
i,j=1

where p depends on A such that if
(1.22.11) V(A,B) = V(A,A), B € D(A,p) ,
then B is similar to A.

«05a

. e
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Proof. Let r bhe the rank of I @ A - A% @ I. So there exists indices

a = ((a11,a21),...,(a1r,a2r)), g = ((511'821)""’(811'32r)) c NxN,

N=1{1,000.,n}

t
‘ such that [(I @ A -A @ I)(alBll # 0. Also |(I @ A - At e ) I{yl8] =0 for
Y, 8 €@ . Here we identify the sets N x N and {1,...,n2}. First choose a
(r+1) ,n
positive p such that
; t
! (1.22.12) {12 A-B @ I){alB]] # 0, B € D(A,p) .

Next consider the system of r equations in variables LIPY) i,3,0¢4,n, out of n2

ki)

3
i equations of (1.21.11) (X = (xij)) which correspond to set a
{
3
. L3
i n
q (1.22.13) k§1(aikxkj S a0 i Tay ey us s
i
§ Let
|
% i (1.22.14) Xy = Oyy TOr (3) # (By LBy ), M= e,

. In view of (1,22.12) the system (1.22,13)-(1.22.14) has a unique solution for B € D(A,p).

l . Also X(A) = I. Using the continuity argument we deduce the existence of a small positive
!
f p such that |X(B)] # 0 for B € D(A,p). We choose such p. Let U be the set of
i(i matrices B which satisfy
; t
} ! (1.22.15) [t @ aA-B @ 1)[yl81l =0, r,6 €Q 5
; (r+1),n

I ~o6- ’




Thus V is an algebraic variety.

matrices of the form (1.,22.11),

We claim that UV n D(A,p) is exactly the set of

Indeed, let B ¢ V n D(A,p)e Then according to (1.22.15)

v(A,B) € ¥, On the other hand (1.22.12) implies that r(A,B) > r, These inequalities

yield (1.22.11). Assume that B

satisfies (1.22.11), So (1.22,15) holds. Whence

Be V nD(A,p). Finally, in view of (1.22.15) we deduce that for B e V n D(A,p) the

equalities (1.,22.13) imply AX(B) - X(B)B = 0.

As [X(B)] ¥ 0 we get that

Problems

A = B,

(1,22,16) Show that for A and B given in Problem 1.15.8 the three matrices in (1.22,.6)

are equivalent over Z however A and B are not similar over Z (see Problem 1.15.8).

(1.22.17) Show that for A € Mn(r), A=A+ Al if and only if A = 0. (Compare the

traces of A and A + AIL.)

(1.22.18) Show that if A = H(n)

and B =0 then V(A,A) = V(A,B) = n.

(1.22.19) Let A,B ¢ Mn(D). Assume that the three matrices in (1.22.6) are equivalent.

Let I be a maximal ideal in D.

Let P = D/I and we may view A,B as matrices over

P. Prove that A and B are similar over F. (Note that the matrices in (1.22.6) are

equivalent over F.)
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P e (1.23.4) tr(zc) = 0
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1.23 The equation AX - XB = C.

A related equation to (1.2%.1) is a non-homogeneous equation :

(1.23.1) A = XB=C, Ae M(P), Be M(F), Ce M (P
m n mn

which is written in the tensor notation as

Iy

(1.23.2) (I(n) @ A - Bt @I(m)X =C .

A necessary and sufficient condition for the solvability of (1.23.2) can be stated as
follows. Consider a homogeneous system whose coefficient is the transposed coefficient
matrix of (1.23.2) (see Problem 1.23.9)

N

(I(n) @ At -B@&Im)y=20 .

A -

Then (1.23,.2) is solvable if and only if any solution Y is orthogonal to C (e.g.

Problem 1.23.10). In matrix the above equality is equivalent to -

Aty - yet =0 .

IS N

' The orthogonality of Y and C 1is written as tr(¥tc) = 0 (see Problem 1.23.11).

Thus we proved

' Theorem 1.23.3. Let A ¢ Mm(F), B ¢ Mn(r). Then (1.23.1) is solvable if and only if
+

for all 7 ¢ M_(F) satisfying
— nm

(1.23.5)




Using Theorem 1.23.3 we can obtain a stronger version of Problem 1.21.22,

Theorem 1.23.6. Let G = (Gyy), G, €M (P, G, =0 for 3 <4, 1,3 = 1,00l

h) ninj i3
Then
2
(1.23.7) aim C(G) » | dim C(G,,) .

i=1

A E

0 B) « Consider a matrix T = (U x)

Proof. Consider first the cagse L = 2, lLet G = ( 0 v

vhich commutes with G. So
(1.23.9) AU = UA, BV = VB, AX ~ XB = UE - EV .,

According to Theorem 1.23.3 the matrices U € C(A) and V ¢ C(B) satisfy the last
equation of (1.23.8) if and only if ¢tr({Z(UE-EV)] for all Zz satisfying (1.23.5). Thus

the dimension of the subspace of pairs (U,V) satisfying (1.23.8) is at least
dim C(A) + dim C(B) - dim C(B,A) .

On the other hand if U = V = 0 then the dimension of the subspace of matrices X
satisfying (1.23.8) is dim C(A,B). The equality (1.21.11) implies dim C(A,B) =
dim C(B,A). Hence we established (1.23.7) for & = 2. The general case immediately

follows by induction on £.

We remark that contrary to the results given in Problem 1,21.22 the equality in
(1.23.7) may occur even if G, = ij for some 1 ¥ j. See Problem (1.23.12).
Problems
(1.23.9) Let A @ B be defined as in (1.21.19). Prove (A @ B)t = at @ 5%,

(1.23.10) Consider a system




+ o

» . -

Ax = b, Ace an(!), b e Mn1
Prove that the above system is solvable if and only if ytb = 0 where y is a solution of
the system Aty = 0. (Hint: Change varibles to obtain A in its diagonal form as in
Section 1.12).

(1.23.11) Let X,Y e M (D). Let u{X),u(Y) e M (D) be defined as in Problem

mn (mn)1

1.21.17. Prove that

O ) = eree®x

(1.23.12) Assume in Theorem 1.23.6 & = 2, Gyqy = Gyp = 0, Gyp = I. Show that in this case

the equality sign holds in (1,23.7).

i

eigenvalue. Assume that A = A, ® A,. Let C = (Cij), X = (xij), Cij'xij € "“1“j(r"

(1.23.13) Let A, € Mn (P), i = 1,2 and suppose that A1 and A2 do not have a common
i

i,j = 1,2. Using Problem 1.21.22 prove that the equation AX - XA = C is solvable if and

only if the equations Aixii - xiiai = Cyyi i=1,2,
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Theorem 1,24.1. lLet A ¢ Mn(r) be a nilpotent matrix. Put

1.28 A case of two nilpotent matrices.

The following result is needed later.

X, = {xlx e L A% = 0), X 0,100, .
Agsume that

o-xO;x1;x2;...;xp-r" .

Suppose that B ¢ Mn(r) satisfies

(1.24.1) BX;4q € X34 1= 0,000,p=1 .
Then
(1.24.3) v{A,A) € v{(B,B) .,

The equality sign holds if and only if B is similar to A.

Proof. We prove the lemma by induction on p. For p = 1 the theorem is trivial since
A =B = 0. Suppose that the lemma holds for p = q - 1 and we prove it for p = q. A,
and B, Dbe the restrictions of A and B to xq_1. Agsume that A,,A and B,,B have

the following Jordan canonical formsg
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Pilap = O eumn, pTaP« T enm)
i=1 : i=1 .
1 V' -1 v
0, B0, = e H(ni), @ BQ = T e H(n.)
i=1 i=1
(1.24.4) u. v
Y 2 m'Je.. ’ [ L T [ < (- . -
mi> mir...omi, 2 1, Ay > nid.ony, <1, I m= [ n}=aim Xy
i=1 i=1
u v
> ceedm > 1 > n_d...on > = = = .
m1 mz) mu ' n1 n2 nv 1, 121 mi 121 n1 dim xq n

Clearly the Jordan canonical form of A, and A is determined completely by the

dimensions of the subspaces X ,.¢.,X . Indeed, put

q-1

wi = dim xi, ei = W1+1 - vy i=0,1,.0.

Then ei_1 - Si is the number of the Jordan blocks of order i in the Jordan canonical

form of A and Aqe So

(1.24.5) u = p°', m; =m -1, i= 1,.-.,6q-1, m =m for i > 6

i i i q=-1'
eq_1 = n = dim xq_, .
Formula {(1.21.14) yields
8
u u' q-1 2
(1.24.6)  V(A,A) = ) (2u=1)m_= J (2u=1)m’ + § (2u=1) = V(A',A') + 8 .
u u a=1
u=1 u=1 u=1 !

According to Theorem 1.20.10 we have the following relations between the Jordan canonical

form of B and B'




T —

—_—

o

s ng—

-

v > V', ni +1%n >n!,i=1,.,.6,v', n

N o ;- 1, i = v=v'+1,.44,v (if Vv > V'),

So

v v - 2
(1.24.7) v(B,B) = 2 (2\1-1)n1 > z (2u-1)n1 + ? (2u=-1) = v(B',B') + Sq_

i=1 im1 u=1 !

and the equality sign holds if and only if n1 = ni + 1, i= 1,...,9q_1. Combine (1.24.6)

with (1.24.7) to deduce (1.24.3) by induction. Suppose that the equality sign holds in

(1.24.3)., Since

VIAL,A) = V(BT,BY), my = ap 4, L= 16

i 1

The induction assumptions imply that A' * B'. Use (1.24.5) and the above equalities to

get A =B,




Proof. For any ¢ we have the Taylor expansion ¢ (x) = Z

Theorem 1.25.3. Let A € Mn(c)- Assume that Jordan canonical form of A is given by

1.25 Components of a matrix and functions of matrices.

From this section and through the end of this chapter we shall assume that all the

o~
matrices are complex valued unless otherwise stated. Let ¢{(x) be a polynomial
(v{x) € C[x})). Th2 following relations are easily established:
3
-1 -1
¥(B) = PY(A)P , B = PAP , A,B,P € MI‘I(C) [
(1.25.1) . - -
V(A ® A)) = v(A) ®@v(A), Ac Mnl(C), i=1,2 .
It often pays to know the explicit formula for ¢ (R) in terms of the Jordan canonical form
of A. In view of (1.25.1) it is enough to consider the case where J is composed of one
Jordan block.
Lemma 1.25.2. let J = XOI + H e Mn(c). Tien for any ¥ € C{x] we have
=1 w(k)(xo) . -
o3 = o H .
k=0

ALY

[4
. k=0 k!
N = max(deg v ,n). As H =0 for & »n from the above equality we deduce the lemma.

k
( x‘xo) v

0

Using Jordan canonical form of A we obtain

(1.19.,11). Then for ¢(x) € C[x] we have

¢ % "yt Mo -
{1.25.4) em)y=p{ ] | e } o H o (m 01T,
i=1 §=1 =0 3
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Definition 1.25.5. Let the assumptiong of Theorem 1.25.3 prevail. Then Ziy = zik(A)

called the (i,k) component of A and is given by

q
i
k -1
20 p{ce...00( 21 eH (mijnoo...oo}p ck=0,0.0,81, 8 =,
(1.25.6) 3

i= 1,000,0 o

Compare (1.25.4) with (1.25.6) to deduce

2 %7 w"’(xi)
(1.25,7) s(A) = J ) —_—, .
i=1 =0 3 3

Definition 1.25.8. Let § c C be.an open set such that ¢(A) c 2, where A€ Hn(C).

Then for ¢ € H(l) define v(A) by the equality (1.25.7).
Using (1.25.6) it is casy to verify that the components of A satisfy

1.25,
(1:25:9) 5 @ fmt,0iusl, 3= 0,000,8

13 -1, are lineariy independent ,

i

= ™ = + > =
zijzus 0 if/ i=a, zijzik 0 if j k s, zijzik zi(k+j)'
P for j+k < 8 -1 ,
-1
A=P() M2 2, 0P

i=1 i1

Consider the component 21(31_1) The relations (1.25.9) imply

\

(1.25.10) 2 A=)

AZ = Zz .
1(si-1) 1(81-1) i 1(81-1)

Thus the columns of 21(51-1) and zti(si-1) are the eigenvectors of A and at

respectively. Clearly, 21(51_1) ¥ 0. More precisely we have
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Lemma 1.25,11. Let A ¢ Mn(c). Suppose that Ai is an eigenvalue of A. Let X be the

generalized eigenspace of A corresponding to Xi

-5
(1.25.12) x, = {xlx e ., ([ 1-R) x=0} .
Then
s, =1
(1.25.13) r(zi(si_1)) = dim{(A,I-A) X0 .

Proof. It is enough to assume that A is in its Jordan form. Then Xy 1is the subspace

-1 % L 9
of all x = (x1,...,xn)t where the first I Z muj and the last 2 E m
o=t =1 a=i+l §=1 3
51-1
vanish. So (AiI-A) X contains only those eigenvectors which correspond to Jordan

blocks of the length Sy Obviously, the rank Z‘(si_1) is exactly the number of such

blocks.
C

Definition 1.15,.14. Let A € Mn(c). Then _the spectral radius of A - p(A) - is defined

(1.25.15) p(Aa) = max |A] .
Aea(a)

The peripherial spectrum of A = op(A) - is the set of all eigenvalues {X1,...,Xm) (each

one appearing according to its multiplicity) which are on the spectral circle (x| = p{(Rn).

The district peripherial spectrum of A - cdp(A) - is given

(1.25.16) odp(n) = od(A) n op(A) .

The index A - index (A) is defined by
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(1.25.17) index (A) = max index (1) .
Aeo (A)
° p
Problems

(1.25.18) lLet A ¢ nn(c), Y(x) € C{x] be the minimal polynomial of A. Assume that 0
is an open set in C such that o(A) ¢ . Let ¢ € H(R). Then the values

(1.25.19) w(k)(X). k=0,1,..., index (A) = 1, XA € ad(A)

are called the values of ¢ on the spectrum of A (d(A)). Two functions, v,0 are said

to be coinciding on o(A) if they have the same values on O(A). Assume that ¢ ¢ C[x)

and let

v(x) = w(x)P(x) + 6(x), deg 6 < deg ¥ .

Prove that 6(x) coincides with ¢(x) on 0o(A). Let

2 i a
(x) 9 i
%TET = wix) + E%i% = w(x) + Z ) —4 e index (Ai), i=1,..,8 ,

i=1 §=1 (x-xi)j

where Y(x) 1is given by (1.18.,20). Show that a, ., j = 8y, '1'1"""1°P' are determined

13
(3

recursively by ¢ (Ai), 3 = 0,s00,Pe (Multiply the above equality by Y(x) and evaluate

this identity and its derivatives at Ai.) Thus for any v € H() define 6(x) by the

. equality

b

. 8

¢ L i a

§ (1.25.20) 8(x) = v(x) J I ——‘J—j .
1=1 3=1 (x=2))

The polynomial 6(x) is called the Lagrange-Sylvester (L-S) interpolation polynomial

of ¢ (corresponding to y). Prove that
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(1.25.21) v (A) = 8(n) . -

Let ej(x) be L-S polynomials of wj € H(?), 3j = 1,2, Show that 91(x)92(x) coincides

with L~S polynomial of ¢1(x)w2(x) on o{(A). Use this fact to prove the identity
{1.25.22) ¢1(A)¢2(A) = 9(a), vV (x) = ¢1(x)¢2(x) .
(1.25.23) Prove (1.25.22) by using the definition (1.25.7) and the relations (1.25.9).

(1.25.24) Let the assumptions f Problem 1.25.18 prevail. Assume that a sequence

Y n € H(R), converges to v € H({l). That is ¥ m(x), m=1,2,..., converge uniformly

to ¢(x) on any compact set of (. This in particular implies

ume Ny Ay
m

moo

YAy, 4= 0,10eee, A eR

Use the definition (1.25.7) to show

1
E¥
i
| (1.25.25) lim ¢ (A) = ¢(A) . {
{ ' m+e ™
; !
} l Apply this result to prove
1
i
I
. ® m N m
! (1.25.26) e I A un [ Ay
l ; m=0 " N+© m=0
!
X e
A
f [ ® m
-1 T A
! ’ (1.25.27) (AI-A) = . for [l > ot(A) .
: m+1
{ m=0 X\
i '
i
1 *,
|
!
1
i
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1.26 Cesaro convergence of matrices

Let

(1.26.1) Ak = (aig)) € an(C), k=0,1,2,000

be a sequence of matrices. The p-th Cesaro sequence is defined as

k
. = (alX/P) _ -
(1.26.2) Ao = Ar A p = (g jzo Ay ot/ Uk = 01,000,

Definition 1.26.3. A sequence {Ak} is said to be convergent to A = (‘13) it

(k) .
lim aij = aij' i=1,0e,m j=1,.00,n, = lim Ak = A .

Koo k+o

A_sequence {Ak} is said to be p(»0) - Cesaro convergent to A

lim A = A
ke KeP

and exactly p(>1) - Cesaro convergent if in addition to the above equality the sequence

Ak,p-1' k =0,%1,.., is not convergent,
It is a standard fact {(e.g. Hardy [1949)) that if {Ak} is p=Cesaro convergent then
{Ak} is (p+1) - Cesaro convergent. A standard example of exactly 1 - Cesaro convergence
sequence is (Ak}, fAf = 1, A ¥ 1. More precisely we have (e.g. Hardy [1949] or Problem
1.26.11).

Lemma 1.26,4. Let |JA] = 1, A ¥ 1. Then the sequence (951)Ak, k=0,1,..., is exactly

m— . e :
s - r - . o~
o AN i B . e - it <o o e

. p-Cesaro convergent to zero for p 2 1.

We now show how to recover the component z“ -1 for 0 ¥ Aa € cp(A) by using the

T me——

(su

t : * notion of Cesaro convergence.




Theorem 1.26.5.

Let A€ Mn(C)' Assume that p(A) > 0 and Au € op(A).

k s -1
{1.26.6) A = (s -1t D AIA 1% k% , s = index (A ) .
k a [+3 a a @

Then
|

(1.26.7) lim = 2 , p = index (A) - index (X ) + 1 .

Kk+oo Ak,p a(su-1) a

| The sequence A, 1is exactly p-Cesaro convergent unless cdp(A) =} or

index (A) < index (xu) for any X ¢ ap(A). A # Az .

In that case the sequence {Ak} converges to za(s R
a

Proof.

It is enought to consider the case where Aa = p(A) = 1,

(1.25.7) we get

: g 8t
: (1.26.8) A= 1T Bk
' i=1 3=0 J 3
< j
tz , So
: A
b
; <o
i ! s, ~1 -
: . =§ 1 st K(k=1)ege (kejs1) k=3,
{ : = Loe s ~1 31 1 %4y 0
| i=1 370 %a
i

- —-“"‘é-f—" ~_

Since the components zij' = 1,000,8, § =

1,...,51 -1,
(s =1)1 .
3 NEWES

enough to analyze the sequence mr 3 i

K = 3,9%1, 000

) ®a
k

Put

By letting ¥(x) = x

Clearly for

k.
in

are linearly independent it is

Tal ¢
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and any j or for |A|l =1 and j ¢ sa-1 this sequence converges to zero. For
Ai =1 and j = 'a-1 the above sequence converges to 1. For
|xi| =1, Xi ¥1 and j > sa-1 the given sequence is exactly j - s, + 2 Cesaro
convergent to zero in view of Lemma 1.26.4. These arguments establish the theorem.
0
Corollary 1.26.9. Let the assumptions of Theorem 1.26.5 hold., Then
¥ -1 X, 8-1
(1.26.10) lim [ z (s=-1)! (p (AA) /k 1/(N+1) = Z, 8 = index (A)
N+® k=0
where 2 = 0 unless A1 = p(A) ¢ o(A) and index (A1) = index (A) in which case Z =
Zy(s-1)*
Problems
(1.26.11) Let Al = 1, A ¥ 1 be fixed. Using the formula
k=1 3 Ak-1
I V=55
j=0
, prove by differentiating the above equality r times
t
b d

-

« — .
s %

k=1 r-1 k
I And el aen FRN e 0t 2l koo
=0 L=0 (A=1)

where a(X,r,8) are some fixed non-zero functions. Use the induction on r to prove

Lemma 1,26.4.

(1.26.12) Let ¢(x) be a normalized polynomial of degree p-1. Prove that the sequence

(W(k)xk}, IAl = 1, A # 1, is exactly p-Cesaro convergent.
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(1.26.13) Let A ¢ Mn(C). Put

(1.26.14) z, (n) = (21D
ij uv

Y, M,V = 1,000,n, A, € 0.(A), j = 0,e0s,index (A,) = 1 .
i d i

Denote
. _ ..ot . _

' (1.26.15) index uv“‘i) =1 + max{j : Z #0, 3=0,.0.,index (X)) 1} , where
! . B . (i) _ . .

index (A,) =0 if =z =0, j=0,vee,index (A,) - 1 .
4 uv i [1\Y) i
; (1.26.16) pw(A) = max{lxil : mdexw(xi) > 0} where pw(A) = -0 jif
{ index (A.) = 0 for all X, € oO(A).

[ TRV § i

(1.26.17)

be stated in a local form. That is for 1 < p,v € n assume that

k _ (a(k)

given by (1.26.6) and A, p by (1.26.2). Prove

(a(sa-1))
(1.26.7)"' lim a

= 2z
‘ Kre uv,kp uv

1.26.9 coincide.

Here 1ndexuv(A) =0 if puv(A) = =0, The quantities indexuv(xi),

1ndexuv(A) = max{xndexuv(xi) : 1ndexuv(xi) > 0, IAiI = puv(A)} .
indexuv(A), ouv(A) are called the (u,v) index of Xi, the (u,v) index of A and the
(u,v) spectral radius of A respectively. Or shortly the local indices of Xi and A

and the local spectral radius of A. Show that Theorem 1.26.5 and Corollary 1.16.9 could

= = i ‘ = = =
IXGI puv(A)' sS4 1ndexub Xq), A v ), A (auv,k)' Ak,p (auv.kp) where A, is

, P = xndexuv(A) - indexuv(ka) + 1,

N
B -1 -9
. (1.26.10)" lim{ ] (s=1)1 [puv(A)]kauv SET e = 2
l | N+ k=0 !
: 5 = indexuv(A). Duv(h) >0 ,
|
‘G
t) - _ . - i ,
' }f where zuv 0 unless X1 puv(A) e dg(A) and 1ndexuv(k1) 1ndexuu(n) in which case
Y 1(s=1) , . . - -
i zuv = zuv . Finally A 1is called irreducible if puv(A) p(A) for wu,v T,00e¢s0e
1

Thus for irreduvcible A the local and the global versions of Theorem 1.26.5 and Corollary
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t.27 An iteratijon process

Consider an iteration given by i
(1.27.1) xI* = axd e b, 1 =0,1,...
where A € Mn(C), xi,b € Mni(C)' Such an iteration can be used to solve a system
(1.27.2) X =Ax +b .
i Also, the iteration (1.27.1) appears naturally in certain physical instances where a given

physical system evolves discretely in time according to (1.27.1) (e.g. Berman-Plemmons

fayde

[1979]). Assume that x is the only solution of (1.27.2) and put y x. Then

i

(1.27.3) vt =yt 1= 0,1,2,...

We would like to know under what conditions 1lim yi = 0, regardless of the initial
4o
(1)

condition yo. This is equivalent to the statement that x converges to x for any

initial condition x(O). In some other instances the evolusion of a certain physical
system is given by (1.27.3). 1In that case it is important to know whether the system would

not blow up. That is there exists a constant M(yo) (depanding on yo) such that
' i 0

(1.27.4) By 8 S My ), 4= 0,100 o

Here for B € an(c) we define the norm of B - iBl - as

n

{1.27.5) "Bl = max b, .1, B = (b
? 1€i¢m  §=1 3 3
. ‘ Definition 1.27.6. The system (1.27.3) is called stable if the sequence yi, i=

0,1,..., converges to zero for all choices of yo. The system (1.27.3) is called bounded

YeM (C .
mn

—

; if the sequence yi, i=0,1,..., is bounded for all choices of y°' i.e. (1.27.4) holds. |

Clearly, the solution to (1.27.3) is

gyt = aly?, s =0,1,..., ,

so (1.27.3) is stable if and only if
i

-
RN -~ S

(1.27.7) lim A~ = 0
and (1.27.3) is bounded if and only if 1
(1.27.8) IlAiH <M, i=0,140e,

for some positive number M.

————

H Theorem 1.27.9 Let A ¢ Mn(c). Then the powers Ai, i=20,1,..., converge to gero matrix

if and only if

V. e
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(1.27.10) p(A) <

These powers are bounded if and only if

(1.27.11) p(A) € 1, and index (A) = 1 if p(A) =1

Proof. Consider the formula (1.26.8). Since all the components of A are linearly

independent (1.27.7) is equivalent to

IR N i = -
lim (j)Xi =0, Ai € cd(A), j=0,1¢ee, index (Xi) 1

K+

Of course, the above conditions are equivalent to {(1.27.10). The condition (1.27.8) is

:'J, kK =0,1,..., is bounded. This

equivalent to the statement that the sequence (;)X
immediately yields that p(A) < 1. If p(R) < 1 then (1.27.7) holds which implies
(1.27.8). Suppose that p(A) = 1 and let Ai € op(A), i.e. IXiI = 1. Then the sequence

(g)xﬁ'j is bounded if and only if j = 0. That is we must have index (Ai) = 1, This

establishes (1.27.11).

Problems

(1.27.12) Let A ¢ Mn(c) and yY(x) the minimal polynomial of A is given by

(1.18.20). Verify

At
-1 i
At £ si tJe i
(1.27.13) ) z .
5 s j! i]
i=t =0
Use (1.25.9) or (1.25.26) to prove
d At At At
(1.27.14) Ty (e ) = Re = e A .
t
Prove that the system
dx
(1.27.15) at = Ax, x(t) € Mn1(c)
has a solution
-114-
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4
A(t-to)
» (1.27.16) x(t) = & x(e,) .
0
The system (1.27.15) is called stable if lim x(t) = 0 for any solution (1.27.16)., The
(2]
system (1.27.15) is called bounded if any solution (1.27.16) satisfies
Ix(t)l <M, t> ton M= M(x(to)) .
Prove that (1.27.15) is stable if and only if
! (1.27.17) Re{i} < 0 for X e o(A) .,
and (1.,27.15) is bounded if and only if
] (1.27.18) Re{A} < 0, index (A) = 1 1if Re{A} =0 .

—
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1.28 The Cauchy formula for functions of matrices.

Let A € Mn(C)' ve H(Q), where { is an open domain in €. Here we do not assume
that 2 is connected. If o(A) < € then it is possible to define ¥(A) by (1.25.7). It
is possible to give an integral formula for (A) by using the Cauchy integration formula
for v(A). The resulting expressior. is simply looking and very useful in theoretical
studies of v¢(A}. Moreover, this formula remains valid for bounded operators in Banach
spaces {(e.g. Kato [1970)). To do so we consider the function v¢(x,\) = (x-x)". The
domain of the analycity of ¢(x,)\) is the whole complex plane € punctured at A. Thus

if X ¢ o(Aa) according to (1.25.7)

L si-1
(1.28.1) o-mTt = § T aapTHtg
1=1 j=0 3

Definition 1.28.2. The function (J\I-A).1 is called the resolvent of 2 and is denoted

by

(1.28.3) ROMLA) = (A1-n)

Let T = {F1,...,Fk} be a set of disjoint simply connected rectifiable curves such that
I' forms a boundary JD of an open domain where

(1.28.4) puvTlcQ, ' =23D .

For ¢ € H(R) the classical Cauchy integration formula states (e.g. Rudin [1974))

(1.28.5) v = [ = Nxdax, vep .

2
2ni r

By differentiating the above equality j times we get

(4 .
(1.28.6) £ )T pxgax, A e .
3! 2ni r

We now are ready to state the Cauchy integration formula for ¢(A).

Theorem 1.28.,7, Let 1 be an open domain in the complex plane, Assume that

r = (F1,...,Fy} be a set of disjoint simple connected rectifiable curves such that T
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is a boundary of an open domain D, and T UuDc Q. Let A€t Hn(C) and agssume that

o(a) < D. Then for any v(x) analytic in & we have

1
(1.28.8) C(R) = o fr R(x, A} (x)dx .

Proof. Insert the expression (1.28.1) into the above integral to get

s, ~1

L
s [ R0 = § ] g [ e " ez
r r

k=1 3=0 k3

Now use the identity (1.28.6) to deduce

e 5% Pan
[ ROx,B)o(x)ax = § ] 3t L3 ]
r k=1 3=0

S
2ni

The definition (1.25.7) of ¢(A) yields the equality (1.28.8).

We illustrate the usefulness of Cauchy integral formula (1.28.8) by two examples.
Theorem 1.28.9. Let A ¢ Mn(C) and assume that Ap € o(A). Let
(1.28.10) Ap eD, AgDuTl for X e o(A), A ¢ Ap B

where D is an open domain in € and T satisfies the assumptions of Theorem 1.28.7.

Then the p,q component of A is given by

(1.28.11) Z_ (A) = !

—_ - 13!
pa i fr R(x,A)(x Xp) ax .

-117-




Proof. As in the proof of Theorem 1.28,7

-1 -
1 [ q-1 i s’ﬁ 1 (x-3 )37
= R{x,A){(x~X ) a = , ) Iz ax)z, . .
2ni r P k=1 §=0 2nji r (x-Xk)J kj
(x=a )37 (x-2 1%
Suppose that Ak # Ap. Then ‘-__IL_T- is analytic in T v D c Q2. Put ¢ (x) = . -

-2 )3 -k
(x=1) (x=3,)

and use (1.28.5) to deduce that the corresponding

integral which appears in the above equality vanishes. The same result applies for

A= Xp and j < g-1. For j ? gtl, put ¢(x) = 1 then

k
(2 )8! (%)

2 3 = A ) j-q+1. Apply (1.28.6) to deduce also that the corresponding intearal
(x=X ) P

with tﬂls term is equal to zero. Hence

_l_ _ -q+1 - 1 dax -
2n4 fr R(x,A)(x Ap) ax = (53 II‘ x-Ap]zpq Zpq

O
Our next example generalize the first part of Theorem 1.27.9 to a compact set of

! matrices.

l Definition 1.28.12, A set A < Mn(C) is called stable if
(1.28.13) lim sup ﬁAkﬁ =0 .

i k*>® AcA

Theorem 1.28,14. Let A ¢ M, (C) be a compact set. Then A is stable if and only if

p(A) < 1 for any A e A.

-

To prove the theorem we need a well known result on the roots of normalized

polynomials in C[x] (e.g. Ostrowski (1966]).

o e el
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Lemma 1.28.15.

Consider a normalized polynomial

m

p(x) =+ ] &y
i=1

functions of its m coefficients. That is for a given € > 0 theres exists §(e)

depending on a,,000,a,, such that if lbi-.il < §(¢e),

xm-1 € Cix]. _Then the zeros E1'°'°'£m of p(x) are continuous

m
i=1,...,m it is possible to enumerate the gzeros of q(x) = "+ 7 blx“‘-1
i=1

Nyeesssn s where In1 - Ei' <€, i=1,...,me In particular the function

by

(1.28.16) p(p) = max lEiI
1€<4i<m

is a continuous function of L PYTETNY W

A mm—

Corollary 1.28.17. For A ¢ Mn(c) the function p(A) 4is a continuous function of A.

That is, for a given ¢ > 0 there exists &(c,A) > 0 such that

Io(B) = p(A)| < € for IB=Al < §(e,A) .

Prggt of Theorem 1.28.14. Suppose that (1.28,.13) holds. Then by Theorem 1.27.9 p(A) < 1

for all A ¢ . Assume now that A is compact and

p(A) < 1 for A e A. According to Corollary 1.28.17

* »
p=max p(A) = p(A ) ¢ 1, A ¢ A
ReA

Recall that (xI-A)~' = (p,.(x)/IxXI-A|) where p,.(x) are the (i,i) cofactors of the
i3 i3
matrix (xI-A). So

lixz-at] = 1mex=r )1 > hxl = 0AN™ > Cixl = 0", for x| > 5 .
Xieo(A)

tet p < p' < 1. Then the above inequality and the expression of

(xI-A)'1 in terms of its cofactors imply that u(xI-A)-‘I <K, Ix| =p°*,

since A 1is a bounded set. Apply (1.28.8) to get

(1.28.18) P (x1-0) 'xPax .

2ni
Ix|=p*




. gpm i B S = A o 4 b ke A

Combine this equality and the estimate H(xI-A)-1)I ¢ K to get HAPI < K(p‘)p+1.

=
As p' < 1 we obtain (1.28.13).

A generalization of the second part of Theorem 1.27.9 to compact sets A € M, (C) is a
far more complicated result and will be stated in the next chapter.

ﬁ Problems

(1.28,19) let A € Mn(c). Using (1.28.1) deduce that

S,
(1.28.20) Lim (x-3,) *(x1-A) T oi=1,000,0

2, =
187D e,
1

Put R(x,A) = (ruv(x)). Using the definitions of Problem (1.26.13) show

i(s=1) _ s _
{(1.28.21) L = xiim (x Ai) ruv(X)’ s = indexuv(ki) >0 .
i

(1.28.22) A set A < Mn(c) is called exponentially stable if

At

(1.28.23) lim sup e I =0 .
g T+ £>T,AcA . !
2
}
1 .
i 3 Prove that a compact A is exponentially stable if and only if Re{A} < 0, A € o(A) for

any A.
” (1.28.24) A matrix B € Mn(c) is called projection (idempotent) if
R i % 82 = B, Let [ be a set of simply connected rectifiable curves such that
B

' I' form a boundry 9D of an open domain D. Let A € Mn(c) and assume that

“' I no{h) =@ Put
1

1 1
(1.28.25) P (A) = 5= er(x,A)dx, A(D) = 7= rR(x.Mx ax, o (A) = o(A)n D .
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i Show that PD(A) is a projection. PD(A) is called the projection of A on D and
A(D) 1is called the restriction of A to D. Prove

(1.28,26) PR = ] Z,¢ AD) = I oz, +2.) .

AieoD(A) XieoD(A)

Show that the rank of Po(A) is equal to the number of eigenvalues in D counted with

i their multiplicities. Prove that there exists a neighborhood of A such that Py(B)

and B(D) are analytic functions in B in this neighborhood. In particular, if D

satisfies the assumptions of Theorem 1,28.9 then PD(A) is called the projection of A on
Ap. According to
(1.28.26) Pp(A) = zpo.

(1.28.7) Let B = Q)AQ'1 € Mn(c). Assume that D satisfies the assumptions of Problem

1.28.24. Prove that P(B) = QP (A)Q” .

bt g e o3 iy

(1.28,28) Let A ¢ Mn(c) and agsume that the minimal polynomial ¢(x) of A is given by
(1.18,20). Let

c = v,e...00

L
! where each Up is an invariant subspace of A, i.e. Aup < Up, such that the minimal
8
polynomial of the restriction of A to Up is (x-kp) P, prove that
(1.28,29) U, = 2" .

(It is enough to consider the case when A 1is in Jordan canonical form.)
(1.28.30) Let D, i=1,+44,k satisfy the assumptions of Problem (1.28,4). Assume that

D, D =96, for i# j, 4,3 = 1,00s,k. Prove that P, (a1 a . (A)C" = [0) for

i 3 i Dj

i # j. Assume furthermore that D, n o(A) ¥ ¢, i=1,..4,k, O(A)c U D,. Let

o 1ot (1) . o (1) (1) (x)
Poi“”‘-'“ lyy “reeenyp 3o A=Ven ke X o=ty T hees,y) aeeey, ) € M (€. Show that

w———
.

i i i 3
-1 k
(1.28,31) X" A= ] @ B, 0(B) =D, 0GR, 1= 1,00k o
) i=1

(1.28,32) Let A ¢ Mn(C) and Ap e o(A), Prove that
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4 = M(A=A.1) (A _=X.) s, = index (X))
po p /OpmAy) T8y it .
A.e0 _(R),A.#)
j 4 3# P
if index (Ap) = 1. (Use the Jordan canonical form of A.)
\
‘) 1
i
3

}
i '
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1.29 A canonical form over HA

Consider the space M (C). Clearly M, (C) can be identified with an. As in Example
1.1.13 denote by Hy the set of analytic functions €£(B) where B ranges over the
neighborhood D(A,p) of the form (1.22.,10) (p = p(f) > 0). Thus the B = ‘bij) is an
element in Mn(HA)‘ Let Ce¢ Mn(HA) and agssume that C = C(B) is similar to B over
Hpe Then

(1.29.1) c(B) = x"V(B)BX(B) |,

where X(B) ¢ Mn(HA) and [|X(A)| ¥ 0. Our problem is to find a "simple" form for C(B)
(simpler than B itself!). Let MA denote the quotient field of H, - i.e., the set of
meromorphic functions in the neighborhood of A. Thus if we let X € Mn(MA) then we may
take C(B) to be R(B) - the rational canonical form of B (1.16.6). According to
Theorem 1.16.11 R(B) ¢ Mn(HA)' However B and R(B) are not similar over H, in
general and we shall give the necessary and sufficient conditions for B = R(B). Thus,

if C(B) = (cij(B))' we may ask how many independent variables are amont the functions
cij(a), i,3 = 1,see,n. For X(B) = I the number of independent variables in C(B) = B is
obviously nz. Therefore it is reasonable to define C(B) to be simpler then B if

C(B) contains less independent variables than B. Given C(B) we can view C(B) as a

map
(1.29.2) C(B) : D(A,p) * M"(C) ‘
where D(A,p) is given by (1.22.10), for some p > 0. It is a well known result (e.qg.

(Gunning=-Rossi [1965)) that the number of independent variables in C(B) is equal to the

rank of the Jacobian of JC(B) of C(B)
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3
(1.29.3) JC(B) = 'ab_” pic(B)) ’ i,3 = 1,.su,n € an(HA) .

where u 1is the map given by (1.21.17).

Definition 1.29.4. Let r{(JC) be the rank of the Jacobian JC(B), i.e. the number of

3C(B
linearly independent matrices in the set sgi—l. i,j = 1,...,n, over the field M,
ij
Let r(JC(A)) Lle the rank of the Jacobian JC(AR), i.e. the number of linearly independent
matrices in the set %%Lﬁl, i,j,;eee,n, over C.
ij

Lemma 1.29.5. Let C(B) be a similar to B over Hp. Then

(1.29.6) r(JC(A)) 3> V(A,A) .

Proof. Differentiating the relation x“(a)x(a) = 1 with respect to bij we get

(1.29.7)

(1.29.8) E..L = (§, 6j

ij ia ) e an(C), i=10ee,m, §=1¢0,n ,

B8

é;
1

'y




T
[T N, R et TN | < o
Clearly, Apij - PijA is in range (A) where
“ t
(1.29.9) A= (I @A-xA R1I): Mn(C) hd Mn(C) .

Accordiag to Definition 1.22.1
dim range (3) = r(A,A) .
Let

(1.29,10) M (C) = range (A) @ (Tyrneey 1 .

rV(A,A)

As Eij' i,j,e04,7 is basis in Mn(c)

T o
r = ¢ o ,p=1,0.va,0 .
PS5 1313
Therefore
T (p)dcn) | -t .
T = s =X A + T € A .
p 1,1]7=1 1] abij ( )[QP P]' QP range (A)

According to (1.29.10) T',...,T are linearly independent. That is the inequality

v(A,a)
(1.29.6) holds.

Clearly the rank of the Jacobian JC(B) 1is at least the rank of JC(A) so according
to Lemma (1.29.6) C{(B) has to contain at least V(A,A) independent variables. 1In fact
this number can be achieved.

Theorem 1.29.11. Let A ¢ Mn(C) and assume that r1,...,rv(l'h) be any V(A,A) matrices

satisfying (1.,29.,10). Then for any non-singular matrix P ¢ Mn(c) it is possible to find

X(B) € Mn(HA), |X(0)| # 0, such that
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-1 V(A,R) -1
(1.29.12) X (B)BX(B) = P AP + L, £ (B)PT P,
i=1 N

fi(B) [ HA' fi(A) =0, i=1,...,V(A,R)

Proof. Let Ry,..+,R be a basis in range (i). So there exist T. such that
= 1 r{A,R) i

AT. - T.A = R,

5 3 503 = Toeenx(AB)

Let us assume that X(B) is of the form

-1 r(A,A)
(1.29.13) XY =1+ ) 9 (BITS, g (A) = 0, 3 = T,ecu,r(AB) .
j=1

Thus the theorem will follow if we can prove that the system

r{A,A,) r{A,A) r{A,R)
(1.29.14) BlI + ) g (BIT.] = (I + Y g (B)T.JlA+ ) £.(B)T)

3 =1 J j=1 3 J =1 1 1
is solvable in some disc D(A,p). This is a system of n? scalar equalities in n?
unknowns f1""'fv(A,A)' 91""'gr(A,A)' Since fi(A) = gj(A) =0, 1i=1,.s.,V(A,A),

i=1,.0.,v(A,A) the above system is trivially satisfied for B = A. According to the

implicit function theorem the above system is uniquely solvable in some neighborhood of

A if the Jacobian of these n2 equation is non-sinoular (e.g. Gunning-Rossi [1965]). Let

B = A + F. Since all fi’ q.

5 are analytic in H we can expand these function in power

A

series in the entries of F = (fij). Let ui(F) and Bj(F) be the linear terms in the

expansions of fi and gj respectively. Then the Jacobian of the system (1,29.14) R

non=-singular if and only if the first terms ui and B8 are uniquely determined by F.

3
The linear part of (1.29.14) reduces to

r(A, A r(A€A) V(A,A)
F o+ . B.AT, = boB.T.A+ Voar, .
=1 39 =1 33 jo, i

That is

< iors - oy
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3, .
r(2,A) V(Atn)
F = B.,R, + ol .
=1 33 g 11
1.29.1 eve ves .
In view of (1,.29,10) age 'av(A,A) and 81, 'Br(A,A) are determined uniquely. So
(1.29.14) is solvable in D(A,p) for some positive p.

This establishes the theorem.

Note that if A = al the form (1,29.12) is not simpler than B. Also by mapping

- mpran

-1
¥ T+ P TP we get

{ AN )
) (1.29.15) M_(C) = range (® 'ap) o [p"r1p,....r'1r

v(A,A)P)

Next we consider the rational form R(B) of B.

Lemma 1.,29.16. let B ¢ Mn(HA). The ratiogal canonical form of B over MA is a

companion matrix C(p) € Mn(HA)' where p(x) = |xI-BJ.

Proof. The rational canonical form of B is C(py,...,P)) given by (1.16.6). We claim
that k = 9, Otherwise p(x) and p'(x) have a common factor over MA which in view of
Theorem 1.4.13 implies that p(x) and p'(x) have a common factor over H,. That is for
any B € D(A,p) |xI-B| has at least one multiple eigenvalue. Evidently, this cannot be

true. Indeed consider C = P~

BP where P ¢ Mn(c) and J = P"'AP is the Jordan
canonical form of A. So C € D(J,p'). Choose C to be an upper diagonal (this is
possible since J is an upper diagonal matrix). So the eigenvalues of C are

. [ ' CqqreeesCpps and we can choose them to be distinct. Thus p(x) and p'(x) are co-prime

over M, and therefore k = 1. So p,(x) = [x1=c(py)! = Ix1-B].

Theorem 1.29.17, Let A ¢ Mn(C). Then B € Mn(HA) is similar to the companion matrix

Cc(p), p(x) = |xI=-B|, over Hy if and only if V(A,A) = n, that is the minimal and the

characteristic nolynomials of A coincide, i.e. A is nonderogatory.
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Proof. Assume first that C(R) in (1.29.1) can he chosen to he C(n). Then for R = A
we get that A is similar to a companion matrix. Accordina to Corollarv 1.21,1F
V(A,A) = n, Assume now that V(A,A) = n., According to (1.21.15) we must have that

i1(x),...,in_1(x) are eaual to 1. That is, the minimal and the characteristic

polvnomials of A conincide. So A js similar to a comnmanion matrix, ¥From the form of

(1.29,12) we can assume B is a companion matrix. Choose Pj = ’ni, i =9,c00,n when
Fy4 are defined in (1,29,R),
It is left to show that range (R} o [Ty, ...,Fan1 = (01, Sunnose
r = ¥ a F . € ranae (A}, According to Theorem 1.23,2 and Corollarv 1,21.1f thig
: n
j=1 M
assumption is equivalent *o tr(I'a¥) = N, x=nN,1,...,n=1, T. ¢ a= (a‘,...,n“\. Cince

the first n - 1 rows of T are zero we have

For k = 0 the above equalitv immlies a = N, CSupmose we alreadv nrved that there
n

equalities for k = 0,...,{ imply that an=...=an_2 = N, Congider the equalitv

L+1

triTA ) = 0, TUge Prohlem (1.17.20) to deduce

4
L+1 °
€ =¢ + £
A R T Fhaga (2+1),4%n=1
j=n
£+1 _
So  tr(Ta Y = a as a_=...=a =N, Thus « = N and we nroved that ranae
n-£-1 n n=% n=0=1
(AY ° [Fpuq,eeesFppl = (0T
Accordina to Theorem (1.29,11)
-1 n
C(R) = ¥ (PYRY(®} = A + T £ (R)F .
1 ni
i=1
S~ C({R) is a companion matrix. As IxI=C(R)| = IxI=-R|, C(R) = C(n),

0O

For the next theorem we need the follnwina lemma which is an immedjate consecuence of

Praxlem 1,273,177,
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Lemma 1,29.18. Let Ai € Mn (€}, i = 1,2 and assume

1

v(A, ,A)
: LRSI
Mn.(c) = range (Ai) ® E [I‘j }, i =1,2.
b j=1
Suppose that A1 and Az do not have a common eigenvalue. Then
N\ V(A1,A ) o ““‘2"2’ 2
M  (C) = range (A € A) @ N o[rj ® 0] @ ) e(erl. "1 .
1 3=1 j=1 3

consists of £ distinct eigenvalues

Theorem 1.29.19, Let A € Mn(c). Asgume that od(A)

X1,...,X2, where n; is the multiplicity of A i=1,.0.,8. Then B is similar

il

over H to the following matrix

A

2 n
i
c(B) jE, @ C.(B), C.(B) € Mni(HA), D, Ing) = € (A)] o ,

(1.29.20) i=1 L
rese, .

Moreover C(A) is the Jordan canonical form of A.

1

Proof. Choose P in the equality (1.,29.12) such that P~ 'AP is the Jordan canonical form
2
Z ® P;i). Then the equality (1.29.12) yields the theorem.
i=1
Problems
k k
(1.29,21) Let A= | @ H(n ), n = : n . Partition any B e M _(C) conformally with
i=1 i=1
A, B = (Bij)' Bij € Mn (), 1,35 = %,.00¢,ks Using the results of Theorems 1.21.9 and

i"y
1.23,.3 prove that the matrices




WY

(a,R,Y)
id

(a,R,
=0 if (a,p) ¥ (5,6, T B e

(a,8,Y)
r af n v

= (T Yo Tyy

r(u,E,Y)

Y = 1,...,min(nu,np\, x,R =1,,..,%

satisfy (1.29.10).

(1.29.22) Let A he a matrix aiven hy (1.,21,3), Use Theorem 1,279,108 anAd Prohlem 1,720,71

- ——

to find a set of matrices T, ,...,T which satisfv (1,29,10),
1 vi{A,a)

(1.29.23) Let A ¢ “n(c) and assume that xi is a simple root of the characteristic

. polynomial of A. Use Theorem 1.21.9 to prove the existence of A(R) ¢ [ such tha+
A(R) is an eiagenvalue of R and A(R) = Aj.
(1,29.24,) Let A satisfv the assumntions of Theorem 1,70,19, nenate kv N, a Aomain

satisfyina the assumptions of Theorem 1.2R.9, , = 1,..,,2. Let P, (n) he a nroiectinn n*

ﬂ R E Mn(HA) on D, k= 1,0+, RAccordina to Problem 1.2R,24 BL(RY & M (W1,

kny
k1
kK= 1,000,8, L€t Pu(MIC€ = Ix veeerX Ty v 29, ,,,,2, RE NA,P) where 0 s mome

positive number. lLet X(F) bhe formed hv the columns o

: kn
H Pk(n)xk1,...,Pk(ﬁ)x k, k=1,...,8. Prove that (R} ajven hv (1,29,1) satisfjes

) ) (1.29,20), This aives another oroof to Theorem 1.29,10, -

—

S ‘
- -
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1.30. Analytic, pointwise and rational similarity.

. Definition 1.30.1. Let @ c ¢ and A,B € M (H(R)). Then

(1) A and B are called analytically similar (A% B) if A and B are similar

over H(R),

(ii) 2 and B are called pointwise similar if A(x) and B{(x) are sim.lar over

C for all x ¢ QO' where Qo is some open domain ﬂo o9,

(1i1) A and B are called rationally similar (A% B) if R and B are simjilar

over the field of meromorphic functions M(Q).

4 Theorem 1.30.2. Let E_c"l and assuse that A,B ¢ Mn(H(ﬂ)). Then the following

applications hold. A 3 B =2 ; B=2A T B

Proof. Suppose that
g (1.30.3) B(x) = P 1 (0)A(x)IP(x)

where P,P-1 € Mn(H(Q)). Let Xq € Q. Then (1.30.3) is holding in some neighborhood of

Xge So A 3 B. Assume now that A ; B. Let C(p1,...,pk) and c(q1,...,qe) be the
rational canonical forms of A and B respectively over the field of meromorphic

: functions M(R). Clpy,eve,py) = SO TTAMNIS(X), Clgqseesrq,) = T(x) 7 BOOT(X),

S(x),T(x) € Mn(H(ﬂ)), 1s{x)] Z 0, IT(x)| # 0. According to Theorem 1.16.11 C(p1,...,pk),
C(q1,...,ql) € Mn(H(Q)). Let Q 5.90 be an open connected domain such that

A,B,S,T € Mn(H(Q)) and A(x) and B(x) are similar over C for any x € Qo. Let

%X, € Qo such that |S(xo)T(xo)| ¥ 0, Then for all x ¢ D(xo,p)

C(p,:-o-;pk)(x) = C(q",---,qz)(x) .

Now the analyticity of C(p,,.-.,pk) and C(q1....,ql) imply that these matrices are

identical in H(2). That is A ; B.

1
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Assume that A T R. Then according to Lemma 1.22.8 the three matrices

(1.30.4) IQAlx) - a%x) 2 I, T @ Alx) - B%x) 21, I @ B(x) - BY(x) @ 1

are equivalent over H()., Theorem 1,22.7 vields

Theorem 1.30.5. Let A,B € M (H(Q}). Assume that the three matrices in (1.30.4) are
equivalent over H(Q). Then A ; B.

In case that Q < C, H(?) is BEDD (see Section 1.5). So we can determine when these
three matrices are equivalent.

The problem of finding a canonical form of A ¢ Mn(H(Q)) under the analytic
similarity is a very hard problem which will be discussed in the next few sections for the
ring of local analytic functions in one variable. 1In what follows we determine when A is
analytically similar to its rational canonical form over "C -the ring of local analytic
functions in t'ic neighborhood of ¢ € <",

For A,B € Mn(H(Q)) denote by r(A,B) and Vv(A,B) the rank and the nullity of the
matrix C = I ® A ~BY @ I over the field M(R). By r{A{x),B{x)) and Vv{Al(x),R{x);
denote the rank and the nullity of C(x) over C. As the rank of C(x) is determined by

the largest size of a non-vanishing minor, we clearly have

(1.30.6) r(A(L),B(g)) € r(A(x),B(x)) € r{(A,B); v(A,B) < via(x),B(x)) € v(A{}),B(L)),
% € D(L,p)

for some positive p. Moreover for any ¢ > 0 there exist at least one x0 € D(§,p) such

that

11.30.7) r(A(xo],B(xo)) = r{A,R}, v(A(xo).B(xo)) = v (A,B) .
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Theorem 1.30.R, Let a ¢ Mn(nz). Assume that r(p,,...,n.) 48 the rationa) canonica’

form of A over MC and C(°1""’02) ig the rationa) canonical form of A(r[) over

€. That is P, = pi(x,x) and a, = ai(l) are normalized nolvnomials in X helonaina to

HCTX] and C[A] respectivelv for i = 1,.4e,k, 4= 1,.0.,2. Then ({) § > + anA

1

m
(ii) T «a (M noe (A,) for m=n,1,.,.,k=1, Moreover ¢ = k anAd
smn  Bei jon ki == —oreovesr ant

pi(X.C) = ai(c) for i = 1,..4,k if and only if

(1.30.9) r(A(Z),A(Z)) = r(A,B), VIR(Z),R(L)) = V(AP

’

which is eguivalent to the condition

(1.30,10) r(A(ZY,A(Z)) = r{A(x),A(x)), VIR(Z),A(L)) = v(A(x),A(x)), x € ™(Z,p)

for some positive op.

Proof. Let

i 4
u{i,x) = 1 pu(k,x), v(d) = I aB(X), i = 1,000,%, 4= 1,...,8,
n-k+i a=1 n-2+§  R=1

uu(l,x) = VB(X) =1, for a € n=k, R € n~&

So ui(k,x) and vi(X) are the a.c.d. of all minors of order 1 of the matrices )1 - »

and A1 - A{Z) over the rinas MC[A] and C[)] resnectivelv, (See Section 1.1f,) As
ui(k,x) € HCYXI it is clear that ny 0,0y Ajvides all minors of AT - A(Z) of order
i. fo uilk,c)lvi(l), i=1,.00,n. Rinece vn_l(x) = 1 we mast have that "n-l(k'*‘ =

1. That is k < L, Also

unlA,x) = IAT - A(x)I, x%(x) = 11 =2ty

1?17
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vi(x) u(i,z)

Whence un(A,;) = vn(k). Therefore
theorem. Clearly if C(q1,...,q2) = C(p1,...,pk)(c) then k = £ and pi(X,C) = qi(X),

i=1,.0.,2., Assume now that (1.30.9) holds. According to (1.21.15)

k £
V(A,A) = ) (2i=1)deg Progeq(XeXx) s VIALD), ALD)) = g

) {23-1)deg ql-j+1lx) B
i=1 J

1

Note that the degrees of the invariant polynomials of (AI = A) and (AI ~ A(L)) are
satisfying the assumptions of Problem 1.30.13. From the results of Problem 1.30,.13 it i
follows that the second equality in (1.30.9) holds if and only if %k = £ and
deg pi(x,x) = deg qi(k), i=1,¢00,ks Since pi(A,x) and qi(x) are normalized

polynomials in A the conditions (ii) yield pi(A,C) = qi(k), i=1,...,ks Finally
(1.30.6)=-(1.30.7) imply the equivalence of the conditions of (1.30.9) and (1.30.10),

O
Corollary 1.30.11. Let A€ Mn(Hc)' Assume that (1.30.10) holds. Then & 2 B if and
only if A ; B.
Proof. According to Theorem 1.30.2 it is enough to show that A ; B implies & ; B,
Since A satisfies (1.30.10) then the assumption that A ; B implies that R also
satisfies (1.30.10). According to Theorem 1.30.8 A and B are analytically similar to
their rational canonical form. From Theorem 1.30.2 it follows that A and R have the

same rational canonical form.

1

Problems

(1.30.12) Let

/0 x\ (0 x2
A(x) = \P 0) , B(x) = \P 0 . -
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Show that A(x) and B(x) are rationally similar over the ring of rational functions to
. H(2). Prove that A g H(2), B g H(2). Show that A B over C{x]. Prove that the

matrices given in (1.30.4) are not equivalent over C(x]. That is A z B(x).

(1.30.13) Let n e a positive integer and agsume that {mi)n and {li}n are two

sequences of non-negative integers satisfying 0 < m < mn_1 <...<m1.

k k n n
0<4f <& €eu oS, 2 2, < E m,, k= 1,¢e0,n=1, z L = 2 m, = n, Prove (by
n n-1 1 it i i=1 i 3=1 i 1=1 i
induction) that
n n
1 (21-)m < I (-1,
i=1 i=1

and the equality holds if and only if m1 = 21, i =1,.0,,n.

(1.30.14) Let Cn eC,n=1,2,s00, « Assume that ii: cn = 7. Suppose that 1
Q c ¢, such that ¢, € C, n=1,2,eee, , § € 8 Using the fact that if € H(Q)
satisfies (cn) =0, n=1,..., implies £ 0 prove that for A,B € Mn(Q) the

agsgumption A(f ) ®*B(Z ), n=1,2,..., implies that AT B,
n n r
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1.3« A global splitting

From this section through the end of the chapter we shall restrict ourselves to the
matrices whose entries are analytic in domains § c C. In what follows we give a global

version of Theorem 1.29.19.

Theorem 1.31.1. Let A(x) € Mn(H(Q)), where & is a connected set in C. Suppose that

(1.31.2) IAT - Alx)) = ¢ (A,x)¢2(X,x) '

1

where ¢1(X,x) and ¢2(A,x) are two nontrivial normalized polynomials in H(RQ)[x] of the

degrees n, and n, respectively such that (¢1(k,xo),¢2(k,xo)) = 1 for any X, € 2.

Then there exists a unimodular matrix X(x) such that

XM OOROX(0) = C(x) @ ¢, (x), X(x).X(x) € M (H(D)
(1.31.3)
Ci(x) € Mni(H(Q)), A1 - Ci(x)l = ¢i(X,X): i=1,2 .

Proof. Let Pi(x) be the projection of A(x) on the eigenvalues of A(x) satisfying
¥ i(X,x) = 0. Since (¢1(X.xo), vz(k.xo)) = 1 clearly Pi(x) € Mn(H(Q)) for i = 1,2,
(See Problem 1.28.24.) Also for any Xy the rank of P (x;) is n . Since H(Q) is

EDD each Pi(x) can be brought to the Smith normal form

(i i)
P (x) = U () diag(e11)(x),...,€£: (%),0, 404,00V, (x),

-1 -1
Ui.vi,ui ,vi € Mn(H(Q)) .

As r(Pi(xo)) = ny for any Xy € 2 we immediately deduce that e;i)(x) =1, 3= 1.0,ny,

(1)
n

i=1,2. Let ugi)(x),...,u (x) be the columns of Uylx), i = 1,2. Since

V:1(x) € Mn(H(ﬂ)) we get that




(1.31.4) Pilxe" = [u:”(x),...,u:‘“(x)] .
1

for any x € ., Put

1 ? 2
xtx) = (a0, ou Moo, w0, e o0y 6w meeny L
n1 1 n n

?

Accordina to Problem (1.28.30) IX(X4)| # 0 Ffor any xq € 0 o ¥ Yx) € M“(H(P\). Yow

(1.31.3) follows from (1.2R.31).
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1.32. First variation of a geometrically simple eigenvalue.

Theorem 1.32.1. Let A(x) be a continuous family of n x n complex values matrices for

Ix = xol < §, where the parameter x is either real or complex. Suppose that

(1.32.2) A(x) = Aq + (x = x5)A, + fx = x0|0(1) .

Assume furthermore that X is a geometricallv simple eigenvalue of multiplicity m. Let

: t : :
x1:---,xm and y1,---,ym be the eigenvectors of A; and A=  corresponding to \ which

0
A N
form a biorthonormal system (yl) % = Gij' i,j = 1...,m. Then it is possible to
enumerate the eigenvalues of A(x) by Xi(x), i=1,...,n, such that

(1.32.3) Xi(x) = A+ (x - xo)ui + Ix - x0|0(1), i=1,.0.,m ,

where u1,...,um are the eigenvalues of the matrix

.t
i
(1.32.4) S = (sij) € Mm(C), sij = (y" ) A

x), i, = 1 eee,m

1

Proof. By congidering the matrix P-1A(x)P, where P ¢ Mn(c) we can assume that Ao is
in the Jordan canonical form such that the first m diagonal entries of A, are 1\,

From the proofs of Theorems 1.29.,11 and 1.29.19 we have the existence of
X(B) =1 + 2Z(R), 2 ¢ Mn(Ho), z-0) =0

; l such that

(1.32.5) x"(m(;\o + BIX(R) = & C (B), C,(0) = \I(m .

1

e -1

i

1
%
3
i
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Substituting

B(x) = A(x) = A

o = (x-xo)A1 + |x-xo|o(1),

X({x) = X(B{(x)) = I + (x-xo)x1 + lx-xolo(1)

we get
clx) = X" GOAGR(X) = Ry + (x=35) (A, + AgX, = XyAg) + Ix=xglo(1) .

According to (1.32.5) X1(x),---.km(x) are the eigenvalues of C,(B(x)). As
C1(B(xo)) = AI(m) by considering the matrix (C1(B(x)) - AI(m))}/(x - xo) we deduce that

(Xi(x) - A)/(x - xo) are continuous functions at x = x5. Also

t
- - = ((nt - 3
[C,(B(x)) = AL(m)]/(x = xo) = ((n") (A, + AX, =X ,A)E) + o)

where Ei - yi = (§ 1""’61n)'i = 1,...,m. Now note that sinca E1 and ni are the

i

eigenvectors of Ay and Az respectively corresponding to A for i = 1,,..,m

t
(ni) (on‘ - x1A°)Ej =0 for 1€ 4,4 <m. This establishes the result for a particular

1 1 :
choice of eigenvectors £ ,...,Em and n ,...,nn. It is left to note that any other

m
choice of the eigenvectors x',...,xm and y"""y which form a biorthoqonal system

amounts to a new matrix s1 which is similar to S. In particular S and s1 have the

same eigenvalues.

]

Problems

(1.32.6) Let

0 1
A(x) = (x 0) .
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Find the eigenvalues and the eigenvectors of A(x)

does not apply for x5 = 0 in this case, Let B(x) = A(xz).

in terms of V.

Show that (1.32.3)

Verify tha* (1.32.3) holds

for x, = 0 even though XA = 0 is not geometrically simple eigenvalue for B(0).
0 g
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1.33.

Analytic similarity over HO‘

Let A,B & Mn(Ho). That is

Ix} < r{n)
(1.33.1)

@«
B(x) = | B xk, Ixl < r(B) .
t J
Definition 1.,33.2, Let A,B ¢ Mn(Ho). Denote by n(A,B} the index and KP(A,B) the

number of local invariant polynomials of degree p of the matrix I ® A(x) - Bt(x) 1.

Theorem 1.33.3. Let A,R € Mn(Ho). Then A and B are analytically similar over Ho if

and only if A and B are rationally similar and there exist n(A,A) + | matrices

T, ,e0e,T € M (C), (n = n{A,A))}
n n

0 such that

[Tl # 0 and

k
(1.33.4) Paayn -7 B =0, k=0,10,04 .
i=p
Proof. The necessary part of the theorem is obvious, Assume now that A(x) z B(x) and

the matrices TO""'Tn satisfy (1.33.4) and Ty is non-singular. Put

Clx) = T(X)IBLx)T (%), T(x)

[}
o~
g ]
X
X
.

This in particular means that r(A,a) =

As ITOI ¥ 0, B(x) 5 C(x), so A(x) T C(x).

Also (1.33.4) is equivalent to A(x) = C(x) = xn+10(1). Hence

r(A,C).
(1@ Ax) ~AS(X0) 81) - (I8 ax) ~coix) @) = x" 0ty .
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In view of Lemma 1.13.4 the matrices I & Alx) - Ab(x) @ I, I @ A(x) - c'ix) @ 1 are
equivalent over Hye In particular n(A,A) = n(A,C). Also I,0,...,0 satisfy the svst.~
{1.33.4) where Bi = Ci, i=0,%",ese,ne According to Theorem 1.13.14 there exists
P(x) ¢ Mn(Ho) such that

A(x)P(x) - P(x)C(x) = 0, P(0) =T1 .

This shows that A(x) ; C(x). By the constriction C(x) ; B(x), so A(x) ; B(x).

Note that if n(A,A) = 0 then the assumptions of Theorem 1.33.3 are equivalent
Al x) ; B(x). Then the implication that A(x) ; B(x) follows from Corollary 1.30.11,

Suppose that the characteristic polynomials of A(x) splits over Hjy. That is

0’ i=1,¢0e,n .

n
(1.33.5) AT = A(x)| = 1T (X ~ Xi(x)). Xi(x) € H
As H, is ED according to Theorem 1.18.5 A(x) is similar to an upper triangular
matrix. Using Theorem 1.,2%.19 and Theorem 1.18.5 we get that A{(x) 1is analytically

similar to

C(x) =
(1.33.6) 1

01

@ C. (x), C.(x) eM (H), (aI(n,) -~C (0)) =0 ,
1 i i ni 0 i i i

a, = A (0), a #Fa., for 1 # 3%, i,9 = 1,.e.,8
i i i 3

and each Ci(x) is an upper trianqular matrix. 1In this case w~ -ar be more specific above
the form of the upper trianaular matrix.

Theorem 1.33.7. Let A(x) € Mn(HO). Agssume that the characteristic polvnomial of A(x)

splits in Hj,. Then A(x) is analytically similar to a block diagonal matrix C(x} of

the form (1.33.6) such that each C;{(x) is an upper triangular matrix whose off-diagonal

entries are polynomials in x. Moreover, the degree of each pelvnomial entry above the

diagonal in the matrix Ci(x) do not exceed n(Ci,CiV, i = ,eee, 8




- e

Proof. Clearly, in view of Theorem 1.29.19 we may assure that £ = 1, That is A(0) has

one eigenvalue a_ . Furthermore by considering A(x) ~ a

0 I we may assume that A(0) 1is

0
nilpotent. Also by Theorem 1.18.15 we may assume that A(x) is already in the upper

triangular form. Suppose now that in addition ¢o all the above assumptions A(x) 4is

nilpotent. Define
X, = {9 I A y= 0 YEM (H_ ) } k=0,1,600 .
k ! n1 0 4 e !

So

(0] = Xo § X, % X, S...; xp = Mn1(H0) .

According to Theorem 1.11.,12 it is easy to show the existence of a basis y’(x),...,yn(x)

v
in Mn(ﬂo) such that y‘(x),...,y k(x) is a basis in xk. As A(x)xk¢1 < xk we have

v
i_ 1
Ax)yl = 90V 0, Y <3S,
i=1
Define gij(x) =0 for {> wk and wk < 3« wk+1' Put
n 1 n
G(x) = (qij(x))1, T(x) = (y (X),ees,y (X)) € Mn(ﬁo) .
Since y‘(x),...,yn(x) is a basis T-1(x) € Mn(Ho). So
G(x) = T (XA(XIT(X), 8 = N(A,A) = n(G,G) .
Put
L]

k
e = § 6, 6™ . § ¢
j-o j j-o 3

k0,1,
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We claim that G(S)(x) 3 G(x). First note that

(s+1)

t
) ) - 6" x)) @1} = x

(Iecx) -6 @D -{106G o1y .
From Lemma 1.13.4 it follows that the matrices I ® G(x) = Gt(x) 1,1 G(S)(x) -

[G(S)(x)]t 2 I have the same local invariant polynomials up to the degrees. So

£(G,6) < r(G(S),G(S))

which is equivalent to the inequality

(S),G(S)

(1.33.8) v{G ) € v(G,G) .

Let
Y o= {y | y=(y seeesy )5, y. =0 for >4} .
* greceedy) o0 Yy X

Clearly if qij(X) = 0 then the (i,j) entry of G(S)(x) is also equal to zero. By the

construction g (x) =0 for 1>y  and ¥ < j< So <;(s’(x)srkM S Y,

wk+1'
k = 0,¢svs,p~1, By Theorem 1.24.1

{ (s)

1 (1.33.9) V(G(xo).G(xo)) < V(G s)(xo),G (xo))

for all x, in the neighborhood of the origin. So

viG,m < vie'® 6.

N «-144 -
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This proves that the equality sign holds in {(1.33.8) which in return implies the equality
sign in (1.33.9) for 0 < Ixo| < ps By Theorem 1.24.1 G(xo) = G(S)(xo) for

0 < Ixol < p. Using Theorem 1,30.2 we deduce that G b4 G(S). As
G(x)1 - 163 (%) = x5 Vo(1)
Theorem 1.33.3 implies that G(x) 5 G{®)(x). This establishes the theorem in case that

A(x) is a nilpotent matrix. Next consider the case where A(x) is an upper triangular

matrix whose diagonal entries (the eigenvalues of A(x)) are arranged in the following

order
AGx) = (A, (DY, AL (x) e M (H_)
X 13 By hon, ol ¢
i3
Py
(1.33.10) Ajyx) = 0 for 3 < i, (A 00 =X () T =0,
Ai(x) F4 Xj(x), for i« 3, i,3= 1,...,28 .
We already showed
A = 2T R, (OT (0, T,,T. € M_(H
1% = Ty (IFLOAT, (), T,,Ty € M (Hy)

and each F ) - Xi(x)I(nl) is a nilpotent upper triangular matrix with polynomial

1x(x

entries of the form described above. Put

N

2
g =TT AT, T = [ e 0 .

Gix) = (6
i 13 f=1

As X‘(x) ; ’4"‘ for i # 3 Problem 1.21.21 implies

v(G,G) =

(Rt
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Let G(k)(x) be defined as above.

Using Theorem 1.24.1 as before we get

V(G,
i

<
i'Gii) v(G

G

(k)
ii

Combine the above inequalities to deduce that

Compare the above inequality with (1.33.8) to obtain the equality sign in (1.33.8). So

(1.33.11) v{

Let
D.(x) = A, (x)I(n,) =
i i i
(1.33.12) ¢
D(x) = § @D (x), D
; i
i=1
So
V(G(S) _ D(s)'

ii

ol
11

i

/G

(s) _(s)

v(G,G) < V(G /G

(s), _ .
ii ) = “(Gii'Gii)' i=1,...,2 . .
o i (k) X '
T op..x?, b x) = ¥ Di.xj, i= 1,000,
j=0 7 1 j=0 3
=T o™ .
) i
i=1
(s) (s), _
Gii Di ) = v(G i Di:

According to Theorem 1.23.6

2
©
L

(k) (k)
ii

Gy )

(k)

<. oG ) .

ii

) .
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(s) _ (S) o
As before using Theorem 1.24.1 we deduce that Gn D1 p Gii Di' i.e.,
. (s) _ _(8) o .
Gyy D, +D, ¥G,,. Since Xi(x) 4 Xj(x) for i ¥ j we finally deduce that

G ¥ {8 - pl® L p. almo 61 - 1(6¢% - p{® . p) = x*'0(1)., Therefore according to

Theorem 1.33.3 G 7 G!®) = 0®) + D, 7The proof of the theorem is completed.
=
Theorem 1.33,13. Let P(x) and Q(x) be matrices of the form (1.33.6)

m
i
P(x) = g ® Pi(x), Pi(x) €M (Ho), (uiI(mi) - Pi(O)) o .,

{=1 i

7 ST S TPV,

ai 14 aj for 1 ¢ 3, i,3 =1,...,p

(1.33.14)

TR

Q(x) = ? ®Q

(%), Q
i = 3

3 ¥

) Bi d Bj for i ¥ 3, 4,3 = 1,009 .

n
- 1.
€ Hnj(Ho)v (B I(n.) Qj(O)) 0 [

Assume furthermore that

(1.33.15) “1 = 81, i=1,...,t, a, ¥ 8 i= tH1,000,p,] = t+1,..0,49,

jl
0 < t < min(p,q) .

Then the non-constant local invariant polynomials of I ® P(x) =~ Qt(x) R I consist of the

non-constant local invariant polynomials of I ® Pl(x) - Q:(x) 2 I, i=1,...,t. That is

t
[ : (1.33,16) KP(P,Q) = 121 "p"i'Qi" P=1,2,00e,

-

In particular if C(x) 4is of the form (1.33.6) then

(1.33.17) n{c,C) = max n(ci,ci) .
] 1<4<8
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Proof. According to Theorem 1.13.14 -
L¥
KP(P,Q) = dim wp_1 - dim wp . ]
where wp < Mn(c) is the subspace of n x n matrices X; such that !
i
k
1.33. - =0 = 0,000 .
(1.33.18) L (B _5¥5 = ¥, ) .k resesp
j=
Here
< | T (i) i)
P(x) = | P.x],Pi(x) = 7 8 xj,Pj= 5 o »ft!
j=0 =1 3 =1 ’
3 ' S (i) g (1)
oty = ¥ ox?, o) = T oV, 0. = § eo,
j=0 1 3=0 3 J i=1 7 N
. (3) (3) - =
Partition X, ¢to (X ), X EM (C), a=1,¢eee,p, 8=1,.0.,9. We claim that
Jj af af mNg
-
x;g) = 0 for if either a > t+1 or B8 > t+1 or a ¥ B. This statement follows easily

by induction since in view of Lemma 1.21.5 the equation

{a) 8y _
Py ¥ -¥Q, =0

has only the trivial solution for those a and @8. Thus (1.33.18) splits to the systems

=0, 1= 1T,.00,t .

X
v ) (9 _ (3, (1)
¢ (Pri¥ii Xii k-3
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Apply the characterizations of KP(P,Q) and xp(Pi,Qi), i=1,...,t to deduce

(1.33.16). Clearly (1.33.16) implies (1.33.17).

0

We close this section by remarking that the main assumption of Theorem 1.33.7 that the

characteristic polynomial of A(x) splits in Hy is not a heavy restriction in view of

the Weierstrass preparation theorem, Theorem 1.6.5. That is the eigenvalues of AlLYy™)
split in H,. If we choose m = n! then this statement holds for all A(x) € Mn(Ho). ]

According to Problem 1.33.19 A(x) 3 B(x) if and only if Aly™ 3 B(y™. Therefore the

———

é ! classification problem of analytic similarity classes reduces by Theorem 1.33.7 to

2 determine the structure of the polynomial entries which are lying above the main

diagonal. Thus given the rational canonical form of A(x) and the index n(A,A) the set
of all possible analytic similarity classes which may correspond to A is a certain finite
! dimensional variety.

The case n = 2 is classified completely (Problem 1.33.20). In this case to a given
rational canonical form there are at most countable number of analytic similarity classes.
{ For n = 3 we already have examples in which to a given rational canonical form there i
° may correspond a finite dimensional variety of distinct similarity classes (Problem

1.33.21).
Eroblems
(1.33,19) Let A(x),B{(x) ¢ Mn(Ho). Let m be a positive integer. Assume that A(y")T(y)

2 = T(y)B(y™, T(y) ¢ M (H)). Show that

-3
3

1
™ k=1

O(x) € Mn(Ho) .

!

M

.}
2 ACX)Q(x) = Q(x)IB(x), Q(y™) =

Prove that A(x) : B(x) if and only if A(ym) : B(ym).

i
§ (1.33.20) Let A(x) ¢ Mz(Ho) and agsume that
]
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IAT - A(x)| = (A-A1(x)) (X-Xz(x)), X,(x),xz(x) € Ho).

L
- ES T IR (1 _,(2) - (M (2)
A () jzo xj xJ, i =1,2, xj xj v 3= 0,00e,p, Ap+1 ¥ xp+1 .

-1 < p < »(p=® means X1(x) = Xz(x)) .

Prove that either A(x) is similar to a diagonal matrix or A(x) is similar to

k
A1(x) x

B(x) = s, k=0,1,.c.,p (p>=1) .
0 Az(x)

In the second case n(A,A) = k. (Hint: Use a similarity transformation of

pAap~! where D is a diagonal matrix.)
~ 2m 4m
{(1.33.21) Let A € Ma(HO)' Assume that A(x) 3 C(p), PA,x) = A(A=x""D){(A=x ), m > 1.

Prove that A(x) is analytically similar to a matrix

0 x ! a(x)
x
B(x,al =| & x2™ x 2 ;0 <k, k€ (x = 0)
0 o A

where a{x) is a polynomial such that deg a < 4m. (Use the previous problem.) Assume
that k,; = k, = m. Show that B(x,a) 7 B(x,b) if and only if
{i) b-a is divided by x™ in case that a(0) ¥ 1.
(i1) b-a is divided by x™¥ in case that a(0) = 1 and a‘il(0) =0, i = 1,...,k=1
al®0) ¥ 0 for 1<k < m.
(iii) b-a is divided by x°™ if a(0) = 1, alid(o), & = 1,...,m=1.

That is for ky = k2 = m the set of all analytic similarity classes of matrices BR(x,a)

can be regarded as a union of m + 1 copies of - {0}, which are m nonfixed

coefficients of b(x).

-150 -~

the form




R A ma e R RO i st DA\ i ——v

R O

Show that P and

(1.33.22) Let P and O satisfy the assumptions of Theorem 1.33,13,

Q are analytically similar if and only if p = g - ¢, mo= ng. i=1,.,..,t and

Pi(x) :Qi for i = 1,...,t.
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1.34. Similarity to diaconal matrices.

Theorem 1,34.1. Let A(X) ¢ Mn(Hn) and assume that the characteristic polynomial splits

e

in H0 as given in (1.33.5), Let

(1.34.2) B(x) = diaq(xT(x),...,Xn(x)) .

Then A(x) and B(x) are not analytically similar if and only if there exists a non-

negative integer p such that

¥ (A,A) + < (B,B) < 2« _(Aa,B) ,
(1.34.3) P p P

Kﬁ(A,A) + Kj(B,B) = ZKj(A,B), 3= 0,e0e,p-1, if p>11 .

In particular A{x) and B(x) are analytically similar if and only if the three matrices

given (1.22.6) are equivalent over Hy.

Proof. Suppose first that (1.34.3) holds. Then the three matrices in (1.22.6) are not *
equivalent. Hence A(x) g B(x). Assume now that A(x) % B(x). Without a restriction in

the generality we may assume that A(x) = C(x) where C(x) is given in (1.33.6). Let

o
X
-

B(x) = ® B (x), B.(0) = a.X(n.), §=1,e00,%, M, = n +.ue*n_ (n_=0) ,
b) j i3 j o0

351 o

3= 1,000,8 .

We prove (1.34.3) by inductior on the dimension n. For n = 1 the theorem is ohvious.
Assume that the theoren holds for n & N-1, Let n = N. TIf A(0) ¥ B(0) then Theorem
1.22.3 implies the inequality (1,34.3) for p = 0 and the theorem is proved. Suppose now
that A(0) = B(0). That is Aj(O) = Bj(O) = ajI(nj), j=1,.ss,2. Suppose that £ > 1,

Ry Theorer 1.33.13
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X (A,A) = E x (A ,A)), x (A,R) = f < (A, ,A) .
p zy P33 p oy P 373
3 j=1
£
« (B,R) = _ «x (B ,,B), p?1 .
P j2p P33

Since A(x) B(x) if and only if A (x} B
3(x) & By

the induction hypothegis we deduce (1.34.3).

A(0) = B(O) = 3,

Put

A 00 = (a0 = agni/x, 3!

Clearly

1
< (A/A) =« (A(1).A( !
p p=

1 1

Also A(x) > B(x) if and only if A(1)(x) 3 BV (x). We now continue the process as

above., If at stage

eigenvalue we conclude the theorem as before.

A(x) = B(x) = XA(x)I,

However this case violates the assumption Alx) 2 R(x). The proof of the theorem is

completed.

(x) = (B(x) - col)/x . |

' <p(A,B) - ‘p- (A

kX either A(k)(O) > B(k)(o) or A(k)(O) has more than one

(x) for some 3 (Problem 1.33.22), using

It is left to consider the case

I, <0(A,A) = KO(A,B) - <0(B.B) -0

MMy, (p,m) =
p

[3 (8(1),8(1)), P=™ 1,2,0ee o

p=1

The only possibility which is left is

A(x) € H0 .

m




——

-

PR L

1.35. Strict similarity to diagonal matrices.

Let A(x) € Mn(Ho). According to the Weierstrass preparation theorem {(Theorem 1.£.%)
the eigenvalues of A(ym) are analytic in y for some 1 < m < n. That is the
eigenvalues X1(x),...,An(x) of A(x) are multivalued analytic functions in x whichr
have the expansion

k/m
/ r 3= t,eeen

In particular each Xj(x) has at most m branches. For more properties of the
eigenvalues \j(x), j=1,..,n see Kato, [1976, Chapter 2]. Let A(x) ¢ Mn(C[x!). So

m
(1.35.1) A = ] AXS, A €M (@, k=0,1,.m .
k=0

The eigenvalues of A(x) satisfy the equation

n
(1.35.2)]2 = A} = A"+ J a ™3 =0, a tx) e Clxl, 3= 1, 000n .
J
j=0

Thus the eigenvalues X1(x),...,xn(x) are algebraic functions of x (see for example
Gunning-Rossi (1965]). The equation (1.35.2) describes one or several compact Riemann
manifolds according to the polynomial (1.35.2) is irreducible or reducible in C[x,\).
According to the Weierstrass preparation theorem Xj(x) has the followina expansion around
X =7

k(c)(x—c)k/'“, 3= 1,00e,m .

Ht-8

(1.35.3) A (x) = A
3 woo 3

The number m can be chosen to be independent of (. For example m = n! will always be
correct. These expansions are called the Puiseaux expansion of Xj(x). Since A(x) is a
polynomial matrix each Xﬁ(X) can be expanded in the neiaghborhood of ®. To do g0 we note
that

oo
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similar (A ¥ B) Af there exists P € M (C), [P| # 0 such that B(x) = PA(X)P™ .

m

1 -

A =B, By = oAy

k=0

Expand now the eigenvalues of B(y) at y =0 to get

s x
(1.35.4) Adx) = ™ T A x5 e,
3 k=0 jk

Definition 1.35.5. Let A(x),B(x) € Mn(C[x]). Then A(x) and B(x) are called strictly

1

From Lemma 1.22.8 it follows that if A(x) ¥ B(x) then the three matrices in (1.30.4)
are equivalent over C[x]. To take in account the point x = ® we need to homogenize as in

Section 1.14.

Definition 1.35.6. Let A(x) be given by (1.35.1). Denote by Alxg, %) the

corresponding homogeneous matrix

m' m'=k_k
(1.35.7) A(xo,x1) = z AX, X4 € Mn(C[xo,x1]) f

k=0
where m' =0 if A(x) =0 and A, ¥ O, Ay =10 for m' < 3 <m if A(x) ¥ 0.

Clearly if B{x) = PA(x)P™! then B(xg,%q) = PA(xo,x1)P'1. According to Lemma 1.22.8

the matrices

t t
(1.35.8) I & A(xo,x1) - A (xo,x1) @I, Iae A(xo,x1) - B (xo,x1) er,

t
Ie B(xo,x1) -8B (xo,x1) aI .

are equivalent over c[xo,x1]. Thus from Lemma 1,10.3 it follows
Lemma 1.35.9. Let A(x),B(x) € Mn(c[x]). Asgsume that A(x) : B(x)e Then the three

matrices in (1.35.8) have the same invariant polynomials over C[xo,x1].
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Definition 1.35.10. Let A(x),B(x) € Mn(C[x])- And assume that A(x,,x,) and B(x,,x,)

are the homogeneous matrices correspondina to A(x) and B(x) respectively. Denote by

ik(xo,x1), k= 1,.0.,r(A,B) the invariant factors of the matrix I ® A(xo,x1) -

8% (x,.%,) @ 1.

As in the proof of Lemma 1.14.8 we have that ik(xo,x1) is a homogeneous polynomial
for k= 1,...,r(A,B). Moreover ik(1,x), kK =1,...,r(A,B), are the invariant factors
of I @ A(x) - BY(x) @ I. (See Problems 1.14.30 ~ 1.14.31,)

We now answer the problem when A(x) is strictly similar to a diagonal matrix

B(x) € Mn(C[x]) of the form (1.34.2).

Theorem 1.35.11. Let A(x) ¢ Mﬂ(C[x]). Assume that the characteristic polynomial of

A(x) splits to linear factors over C[x]. Then A(x) is strictly similar to the diagonal

matrix given by (1.34.2) if and only if the three matrices in (1.34.8) have the same

invariant factors over C[xo,x1].

Proof. Without loss of generality we may assume that B{(x) is of the form

I
{1.35.12) Blx) = [ A 0T(n ), Mix) = Aj(x) fof i = j, i,3 = 1,¢00,8 .

Thus for all f except a finite number of points we have
{(1.35.13) Ailc) # Aj(;), 1,3 = 1,600,8

Let Pj(x) be the projection of A(x) on Xj(x), j £ 1,..0,8. Suppose that (1.35.13) is
satisfied at Xq- According to Problem 1,28.24 each Pj(x) is analytic in the
neighborhood of . Assume that (1.35.13) does not hold for [ £ C. The assumption that
the three matrices in (1.35.8) have the same invariant polynomjals imply that the matrices
in (1.30.4) are equivalent over HC- Now use Theorem 1.34.1 to get that A(x) and B(x)
are analytically similar over H;. Clearly Pj(E) the projection of B(x) on Xj(x) is
equal to 0 @ I(nj) ® 0., From Problem (1.28.27) we deduce that Pj(x) ig also analytic in
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the neighborhood of ;. The same arguments apply for [ = . This follows by coneidering
the matrices Alxy,1) and B(x°,1). Thus Pj(x) is analytic on the Riemann sphere. 1In
particular Pj(x) is bounded. The Liouville theorem (e.g. Rudin [1974)) implies that

Pj is a constant matrix. Let

jn in in
1 1 1 1
Pan = [xj seee,X j], u=1,e06,8, X = (X ,e00,% re0e, X ,eee,X l)

€ Mn(c) .

-~ s

According to Problem 1.28.28 x”A(x)X = B(x) for [ which satisfy (1.35.13). Finally

gt

the analyticity of A(x) and B(x) implies the validity of the above equality for all «x.
o o

1 :

Let A(x) € Mn(C). Suppose that A(x) is strictly similar to a diagonal matrix

B(x). Consider the corresponding homogeous matrix A(xo,x1). Then we obviously have that

for any 3§ € C, A(co,c1) is similar to a diagonal matrix, i.e., A(Co.c1) is

0'%

diagonable. However if A(Co,c1) is diagonable this does not imply that A(x) is

strictly equivalent to some diagonal matrix. For example

0 0 0 1 1 0 2
(1.35.14) A(x) = (0 ,> + <o o>"* (o 1>" )

See Problem 1,35.24., We now give a sufficient condition on A(x), such that “‘o"t’ is

djiagonable for any co,c1, which implies that A(x) is strictly similar to a diagonal

i matrix.
‘ ; Definition 1.35.15. Let A(x) € Mn(c[x]) be of the form (1.35.1) normalized by the

4 condition A, ¥ 0 if m 2> 1. Let Xp(x) and Xq(x) be two eigenvalues of A(x). The
l é eigenvalues Ap(x) and Xq(x) are said to touch at { if the Puiseaux series of Ap(x)
'

1

and kq(x) at x =g satisfy the following relations




(1.35.16) ka(c) = qu(z), k=20,000,8

for a finite or infinite Z.

Theorem 1.35.17. Let A(x) € Mn(C[x]) be of the form (1.35.1) normalized by the

condition A, # 0 if m » 1. Assume that the corresponding homogeneous matrix Alxg,%xy)

is diagonable for any co,c, € C. Suppose furthermore that no two distinct eigenvalues
i3
of A(x) touch at any finite or infinite point of the Riemann sphere. Then there exists a

constant matrix X € Mn(c), |X| # 0 such that

-1 m
(1.35.18) X AaxxX=J px |,

where DO""'Dm are diagonal matrices.

Proof. Clearly we can view A(x) as a matrix in Mn(M), where M is the field of

rational functions. Let K be a finite extension of all such that [AI - A(x)] splits to
linear factors over K. Thus A(x) £ distinct eigenvalues X1(x),...,A2(x), such that
Ak(x) has multiplicity Nye k= 1¢..,2 Thus for all except a finite number of points
(1.35.13) holds. Assume that [ satisfies (1.35.13). Denote by Pj(c) the projection

of A(x) on Aj(;), j = 1,ees,8. According to Problem 1.28.24 Pj(x) is analytic in the

neighborhood of [. Also in view of Problem 1.28.32 P _(%) is given by the formula

3
3
(1.35.19) Pi) = T [AGZ) = A (DTI/IA(E) = A ()] .
k=1,k#3 J

We claim that in the neighborhood of any point g, Pj(ys+c) is analytic in y. (In case
that § = = Pj(y's) is analytic in y in the neighborhood of the origin.) Clearly it is
enough to consider the points f at which (1.35.13) is violated. For simplicity of
notation we consider P1(x) in the neighbornood of . Assume first that § is finite.

Suppose that




ne X,(c)-...-xu(c). Xk(:) y A1(C), k= u+l,.000,8

According to Theorem 1.29.19 there exists Q(x) ¢ Mn(H:), 10(Z)| # 0 such that

-1
Q (X)A(X)Q(x) = C1(x) e Czlx). C1(x) € Mm1(HC) '

u
Cz(x) EM (H:), m1 - E n, m = a-m .
Moreover the eigenvalues of C,(x) and Cy(x) are A1(x),...,ku(x) and

X“+1(x),...,xl(x) with the multiplicities Rqseee,n, and LNVOYETENE.P) respectively.

Since A(x) is diagonable for each x, Cy(x) and C,(x) are also diagonable in the

neighborhood of . So

R
n (C,(x) = A (x)I) =0 ,
k=u+1 2 x
which yields
L
kfz (A(x) =~ Xk(x)I)/[Ai(x) - Ak(x)l =

£
o i 1 [ey(x) = A GAOTI/ZIA (x) = A (x)] @ 0)Q(x) .
k=2

The assumption that n = A1(c)-...-ku(c) and the diagonability of C,(x) imply
C1(x) = nI + (x-:)Ca(x) .

Therefore the Puiseaux series of X1(x),...,xu(x) satigfy A, (Z) =0, k= 1,,.,,8=1,

3k
j= 1,s0e,us A8 no two distinct eigenvalues of A(x) ¢touch at [ we get that

A s(C) ¥ A

1 '(t), for 3 = 2,...,u. So

3
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Also (\1(ys+;) - xﬁ(ys+;)) € H: for j = u+1,...,%. This shows that P1(ys+;) is

analytic in Hy for any finite . By considering A(x) = xmA(i) we transform < ¢to

0 and the same result applies to ¢ = ®, In particular we have that P,(x) is bounded on
: _ (1) (1) (1)

the Riemann sphere. Put P1(x) = (pij (x)). Let maxlpij (x)| = 'pij [$4

pi;)(cii + ys) is analytic in y the maximum principle implies

ij”'
(.. may be =), Aas
1)

1
that pij)(cij + ys) is constant in the neighborhood of the origin (e.g. Rudin ([1974)).
The analytic continuation principle yields that p;;)(x) is constant. Hence Py = P,(x)
is constant and in the same manner we deduce that all Pj(x) are constant. Define the

matrix X as in the proof of Theorem 1,35.11 to deduce (1.35.18).

Corollary 1.35.20. Let A(x) be of the form (1.35,1). Assume that the matrices

Agseee,A  are diagonable and Aihj ¥ Ain for some 0 € i < j < m. Then either there

exist :0,C1 € C such that A(co,;1) is not diagonable or there exists a point :0 on

the Riemann sphere (possible co = ®) and two distinct eigenvalues of A(x) which touch

at ¢

0°
It can be shown that for the matrix (1.35.14) the two distinct eigenvalues of A(x)
touch at =, (Problem 1.35.25.) However if A(x) is a pencil, i.e., A(x) = Ay + XA,

then two conditions of Theorem 1.35.17 are redundant. More precisely we have

Theorem 1.35,21, Let A(x) = + %A be a ncil in M (C(x]). Assume that for any
Iheorem Let Ay y 2e apencll 'n M, 28

; € C, AlZ) is a diagonable matrix. Then the eigenvalues of A(x) are linear functions

in x

(1.35.22) Xj(x) = aj + Bjx, I = Veee,n

In particular no two distinct eigenvalues of A(x) intersect at any point of the Riemann

sphere.




Proof, Consider a multivalued function Xj(x) which has the Puiseaux series (1.35.3)

clearly X;(x) is also multivalued functions which is given by

———y

w
o = 5 X e /e
) xk=0 ° 3
1 As A(Z) is a diagonable matrix any Xj(c) is a geometrically simple. According to
Theorem 1.32.1 Xjk =0, k=1,,..,8-1, So X;(x) is bounded in the neighborhood of .

Let 7 = », Then the Puiseaux series of Xj(x) are of the form

AL, (%)

x(:-k)/a i
i ) ;

Y -
j(x) .

Ar18

0

3 So X;(x) is also bounded at the nejghborhood of =, Now use the arguments of the last

g part of the proof of Theorem 1,35.17 to deduce that X;(x) - Bj' J=1,..0,n, This of
course implies (1.35.22)., 1In view of (1.35.,22) the equalities (1.35.16) imply that
¢ a =a ,B8 =8, i.e. A (x) =X (0 for all x,
p q P q | q
0
Problems

(1.35.23) Let A(Xx) € Mn(C[x]). Assume that there exists an infinite sequence of distinct

k}: such that A(:k) is diagonable, for k = 1,2,... . Show that A(x) is

diagonable for all but a finite number of points. (Hint - Consider the rational canonical

points (g

form of A(x) over the field of rational functions.).

(1.35.24) Let A(xo,x1) - xOAb + x1A € Mn(c[xo,x1]). Show that if A(xo,x1) is

1

; 33 diagonable for any X%, € C then (1.35.18) holds (m = 1),

1

(1.35.25) Consider the mat ix (1.35.14). Show that the eigenvalues of A(xo.x1) are
' F’ Ay = x?. A (%) = xi + xz. Prove for x, # 0 A(x;,x,) is diagonable. As A(0,x,) = xf!
'

x, £ C. Show that the eigenvalues of A(1,x) touch at

' A(xo,x1) is diagonable for all Xq X,

= =,

=161~




1.36. Strict similarity of pencils.

Let A(x) and BR(x) be two linear pencils

A(x) = A

o * xA1, B(x) = Bo + xB1 € Mn(C[x]) .

Assume that A(x) and B(x) are strictly similar. That is

1 1

(1.36.1) By = PR,PT ', By = PAPT

for some non-singular P € Mn(c). From {(1.22.5) it follows

Lemma 1.,36.2, Let A(x) and B(x) be two pencile in Mn(C[x]) which are strictly

gsimilar. Then the three pencils in (1.30.4) are strictly equivalent.

Using the Kronecker's result (Theorem 1.14.23) we can determine whether the pencils in
(1.30.4) are strictly equivalent. We now study the implications of the assumption that the
three pencils in (1.30.4) are strictly equivalent. More precisely we have

Lemma 1.36.3. Let A(x) and B(x) be two pencils in Mn(clx]) such that the first twe

pencils in (1.30.4) are strictly equivalent. Then there exist two constant non-zero

matrices U,V ¢ Mn(c) such that

{(1.36.4) A(x)U) - UR(x) = 0, VA(x) - R(x)V = 0

In particular

(1.36.5) Ao ker(V), A, ker(V) < ker(V), By ker(U), B1 ker(U) ¢ ker(U) .

Alx)I = IA(x) = 0
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the strict equivalence of the first two pencils in (1.30.4) implies that C(A,B) and
C(B,A) contains at least one non-zero matrix as the first row and column index of I @ A -

At

@I is 0, Assume that £ ¢ ker(U). That is Uf = 0. From the first equality in
(1.36.4) we deduce U(B(x){) = 0. So B(x) ker U c ker U which is equivalent to the

second part of the inequality (1.36.5), The first part of (1.36.5) is established in a

similar way.

4
b
{ Theorem 1.36.6. Let A(X) = Ay + XAy, B(x) = By + xB,, A EMIC), 1 =1,2 be two

1By

b . given pencils. Suppose that either Ay,,A, or Bj,,B; do not have a common invariant

subspace different from (0] or € (the trivial subspaces). Then A(x) S B(x) if and

only if the first two pencils in (1.30.4) are strictly equivalent.

Proof. Assume that Ao and A, do not have in common non-trivial invariant subspace.
. Then the matrix V o 0 in (1.36.4) must be non-singular in view of {1.36.5). So
A(x)} ¥ B(x). 1In case that By and B, do not have a common non-trivial invariant

. subspace we get that |U} ¥ 0.

A simple criterion for A, and A, not have a common non-trivial subspace is that
the polynomial |\l - A(x)| is irreducible over C[x,A]. (Problem 1.36.17.)

Next we show the connection between the notions of analytic similaritv of matrices
ovey "0 and strict similarity of pencils. Let A(x),B(x) ¢ Mn(Hn) and assume that
! n(A,A} = 1, Suppose that A(x) ; B(x). According to Theorem 1.33.3 A(x) * B(x) if and

only if there exist two matrices Tg,T,, |T0| ¥ 0 such that
AOTO = TOEO' A1To + A0T1 - TOB1 + T180 .
Let

{ - L
; i (1.36.7) Fla A} = | o A €M, (e .
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Then (1.33.4) in this case is equivalent to

(1.36.8) F(AO,A1)F(T°,T1) = F(TD.T1)F(BO,B1) .

As |F(T0,T1)I = ITOIZ, To is non=-singular if and only if F(TO,T‘) is non-singular.

Definition 1.36.9, Let Ai'Bi € Mn(c), i= 1,2, Then F(AO'AI) and F(BO,B1) are called

strongly similar (F(A,,A,) ¥ F(B,,B,)) if there exists a non-singular matrix F(T,,T,)
Qs [\ | Q'

which satisfies (1.36.8).
1 Clearly if F(Ay,A,) I F(By,B,) then F(Aj,A;) = F(By,By). It can be shown that the
notion of the strong similarity is stronger than the ordinary notion of similarity.

(Problem 1.36.24.)

Lemma 1.36.10. The matrices P(AO,A1) and F(BO,B1) are strongly similar if and only if

the pencils

A(x) = F(0,I) + x F(AO,A1), B(x) = F(0,I) + x F(BO,B1)

are strictly similar.

Proof. Llet P = (Pij)' Pij

Py = P22, P21 = 0, That is P = F(P1‘,P12) and the lemma follows.

€ Mn(c), i,y = 1,2. Then F(0,I)P = PF(0,I) if and only if

Clearly if F(AO,A1) and F(BO,B,) are strongly similar then Ao = Bge Without the

restriction in generality we may assume that AO = Bje (See Problem 1.36.19.) Consider

all matrices T Ty satisfying (1.36,7). For By = AO (1.36.8) reduces to AOTO = TOAO'
AgTy = TyAg = TpBy = AyTpe According to Theorem 1.23.3 the set of all matrices T, which

satisfies the above requirements is of the form

P(A1,B1) = {TOITO € C(Ao), tr(v(T, B, - A1w0)) = 0,

(1.36.11) 1

Ve C(AOH
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We also observe

Lemma 1.36.12. Suppose that P(AO,A1\ 3 F(Ao,B1). Then

(1.36.,1) dim P(A1,A1) = dim P(A‘,ﬂ‘) = dim P(B1,B‘) .

i As in Theorem 1,22.9 for a fixed AO,A1 there exists a neighborhood D(A',p) such that
] N the first two equalities in (1.36.13) imply that F(Ra,Ay) & F(Ry,Ay) for B, € D(A,0)
4 !
i (Problem 1.36,18%,
it

L

Next we consider a splittina result analogous to Theorem 1,29.19,

3 Theorem 1.36,14., Assume that

0y (0} (0)

«36.15 - di -
(1.36.15) Ao dxaq(A1‘ ,A22 ), Aii € M"x(C)' i 2 ,
(0) (o)
where A11 and A22 do_not have a common eigenvalue. Let

2 2
(n ()
A <Aij > ) <ij )1

be the conformal partition of A, and B,y with Ao. Then

(tn _(1) (1 1)

P =
(1.36.16) (A1,P1) P(A1‘ ,31‘ Y @ r(A22 ,822 ) .

: ) (1) L .(0) (1)
Moreover, F(AO,A,) ? P(AO,B1) if and only if F(Aii 'Aii ) % F(Aii 'Bii ) for i= 1,2,

Proof. According to Prohlem (1,21.22)

s

o) (0)
C(Ao) C(A‘1 Y & C(A22 ).

Then the trace condition in (1.36.11) reduces to




() (1) _ ,{1).(0) (0) (1) _ (1) (0),, _
trlv, (T,7'B,, ATy ) + v, (T, "B, Ryy'Ty )] 0

Here
_ m(0) (0) (0) (0)
V=V1QV2, TO—T,‘ 0'1‘2 G:C(l&11 )OC(J\22 ) .
R : . _ (0) (0)
Choosing either V, = 0 or V, = 0 we obtain (1.36.16). &s |T0| = IT1 | |T2 l, Tg
0
is non=-singular if and only if Té ) and Téo) are non-singular. This establishes the

last claim of the theorem.

C

Thus, the classification of strong similarity classes for the matrices F(Aj,A,)

reduces to the case where A is nilpotent (Problem 1.36.20). In case that = 0 the
0 p

notion of the strong similarity reduces to the standard notion of similarity. In case

that A, = H(n) the strong similarity classes of F(A,,A;) are classified completely

(Problem 1.36.23). This case corresponds to the case discussed in Theorem 1.29,.17. The

case A, = H(n) ® H(n) can be also classified completely using the results of Problem

1.33.20 (Problem 1.36.25).

Problems

(1.36.17) Let A(x) € Mn(C[x]) and assume that A(x)U0 c U where U is a subspace of

S, 1< 4dimU < n-1, Let p(A,x) € C[A,x] be the minimal polynomial of the restriction

of A{x) to U. Thus deg p(A,x) € n-1. Prove that p(),x) divides |\I - A(x)!., That

is [AI = A(x)| is reducible over C[X,x]).

(1.36.18) Modify the proof of Theorem 1.22.9 to show that for fixed AO,A1 then there

exist © > 0 such that the first two equalities in (1.36,13) for B £ D(A,p) imply that

F(Ry,Ry) X F(Ay,By).

1

(1.36.19) Prove that F(A,, Ay} 3 F(By,B,) 1f and only if F(Aq,A,) = r(paop“,pa1p‘ )

for any non-singular P. Suppose that F(AO,A1) X F(Bn,81). Show that it is possible to

o choose P such that Aq = PBOP".
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(1.36.20) Prove that P(AO.A1) ) F(BOIB1) if and only if F(Ao - XI,A1) =z F(Bo - AI, B1)

for any A.

(1.36.21) Let F(AgseessAg_y) = (Fyy), Fi o € M (€, 1,5 = Vieeeys, Fyy = Ay for
1¢:¢3j¢<s, Fij =0 for 1< j<ics. FlAy,eee,A;_4) and F(By,...,B;_4) are

called strongly similar (F(AO""'As-1) X F(Bp,ees,Bg_q)) if there exist

F(TgreessTg_q) such that F(Ag,..e Ay q)F(Tg,eue, Ty q) = F(To,eae,Tg q)F(By,eee By _q)e

Prove that F(Ao,...,As_1) %= F(BO,...,B5_1) if and only if the equalities (1.33.4) holgd

for k =0,1,¢4.,8~1 where |T0| # 0,

(1.36.22) Let

Z = H(n)®...8H(n), X = (X ), Y=(Y ) eM(C), m=sn ,
Pq Pa m

X - (x;‘j"’)), - (yi‘j’q)) €M (C), pia = Tieeess -
Define
A= (a;;)), B = (b;;)) € MS(C) '
a(r) - T (pq) ¥ - r;1 (pq) L= 0,000,n=1 .

ertie)i’ L Yiner+i=
Pq 121 (n=-r+i-1)i’ “pq 4=1 (n=r+i=-1)i

Using Theorem 1.21.9 prove that F(Z,X) X F(2,Y) if and only if F(Ag,..., A _4) %

F(Bo,...,Bn_1). {To do that one needs the following auxiliary result. Consider X = (qu)

of the above form. Assume that each qu is an upper trianqular matrix. Expand the

determinant of X by the rows n,2n,...,sn and use the ‘.duction to show

n ( )S
X1 = M |(x. Py 1.
=1 rr  p,q=1

(1.36.23) Use the two preceding problems to prove that F(H(n),X) X F(H(n),Y), X = (x40,

Y = (yij) € Mn(c) if and only if




1 x(n-r+i)i = i y(n-r+i)i for r=1,...,n .

r
T
-

r
v
L

i 1

(1.36.23) Let X = (xij) € Mz(C)' Prove that if X5 # 0 then F(H(2),X)= H(4).
Combine this result with Problem 1.35.23 to show the existence of Y ¢ Mz(c) such that
F(H(2),X) = F(H(2)Y) but F(H(2),X) ¥ F(H(2),Y).

(1.36.25) Assume in Problem (1.36.22) s = 2. Let

n-1 i n=-1 i
A(x) = Z Ax", B(x) = | B.x €M (H) .
: < 20
i=0 i=0
Using the results of Problems (1.36.21) - (1.36.22), Section 1.33.3 and Problem 1.33.20

prove that F(Z,X) X F(2,X) if and only if the three matrices in (1.30.4) have the same

local invariant polynomials up to the decvee n-1.




Mogs of t-¢ material in Sections 1.1 - 1.8 is standard. See Lang [1967] and van der
Waerden (12897 for the algebraic concepts. Consult Gunning-Rossi [1965] and Rudin [1974]
for the rmaterial concerning the analytic functions. See Kaplansky [1949] for the
properties of elementary divisor domains. It is an open problem whether there exists a
Rezout domain which is not an elementary divisor domain. Theorem 1.5.6 for I = C is due
to Helmer [1940). A nice introduction to the theory of algebraic varieties can be found in
Lange [1958).

Section 1.9 is standard, e.g. Curtis and Reiner [1962) and MacDuffee [1933]. Most of
the content of Section 1.10 is well know, e.g. MacDuffee [1933]. Perhaps Lemma 1.10.3 is
not comrmon. The content of Section 1.11 seems to be new since the underlying ring is
assumed to be only a Bezout domain. 1In case that the underlying is EDD, i.e., A |is
equivalent to a diagonal matrix. Theorems 1.11.7 and 1.11.12 are well know. It would be
interesting to generalize Theorem 1.11.7 for D = F[x1,...,xp], for p > 2. The fact that
the Smith normal form can be achieved for the elementary divisor domain is due to Helmer
{1943]). Consult also Kaplansky [1949].

Most of the results of Section 1.13 are from Friedland [1979b). It is an open problem
whether the results of Problem 1.13.26 hold for any < cp. In case that § = D(0,p),

{zlg = (;1""’Cp)' '51 Ilez < p} the results of Problem 1.13.26 apply. This follows
from the Cartan theor;m b, e.g. Gunning and Rossi [1965]). This result is due to
J. Mather (unpublished).

The exposition of Section 1.14 is close to Gantmacher [1959]. The content of Section
1.15 is standard. Theorem 1.16.7 is well known (e.g. Gantmacher (1959]). Other results of
Section 1.16 are not common and some of them may be new. Section 1.17 is standard and its
exposition is close to Gantmacher [1959]. Theorem 1.18.5 is probably know of BEDD (see

Leavitt [1948] for the case N = H{Q), 2 ¢ C). Perhaps it is new for Bezout domains. The




results of Section 1.19 are standard. Theorem 1.20.10 appears implicitly in Friedland
[1979b). The exposition of Section 1.21 is close to Gantmacher [1959]. For additional
properties of the tensor product of matrices see, for example, Marcus and Minc [1964].
Problem 1.21.28 is close to the results of Faddeev [1966] for necessary and sufficient
conditions for the similarity of A and B over Z. See also Guralnick [1980] for a
arbitrary integral domain D. The results of Section 1.22 are recent. Theorems 1.22.3 and
1.22,7 are taken from Friedland [1979b]. See Gauger and Byrnes [1977] for a weaker version
of Theorem 1.22.7. Some of the results of Section 1.23 seem to be new. Theorem 1.23.3 was
taken out of Friedland [1979a). Theorem 1.24.1 is due to Friedland ([1979b].

The exposition of Section 1.25 is close to Gantmacher ([1959]. The results of Section
1.26 were inspired by the paper of Rothblum {1980]. The notions of local indices can be
found in Friedland-Schneider [1980]. The content of Section 1.27 is standard. Theoren
1.27.9 can be found for example in Wielandt [1967]) and Problem 1.27.12 in Gantmacher
[1959]. The use of the Cauchy integration formula to study the properties of the analytic
functions of A is well accepted. See for example Kato [1976]. The results of Section
1.29 are due to Arnold {1971). See also Wasow [1977]. See Wasow [1963), [1977] and (1978}
for the notions of analytic and pointwise similarity and their importance in theory of
differential equations in the neighborhood of singularities. Theorem 1.30.8 in case of one
complex variable appears in Friedland [1979b). Corollary 1.30.11 goes back to Wasow
[1963]. Theorem 1,31.1 for simply connected domains is due to Gingold [1978]. See Wasow

~

[1978] for the extension of Theorem 1.31.1 to certain domains & ° c®. It is shown there
that Theorem 1,.,31,1 fails even for some simply connected domains in C3.

Theorem 1.32.1 can be found in Kato [1976] or Friedland [1978]. The results of
Sections 1,33 - 1,34 were taken from Friedland [1979b]. 1t is worthwhile to mention the
conjecture stated there that A(x) and B(x) are analytically similar over H, if the
three matrices in 1.30.4 are equivalent over H,. Theorem 1.35.11 is new. Theorem 1.3%.17
is taken form Friedland {1980]. Theorem 1.35.21 and Problem 1,35.24 are Aue to Motzkin-

Tausgky [1955]). See also Kato [1976) for a proof of these results using the method of

analytic functions. Most of the results of Section 1.36 are taken from Friedland




(1979a~b]. Some results and references on the problem of strict similarity of pairs

) (A,B) of matrices under the simultaneous similarity can be found in Brenner [1975]. See

also Procesi for the extensive treatise on the invariants of pairs (A,B) under the strict

similarity.
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