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ABSTRACT

Consider the nonlinear Volterra equation

(V) u(t) + (b*Au)(t) a f(t) (0 < t < m)

in the general setting b : [0,-) + R a given kernel, A a nonlinear m-
accretive operator on a real Banach space X, f : [0,-) + X a given function,
and * the convolution. This paper, based on lectures delivered at West
Virginia University, discusses existing and recent results for the following
problems concerning (V): 1. the global existence and uniqueness of solutions
and their continuous dependence on the data, 2. the boundedness and
asymptotic behaviour as t + - in the special cases when X = H is a real
Hilbert space and A is either a maximal monotone operator on H or A is a
subdifferential of a proper, convex, lower semicontinuous function
P: H + (-,+-], 3. the existence, boundedness, and asymptotic behaviour of

positive solutions in the general setting. The theory is used to study one
possible model problem for heat flow in a material with "memory" which can be
transformed to the equivalent form (V) under physically reasonable
assumptions; the latter provide a motivation for the natural setting of much
of the theory developed here. This and various other models for heat flow in
such materials are formulated from physical principals and discussed in an
introductory chapter.

AMS (MOS) Subject Classifications: 45D05, 45J05, 45K05, 45G99, 45M05, 45M10,
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SIGNIFICANCE AND EXPLANATION

Thee notes on lectures delivered at West Virginia University preceding
the conference on Volterra and Functional Differential Equations in June 1979,
concern the existence, uniqueness, positivity, boundedness, and asymptotic
behaviour as t + - of solutions of the nonlinear Volterra equation

(V) u(t) + (b*Au)(t) a f(t) (0 C t < )

The general setting for V is as follows: b : [0,m) + R is a given
kernel, A is a m-accretive, possibly multivalued, operator on a real Banach
space X, f : (0,m) + X is a given function, and * denotes the
convolution; the integral in V is taken in the sense of Bochner. The
special cases of A maximal monotone on a real Hilbert space H, and
A = a%, the subdifferential of a proper, convex, lower semicontinuous
function P : H + (-,] will also play a prominent role, primarily in the
boundedness and asymptotic theory for (V).

It should be observed that if b =1 and f e WI" (0,-;X), where W
denotes the usual Sobolev space, equation (V) is formally equivalent to the
evolution problem

M AR + Au a f' (0 < t < -), u(O) - u0 - f(O)

Thus the theory for V) is to a considerable extent a generalization of the
theory of evolution equations, and uses most of the techniques for the latter
combined with techniques for Volterra equations developed in recent years.

Chapter I is primarily intended for motivation. Beginning from simple
physical principles equation (V) is derived as one possible mathematical model
for nonlinear heat flow in a homogeneous body of material with memory
following ideas of B. D. Coleman, M. S. Gurtin, R. C. Mac Camy, W. Noll,
J. W. Nunziato, and A. C. Pipkin. While the derivation is restricted to one
space dimnsion, he modification for heat flow in a homogeneous body
a in R or R of isotropic material is also indicated. One purpose of

Chapter I is to arrive at a physically reasonable set of conditions concerning
the kernel b in (V), under which one can expect boundedness and the kind of
asymptotic behaviour of solutions of (V) solutions studied later in Chapter
3. The kernel b in V) does not arise directly from physical principles;
rather, it is the case that b is expressed in terms of two physically
measurable quantities (at least in principle) about which one can make
appropriate assumptions based on physical considerations. The types of
assumptions made concerning the operator A and the function f are also
motivated. In particular, A is a nonlinear second-order elliptic partial
differential operator in the space variables which incorporates the boundary
conditions, and f depends on the external heat supply, the initial
temperature distribution in the body and the history of temperature in the
body. If b i 1, then in the application (V) is equivalent to the classical
nonlinear heat equation in an ordinary body.

Another purpose of Chapter 1 is to point out that heat flow in certain
materials with memory can also be modelled by integrodifferential equations

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



other than (V). Limitations of space do not permit us to discuss the
qualitative aspects of these alternative models in any detaill however,
references to relevant existing literature are given.

Chapter 2 discusses the theory of existence, uniqueness, and continuous
dependence of global solutions of (V), both in the general case of a real
Banach space and in the special case of a real Hilbert space, and for A- D
where the results are stronger. The development is primarily based on recent
joint work with M. G. Crandall [261, and partly on a recent paper by
G. Gripenberg [341. References to earlier and related literature are given.

Chapter 3 develops the theory of boundedness and asymptotic behaviour of
solutions of (V) as t + -, under assumptions partly motivated by the heat
flow problem formulated in Chapter 1; application of the theory to this
problem is given. The development is based on forthcoming joint work with
P. Clement and R. C. Mac Camy [20]. References to other pertinent literature
are given.

Chapter 4, based on recent and forthcoming joint work with P. Clement,
[18], (19], as well as recent work by Clement [17], discusses the existence,
boundedness and asymptotic behaviour as t + - of positive solutions of (V)
under assumptions which are also motivated by the heat flow problem in Chapter
1. This problem is then used to illustrate the theory. The reader should
recall that it is classical that solutions of the heat equation are positive,
if the Initial temperature distribution and the external heat supply are
positive. Some of the results of this chapter were presented at the West
Virginia Conference by Clement.
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NONLINEAR VOLTERRA EQUATIONS FOR HEAT FLOW IN MATERIALS WITH MEMORY

John A. Nohel

Chapter 1

Volterra Equations Occurring in Heat Flow in Materials with Memory

I*I*Introductory Remarks. The purpose of this chapter Is to derive from physical

considerations several mathematical models for nonlinear heat flow in materials with

memory. For simplicity we shall limit most of our considerations to heat flow In one space

dimension and remark about the situation in the multidimensional case.* The primaryf objective is to arrive at equation (V) in Section 1.2 below under physically reasonable

assumptions on the kernel b, the operator A and the forcing term f. This particular

mathematical model motivates many of the considerations in Chapters 2, 3, and 4. In

sections 1.*3 and 1.4 we shall also derive two other models for heat flow in materials with

memory which have been and are being studied. but due to limitations of space we will only

refer the reader to the relevant mathematical literature for their analysis.

2Me mathematical models are derived from the follcwing general considerations of

energy balance for heat transfer in a body. a in 3P (n U 1.2,3). If £(t~x) represents

the Internal energy, q( tx) represents the heat flux,* and h(txz) represents the heat

supply, where t is the 'iAe and x is the position in the body, then the energy balance

equation is

(1.1) ata-di4 +h (t )O , x C

4 The classical linear heat equation which accurately describes heat transfer by conduction

in many materials is derived from (1.*1) by assuming that the beat flux obeys Fourier's laws

qm -c*s grad u

where c.a, 0 is the constant thermal conductivity and a represents the temperature in.

the body at time t and position x. It Is also assumed that the Internal energy depends

linearly on the temperatusre

a g as beu

balance (1.*1) then yields the linear heat equation

sponsored by the United States Army under Contract Nos. DAA29-75-C-0024 and DgM29-50'
C-0041.
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bsut c O2u + h

which adequately describes the evolution of temperature in most homogeneous and Isotropic

rigid bodies.

"Nowever, some materials exhibit memory effects (materials of fading memory type, see

Coleman and MIzel 1231) for which the classical theory is unable to account. Beat flow In

such material is modelled by assuming that the Internal energy £ and the heat flux q

are respectively functionals (rather than functions) of the temperature and of the gradient

of temperature. The considerations which follow are based on extensive research by

Coleman, Gurtin, Noll, Plpkin, Mac Camy, Mizel, and Nunziato (see especially Coleman (211,

Coleman and Gurtin (221, Coleman and Mizel 1231. Gurtin and Pipkin (391, Mac Casty [571,

1531 (591, Nunziato 1681 ).

2. A Model for Nonlinear Heat rlow in a Material with Memory. 'We consider nonlinear heat

flow in a homogeneous bar of unit length of material with memory with the temperature

u - u(tx) maintained at zero at x - 0 and x - 1. We shall assume that the history

of u Is prescribed for t ( 0 and O 4 x 4 1. The equation satisfied by u in such a

material is derived from the assumptions that the Internal energy c and the heat flux

q are functionals (rather than functions) of u and of the gradient of u

respectively. According to the theory developed by Coleman, Crtin, Noll, Pipkin, Mac Cemy

and WunLato (see e.g. Mac Cany (571 (591 and Munziato (681) for beat flow id materials of

fading memory type the functionals 9 and q are taken respectively as:

It
(1.2) s(tex) a boU(t,x) J B(t - s)u(s,x)ds (t ) 0t 0 ( x 1) *

Sj'

t
(1.31 q(t,x) - -Co(u(.x) * J ylt - sla(u (s'x))ds (t P o 0 C x 4 1)

f

Zn writing the functionals S and q we hae asmed for simplicity and without loss of

.1

1
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geserelity that the history of the temperature u is prescribed as zero for t < 0 (if

this Is not the ease and if the history of u Is sufficiently smooth for t < 0 aud

* X u ( 1e this has the effect of altering the forcing term h in equation (1.4) below -

ad consequently also G in (1.6) below - by additional known forcing terms). In (1.2).

(1.3) b0 > 00 cO . 0 are given constants, SY : 10,-) + R are given sufficiently smooth

functions which we call the internal energy and heat flux relaxation functions

respectively.

The real function a : R in (1.3) will be assumed to satisfy the assumptions

(a) of Lema 1.3 below. It should be noted that the case G(r) I r gives rise to the

linear model derived in Nunziato (681, and that (1.3) is one reasonable generalization of

the beat flux functional for nonlinear heat flow.

In the physical literature it is customary to define

t

K*(t) - b Y (s)ds (0 t •)
qp 0

* 5 the internal energy relaxation function: thus e(0) - b0 and o. Ct) - 6(t).* Similarl,

5e(t) -c 0, -f.~ y(s)ds (o (ti•)

0

Is defined as the heat flux relaxation function, so that w(0) - c. and wo(t) - -y(t).4

the (1.2), (1.3) are replaced respectively by

Af t
(10.2) C(tz) % + e(O)u(t~x) + f al(t - s)u(sx)ds. s* • 0

(13') q(t x) - 4(O)0(ua) - f a'(t - s)a.ul(sx))d

see [69, (5.13)0 (5.11)] ware the linear case 6(r) 5 r Is considered. The quantity

u(0) Is called the Instntaneous heat capacity while a() is the equilibrium heat

-3
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capacity and similar definitions for the ic(0) and K(-n). It is shown in 1661 that

a() ) e(O) ) 0, and that KIO), x(-) are nonnegative.

In the physical literature . y are usually assumed to be decaying exponentials vith

positive coefficients. As we shall see the theory developed in Chapters 2-4 permits a much

greater generality, and we shall merely have to require that 0(0) > O Y(O) - 0, that B

and y 9 L (0.m)v and that

t t
b0 +I *(T)dr>O, c0 -f y(T)dT>O (O t <-)

0 0

Which corresponds to the physically reasonable assumptions a(t) > 0, K(t) > 0, 0 4 t < .

We shall also assume that the conditions

(1W) b0*+ Re (in) ) 0 (n R),

(¥) c*0  'Vy(T)dT 3 0
0

where B(L) * f St)exp(-int)dt, are satisfied. assumption (y) states that K(-1) 0.
0

The above assumptions will be motivated presently. . Remark 4.8 in Chapter 3 below shows
t t

that the physically reasonable assumptions b0 + I (T)dr > 0 and co - I Y(T)dT ) 0
0 0

(0 4 t < -) are actually not essential for the theory developed in Chapter 3 to apply.

If h - h(tx) f Loe(OM;L2(0,1)) represents the external heat supply added to the

rod for t 0 0 and 0 < x < 1, and If u(O,x) - uO(x), 0 < x < 1, is the given Initial

temperature distribution, the law of balance of heat (1.1) shows that In one space

Sdimension the temperature u satisfies the initial-boundary value problem

V 4(boa + Pa] ofulx) 1 - iea(u) + h (0 < t <. 0 < a )

UO.x) - Uolx) (0 < x < 1), UltO) - u(t.l) a 0 (t ; 0)

where subscripts denote differentiation with respect to x and where • denotes the

emvolution on [Ot). Note that In an ordinary material Y 1 0, and (1.4) becomes

e onlinear heat equation In one space dimension.

'

- *- 
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The next task I to transform (1.4) to the equivalent form (V) belov vhich will be

Used for the analysis. Define

t
(l~s)C(t) - C9 -  YT )dT to < t < - ,

" 0

t
(1.6) GCt'x) - b~u0 0x) + f h0T,x)dT (0 C t , 0 < x <)

0

noting that

at (CaCU)x)Ct'x) - c0 (ux(t'x))x - (Y*a0ux x)(tx)

and Integrating (1.4) using the initial condition, and (1.6) yields the equivalent Volterra

equation (to (4.3)):

(1.7) b u(tx) + CS*u)(t,x) - (C*a(u x) x)(tx) + G(t,x) (0 < t < -, 0 C x 4 1)

where u satisfies the boundary conditions u(t,O) - u(t,1) = 0 (t ) 0).

We next define the nonlinear operator A formally by the relation

(A) An - -a(u )x  where urt,O) - u(t,1) E 0

In order not to interrupt this development we postpone a precise definition of A to Lemma

1.3 below. Then t.e Volterra equation (1.7) has the abstract form

1  b 0 u+ 6u + CAu- G (0 t <)

to transform (V1 ) to the equivalent form (V) belo define p t (0-) 1 U to be the unique

solution of the linear Volterra equation (called the resolvent kernel of 9):

(0) b0P(t) * ( ))t) - - t <

It Is standard that if b0 • 0 and 9 L aO ,) equation (P) has a unique solution

p S (0,-). Applying the variation of constants formula for Volterra equations (631

(boy + Oy -=g <-- y - pe,)boOS

finally yields that (V1 ) Is equivalent to the abstract equation

gf) Ifhebe (0 t <)

with the definitions

'-5
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(b) b(t) - + (P*C)(t) (a 4 t < )
10

G(t,-)

(f) f(t) + . (p*G)(t..) (0 ( t ( )

Similar considerations show that for heat flow In a bounded homogeneous body n of

Isotropic material with memory in R2 or R3 with a smooth boundary r, the

temperature u will also satisfy the abstract Volterra equation (V) with the kernel b

and forcing term f given exactly as above, but with the nonlinear operator A defined

precisely in Remark 1.4.

We next comment on the significance of the assumptions concerning B, y as well as

(P) and (y). Since the relaxation functions 0 and y are generally taken as decaying

exponentials with positive coefficients in the physical literature, it is certainly

reasonable to assume that Oy e L (O,-) and that 0(0) > 0, y(O) > 0. We next motivate
t

the assumption that b. + J S(T)dr > 0 (0 < t < -). A similar reasoning motivates
t *

c 0 - IY()dt 3 0 (0 4 t < -). Consider the internil energy c defined by (1.2) and
0suppose that the temperature u is maintained at zero up to time to and at a state

(x) 3 0 (0 < x 1 for t > t O. One would then expect the internal energy to be

positive for t > to I the function 0 is positive for t 0 this is automaticallyt

the case. However if not, the assumption b0 + f O(T)dr > 0 (0 I- t <- is natural in

view of the fact that in this situation

t6(ct., ~ + Ol)dT, Ito 4 t < -
II

Since 1 L1 (0,0) equation (4.1) shows that c is bounded whenever u isa

bounded. The assumption (P) implies that b. + B(t)dt ) 0 (take n - O) thus if
0

umxt) tends to an equilibrium state Z(X) ) 0 as t * (1.2) implies that the

corresponding limiting internal energy 7(x) > 0 as Is -to be expected. For physical

reasons it Is also to be expected that If e Is bounded the temperature should be

bounded. Applying the variations of constants formula to (1.2) yields



u(tx) = c(t,x) + (P*C)(tx) (0 ( t ( , 0 ( x < 1)
b
o

where p is the resolvent kernel of 0 defined by equation (p). Thus to have u bounded

whenever t is bounded it is sufficient to require that p e L1 (0,). But by the Paley-

Wiener theorem (691 applied to equation (p), 8 e L1 (0,) implies that p C L1 (0,) if

and only if

b0 + B(z) * 0 for Re z ) 0

The condition (Pw) now results from taking the real part of this expression, noting that

for physical reasons one wants b0 + ;(0) > 0, and arguing as in the proof of Lemma 2.2,

Chapter 3.

To motivate assumption (M) suppose that u(tx) + U(x) as t * - and that

>(x) > 0, implying that (du) 0 (see assumptions (a) below). One then expects
dx dx

that the limiting heat !lux q(x) in equation (1.3) is strictly negative, if the *)rocess

being modelled represents "forward" heat flow; condition (Y) insures that this is the

case.

We shall next see that the physically reasonable assumptions b0 > 0, c0 > 0, (PW)

and (y), toqether with some mild additional technical assumptions, imply that the kernel

b in the Volterra equation (V) defined b) satisfies the assumptions

(Hb) b(t, - b + B(t), b(0) > 0, b, > 0, B,91 e L (0,-)

these will play an important role in the application of the boundedness and asymptotic

theory developed in Chapter 3, Section 3, and in the application of that theory to heat

flow described by the problem (1.4) above in Chapter 3, Section 4. One has the following

result whose elementary proof is omitted:

Lemma 1.1. Let b0 > 0 c0 , 0, Y, tO, ty e L (0,0), and let assumptions (PW)

and (y) be satisfied. Define

of y(t)dti ( 1 .8 ) b - - 0
b6
b f " (t)dt

0

-7-



01.9) B(t) £L~2. + (P*C)(t) -

b0

t
where C(t) =co - f y(T)dT, and p is the resolvent of 0 uniquely defined by

equation (P). Then ba > 0 and 3.8' e L 1(0,-), and b(t) b.~ + B(t) satisfies (Nb)
o 0

with b(0) = b > 0, B(O) = b -0 > 0.
0 0

The next elementary result gives physically reasonable sufficient conditions on the

relaxation function 0, the initial temperature distribution uO, and the external heat

* supply h in order that the forcing term f in (V) defined by equation (f) will satisfy

the assumption

1,2 2
(Hf) f(t) - f., + F(t), F CW ((0,-);N), F' C L (0,-;H)

loc

where N is the real Hilbert space L 2 (0,1) and W is the usual Sobolev space.

Assumption (Hf ) will play an important role in the boundedness and asymptotic theory of

Chapter 3.

Lemmsa 1.2. Let H - L2(,1) and uO e H1I (0,1). Let B e L 1 (0,-) () L 2 (0,-) and let
0

assumption (PW) be satisfied. Finally, assume that

(h) h e L I(0,-;H) f) L 2(0,-;H)

Then the function f : 0,-) x (0,1) 4 N, defined by equations (f), (G), where p is the

1;2( 1
resolvent of 0, satisfies f e W 1C ,;H) and f(0,x) =u Cx) E H 0(0,1). Moreover,

f(t,n) =f.(x) + F(t,x) (0 4 t < -,0 < x <1)

where

0.10)f.(x) (b u (x) + fh(r,x)dr)(- + f p(T)dT)
00 0 0o 0

F(t,x) =G(t,x) + PG( )- f.(x) = L T h(T,x)dr
(1.11)0b 0

-f P(t-s) f" h(r,x)drds -fm P(r)dT(b uOCx) + T h(T,x)dT)

0~ a 00 0

and LFe L 2(0,";H). If in addition tO E L (0,-) and th e L (0,:NH), then F e L 2(O,N;).

1' -a-



Sketch of Proof of Leona 1.2. The assumptions e L (0,) and (PW), together with

the Paley-Wiener theorem 169], applied to the resoivent equation (p) imply that

P C L (0,). But then the assumption B e L 2(0,-) and the fact that p C L (0w) imply

that also P e L 2(0,) from the resolvent equation. These facts combined with the

definition of f in (f) and assumption (h) yield the formulae (1.10) for f. and (1.11)

for F given in the statement, as well as f e WI(0,',H). From formula (1.11) one

easily proves that

(1.12) L (t,x) - 0h(t,x) + b0 u0 (x)P(t) + (Poh)(t,x) (0 4 t < m, 0 C x : 1)

then e L (0,-;H) follows from h • L 2(0,-H) and P e L (0,-) rl L 2(0,m). Finally,

(PW) and tB 9 L (0,), together with 0 c L (0,-) imply that to e L (0,-) from the

resolvent equation. This, together with the assumption th C L (0,-) and routine

estimates applied to the formula (1.11) yield F e L 2(0,;H). This completes the proof.

The next task is to live a precise definition of the operator A in the abstract

equation (V) for the heat flow problem under study. Let H - L
2 
(0,1) be the real Hilbert

space of square integrable functions on (0,I). Let c : R + R satlsfy the assumptions

(0) a C c (a), C(O) 0, o'(c) ) p0 
> 

0 R C R)
+

for some p0 
> 0. Def ine W R + R by

or 
P2

o( )) f• qm- r~j (r 9 R)
0

and define H * (-, '] by

11

dxA (x))dx if Y e IRo(0,1)*('.13 - y) --

otherwise

Lemma 1.3. Let the assumptions (a) be satisfied and let • : H (,1 H be the function

defined by (1.13). Then € is convex, l.s.c. and proper on H, and

-9-



Ay - 3
.(y) - - H 1 (0,1) dx a C L

2 (0,1)}
dx: dx'' 0~~ -x jy

where 3. denotes the subdifferential. Moreover, s(y) ) 0, %(y) * - as

f Iy(x) 12dx * a, and (y,M(y)) ) p0 w2 f ly(x)12dx, where (.,o) denotes the scalar

0 0
product in H.

Sketch of Proof of Lemma 1.3. The first result is standard see Brizis ([14],[15]).

To prove the last two conclusions let y e HI(0,1); then from the definition of 0 and

the PoincarZ inequality one has

0 (-) ),L II (x) 2 dx )!r I IY(x)I 2dx 0 0
0 0

12

and 4(y) + - as f Iyx)I 2dx + -. Moreover,
0

I

(y,'s(y)) -- f YiWx d O(k (x))dx
0

I]

and an integration by parts, y e H 0(0,1) and the Poincare inequality give

111

dx jj pf (x)
2
dx ) p0i

w 2 f ly(x)I2
dx

0 0 0

While our considerations of the heat flow problem are primarily in one space

dimension, we indicate how to define the nonlinear operator A a ao in (V) for the heat

flow problem in two or three space dimensions such that the function 0 satisfies the

conclusions of Lemma 1.3 tnder the physically reasonable assumption (M) below.

Remark 1.4. Let fA be a bounded domain in Rn (for heat flow n - 2 or 3) with smooth

boundary r. Let X : R
+  

R be a given smooth function satisfying the assumption

{ A(O) > 0, there exists p0 > 0 such that X(C) • p0  and

(A(O) + AW( ) P0  (C e U)

+

Define A: R R by

-10-
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AM)- (3,~d ((rr C3t).

Let 3 L L2 CU) and define

ACIVuI~dx if u C R IA

otherwise

Then it Is readily verified that v i R + (-t4-1J is convex, i.c.c., and proper on H and

With

1 2
DCSv) - fu C H 0(a2) : Y.C)XCIVut)Yu) e L. (2))

Clearly V(u) )0 Cu e R) and by the Poincar; inequality O(u) *-as 1u *m Using

Integration by parts and the Poincar; inequality one also has the coercivity condition

CAkuu) ), kp 0 Iuin

where k ), 0 is the constant In the Poincar; inequality.

The results of Lemmsas 1.1-1.3 and of Remark 1.4 will be used in Chapter 3, section 4,

to discuss the global existence, uniqueness, boundedness and asymptotic behavior of the

solution of the initial-boundary value problem (1.4) using the theory which will be

developed for the equivalent abstract Volterra equation (V).

3. A General (Parabolic) Heat Flow Model. We consider the same heat flow problem as In

section 2. i n this model we assume that the internal energy Is given by the functional

(1.2), but we assume the following more general form of the heat flux functional

It
CI104) q~t,x) -*Cu3) - I a~t -s)a(uCs,x))ds Ce IV 0)

0

where we again assume that the history of temperature Is prescribed ansze for It <

and 0 4 x 4 1. T he real function R -0 R , #(0) - 0 satisfies the same assumtions as

a*I LomZeia 1.3, section 2. If c(. a(c*.), and a -y (I.*. In the notation of

aboom



(1.3') O(t) - a(t)) (1.14) reduces to (1.3). We assume that *, a, and the external

beat supply h satisfy the same type of smoothness assumptions respectively an B and y

In Section 2. We assume again that

t
bo  ! 0dT, 0 o(0 t -)

0

and that aCO) 0 0. For physical reasons it Is also reasonable to assume that

St ) ) 0 1 f 30 0 , t '0 0

0 )0 if 0, ;,t) 0

and that

3 J 0 if C 0

0 i a f C 0

pplying the energy balance equation (1.1), and using (1.2), (1.14) and h shown that

the temperature u satisfies the initial-boundary vilue problem

bou t + B(O)u + 0'eu - #(u )x + Oa(ux)x + h' (0 < t < , 0 4 a ( 1)

MIS1) U(t,O) - n(t,1) 1 0 (t) O)

u(O,x) - u0 (x) t x < 1)

U1te that if a - M 30, (1.15) reduces to the nonlinear heat equation. Defining the

epertors A, 3, L by the relations:

n U - -O(uX)x Where u(tO) - u(t,) a 0

On - -(ux)z where u(t,O) - u(t,1) 3 0

In - 0(0)u + 00*n

and taking (without loss of generality) b - 1, one seem that the problem (1.15) has the

abstract form

+du + a*u + -h (0 b to 4t )

-12-



If the functions o and * satisfy the assumptions (a), Lefat 1.3 shows that A and 5

are subdifferentials of proper convex, l.s.c. functions defined on the real Hilbert space

a .L2(0,1). If the relaxation function B has ' 1 L.(0,), the linear operator L is

well defined.

The abstract problem (V) has been investigated by a number of authors combining

techniques of Volterra equations and the theory of monotone operators. If B E 0 V. Barbu

IS]1 (71. Darbu and Malik (11] studied the problem of global existence; a more complete

existence theory for considerably more general kernels a, as vell as a discussion of

boundedness ard asymptotic behaviour, was developed by Crandall. Londen, and Nohel (281.

?he latter, see (28, p. 717], also permits in the existence theory Lipschitz type

perturbations of the operator A: this essentially covers the case of the specific

oerator L in the present application; the details of this generalization of the

existence theory have recently been worked out by N. Jr. Luo as a part of a forthcoming

Ph.D. thesis at the University of Wisconsin-Madison.

2he general assumptions for the existence theory in 128] concerning the operators

& and B are roughly speaking as follows. The operators A and B are subdfferentials

of proper, convex, l.s.c. functions defined on a real Hilbert space H; 3 dominates A in

a certain precise sense (see (28], inequality (1.7); the case a - kA, k ) 0 Is not

excluded), and a satisfies a compactness assumption (see (1.8) in (2911 this compactness

cndition excludes the possibility S 1 0. The kernel a satisfies an abstract condition

(em (28; (1.10)1) which Is shown to hold for two physically important classes of kernels:

( aO) ) O a locally absolutely continuous on [0.-1

a* locally of bounded variation on (0,-) j

a•g) 3 0, a # CIO,-) M C 2 (0,), and'

a nonnegative, nonincreasing. convex on tO,m)

' -13-I:•
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It should be noted that no satisfactory uniqueness theorem has to date been discovered

for the general problem (VL) with a * kA. k 1 0 a constant, even when I. 0.

Other approaches to the study of (VL) include Aizicovici (13* (23, (31 and Gripenberg

1321, (361. While these studies are in a more general setting than those referred to

above, they do not seem to shed new light on the physical problem (1.15), and indeed the

existence results of Aizicovici do not include those of [281. An extension of the latter

to nonconvolution kernels has been studied by Rennolet (71]. A semigroup approach to a

special case of (V') has been investigated by Vrabie (831. Another interesting "parabolic"
L

heat flow problem involving an analysis of evolution inequalities has recently been studied

by J. Naumann (641.

4. A Hyperbolic Nonlinear Volterra fEuation for Heat Conduction with Finite Wave Speeds.

The parabolic models for heat flow in materials with. memory formulated in Sections 2 and 3

both predict that a thermal disturbance at any point of the body is Instantly felt

everywhere in the body (though not with equal strength). This implies that finite

discontinuities propagate with infinite speed. This situation is unrealisitic for some

materials, particularly at low temperatures.

Curtin and Pipkin (39], see also wanziato 168], have proposed a model for heat flow

which exhibits a finite speed of propagation; they study of the linear model a(r) I r.

We present briefly -uch a nonlinear model which has been investigated by Mac Camy (591 by

the method of characteristics, and by Dafermos and Nohel [29] by an energy method. Another

interesting variant of the, energy method was recently developed by Staffans (801.

Consider the heat flow problem of Section 2. Defin.e the internal energy by the

functional (1.2), with 5 satisfying the conditions of Section 2. In place of (1.3)

assume that the beat flux Is given by the functional

t
(1.161 .qlt~x) - - J ct - slolu3 (s~xl)d (0 •t • 0 <x C 11 *

0 "



where the relaxation function c I L1 (Om)@ C(O) , OJ c(s)ds ) 0 (0 4 t 4

c(s)ds - 0, and where the real function a satisfies assumptions (0) of Lemma 1.3
0

(actually a, smooth, o(O) - 0. o'(0) ) 0 Is sufficient for the development in [293).

Note that from (1. 161 the heat flux depends only. on the history of the gradient of a, and

Is Independent of the present value of the gradient of u. tvidently, this model of the

heat flux results from (1.3) by taking co - 0 and by replacing y by -C, or from

(1.3') by taking K(O) - 0. Ke(t) - c(t). The model (1.16) for the heat flux also results

by taking 9 0 in (1.14), a case which is excluded in the theory and the referenced

accompanying mathematical literature in Section 1.3.

Applying the energy balance (1.1) and using (1.2), (1.16) and the external heat

supply h leads to the equation

b~ t - C*a(uK)Za 4* h O (0 t < m* 0 < X (1)

Noting that 9eu = u*$, carrying out the differentiation, and imposing the boundary and

Initial conditions leads to the following initial-bounJary value problem for the heat flow

problem under the assumptions of this sectionI bOut + g° ut = c*O(uX h(tx) - 0(t)UO(X) (0 < t < , 0 < 4 1)X

(1.17) u(t,O) - u(t,1) S 0 (t ) 0)

u(O,x=) Uo(x)

The problem (1.17) is transformed to the mare standard abstract form (VI) below s
a

follows. As in Section 2 define the resolvent kernel p of 0 by the linear Volterra

equation (p)h by assumption (Pw) p Ll(0,-). Define the function a v 10C ) I U by

a(t) ( €(t) + (P°c)(t) (0 4 t 4 .)0!

define the function g : [Op-) x (0,1) + i by

g(tx) - r (h(tx) - (t)uo(x)) + pe(b(ttx) - (t)UO()) (C < t 4 ,O 4 ' 1)!,a

Finally define the operator A an In Section 2. Applying the variation of constants

formula for Volterra equations, and these definitions to (1.17) shaows that (1.17) is

equivalent to the abstract nonlinear Volterra equation

-II.-



Oft*,' 9(ee) (a 4 t <-
(v. d.t4 ugt,) COtm

ate) - uo(-)

It Is easy to see (compare Lemma 1.1) that under the present assumptions on 0 and c,

a 1 L 1(O0) and that

o 0 ° cltdt

aCt)dt- ---- t •0

SJ Ct)dt

If also $(o) > 0, c(O) > 0, c'(0) 4 0, then &O) > 0 and a'(0) < 0. It is also

evident that the forcing term g e L 2 (O.0'L 2 (01)) if h e L 2 (0*"L 2 (O 1)) and also

i L2(O.). 1(0)) h rbe

Notice that If 0 a 0 and y I y(O) ) 0 (or equivalently a z the problem

(1.17) reduces to the nonlinear wave equation problem

(boattm yfo)e vi + h 10O4t 4 0 4x 41)
xx t

) u(tO) U(tl) It 0 (t) 0)

u(Ox) a aoWe uCx(O,x) - U(x) - (0,x)

If the real function a is "genuinely nonlinear" (o'(C) j 0. C q R). Lax [501 has shown

that (W) fails to have global smooth (C2 ) solutions in time, even If h a 0, no matter how

smooth and Osma1l one takes the initial functions u0 , u. If the function a is convex

the derivatives of the solution u of (W) develop sLngularities due to the crossing of

eharacteristics in finite time ('shocks").

The objective of the analysis by rac Camy [591 (which uses Remann Invariants and Is

therefore restricted to one space dimension), and a different analysis by Dafermos and

Nobel (29, Theorem 4.11, Staffans (801, which are applicable to several space dimensions

and both of which use energy methods, Is to show that under the present asumptions on

S and ( (together with same technical ones and some other physically

-36-
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reasonable ones which imply that the kernel a is strongly positive on [0,m)), the

integral in (V) has the effect of a frictional damping mechanism which prevents the

formation of shocks, provided the data u0  and the forcing term g are sufficiently

smooth and small in certain H norms. This analysis leads to global existence,

uniqueness, and decay of smooth solutions of the problem (1.17) for sufficiently smooth and

small data u0  and h (see especially (29, Theorems 4.1, 6.111 for a physically

reasonable two-dimensional heat flow problem with the same kernel a see (29, Theorem

7.13. It is also evident from the analysis in (29, Section 31 dealing vith the local

existence and uniqueness of the problem (1.17), resp. (Vi), that solutions of (1.17),

reasp. (VD), possess the property of finite speed of propagation. For an analysis of the

existence and uniqueness of classical solutions for "small" data in the simpler case of a

nonlinear wave equation with frictional damping see Nishida (65], and Nobel (661.

We remark also that the abstract problem (VI) has recently been studied by S0.

leden t551, 56] for a class of kernels a which are positive, decreasing, and convex on

(0,-) and which satisfy the crucial (for his method) condition a' (0+) - . is method

Is a significant qeneralization of that of Crandall, Londen, and Nohel 1281 for the

parabolic problems discussed briefly in Section 3. However, the assumption a' (0+) -

Is Inappropriate in the present physical context; moreover, the type of solution obtained

by londen in (S5 and (561 need not be regular in the sense of smooth solutions, and no

*decay results of solutions comparable to (291 are obtainable by his methods. it should

also be remarked that for the linear problem (V) (e.g. Au - -V 2 u)# interesting and

useful results using deep results of Shea and wainger (731 have been obtained in a series

of papers by K. D. Nansgan t41-473 and by Carr and Hannagen 116).

Finally, we note the model problem (Vj) is similar to a particular model problem for

nonlinear viscoelastic motion In one space dimension in which, however, the kernel a has

the form alt) - a+ + A). am o 0, A positive, decroasing convex en O,*), aM for

vhich the analysis Is msiderably more complicated. This problem has been extensively

studied by Mac Camy 160), beforaes and 1ohel 1291, and Staffans (8011 a ee so an

Interesting asymptotie result by Iteffans (81] motivated by this problem.

-17-
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Chapter 2

Existence anA Uniqueness of Solutions of Abstract Volterra Equations

2.1. Introduction. In this chapter we study the abstract nonlinear Volterra equation

(V) u(t) + bAu(t) a f(t) (0 C t 4 T)

where T > 0 Is arbitrary, in the setting: A is an m-accretive (possibly multivalued)

operator in a real Banach space X. the given kernel b is a real absolutely continuoust

function on 10,T], beg(t) - f b(t - s)g(s)ds with the integral in (V) interpreted as the
0

usual Dochner integral, and the given function f e W1'1 (0,TX) where W1 l is the usual

obolev space.

We treat the problem of existence, uniqueness, dependence on data, and regularity of

solutions of V) on (0,1 by means of a simple method developed jointly with 4. G.

Crandall 1261 to which the reader is referred for more detail.s the results obtainee for

(V) generalize and simplJfy considerably earlier work on existence and uniqueness obtained

by Barbu (61, (8, London (541, Gripenberg (301, for the case K - U a real Rilbert

space. A different approach to the study of (V) in the same general setting was developed

Independently by Gripenberg (311, (321. The general theory will be used in Chapters 3 and

4. We will also comment on the special cases: (i) A maximal monotone on R, and

(Ii) A D aP, where v : d + (-,4-] in a proper, convex, l.s.c. function and 3P Senotes

the subdifferential of % (see Br~zis [141 ); these special cases will be important in

Chapter 3. We shall also consider briefly a recent generalization of (261 by Gripenberg

P241, which will also be jsed in Chapter 4.

Our method involves :educing the study of V) to that of an equivalent functional

differential equation of .he form

u+ A a G(u) (0 t T)(ID) d•

tu() -x - f(O)

Yhere G t C(0O,T]s D(A)) L L.(OTsX) Is a particulatr mapping, and developing the theory

for MDe). Our results ire also directly applicable to certain integrodLfferential

!]: -10-
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equations studied by Mac Camy (581 via a Galerkin argument which necessitates further

restrictions.

We observe that if b 1, equation (V) Is equivalent to the evolution problem

du
M4 -+ Au a f. u(O) - x - f(O). (0 4 t 4 T)

Our method of studying (FDE) consists of generalizing known results for (E) due primarily

to Senilan (131; the latter are reviewed in Section 2. We recall also that the initial-

boundary value problem for a linear or nonlinear diffusion problem is a special case of

242. Preliminaries on Evolution E auattone. ror further background and details of tis L

section we refer the reader to (7), (25), (261. Let X be a real Banach space vith norm

x
1.1. &mapping A : X + 2 is called an operator in X; its domain

D(A) - x X : Ax 4 *} and its ra (A) - U (Ax :x e (A)); A is single-valued

If Ax is a singleton. An operator A in X is accretive if f j M (Z + IA)"1 in a

contraction in X for A w 0. It follow immediately: A is accretive if f

(2.1) IN, + Xyl) - N2 + Xy2 )E ) Ix I - x21 for Yi C Axi (i - 1.2)

An operator A in X is called m-accretive iff A is accretive and R(I + IA) - I for

1. 0.

We shall be concerned with applying some known facts about the abstract evolution

equation

dv(3,) j' ve•g, v(O)- x

to the study of (FOE). We asume throughout that g 9 LI (oTX), T l 0.

Definition 2.1. A function, v : (0,T) * X i a strong solution of (M ) on 10,]T if

v(0) - x, v 9C((O,T]X) fn l 1 l(0,T;X), v(t) 9 D(A) a.*. on 0,T) and there exists

v # Av such that v(t) # Av(t) and v'1(t) + w(t) - g(t) a.*. on 10,T).

Definition 2.2. v : (0,T) * X is a weak solution of (Eg).on [0.?) If there I. a

8equence ) C(0,.T]uX) x LI (0,TX) such that v n  s a strong solution of

(I9 ) tOTj and (vt.w,) * (veg) in C(IO T|X) x L (o0TiX).

.1
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For our considerations we require a third concept of solution of (Eg). namely the

notion of integral solution. First, let t * X x X * R be defined for 1 ) 0 by

,y|- j (Ix + lyl - lxi) *

which is a nondecreasing function of X. Define

[xy - lim Ix ,y] - inf Cxyj
.40 1>0

Ixyl]- lira ixy]1 - sup ix~y]

ItO 10

Thus Ix + ,yl ) lxl for I )o 0 iff xyj+ 0 , so that A is accretive iff

(2.2) (xI - x2, Y, - Y2 ]+ ) 0 for Y, e Ax,

Definition 2.3. v : 0,T) + X is an integral solution of (E) on 10,T] if

V 9 C(t0,T];X and

t
(2.3) I(t) - xl - lv(s) - xl < J [v(.0) - x, g(o) - 7]+ d

for t > s, (tos) C'[O,T.] x c D(A) and y e Ax. We note since I(x,yl + lyl, and

since g 9 LI(O,T;X), the integral in (2.3) is well defined. A straightforward

calculation, see t25], shows that the notion of integral solution only makes sense oihen

A Is accretive. we shall apply the following result on existence, uniqueness, dependence

o data, and regularity about integral solutions of (E ) due to Senilan [13].

Theorem A. If A is m-accretive, z e D(A) and g r L (0,T;X) then (Eq) has a unique

Integral solution v 9 'C([0,T1 D(A)) on (0,T], and if v,v are ineeral solutions of

(Zn). (Z^) on 10,T] corresponding to initial values xx respectively then

a A ta

(2.4) I;(t) - V(t)I C Ix - %I + J go ~)d. 0 4 t C T
0

Moreover, if g e BVrO,T]iX) and x 9 D(A), then

(2.S) IU(C) - V(q)l C It - ni CIg( + ) - yt + var(g : tO,tl)}

for y 4 Axe and 0 IC to i • to t 9 O(COT. In particular, the Integral solution v is

-20-



Lipschitz continuous. if, in addition, X is reflexive, then v is a strong solution of

CE on [0,T].

3. Discussion of Existence and Uniqueness Results. We shall reduce the study of existence

and uniqueness of solutions of the nonlinear Volterra equation (V) on [0,T] to studying

the abstract functional differential equation

{FEt + Au 3 G(u) (0 4 t (T)
C FOE) d

u(O) - x

where A is a given m-accretive operator on X, and where G is a given mapping

G : C([O,T]; D(A)) * L (0,T;X)

Let v - H(g) denote the unique integral solution of (E o A solution of (FDE) is by

definition a function u e C([O,T], O(A)) such that u HG(u)). By analogy with

Definition 2.1, we say that u is a strona solution of (FDE) on 10,T] if u(O) - X,

u e W I'(0,T;X) n C([O,T]; D(A)) and if u'(t) + Au(t) a G(u)(t) a.e. on (0,T].

Let b c L1 (o,TrR), F C L I0,TtX1. We shall say that u is a strong solution of the

Volterra equation (V) on [0,T] if u e L (OT;X) and if there exists w e L(0,TIX)

such that w(t) e Ai(t) and u(t) + b*w(t) - F(t) a.e. on 10,T]. One establishes the

following equivalence between strong solutions of (FDE: with a particular G and strong

solutions of (V)-

Proposition 3.1. Let b e AC([O,T];R), b' e BV([O,T]hR), Fe WI'I(O,T;X) and b(O) - 1.

Let u be a strong solution of (V) on (O,T]. Then u is a strong solution of (FDE) on

[0,T] with the identifications:

't

(i) G(u)(t) f(t) - r*f'(t) - a(O)u(t) - r(t)x + f u(t - s)dr(s)
0

(ii) x = f(O)

(3.1)

(iii) a - bi

(iv) r e (0,T;R) is defined byr + act ,.a

'. -21-



Conversely, let r f BV((O,T];R), f • LI(0,TtX), x e D(A) and G be given by (3.1)

(i). Let u be a strong solution of (FDE) on [0,T]. Then u is a strong solution of

(V) on [0,T], where

t
Mi) f(t) = x + f f'(s)ds

0t
(3.2) (ii) b(t) = 1 + f a(s)ds

0

(iii) a - ar = r

We remark that if b(t) B 1 and F e WI'I(0,T;X), then the Volterra equation (V) is

equivalent to the evolution equation (E ) where g = f and where the initial value

x = f(0).

The proof of Proposition 1 is straightforward. The assumptions on b and F permit

differentiation a.e. on (0,T] of a strong solution u of (V). The differentiated

equation is then "solved" for Au by means of the resolvent kernel r associated with

a - b, see (3.1) Civ), and the variation of constants formula for Volterra equations

(63]. A known result (12] yields that a • BV([0,T];s) implies that

r e BV([O,T];R), a fact which is used in arriving at the formula (3.1) Ci) for G(u). The

converse is proved by reversing the steps. A part of Proposition 3.1 which motivates our

approach is contained in Mac Camy (58] who, however, then studied (FDE) by an entirely

different approach.

We remark that here we have chosen to define the resolvent kernel by (3.1) Civ),

rather than by r + ar - -a as was done in [26]. This is more convenient for the theory

in Chapter 4, and only causes a change of signs in the formula (3.1) Ci) of some of the

terms in Glu)Ct). Recall that if r is defined by (3.1) (iv), then the solution of the

linear Volterra equation w + a~w - v is given by w - v - rev, while with the alternate

Idefinition of r, w would be given by w - v + r'v, as was used in (26].

-22-



We next use Benilan's theorem about solutions of (E ) to obtain some general results

concerning existence, uniqueness, dependence on data, and regularity of solutions of (FDE)

of independent interest and use them to deduce corresponding results about solutions of

Ev).

Theorem 3.2. Assume that A is m-accretive, x 4 D(A), and let

G a C((OTa 3(A-) * L C0oT;X) satisfy

tt

- G y(s) u - v1 da
u3.3) L (tX) 0 L (0,agX)

for some y e LI(OT;R+). 0 4 t C T. and uv e C(O,TiD(A) .

Then (FOE) has a unique solution u e C([O.TIj D(A)) on [0,T.

We remark that assumption (3.3) implies that the value of G(u) at t 9 [0,TJ

depends only on the restriction of u to [O,tJ. The idea of the proof is very simple.

Let v - H(g) denote the unique integral solution of (E) on 10,T], g L (0,TsX). We

seek a fixed point of the map K s C([0,T] ;D(A)) + C(OT]; D(A) defined by

Xtu) - H(G(u)). By property (2.4) of integral solutions

t
IK(u)(t) - X(v)(t) I IC f G(u)(s) - G(v)(s)lds (0 C t 4 T)

for u,v CC ([0,T] B(A)), utO) - v(0) - x. Applying assumption (3.3) it is now an easy

matter to show that K1 is a strict contraction on C( t0,TI, D(A)) for j sufficiently

large, so that the map K has a unique fixed point. For details see (263.

Under further assumptions one can apply the second part of Denilanms theorem ti obtain

greater regularity of solutions of (FOE).

Theorem 3.3. In addition to the assumptions of Theorem I assume that there Is a function

k a [0,) 4 [0,*) such that

vrCG(u) t tOet]) C kR)(1 + var(u t t,t]))
*1 and IG(u)(0 )1 4kMR) (a It 4 T)

-23-
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whenever u C C((0.T|: D(A)) is of bounded variation and lul ( 3. If
- (0,T:X)

x 9 D(A), then the solution u of (FDE) is Lipschit- continuous on (0,T. If X Is

also reflexive, then the solution u is a strona solution of (FDE) on (0,T).

For the proof of Theorem 3.3 one defines u0 : (0,T) * X by u0 (t)x and

(U) a H(G(un)) , n - 0,1'... . These iterates converge uniformly and are uniformly

bounded on [0.T). By Benilan's theorem and assumption (3.4) one shows that there exists a

constant c > 0 such that

t
war(u (OtI) 4 c(O + I var(u -[0,s)ds)

0

for 0 C t C T, so that var(un+1 : (0,t)) < c exp(ct). Thus (var(u : [0,T])) and by

(3.4) {var(G(u ) = [0,Tl) are both bounded, and Un}, and hence also u - unit lin

Is Lipschitz continuous on (0,T]. For more details see (261.

Finally, the solution u of (FDE) depends on the data A, G, x in the following

sense:

Theorem 3.4. Let the assumn:tions of Theorem 1 be satisfied. Let m-accretive operators

i"n X, mappings Gn : C([0,T),X) * L (0.T;X), and x n e(A)

a - 1,2 .... *Assume that the inequality (3.3) holds for G replaced by Gn, with the

sare T, for n - 1,2,..., and u,v f C([0,TI; D(A)). For u C C([0,T]; D(A)) assume

that lim G (u) - G(u) in L1 (0,T;X), 1tm x - x C D(A)* and
nm w

(35) ( AA)- z- ( + AA)Z (z X, A > 0)

Let U n C((0,T]; -(A-n)) be solutions of (F E) on [0.T] with A replaced by An, G
-replacedby n x replaced by xn, and let u 9 C((0,T)j D(A)) be the solution of (FM)

( (0,T. Then lir u u in C(10,TI:X).

The proof of Theorea 3.4 follows from the observation that under our assumptions the

ma pping (Ax.G)(u) - H(A~x,G(u)) of Theorem 3.2 has the property that In the iterate

X # which is a strict contraction for some J, both j and the contraction constant
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only on the function Y of (3.3), and the latter is assumed to be uniform in n; for

details see 1261.

We shall next apply Theorems 3.2, 3.3, 3.4 to study the nonlinear Volterra equation

v). If b and F in (V) satisfy the assumptions of Proposition 1, it follows from the

definition of G in (3.1) i) that

IG(u)(t) - G(v)(t)l 4 (Ir(O +) + var(r : 10,tl))Uu - v1
L (O,tI)

where r is the resolvent kernel corresponding to b' - a (recall that

a e BV(CO,T];R) ---> r e BV([0,T);R)). Thus assumption (3.3) of Theorem 3.2 is satisfied

with

y(s) - Ir(O)l + var(r : [0,s])

Moreover, if f e BV([O,TX), (3.1) (1), (11), imply

var(G(u) : W,t] C(I + var(u : t0,t])) (0 t 4 T)

and IG(u)(0+ )1 C, where C is a constant depending on f(O), fl(O+), var(f' (0,T]),

r(O +), and var(r :0,TI); thus assumption (3.4) of Theorem 3.3 is satisfied.

Let X > 0 and def.ne the Yosida approximation A, of the m-accretive operator A

on X by

A ft - ). J U + A)-"

A X 4 X is Lipschitz continuous with Lipschitz constant 1, so a simple contraction

argument shows that the aipproximating problem

(VA) uA + b*Au - f

has a unique strong solution u A on 10,T], under the assumptions: b e L (0,TIR), and

f e L I(0"TX). By Propoiition 3.1 uA is a strong solution of

du;
(FDE )  dU- + A u, = G(ux), uA(U) - r(0)

Ono also has lim (I + uAA) = (I + UA)'I , for U > 0, z f X.

A+0

These considerations lead to the following result about solutions of CV).

I
-25-
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Theorem 3.5 (see (26, Theorem 4]). Let T > 0 and let the following assumptions be

satisfied:

b is absolutely continuous on [0,T], b(O) > 0, and b' C BV[0,T.

A is m-accretive on X

f e wl" '(0,T;X), f(0) e D(A)

Then equation (V) has a unique (generalized) solution u e C([O,T]; D(A)) in the sense

that (i) u is a unique solution of (FDR) on 10,T] with the identifications (3.1) and

(ii) u = lim uX in C((0,T];X), where uX are strong solutions of the approximating
A+0

equation (VA) on [0,T].

If, moreover, V e BV((0,T];X) and f(O) e D(A), then the generalized solution u

is Lipschitz continuous on 10,T]. If also X is reflexive, then u is a strong solution

of (V) on [0,T].

Remarks 3.6. (i) We remark that if the Volterra equation (V) has a strong solution u

on [0,T] under the assumptions of Theorem 3.3, then from Theorem 3.3 and Proposition 3.1,

lim uA . u in C([0,T]tX) exists, where uA are the strong solution of the
A+0

approximating equation (VA). However, under our assuptions the solutions uA  of (V X

converge to a limit u as A + 0, whether or not (V? has a strong solution. For this

reason we refer to the solution u of (V) of Theorem 3.5 as the generalized solution of

V on (0,T]. Moreover, we note that it the assumption b' e BV(0,T] only holds on

[0,T 0] for some fixed T0 > 0, then by a standard translation argument (see (55]) the

solution can be extended to [0,T].

(ii) A precise estimate giving the dependence o:l the generalized solution u of (V)

S I jon the data b and F is established in Theorem 5 of (26].

!* (iii) The assumption b(0) - I in Theorem 3.5 and in Proposition 3.1 is no loss of

generality, provided b(0) > 0. For if b(0) > 0, defining b - (b(0)) Ib and

A -"b(0)A one has bAu -b

-26-
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(iv) Our method can be used to study the nonconvolution Volterra equation

t
u(t) + f b(t,s)Au(s)ds a f(t) (0 4 t ( T)

0

where A and f are as in Theorem 3.5, provided the kernel b, which is defined on the

region ((ts) : 0 4 s 4 t 4 T}, is sufficiently smooth and b(t,t) > 0. The technique

for doing this is outlined in (26], and is carried out in detail by C. Rennolet (72). For

different nonconvolution equation results see Gripenberg [37], (38].

(v) In Theorem 3.5 above and 3.7 below it is important to note that the generalized

(or strong) solution u e CC(0,T];X), and therefore u e LP(O,T;X) for p ) 1.

(vi) if the assumptions of Theorems 3.5 above and 3.7 below are satisfied for every

T > 0, then the conclusions hold on [0,-).

(vii) The relation of Theorem 3.5 to other literature is explained in (26].

(viii) An interesting situation not covered by tae theory discussed above arisses if

the kernel b in V) has the property

lim b(t) - b(0
+ t

in the case A - 3-, where i is convex, l.s.c. and proper, G. Gripenberg [36] extends

the theory by replacing the assumption b' e BV[0,T] in Theorem 3.5 above by:

there exist T0 ) 0, c0 > 0 such that if 0 < t < To*

Var(b;(t,T 0]) 4 c0 log t

Recently G. Gripenberg [34, Theorem 2] obtained the following important generalization

of Theorem 3.5 which will be used in Chapter 4. Such a result was established by Cl;Ment

4 and Wohel (10) for the mtch simpler case b I 0 below and A a linear operator.

4 Theorem 3.7. Let the sa;umptions concerning f, A in Theorem 3.5 be satisfied. Let the

kernel b - b1 + b2  in V), where b1  satisfies the assumptions of b in Theorem 3.5,

and where b2  LI(,T) and b2  is 2ositive, nonincreasing, and log b2  is convex on

(0,T). Then the Volterra equation (V) has a generalized solution u c C([OT];X).
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Finally, we close this chapter with two important special cases. The first deals with

the case of the operator, A being maximal monotone on a real Hilbert space H and is a

direct consequence of Theorem 3.5. Recall that if X = H, A is m-accretive 3ff A is

maximal monotone.

Theorem 3.8. Let b satisfy the assumptions of Theorem 3.5 for every T > 0. Let A be
1,2 .

maximal monotone on H. Let f C W o(0, ;H), f(0) e D(A). Then (V) has a unique
boc

generalized solution u f C(O, ); D(A). If, in addition f' BV (oc(0,-);H),
1,2

f(0) c D(A), then u e W 1o(0,-;H) and u is a strong solution of (V) on [0,-).
loc

Remark 3.9. By another theorem of Gripenberg (34, Theorem 1), this result also applies to

(V) with kernels b = bi + b2 which satisfy the assumptions of Theorem 3.7.

The second special case of Theorem 3.5 deals with X - H a real Hilbert space and the

operator A = a (the s'zbdifferential of ), where p : H * (-m,+i] is a proper, convex,

l.s.c. function. The proof of the next result follows by combining Theorem 3.5 with known

results for evolution egriations (for details see (26, Section 4]).

Theorem 3.10. Let the kirnel b satisfy the assumption of Theorem 3.5 for every T > 0.

Let A - 3,, where P - H * (- ,+] is proper, l.s.c., and convex. Let

f e W1 2 (0,-;H). If fCO) e D(), then (V) has a unique strong solution u on [0,-)

$vOj' Lhat /t u' e L (0,H; if f(0) e DW,, then u' e L 2 (0,-;H).

Remark 3.11. In a different direction Kiffe and Stecher [48] study existence and

uniqueness of L2(0,T) solutions of (V) in a Hilbert space setting. They assume that

f C L2 (0,T;H) and they isa techniques of Barbu [5] and Londen [54] to obtain their results

without any differentiability assumptions on the forcing term f, but at the expense of

drastically restricting the growth of the maximum monotone operator A in (V). In fact,

I .~ this restriction rules the important possibility that A is a nonlinear differential

operator in the spatial variables, and therefore, their results cannot be applied to the

physical problem in Chapter 1.

An interesting and different variant of (V) was :ecently studied by Kiffe (49). He

obtains existence of global solutions of the equation

.1
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u + b*(Au + g(u)) a f (0 ( t ( T)

where A can be a nonlinear differential operator in the space variables and where the

perturbation g is a discontinuous real function which is not necessarily monotone and

satisfies certain growth conditions. The kernel b satisfies assumptions similar to those

in this chapters while b, e BV[O,T] is not assumed, certain monotonicity is required of

b. The forcing term f c W1 ' 2 ; the operator A = aP, where the function s is as in

Theorem 3.10. The function V satisfies a compactness assumption, and f(0) e Do.

Remark 3.12. Other interesting variants of the abstract equation (V), motivated by the

heat flow problem formulated in Chapter 1, Section 2, have been studied by V. Barbu (],

(10], and by H. Attouch and A. Damlamian 14]. In (8,102 Barbu generalizes the dependence

of the internal energy C on the temperature this leads him to study the equation

Du + beAu a f (0 4 t < -) I

where B is a strictly monotone operator. In (41 the domain of the operator A in (V) is

allowed to depend on tine t; for the heat flow problena formulated in Chapter 1, Section

2, the temperature u is prescribed at each time t outside a body %(t) in x space.

Assuming that Q(t) depends smoothly on t, the tempezature inside Q(t) is determined.

Remark 3.13. While the results are still rather incomplete, an interesting study of

numerical approximations of solutions of .(V) has been initiated by Mac Camy and Weiss (61]

where other references to numerical literature may be found.

-29-
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Chapter 3

Noundedness and Asymptotic Behaviour by Energy Iethods

3.1. Introduction. The purpose of this chapter is to discuss the boundedness and

asymptotic behaviour as t * of solutions of the nonlinear Volterra equation

(V) u(t) + (b*Au)(t) a f(t) (0 ( t < *)

The setting for (V) is b : 10,-) + R is a given kernel, A is a (possibly multivalued)

maximal monotone operator on a real Hilbert space H, and f : (0,-) 
+ 

H is a given

function. The exposition is largely based on a forthcoming paper by Clement, Mac Camy, and

Nohel (20].

The following general assumptions will be assumed throughout:

(Hb) b(t) - b + (t. b(0) > 0, b ) 0, B,B' e L1(0,-)

(H.) A maximal monotone on H

1,2 2
(Hf) f(t) f. + F(t), F e W loc((0,-H)), F' e L (0,",H), f. e H

here ' - d/dt, H is a real Hilbert space with scalar product (.,.) and norm hi,

and W denotes the usual Sobolev space. The special case of (Hm):

fA - , where the function 0: H * (- %.] is convex,

(H
lover semicontinuous, and proper

will also play an important role in the theory. For definitions and standard results

concerning maximal monotone operators and the special case of a subdifferential the reader

is referred to Brezis [14].

I We remark that if one adds the assumption 3' e W,' (0,f) to assumptions (Hb), (Hm),

and (Hf), then by Theorem 3.8 of Chapter 2. (V) has a unique generalized solution

, C(10,-)l D(A)), provided f(0) e D(A)I if also F' e BV 1o[0,-;H) and f(0) E D(A),

then u is a strong solution of (V) on (0,-). If in place of (H.) assumption (He) is

satisfied, and if f(0) c D(), then by Theorem 3.10 if Chapter 2, (V) has a unique strong
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solution u on I00-) such tlat tu' l (O.maH),_if f(O) • D(q), then

us 9 L 20l,-;H).lice

The results on boundedness and asymptotic behaviour of solutions of (V) vil be

derived from a priori estimates obtained from the equivalent differentiated form of (V):

(V') 4 b(O)Au + BAu a F' (0 < t (). u(O) - f(O)dt°

We shall distinguish two cases: (i) A satisfies assumption (Hm ) and (ii) A - 3W with

0 satisfying (H ). Case (i) is developed in Section 2. while Case (14) is treated in

Section 31 in each case a different energy method is used to deduce suitable a priori

estimates under appropriate additional assumptions on the kernel b and the forcing term

f. A nmber of examples illustrating each situation is presented. Zn particular, the

theory developed in Section 3 is used in Section 4 to analyse the boundedness and

asymptotic behaviour of solutions of the heat flow problem (1.4), Chapter 1, under the

physically reasonable assumptions motivated in Chapter 1, Sec. 2.

the reader should note that if Assumption (H ) is satisfied, and if u in the strong

solution of V) of Theorem 3.10, Chapter 2, then (see Drezis (14, Lomna 3.31 *(u(t)) is

absolutely continuous and one has the 'chain rule"

d duFt u(t)) = (V, -) (v @ a¢(u)(t))
dt dt

Thus a plausible energy method for the case A - 3- consists of taking the scalar product

of V') by v 3(u(t)) for any solution u and integrating over an arbitrary interval

(OT). Indeed, this method is used in Section 3. Unfortunately, there is no analogue for

the chain rule when A is a maximal monotone operator, but A 0 30 for some p er,

convex, i.8.c. function -p. For this reason the development of the theory n Section 2 is

les direct in that the a priori estimates are derived from an equivalent equation to (V')

resulting essentially from applying Proposition 3.1 And Remark 3.6 (i1). Chapter 2. to

(V'), and then using a different energy method to obtain the a priori estimates.

It should be noted that Corollaries 2.4, 2.5, and Theorem 2.6 of section 2 may be

viewed as natural generalizations to Halbert space of earlier results of Levin tSt) and

loanen (53 which describe the limiting behaviour as t o f solutions of CV) in the

scalar case In which the operator A In a real function.
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2. Doundedness and Amyrrtoic Prorerttes when A is Maximal Monotone. Throughout this

section we assume that assumptions (Hb). (Hm), and (Hf) are satisfied and that u is a

strong or generalized solution of the Volterra equation (V) on (0,-). As explained in

Chapter 2 (V) is equivalent to the Cauchy problem

(V') A+ b(O)Au + D'*Au a F' (0 < t < -), u(O) - f(O)
dt

Let k be the resolvent kernel associated with a', defined to be the unique solution of

the linear Volterra equation

(~) - 3(t)
(k) b(O)k(t) + (B'ek)(t) 9(t) a.eo for 0 4 t < -

by standard results, Miller [631, assumption (Hb ) implies that k e

We now use the method of Proposition 3.1 and Remark 3.6 (i1) of Chapter 2 to

transform (V'). Regarding (V') as a "lineara equation for Au, the variation of constants

formula for Volterra equations (631 and an integration by parts show that (V') (and hence

also (V)) is equivalent to the Cauchy problem

I du+ d
(2.1) ; d+ It (k'u) + Au a f1  (0 < t < -), U(O) - f(0)

where f : (0,) + N is the function given by either
1

(2.2) f1 (t) -b) F'(t) + f(0)k(t) + (k*PI)(t) (0 ( t < )

or

(2.3) f (t) "b-- FI(t) + k(0)f(t) + (k'*f)(t) (0 4 t < a)

ge *hall use an energy method based on taking the scalar product of (2.1) by U, and

also by v' u, and we obtain a priori estimates by integrating over an arbitrary

interval 0,T]. We will first state the general result for (2.1) and then interpret It

for MV).

theorem 2.1. Let a be a strona or aeneralized solution of the Cauchv problem (2.1) on

(0@-). Let T ) 0 be given and let there exist constants C, n e R such that

Y 2
.4) ift v # An, then (v,u)dt) ) lul dt(u e D(A)) ,

0 0

2' 2dt12t.5) for every , . Z,(0,'s) f (v~t), - (kev)(t)ldt • qI f' Ivldt ,
0 0
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12.6) € + q 0
(a) if f 9 L2(0,-;H), then u e L (0,-1H) n L(0,-;H)i

(b) If also A k- C L(.) and r f A L 2i(0-:H), then rt u C L (.,EI) A 2(0,m-:N).

Consequently. Iu~ 7-o() as t - and uct) 0 strongly as t -

We remark that no claim is made that the rate Iu(t)l - 0 as t * -i s optimal.

The coercivity assumption (2.4) concerning the maximal monotone operator A is

natural for the problem in light of comparable assumptions in evolution equations.

Assumption (2.S) and the hypotheses concerning k, k' will be justified in Lemmas 2.2.

2.3, below. Two different classes of kernels b in (V) are considered, each of which lead

to the energy inequality (2.5), the first with q = 0, the second with q ) 0, and for

each of which r k' e L 1(0,.). These technical lemmas, together with appropriate

assumptions on the forcing function f in MY), permit an easy interpretation of Theorem

2.1 for solutions of (V). This will be done in Corollaries 2.4 and 2.5 below. The proof

of Lenma 2.2 appears in kppendix 1. Lemma 2.3 is an extension of a result of Mac CaGy [591

which in its present form was recently established by K. Tangredl (821.

lama 2.2. (a) Let b .atisfy assumption (Hb) with b ), 0, and let b satisfy the

frequency domain condition

(F) there exists 6 > 0 such that- b + Inf Ern Ia ;(in)) . 6, where

;(iun) - exp(-ivit3t)dt. Then the resolvent kernel k of S' satisfiesI0
k C

k 0 L (0,).

(e) if the assumptions of (a) are satisfied, BO 9 L (0.), and a is a kernel of

sL.itive tve on [0.), then for every T ) 0 and for every w • Z.2(0.T)

SCt) 0C.w)(t)dt
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d) If the assumptions of (a) and (b) are satisfied, and mte s LI(O,-) A L2 (O1-)#

At aC L(0,), *then___ _ k C Ll(0, -) n L2(0._), and /F k- C L (0,-).

Lemna 2.3. Let b satisfy assumption (Hb) with b - 0. and let

W(m) I1 3 1
(i) t c L (0,-) 0 0,1, 2 ; m - 0,102,3), t 3 L (0,- ) ,

(11) 3 be strongly positive on [0,-) .

Let k be the resolvent kernel of B'. Then:

(a) k C C 1(0, " )
-1

(b) k(t) - k. + x(t), k. - (f a(t)dt)' 0 , K.m ) f L (0,-) (M = 0,1,2)
0 2

4C) if also B,B', rt B, t B' C L2 (0,-) one has K, /t K • L(0,-) ,

(d) for every T > 0 and for every w e L2 (0,T) there exists q > 0 such that

T d 2
vt). - (kw)lt)dt R i I Ilt) dt a

0 dt0

(e) if assumptions (1) hold for J,m - 0,1,2,3, t4  L CO,-), and assumptions (ii) hold,

one has rt k' C L 1(0,-).

We shall mention some examples of kernels b which satisfy the assumptions of Lemmas

2.2 and 2.3.

Let

(2.7) U a [0,') R +  be positive, nonincreasing, and convex

and satisfy the smoothness and integrability assumptions in (Hb). Then B is a kernel of

positive type on (0,-) (see (671), and

-4)MR(i) - I" sinit 3(t)dt 0 (n e R)
0

thus if b4. % 0 is any constant, b(t) - b'.+ a(t) satisfies the frequency domain

(e)dition C with - b,, and (see Lemma 2.2(a)) k e LI(0,-). If, in .addition, 3

satisfies the remaining smoothness and integrability assumptions of Lemma 2.2, all

conclusions of Lemma 2.2, and assumptions (2.5) with wj - 0, and rt k- C L (0, O ) of

theorem 2.1 are satisfied.
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Consider again 8 in (2.7). In addition, assume that

(2.8) the measure dB* has a nonzero absolutely continuous part;

then (see 167, Corollary 2.21), 3 is strongly positive on 10,-) (for example,

a .- C0.-), (-I)kB(k)(t) 0, 0 < t < -, k - 0,1,2, '(t) 0). Thus if a satisfies

(2.7), (2.8), and the integrability and smoothness assumptions of Lemma 2.3, and if

b(t) 3 B(t) (bu - 0), then all conclusions of Lemma 2.3, assumptions (2.5) with n : 0,

and It? k' L (0,) of Theorem 2.1 are satisfied.

Next, consider

(2.9) 8(t) " a-I s Ccos w t (B: 0, X ) 0, w) e R)

it strict inequalities holding for at least one I (if VW - o, J - 1,...,., 3

satilsfies both (2.7), (2.8)). This function 3 is strongly positive on [0,-) (see

167]1), since by direct calculation

Koreover, B satisfies all other assumptions of Lemma 2.3. Thus If b(t) - B(t)

(b. - 0), all conclusions of Lemma 2.3, assumptions (2.5) with q > 0 and

k' e L 1 (0,e) of Theorem 2.1 are satisfied.

for the kernel U in (2.9) one has

2 (2 +2 -w2

-2lmici)- 2 2 22 2+4 22 •
1in (i +v -ii + 4in

21m b(t) - b + 3(t), where k • 0 is any constant, satisfies the frequency domain

Seedition (F) of Lemma 2.2 if ) V1 (J - l.....m). Evidently, b Is a kernel of

positive type on [0,.). Therefore, If b(t) - 2 3(t), b6 0, 3 defined by (2.9) with

.3I
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w (j all conclusions of Lemma 2.2 (but not of Lemma 2.3), assumptions

(2.S) with n - 0 and Ct k' C L (0,") of Theorem 2.1 are satisfied.

Incidentally, if b. > 0 is any constant, and if

. -ilt

s. it) a e sin wit (1j 0 w j ) O)

with strict inequalities holding for at least one J, then the frequency domain condition

(F) of Lemma 2.2 is satisfied with 6 = b . However, such a kernel b is not of positive

type.

Lemmas 2.2 combined with appropriate assumptions on A and f yield the following

easy Interpretation of Theorem 2.1 for solutions of (V).

Corollary 2.4. Let assumptions (Hb i with b. > 0, (Hm ) and (Hf) with f, arbitrary be

satisfied. In addition, assume that b satisfies the hypotheses of Lema 2.2, and that

2It T' e L (0,";H). Let ai be a strong or generalized solution of (V) on (0,-). If the

coercivity assumotion (2.41 holds with C > 0, then u and r u e 17(0,-;H) ( O L,2(0,-;H)

and u(t) * 0 strongly as t - o.

Indeed, define f, by (2.2). By (Hf) and Lemma 2.2 (k C L1(0,4 ) ) L 2(0,m),

k' c L (0,-)) one trivially has fl I L C2(0.OOH). By Lemma 2.2 one also has

21Ct k 9 L (0,40) n L (0,-) and Ct k' e L (0,). These together with the assumption

TO • L2(0,;H) used in (2.2) show that A f e L2 (0"M); the fact that
(k*) 9 L 2 (0,-;H) in (2.2) follows from the straightforward estimate

tlf k(t - s)F(s)dsl 2 dt 4 21k21 n/i" vi,2
0 0 L (0,-) L2(0,-;H)

*21/'k12  We 2 2 (VT > 0)
112

L (0,,) L (0,-;H)

By Lemma 2.2 again, (2.5) holds with n f 0. Thus if c ) 0 in (2.4), the result of

Corolla y 2.4 follows by applying Theorem 2.1.

Lemma 2.3 combined with appropriate assumptions on A and f yield a different

* JInterpretation of Theorem 2.1 for solutions of (V).
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Corollary 2.5. Let assumptions (Hb) with b - 0. (H.) and (Hf) with f, - 0 be

satisfied. In addition, assume that b(t) - B(t) satisfies the assumptions of Lemma 2.3,

and that f 3 P also satisfies f. r f, r fV e L 2(0,;H). Let u be a strong or

generalized solution of (V) on [0.). If the operator A satisfies the coercivity

assumption (2.4) with C : 0 (or even c ) -q, where q > 0 is the constant in Lemma

2.3d), then u and r ue L (O,-;H) n'L 2 (0,-;H), and u(t) + 0 stronaly as t

The proof of Corollary 2.5 is similar to that of Corollary 2.4, except that f1 must

now be defined by (2.3), and Lemma 2.3 is used in place of Lemma 2.2. Note also that the

additional assumptions concerning f, rt f are essential.

The important case b a 0 in (Hb), b 1 3 satisfying the assumptions of Leuna 2.3,

and f *0 in (Hf) is not covered by Corollary 2.5. In this situation Theorem 2.1 must

be modified in the following manner.

Theorem 2.6. Let the assumetions (Hb) (b - 0), (HM), (Hf) with arbitrary, and the

assumptions of Lemm 2.3 be satisfied. In addition, assume that F, rt F,

AV f L2 (0,4SH). Let u be a strong or generalized solution of (V) on t0,a), let

u. be the unique solution of the limit eauation corresponding to (Viz

(Vs.) a (t)dt)A-. a .

0

Let the operator A satisfy the coercivity condition:

If v Au and v • Au. and T ) 0, then

(2.11) J ((-t) ut) - c)dt I w olu(t) - %1 dt
0 0

for some c ) 0 Cc • -ij Is sufficientl see Lema 2.3d) •

Then u - u. and /t- (u - u.) e L7(0,oaH) n L 2(0,-H); consequently u(t) * u, strongly

t * and luCt) - u.1 - 0(7 ) is t -

Remark 2.7. Since b B satisfies the hypothesis of LmAa 2.3. 3 Is strongly positive on

(0..). and therefore J 3(t)dt > 0. Since the operator A Is maximum monotone on N the
0
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limit equation (VL) has a unique solution for any f, e Ri in particular, if f. 0,

. 0 and in this case Theorem 2.6 reduces to Corollary 2.5.

Corollaries 2.4. 2.5 and Theorem 2.6 together form the natural generalization to

Hilbert space of corresponding scalar results for CV) due to Levin (51 and Londen [531.

Sketch of Proof of Theorem 2.1. (a) Take the scalar product of (2.1) with u and

Integrate from 0 to T. Using (2.4), (2.5) we obtain

'1 T
I 

u lT l 2 
+ h + ) I ut)I2dt I i IfO)I2 + I (f (t),u(t)ldt *

2b(0) 2b()

since R + c > 0, and f1 9 L 2(0,4H), the assertion (a) follows by standard estimates.

(b) Next take the scalar product of (2.1) with tu and integrate from 0 to T. An

integration by parts yields

T 2 d T2
2b(0) lu(tI + tu(t), (ktu)(t))dt + f I tiu(t I dt

(2.12) 0 0

2b() f Iu(t)l2dt + f (tf1(t),u(t))dt
o0 0

A straightforward calculation shows that (see (20])

f t(u(t), (k-u)(t))dt I + 3
0

where

T 2
dt 0

aand where

T t

0 0
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using act -02, H), and k* 9 L1(0,-) yields

Ial C (f tlu(t)l2dt) 112 tul 2 r ilk'(t)ldt
0 L (00-lH) 0

Substitution of the estimates for 1, J in (2.12) gives the final inequality

lu(t)I + C ) f tiuCt)j dt ; I Eul2

0 <22b(O) (0,;H)

+ uor I k1 ( tlu(t)l 2 dt)l/ 2 + Irt f I( 0
L2 (0,'H) Ll(I,') 0 1? (0,-H) L2 (0, H)

)2

The conclusion t u e L7(0,-,;H) r) L (0.-zH) follows by standard estimates using

* + n ) 0, u C L2 (0,40H) by (a), and the assumptions rt k' e LI(0.-) and

fd IC L 2(0,;H). This completes the sketch of the proof.

Proof of Theorem 2.6. The proof will be reduced to that of Theorem 2.1 by the

following steps. First by Lemma 2.3 f 3(t)dt - k: 0. Therefore, the limit eqcation
0

(VL) can be written in the form

k . .A f .

which Is the same as

(2.13) O u. + - (k*) + Au.a kf + (k(t- k.lu.

Next, subtracting (2.13) from (2.1) gives

1 d d
(2.14) j0 d(u - u.) + k*(u - u.) + Au - Au mFr(t) (0 < t < ,

where by an elementary calculation

(2.15) Fllt) - F'lt) + k(O)F(t) + (t)f (k*F)(t) - u lK(t)

Lama 2.3 and the assumptions concerning F clearly imply that r, satisfies the same

assumptions as fI in Theorem 2.1. The method of proof of Theorem 2.1 applied to (2.14),

(2.15), where the coercirity assumption (2.11) is used In place of (2.4), now yields the

needed a priori estimates for u - u and rt (a - uo.), and completes the proof.

Example 2. We give an example of a maximum monotone operator A In (V) which is not a

subdifferential, and for which the theory developed In this section Is applicable. Let
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0 C It1 be a bounded open set with smooth boundary nfl. Let H be the Hilbert space

L2(). Let 0 be a maximum monotone graph with 0 e 0(0) and with primitive ( (i.e.

* - 3j). Let A1  be the operator defined by

D(A1 ) (i . ut H (0 ( 0) n2(M, O(u)e L2 (0))

A u - -Au + O(u) (u t D(A1 ))

It is clear 115) that A1 is maximum monotone on H since A1 = %,* where

t H I (-u.) is the proper, convex, l.s.c. function given by

Vu,2dx + f j(u)dx if u e Hl1 I l) and J(u) C LI(Q)
19 U) 2 11

L otherwise

Defin b -(b e R, u e R (). By the divergence theorem L(u) is monotone
I ax 1

and (uL(u)) - f uL(u)dx - 0. Finally, following Pazy (70, Ex. 3.51 define
A

A - A1 + L

By a perturbation theorem of Crandall and Pazy (27], A is maximum monotone on

5 - L2(2), and by an easy calculation using Green's theorem and the Poincare inequality

there exists a constant C > 0 such that

(Aa.u) - (A U,u) " -Iuuudx + fu(u)dx I, 2 dx , ,u12 2

Thus A satisfies the coercivity assumption (2.4) for every T > 0.

Remark 2.9. The concept of strong positivity of a kernel plays an important role in

stability theory for Volterra equations (see Halanay (401, Kohel and shea (673, Staffans

(741, (751, (76], (771, (781, Crandall, Londen and Nohel (281). As we have seen kernels

- satisfying (2.7), .(2.8), as well as oscillatory kernels 2 of the form (2.9) are

strongly positive on (0,-). If b(t) - b + 3(t) where b* ; 0 and • Is strongly

positive an (0,-) one can extract some information about the behaviour of solutions of

(V) as t . In particular, one can establish u e L2(OeH) (Theorem 2.1 part (a)) by

amother energy method directly from (V):

-40-
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Proposition 2.10. Let the qeneral assumptions (H b), (m), (Hf) be satisfied. Let u be a

strong or generalized solution of (V) cn 10,-). If F C L2(0,-;H). if B is strongly

positive on 10,-), if the coercivity assumption (2.4) is satisfied with £ > 0, and if

•f. - 0 whenever b - 0, then u e L 2(0,-Y).

Proof. Let v e Au and let 0 < T < w be given. Take the scalar product of (V) ty v

and integrate from 0 to T obtaining

T b V 2

(2.16) f (v(t),u(t))dt - If v(t)dt12 + Q[V;T] 4 fT (v(t),flt))dt
0 0 0

where

T
Q.(viT] - 0 (v(t),(B*v)(t))dt

0

Since B e L (0,-) is strongly positive and Fr' e L (0,-;H), a result of Staffans

(70, Proposition 4.1] shows that there exists a constant y > 0 such that

T
If (v(t),F(t))dtl r y(Q B[vT]} 1 2

0

Using this, the coercivity assumption (2.4) (C > 0), and the obvious estimate

ST b T 2 1 2 ( .> )

If (v(t),f.)dtl 4 4- I f v(t)dtl2 * 1f 2 (b > 0)0 0

in (2.16) yields the inequalities

T b. T }1/2l2+ If-12
2 1/2

(2.17) c lu t l2dt + - t l 2vft] 4 Y [vT  > 0)
Iu~t 4 f Q8v B~3 v, b. (~00 °0

and

.
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(2.18) T Iu(t) 2dt + QB[vsT] 4 Y'Qbv;T ]) 1/2 (b - 0, f = 0)

The result of Proposition 2.9 now follows from (2.17), (2.18) by completing the square on

the Q. terms.

Incidentally, we have also shown that

(2.19) sup Q[v;T] < (v 6 Au)
T>0

and if b > 0, also that

T
sup if v(t)dtl < •
T>O 0

It follows from (2.19) using another result of Staffans (see Crandall, Nohel, Londen [28,

Lemma 3.1] in a Hilbert space setting) that

sup I(B*v)(T)I < (v e Au)
T>O

Unfortunately, there appears to be no direct way to establish also that u(t) is uniformly

continuous on [0,-) if assumption (Hm ) is satisfied and A a O (if A - 30 this can be
2

done as in Theorem 3.1 below). The uniform continuity :ogether with u e L (0,-;H) would

imply that u + 0 as t * strongly in H. This provides at least one motivation for

the indirect method of Theorem 2.1.

3. Boundedness and Asvmptotic Properties When A - 30. Let the general assumptions (Hb),
Ib

(HI), (Hf) be satisfied ard let u be a strong or gene:.alized solution of (V) or (0,-).

'4 In this section we shall obtain different boundedness and asymptotic results for the case

A a , and when b, > 0 in (Hb). These results which are motivated by the physical

problem discussed in Chapter 1, Section 2 are deduced from a priori estimates which are
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obtained directly from the equivalent Cauchy problem;

Eu
(V*) du+ b(O)Au + 3' * Au a 1' (0 4 t < 0). u(O) - f(O)dt

Theorem 3.1. Let the qeneral assumptions (Hb) with bo > o, (H P), (Hf) be satisfied and

let u be a strong or generalized solution of (V) on [0,-). if the kernel b satisfies

the frequency donain condition (F) of Lena 2.2 and if

(3.1) Znf #1z) >

then

(3.2) Sup V(u(t)) <

if V c M(u). then
(3.3) V e L2 (0,-H) ,

(3.4) E-u 9 L2(0, ;R) ,

at

and

(3.5) u is strongly uniformly continucus on (0,-)

if a*so lie p(u) - 4, then
ful "

(3.6) $up Iu(t) < ,

and

(3.7) Ila i(u(t)) - f- Tn e(z) exists

Moreover, if the inclusion 3':(w) a 0 implies w - 0, then

(3.8) g(t) --- 0. (weakly) as t...

The frequency domain condition (F) is satisfied by several classes of kernels b with

b*) 0 as was seen in Section 2 (see examples of b - b + with 3 given by (2.7),

(209), (2.10)). Thus Theorem 3.1 generalizes a recent result of S. 0. Londen (54,

Corollary 21 and a result of V. Barbu 16, Theorem 2).

The assumptions concerning V in Theorem 3.1 are not sufficient to obtain strong

eonvergence of u(t) to zero as t .e. For this result one needs the coercivity

-43-
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condition (2.4) with C > 0. If (2.4) Is satisfied with v e O(u) it is a standard

result (see srezis (141) that the inclusion DV(v) a 0 has v - 0 as the only solution,

and that 0 CD(OO). Then the definition of the subdifferential (141 implies that

(u) 0 (0) (u C H)

and therefore assumption (3.1) of Theorem 3.1 holds. This motivates the following results

which complement Corollary 2.4 for the case A - 3%0. Note that in Theorem 3.2 below only

the frequency domain condition (F), but not the assumption that B is a kernel of positive

type (see Lemma 2.2), is needed. Also note that here the assumption on F is less

restrictive.

Theorem 3.2. Let the general assumptions (Hb) with b. > 0, CH,). (Hf) be satisfied, and

let u be a strong or aeneralized solution of (V) on (0,-). Let b satisfy the

frequency domain condition (F), and for v 3-(u) let the coercivitv condition (2.4) with

0 ) 0 be satisfied. Then conclusions (3.2)-(3.5) of Theorem 3.1 hold, and

t L2(0.,;H). which implies that u(t) + 0 strongly as t * -.

Remark 3.3. if b(t) - b> 0 in (V, a case not excluded in Theorems 3.1 and 3.2, the

above theorem and its proof yield a simple boundedness and asymptotic behaviour result for

the evolution equation

at+ b.3jp(u) a 9, u(O) - u0

where 9 - F'i compare Dr~zis (14, Theorem 3.111 where g L (0.-;H).

Remark 3.4. If the coercivity condition (2.4) with C > 0 and A - Dip Is replaced by the

more general condition: for every T > 0 there exists c > 0 such that

I2.4') if V• t(u), then f(v(t)uft) - zdt ) J tult) - zl dt
0 S

for some s e N, then it is easy to show that the Inclusion 30(w) a 0 has w - as the

1ily solution, and that
t () •V(s) (u q 8).

The the method of proof of Theorem 3.2 easily yields that u(t) a • strongly as t4 .
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lemark 3.5. In Theorem 3.1 and 3.2 the assumption b. > 0 in (Hb ) Is cruciali if b. - 0

the frequency domain condition (F) cannot be satisfied (see examples (2.7), (2.9). (2.10))

for any 6 3 0. On the other hand, in these theorems f. in (Hf) is arbitrary and the

ease f,- 0 is not ruled out, provided b )0. If b 0 in (Hb) one can, of course,

still apply Corollary 2.5 if f = 0. and Theorem 2.6 if f * 0, with A - 30.

Proof of Theorem 3.1. (a) Let 0 < T < - be arbitrary; take the scalar product of
d dii

(V') with v e 3v(u) and integrate over [0,Tj. Using LO(u(t)) - (v(t). C (t)) a.e.

(see Irezis (141) one obtains

T T

3.9 V(U(T)) + b(O) f Iv(t)12 dt + Q,,[v;T - J (P'(t)ev(t))dt +P(f(O))
0 0

Vhere

v,I f J (v(t),'*v(t))dt
0

We next apply a frequency domain method (see Nohel and Shea (671) to Qt." Define

VT (t) - v(t)x(OT] and its Fourier transform

V,(R)- f esI"tvT(t)dt•

Zxtend 9o evenly to (-i,0) by B'(-t) - 3(t) (0 C t < a). Zn the following

calculation use is made of the hypothesis 3'e  L (0,-), and the Parseval and convolution

theorems:

IP ,01"O f (v(t). f 2-'(t -)v(T)dT)dt
fv:T] '0 (v(t).' Iv(t))de " T  (vdt).t t0 -

S-
81ince 3' is even. 3(l%) - 213e U'(iq) 1q * It). where * denotes the Laplace
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transform. The assumptions B91 e L (0,-) and the familiar formula

51(in) - in B(ini) - D(O) yield Re BI(in) -n-im B(in) - B(0). Therefore,

T 1 2
Substituting this result into (3.9) and using l Iv(t)I dt - w f (r)t 2 dn. as well as

0
(0) - () - b, the frequency domain condition (F), and Parseval's theorem again, yields

T 2
(3.10) o(u(T)) + 6 f jv(t)I 2dt 4 jI(f(o))I + I t(F'(t),v(t))jdt (0 ( T < ")

0 0

The assumption F' C L2(Os"), Cauchy-Schwarz and an elementary inequality give the

estimate

(3.11) f(u(T)) + 2 d 4 jI(f(0))I + r 2 < (0 < T <
0 0

Assumption (3.1) used in (3.11) yields conclusions (3.2), (3.3) and (3.6).

Returning to (V') and using a' • L1 (0,-), V g L2(0'_;R)' Fe e L2(0,.;) gives

d dconclusion (3.4). Combining (3.3), (3.4) vith 7 t(u(t)) - (v(t), (t)) yields

P f(u(t)) e L (0,-), and this together with assumption (3.1) implies that lu (u(t))at

exists. To establish all of (3.7) we use the definition of subdifferential: for every

V d 2(u) and for every v • 8 o(u(t)). (v) + (v(t),u(t) - v), 0 4 t <-. Since

aI Le .(0,'E) and v ' (0,48 ) there exists a sequence (tn) as a .* such that

(V(t ).U(t n) - v) * 0 as a + -i this proves (3.7), and from it easily (3.6). To prove

(3.5) take T 4 t and uie (3.4) and Cauchy-Schwarz obtaining:

18(t) - u()| 41 I do Wds 4 o T I- (a12 dx' 2

4 t -1 (0 4 T 4 t I

Ihis completes the proof of Theorem 3.1.
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Proof of Theorem 3.2. As remarked in the paragraph preceding Theorem 3.2 the

coercivity condition (2.4) Implies that

Inf %V(X) 20 V(0) > •

Zen

so that assumption (3.1) is satisfied. Thus conclusions (3.2)-(3.5) follow imediately

from Theorem 3.1. Zn view of (3.5) the conclusion u(t) + 0 strongly as t - - follows

once it is shown that u 9 L 2 (0,;H). But using assumption (2.4) with )o 0 and

ve L2 (0,;H) for v c 3)p(u) (proved in (3.3)) one has

I Iu(t)jI dt I f (v(t),u(t))dt -C f Ju(t) I2 dt +- Iv(t)l2dt

jut1d I I ( t t~dt • IvtId 0 (0 0T

0 0

?has

T1 2 0 ultl12dt -Cv(t) 1 2dt CO ( < T <'

Since c > 0, this camoletes the proof of Theorem 3.2.

4. Application to a Problem of Heat Plow in a Material with Memory. Zn this section we

study the heat flow problem (1.4) in one space dimension for=ulated in Chapter 1 Section

2. We use the existe-ce and uniqueness theory of Chapter 2 and the boundedness and

asymptotic theory of Chapter 3, Section 3, to deduce the principal result, Theorem 4.5

below.

ior clarity of exposition we restate the heat flow problem (1.4). Chapter 1, Section

2s

(.)- tou +O-u c - O (-) x -3 Y- ou _ ) x3 +h (0 <t -< x 11)(4.1)
u(O~x) - %o(X) (0 AC x < 1), u(t•0) -u(tl) 1 0 (t )o U)

where subscripts denote differentiation with respect to x. We assume that the con4itions

(which were motivated in Chapter I )a

-4
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0J

(PW) bo 0 +Re 01in1 >* 0 CR

(T)10 co  - (Y)dT > 0 ,

0

where Min) - f S(t)exp(-int)dt, are satisfied. We also assume that the function
0

a s R * R satisfies assumptions (a) of Lemma .1.3 (Chapter 1), u0 9 H (0,1), and that

1 2 2 2
the external heat supply h c L (0,.L (0.1)) () L (0,-;L (0,1)). Under these assumptions

we have seen in Chapter I that the initial-boundary value problem (4.1) is equivalent to

the abstract Volterra equation

(V) u + bAu f (0 < t )

In the present application
(b) b(t) - C(t) + (PC)(t) (0 • t <

bo
Mf fit) _Ct'.) + (P*G)(t,*) (0 < t(

b0

where p is the unique s-,lution of the resolvent equation

0t
()b b0 PMt + WSPM() b i--! (0 4 t <-)

C(t) - - Y(T)dT (0 t <
0

t
O(t,x) - b0x0 (x + f h(tx)d? (0 C t <, * ( x C 1)

0

and the nonlinear operator A - DO satisfies assumption (HO) with t given by the proper,

convex, 1.s.c. function defined in and satisfying the properties of Lemna 1.3 In Chapter

1. We recall that in two or three space dimensions the corresponding heat flow problem in

a bounded domain 0 with smooth boundary r also satisfies the Volterra equation (V)

2
with b and f as above, but with L 2(0.1) replaced by L2 (1), and with A -0

where V is the proper convex, l.s.c. function defined in and satisfying the properties of

Remark 1.4 in Chapter 1. We recall also that the key properties of the kernel b and

-4S-
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of the forcing term f for the heat flow problem are stated in Lemmas 1.1 and 1.2 of

Chapter 1. With these properties in mind all that is needed In order to apply Theorems 3.1

and 3.2 of Chapter 3 to the problem under study is to show that the frequency domain

assumption (F) of Lena 2.2 can be satisfied for physically reasonable classes of

relaxation functions B, y. Zn this direction we have:

Lema 4.1. Let b0 , co , 0, y satisfy the assumotions of Lemma 1.1, Chanter 1. Define

the kernel b in V) by euation (b). Then the frecuency domain assumption (F) of Lemma

2.2 is ecuivalent to the condition: there exists 6 > 0 such that

(c. - Re,in))(b + ReS(in)) - Imy(in) ZmBin)
(4.2) Inf a 6 .

(jerl) lb0 + B(in)1 2

Proof of Lemma 4.1. Define the constant b > 0 and the function B as in Lemma

1.1, Chapter 1. Taking the Laplace transform of B one computes

I,.€o "V;in)

"Cm) --) 0" --ir . (n R)

Thus

0 - (n)
b - ROO_-_- ) (n 9 R).

b0 + I0(i)

from which the condition (4.2) is an immediate consequence.

Using Lemna 4.1 one can construct a large number o examples of functions a and y

such that assumption (F) is satisfied. in particular one has the following physically

Important special cases. Uote that in Corollaries 4.2 and 4.3 below the physical
t t

conditions b 0 +d >d 0 (0 t < -), c 0 - Y(I)dT ) 0 (0 I t < -) are both
0 0

satisfied (although they are not explicitly needed in the theory), because the functions

0 and y are positive, and assumption (y) is assumed to hold. For a different example

In which (y) is satisfied but the above physical conditions need not hold see Remark 4.8

below.
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Corollary 4.2. Let b0 > 0, co > 0 and 0, Y, tO, ty e L (0,-). Also assume that B and

Y are positive, nonincreasing and convex on C0,-), and that the assumption (Y) is

satisfied. Then assumption (F) is satisfied if either for a fixed b0 > 0 the constant

CC > 0 is chosen sufficiently large, or if for a fixed c. - 0 the constant b0 > 0 is

sufficiently larqe.

Remark 4.3. (i) If S - y E 0 (the standard heat flow problem) (F) is satisfied for any

b0
choice of b0 > 0, c. ) 0 with .

O 0O
(ii) If B - 0 and y satisfies the assumptions of Corollary 4.2, (F) is satisfied

C 0  -f (t)dt
0

for any choice of b > 0, c > 0 with 6 - 0 -

Uii) If Y B 0 and 0 satisfies the assumptions of Corollary 4.2, (F) is satisfied

for any choice of b0 > 0, c0 > 0.

Sketch of Proof of Corollary 4.2. The proof will make use of Lemma 4.1; we estaiblish

(4.2). Since By e L (0,-) and are positive, nonincreasing and convex, Re ;(in) and

Re Y(in1) are nonnegative. The function

MY(i'0$.(in) -" fY(tin ntdt f (t)sin ntdt N 9 R)
0 0

is even, continuous, zero when 11 - 0, nonnegative, and has limit zero as n * -

(Riemann-Lebesgue lemma). The denominator in (4.2) satisfies

0 <b 4 lb + B(in)t 4 2b +3(fr0td) 1ea0. 0

Koreover,

b 0 +o e(i) b > 0 (11,).

(so that (OW) is satisfied), and

C0 - .(l) c Y(tdt > a it)
0

-so-

1
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Therefore, the existence of 6 ) 0 such that (4.2) holds is established for choices of

b0  and co  as asserted. This completes the proof.

Another physically important case for the heat flow problem is the following special

case of Lemma 4.1 and Corollary 4.2.

Corollarv 4.4. Let

(0 • t
(4.3) k b

-Yt

with bk 1 0, 0k ) 0, o • O k ) 0 and strict inequalities hold for at least one pair

b k' Ok and one pair. ck. Yk" Let b0 > 0, co > 0. ane c0 - --0. Then the
kul "k

frequency domain condition (F) is satisfied if

(4.4) b o(o0- Ck n b -a

kni It k-I k k-Ik

The proof of Corollarl 4.4 is a consequence of showing that there exists a .3 0

such that (4.2) holds. The inequality (4.4) follows by using elementary calculus to find

the Infimum over n e R of the expression in (4.2):

(e " I) (2  b , n k k 2 a n b k

k- y 2+ i k-1B+ k-lrfk 2) k-l I l

a b~ k n bItn 2

7b + k hl k-II

No claim is made that the constant - In (4.14) is optJmal.

We next combine the properties stated in Le mmas 1.1, 1.2 and 1.3 of Chapter I and

Loma 4.1, and Corollaries 4.2 and 4.3 above with the abstract theory to establish the

following result for the physical heat flow problem (4.1) in a one-dimensional material

.1
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with memory. To see that a more general result (not necessarily physical) with B and y

oscillatory can hold we refer to Remark 4.8 below.

1 2Theorem 4.5. Let b0 > 0, c0 ) 0, let B, Y, tB, ty * L (0,-) and let Be L (Of,-).

Assume that B and y are positive, nondecreasing, convex, and that

(M) c 0 - Y(t)dt > 0
0

Assume that a : R + R satisfies assumptions (a) of, Chapter 1, that the initial

11 2temperature u0  1 (0,1), and that the external heat supply h e L (0,-;H) A L (0,m;H),

where N - L2(0,1). Then the heat flow problem (4.1) has a unioue strong solution u on

(0,-) x (0.1) such that - u L 2(0,;H). Moreover, if either for a fixed b > 0, the

constant co > 0 is sufficiently large, or for a fixed c0 > 0, the constant b 0 0 is

sufficiently large, then the solution u has the properties:

duUL (O,-:H) A L (O,-;H). '-e L2IO,-;H) ,

and lim u(t) - 0 stronaly in H.
t a

Remark 4.6. For heat flow in more than one space dimension let Ck be a bounded body in

R2 or R3 with smooth boundary r. Then the temperature u satisfies an equation of the

form (4.1) with the operdtor -o(u x)x  replaced by -V0 (XVuI)Vu); the boundary condition

in n(t,x) - 0 (0 < t < m, x e r), anC the initial condition is u(0,x) - u0 (x)

(x C it). If H is the Hilbert space L2 (0), if the function I : R w R+  satisfies

assumptions (1) of, Chapter 1, if uo(X) C a I(), and h e LI(0,-H) A L2 (0.a-H), then

the results of Theorem 4.5 holds, provided the constants b0 > 0, c0 > 0 and the

relaxation functions B and y satisfy the assumptions stated in Theorem 4.5.

Remark 4.7. Let

S(t)- b ke k (oct -)

k-1
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where b ) Of 0k 3 0, k ) 0.k ) 0 and strict inequalities hold for at least one pair

bk* .k and one pair cko Yk" Let b. 0 O, c0 )o 0, and C0 - a O. Let a, uo- h
k1

satisfy the assumptions of Theorem 4.5. Then by Corollary 4.4 all conclusions of Theorem

4.5.hold if the inequality (4.4) is satisfied.

Proof of Theorem 4.5. Under the assumptions of the theorem the heat flow problem

(4.1) is equivalent to the abstract Volterra equation (V) with the kernel b given by

equation (b), the forcing term given by equation (f), and the operator A - 3W where

9 a H* (-i, is the proper# convex, I.s.o. function defined in Lemma 1.3, Chapter I (or

Remark 1.4, Chapter I in more than one space dimension). To establish the existence and

uniqueness of a strong solution of V) (equivalent to (4.3)), we apply Theorem 3.10,

Chapter 2. Lemma 4.2, Chapter 1, shows that the assumptions of Theorem 3.10. Chapter 2

concerning f are satisfied with f(0,x) - u0 (x) H1(0,1) - D(W) . Moreover, (H) is

satisfied. Lemma 1.1, Chapter 1, shows that assumptions (Hb) are satisfied. Thus to apply

Theorem 3.10, Chapter 2, we must still verify that D'e N UVl 10,). From the expression

for 8 In Lear 1.1, Chapter 1, we compute

Y' t)(4.5) t M V- + c0 o(t) - (yp)(t) (0 4 t )

Since 0 is monotone by hypothesis, the resolvent equation (p) and a standard argument

(see e.g. Bellman and Cooke 121) show that p is monotone. Finally, since y is

monotone, it follows that 1' e BV(0,-). Thus Theorem 3.10, Chapter 2, yields the

existence and uniqueness of a strong solution u of (V) on 10 a) such that

ut4L t0,-M).

We shall next apply Theorem 3.1 of this chapter. Concerning the kernel b Lemma 1.1,

Chapter 1, shows that assumptions CHO are satisfied with b. ) 0. Moreover, Corollary

4.2 shows that b satisfies the frequency domain condition (F) if b0  and co  are chosen

as in the statement of Theorem 4.5.

Lemma 1.3, Chapter I (or Remark 1.4, Chapter 1 in the cs of more than one dimension)

shebo that 0(y) , 0 (y e W), li 0(y) 4m, and that the inclusion 39(w) p 0 has1yJ'-

v a 0 as the only solution. Lamm 1.2, Chapter 1, shows that assumptions (Hf) are

satlfieJ. Therefore, by Theorem 3.1 the solution u has the propertiestIt

I: -3



du 2
sup '(U(t)) < -, sup luIt)l < -0 i e L (O,_). u(t) is uniformly

04<-¢ 0•ttC d

continuous on 10,).

lim f(u(t)) - 0, and u(t) - 0 as t * -

Lemma 1.3. Chapter I also shows that under assumption (a) the coercivity assumptilon

(2.4) is satisfied for every T ) 0 with C - p0
w 2 ) 0 (or another positive constant in

the case of more than one space dimension - see Remark 1.4, Chapter 1). Therefore, by

Theorem 3.2 one also has u C L2 (0,3;R) and u(t) * 0 as t * strongly in V. This

completes the proof.

Remark 4.8. Suppose

-sit
$(t) - bIe cosAlt (b1. 1 ) 0, 0 t <)

'(t) - coswt (oy 1 30 0O 0 t <)

and assume that b0 > 0, c0 • 0. Als sppose that q and h satisfy the assumptions of

Theorem 4.5. Although the assumptions concerning 0, y in Theorem 4.5 are not satisfied,

ome still has by Lemma 1.1, Chapter 1, that assumptions Hb ) hold with bo o 0 provided

011

Mreover. 3 C SV loc(0,-) from (4.5), and the existence and uniqueness of a strong

solution of (V) (equivalent to (4.1)) such that u'e Lo 2 (0,-M follows from Theorem

3.10, Chapter 2. Thus to ebtain all of the conclusions of Theorem 4.5 we need only verify

}/ that the frequency domain assumption (F) holds in order to apply Theorems 3.1 and 3.2. By

Lome 4.1 It suffices to find sufficient conditions on the constants ba, cO , b1 , Olt 1,

@* U so that (4.2) holds. An elementary, but tedious calculation shows that 6 0 0

-4-
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2 w2 21 •2, rvddasmto y bv
such that (4.2) holds exists in the case 2 I provided assumption (Y) above

.holds, and provided b0 ) 0 is chosen sufficiently large.

While no claim is made here that the above functions S and Y represent physically

plausible relaxatio. functions, it is of so.e interest that the theory can still be

applied. In this connection it eay also be noted that here the function

C~t) a. c o - y( )dT-=c o  2 2(- 2 2• sl •
CM -C fto d - l - e _Y eosuat) c1 e _1tsinit.0 0i + 2 * 2 "

In a genuinely physical problem as motivated above one would need to require

C(t) , 0 (0 < t < a). as woll as assumption (y). However, in the application of the

theory the physical requirement C(t) ) 0 (0 4 t < -) is not used and indeed, for

example,

C ) C0 - 2 2 e
2 2

Ti1 I

eculd be negative, even though C(-) c €0  a 2 • 0 holds.
2 1

TIS_

A! -



Chapter 4

Existence and Asymptotic Behaviour of Positive Solutions

of Nonlinear Volterra Eauation for Heat Flow

1. Introduction. In this chapter we discuss the positivity of solutions and their

asymptotic behaviour as t * * of the nonlinear Volterra equation

( t CV) U(t) * (bAu)(t)a f(t) CO 4 t < )

in the general setting: b : [0,-) + R is a given kernel, A is a nonlinear (possibly

multivalued) m-accretive operator defined on a real Banach space X, f : (0,i) 4 X is a

given function; the integral in V) is understood in the sense of Bochner. The assumptions

which are imposed on b, A. f. are motivated by the problem of nonlinear heat flow in a

material with memory formulated in Chapter I to which the general positivity and asymptotic

theory developed in Section 3 will be applied in Section 4. A different application of

general theory is given in Example 3.4, Section 3, to a nonlinear conservation law with

memory.

This chapter which generalizes and complements earlier work of Clement and Nohel [18)

an positivity and of Clement [171 on limiting behaviour of positive solutions of V) is

primarily based. on a forthcoming paper by Clement and Nobel (191. The generalization

enables us to apply the theory to the physical problem in Section 4. General existence,

uniqueness and continuous dependence results for solutions of V) which need not be

positive have been established by Crandall and Nobel [261 and by Gripenberg (34] (see also

Theorems 3.5 and 3.7, Chapter 3); these will be referred to as needed.

We will motivate the assumptions on the kernel b which are needed for positivity of

solutions of V) and which will be needed throughout the analysis by means of a simple

Linear problem at the end of this section. These considerations suggest the Concept of

emplete positivity of the kernel b (Definition 1.1 below) which plays an important rolt

In the analysis. Some properties and a useful characterization of completely positive

kernels are obtained in Section 2.

* IA
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We shall conside'r equation (V) in the slic;htly less oeneral fotm

(V ) u(t) + (b*Aul)(t) v U0  + (b'g)(t) (0 4 t < )

We assume throughout the following minima! assumptions:

b f L 1o (0,-),

c
(HO A m-accretive in a real Banach space X

U0 e D(A), and g e L 1 (0,-;X)
0 loc

The motivation for taking f = u0 + b*g in (V) is given in Section 3 (see argument at the

beginning of Section 3 following (Vg)). The main results of this chapter, described in

Section 3, give a rather complete description of the asymptotic behaviour of the positive

solutions of the abstract equation (V) as t + -, including a priori estimates for their

rates of decay. The results are then applied to the physical problem in Section 4.

The additional assumption we shall make on the kernel b in order to insure

positivity of solutions was first introduced in [18]; it is motivated by the following

remark. If b 1 1 then (V ) reduces to the evolution equation

-L + Au a g
(DE) dt

u(O) - u0

It is well-known [13] that if the resolvent J= (I + AA)-  of A maps a closed convex

cone P of X into itself for every X > 0, then u(t) e P for all t > 0, provided

that u0 e P and g(t) e P a.e. on (0,-). Let us take for instance

X = {u E C[a,b] lu(a) = u(b) = 0)

2equipped with the supremi norm; D(A) = {u C X I u C C [a,b] and u C X} and

Au(x) - -uxx(x) for u e D(A). It is standard that A is m-accretive in X. Moreover,

if P - {u e XIu(x) ) 0 x e [a,b]}, then JAP C P for every X > 0; thus, as is

classical, the solution ol: the heat equation is nonnegative provided that the initial

value u0  and the forcing form g are nonnegative.

We want to consider a class of kernels b under which the solution (V), resp. (Vg).

preserves this positivity property. This requirement is useful and natural in the

- 7-
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application to the modl of heat flow in a material with memory discussed in Section 
4
,'

in Example 3.4 of Section 3.

Consider (Vg) with Au = -axx with D(A) as in the above example. It is easy lo

give necessary conditions to be imposed on b in order that positivity is preserved by

(Vg) whenever u0 and a are positive. Let 1 denote the principal eigenvalue an, u

the corresponding principal eigenfunction of A, normalized by max u(x) = 1. Clearly
xc[a,b]

ab- -(x) = sin(-' )(x-a). If u0 = au, g(t) = A6(t)u with a > 0, andb-a -

B(t) ) 0 where 6 f Lo(0,-), then, as can be verified directly, the strong solution of

(Vg) is

(1.1) u(t) = [as(Xb)(t) * ($*r(b))(t)]u (0 4 t < ),

where the functions s(b) and r(b):[0,-) R are respectively solutions of the linear

Volterra equations

(s(b)) s(b)(t) + (b*s(b))(t) = 1 (0 ( t < -)

(r(b)) r(b)(t) + (b*r(b))(t) = b(t) (0 ( t < )

Recall the standard fact (see e.g. R. K. Miller (63]) that if b E L 1o(0,-), th-
1

functions s(b), r(b) are uniquely defined and s(b), r(b) e L (0,-). Moreover.. if
loc

F C L (0,-) the unique solution of the linear Volterra equation

(1.2) u(t) + (b*u)(t) = F(t) (0 ( t < -)

is given by

(1.3) u(t) = F(t) - (r(b)*F)(t) (0 ( t < )

In particular, taking F 5 1 in (1.2), one has

t
(1.4) s(b)(t) = 1 - f r(b)(T)dT (0 4 t < ')ii
so that s(b) is absolutely continuous on [0,-) whenever b e L 1o(0,-). The function

resoventkernl asociaed wth b

s(b) is called the fundamental solution of (1.2), while the function r(b) is called the

, resolvent kernel associaced with b.

.p.

!J ! - ! .. .... I ' ! £ : , , ......... . . - ... .
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Returning to the solution (1.1) of (V ) with Au -u XX >0,, uO. g defined

above, we note that ;(x) > 0 for x e (a,b). Thus the solution u(t) vill be

nonnegative for every a ) 0 and for every 0 e L 1o(0,). 8 0. only if the functions
lea

r(b), s(b) are nonnegative on [0,-). Moreover, if one imposes the requirement that the

Solution (1.1) of (V ) should be nonnegative and independent of the length of the

interval (a.b). it is clear that both of the functions r(kb) and s(Xb) must be

nonnegative for every A > 0. We remark that these latter necessary conditions imposed on

the kernel b have been shown to be sufficient to guarantee the preservation of positivity

by the solution operator of the nonlinear equation (V) in the general case of A a-

secretive on X (see (18, Theorem 4.5]).

The above considerations suggest the following concept of complete positivity of the

kernel b:

Definition 1.1 We shall say that the kernel b is comletely positive on [0.T]

If b 9 LI(0,T) and if the functions r(Ab) and s(Ab) - 1 - l*r(Ab) are nonnegative

on C0,T] for every A > 0.

aome known sufficient conditions which inure the complete positivity of the kernel

b on [0,T] are:

(1) b 9 LI(O,T) is nonnegative, nonincreasing, and log b is convex (see Miller

[621., Levin (521. Cl;ment and Nohel (181).

(11) (special case of (I)) b a LI(0,T) and b is completely monotonic on (0,T)

(see Killer (621).

2. Completely Positive Kernels. in this section we give an alternate and useful

characterization of completely positive kernels (Theorem 2.2) which will be needed for the

development of the asymptotic properties of positive solutions of the abstract Volterra

equation (V9 ). For this purpose we consider the linear scalar'Volterra equation (1.2) In

the form

2.1) •* b "u 0m beg



1 14

vhere b e L(0,T), u0 9 R, g C L (0,T). and T 3 0. Its unique solution (see (1.3).

(1.4)) Is given by

(22) u(t) - u0 s(b)(t) + (r(b)*g)(t) (0 ( t C T)

In the following proposition we list some elementary properties of completely positive

kernels which are needed in the sequel.

Proposition 2.1. Asswme that b Is completely positive on (0,T) for some T > 0. Thent

1) b is nonnegative on [0,T) and for every U > 0, s(ub) is nonneoative and

nonincreasing on 10,T].

2) For every v  > 0, r(mb) is itself completely positive on (0,T).

flext, assume b is comletelv positive on 10,T] for every T > 0. Then:

3) If b C L 10,-), then for every u' ) 0

-1

1I (pb)t) (1 + u f b(T)d r)
VIM 0

Iulpb)l f U bzdl1 ll~'
1W M CUa b(r)dr)(1 (~--

L(0, o) 0 0

4) if b 0 L-(0,-), .hen for every u > 0

lim s(iab)(t) - 0 and lr(zb)I - 1.II
5) if b if L (0,) and b e AC[O,), then for every U ) 0, r(ub) C C(0,") and

lim r(Ub)(t) - 0

The proof of Proposition 2.1 Is elementary and is omittedl for details see (191.

In the next result we give an alternate and useful characterization of completely

positive kernels b. Some arguments used are similar to those of t331.

Theorem 2.2. Let T ) 0, b I L (0,T), b # 0. Then b is completely positive on (0,T

if and only if there exists a ) 0 and k 9 L (0T) nonneative and nonincreasing

satisfyinq:
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(2.3) *b(t) 4 k*b(t) - 1 t 9 10,T]

Remarks: (1) It follows from (2.3) that a ) 0 if and only if b e 170,T). If this is

the case b = a ls(al k) and thus be AC 10,T). Conversely if b C AC10,T] , then

a b(0) 0. Moreover, observe that if a > 0, then k e DV[OT) (equivalently

kO ) m) if and only if be C BV[OT]).

The importance of the remark a > 0, (k c BV[0,T)) is that for kernels b satisfying

the assumption:

(a) b e AC0,TJ, b(0) > 0 , be f DV[OT)

the existence and uniqueness of a generalized solution u e C([0,T]I D(A)) of the abstract

Volterra equation (V) has been established by Crandall and Nohel (Chapter 2, Theorem 3.5),

whenever the operator A is m-accretive, and f(0) e D(A), f e W1 .1 (0,T;X). For the

special case X - a a real Hilbert space and A - 3o we refer to Chapter 2, Theorem 3.10.

Recently Gripenberq [34, Theorem 21 has extended this result to the case of kernels

b - bi + b2 , where b, satisfies the above regularity assumption and where b2 e Ll (0,T),

b2 Is positive, nonincreasing, and log b2  is convex on (0,T) with A and f as above

(see Chapter 2, Theorem 3.7). This result with b, 2 0 and A linear was already

established by Clement and Nohel 1181. These more general completely positive kernels b

Oorrespond to the case a - 0. The problem of existence of generalized solutions of (V)

with only the assumption that b is completely positive is under study and will be treated

elsewhere.

(Ui) it follows from Theorem 2.2 and Remark (i) that if b is completely positive, then

b need not be nonincreasingi it also need not be convex and a fortiori log convex. Choose

eI and k(t) - I for t g [0,11 and k(t) - 0 for t l It then b - n(k) is

completely positive. But as shown in Levin (521, be - -r(k) is negative on some interval

10.a) with a # (1,2) and positive in (a.21. Thus b Is not onincreasing on

0.21]. Moreover, assume b to be convex on tO,-). Then b is strictly increasing for

t o a, and moreover, lim b(t) . Rut this Is impossible, since b(t) (.1 as seen
ton

trom (2.3) and the fact that k~b are nonnegative and a - 1. Thus b Is not convex.

-61-
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(Ili) If b is completely positive and absolutely continuous on 10,T]. then it follows

from (2.3) that b(t) f b(0) for t C 10,T).

(Iv) It follows from Theorem 2.2 that if b C (0,-), b is positive, decreasing, log

b is convex and b(O) * * then the linear Volterra equation of the first kind

(2.4) keb(t) - I . t > 0

possesses a unique solution k e L o(0.-) which is nonnegative and nonincreasing. However,
boc

given k e L[0,TI. k nonnegative and nonincreasinq, equation (2.4) may not have a

solution in L(0.T). (Take k(t) B 1). Thus when a - 0, equation (2.3) does not

provide a way to generate completely positive kernels which are not absolutely continuous

on 10,T].

We omait the quite technical proof of Theorem 2.2. it makes repeated use of the

following result due to Levin (52]. If u satisfies u + bau - f with b C LI(0,T). b

,nonnegative and nonincreasinq, f e LI(0,T). nonnegative, nondecreasing, then u is

nonnegative on [0,TI. The proof of Theorem 2.2 may be found in [19).

3. Qalitative pronerties of abstract Volterra equations with comoletely positive

kernels. In this section we study some properties of generalized solutions, including

positivity and the asymptotic behaviour of positive solutions as t * .of the nonlinear

abstract Volterra equation

(V ) u+ b'Au au 0 + bg (t ), 0)

Although our results are stated for generalized solutions, it Is obvious that the results

bold for strong solutions, whenever strong solutions, are shown to be generalized solutions

(see Remark (I) following Theorem 3.1 below).

The justification for taking f - no + bg in MV Is as follows. If b satisfies

assumption (W) (Section 2, Remark (i) following Theorem 2.2). if f f W 1 '1 (O.TtX). and if

f(M # D(A). then there exists a unique u 0 9 DM and a unique 9 9 L 1 (0.TiX) such

that

(3.1) fet) + 0 * (bg)(t) (0 t 4 1)

-62-
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Indeed, u0  f (0) e D(A) and g is the unique solution of the linear equation

(3.2) b(O)g(t) + (*g)(t) - f'(t) (0 4 t 4 T)

Conversely, if b satisfies assumption (H) and u0 e D(A) , q LI (0,TIX), then f given

by (.1) satisfies f(0) t D(A), f C W 1,(0.TiX). We shall make the following general

assumptions:

A is m-accretive in X

u 0tD(A)

lo (0,;x)

b is completely positive on [0,-)

The basic preliminary result assuming the global existence of solutions of (Vg) under

assumption (H) is known:

Theorem 3.1. if A, u0 , g and b satisfy assumotion (H) then:

(1) if u1 Lnd u2  are the ceneralized solutions of (Vg) corresponding to the data

uoio gio i - 1,2, then the following estimate holds:

(3.3) lul(t) -u 2 (t)l < Eu0 1, - u0 ,2 1 + (belg 1 - 92 1)(t) t ) 0 a.e.

(2) if P is a closed convex cone in X, if J7 (P) C P for every A > 0, and if

u0 e P and g(t) P a.e. on [0, ), then u(t) e P a.e. on [0,); moreover, if

v - U d P implies 3Av - JI u e P for every A > 0, u,v.e X, and if U 0 , 2 - U0 , 1 e P.

g2 (t) - gl(t) e P a.e. on (0,--), then ui, i - 1,2, the corresponding generalized

solutions of (V ) satisfy u2(t) - ul(t) e- P, a.e. on (0,-).

Remarks: i) The existence of a generalized solution in the linear case under the

assumption b completely positive was proved in (18). In the nonlinear case, when

b ~0ACO,T], bWO) > 0 and b *DV[0,T], or when b • L1 (0,T), b is positive,

somincreasing and log b is convex on (0,T), the existence of generalized solutions of

(Vg) follows from results Crandall and Nohel (26) and Gripenberg (34), already discussed in

Chapter 2 and in Remark Mi) following Theorem 2.2. Moreover, if more regularity is assumed

on b and f, then (see (261, (34)) the generalized solution Is also a strong solution of
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(ii) Estimate (3.3) was proved in (17).

(111) We sketch the proof of the positivity result asserted in (2)x the details appear in

Clement and Nohel 118]; the last assertion in (2) can be established in the same way.

Consider the approximating equation of (V ) resulting from replacing the operator A

by its Yosida approximation

-

(V) uA + b*A)u) u0 + b-g (0 t <)

By the definition of A. equation (V ) is the same as

1 1
u j b-u = + b9 + bJuI

Using (2.2) with g replaced by g + Jlu,. one easily checks that (V1 ) is equivalent to

the integral equation

(Vi) uX. f, + WI(u)

Vhere

f*" e(l b)u 0 + Xr( 1 b)'g

and

A(UA)(t) - r(-j b)'.71(u,)

With

the integral equation (V,) Is equivalent to the nonlinear equation

(vi ?, - V IX(V + f)

Let 0 < T < - be arbitrary. By the complete positivity of b and by the hypothesis of

Theorem 3.1, part (2), f 1 (t) e P aoe. on [0,T]. Noting that W. maps LI(0,TX) into

itself an? recalling that the operator J. is a contraction (since A is m-accretive),

one prJves (for details see (18) and 126)) that some iterate i$ of Wx is a strict

contraction on L1 (OTIX) for n sufficiently large. Thus the integral equation (V) has

a unique solution v. C L (O.TrX) given in

- li IV,(v 0 ) for any v 0 L (0.TsX)
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Therefore, the approximating equation (VA) has the unique solution u- fV+ v% ut

fe P .ac. on 10,T], and if v 0 (t) e P a.e. on (0.T, the complete positivity of

b and the assumption OA(P) C P for every A > 0 insure that W(vo)(t) e P a.e. on

(0,T) and the same holds for W2(Vo)(t) for every n. Consequently u (t) f P a.e. on

(0,T. and if u is a solution of (V9 ) on 10T) such that u - weak lim uI in

LI(0T;X), then u(t) t P a.e. on (0,T). Since T > 0 is arbitrary this completes a

sketch of the proof.

We next obtain some results concerning te asymptotic behaviour of solutions of (V )

as t * . We first consider the case b 9 L (0).

Theorem 3.2. Let A, uO , 9, b. satisfy the general assumptions (;) with b 0 and

b C L (0,). 

(1.) Let g f L(0,-;X) and assume there exists q e X such that

1im 19(t) - g - 0. Let u be the generalized solution of (V ) and define
t. a"
U - 4j(U0 + bg ), where f b(t)dt > 0. Then the followina estimate, which

b 0 f
implies strong converaence of u(t) to u as t * *, holds:

Jb( ) dT

(3.4) lu(t)-ul C L lu 0-u l + (b'Ig -gl)t) (0 < t < a)

(2.) In addition, let b E L(0,) and 1im b(t) - 0. Let g - here
t4a

satisfies the assumptions of g in oart 1. and where 2 e L (0,-;X) + L (0.a;X)o

P # (1,-). Let u be the aeneralized solution of (V ) and let u!" - J. (U 0 + b). Then
b

the following estimate, which implies strong convergence of u(t) to uaf Is t a.

bolds
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J b(s)ds

(3.S) ,ult) - t< ,0 .t bt ,)t

su B (E 0  1 +S W4 (btg1  -

+ (b*1g2 1)(t) (0 C t ( ,

here g~ li 91(t).
t do

Remark. Part 2 is proved below. Part I of Theorem 3.2 was proved in Clement t17) and the

proof will be omitted; it uses ideas similar to the proof of part 2.

I
Next we consider the case where b g L (0,-) which is needed for the application in

Section 4. In order to establish the strong convergence of u to u as t * - we shall

require that the nonlinear operator A in (V) satisfy a rather strong coercivity

condition.

Theorem 3.3. Let h, uO , 9, and b satisfy the aeneral assumptions (H) with

b L' (0.-) and supoose A is coercive in the sense that there exists w > 0 for which

A - WI is accretive in X.

1. Let v be in L(0,-;X) and let g 9 X such that lim, Ig(t) - g71 - 0. Let

u be the aeneralized solution of (Vg ) and let u be the uniou element in X satisfying

Me a g7. Then the following estimate which imolies stronq converaence of u(t) to

a. t * m holds;

(3.6) 3u(t) - u"! ( ~r(wb)(T)dT Eu -u I

t

4. (r(wb)eIq - g9l)(t) (0 4 t < ) .

2. in addition, let b be N [0O]- In.d quq hr_.eg'

assumptions of Theorem 3.2 part (2), wih =a g1 (t). Let u be the aenerahized
t*W

solution of (V ), and let u be the uniqte element in X satisfying Au' a . Then the

following estimate, which implies .tron_ convergence of a(t) as t holds

L . . .-.-



*u(t) - ml Cf r(wb)(T)dT Eu0 - U n
t

(3.7) -(r(wb)Hg 1 - g1 1)(t)

+ 1'(r(b)tg 2Ilt)

Remarks. (i) Since b is completely positive and b F (0,) it follows (see

Proposition 2.1) that r(wb) 4 L (0,-), and therefore, if the assumptions of part 1 hold,

(3.6) implies lim lu(t) - u'l - 0.
t*"

When b also satisfies b f AC(Ot] it follows (see Proposition 2.11 that

r ib) C L (0,.) n C[O,-), and lim r(wb)(t) - 0. Therefore (3.7) implies
'tow

lim Rut) - u I - 0, If the assumptions of part 2 hold.
t~m_-

(11) As is clear from the proofs, the assumption g 17(O,;X) and there exists

g such that lm Ig(t) - g I - 0 in part (1) of Theorem 3.2 can be veakened to

V Lioc(0O;X) and there exists q 4 X such that 1im (b * Ig - gI)(t) - 0. Similar
t-OW

generalizations can be made in Theorem 3.2, part (2), and in Theorem 3.3.

Proof of Theorems 3.2, part 2. As in the proof of Theorem 3.2, part (1) in (17], we first

prove the result with A replaced by A,, I > 0, and then we pass to the limit as

4 0. For A ) 0, let u be the strong solution of the approximating equation

u 1 + b*Au - u0 + b*g (t C (0,-))

Using the definition of A., and applying (2.2) we see that uA satisfies the equation

(368) uA - r(A b)3jAuA + s(X- b)u0 + Xr(A b)*g

for t C (0,-). Since A1 is also m-accretive, there is a unique u: satisfying the

limiting equation

(3.9) + SA u o0 +bg 1
X1

Using the fact that b C L (0,-) and g g + g2 we can rewrite (3.9) In the

equivalent form

(3 10) •l b *AO X u0  b *9 + b ( 9I  - 91) b * -2

w-ere

.47
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I? P

Ut -Ib(s)ds and w. A-j
tA

Let it a JO,-) 4 R be the unique solution of the linear equation

4 -1 n

then obviously

(311v:w, + 1b'flw1  Cw (0 ( t < *

Usning (3.10), (3.11), (2.2) and the definition of %1  we obtain

(3.12) U ( -zlb)-Jiu" + a(.% b)uO + Ar(1 1 b)*g

X rCI%- b(g71 - g1) + lr(X1 b)g92 - w

* I Subtracting (3.12) from (3.8) we obtain

* 1(r'(1- b)*1g23(t) + I'iI(t) RX~

It In shown in Clement (171 (see argument following (3.18) in 1171) that nt 0. Tus by

using the same arginaent as in (171 one gets (talk. convolution of (3.13) with A I

(3.14) 1(t - C(F(t)Ew I + Wi*g, g1l)(t)

4. b-g.3)(t) (0 4 t

fbe conclusion (3.5) follcvs by using (3.9) and rewriting

f bs)ds
V: 00l

and then letting A +0. Note that

a~ ;a..U im(

.1 ~ ( bl 1mU



Proof of Theorem 3.3. We first establish the results with A replaced by

A ( 0 wt + Bi, I 0 0, where 5 Is the Yosida approximation of 3, defined by

I - A - w. Note that 3 is m-accretive In X. Let uX be the strong solution of the

approximating equation to (V9 ) written In the form:

(3.15) + wb*uA + - u0 + ww-l g.

Since the kernel b f L (0,.n), we transform this equation into a form which has the

property that its new kernel will be in L (0,) and completely positive. Indeed, if we

take the convolution of (3.15) by r(wb), subtract the result from (3.15), and use the

definition of r(wb) we get the approximating eauation equivalent to (3.15):

(3.16) V, + r(ob)*w BI u1 = u0 + r(b)*(w - - U0 )

From Proposition 2.1, r(wb) is completely positive and r(wb) C L (0,-), with

I r(&ib)(6)d5 = 1.

0

To prove Theorem 3.3, part 1, we wish to apply Theorem 3.2, part 1. to (3.16). if

satisfies the assumptions of Theorem 3.3, part 1, so does w -1 - u0 . Thus all

assumptions of Theorem 3.2. part I are satisfied with b replaced by r(wb), A replaced

by g replaced by w-'g - u0 , and u by u. We obtain (by (3.4)):

(3.17) IVi I M .u7< r(wb)(TWdT Nu - u: + w '(r~b)-ig -g I)(t) (0 C t < )

t

where 0: is the unique solution of the limiting equation

43.8)+ -1 B -1
(3.18)au w- W DAA g,

which exists because 2A is m-accretive and W ) 0. Note that (3.17) is the estimate

(3.6) with u replaced by u).

If. q satisfies the assumptions of Theorem 3.3. part 2, and b c WC(O, ] , if follows

from Proposition 2.1. that r(wb) 0 L (0,-) n C(0,-]. Thus with g - + q2 we can apply

Theorem 3.2, part 2, to (3.16) and we obtain (from (3.S)) the estimate:

(3.19) •Ot - 0 b U:'

17b- )(t) + (W-. r(wb)*1q21)(t) (0 4 t I a) *

-.69-
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where Ul is the unique solution of the limiting equation
-- -tSu -1

13.20) WA +-,wg "

Note that (3.19) is the estimate (3.7) with u replaced by ux.

Since 8 is m-accretive 1im = u . where in the case of (3.18) u satisfies the

140
limiting equation

(3.21) U 4-,Su" W-g ,

or equivalently u satisfies the limiting equation

(3.22) AU" ga

Similary, in the case of (3.20) we find that u satisfies the limiting equation

(3.23) AU a 9~

It remains to prove that lim uI - u in LI(0,T;X) for every T > 0, where u is
140

the generalized solution of (V9 ). Having done so it is immediate that the estimates

(3.17), (3.19) hold with u1  replaced by u thus obtaining (3.6) and (3.7). We know that
T ,, I - I

Ila I lu1X(t) - u(t)Idt -0, where u A C L 10 .,-XI satisfies
140 0

(3.24) + bAu.X -u o + bg

Introduce the notation 6 - +(1 W 1)-* Since A - ml + B. one easily checks that

a(Ie + x)- + 46

Thus the solution uA  of (3.24) satisfies the equation

(3.25) "x + b*36  X - Uo + b(g - w(O + 6A) in1)

or by (3.15):

(3.26) us b*3u 6 - u0 + b*(g - wu 1 •

to compare solutions of (3.25) and (3.26) we apply the inequality (3.3) of Theorem 3.1, and

we obtain (note that u01 " u02 0 u0 )
S1,- 2 -1

lu1 - u61 4 eb(1 + w)-I u - u1 + AW(1 A) b-I u1 E,

and hence also the estimate

(3.27) 1,- u~U 4 Webeo; - u63 + 6wtb3t1 n

It follows from (3.27) that for every T 3 0
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(328) 1 u u u6 (tdt < dw Ibi I (I +r(-Wb)l l u(t MEdt
0 L (0,T) L, (0.T) 0

T
Since u converges to u in L (MTiX), we finally obtain lim f u6 " ul(t)dt - 0,

140 0
which proves that the uI converges in L1([0,TtX] to the generalized solution u of

(V ) for every T > 0. This completes the proof of Theorem 3.3.

Example 3.4. A Conservation Law with Memory. As an illustration of Theorems 3.1 and 3.2

we consider the existence and qualitative properties of positive solution of the problem

t
Ce) u(t,x) + f b(t-s)#(u(s,x))x ds - u0 (x) (t ) 0, x e R)

0

We assume that * ' C (R) is a given function. If b - I problem (cW is equivalent to

the nonlinear conservation law in one space dimension:

ut + (u)x - 0 , u(0,x) - u0 (x) (x 9 R)

Although no particular physical significance is claimed for (c), it evidently contains the

usual conservation law as a special case. The latter has been studied extensively from

special points of view. Crandall (241 has shown that if #:R -- Ris a given smooth

strictly increasing function (actually # continuous is sufficient) such that 4(0) - 0,

then the operator A defined by Au - #(u) x  on the Banach space X - L (R), with

D(A) - (u c L ():*(u ) * L (R)) (see (24, Definition 1.1 and Theorem 1.11), is o-

secretive on ., and D(A) - X. Moreover,. one has: JA(0) - 0 and JOu C .Xv (I > 0).

w whenever u 4 v, u. v L T).
1

In (c) assume that b e Lioc(O,), b 4 0 completely positive on 10,-). and

0 9 D(A)s to be specific take b nonnegative, nonincreasing and log b convex on

(0,-), b S 0. Then by Gripenberg's result (341, see Theorem 3.7. Chapter 2, and Remark

(L) following Theorem 2.2. and by Theorem 3.1, problem (c) has a unique generalized

mlution u u is nonnegative whenever u0  Is nonnegative, and uI  u2  whenever

1 • 0 2 " * t, In addition, b f LO. 0), then this generallsed solution u converges

i

,~ -- -- - --- ______________--_____



strongly in L1 (R) as t * to the element u C D(A) which Is the unique solution of

the limit equation

W(x) + (I b(t)dt) *(u(x)) - uW(x) (x C R) I
0x 0

u. exists and is uniquely defined since f b(t)dt > 0 and A is m-accretive.

0

4. Application to Nonlinear Heat Flow in a Material with Memorv. In this section we apply

the theory developed in Sections 2 and 3 of this chapter to discuss the global existence,

uniqueness, positivity, and decay of positive solutions of the nonlinear heat flow problem

formulated in Chapter 1. Section 2. This problem was discussed from a different point of

view in Chapter 3, Section 4. In Chapter 3, Section 4, boundedness and decay results were

obtained without consideration of the positivity of the data. Here the principal concern

Js the existence and decay of positive solutions when the data are positive.

Referring to Chapter 1, Section 2, we again study the heat flow initial-boundary value

problem (see (1.4) Chapter 1, also (4.1) Chapter 3):

(b0 u(t,x) + (*u(t.xc) - co a(u(t,x))x  (Ya(u) )(t,x)oo x

* h(t.x) (0 < t < , 0 x1)

(4.1) u(t.o) - u(t.l) -" 0 (t ) 0)

u(0,x) - u0(x) (0 x < 1)

As before we assume that the constants bo, co  are positive, that I. y e L (Or), and

that

0

and
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CT) ** J y(t)dt > 0
0

We also assume that the function a : R + R satisfies assumptions (a) of Lenma 1.3,

Chapter 1, and that the external heat supply satisfies (at least) the assumption

h LI(0,;L 2(0,1)). Defining the functions

t
(C) M -c o - y Y(T)dT (0 < t <-)

0

(G) G(tx) - b u0(x) + f h(T.x)dT (0 4 t <-. 0 < x < 2)
0

the heat flow problem (4.1) is equivalent to (see Chapter 1, Section 2) the abstract

Volterra equation

(VI)  U + Otu + C*Au - G (0 4 t < 0 x < 1)

here we have taken the constant b0  as I without loss of generality. The nonlinear

operator A - 30, defined in Lema 1.3, Chapter 1, satisfies the properties established in

Lemma 1.3, Chapter 1, provided a satisfies assumptions (M), and if no He(O,1), then

G(O'x) - u0 (x) B00.0,1) - D(O). We note also that in the case of more than one space

dimension, the relevant heat flow problem formulated in Chapter 1, Section 2 is equivalent

to the Volterra equation (V1 ) with the nonlinear operator A defined in Remark 1.4,

Chapter 1: the theory developed below applies equally well to this case.

The Volterra equation (V1) may be written in the standard form (V ) of Section 3 above

by defining the resolvent kernel r(S) of S to be the unique solution of the linear

equation:

Mr(S)) i(s) * *Pr) - ) (0 4 t )

elearly. if S L (0.m). then r(S) @ Llo (0,) (at least). Next, define

b 10.O-) X i by

b) b - C - r(S)'C

where C Is the function defined in (C. Then the variation of constants formula shows
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that (V I ) is equivalent to the Volterra equation

u * b*Au - C - r(O)*G (0 4 t < -1 a

taking b0 - I in (G) one sees that (VI). as well as the heat flow problem (4.1), Is

equivalent to the Volterra equation

(4.2) u * beAu - u0 + 1*(h - r(O)*h - uor(M)) (0 • t < -)

The result of applying the theory of Section 3 on positivity and decay of solutions of

i (V ) to the heat flow problem (4.1) is:

Theorem 4.1. Let $ be bounded, nonnecative, nonincreasino and convex on [0,-). Let

y be nonneoative, nonincreasing, log convex and bounded on (Om). Let assumption (y)

,old, and let

ha(4.3) +t -- 0t) 4 0 a.e. for t, t0,-) (

Let the assumotion (c) be satisfied, and let A - 30 where P is defined in Lemma 1.3.

Chapter 1.

1. If u 0 c L2(,1) and it the forcing function h C L 2o([O,-) x (0,1)), then the

nonlinear Volterra equation (4.2) (equivalent to the heat flow problem (4.1)) possesses a

unique strong solution u on (0,m), such that t uO e L 2(O.-,L 2(0,1)); if

00 q 8 (Ol), then u L (0,-L 2(0,1). •

2. If the data u0  and h satisfy u0 l(X) 4 u0,2(x) a.e.an (0,1] and If

h (t,.x) 4 h 2(tx) a.e. on (0,-) x [0,1], then the corresoonding strona solutions ui

(i - 1,2) satisfy u I(t, ) C u2 (t,x) a.e. 10,-) x [0,]; In particular, if u0(x) ) 0

and h(t,x) • 0 a.e. on (0,1] and 10,-) x [0,1) respectively, then u(t,x) 2 0 a.*.

o, ~~ (0- 0,1].

3. If, in addition, 0 e L (0,-), and if b - h1 + h2, where h C L'(0,:L 2(0.1))

and there exists h e L'(0.13 such that 11m hl(t) -h I 2 0 and wheretp I L2 (0,1)
2  z. I(0,aL 2(0,1)) fo= some p ) 1, then the strona solution u of (4.21 converges

strongly in L2(0,1) as t . m to the element u e L2 (0,1)h u is the unique sclution

of the limit esuation Au - 91, where
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;7~U Y. -- tdtCO)ac ()d

I a 0 C())- - % (, * -4,.,. y - y(t~dt. c,- ) - r ,t)dt, o 0.

In particular, if h, U 0, then u " 0.

Before giving the proof of Theorem 4.1 we state a lemma which establishes some

properties of the kernel b defined by (b).

Lemm 4.2. Let 0, y, C satisfy the assunotions of Theorem 4.1. Then b defined by (b)

Is completely positive on (0,-), b satisfies the assumption (H) (Remark () following

Theorem 2.2), and *,k associated with b in Theorem 2.2 satisfy a = co  > 0 and

ke L L ( 0 ,- ) with

aa(4.4) 1k()d-

where 0 " ( t)dt,' = f y(t)dt. Moreover, b p L (0,-) and b', L (0,-).
0 0

Proof. Since the functi2ns 0 and C ACloc [0,-) it follows that the functions r(O)

and b C AC1oo 0,-) (sea definitions (r(B)) and (b) respectively). Note that

b(0) - CO > 0. Define a - b(O) - 1 and let k be the solution of the linear Velterra

equation

(k) b(0)y + ]b'*y - b(0- (0 4 t <(k 1
Since b' C L 1 (0,-), k C L o(0,-), and since

d b'(t)dt (bk)(t) - b(O)k(t) + (b'ek)(t) - b(0)

one has by integration that k satisfies the linear Volterra equation

(4.5) ab(t) + (kb)(t) - 1 (0 4 t < )

[ In order to show that b is completely positive it suffices, by Theorem 2.2. to show

that k Is nonnegative, nonincreasing and bounded on t0,,). ' We first observe that the

assuptions made on y imply that C, -CO are convec and log (-C') Is convex on

(0,"). This in turn implies that log C is coavpx on (0,-), see G. Cripenberg C331.
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I
since C Is nonnegative, nonincreasing and belongs to L 1  (0.). C io completely

positive on O."). Moreover C also satisfies assumption (H) (see Remark (i) following

Theorem 2.2). It follows from Theorem 2.2 that there exists a ) 0, and
C

k 6 L oc(0.-), nonnegative, nonincreasing and bounded satisfying

(4.6) a C(t) + (k *C)(t) - 1 (0 4 t <)

Note that a' 10) a From the definitions of b in (M#. of r(6), and from
co

(1.2) and (1.3) (see Section 1, Chapter 4) it follows that

(4.7) CM - b(t) + (O6b)(t) (0 C t < a)

Substituting (4.7) into (4.6) yields

.b + (kC + as + k )'b -1 .

and thus (4.5) implies that

(4.8) k(t) - k(t) + W(t) + (kS )(t) (0 4 t < W)

Since k C V(0.-) we have
C

d t
NO [@ + k'1(t) - am'l(t) + kC (0)0(t) + O(t - T)dk C(T) a.e.

on 10,-). Hypothesis (4.3) and the identity (4.6) imply that

a$'(t) + k(0)5(t) - 101(t) + r(O) 0(t)] C 0. Moreover, since kc is nonincreasing
Co co

and S is nonnegative

t
JS (t - :)dk (T) ( 0 (0 t <)
0

Thus k is nonnegative and nonincreasing on (0,-). Therefore, one also has k # BV0.-)

I'I
If kI i7(0, 11. But Ic0 and S are bounded and 5 C L 1(0.1) imply k 9 17(0,11 (note

that here the assumption S e L (0,-) Is not needed). Using Theorem 2.2 again It follows

that b Is completely positive and satisfies assumption (H).
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We next establish that b L (O.-). Since C - -C CL (0.-), and

lha C(t) - Cc-) - c0 - f yfs)ds > 0, it follows that C f L (0,). If b C L (01-), it

would follow from (4.7) and the assumption B L (0,-) that C e L (0,-). a

contradiction. Thus b of L
1 
(
0 ,

-).

We next prove that b' e L (0,]). Indeed, from (b) it follows that

b'(t) - C(t) - C(0)r()(t) - (r(B)'C')(t)

But C' - -y C L (0.-); moreover, r(B) e LI(0,-), since B is nonnegative,

sonincreasing, convex and 0 f L (0,- ) (use the Paley-Wiener theorem and the fact that

Is lpositive definite).

SFinally, we show that k t L (o,-). From (4.8) and the fact that B e L (0,o), it is

sufficient to prove k e L (0,-i). From (4.6) and the fact that C is positive,
c

nonincreasing, C(-) > 0 and k is nonnegative, we have

t

C(-) f k¢(T)dT 4 C-k ( 1 (0 t ( )
0

which proves that k C L (0,-). Formula (4.4) follows easily from (4.8) and theC

differentiated form of (4.6). This completes the proof of Lemma 4.2.

n -6kt
Remark. In Lemma 4.2, if B(t) I bke with bk ) 0 and 0 <Bi (62 *.. <Bfuema42 fOt k; 1 kn"O

kiy (0)
then condition (4.3) is satisfied if B1 0 holds. indeed, since log B is convex

1 CO
and nonincreasing, it suffices to require

6'(t (0Ila -' -W •(

Proof of Theorem 4.1. We begin with the proof of the existence and uniqueness of

strong solutions of the Volterra equation (4.2). Defining f: 0O) x L (0,1) 2(0,1)

4'(h - r(O)*h - U0 r(s))

we hav"

(4.10) f9 - - r()h -ur(O) (0 t < e, 0 < x <1

It follows from Lema 4.2 that the kernel b satisfies the assumption
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Wi) M(O) , O0. b e jkc Ioc 10,-), b' f BV Icto0.-)

and that f W 1 2 (O,-;L2(,1)) whenever h e L 2 ((0,-) x 10.1)). Since under

assumptions (o), A- 10, where to is defined in Lemma 1.3. Chapter 1. the existence and

uniqueness of strong solutions u with the properties asserted in conclusion I of Theorem

4.1"follows from the result of Crandall and ?ohel (26, Theorem 4 and Theorems 3.5 and 3.10,

Chapter 21.

We next establish the asymptotic results asserted in Theorem 4.1. Since

rt8) C L (0,- ) (proved in the demonstration of Lema 4.2). and since h - hI + h2  one

has from (4.10) that

V - (hI  r(O)eh ) + (h - r(O)h2) . r(B)u (0 4 t < 0, 0 < x < 1)

2 2 0

where h- rCB)*h1 e LCtmL (0,1)), and

Iia (h - r()ih )(t) U - (1f- r(O)(T)dT)h'- s()(-h - (1 + W)1 h"

moreover,
(b2 - r(O)*h2 - rBu 0 ) e L (0,-;L (0,1)) + Lo(0,-;L 2 (0.1))

with < p <.

ly using (4.10), the fact that the kernel b defined by (b) is by Lemma 4.2

completely positive, and Theorem 2.2, we can write the Volterra equation (4.2) in the

equivalent form

(4.11) u + bAu - u0 + b*(of + k'f') (0 C t • .t

To arrive at (4.11) we use the relation b + k * b - 1 in the right hand side of (4.9)

and recombine terms making use of (4.10). Thus (4.11) is in the basic form (Vg) of Section

3 with

(4.12) mf + *f to 4 t )

From Lama 4.2 k CL (0,-), %nd g 9g + g2 , where (using *h - h, + h2  in (4.10))

14.13) 0 "al - r(O)'h 1 ) + k*(h - r()1h 1 ) (0 C t < -1

(4.14) 21 22 (a t -)
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92.1 e-u0r(B) " ar(Blh 2 + k*(h 2 " r(B)h - u r(B),
2 2 2 2 -ch

Clearly g21 C L (0m,;L (0,1)) and g2 2 e LP(0,';L (0,1)). From Lemma 4.2 one has that

b is completely positive on 10,-), b f L (0,-), and b' e 1(0,). Thus all assumptions

of Theorem 3.3, part 2, are satisfied. We conclude that estimate (3.7) of Theorem 3.3,

Section 3, holds, and therefore lrm lu(t) - u I - 0, where uf - A-1 with given
t+" D4 7

in the statement of Theorem 4.1; note that to evaluate 9 use is made of (4.4) and of

Proposition 2.1.

Finally, we establish the "comparison" result asserted in Theorem 4.1, part 2. Let

P {u e L 2(0,1) : u ) 0); P is a closed convex cone in L 2(0,1) and v - u C P if and

only if u < v. Moreover, it is standard that if u < v then 3 Au < JA v for every

A 0, where J = (I + XA)-l. We shall prove the result for solutions of the Volterra

equation (V1 ) which is equivalent to (4.2). As usual we shall prove the result for

solutions of the approximating equation (V A) of (V1 ) in which A is replaced by the

Tosida approximation A A, I > 0. and then obtain the result by letting A * 0.
Let S0' e L2(0,1), hi e L1 (0,1), i - 1,2, satisfy u01 < u0 2 and h lt) < h 2(t)

a.e. on [0,T); let uA X be the strong solutions of the approximating equation

(Vll) u ,I + B'u %i + A lc*u Xi A -A C*Jxuxi + u0 ,i + leh i

(1 - 1,2l A > 0, 0 < t < T)

It follows by an elementary calculation (which uses the definitions of b, r(C' b), and

the relation C 2 b + Beb) that

(4.1S) r(A-'lb)*J u , + f , (I - 1,2; A > 0)(4.15) i
X A'i x ~i Ci 1.:A 0)

where f I'L are solutions of the linear Volterra eqluation

(4.16) f I'l + Oef X'i 
+ 

X- Cef A., 
= 

U0, 
+ 

'*h i (1 =1.2)

anco by a familiar calculation on* has

f , 0L{ 
+ 

X-
1 C ) + 

h eS($ + 1"1 C) *(1 1,2)

and from (4.15). (4.16) the difference u - u satisfies the Volterra equation
2 A.1
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(4.1) u1.2 111 r(XI b*(JA uA.2 JAUX.1)

* WUO - s + '1 C) + (h2 - h )*s(0 + I'C)

Since 0 + 1 1 C Is positive, nonincreasing, it follows from Levin's result (see Section 2)

that s(O A -' Wt) > 0. Thus

a 1 62Nu0, 2 - u0,1) st( + i'1C) + (h2 - h1 )*S( + A-1 C)

satisfies zA(t) ) 0 a.e. on 10,-).

Noxt, define v) W u u using (4.17) we have that Y. satisfies

(4.18) v) - r(k b)*(J,(v, + u-, + z A (u

As In 1181 (see also Remark (iii) following the statement of Theorem 3.1, Section 3,

Chapter 4) one shows that vI - Ila v,, where

(4.19) v.n+1 - b)*(jA(vX n + u, 1 + ) - T(u1))

where v. 1 * LI(0,T;L2 (0,1)) is arbitrary. Choosing v1II(t) * P a.*. on (0,T]o

T > 0 arbitrary, one shows easily that vx1n(t) c P a.e. on 10,T) for all positive

integers n. This also uses the fact that r(X-lb) ) 0, that 3 Is an Increasing map

with respect to the ordering 4, and that z (t) 9 P a.e. on (0,T]. Thus v (t) e P

a.e. on (0,TI, and for A > 0:

(4.20) u"A2 (t) - uw,(t) - 1 1 (t) + TI(t) 0 a&.. on (0,T

iAnce T > 0 is arbitrary, (4.20) holds on 10,), and the conclusion follows by letting

A 4 0. This completes the proof of Theorem 4.1.
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Appendix I

Proof of Lemma 2.2: (a) Consider the resolvent equation (k) of a'. Since

a, 9 L1(0,), the Paley-Wiener theorem (691 yields that k e L (0,-) if and only if

P(z) - b(O) + ;'(z) - + z8(z) * 0 (Re z ) 0)

With z - x + iy

Re N) - b. + x Re s(z) - y Im a(z) (x ) 0)

I, P(z) - x In ;(z) + y Re ;(z) (x 0)

Since P(z) is analytic in Re z ) 0 and continuous in Re z ; 0, Re P(z) and Im

P) are harmonic for x ) 0. Hence by the maximum principle for harmonic functions.

P(z) * 0 for x ) 0' if either Re P(iy) - b - y In B(ly), or In P(iy) = y Re 3(iy)

are different from zero for < y < f. But by the frequency domain condition (F)

Re P(iy) ) 0 for - < y < and thus k e L(0,).

(b) Since a' e 1 (01-) L 2(0,-) and k e L (0,), one has

59 * k - k * , e L 2(0,-), and the result k e L2 (0,- ) follows by inspection of equation

(k). If also 80 e L1 (o,). then BI e CI0,-) (so that I8'(0)l ( m) and we may

differentiate (k) to obtain

b(0)k*(t) + 3'(O)k(t) + (9"ek)(t) D - ) (0 4 t < ")
bCO)

and clearly k' C L (0.m).

(c) if, as is the case here k$ @ L (0,-), the energy inequality in (c) is derived

by the following simple argument (see the method of 167, Theorem 11). Extend k' evenly

for t < 0 and let

- I(t) if. t 9 10,T]
t 0 otherwise

-O1
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v(t) (k.w)(t)dt k(O) w 2tt)dt Jw(t)t'*w)(t)dt
0 0 0

T 2 T T
- k(O) I w2 (t)dt + fw(t).f k'(t - T)w()dTdt

0 0 0

d d m-MS) WT 1 w.(t) fk'(t - T)v (T)dTdt

Letting v,(n)- I e'T(t)dt, (n R), the Parseval and convolution theorems give

7 w(t) 7 (k*w)(t)dt O) (nl)2dn + f I (nll2;'lnldn

But k(q) - 2Re k'(in), where I is the Laplace transform, and

Re ;(in) - Re[in;(in) - k(O). Therefore,

T d , - 2
I w(t) 7 (klw)(t)dt - - j I- .(r) Rei in)ldn •
0 2_

rw an easy calculation from equation (k) yields

a t Re 3 )
Relink(in)) u 2

b(Ii) b
(Re B(,)) 2 + (Im Win)

i R e ;( i n )

W (Re ( n))2 + (m l(,nl)n - b.)2

I'

where the last inequality follows from the assmption that D' in a kernel of positive type

on (0#-) (which in equivalent to Re ;(in) ) 0 (67. Thm. 21j note that it Is impossible to

bound Retink(iq)] avay from zero, even if 3 is strongly positive on [0.).

-62-
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(d) Multiply equation (k) by r":

b(0)/t k(t) + rt (B'-k)(t) - WO(t) t tb(O)(0 t<o.

" An elementary calculation involving 4(B'k) shows that rt k satisfies

t it
b(@)w'E k(t) + I 8-(t - t),i )(r)dr - - (t) - j (/ - v)3,(t -

S b(O) (
0 0

(0 4 t <,).

Since rt - r - / for 0 C T C t. and since also r BI e L (0,) by assumption

Sand k e L (0,.-) by (a), the integral on the right side of the last equation defines a

function in L (0,-). Then rt k C L (0,-) by the argument of part (a). The additional

assumptions and elementary estimates also yield t k e L 2(0,i).

Finally, differentiating the equation (k) as in part (b), multiplying the resulting

equation by vi, and using elementary estimates yields rt k ° C L (0,-). This corpletes

the proof of Lemma 2.2.

I 'I
1-B)

Sr -83°



BIBLIOGRAPHY

1. S. Alzicovici. On a nonlinear lnteqrodifferential equation, J. Math. Anal. Appl. 63

(1978), 385-395.

2. S. Aitzicovici, Existence theorems for a class of integrodifferential equations, An.

Sti. Univ. "Al. 1. Cuza", Zasi (to appear).

3. S. Aizicovici, On an abstract Volterra equation. Volterra Equations, Lecture Notes in

Mathematics no. 737. Springer Verlag (1979), 1-8.

4. H. Attouch and A. Damlamian, A nonlinear Volterra equation in variable domain,

Mathematics Research Center Technical Summary Report #2028, University of Wisconsin-

Madison, September 1979.

5. V. Barbu, Integro-differential equations in Hilbert spaces, An. Sti. Univ. "Al. 1.

Coza Iasi Sect. I a Mat. 19 (1973), 365-383.

6. V. Barbu, Nonlinear Volterra equations in a Hilbert space, SIAM J. Math. Anal. 6

(1975), 728-741.

7. V. Barbu, *Nonlinear Semigroups and Differential :-quations in Banach Spaces,'

Eoordhoff, Groningen, 1976.

B. V. Barbu, On a nonlinear Volterra integral equatiun on a Hilbert space, SIAM J. Math.

Anal. 8 (1977), 345-355.

9. V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Fath.

Anal. 9 (1978).

10. V. Barbu, Degeneratf nonlinear Volterra integral !quations in Hilbert space. Volterra

Eqations, Lecture Notes in Mathematics No. 737, Springer Verlag (1979), 9-21.

11. V. Barbu and N. A. talik, Semilinear inteqrodifferential equations in Hilbert apaces,

.7. Math. Anal. Appl. (to appear).

12. R. Bellman and K. L. Cooke, Differential-Oifferen.:e Equations, Academic Press, 1963.

13. Ph. Renilan, Equaticns d'evolution dans une *space do Banach quelconque eat

applications, Those do Doctorat 4'tat, Univ. do Paris (Orsay), 1972.

.1
-34-

*1



14 11.. ro .- ! 0-..rIt o, IT k.i-.-itix Mm-t,,ns -t ~ini -- roii i-' de Cont ract ions dazns les

I ~~ ~H __ l, r , North EVolland, 1973.

15. H. ,ze,,:, Mcnotonc'itv Yoh,ds in Hilbert Srnces and Some Applications to Nonlinear

Partial Niffrretial Fziuations, Contrihutions to Nonlinear Functional Analysis,

Academic Press, New York, 1971, pp. 101-156.

16. 1. W. C:: and K. B. Hannscen, A nonhomoaeneous integrodifferential equation in

iili,'rt spc-e, SI.NN J. Math. Anal. 10 (1979), 961-983.

17. . Ci0':,,-t, on abstract Volterra equations with kernels having a positive resolvent,

Israel J. Math. (to appear) (Mathematics Research Center Technical Summary Report

kl979, U:iversity of Wisconsin-Madison, July, 1979).

18. Ph. Clrcnt and J. A. Nohel, Abstract linear and nonlinear Volterra equations

preserving positivity, SIA-M J. Math. Anal. 10 (1979), 365-388.

19. Ph. Clement and J. P. Nohel, Asymptotic behaviour of positive solutions of nonlinear

Volterra equations for heat flow, Mathematics Research Center Technical Surmary Report

#2069, lIniverfity of Wisconsin-Madison, 1980 (to appear).

20. Ph. cl :nt, R. C. ac Camy, at.1 J. A. Nohel, Asymptotic properties of solutions of

nonlinear abstract Volterra equations, Mathematics Research Center Technical Summary

Report e2;170, University of Wisconsin-Madison, 1980 (to appear).

21. B. D. Coleman, Thermndynamics of materials with memory, Arch. Rational rech. Anal. 17

i ( 164 ) 1-4E.

22. B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations Zor rigid heat

cOnuutors, Z. Angew. Math. Phys. 18 (1967), 199-207.

23. S. D. Coleman and V. J. Mizel, Thermodynamics and departures from Fourier's law of

heat conduction, ,rci. Rational Mech. Anal. 13 (1963), 245-261.

24. M. G. Crcndall, The semigroup approach to first order quasilinear equations in several

s} cc \'ariables, isriel J. Math. 12 (1972), 108-132.

5. '. ; -. Cr-indal, An Introduction to Evolutior Cvesned by Accretive rlet:ators, in

pvDli:c.tl 2.!tt:", V.l. 1, Academic Prpss, 1976, pp. 131-165.



26. M. G. Crandall and J. A. Nohel, An abstract functional differential equation zind ia

related nonlinear Volterra equation, Israel J. Math. 29 (1978), 313-328.

27. M. G. Crandall and A. Pazy, Semiaroups of nonlinear contractions and dissipative setc,

J. Functional Analysis 3 (1969), 376-418.

28. M. G. Crandall, S.-O. Londen, and J. A. Nohel, An abstract nonlinear Volterra

integrodifferential equation, J. Math. Anal. Appl. 64 (1978), 701-735.

29. C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic Volterra

integrodifferential equations, Comm. in P.D.E. 4 (1979), 219-278.

30. G. Gripenberg, An existence result for a nonlinear Volterra integral equation in a

Hilbert space, SIAM J. Math. Anal. 9 (1978), 793-805.

31. G. Gripenberg, On a nonlinear Volterra integral equation in a Banach space, J. Math.

Anal. AppI. 66 (197S), 207-219.

32. G. Gripenberg, On some integral and integrodifferential equations in a Hilbert space,

Annali di Mat. Pura ed Appl. (IV) 118 (1978), 181-198.

33. G. Gripenberg, On p)sitive, nonincreasing resolvents of Volterra equations, J.

Differential Equatitns 30 (1978), 380-390.

34. G. Gripenberg, An abstract nonlinear Volterra equation, Israel J. Math. 34 (1979),

198-212.

35. G. Gripenberg, On a frequency domain condition used in the theory of Volterra integral

equations, SIAM J. ath. Anal. 10 (1979), 839-843.

36. G. Gripenberg, On at. abstract integral equation, SIAM J. Math. Anal. 10 (1979) 1017-

1021.

37. G. Gripenberg, On nonlinear Volterra equations with nonconvolution kernels in ibstract

• i .spaces, Helsinki U. of Tech. Report IHTKK-MAT-A105 (19771.

38. G. Gripenberg, On Volterra equations with noncon6olution kernels, Helsinki U. ., Tech.

Report HTKK-MAT-A11S (1978).

39. M. E. Gurtin and A. C. Pipkin, A general theory ef heat conduction with finite wave

* speeds, Arch. Rat. P'ech. Anal. 31 (1968), 113-126.

.1



40. A. Halanay, On the asymptotic behaviour of solutions of an integrodifferf nt a..

equation, J. Math. Anal. Appl. 10 (1965), 319-324.

41. K. B. Hannsgen, Indirect Abelian theorems and a linear Volterra cquation, Ar -r. Mat'.

Soc. 142 (1969), 539-555.

42. K. B. Hannsgen, A Volterra equation with completely monotonic convolution <,ernel, J.

Math. Anal. Appl. 31 (1970), 459-471.

43. K. B. Hannsgen, A Volterra equation with parameter, SIAM J. Math. Anal. 4 (1973), 22-

30.

44. K. B. Hannsgen, A Volterra equation in Hilbert space, Ibid. 5 (1974), 412-416.

45. K. B. Hannsgen, A linear Volterra equation in Hilbert space, Ibid. 5 (1974), 927-940.

46. K. B. Hannsgen, The resolvent kernel of an integrodifferential equation in Hilbert

space, Ibid. 7 (1976), 481-490.

47. K. B. Hannsgen, Uniform LI behavior for an integrodifferential e'aation with

parameter, Ibid. 8 (1977), 626-639.

48. T. Kiffe and M. Stecher, L 2 solutions of Volterra integral equations, SIAM J. ".ath.

Anal. 10 (1979), 274-280.

49. T. Kiffe, A perturbation of an abstract Volterra equation, SIAM J. Math. Anal. (to

appear).

50. P. D. Lax, Development of sinqularities of solutions of nonlinear hyperbolic partial

differential equations, J. Math. Phys. 5 (1964), 611-613.

51. J. J. Levin, On a nonlinear Volterra equation, J. Math. Anal. Appl. 39 (1972), 458-

476.

* 52. J. J. Levin, Resoive-its and bounds for linear and nonlinear Volterra equations,

Trans. Amer. Math. S.c. 228 (1977), 207-222.

53. S.-O. Londen, On a nonlinear Volterra equation, J. Differential Eauations 14 (1973),

106-120.

54. S.-O. Londen, On an integral equation In a Hilbert space, SIAM J. Math. Anal. 8

(1977), 950-970.

-. ..



5-.S.-O. !'.n, An exitencv zesult for a Volterra equation in Banach space, Trans.

Amer. Math. Soc. 235 (1ic76), 285-305.

S.-0. lon:i., An inttoaro.ifferi ntial Volterra equation with a maximal
- 
monotone

miapping, J. )1ffernttial Equations 27 (1978), 495-420.

57. R. C. Mac Cariv, Approximations for a class of functional differential equations, SIAM

J. Appl. Math. 23 (1972), 70-83.

58. K. C. Mac Carmy, Stability thleorems fcr a class of functional differential equations,

SIAN J. Appi. Math. 30 (1976), 557-57,.

59. R. C. Mac Camv, An integro-differential equation with applicatilnc in heat flow, Q,

Appl. Math. 35 (1977), 1-19.

60. R. C. Mac Camy, A model for one-dimensional, nonlinear viscoelasticity, Ibid. 35

(1977), 21-33.

61. R. C. Mac Camy and P. Weiss, Numerical approximations for Volterra integral

equations. Volterra Fquations, Lecture Notes in t;athematics No. ?37, Springer Verlaq

(1979), 173-191.

62. R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents,

J. Math. Anal. Appl. 22 (1968), 319-340.

63. R. K. Miller, Nonlirear Volterra inteoral Equations, W. A. Benjamin, Menlo Park, CA,

1971.

64. J. Naumann, On a class of first order evolution inequalities arising in heat

conduction with meory, SIAM J. Math. Anal. 10 (IS79), 1144-1160.

65. T. Nishida, Global si9oth solutions of the second-order quasilinear wave equatians

with the firat-order dissipation (unpublished).

66. J. A. Nnhel, A forced quasilinear wave equation with dissipation. EQUADIFF 4, Lecture

Notes in MatheMatics No. 703, Sprinqer Verlag (1977), 318-327.

y 67. J. A. Noh-l and D. F. Shea, Frequency domain methcds for Volterra equations, Advances

t in Math. 22 (1976), 276-3n4.

68. J. W. N:u-iato, On h ,-.t c:n:3ucton in materials with memory, Quarterly App]. Math. 29

(1971), 187-314.

.1

2.



t . K. . A. C. r aIey a',i N. Fi-' - ;'i or '"' . i-,, -r n t". C,-i >\ . Amer. iath.

. . ,'. Coll,,,Iulu n Pill l cation-'., 193-.

'70 A. razy, Stiono convcrqen,!e of sorioroups nf n'rlinear contrnctions in 11ilbert space,

0. d'An alv,ev ,Mathen. 34 ( 19-S) , 1-35.

71.C. Renolet, Fxistenco ani bouniedn'ss o" a"tract nonlinear inte~rcdifferential

e.luditions of nonc o tye, . ath. Anal. Appl. 70 (1979), 32-60.

7 C. Kennol'et , Existence anJ boindedness results for abstra-ct nonlinear Volterra

equation. of nonconvolution type, 0. nteral Equations (to appear).

73. P. !. sh-.a and S. Wainer, Variants of the wiener-Levv theorem, with applications to

stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975),

312-343.

74. 0. J. Staffans, Not.linear Volterra equations with positive definite kernels, Proc.

Amer. Math. Soc. 5 (1975), 103-108.

75. 0. J. Staffans, Poiitive definite measures with applications to a Volterra eqiation,

Trans. .uAer. Math. Soc. 218 (1976), 219-237.

76. 0. J. Staffans, Taberian theorems for a positive definite form with applications to a

Volterra equation, Trans. Amer. Math. Soc. 21 (1976), 239-259.

77. 0. J. Staffans, An inequality for positive definite kernels, Proc. Amer. Math. Soc. 58

(1976), 205-210.

78. 0. J. Staffans, Poindeiness and asymptotic behaviour of solutions of a Volterra

equation, .'ioh. Ma:h. 3. 24 (1977), 77-95.

79. 0. T. Staf.'ans, S,)e energy estimates fox a nonditerentiated Volterra equatin, J.

Differential Equations 32 (1970), 2,5-203.

80. o. J. Staf.fans, On a nonlineai hyperbolic Volteira equation, SIA.M J. Math. Anal. (to

i appear) - se., lielsknki 0. ef Tech. Report HTK\-"AT-AIQ2 (1170).

081. . J. s-arfan.s, A ".'1trra e.;ua.tion with sqiilre inteotable nolution, Proc. Amer. Math.

Soc. 7, (1,10), 213-217.

4'i



82. .4. Tangredi, Salility prop'erties (,! kernels of Vo-'.crra equations~ and i.0ir

resolvents with .pplications, rh.n. T1hesis (in 1-epara'ion), University of t'1sco'-.51n-

Madison, 1980.

83. 1. 1. Vrabie, Compactness rethods for an ahstract nonlinear Volterra

integrodifferential equation, Nonlinear Anal., Theory, Meth. and Appi. (to appear).



SECURITY CLASSIFICATION OF THIS PAGE (Whn Dole Frtered)

REPORT DOCUMENTATION PAGE READ INTRCTIONS
________________________________________ EF'ORECO mPLE.TnGFORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

2081 /N Ao~b
4. TITLE (Md Subitffe) S. TYPE OF REPORT 6 PERIOD COVERED

Summary Report - no specific
NONLINEAR VOLTERRA EQUATIONS FOR HEAT FLOW reporting period
IN MATERIALS WITH MEMORY 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR() 9. CONTRACT OR GRANT NUMBER(e)

John A. Nohel DAAG9-75-C-00Z4 -f

DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA & WORK UNIT NUMBERS

Mathematics Research Center, University of Work Unit Number 1 -

610 Walnut Street Wiscons Applied Analysis

Madison, Wisconsin 53706 _/ !
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office May 1980 /
P.O. Box IZZl 13. NUMBER OF PAGES

Research Triangle Park. North Carolina 27709 90
14. MONITORING IGENCY NAME & ADORESS(if different tem Controlllng Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED
15. DECLASSIFICATION! DOWNGRADING

SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obetredt entered in Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY %OROS (Continue on reverae side ii neceeory and identitf by block number)

Nonlinear Volterra equation, m-accretive operators, Maximum monotone opc'rdt( , ! s
on a Hilbert space, Subdifferential of a proper, convex, l.s.c. function,
Boundedness, Asymptotic behaviour, Limiting equation, Strona solutions,
Generalized solutions, Energy methods, Frequency domain methods, Heat flpw,
Materials with memory, Positive solutions, Completely positive kernels

20 ABlTtIACT (Continue on reveree side if neceesry and idenhlv by block number) - -r /
Consider the nonlinear Volterra equation

-(V) u(t) + (b*Au)(t) ( f(t)° CO(0 t ?<_-- ) .

in the qeneral setting b : (0, ° ) - R __aiven kernel, A a nonlinear m-a<C-k-

tive operator on a real Banach space X, f : [0,-) - X a qiven function, al,,!

the convolution. -This paper) based on lectures delivered at West Viraiid

DD IA1 1473 EDITION01 INOV65 OBUSOLEE UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE (Wee Date falme)



AD-AO89 634 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/S 20/13
NONLINEAR VOLTERRA EtUATIONS FOR HEAT FLOW IN MATERIALS WITH ME-ETC(U)
WAY S0 J A NOHEL OAA2-75-C-0024

UNCLASSIFIED WRC-TSR-2081 N

2 :

LEL



20. ABSTRACT

university, dis(

coracernitiq

their continuou;

behaviour as t

space and A i.,

subdifferential

positive solutic

possible model

be transformedt

assumptions; th(

of the theory dE

in such material

an introductory



20. ABSTRACT - Cont'd.

University, discusses existing and recent results for the following problems

concerning P: %,.,_the global existence and uniqueness of solutions and

their continuous dependence on the data,' 2,._the boundedness and asymptotic

behaviour as t t in the special cases when X = H is a real Hilbert

space and A is either a maximal monotone operator on H or A is a

subdifferential of a proper, convex, lower semicontipuous function, '

---- ,] -, the existence, boundedness, and asymptotic behaviour of

positive solutions in the general setting. The theory is used to study one

possible model problem for heat flow in a material with "memory" which can

be transformed to the equivalent form +%'I under physically reasonable

assumptions; the latter provide a motivation for the natural setting of much

of the theory developed here. This and various other models for heat flow

in such materials are formulat from physical principals and discussed in

an introductory chapter.

.. . ..


