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ABSTRACT
Consider the nonlinear Volterra eguation
(v) u(t) + (b*Au)(t) > £(t) (0 € t < =)

in the general sgetting b : {0,%) *+ R a given kernel, A a nonlinear m-
accretive operator on a real Banach space X, f : [0,®) + X a given function,
and * the convolution. This paper, based on lectures delivered at West
Virginia University, discusses existing and recent results for the following
problems concerning (V): 1. the global existence and uniqueness of solutions
and their continuous dependence on the data, 2. the boundedness and
asymptotic behaviour as t + @ in the special cases when X = H is a real
Hilbert space and@ A is either a maximal monotone operator on H or A is a
subdifferential of a proper, convex, lower semicontinuous function

¢ + H* (-=,+=], 3. the existence, boundedness, and asymptotic behaviour of
positive solutions in the general setting. The theory is used to study one
possible model problem for heat flow in a material with "memory" which can be
transformed to the equivalent form (V) under physically reasonable
assumptions; the latter provide a motivation for the natural setting of much
of the theory developed here. This and various other models for heat flow in
such materials are formulated from physical principals and discussed in an
introductory chapter.

AMS (MOS) Subject Classifications: 45D0S, 45305, 45K05, 45G99, 45M05, 45M10,
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SIGNIFICANCE AND EXPLANATION

Thege notes on lectures delivered at West Virginia University preceding
the conference on Volterra and Functional Differential Equations in June 1979,
concern the existence, uniqueness, positivity, boundedness, and asymptotic
behaviour as t *+ ®» of solutions of the nonlinear Volterra equation

) u(t) + (b*au)(t) » £(t) (0 < t < =) ,

The general setting for V is as follows: b : [0,9) + R is a given

kernel, A is a maccretive, possibly multivalued, operator on a real Banach
space X, f : (0,%) + X is a given function, and * denotes the
convolution; the integral in V is taken in the sense of Bochner. The
special cases of A maximal monotone on a real Hilbert space H, and

A = 3¢, the subdifferential of a proper, convex, lower semicontinuous
function ¢ : H * (=-»,#] will also play a prominent role, primarily in the
boundedness and asymptotic theory for (V).

It should be observed that if b =1 and f € w"’(o,w;x), vhere W
denotes the usual Sobolev space, equation (V) is formally equivalent to the
evolution problem

Q— . = -
(E) at + Au 7 f (0 < t < »), u(0) Uy £(0) .
Thus the theory for (V) is to a considerable extent a generalization of the
theory of evolution equations, and uses most of the techniques for the latter
combined with techniques for Volterra equations developed in recent years.

Chapter 1 is primarily intended for motivation. Beginning from gsimple
physical principles equation (V) is derived as one possible mathematical model
for nonlinear heat flow in a homogeneous body of material with memory
following ideas of B. D. Coleman, M. E. Gurtin, R. C. Mac Camy, W. Noll,
J. We. Nunziato, and A. C. Pipkin. While the derivation is restricted to one
space dimsnsion, §he modification for heat flow in a homogeneous body

f in R or R of isotropic material is also indicated. One purpose of
Chapter 1 is to arrive at a physically reasonable set of conditions concerning
the kernel b in (V), under which one can expect boundedness and the kind of
asymptotic behaviour of solutions of (V) solutions studied later in Chapter
3. The kernel b in (V) does not arise directly from physical principles;
rather, it is the case that b is expressed in terms of two physically
measurable guantities (at least in principle) about which one can make
appropriate assumptions based on physical considerations. The types of
assumptions made concerning the operator A and the function f are also
motivated. In particular, A 1is a nonlinear second-order elliptic partial
differential operator in the space variables which incorporates the boundary
conditions, and f depends on the external heat supply, the initial
temperature distribution in the body and the history of temperature in the
body. If b = 1, then in the application (V) is equivalent to the classical
nonlinear heat equation in an ordinary body.

Another purpose of Chapter 1 is to point out that heat flow in certain
materials with memory can also be modelled by integrodifferential equations

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




other than (V). Limitations of space do not permit us to discuss the
qualitative aspects of thegse alternative models in any detail; however,
references to relevant existing literature are given.

Chapter 2 discusses the theory of existence, unigqueness, and continuous
dependence of global solutions of (V), both in the general case of a real
Banach space and in the special case of a real Hilbert space, and for A = 3¢
where the results are stronger. The development is primarily based on recent .
joint work with M. G. Crandall [26), and partly on a recent paper by
G. Gripenberg [34]. References to earlier and related literature are given. |

Chapter 3 develops the theory of boundedness and asymptotic behaviour of
solutions of (V) as t + », under assumptions partly motivated by the heat
flow problem formulated in Chapter 1; application of the theory to this
problem is given. The development is based on forthcoming joint work with
P. Clément and R. C. Mac Camy [20]. References to other pertinent literature
are given.

Chapter 4, based on recent and forthcoming joint work with P. Clément,
18], [19], as well as recent work by Clement [17), discusses the existence,
boundedness and asymptotic behaviour as t + = of positive solutions of (V)
under assumptions which are also motivated by the heat flow problem in Chapter
1. This problem is then used to illustrate the theory. The reader should
recall that it is classical that solutions of the heat equation are positive,
if the initial temperature distribution and the external heat supply are
positive. Some of the results of this chapter were presented at the West
Virginia Conference by Clement.
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NONLINEAR VOLTERRA EQUATIONS FOR HEAT FLOW IN .M'I‘ERIALS WITH MEMORY
John A. Nohel

Chapter 1
Volterra Equations Occurring in Heat Flow in Materials with Memory

f.1. Introductory Remarks. The purpose of this chapter is to derive from physical

considerations several mathematical wmadels for nonlinear heat flow in materials with
Bemory. rFor simplicity ve shall limit most of our considerations to heat flow in one space
dimension and remark about the situation in the multidimensional case. The primary
objective is to arrive at equation (V) in Section 1.2 below under physically reasonable
assumptions on the kernel b, the operator A and the forcing term f. This particular
sathematical model motivates many of the considerations in Chapters 2, 3, and 4. In
Sections 1.3 and 1.4 we shall also derive two other models for: heat flow in materials with
memory which have been and are being studied, but due to limitations of space we will only
refer the reader to the relevant mathematical literature for their analysis.
The mathematical models are derived from the follcwing general considerations of

_ enexrgy balance for heat ttar;afer inabody 3 in K® (n = 1,2,3). If c(t,x) represents
the internal energy, E( t,x) represents the heat _nux,. and h(t,x) represents the heat
supply, vhere t is the rime and x is the position in the body, then the energy balance
qatim is

(1.1) €, = ~divg + h (t>0, xep) .

The classical linear heat equation which accurately describes heat transfer by conduction
!:ll many materials is derived from (1.1) by assuming that the heat flux obeys Fourier's laws

; - -e'. q-nd a ‘
where ©, >0 is the co;mtane thermal conductivity and u represents the temperature in.
the body at time t and position x. It is also assumad that the internal energy depends
linearly on the temperature
ce=g, ¢ b a

vhere bo > 0 is the constant heat capacity and ¢

030 is a constant. The energy

balance (1.1) then yields the linear heat equation

sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and DAAG29-80~
C~-0041. : .
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which adequately describes the evolution of temperature in most homogeneous and isotropic

nt-eva,l#h

zigid bodies.

‘However, some materials exhibit mory eftee'ts {materials of fading memory type, see
Coleman and Mizel [23]) for which the classical theory is unable to account. Heat flow in
such material is modelled by assuming that the internal energy € and the heat flux ¢
are respectively functionals (rather than functions) of the temperature and of the gradient
of temperature. The considerations which follow are based on extensive research by
Coleman, Gurtin, Noll, Pipkin, Mac Camy, Mizel, and Nunziato (see especially Coleman [21],
Coleman and Gurtin [221.. Coleman and Mizel (23], Gurtin and Pipkin [39), Mac Camy (S7],

[58), (59], Nunziato [68]).

2. A Model for Nonlinear Heat Flow in a Material with Memory. We consider nonlinear heat

flow in a homogenecus bar of unit length of material with memory with the temperature

u = u(t,x) maintained at zero at x =0 and x = 1. We shall assume that the history .

of u is prescridbed for t < 0 and 0 < x< 1, 'rh; equation satisfied by u in such a
saterial is derived from the assumptions that the internal energy ¢ and the heat flux
q are functionals (rather than functions) of u and of the gradient of u

vespectively. According to the theory developed by Coleman, Gurtin, Noll, Pipkin, Mac Camy

and Rungiato (see e.g. Mac Camy ([57], (59] and Nunziato [68]) for heat flow in materials of

fading wemory type the functiocnals ¢ and .q are taken respectively as:
! . .
(1.2) sl{t,x) = bon(t,x) + f it - s)uls,x)ds (t > 0, 0 ¢ x< 1),
° .
i | |

L 3 .
(1.3) att,x) = ~cotu _(t,x)) + [ y(t = sdotu ts,x))ds (£ 20, 0 < x < 1) &
° ¢

e e e + o e e

P In vriting the functionals € and q we have assumed for simplicity and wvithout loas of

.




gensrality that the history of the tenpeutu.re v .is prescrided as zero for t < 0 (if
this is not the case and if the history of u 1is suttict?ntly smooth for ¢t < 0 and

0 < x <1, this has the effect of altering the forcing term h in equation (1.4) below ~
and consequently also G in (1.6) below - by additional known forcing terms). 1In (1.2),
(1.3) bo >0, ) > 0 are given constants, 8,y : (0,%) + R are given sufficiently smooth
functions which we call .the internal energy and heat flux relaxation functions
Tespectively. A

The real function ¢ : R+ R in (1.3) will be assumed to satisfy the assumptions

(0) of Leoma 1.3 below. It should be noted that the case o(r) £ r gives rise to the
1linear model derived in Nunziato (68], and that (1.3) is one reasonable generalization of
the heat flux functional for nonlinear heat flow. . '

In the physi,c'al literature it is customary to define
t
a(t) = b + [ 8(s)as 0¢<¢ <o)
0
as the internal energy relaxation function; thus a(0) = b° and a'(t) = B(t). Similarly,

: t
. K(t) = c, - [ vis)as (0<t<em)
: o

is Gefined as the heat flux relaxation function, so that x(0) = c¢. and x*(t) = “y(e).

(]
Then (1.2), (1.3) are replaced respectively by
t
(1.2") e(t,x) = ) + a(0)ult,x) + [ a'(t - s)u(s,x)ds, €290,
: ]
) t
(1.3") q(t.x) = «<(0)o(u ) - [ =t - s)a(u_(s,x))ds 3

see {68, (5.13), (S.11)] where the linear case o(r) § r is considered. The quantity

a(0) is called the instantanecus heat capacity while a(®) is the equilibrium heat
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capacity and similar definitions for the x(0) and x(=). It is shown in (68] that

a(*) > a(0) > 0, and that «(0), x(») are nonnegative,

In the physical literature 8, Y are usually assumed to be decaying exponentials with
positive coefficients. As we shall see the theory developed in Chapters 2-4 permits a much
greater generality, and we shall merely have to require that 8¢(0) > 0, Y(0) > 0, that 8
and Y GL‘(O,‘), and that

t t
b+ [ smar >0, ¢, - [ ytriar > 0 (0<t cm),
(] 0
0 0
vhich corresponds to the physically reasonable assumptions aft) > 0, x(t) > 0, 0 € t < =,

e shall also assume that the conditions

(rw) bo'* Re B(in) > 0 (neRr),
-
(3] % -f ytvarso,
0
'Y « ' .
vhere B(in) = f B{t)exp(-int)dr, are satisfied; assumption (y) states that «(=) > 0.
0

The above assumptions will be motivated presently. - Remark 4.8 in Chapter 3} below shows
t t

that the physically reasonable assumptions bo + f B{t)at > 0 and S = f Y{t)at > 0
0 0

(0 € ¢t ¢ =) are actually not essential for the theory developed in Chapter 3 to apply.

1

If h = h(t,x) € I'].oc

god for £ 20 and 0 < x <!, and if wul(0,x) = uyi{x), 0 < x < 1, is the given initial

(o.-n.: (0,1)) represents the external heat supply added to the

temperature distribution, the law of balance of heat (1.1) shows that in one space
dimsension the temperature u satisfies the initial-boundary value problen
3 , .

{bu + g*a] = ¢ o(u ) = v%(u) +h (0 Cct¢m, 0 <x<1)

(1.4) *T o 0" \Vx'x x'x
a(0,x) = \_l°(x) (0 ¢x< ), u(t,0) = ult,1) 30 (t>0),

vhere subscripts denote differentiation with respect to x and vhere * denotes the
convolution on [0,t]. Note that in an ordinary material 8 =y 0, and (1.4) becomes

the nonlinear heat equation in one space dimension.

LY T3
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The next task is to transform (1.4) to the equivalent form (V) below which will be

used for the analysis. Define

t
(1.5) clt) = c, =] vytryar -’ 0<tcm),
o o
t
(1.6) ‘ Glt,x) = byu (x) + [ hr,x)ar Octcom, 0<x< 1),
°
Noting that

& tcrota ) et = gpotu (e = Crtotu ) ) e
and integrating (1.4) using the initial condition, and (1.6) yields the equivalent Volterra
equation (to (4;'3))=
.7 byu(t,x) + (8*u)(t,x) = (C*a(u‘)‘)(t,x) +G(t,x) (Dctcm, 0¢cxc),
where u satisfies the boundary conditions wu(t,0) = u(t,1) £ 0 (¢t > 0).
¥e next defins the nonlinear operator A formally by the relation
(A) = -O(ux)x vhere uft,0) = u(t,1) =0 .
In oxder n&t to interrupt this development we postpone a precise definition of A to Lemma
i.! below. Then the Volterra equation (1.7) has the abstract form
vy byu + 8*u + C*au = G (0Stcw) .
To transform (V,) to the equivalent form (V) below define p : [0,%) + R to be the unique

solution of the linear Volterra equation (called the resolvent kernel of 8):

() Bptt) + (8voy(e) = - BLEL (o< cm .
]

It is standard that if bﬂ >0 and B¢ t.;oclﬂ'.)' A.emgim (p) has a unique solution

pe !.; “(0.'). Applying the variation of constants formula for Volterra equations (63]
) "’o’“'r-9<—>r-§°-¢n'ﬂ
finally ytgla that (V‘) i1s equivalent to the adstract equation
) LR 7 "R (0 Ctem)

with the definitions
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() blt) = =2+ (pUCH(t) (0<t <™
, ) .
N £(t) - G‘:'.) + (p*G)(t,*) (0<tcm) .
(/] .

Similar congiderations shew that for heat flow in a bounded homcgeneous body Q1 of
isotropic material with memory in Rz or R3 with a smooth boundary [, the
temperature u will also satisfy the abstract Volterra equation (V) with the kernel Db
and forcing term £ given exactly as above, but with the nonlinear operator A defined
precisely in Remark 1.4.

We next comment on the significance of the assumptions concerning B8, Y as well as
(PW) and (Y). Since the relaxation functions £ and Y are generally taken as decaying
exponentials with positive coefficients in the physical literature, it is certainly
Teasonable to assume that 8,y evr.'(o,-) and that £(0) > 0, Y(0) > 0. We next motivate

t

the assumption that by + [ Blr)at > 0 (0 € t ¢ =®). A similar reasoning motivates
t - 0

€ = ! y(r)dt > 0 (0 € t < =), Consider the internil energy ¢ defined by (1.2? arnd
0 : ‘

- suppose that the temperature u is maintained at zero up to time ty and at a state

;1(2) >0 (0<x<1) for t> to. One would then expect the 'hternal encrgy to be

positive for t > to. 12 the function B is positive for t » 0 this is automatically
t

the case. However if not, the assumption b, + [ 8tr)a&t > 0 (0 < t ¢ =) is natural in

0
viev of the fact that in this situation

t
e(t,x) = U (x)(b, + [ 8(nar) (¢, St cw),
to °

Since B8 ¢ 1'(0,%) equation (4.1) shows that ¢ 1s bounded vhemever u is
bounded. The assurption (PW) implies that by + £. 8(t)dt > 0 (take n = 0); thus if
ulx,t) tends to an equilibrium state u(x) >0 as t * @, (1.2) implies that the
-eotxupondlng limiting internal energy €(x) >0 as is to be expected. For physical
reasons it is also to De expected that if ¢ 43 Dounded the temperature should be

bounded. Applying the variations of constants formula to (1.2) yields

-6
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where p is the resolvent kernel of B defined by equation (p). Thus to have u bounded
whenever ¢ is bounded it is sufficient to require that p ¢ L‘(O.‘). But by the Paley-
Wiener theorem [69] applied to equation (p), B8 ¢ L‘(O,-) implies that p € L‘(D.‘) if
and only if
hh + E(z) #0 for Rez >0 .
The condition (PW) now results from taking the real part of this expression, noting that
for physical reasons one wants bo + E(O) > 0, and arguing as in the proof of Lemma 2.2,
Chapter 3.

To motivate assumption (Y) suppose that u(t,x) * UW(x) as t + @ and that

g; w(x) > 0, implying that o(gg) > 0 (see assumptions (0) below). One then expects

that the limiting heat £lux E(x) in equation (1.3) is strictly negative, if the nrocess
being modelled represents "forward” heat flow; condition (Y) insures that this is the
case. .

We shall next see “hat the physically reasorable assumptions bo > 0, o >0, (pPW)
and (Y), together with some mild additional technical assumptions, imply that the kernel
b in the Volterra equation (V) defined (b) satisfies the agsumptions -

(8) blt) = b_ + B(), B(0) > 0, b > 0, B,8* ¢ L'(0,®) ;

these will play an important role in the application of the boundedness and asymptntic
theory developed in Chanter 3, Section 3, and in the application of that theory to heat
flow described by the problem (1.4) above in Chapter 3, Section 4. One has the following

result whose elementary proof is omitted:

Lemma %.1. let bo >0 € 2 0, E, v, tB, ty ¢ L‘(O,-), and let assumptions (PW)

and (y) be satigsfied. Define

-
e = [ vierae
0
(1.8) b ——

b, *+ | serae
0

-7 -
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(1.9) B(t) =

+ (p*C)(t) = b,

t
where C(t) = co - f Y(t)dt, and p is the resolvent of B uniquely defined by
0

equation (p). Then bw >0 and B,B' € L1(0,°), and b(t) = b, + B(t) satisfies (Hb)
c,
_ 0
> 0, B(0O) = S; - bw > 0.

U‘Ion

with b(0) =

0
The next elementary result gives physically reasonable sufficient conditions on the

relaxation function 8, the initial temperature distribution g and the external heat

supply h in order that the forcing term £ in (V) defined by equation (f) will satisfy

the assumption

1.2 2
(Hg) £(t) = £+ F(t), F e W, ({0,2);H), F' € L (0,=:H) ,

where H is the real Hilbert space L2(0,1) and W is the usual Sobolev space.

Assumption (Hf) will play an important role in the boundedness and asymptotic theory of

Chapter 3.

Lemma 1.2. Let H =12(3,1) and u, € H10(0,1). Let B e n'(0,) N12(0,@) ana let

0
assumption (PW) be satisfied. Finally, assume that .

(h hoen'(0,mm 0 L30,em) .

Then the function f : [0,) x (0,1) + H, defined by equations (f), (G), where p is the

regsolvent of B, satisfies f ¢ w;é:(o,-;u) and f£(0,x) = uo(x) € H;(0,1). Moreover,
f(t,x) = f.(x) + F{t,x) (0t <, 0 < x< 1),

where

1
(1.10) £,0x) = (bou (x) +({ h(r.x)dr)(-§+£ p(T)dr) ,

-
ree,m = S8 o pagy(ex - 00 = - & [ et
(1.11) 0 ot
t o« L] -
- [ ett-8) [ h(r,x)atds - [ p(tiar(bu (x) + [ hir,x)ar) ,
0 s t 00 o

and %% € Lz(o,';H). If in addition tg8 € L‘(O,-) and th € L‘(o,-yH), then F € Lz(o,ﬂyﬂ)-
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Sketch of Proof of Lemma 1.2. The assumptions 8 ¢ L‘(o,u) and (PW), together with

the Paley-Wiener theorem [69], applied to the resoivent equation (p) imply that
p € L‘(O,ﬁ). But then the assumption B8 e Lz(o,-) and the fact that p ¢ L'(O,-) imply
that also p e Lz(o,O) from the resolvent equation. These facts combined with the
definition of f in (f) and assumption (h) yield the formulae (1.10) for £, and (1.11)
1,2
c

for F given in the statement, as well ag f ¢ wlo

(0,%;H). From formula (1.11) one
easily proves that

(1.12) %E (t,x) = L R{t,x) + bou, (x)p(t) + (p*h)(t,x) (0 € t <®, 0 < x< 1)
t bo 070

then 3= ¢ 17(0,=/H) follows from h e 12(0,mH) and p € L'(0,@) N £3(0,@). Finally,
(PW) and ¢tB ¢ L‘(O,D), together with p ¢ L‘(O,‘) imply that tp e L’(O.-) from the
resolvent equation. This, together with the assumption ¢the L‘(o,-) and routine
estimates applied to the formula (1.11) yield Fe Lz(o,-xﬂ). This completes the proof.

The next task is to jive a precise definition of the operator A in the abstract
equation (V) for the heat flow problem under study. Let H = Lz(o,i) be the real Hilbert
space of square integrable functions on (0,1). Let ¢ : R+ R satisfy the assumptions
(o) sec'm, a0y =0, () >p 30  (Eem,
for some Py > 0. Define W : R + n+, by

T P,

wn) = [ athra (> 32 r%) (re R,
0

and define ¢ : H » (-=,40] by

1
dy . 1
/ w(dx (x))ax if 7 € H (0,1)
(1.13) ply) =

e otherwise .

Lemma 1.3. Let the assumptions (G) be satisfied and lez v i1 H + (-, e»] be the function

defined by (1.13). Then + is convex, l.s.c. and proper on H, an

.
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a
Ay = dely) = - o= 0(%).

t d d 2
D(a¢) = {y e Hy(0,1) = = o(FE) ¢ L%, 11},

where 3¢ denotes the subdifferential. Moreover, ¢(y) > 0, ¢ly) + = as
1 1
f Iy(x)lzdx + ®, and (y,ov(y)) 2 powz f Iy(x)lzdx, where (¢*,*) denotes the scalar
0 0

product in H.

Sketch of Proof of Lemma 1.3. The first result is standard see Brézis ([14],[15]).

1 .
To prove the last two conclusions let y € Ho(o,I); then from the definition of ¢ and

the Poincaré inequality one has

p, .1 P 1
e 352 [ 12 P> 2 e [ lymPas o,
0 0

1
and ¢(y) + = as f ly(x)lzdx + », Moreover,
0

1
(rodweiy)) = = [ yio & ol tn)ax
0

and an integration bf parts, y e H;(0,1) and the Poincare inequality give

'a a L 2 2 ! 2
(y.90(y)) = £ ai (x)o(ai (x))ax > P, { Iai (x)|“dx > pow £ ly(x)|“ax .

While our considerations of the heat flow problem are primarily in one space
dimension, we indicate how to define the nonlinear operator A = 3¢ in (V) for the heat
flow problem in two or three space dimensions such that the function ¢ satisfies the

conclusions of Lemma 1.3 under the physically reasonable assumption (i) below.

Remark 1.4, Let £ be a bounded domain in R" (for h2at flow n = 2 or 3) with smooth

boundary . Let A : R+ + R be a given smooth function satisfying the assumption

A(0) > 0, there exists Py > 0 such that A(§) > Py and
(2

EA'(E) + 2(§) > p, (EeR).

Define A : R * R‘ by
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[

Let 2 «12(0) and define

[ [A%abax 1 u e nlm)
v(u) ={ 0
+* othexrwise .

Then it is readily verified that v : H + (-w,4=] {s convex, l.s.c., and proper on H and
M= 3¢(u) = =Ve(A(1Vu])Vu)

with

1 2

D(3v) = {u € B (Q) : Ve(A(|Tul)Vu) € LT(MD} .
Clearly ¥(u) > 0 (u e H) and by the Poincare inequality ¢(u) *+ = as [u + =, Using
integration by parts and the Poincare inequality one also has the coercivity condition
2

(Aa,u) > ltp‘,lulll .

vhere k > 0 is the constant in the Poincare inequality.
The results of Lemmas 1.1-1,3 and of Remark 1.4 will be used in Chapter 3, Section 4,

to discuss the global existence, uniqueness, boundedness and asymptotic behavior of the
solution of the initial-boundary value problem (1.4) using the theory which will be

developed for the equivalent abstract Volterra equation (V).

3. A General (Paradolic) Heat Flow Model. We consider the same hsat flow problem as in

Section 2. In this model we assume that the internal energy is given by the functional l

(1.2), but we assume the following more general form of the heat flux functional

: 3
(1.14) qlt,x) = ~p(u ) - [ ate - s)alu (s,x))ds (e 2 0) ,
o

wheze we again assume that the history of temperature is prescribed as zero for ¢t < 0

and 0 € x € 1. The real function ¥ : R+ R, 0(@)-0 satisfies the sams assumptions as

0 4n lemna 1.3, Section 2. If Y(*) = coc(-). and a = =y (i.e. in the notation of
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(1.3°) x'(t) = a(t)) (1.14) reduces to (1.3). We assume that §, a, and the external
heat supply h satisfy the same type of snoothneic assumptions respectively as # and Y
in Section 2. We assume again that . .

t
b, + [ Btviar> 0 O<tcm), T
® %

and that a(0) > 0. For physical reasons it is also reascnable to assume that

>0 {f £>0,¢t>0

t
W) + (f m)ar)cm{ .
0 €0 it £ <0, >0

and that

- >0 if E >0
$E) + (f a(vian)a()

(] <0 if § <¢oO
1 Applying the energy balance equation (1.1), and using (1.2), (1.14) and h shows that
the temperature u satisfies the initial-boundary value problem

co b

f . 0% * 8(0)u + §'%u = #(ux)‘ + "“"x)x +h (0 Cct<¢<e, 0¢<x<1) .
(1.15) u{t,0) = u(¢,1) =0 (t>0)
u(d,x) = uo(x) 0 ¢<x<1) .

Rote that if a =8 = 0, (1.15) reduces to the nonlinear heat equation. Defining ‘the

} opertors A, B, L. by the relations:

I S

i | A = ~o(u ) vhere u(t,0) = ult,1) 20

‘; . Bu = "'(ux" wvhere u(t'o) - n(t'j’ s 0

‘ .

; ' : Tu = B(0)u + 8'%u ,

F and taking (vithout loss of generality) by, = 1, one sees that the problem (1.15) has the
abetract form )

] N )

| ' M mLTon (0 <t ¢w) _

Lo ()

‘(., -. ‘. °
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If the functions © and ¢ satisfy the assumptions (o), Lemma 1.3 shows that A and B
are subdifferentials of proper convex, l.s.c. functions defined on the real Hilbert space
A= x.’(o.t). 1t the. relaxation function £ has 8°' ¢ x.'(o.-), the linear operator L s
ve13. defined.

The abstract problem (Vx") has been investigated by a number of authors combining
techniques of Volterra equations and the theory of monotone operators. If 8 = 0 V. Barbu

15, (7)., Barbu and Malik (11] studied the problem of global existence; a more complete

¢ mhens

existence theory for considerably more general kernels a, as well as a discussion of
boundedness and asymptotic behaviour, was developed by Crandall, Londen, and Rochel (28].
‘l‘ho. latter, see (28, p. 717}, also permits in the existence theory Lipschitz type
perturbations of the operator A; this essentially covers the case of the specific
.opc:ator L in the present application; the details of this generalization of the

= existence theory have recently been worked out by M. J. Luo as a part of a forthcoming
Ph.D. thesis at the University of Wisconsin-Madison. E |

The general assumptions for the existence theory in [28] concerning the operators

* A and B are roughly speaking'as follows. The operators A and B are subdifferentials

: . of proper, convei, l.s.c. functions defined on a real Hilbert space H; B dominates A in

! 4 certain precise sense (see (28], inequality (1.7); the case B = kA, k > 0 is not

excluded), and B satisfies a compactness assumption (see (1.8) in ([28]; this compactness

condition excludes the possibility B = 0. The kernel ‘a satisfies an abstract condition

{see (28; (1.10)])) which is shown to hold for two physically important classes of kernels:
a(0) >0, a 1ocany.ab-olutoly continucus on (0,=) ,

(ag)
' &' locally of bounded variation on (0,») ;

) a(0) > 0, a ¢ cfO0,») N c’(o.-). and’
(s .
2 a nonnegative, nonincreasing, convex on {0,~) .
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It ahoulq be noted that no uustactory. uniqueness theorem has to date been discovered
for the general problem (Vx")' with B # XA, k > 0 a constant, even vhen L = 0.

Other approaches to the study of (Vx") include Afzicovies (1), (2], (3) and Gripenberg
[32), [36]. While these studies are in a more general setting than those referred to
above, they do not seem to shed new light on the physical probdblem (1.15), and indeed the
existence results of A.iz‘icovlci do not include those of [28). An extension of the latter
to nonconvolution kernels has been studied by Rennolet [71). A semigroup approach to a
special case of (Vx'.) has been investigated by Vrabie (83]. Another interesting “parabolic”
heat flow problem involving an analysis of evolution inequalities has recently been studied

by J. Naumann (64].

4. A Ryperbolic Nonlinear V;:lterta Eguation for Heat Conduction with Pinite Wave Speeds.

The parabolic models for heat flow in materials with mexsory formulated in Sections 2 and 3
both predict that a thermal disturbance at any point of the body is instantly felt
everywhere in the body (though not with equal strength). This implies that finite
discontinuities propagate with infinite speed. This situvation is unrealisitic for some
materials, particularly at low temperatures.
Gurtin and Pipkin [39], see also Mziat:o [68], have proposed a model for heat flow
wvhich exhibits a finite speed of prop_agatiom they study of the linear model o(r) 2 r.
We present btiefiy euch a nonlinear model which has been investigated by Mac Camy (59] by
the method of characteristics, and by Dafermos and Nohel [29] by an energy method. Another
4interesting variant of the energy method was tec.ently developed by Staffans (80].

Consider the heat flow problem of Section 2. Defiae the internal energy by the

!uncuohal (1.2), with 8 satisfying the conditions of Section 2. In place of (1.3)

" assume that the heat flux is given by the functional

t
(1.16) qe,x) @ = [ ot - I,G(u:(l.x))dl (0<CteCce, 0<Cx<1),
° .
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t
vhere the relaxation function ¢ ¢ x.'(o.-). cl0) >0, [ cls)as >0 (0 €t <™,

f- c(s)ds > 0, and where the real function ¢ uttsgies assumptions (o) of Lesma 1.3
(:ctullly g, smooth, o(0) = 0, ¢'(0) > 0 is sufficient for the development in (29]).

Wote that from (1.16) the heat flux depends only on the history of the gradient of u, and
is independent of the present value of the gradient of u. Evidently, this model of the
heat flux results from (1.3) by taking €g = 0 and by replacing Y by -¢, or from
(1.3') by taking «(0) = 0, x*(t) = c(t). The model (1.16) for the heat flux also results
by taking ¢ 2 0 in (1.14), a case which is excluded in the theory and the referenced
accompanying mathematical literature in Section 1.3.

Applying the energy balance (1.1) and using (1.2), (1.16) and the external heat
supply h 1leads to the equation
'bont+%:8'u-c'o(ux)x+h (0<t<m, 0<x<1).
Woting that fB*u = u*8, carrying out the differentiation, and imposing the boundary and
initial conditions leads to the following initial-bouniary value problem for the heat flow
problen under the assumptions of this section
byu, + £%a, = ctolu )+ hit,x) = B(t)u,(x) (0<ct<ce, 0<¢cx<1),
(1.17) u(t,0) = ult,1) =0 (¢t >0)
uf{0,x) = uo(x) .

The problem (1.17) is transformed to the more standard abstract form (v&) below as
follows. As in Section 2 define the resolvent kernel p of £ by the linear Volterra
equation (p); by assumption (PW) p € 1.1(0,.). Definu the function a : (0,) * R by

ate) = - e(t) + prarce) Dceco)
o .

define the furction g : {0,%) x (0,1) * R by

$(t,3) = = (h(E.x) = B(tdy (x)) + pe(hlt,x) ~ Bltlu(x)) (B € € <=0 <2< 1) .
<

Finally define the operator A as in Section 2. Applying the variation of constants
formula for Volterra equations, and these definitions to (1.17) shows that (1.17) is

equivalent to the adstract nonlinsar Volterra equation

]Se
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%‘*‘M-su.-) (0 <t <) .

u(o) = ul*}) .

It is easy to see (compare Lemma 1.1) that under the present assumptions on 8 and ¢,

ae L‘(O.') and that

- [
- [ etviae _
| atv)ae = - >0, 1
o By + [ BttIee '
)

if also $(0) > 0, c(0) > 0, c*(0) € 0, then a(0) >0 and a’(0) < 0. It is also
evident that the forcing term g ¢ L’(o,-:x.’(o.n) if he x.z(o,-n.z(o,n) and also

se10,.. | s

Wotice that if £ 3 0 and Y ¥ y(0) > 0 (or equivalently a = lg—’—) the problem
0

(1.17) reduces to the nonlinear wave equation problem

bo"tt 7{0) aln')x + ht {0Ctco, 0 <Cx < 1 }) i
(W) a{t,0) = u(e,1) 20 (¢t »0) .

u(0,x) = uotx). ux(o,x) - u1(x) = g(0,x) .

1f the real function ¢ is “"genuinely nonlinear® (0®(f) § 0, £ ¢ R), Lax [50] has shown

T e Ll Sve e s e amn i

that (W) fails to have global smooth (c’) solutions in time, even 1 h ¥ 0, no matter how
smooth and “"small® one takes the initial functions g, U4e If the function o is convex

the derivatives of the solution u of (w) dmlop smgularluu dus to the crossing of

chanct.erlsues in finite time ("shocks").

PRI

The objective of the analysis by Mac Camy ([59] (which uses Riemann lnnrunti and is
therefore restricted to one space dimension), and a different analysis by Dafermos and
Wohel (29, Theorem 4.1], Staffans (80], which are applicable to several space dimensions
and both of which use energy methods, is to show that under the present assumptions on

6 and v (together with some technical ones and some other physically




- monlinear wave equation with frictional damping see Nishida ([65], and Nohel (66]).

reasonable ones vhich imply that the kernel a is strongly positive on (0.,#)), the
integral in (v;l) h.as the effect of a frictional danph:ng mechanism which prevents the
formation of shocks, provided the data Uy and the forcing term g are sufficiently

smooth and small in certain H norms. This analysis leads to global existence,

uniqueness, and decay of smooth solutions of the problem (1.17) for sufficiently smooth and ;
small data L) and h (see especiany.tz.% Thec;rems 4.1, 6.1]; for a physically
reasonable two-dimensional heat flow problem with the same kernel a see {29, Theorem ‘;"
7.1). It is also evident from the analysis in [29, Section 3) dealing with the local
existence and uniqueness of the problem (1.17), resp. (v;l). that solutions of (1.17), H
nip. (Vi), possess the property of finite speed of propagation. For an analysis of the

existence and uniqueness of classical solutions for “small®” data in the simpler case of a

We remark also that the abstract problem (v&) l_ms recently been studied by S. O.

Londen [5S], [S6] for a class 5! kernels a which are positive, decreasing, and convex on

(0,®) and which satisfy the crucial (for his method) condition a'(0+) = ==, His method
is a significant gqeneralization of that of Crandall, Londen, and Nohel [28] for the
parabolic problems discussed briefly in Section 3. However, the assumption a'(0+) = =
is inappropriate in the present physical context; moreover, the type of solution obtained
by Londen in (53] and [56] need not be regular in the sense of smooth solutions, and no
decay results of solutions comparable to ([29) are cbtainadble by his methods. It should

also be remarked that for the linear problem (v;!) (e.ge Au = -Vzn). interesting and

useful results using deep results of Shea and wu..nqer (73] have been obtained in a series
of papexs by K. B. Mannsgen (41-47] and by Carr and .aannsqen [16).

Pinally, wve note the model problem (v;l) is similar to a particular model probi-l for

nonlinear viscoelastic wotion in one space dimension in which, however, the kernel a has
the form a(t) = a_ + Alt), a_ > 0, A positive, decreasing convex on (0,%), and for
vhich the analysis is considerably more complicated. This problem has been extensively
studied by Mac Camy [60), Dafermos and Nohel {29], and Staffans (80]: see also an

interesting asymptotic result by Staffans {81] motivated by this problem.

«l?e
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A Chapter 2

Existence and tUnigqueness of Solutions of Abstract Volterra Equations

2.1, Introduction. In this chapter we study the abstract nonlinear Volterra equation

) . u(t) + d*au(t) 5 £(t) (0<e<T) ,

vhere T > 0 is arbitrary, in the setting:.- A 1is an m-accretive (possibly multivalued)
operator in a real Banach space X, the given kernel b is a real absolutely continuous
function on [0,T], b*g(t) = ft b{t - 8)g{s)ds with the integral in (V) interpreted as the
usual Bochner integral, and t:e given function f ¢ w"'(o,r;x) vhere wW'*' ig the usual
Sobolev gpace.

We treat the problem of existence, uniqueness, dependence on data, and regularity of
solutions of (V) on [0,1] by means of a simple method developed jointly with M. G.
Crandall [26] to which the reader is referred for more details; the results obtainel for
(V) generalize and simplify considerably earlier work on existence and uniqueness obtained
by Barbu [6], (8], u;ndon (54), Gripenberg (30], for the case X = R a real Hilbert
space. A different approach to the study of (V) in the same general setting was developed
independently by Gripenberg (31], (32]. The general theory will be used in Chapters 3 and
4. We will also comment on the special cases: (i) A maximal monotone on H, and
(14) A = 3¢, shere ¢: d * (=»,4e) .:I.s & proper, convex, l.s.c. function and 9d¢ 3Jenotes
the subdifferential of ¢ (see Brezis (14]); these special cases will be important in
Chapter 3. We shall also consider briefly a recent generalization of [26) by Gripenderg
{34], which will alsc be ased in Chapter 4.

Our method involves -educing the study of (V) to that of an equivalent functional

ug_z.unun equation of =he form

; %‘:OMDG(“) (0 <t <7
ne)

wl{0) = x = £(0) ,
where G & C([0,71: DIAY) » £1(0,75X) 1s a particular mapping, and developing the theory

for (FDE). Our results are also directly applicable to certain iategrodifferential
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- 4€ Ax 1s a singleton. An operator A in X is accretive iff J

Definition 2.2. v : [0,T) *+ X is a weak solution of (Eq).ﬂ {0,T) Aif there is a &

equations studied by Mac Ca;uy {58) via a Galerkin argument which necessitates further

restrictions.

wWe observe that if b = 1, equation (V) is equivalent to the evolution problem
() Lomoat, wo)=x= o), <tem .
Our method of studying (FDE) consists of generalizing known results for (E) due primarily
to Benilan ([13]; the latter are reviewed u; Section 2. We recall also that the initial-
boundary value problem for a linear or nonlinear diffusion problem is a special case of

(BE).

2.2. Preliminaries on Evolution Equations. For further background and details of this

section we refer the reader to {7], [25), [26]. Let X be a real Banach space with norm
§*l. A'mapping A : X * 2* is called an operator in X; its domain
D(A) = {x ¢ X : Ax # ¢} and 11.:3 range R(A) = U {Ax : x € D(A)}; A is single-valued
GRS ™! taa
contraction in X for A > 0. It follows immediately: A is accretive iff
(2.%) . l(x‘ + Ayi) - (x2 + Xyz)l > Ix1 - le for y, € “1 (1=1,2) .
An operator A in X is called m-accretive iff A 1is accretive and R(I + AA) = X for
A> 0. .

We shall be concerned with applying some known facts about the abstract evolution
equation
(l,) -:%0 Av 2 g, v (0) = x
to the study of (FDE). We asume throughout that g€ L‘ (0,T;X), T > O,

DPefinition 2.1. A functior v @ '[0.1‘) + X is a_strong solution of (:g) on (0,7} if %

v(0) = x, v ¢ c((0,T1:X) N W' 10, Tsx), v(t) ¢ D(A) a.e. on [0,T) and there exists

w ¢ av such that w(t) ¢ Av(t) and v'(t) + w(t) = g(t) a.e. on [0,T].

sequence {(vu,qn)l:_" e C((0,T)1X) x ! (0,TsX) such that v, is a strong solution of

(5, ) on (0,71 and (v,g) + (vig) in CC10,7hi%) x L't0,mix).




For our considerations we require a third concept of solution of (Eg), namely the
notion of integral solution. First, let [ , )X t XXX *R be defined for A > 0 by
1
Ix;¥ly = 3 (Ix + 2y) = IxI) ,

which is a nondecreasing function of A. Define

(x,y1, = :1:; [x,y]x = inf [x,y]x
+0 >0

Ix,¥y]_ = lim [x.,y]A = sup [x.ylA .
At0 A<O

Thus Ix + Ayl > Ixl for A > 0 iff [x,y]‘_ > 0, so that A 1is accretive iff

(2.2) [x‘ %X ¥y - yzl+ 20 for y, € nx:l .

Definition 2.3. v : [0,T] + X 4is an integral solution of (Eg) on [0,T) if

v € c{l0o,T];x and

’ t
2.3) fe(t) - xI - Iv(s) = xI < [ (v(a) - x, g(a) - y] da
s
for t>s, (t,s) € [0,T], x e D(A) and y € Ax. We note since I[x,y]*l < lyl, and
since g ¢ L'(O,’f;x), the integral in (2.3) is well dafined. A straightforward
calculation, see [25], shows that the notion of integral solution only makes sense vhen
A 1s accretive. We shall apply the following result on existence, uniqueness, dependence

on data, and regularity about integral solutions of (Eg) due to Benilan [13]).

Theorem A. If A is m-accretive, x ¢ D(A), and g ¢ r.’(o.r:x) then (Bq) has a unique
»

integral solution v € C((0,T]; D(A)) on [(0,T], and if v,v are intearal solutions of

(t’). (!:;) on [0,T] corresvonding to initial values x,x respectively then

t

- ~ -
(2.4) fv(t) = w(t)l € Ix - xt + [ @g(o) ~ gio)ida, 6<ct<T.
° .

Koreover, 1f g ¢ BV(?0,T]:;X) and x ¢ D(A), then
(2.5) tv(E) - win)t < [E - ni{1gto’) - yt + vartg & (0,t1))

for y ¢ Ax, and 0 <, n<¢t, t ¢(0,T]. In particular, the integral sclution v is




Lipschitz continuous. If, in addition, X is reflexive, then v is a strong solution of

(Eg) on  [0,T].

3. Discussion of Existence and Unigqueness Results. We shall reduce the study of existence

and uniqueness of solutions of the nonlinear Volterra equation (V) on [0,T] to studying

the abstract functional differential equation

g% + Au 3 G(u) (0 < ¢<T)
(FDE)

u(0) = x ,
where A is a given m-accretive operator on X, and where G is a given mapping
G : ctro,m1; oAD » ' (o, %) .
Let v = H{g) denote the unique integral solution of (Eg)' A solution of (FDE) is by

definition a function u € C([0,T); D(A)) such that u = H(G(u)). By analogy with

Definition 2.1, we say that u is a strong solution of (FDE) on [0,T] if u(0) = x,

u € w"’(o,T;x) N c({0,T]; D(A)) and if wu'(t) + Au(:) » G(u)(t) a.e. on ([0,7).

Let b e L1(0,rfR), Fe L’(O,T:x}. We shall say zhat u is a strong solution of the

Volterra eguation (V) en [0,T] if u e o0, 7ix) and if there exists w € Lo, Tix)

such that w(t) € Au(t) and u(t) + b*w(t) = F(t) a.e. on [0,T}. One establishes the
following equivalence between strong solutions of (FDE, with a particular G and strong
golutions of (V)3

Proposition 3.1. Let be AC([0,TI:R), b' e BV([0,TI:R), F ¢ wl*l0,7;X) ana b(0) = 1.

let u be a strong solution of (V) on [0,T]. Then u 4is a strong solution of (FDE) on

[0,T] with the identifications:

t
[ (1) G(u)(t) = £'(t) = r*£'(t) = a(Olu(t) = r(t)x + [ ult - s)dr(e)
]

(i1) x = £(0)
(3.1)
(iii) a = b'

(iv) re L‘(O,T;R) is defined EX r+ a*: = a .,

R4
w A
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Conversely, let r ¢ BV((0,TI;R), £' ¢ L‘(O,Tpx), x ¢ D(A) and G be given by (3.1)

(i). Let u be a strong solution of (FDE) on (0,T). Then u is a strong solution of D

(v) on [0,T], where

(i) f£f(t) = x + f'(s)ds

(3.2)

(1i) Db(t) = 1 +

t
/
0

t
f a(s)ds
0

(iii) a ~ a*r = r .

We remark that if b(t) = 1 and F ¢ w"’(o,r;x), then the Volterra equation (V) is
equivalent to the evolution equation (Eg) where g = f' and where the initial value
x = £(0).

The proof of Proposition 1 is straightforward. The assumptions on b and F permit
differentiation a.e. on ([0,T] of a strong solution a1 of (V). The differentiated
equation is then "solved' for Au by means of the resolvent kernel r associated with
a=Db', see (3.1) (1v), and the variation of constants formula for Volterra equations -
(63]. A known result (12] yields that a € BV([0,T];K) implies that
r ¢ BV([0,T];R), a fact which is used in arriving at the formula (3.1) (i) for G(u). The
converse is proved by reversing the steps. A part of Proposition 3.1 which motivatas our
approach is contained in Mac Camy (58] who, however, then studied (FDE) by an entirely
different approach.

We remark that here we have chosen to define the resolvent kernel by (3.1) (iv),
rather than by r + a*r = -a as was done in [26]. This is more convenient for the theory
in Chapter 4, and only causes a change of signs in the formula (3.1) (i) of some of the
terms in G(u)(t). Recall that if r is defined by (3.1) (iv), then the solution 3f the
linear Volterra equation w + a*w = v {s given by wa= v - r*y, while with the alternate

definition of r, w would be given by w = v + r*v, as was used in (26).
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¥e next ﬁso Benilan's theore:;\ about solutions of (Eg) to obtain 'some general results
concerning existence, uniquen'esg. dependence on data, and regularity of solutions of (FDE) '
of independent interest and use them to deduce corresponding results about solutions of
.

Theorem 3.2. Assume that A is m-accretive, x £ D(A), and let

G 1 ¢({0,T]; D(A)) » !.1 (0,T;X) satisfy

t
1 < ! Y(s)lu ~ vi _ ds
L (0,t;X) 0 L (0,s;X)

1G(u) - G(v)1
(3.3)
for some v € L'(0,TiR'), 0<€t<T, and u,ve C({0,T1:D(A)) o

Zhen (FDE) has a unique solution u € C((0,T]:; D(A)) on [0,151.

We remark that assumption (3.3) implies that the value of G(u) at t € {0,T]
depends only on the restriction of u to [0,t]. The idea of the proof is very simple.
Let v = H(g) denote the unique integral solution of (Bg) on (0,T], g€ L'(O.T;X). We
seek a fixed point of the map K : C([0,T];D(A)) + C({0,T]; D(A)) defined by
X{u) = H(G(u)). By property (2.4) of integral solutions

' t
IK(u)(t) - X(VI(t) § < [ IG(u){s) - G(v)(s)las (o<t ,
‘ 0

for u,v ¢ C([0,T]; D(A)), u(0) = w(0) = x, Applying assumption (3.3) it is now an easy

matter to show that KJ is a strict contraction on C([0,T):; D(A)) for 3 suf!ic'.iently

large, so that the map X has a unique fixed point. For details see {26].
Under further assumptions one can apply the second part of Benilan's theorem t> obtain

greater regularity of solutions of (FDE).

Theorem 3.3. In additicn to the assumptions of Theorem 1 assume that there igs a function
ks [0,®) * [0,®) such that
var{G(u) : (0,t]1) € k(R)(1 + vax(u : (0,t]))

(3.4) .
and 1G(u)(0 )1 <€ K(R) ocec<m ,
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wvhenever u ¢ C([0,T); D(A)) 4is of bounded variation and Rul < Re I

_— L (0,T:X) .
x € D(A), then the solution u of (FDE) is Lipschitz continuous on fo,7]. I1f X is

also reflexive, then the solution u 4is a strong solution of (FDE) on (0,T]. . ‘

For the proof of Theorem 3.3 one defines uw, : [0,T) + X by uylt)x and

0
Qhey = K(un) = H(G(un)), n=0,1,..0o » These iterates converge uniformly and are uniformly
bounded on [0,T}. By Benilan's theorem and assumption (3.4) one shows that there exists a

constant ¢ > 0 such that

t

var{u .. : [0,t]) < e(d +£ var(u : [0,51)ds)

for 0 <t <T, sothat var(u . : [0,t]) < c exp(ct). Thus (var(un : [0,T1)} and by

1
(3.4) {var(G(uh)) : {0,T1} are both bounded, and (un), and hence also u = unif lim
L") is Lipschitz continuous on (0,T]. For more details see [26].

Finally, the solutjon u of (FDE) depends on the data A, G, x {n the following

sense:

Theorem 3.4. Let the agsumotions of Theorem 1 be satisfied., Let m-accretive ocerators

A, in X, mappings Gn s €(({0,T}):X) *L‘(D.T;X), and anD(A) be given for

n= 1,2,... «+ Assume that the inequality (3.3) holds for G replaced by Gn' with the
sare Y, for n = 1,2,..., and u,v € C({0,T]; D(A)). For u € C([0,T): D(A)) assume

that lim G (u) = G(u) in LY(0,7;X), lim x_= x € D(A), and
e ® nee 1

(3.5) lm (2 + ) 2w (14207 (zex, A>0) .
n
nte
et u e c((o,T): D(An)) be solutions of (FDE) on [0,T] with A replaced by A,, G

replaced by G, x replaced by X and let u ¢ C([0,T); D(A)) Dbe the solution of (FDE)

on [0,T]. Then limu_ =u in €({0,TI:X).
nee "
The proof of Theoren 3.4 follows from the cbservation that under our assumptions the
sapping K(A,x,G)(u) = H(A,x,G(u)) of Theorem 3.2 has the property that in the iterate

t’. which is a strict contraction for some 3J, both 3J and the contraction constant

24~
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only on the function Y of (3.3), and the latter is assumed to be uniform in n; for

details see [26].
We shall next apply Theorems 3.2, 3.3, 3.4 to study the nonlinear Volterra equation
(V). If b and F in (V) satisfy the assumptions of Proposition 1, it follows from the
definition of G in (3.1) (i) that
1G(u) (t) = G(VI(E)l € (Jr(07)] + var(r ¢ (0,€1))0u = w1 .
L (0,t:X)
where r is the resolvent kernel corresponding to b' = a (recall that
a e BV([0,T];R) ===> r ¢ BV((0,TI;R)). Thus assumption (3.3) of Theorem 3.2 is satisfied
with
Y(s) = |r(0)] + var(r : (0,s]) .
Moreover, if f' € BV([0,T}:;X), (3.1) (4), (ii), imply
var(G(u) : {0,t]} € C(1 + var(u : [0,t))) 0sec<T),
and lG(u)(0+)I < C, where C is a constant depending on £(0), £'(0%), var(f' : to,T1,
t(0+), and var(r =.[0,T]): thus assumption (3.4) of Theorem 3.3 is satisfied.
Let A > 0 and def'ne the Yosida approximation AA of the m-accretive operator A
on X by
A=Yy, g e,
A A A A

Ax : X+ X is Lipschitz continuous with Lipschitz constant %, 80 a simple contraction
argument shows that the approximating problem
X) u, + b'Aqu = f
has a unique strong solution u, on {0,T], wunder the assunptions: b ¢ n‘(o,r,n). and

(84

fe L‘(O,T;x). By Proposition 3.1 u, is a strong solution of

du

(FDEX) x® Ay - G‘“x" “X(o) = F(0) .

- -1
One also has 1lim (I + "AA) 1: = (I + pyA) 2, for > 0, z e X.
A40
These considerations lead to the following result about solutions of (V).
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Theorem 3.5 (see [26, Theorem 4]). Let T > 0 and let the following assumptions be

gsatisfied:

b 4is absolutely continuous on [0,T], b(0) > 0, and Db' € BV{0,T].

A is m-accretive on X

£ewo,mx), £(0)e D(A) .

Then equation (V) has a unique (generalized) solution u € C([0,T); D(A)) in the sense

that (i) u is a unique solution of (FDE) on {0,T)] with the identifications (3.1) and

(ii) u = lim u in C([0,T}:X), where u
o T

equation (VA) on (O0,T].

are strong solutions of the approximating

A

1f, moreover, f£' e BV([0,T);X) and £(0) € D(A), then the generalized solution u

is Lipschitz continuous on [(0,T]. If also X is reflexive, then u is a strong solution

of (V) on [0,T].
Remarks 3.6. (i) We remark that if the Volterra equation (V) has a strong solution u

on ([0,T] under the assumptions of Theorem 3.3, then from Theorem 3.3 and Proposition 3.1,

1lim u, = u in C([0,T):X) exists, where u, are the strong solution of the
A40

approximating equation (Vx). However, under our assunptions the solutions u, of (V. )

A A

converge to a limit u as ) ¢+ 0, whether or not (V! has a strong solution. For this

reason we refer to the solution u of (V) of Theorem 3.5 as the generalized solution of °

V on (0,T]. Moreover, we note that if the assumption b' € BV(0,T] only holds on
(o,To] for some fixed To > 0, then by a standard translation argument (see [S5]) the
solution can be extended to ({0,T].

(ii) A precise estimate giving the dependence o the generalized solution u of (V)
on the data b and F is established in Thecrem 5 of ([26]).

(4ii) The assumption b(0) = 1 in Theorem 3.5 and in Proposition 3.1 is no loss of

generality, provided b(0) > 0. For if b(0) > 0, defining b= (b(O))-‘b and

: = B(0)A one has b*au = ;';u.
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(iv) Our method can be used to study the nonconvolution Volterra equation

t
u(t) + [ b(t,s)Au(s)ds » £(t) vw<t<T ,
[}

where A and f are as in Theorem 3.5, provided the kernel b, which is defined on the
region {(t,s) : 0 < g < ¢t < T}, is sufficiently smooth and b(t,t) > 0. The technique
for doing this is outlined in [26], and is carried out in detail by C. Rennolet [72]. For
different nonconvolution equation results see Gripenberg (37], ([38).

(v) In Theorem 3.5 above and 3.7 below it is important to note that the generalized
(or strong) solution u € C({0,T];X), and therefore u ¢ LP(0,T;X) for p > 1,

(vi) If the assumptions of Theorems 3.5 above and 3.7 below are satisfied for every
T > 0, then the conclusions hold on [0,®).

(vii) The relation of Theorem 3.5 to other literature is explained in [26]).

(viii) An interesting situation not covered by tae theory discussed above ariues if

the kernel b in (V) has the property
1lim -L—L———Ht ;b(o - o,

tr0?

In the case A = 3¢, whcre ¢ is convex, l.s.c. and proper, G. Gripenberg [36] extends
the theory by replacing the assumption b' ¢ BV[0,T] 4in Theorem 3.5 above by:
there exist To > 0, € >0 such that if 0 < ¢ < T
var(b'; [£,T0D < ¢, log e,

ol

Recently G. Gripenberg {34, Theorem 2] obtained the following important generalization
of Theorem 3.5 which will be used in Chapter 4. Such a result was established by Clement

and Nohel (18] for the much simpler case b1

Theorem 3.7. Let the assumptions concerning £, A in Theorem 3.5 be satisfied. Let the

£ 0 below and A a linear operator.

kernel b = b1 + bz in (V), where by satisfies the assumptions of b in Theorem 3.5,

and where b, € L'(o,r) and h: is positive, nonincreasing, and log b2 is convex on

(0,T). Then the Volterra egquation (V) has a generalized solution u e C(({0,T):X).

-27-
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Finally, we close this chapter with two important special cases. The first deals with

the case of the operator' A being maximal monotone on a real Hilbert space H and is a
direct consequence of Theorem 3.5. Recall that if X = H, A is m-accretive iff A is

maximal monotone.

Theorem 3.8. Let b satisfy the assumptions of Theorem 3.5 for every T > 0. let A be

maximal monotone on H. let f € w;;i(o,ﬂ;ﬂ), £(0) € D(A). Then (V) has a unique

generalized solution u € C({0,®); D(A)). If, in addition f' € Bvloc‘lo'.)’ﬂ)'

£(0) € D(A), then u € w;;:(o,w:ﬂ) and u is a strong solution of (V) on [0,%).

Remark 3.9. By another theorem of Gripenberg [34, Theorem 1], this result also applies to
(V) with kernels b = b, + b2 which satisfy the assumptions of Theorem 3.7.

The second special case of Theorem 3.5 deals with X = H a real Hilbert space and the
operator A = 3y (the subdifferential of v), where ¢: H+ (-=,+®»] ig a proper, convex,
l.s.c. function. The proof of the next result follows by combining Theorem 3.5 with known
results for evolution egiations (for details see [26, Section 4]).

Theorem 3.10. Let the karnel b satisfy the assumption of Theorem 3.5 for every T > 0.

et A= Jy, where v : H + (-=,4+®») jis proper, l.s.c., and convex. Let

fe wléz(o,-;u). 1f £{0) ¢ D(v), then (V) has a unique strong solution u on {o,*)

suck char Jt u'e LE (0,M); Af £(0) € D(¢), then u'e L1 (0,A).
Remark 3.11. In a diffe-ent direction Kiffe and Stecher [48] study existence and
uniqueness of Lz(O.T) solutions of (V) in a Hilbert space setting. They assume that
£ e Lz(O,TxH) and they 1ise techniques of Bardbu [5] and Londen [54] to cobtain their results
without any differentiability assumptions on the forcing term £, but at the expense of
drastically restricting :the growth of the maximum monotone operator A in (V). 1In fact,
this restriction rules the important possibility that A is a nonlinear differential
operator in the spatial variables, and therefore, their results cannot be applied t> the
physical prcblem in Chapter 1.

An interesting and different variant of (V) was recently studied by Kiffe (49]. Re

obtains existence of global solutions of the equation




- .

T

- PV [ oo T P . L -

u + b*[Au + g(u)] 2 ¢ (0<e<T
vhere A can be a nonlinear differential operator in the space variables and where the
perturbation g is a discontinuous real function which is not necessarily monotone and
satisfies certain growth conditions. The kernel b satisfies assumptions similar to those
in this chapter: while b' € BV(0,T] is not assumed, certain monotonicity is required of
b. The forcing term £ ¢ w1'2: the operator A = 3¢, where the function ¢ is as in
Theorem 3.10. The function ¢ satisfies a compactness assumption, and £(0) ¢ Dy.
Remark 3.12. Other interesting variants of the abstract equation (V), motivated by the
heat flow problem formulated in Chapter 1, Section 2, have been studied by V. Barbu (€],
{10), and by H. Attouch and A. Damlamian [4]. 1In (8,10] Barbu generalizes the dependence
of the internal energy € on the temperature;. this leads him ;o study the equation

Bu + b*Au £ (0S¢t <™,

wvhers B is a strictly monotone operator. In (4] the domain of the operator A in (V) is
allowed to depend on time t; for the heat flow problen formulated in Chapter 1, Section

2, the temperature u is prescribed at each time t outside a body Q(t) in x space.

Assuming that Q(t) depends smoothly on t, the temperature inside f(t) is determined.

Remark 3.13. While the results are still rather incomplets, an interesting study of

numerical approximations of solutions of (V) has been initiated by Mac Camy and Weiss [61)]

where other references to numerical literature may be found.
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Chapter 3

Boundedness and Asymptotic Behaviour by Energy Methods ;

3.1. Introduction. The purpose of this chapter is to discuss the boundedness and
asymptotic behaviour as t + @ of solutions of the nonlinear Volterra equation

v) u(t) + (b*au)(t) » f(t) (0 <t ¢cm) ,

The setting for (V) is b : [0,) »+ R is a given kernel, A is a (possibly multivalued)
maximal monotone operator on a real Hilbert space H, and f : (0,2) + H is a given
function. The exposition is largely based on a forthcoming paper by Clement, Mac Camy, and
Nohel {20]}.

The following general assumptions will be assumed throughout:

1
(ﬂb) . b(t) = b_ + B(t}, b(0) > 0, b_ >0, B,B'€ L (0,®)
(Hy) A maximal monotone on H ;
1,2 2
(Hg) £e) = £, + F(t), F € W ' _({0,~H)), F' € LO(0,=H), £, €H ;
here ' = 4/dt, H is a real Hilbert space with scalar product (¢,*) and norm |-+|, N

and W denotes the usual Sobolev space. The special case of (Hm)=

A = 3y, where the function ¢: H + (-2,#] ig convex,

lower semicontinuous, and proper

will also play an important role in the theory. For definitions and standard results
concerning maximal monotone operators and the special case of a subdifferential the reader
is referred to Brézis [14].

We remark that if one adds the assumption B' € svlocto.-) to assumptions (H,), (H.),

and (Hf). then by Theorem 3.8 of Chapter 2. (V) has a unique generalized solution

v e o([{0,#); D(A)), provided f£(0) ¢ D(A); if also F' e “1oc[°"’“) and £(0) £ D(A),

then u is a strong solution of (V) on (0,%). If in place of (Hm) assumption (H,) is

satisfied, and if f£(0) € D(v), then by Theorem 3.10 Of Chapter 2, (V) has a unique strong
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solution u on {(0,*) such that tu' ¢ L:oc(o'-mh if £(0) ¢ D(y), then
2 .
w' e Lioct0omitde
The results on boundedness and asymptotic behaviour of solutions of (V) will be

derived from a priori estimates obtained from the equivalent differentiated form of (V):

w*) %E + b(0)Au + B**Au 2 F'

We shall distinguish two cases:

(°.< t < .’c “(o) - t(o, e

(1) A satisfies assumption (H,) and (ii) A = 3¢ with
¥ satisfying m'). Case (i) is developed in Section 2, while Case (ii) is treated in
Saction 3; in each case a different energy method is used to deduce suitable a priori
estimates under appropriate additional assumptions on the kernel b and the forcing term
| O .A number of examples illustrating each situation is presented. In particular, the
theory developed in Section 3 is used in Section 4 to analyse the boundedness and
asymptotic behaviour of solutions of the heat flow problem (1.4), Chapter 1, under the
physically reasonable assumptions motivated in Chapter 1, Sec. 2.

The reader should note that if Assumption (H v) is satisfied, and if u 4z the strong
solution of (V) of Theorem 3.10, Chapter 2, then (see Brezis {14, Lemma 3.3] ¢(u(t)) is
absolutely continuous and one has the “"chain rule:

L vtuten) = (v, $H
Thus a plausible energy method for the case A = 3¢ consists of taking the scalar product

(w e dp(ui(t)) .
of (V') by w e 3dy(u(t)) for any solution u and integrating over an arbitrary interval

(0,T). 1Indeed, this method is used in Section 3. Unfortunately, there is no analogue for
the chain rule vhen A 4is a maximal monotone operator, but A * ¥y for some proper,
convex, l.s.c. function ¢. For this reason the development of the theory in Section 2 is
less direct in that the a priori estimates are derived from an equivalent equation to (V')
resulting essentially from applying Proposition 3.1 and Remark 3.6 (1ii), Chapter 2, to
{V'), and then using a different energy method to obtain the a priori estimates.

It should be noted that Corollaries 2.4, 2.5, and Theorem 2.6 of Section 2 may be
vieved as natural generalizations to Hilbert space of earlier results of Levin [S1] and
Londen [33] which descride the limiting behaviocur ag t + ® of solutions of (V) in the

scalar case in which the operator A is a real function.

«3l=
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2. Poundedness and Asvmptotic Properties when A is Maximal Monotone. Throughout this

gection we assume that assumktions (Hb), (Hn), and (Ht) are satisfied and that u is a
strong or generalized solution of the Volterra equation (V) on [0,®). As explained in

Chapter 2 (V) is equivalent to the Cauchy problem

) By bo)au + B A 3 F (0 <t <), u(0) = £0) .

Let k be the resolvent kernel associated with B', defined to be the unique solution of

the linear Volterra equation

B'(t)
b(0)

by standard results, Miller [63], assumption (Hy) implies that k ¢ z.loc(o,-).

(x) b(O)k(t) + (B'*k)(t) = - a.e. for 0 <t ¢c™;
¥We now use the method of Proposition 3.1 and Remark 3.6 (iii) of Chapter 2 to
transform (V'). Regarding (V') as a "linear”" equation for Au, the variation of constants

formula for Volterra equations (63] and an integration by parts show that (V') (and hence

also (V)) is equivalent to the Cauchy problem

- - .
(2.1) s L w s daf, (0 Ct e, uld) = £(0) ,
wvhere t1 s (0,) + B is the function given by either
(2.2) £,08) = i FU(E) + £0IX(E) + (KPF*)(e) (0 € ¢ < =)

| )
- .

‘ ]

(2.3) L £4(8) = EIm FUE) 4 K(0)E(E) + (KUEN(R) (O << .

We shall use an energy method based on taking the scalar product of (2.1) by u, and
also by Yt u, and we obtain a priori estimates by integrating over an arbitrary

interval ([0,T]. We will first state the general result for (2.1) and then interpret it
for (V).

Theoren 2.1. let u be a strong or generalized solution of the Cauchv problem (2.7) on

(0,)s let T >0 Dbe given and let there exist constants €, n € R such that

) I
(2.4) if v em, then [ (vowat >c [ lul?detu e pan ,
— 0 0
2 o a T2
(2.5) for every v e L°(0,TiR) [ (wte), G (k*w)(th) &k > n [ lw|at ,
° \ 0

-32-
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{2.6) ce+nd>0.
(a) 1f ¢ ¢ 12(0,=:8), ‘then ue L7(0,%H) N Lz(.0,°;!l):
() 1f also /T k'€ p'(0,%) and fE £, € 12(0,%:H), then /€ u € L™ (0, =) N 12(0,=:m).
Consequently, |u(t)| = O(;-é') as t +w and ﬁ(t) + 0 strongly as t * =,
We remark that no claim is made that the rate jult)| = 0(712) as t+ = 4g optinl.‘
.m coercivity assumption (2.4) concerning the maximal monotone operator A is
matural for the problem in ligl;n: of comparable assumptions in evolution equations.
Assumption (2.5) and the hypotheses concerning k, k' will be justified in Lemmas 2.2,
2.3, below. Two different classes of kernels b in (V) are considered, each of which lead
to the energy inequality (2.5), the first with n = 0, the second with n > 0, and for .
each of which vt k' ¢ I-‘(O ®)e These technical lemmas, toget;:er with appropriate
assumptions on the forcing function £ in (V), permit an easy interpretation of Theorem
2.1 for solutions of (V). This will be done in Corollaries 2.4 and 2.5 below. The proof
of Lesma 2.2 appears in Appendix 1. Lemma 2.3 is an extension of a result of Mac Cauay [59]
which in its present ‘fom was recently established by M. Tangredi (82].

Lemma 2.2. (a) L2t b _&at:lsfy assumption (H,) with b_> 0, and let b satisfy the

frequency domain condition

-~
(F) there exists § > 0 such that' b_ + Inf [-n Im B(in)] > §, where
- - nes
B(in) = f exp(=-int)B(t)dt. Then the resolvent kernel k of B*' satisfies
0

x e V0,
(3) 2f also 8' € 12(0,=:, then ke t(0,=); if also B~ ¢ L'(0,®), then

x ¢l (0,°.

{e) If the assumptions of (a) are satisfied, B" ¢ t.‘ (0,), and@ B is a kernel of

positive tvoe on (0,%), then for every T > 0 and focr every w ¢ !-2(0.'1‘)

o a
[ wte) 5o (xewd(wrae 2 0
0




(d) If the assumptions of (a) and (b) are satisfied, and /o e L‘(O.") n L’(o,-).

7t b ¢ 1'(0,%), then vEx e 1'(0,%) n12(0,%), ana vE k' e r'(0,®).

lemma 2.3. Llet b satisfv assumption (Hb) with b- = 0, and let
jn(n)

t1) ¢ € x.'(o.-) (3 =0,1,2; m= 0,1,2,3), :’a € x.'(o,-) .

(41) B Dbe strongly positive on (0,%) .

et k bde the resolvent kernel of B'. Then:

(a) k ¢ c‘(o,-) :

(B) K(e) = k_ + X(t), k= § sman >0, ™ erlom  (me0,1,2)
{c) if also B,B', /Tt B, 't B? ¢ 12(0,%) one has K, Yt K € L2(0,®) ;

(4) for every T > 0 and for every w € 12(0,T) there exists n > 0 such that

T a T 2
] we) 55 (kewd(edae 2 n [ lw(e)%at
0 0

(e) Aif assumptions (i) hold for j,m = 0,1,2,3, t‘B € :.1(0,-), and assumptions (ii) hold,

one has 7t k' ¢ ' (0,%).

¥e shall mention some examples of kernels b which satisfy the assumptions of Lemmas
2.2 and 2.3.

Let
(2.7) B (0,=) » lt* be positive, nonincreasing, and convex
and satisfy the smoothness and integrability assumptions in (Hy)e Then B is a kernel of
positive type on (0,®) (see [67]), and .

- - .
enInB(in) = n [ sinnt B(t)dt > 0 (n e R) .

0
Thus if b_> 0 is any comstant, b(t) = b, + B{t) satisfies the frequency domain
condition (F) with § = b, . and {see Lemma 2.2(a)) k ¢ L'(O’,-). If, in addition, B
satisfies the remaining smoothness and integrability assumptions of Lemma 2.2, all

conclusions of Lemma 2.2, and assumptions (2.5) with n = 0, and /et x* e x.‘(o.-) of

Theorem 2.1 are satisfied.
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Consider again B in ('2.7). In addition, assume that
(2.8) the mcasure dB' has a nonzero absolutely continucus part;
then (see [67, Corollary 2.2]), B is strongly positive on (0,=) (for example,
peclo,=), (-0 () >0, 0 ¢t <=, kx=0,1,2, B'(t) ¥0). Thus if B satisfies
(2.7), (2.8), and the integrability and smoothness assumptions of Lemma 2.3, and if
b(t) = B(t) (b, = 0), then all conclusions of Lemma 2.3, assumptions (2.5) with n > 0,
and vt k'€ L‘(O,") of Theorem 2.1 are satisfied.

Next, consider
-t

n
(2.9) l(t)-znejcosvt(nj>o,1

’-11 3 20, w, € R)

b | 3

with strict inequalities holding for at least one j (if vj =0, J= 1,000,m, B
satisfies both (2.7), (2.8)). This function B is strongly positive on ([0,®) (see
{67]), since by direct calculation

1 1
nn(in)-- Z ijj( + z) (neRr .

2
in1 + - +
A, (n UI) A, (n + V’)

Moreover, B s;usfies all other assumptions of Lemma 2.3. Thus if b(t) = B(t)
(b_ = 0), all conclusions of Lemma 2.3, assumptions (2.5) with n > 0 and
/e x e 1.1 (0,») of Theorem 2.1 are satisfied.

For the kernel B din (2.9) one has

2
j)
+ w; -n )2 + uznz

n’(v\2 + )

(neR) .

N N

a | ]
-nim B(in) = J 3 —
i=1 (2

b 3

Thus B»(t) = d_+ B(t), where Db_> 0 is any constant, satisfies the frequency domain

condition (F) of Lemma 2.2 if lj > 'j ()= 1,000,m)s Evidently, D is a kernel of

positive type on [0,%). Therefore, if Db(t) = b + B(t), b > 0, B defined by (2.9) with
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l’ ? 'j (3 = 1,00.,m), all conclusions of Lemma 2.2 (but not of Lemma 2.3), assumptions
(2.5) with n =0 and Yt k* ¢ L‘(O.“) of Theorem 2.1 are satisfied.
Incidentally, if b_ > 0 is any constant, and if

n -ljt
(2.10) B{t) = | Be “sinwt (A, 20, w >0)

Ly 3 "¥ 3 3
with strict inequalities holding for at least one j, then the frequency domain condition
(F) of Lemma 2.2 is satisfied with § = b.. However, such a kernel b is not of positive
type.

Lemnas 2.2 combined with appropriate assumptions on A aqd f yield the following
easy interpretation of Theorem 2.1 for solutions of (V).

Qorollary 2.4. let assumptions (Hb) with b > 0, (Hm) and (Hf) with £ arbitrary be

gsatisfied. In addition, assume that b satisfies the hypotheses of Lemma 2.2, and that

ftF' e x.z(o,-;n). Let 1 be a strong or generalized solution of (V) on (0,*). If the

coercivity assumption (2.4) holds with € > 0, then u and vt u e L.(O.":H) n Lz(o.":!!)

and u(t) + 0 strongly as t + e,
Indeed, define f.' by (2.2). By (Bf) and lLemma 2.2 (k € L‘(O,- )n 2.2(0,-),
k*e L‘ {(0,=)) omne trivially has £1 € Lz(o.-;a). By Lemma 2.2 one also has
txe A (0,) n 12 (0,) and vE k' e L'(O.'). These tog.ether with the assumption
/Tt ¢ 17(0,=H) used n (2.2) show that /T £ € 17(0,%H); the fact that

Tt (k*F*) ¢ I.z(o.c;l!) in (2.2) follows from the straichtforward estimate

r ¢ 2 2 2

[ tlf xtt - s)Ft(s)dsi®at < 20x1°, we rat,

0 0 L (0,*) L (oo-fn)
+ 21/ xi? tree? (vr > 0) .

L0, t?0,mm

By Lesma 2.2 again, (2.5) holds with n « 0. Thus if ¢ > 0 ‘in (2.4), the result of
Corollary 2.4 follows by applying Theorem 2.1,
lemma 2.3 combined with appropriate assumptions on A and £ yield a different

interpretation of Theorem 2.1 for solutions of (V).
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Corollary 2.5. Let assumptions (“b) with b, = 0, (“n) and (Hf) with f_ =0 be

satisfled. In addition, assume that b(t) = B(t) satisfies the assumptions of Lemma 2.3,

and that £ = F also satisfles £, 7t £, 7E £ ¢ L’(o,-:u). let u be a strong or

gencralized solution of (V) on [0,%), If the operator A satisfies the coercivity

asﬁhmptlon (2.4) with € >0 (or even ¢ > -n, where n > 0 is the constant in Lemma

2.38), then u and T ue L (0,%H) ﬂLz(o,-;H), and u(t) + 0 stronaly as t + =
The proof of Corollary 2.5 is similar to that of Corollary 2.4, except that f; must
now be defined by (2.3), and Lemma 2.3 is used in place of Lemma 2.2. Note also that the
additional assumptions concerning f, Yt £ are essential.
" The important case b_=0 in (H,), b =B satisfying the assumptions of Lemma 2.3,
and f’. #0 in (llf) is not covered by Corollary 2.5. In this situation Theorem 2.1 must

. be modified in the following manner.

Theorem 2.6. Let the assumptions (H,) (b_ = 0), (Hy), (H,) with £, arbitrary, and the

assumptions of Lemma 2.3 be satisfied. In addition, assume that F, vt F,

ft £ e Lz(o,.:l!). Let u be a strong or generalized solution of (V) on [(0,%), 1let

u_ be the unique solution of the 1imit equation corresponding to (V):

vy) . cu g+ tf Bvatiau, o £ .
°

Let the operator A satisfv the coercivity condition:

! i v M and v e M and T >0, then
T T
(2.11) [ tete) = v, utt) - goae > ¢ [ lute) - u_lae
° °

for some € 3 0 (c > ~n 1is sufficient; see Lewma 2.34) .

Then u - u_, and 7t (u - u,) € L (0,em) N x.z(o.-m), consequently u(t) + u_  strongly

2y tee and Jutt) ~ul =o(Jz) as tee.

Remark 2.7. Since b = B satisfies the hypothesis of lemma '2.3. B 1s strongly positive on
-
{0,=), and therefore [ 8(t)dt > 0. Since the operator A is maximum monotone on M the
. 0 ’




1imit equation (Vy) has & unique solution for any f£_ ¢ H; in particular, if f_ =0,
e, - 0 and in this case Theorem 2.6 reduces to Corollary 2.S.

Corollaries 2.4, 2.5 and Theorem 2.6 togcther form the natural generalization to
Hildbert space of corresponding scalar.results t&r (V) due to Levin [S1) and Londen ([S3).

Sketch of Proof of Theorem 2.1. (a) Take the scalar product of (2.1) with u and

integrate from 0 to T. Using (2.4), (2.5) we obtain

T

1 2 2
Iy MMIT+ e { fuge) (“ae <

1
2b(0)

2 T
{CH AN (£,(t),ult))de .
°

Since n+ ¢ > 0, and 21 € tho,ozu)} the assertion (a) féllows by standard estimates.
(b) Next take the scalar pgodnct of (2.1) with tu and integ;ate from 0 to T. An
integration by parts yields

T

[ tluce) 12ae
0

T
2b(0)

2 T a :
fatei i + [ etute), 3T (k*w)(e))de + ¢
(2.12) [

1 T 2 T
Ty [ Mwelte *[ e waene

A straightforward calculation shows that (see (20])

T
[ tute), §o keupcenae w1+ 3,
0
vhere
T a .. T 2
g=f (/t ue), = {x*/t v)(e))ae > n [ elute))fae ,
0 0
and vhere
? t
J=f Eae), [ x(t =~ 1)(/E -~ Mult)anide .
° °
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Using /c - v'?~< t - T, 0<Ct<¢, ve L’(o,-; H), and /t k' ¢ t.‘(o,-) yields

T -
191 < (J thuertZae)'’? 1 | Kixt(e)lae .
) ré(0,mm) 0

Substitution of the estimates for I, J in (2.12) gives the final inequality

late) 12 + (n+ €) IT tlute) Pae < =L tur?
2»(0) u n o 2O V200 o
T 1240172
+ o, 1t x'1 (J thatedl®ae)’ %+ o/ £, tut .
1%(0,%:1) L'(0,=) 0 120,%m) 12(0,%:m)

The conclusion 7t u ¢ L'(o,-?;a) N L2(0,-;a) follows by standard estimates using
ce+nd>0,uce 1.2(0,-:!() by (a), and the assumptions 7t k' e L‘(O,") and
t !' e x.’(o,-;m. This completes the sketch of the proof.
Proof of Theorem 2.6. The proof will be reduced to that of Theorem 2.1 by the
-

following steps. First by Lemma 2.3 . [ B(t)dt = k:1

% 0. Therefore, the limit equation
WL, can be written in the form
k.u. + M 2 k.f. .

wvhich is the same as

1_3
B(0) at

Next, subtracting (2.13) from (2.1) gives

34
b(0) at
where by an elementary calculation

u, 0—(ku)0m AR I+ (k(t) -k )y, .

(2.13)

a
(2.14) (u-u) +gek(u-u)+M=-dusP(t) (0<cecem,

(2.15) !‘1(t) P'(t) + k(0)F(L) + K(t)f_ + (k'*F)(t) ~ u K(t) .

b(O)
Lemma 2.3 and the assumptions concerning ¢ clccrly iwmply that F, sntisties the same
assumptions as f; in Theorem 2.. 1. The method of proof of Theorem 2.1 applied to (2.14),
(2.15), where the coercirity assumption (2.11) is used in place of (2.4), now yields the
needed & priori estimates for u =~ u_ and 7t (o - u), and completes the proof.

Example 2.8. We give an example of a maximum monotone operator A in (V) which is not a

subdifferential, and for which the theory developed in this section is applicable. Let
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2 € R be a bounded open sct with smooth boundary 9. Let H be the Hilbert space
Lz(ﬂ). Let 8 be a maximum monotone graph with 0 ¢ B(0) and with primitive 3 ({i.e.
8= 3j). Let. Ay be the operator defined by
DIA) = (o : we wY(@ N uiim, Bw e 1),
Au = ~8u + Blu) (u e DIA)) . ]

It is clear [15] that A, {is maximum monotone on H since 31 - iqp‘, vhere

01 t H* (~=»,»] 4ig the proper, convex, l.s.c. function given by

N

/ 1% 2ax + [ jtulax if wue u;(n) and 3w e L'(®)
¢, (u) = 2 2
1

+®» otherwvise .
n
Define L(u) = } b gL
. 4=1 i xy
‘and (u,L(u)) = [ uL(u)dx = 0. Finally, following Pazy (70, Ex. 3.5] define
2

(bi € R, ue a;(n). By the divergence theorem L(u) is monotone
A=A +1L.
By a perturbation theorem of Crandall and Pazy (27), A is maximum monotone on

BEe x.’(m, and by an easy calculation using Green's theorem and the Poincare inequality

there exists a constant € > 0 such that

(h,0) = (Au,u) = - [ ududx + [ wB(wiax > [ |Val?ax > ewt?, . o]
a Q

a 2(a)

Thus A satisfies the coercivity assumption (2.4) for every T > 0.
Remark 2.9. The concept of strong positivity of a kernel plays an important role in
stability theory for Volterra equations (see Halanay (40], Nohel and Shea {€7], Staffans

(74}, 75), (76), (77), (78], Crandall, Londen and Nohel (28]). As we have seen kernels

l . B satisfying (2.7), (2.8), as well as oscillatory kernels B of the form (2.9) are

e -

strongly positive on (0,®). If Db(t) = b, + B(t) where b >0 and B {s st.tonqiy
positive on [0,%) one can extract some information about the behaviour of solutions of

(V) as t ¢+ @, In particular, one can establish u e x.z(o,-sn) (Theorem 2.1 part (a)) by

o et ek

another energy method directly froa (V):
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Pronosition 2,10. Let the general assumptions (Hb), (Hm)' ("t’ be satisfied. Let u be a

strong or generalized solution of (V) en {0,®). If F ¢ Lz(o,.;H). if B is strongly

positive on (0,®), if the coercivity assumption (2.4) is satisfied with ¢ > 0, and if

£, = 0 whenever bg =0, then u ¢ Lz(o,-;u).
Proof. Let v € Au and let 0 < T < * be given. Take the scalar product of (V) ky v

and integrate from 0 to T obtaining

T b, T ) T
(2.16) [ tvtoy,utenae « = 1 wie)ael® + i lwiTl € [ (v(e),£(e))de ,
0 0 0

where

T
o, (wiT) = ] tvte) (B*vi(t))at .
0

Since B € L‘(o,-) is strongly positive and F,F’ € L’(O,G:H), a result of staffans

(70, Proposition 4.1] shows that there exists a constant Y > 0 such that
T 12
1 (wte), Flenael < yio tviT1} /% .
0
Using this, the coercivity assumption (2.4) (e > 0), and the obvious estimate
T b, T
1
I el < |/ vivaet? « 142 5 > 0)
-

in (2.16) yields the inequalities
2
g1

T b T
27 € [ lutePa + 3= 1 vinael? « g tvit) € vig tvm} '/ o
0 0

v, > 0)

and
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T 2 172
(2.18) €[ lutey|®at + o lwiT) < vio [viT]) (b =0, £f_=10) .

[}
The result of Proposition 2.9 now follows from (2.17), (2.18) by completing the square on
the Qp terms.
Incidentally, we ha§e also shown that
(2.19) sup Qa[v:T] <@ (v € au) ,
T>0

and if b, > 0, also that

sup IIT v(it)ae| <= .
™C 0
It follows from (2.19) using another result of Staffans (see Crandall, Nohel, lLonden [28,
Lemma 3.1] in a Hilbert space setting) that
sup [(B*vV)(T)| < = (v € au) .
T>0
Unfortunately, there appears to be no direct way to establish alsc that u(t) is uniformly
continuous on [0,%) if assumption (H;) is satisfied and A # 3¢ (if A = 3¢ this can be
done as in Theorem 3.1 below). The uniform continuity “ogether with u € Lz(o,-:a) would
imply that u + 0 as ¢t + @ gtrongly in H. This provides at least one motivation for

the indirect method of Theorem 2.1,

3. Boundedness and Rsvmptotic Properties When A = 9¢. Le: the general assumptions (Hb)'

(Hw)' (Hf) be satisfied ard let u Dbe a strong or generalized solution of (V) or (0,=).
In this gection we shall cbtain different boundedness and asymptotic results for the case
A = 3¢, and when b, >0 in ("b)' These results which are motivated by the physical

problen discussed in Chapter 1, Section 2 are deduced from a priori estimates which ure
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obtained dircctly from the equivalent Cauchy problem;

v*) %’ B(O)Au + B* * Au> F* (0 <t € ™), ul0) = £(0) .

Theorem 3.1. Let the general assumptions (Hb) with b > 0, (H‘,), (!lt) be satisfied and

let u be a2 strong or generalized solution of (V) on [0,%). JIf the kernel b satisfies

the frequency domain condition (F) of Lemma 2.2 and if

(3.1) Inf z) > ~»,
. z¢H
then
(3.2) Sup v(u(t)) <=,
[ 13 3L

3f V e 3¢(u), then

(3.3) v ¢ 12(0,=m) ,
(3.4) : : ﬁ{- ¢ 12(0,2m) ,
and

(3.5) u is strongly uniformly continucus on (0,=) .

If also lim ¢(u) = +=, then

fujs=
(3.6) sup lu(t)] <=,
o<t
and
3.7) 1lim ¢(u{t)) = ¢ = Inf p(z) exists .

[ ) zel

Moreover, if the inclusion 3¢(w) » 0 implies w =0, then

(3.8) ul{t) —* 0  (weakly) ags t + =

The frequency domain condition (F) is satisfied by several classes of kernels b with
b. > 0 as was seen in Section 2 (see examples of b = b. + B with B given by (2'.7),
(2.9), (2.10)). Thus Theorem 3.1 generalizes a recent result of S. O. Londen (54,
Corollary 2] and a result of V. Barbu (6, Theorem 2).

The assumptions conc2rning ¢ in Theorem 3.% are not sufficient to obtain strong

convergence of u(t) ¢o zero as t *+ =, For this result one needs the coercivity
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condition (2.4) with ¢ > 0. If (2.4) 1s satisfied with v e 3¢(u) it is a standard
result (see Brezis (14]) that the inclusion 3¢(w) 2 0 has w = 0 as the only solution,
and that 0 ¢ D(3v). Then the definition of the subdifferential ([14] implies that

(u) > ¢(0) (ve H) ,
and therefore assumption (3.1) of Theorem 3.1 holds. lThls motivates the following results
wvhich complement Corollary 2.4 for the case A = J¢. Note that in Theorem 3.2 balow only
the frequency domain condition (F), but not the assumption that B is a kernel of positive
type (see Lemma 2.2), is needed. Also note that here the assumption on F is less
restrictive.

Theorem 3.2. Let the general assumptions (Hy,) with b_ > 0, (Hv). (Hf) be satisfied, and

Jet u be a strong or generalized solution of (V) on {0,2). Let b satisfy the

frequency dorain condition (F), and for v € 3d¢(u) let the coercivitv condition (2.4) with

€>0 be satisfied. Then conclusions (3.2)-(3.5) of Theorem 3.1 hold, and

ae L?(o,-;a), which implies that u(t) + 0 strongly as ¢t + o,

————————

Remark 3.3. If b(t) = b. >0 4n (V), a case not excluded in Theorems 3.1 and 3.2, the
above theorem and its proof yield a simple boundedness and asymptotic behaviour result for
the evolution equation
du
ax?t biv(u) 2 g, u(0) = Yy o
whers g = P'; compare Breézis (14, Theorem 3.11] vhere g ¢ 1 0,=m).
Remark 3.4. If the coercivity condition (2.4) with € > 0 and A = 3¢ is replaced by the
more general condition: for every T > 0 there exists ¢ > 0 such that
* k3 2
(2.4°) 1f ve v(u), then [ (w(t),u(t) - z)at > [ fu(t) - z|“ae
(] 0
for some z ¢ H, then it is easy to show that the inclusion d¢(w) 20 has we= 2 as the

only solution, and that

elu) > ¢(2) (ue H) .

Then the method of proof of Theorem 3.2 easily yields that u(t) + 2 strongly as t + =,
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Remark 3.5. In Theorem 3.1 and 3.2 the assumption b, > 0 in (Hy) i3 crucial; if b =0

the frequency dom;un condition (F) cannot be satisfied (see examples (2.7), (2.9), (2.10))
for any & > 0. On the other hand, in these theorems £, in (H‘) is arbitrary and the
case f. = 0 4is not ruled out, pro(rided b. > 0. If b_ w0 4in (“b" one can, of course,
still apply Corollary 2.5 if f_ = 0, and Theorem 2.6 if f_*# 0, with A = 3.

Proof of Theorem 3.1, (a) Let 0 < T < * be arbitrary; take the scalar product of

(V') with v € 3¢(u) and integrate over [0,T]. Using -:EN“(:” = (v(t), -:—: (t)) a.e.

(see Brezis [14]) one obtains

. T T
(3.9) elult)) + b(0) [ Iv(t)l%ae + Qg [WiT) = [ (BU(t),v(r))de + (£(0)) ,
' 0 0
wvhere
T

Qg (viT] = [ (v(t),B'ov(t))ee .
0

We next apply a frequency domain method (see Nohel and Shea [67]) to Qgee Define

v,'(t) = v(t)x(0,T] and its Fourier transform
- [ _J ’. t
- - n
v (n) ] o vpltiet .

Extend B*' evenly to (-=,0) by B'(-t) = B'(¢t) (0 € t < =), In the following
calculation use is made of the hypothesis B' e r..‘ {(0,*), and the Parseval and cpnvolution

theqrm:
T . T T
Q. wiT) = [ (w(t),B'ev(e))ae = = [ (v(t), [ B'(t = T)v(r)dr)ae
ke ) 29 0

[_J [ _J
.1 ot 2°
L tvgtt), [ Bt - tivglrianade = o= L Ivg(m1° 3% (n)an .

2
2

* - - -
Since B' is even, B'(n) = 2Re B'{in) (n ¢ R), where + denotes the Laplace
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transform. The assumptions B,B* ¢ x.'(o,-) and the familiar formula

B'(in) = in B(in) - B(0) yield Re B'(in) = -nIm ;(.ln) - B(0). Therefore,
QpelviTl = o2 L IvT(n)l {-nIm B(in) = B(0))an .

T .

Substituting this result into (3.9) and using [ IV(t)lzdt = -;; f/ lvT(nszn. as well as
[} =~

b(0) - B(O) = b, the frequency domain condition (F), and Parseval's theorem again, yields

T T
(3.10)  ¢(u(T)) + 8 | tveer1ae < Jotgon | + [ 1P (e, vienlat (0 < T <= .
0 o

-
The assumption F*'e L°(0,»), Cauchy-Schwarz and an elementary inequality give the

estimate

T -
(3.11)  ¢(u(T)) + %j lv(e) Izdt < letg(oN + -;—6-[ |r'(t)|2dt <= (0<¢cT<Cw ,
0

Asgumption (3.1) used in (3.11)' yields conclusioris i3.2), (3.3) and (3.6).

Returning to (V') and using B* € L'(o,-), ve L’(o,-m). P! e 2.2(0:"3!!) gives

conclusion (3.4). Combining (3.3), (3.4) with ':'E"‘“‘t” = (v(t), g% (t)) yields

.:? vlult)) e I.' (0,»), and this together with assumption (3.1) implies that 1lim ¢(u(t))
exists. To establish all of (3.7) we use the definition of subdifferential: :;: every

v & dv(u) and for every w € H v(u(t)) € v(w) + (v(t),u(t) =w), 0 € & ¢ =, Since

ue !.'(o.-m) and ve 'tho.-:u) there exists a sequence (tn} +® as n+ = guch that

(v(tn).u(tn) - w)A +0 as n +* *; this proves (3.7), and from it easily (3.8). To prove

(3.5) take T ¢ t and use (3.4) and Cauchy~Schwarz obtaining:

A3 -
&
lete) = utedl ¢ { 152 (s)las ¢ /&= T [{ 152 (s11%as}'/?

cxft =t (0 <t ct¢m , -i

This complates the proof of Theorem 3.1. ) .
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Proof of Theerem 3.2. As remarked in the paragraph preceding Theorem 3.2 the

coercivity conditlo.n (2.4) implles that

Inf ¢(z) > ¢(0) > =,

zeR
so that assumption (3.1) is satisfied. Thus conclusions (3.2)-(3.5) follow immediately
from Theorem 3.1. In view of (3.5) the conclusion wu{t) + 0 strongly as ¢t + = follows
once it is shown that wu ¢ x.z(o.-:u). But using assumption (2.4) with ¢ > 0 and

we 12(0,H) for v e 3¢(u) (proved in (3.3)) one has

T 2 T ¢ T 2 y T -
e[ el < [ (vitdhutenae < = [ lue)lae + o= [ dwe)|%ae .
0 0 0 . 0
Thus
e 2 o 2. .
-2-1 lu(t)ldt<Ef Iv(t)|dt == (0 < T ¢=) .
‘o )

Since € > 0, this ccapletes the proof of Theorem 3.2.

4. Application to a Problem of Heat Flow in a Material with Memory., In this section we

study the heat flow problem (1.4) in one space dimension forzulated in Chapter 1, Section
2. We use the existence and uniqueness theory of Chapter 2 and the boundedness and
asymptotic theory of Chapter 3, Section 3, to deduce the principal result, Theorem 4.5
below.

Por clarity of exposition we restate the heat flow problem (1.4), Chapter 1, Saction

3 yu e sl «qotu) - Yoot ) +h @ cece, 0cxc)

(4.19)
w(0,x) = uo(x) (0 ¢ x ¢ 1), u(t,0) = y(t,1) £ 0 (¢ a) *

vhere subscripts denote dif!crenthuon vith respect to x. We assume that the conditions

(which were motivated in Chapter 1):




~— -

(eu) b° + Re B(in) > 0 (ne R) ,

L]
" S - | vvarso, )
(]
- : \ad
vhere 8(in) = f B(t)exp(-int)dt, are satisfied. We also assume that the function
° .
¢t R* R satisfies assumptions (o) of Lemma 1.3 (Chapter 1), Y, € u;(o,l), and that

the external heat supply h € L‘(O.-:Lz(O.ﬂ) n 1.2(0,-»:1.2(0,1)). Under these assumptions
wve have scen in Chapter 1 that the initial-boundary value problem (4.1) is equivalent to
the abstract Volterra equation

(44 ua+banr € (0 €<t <= ;

in the present application

(b pee) = S o (pecy (1) W<t <o),
73] gee) = SLEt) 4 (ougye, ) Octcm ,

wvhere p is the unique solution of the resolvent equation

() Bo(t) + (8% (t) = - &L Octcm , . )
()
Lt i
ete) = cy - [ vivar W<t ,

[}

t

Glt,x) = dx) (x} + [ ntr.xex (0<te¢m, 0¢cx<1),
0

and the nonlinear cperator A = d¢ satisfies assumption (H,) with ¢ given by the proper,
convex, l.s.c. function defined in and satisfying the properties of Lemma 1.3 in Chapter
1. We recall that in two or three space dimensions the corresponding heat flow problem in

a bounded domain 8 with smooth boundary T also satisfies the Volterra equation (V)

.with d and £ as adove, but with !.2(0.1) replaced by x.’(m. and with A = 3¢

vhor.o ¥ 1is the proper convex, l.s.c. function defined in and satisfying the properties of

Remark 1.4 in Chapter 1. We recall also that the l;gy properties of the kernel D> and
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_ Chapter 1. With these properties in mind all that is needed in order to apply Theorems 3.1

lerma 4.1. Let bO' ) B, Y satisfy the assumptions of lLerma 1.1, Chapter 1. Define

the xernel b in (V) by eguation (b). Then the frecuency domain assumption (F) of Lemma

of the forcing term f for the heat flow problem are stated in Lemmas 1.1 and 1.2 of b

and 3.2 of Chapter 3 to the problem under study is to show that the frequency domain '
assumption (F) of Lemma 2.2 can be satisfied for physically reasonable classes of

relaxation functions B8, Y. In this direction we have:

2.2 is equivalent to the condition: there exists § > 0 such that

(<:0 - l!eY(in))(l:v0 + ReB(in)) = Imy(in)Im8(in)
(4.2) Inf > 8.

(ner) Ib, + Eunn’

Proof of Iemma 4.1. Define the constant b. > 0 ond the function B as in Lemma

1.1, Chapter 1. Taking the Laplace transform of B one computes

- 1
- €y ~ Y(in)
B(4n) -'-% (o—:-— -b,) (ne R) .
by + 8(1n)
Thus r
S - v(in)

b, = M Im B(in) = Re( (nem ,

bo + B8(in)

from which the conditicn (4.2) is an immediate consequence.

Using lemma 4.1 one can construct a large number of examples of functions 8 and Y
such that assumption (F) is satisfied. 1In p.uticular one has the following physicaliy
important special cases. Note that in Corollaries 4.2 and 4.3 below the physical
conditions by + {t Blr)dt >0 (0<t <™, ¢~ ‘[: Y(T)ATt > 0 (0 € t < =) are both
satisfied (although they are not explicitly needed in the theory), because the functions

8 and Y are positive, and assumption (y) is assumed to hold. For a different example

dn which (y) 4is satisfied but the above physical conditions need not hold see Remark 4.8

belovw.
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Corollary 4.2. Let bo >0, o >0 and B, v, tB, ty € L'(o,-). Also assume that B and

¥ _are positive, nonincreasing and convex on [0,%), and that the assumption (Y) is

satisfied, Then assumntion (F) is satisfied if either for a fixed hb > 0 the constant

€ > 0 1is chosen sufficiently large, or.if for a fixed o > 0 the constant bb >0 is

sufficiently larae.

Remark 4.3. (i) I£f B =y = 0 (the standard heat flow problem) (F) is satisfied for any

b
choice of b > 0, ¢, > 0 with 5§ = _2'
0 0 co )
(14) If B =0 and Y satisfies the assumptions of Corollary 4.2, (F) is satisfied
-
e -/ vwvae
for any choice of b > 0, ¢, > 0 with § = 9 .
0 0 bo

(ii1) If Y S 0 and B satisfies the assumptions of Corollary 4.2, (F) is satisfied

for any choice of bb >0, <, > 0.

Sketch of Proof of Corollary 4.2. The proof will make use of Lemma 4.1; we establish

(4.2). Since B,Y € L'(O,-) and are positive, nonincreasing and convex, Re B(in) and
Re Y(in) are nonnegative. The function -

Imy(in)Im8(in) = [ y(t)sin ntdt [ B(t)sin ntat (n eR)
0 0

is even, continuous, zero when n = 0, nonnegative, and has limit zero as n + =

(Riemann-Lebesgue lemma). The denominator in (4.2) satisfies

- -

0 <8 < Iby+BumI® <+ 3f Bwa? e m .

0
Koreover,
b°+nesun)>b°>o (neR),
(s0 that (PW) is satisfied), and
. a -
o = ReY(in) > c, = [ y(e)ar > v (n €R) .
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Theretore, the existence of § > 0 such that (4.2) holds is established for choices of

. bo and ¢, as asserted. This completes the proof.

Another physically important case for the heat flow problem is the following special
case of Lemma 4.1 and Corollary 4.2.

Corollary 4.4. Llet

n -8 .t
Bce)= [ pe * et cw),
(4.3) k=1
n et

Yit) = § ce (0<t <o)
k-lck

with bk >0, Bk 20, ¢ 20, 7): 2 0 and strict inequalities hold for at least one pair

k
» c
P | 3
bk' ‘k and one pair Cpe Yk' Let bo >0, co > 0, and S k-in 7); > 0. Then the
frequency domain condition (F) is satisfied if
N R )
(4.4) b (e, = =} = = et B
000 et Tk 4 ket B kemt Vi

The proof of Corollary 4.4 is a consei;uence of showing that there exists a § > 0
such that (4.2) holds. The inequality (4.4) follows by using elementary calculus to find

the infimum over n ¢ R of the expression in (4.2):

n Y n [} n ‘ n b
(e - 1 *@m+xzﬂmfﬂ&#*gu k)

k-11:-on k'iﬁk#n k*n k-is:+n

n b, 2 n bn 2
v k
e I 53) (I 5
x-tskna ):-Iak*n

¥o claim is made that the constant ‘2 in (4.14) is optimal.
We next combine the properties stated in Lemmas 1.1, 1.2 and 1.3 of Chapter 1 and
Lesoa 4.1, and Corollaries 4.2 and 4.3 above vith the abstract theory to estadlish the

following result for the physical heat flow problem (4.1) in & one-dimensional material

«Sle
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with memory. To see that a more general result (not necessarily physical) with B and Yy
oscillatory can hold we refer to Remark 4.8 below.

2
Theorem 4.5. Let bo >0, c,>0, let B, Yy, tB, tY ¢ L1(0,°) and let B ¢ L (0,»).

Assume that B8 and Yy are positive, noddecréasinq} convex, and that

M ¢ =[] vvrae>o.
° -

Assume that o0 : R+ R satisfies assumptions (0) of, Chapter 1, that the fnitijal

temperature Y, € H;(0,1), and that *he external heat suoply h € L1(0,~;H) (a} Lz(o,-:ﬂ),

wvhere H = L2(0,1). Then the heat flow prcblem (4.1) has a unigue strong solution u on

[0.,%) x (0,1) such that %% € Lioc(0,°;ﬂ). Moreover, if either for a fixed bo > 0, the

> 0, the constant hb >0 is

constant co > 0 is sufficiently large, or for a fixed co

sufficiently large, then the solution u has the properties:

w ¢ 170,28 N12(0,H), :—: e 120,01 ,
and 1im u(t) = 0 st}onqlx iﬁ He .
Lo
Remark 4.6. For heat flow in more than one space dimension let & be a bounded bocy in :
'2 or R? with smooth boundary TI. Then the temperarure u satisfies an equation of the
form (4.1) with the operator -a(u‘)x replaced by -VO(XIQuI)Vu): the boundary condition
iz u(t,x) =0 (0 €t ¢<®, xe I'), anc the initial condition is u(0,x) = ug(x)
(xe Q). If H is the Hilbert space Lz(ﬂ), if the function A : R+ R‘ satisfies
assumptions (A) of, Chapter 1, if uo(x) € n;(n), and h e L‘(o,-:ﬂ) (a} L’(o.-;u), then
the results of Theorem 4.5 holds, provided the constants b > 0, ¢. > 0 and the

0 0
relaxation functions £ and Y satisfy the assumptions stated in Theoren 4.S.

Remark 4.7. Let

n -Bkt
B(t) = ] be 0<tcwm)
k=1
. n Y, t .
r(t)-is‘ck (0<ctco) ,
k=1
«S2a




vhere bk >0, ‘k >0, x > 0,.7,‘ 2 0 and strict inequalities hold for at least one pair
m ¢
k

bk' ‘k and one pair S’ L Let bo >0, o >0, and o kzl ;—; > 0. Let o, by h

satisfy the assumptions of Theorem 4.S. Then by Corollary 4.4 all conclusions of Theorem
4.5.hold if the inequality (4.4) is satisfied.

Proof of Theorem 4.5. Under the assumptions of the theorem the heat flow problem

(4.1) is equivalent to the abstract Volterra equation (V) with the kernel b given by
equation (b), the forcing term given by equation (f), and the operator A = 3¢ where
¢t B+ (-=,»] is the proper, convex, l.s.c. function defined in Lemma 1.3, Chapter 1 (or
Remark 1.4, Chapter 1 in more than one space dimension). To establish the existence and
uniqueness of a strong solution of (V) (equivalent to (4.3)), we apply Theorem 3.10,
Chapter 2. Lemma 4.2, Chapter 1, shows that the assumptions of Theorem 3.10, Chapter 2
eoncern}ng £ are satisfied with £(0,x) = uo(x) € a;(o,i) = D(v) + Moreover, (ﬂv) is
satisfied. Lemma 1.1, Chapter 1, shows that assumptions (H,) are satisfied. Thus to apply
Theorem 3.10, Chapter 2, we must still verify that B' ¢ avloc[o »*). From the expression

for B in Lemma 1.1, Chapter 1, we compute
yit)
b

(4.5) B'(t) = ~ + cp(t) = (y*p)(t) (0ct<c=),

Since 8 is monotone by hypothesis, the resolvent equation (p) and a standard argument
(see e.g. Bellman and Cooke [12]) show that p is monotone. Finally, since Y is
monotone, it follows that B' ¢ BV(0,®). Thus Theorem 3.10, Chapter 2, yields the
existence and uniqueness of a strong solution u of (V) on (0,*) such that

u' e Liocto.-:ﬂ)-

We shall next apply Theorem 3.1 of this chapter. Concerning the kernel b Lemma 1.1,

Chapter 1, shows that assumptions (H,) are latisneé with b_ > 0. Moreover, Corollary
4.2 shows that b satisfies the frequency domain condition (F) if by and ¢y are chosen
as in the statement of Theorem 4.S5.
Lewma 1.3, Chapter 1 (or Remark 1.4, Chapter ? in the case of more than one dimension)
shows that ¥(y) > 0 (y ¢ R), '11.:. ¥ly) = 4=, and that the inclusion Ju(w) » 0 has
b 4

v e 0 as the only solution. Lesmma 1.2, Chapter 1, shows that assumptions (H,) are

satisfiel. Therefore, by Theorem 3.1 the solution u has the properties:

8=
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sup v(ult)) <=, sup [(ult)] <=, % ¢ x.’(o.-'). u(t) 4is uniformly
o<t o€t .

-
. . -

Remark 4.8. Suppose

continuous on (0,%).
1im ¢lult)) = 0, and u(t) —> 0 as t <+ =, ]

Lo

Lemma 1.3, Chapter 1 also shows that under assumption (0) the coercivity assumption
(2.4) is satisfied for every T >0 with c = poiz > 0 (or another positive constant in
the case of more than one space dimension - see Remark 1.4, Chapter 1). Therefore, by

Theorem 3.2 one also has u ¢ x.z(o,-m) and u(t) + 0 as t + » strongly in B, This

coapletes the proof.

-8.t
B(t) = be Y cont (b8, >0, 0¢¢t <=

-,t
y(t)-clo ! cosut “’1'71 >0,0<C ¢ cm) , 4

and assume that bo > 0, o > 0. Also suppose that ¢ and h satisfy the assumptions of

Theorem 4.5. Although the assumptions concerning B, Y in Theorem 4.5 are not satisfied,

one still has by Lemma 1.1, Chapter 1, that assumptions (H,) hold with b_ > 0 provided

m -oah
1 - >0 .
% ﬁ*uz

Moreover, B' ¢ svlocto,-) from (4.5), and the existence and uniqueness of a strong
solution of (V) (equivalent to (4.1)) such that u’ ¢ Vx.zoc(o.-m) follows from Theorem
3.10, Chapter 2. Thus to abtain all of the conclusions of Theorem 4.5 we need only vcrtt§
that the frequency dormain assurption (F) holds in order to apply Theorems 3.1 and 3.2. By
Lenma 4.1 it suffices to find sufficient conditions on the constants bo, Cge b' . B‘, A,

LY 1'. ® so that (4.2) holds. An elementary, dut tedious calculation shows that & > 0
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such that (4.2) holds exists in the case Yf > uz, 8?' > 12, provided assumption (y) above

- holds, and provided bo > 0 is chosen sufficiently large.

While no claim is made here that the above functions B8 and Y represent physically
plausible relaxation functions, it is of some interest that the theory can still be
applied. 1In this connection it may also be noted that here the function

t ¢1Y1 -Y‘t cWw =Y.t

ct) =c, - [ yiv)yar = ¢, - (1 -e coswt) -
° o 0 1:1»»2 Y te

In a genuinely physical problcem as motivated above one would need to require
C(t) >0 (0 <t <=), as well as assumption (Y). However, in the application of the
theory the physical requirement C(t) > 0 (0 € t < ®) is not used and indeed, for

examnple,

T v
2% V2
e

) =c, - W !
2 ( 2 2
2 L] 2 L]
N"W*eT M *3

could be negative, even though C(®) = ¢_ =

> 0 holds.
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Existence and Asymntotic Behaviour of Positive Solutions

of Nonlinear Volterra Equation for Heat Flow

1. Introduction. 1In this chapter we discuss the positivity of solutions and their
asyoptotic behaviour as t ¢+ ®, of the nonlinear Volterra equation

) uf{t) + (b*Au)(t) s £(¢) (0 €t =)

in the general setting: b : [0,2) + R is a given kernel, A is a nonlinear (possibly
sultivalued) m-accretive operator defined on a real Banach space X, f : [0,%) + X is a
giv.oa function; the integral in (V) is understood in the sense of Bochner. The assumptions
vhich are imposed on b, A, £ are motivated by the problem of nonlinear heat flow in a

saterial with memory formulated in Chapter t to which the general positivity and asymptotic

theory developed in Section 3 will be applied in Section 4. A different application of

general theory is given in Example 3.4, Section 3, to a nonlinear conservation law with
memory.

This chapter which generalizes and complements earlier work of Clement and Nohel [18])
on .positivity and of Clement [17] on limiting behaviour of posit:l.vé solutions of (V) is
primarily based on a forthcoming paper by Clément and Nohel ([19]. The generalization
enables us to apply the theory to the physical problem in Section 4. General existence,
uniqueness and continuous dependence results for solutions of (V) which need not be
positive have becn established by Crandall and Nohel [26] and by Gripenberg [34) (see also
Theorems 3.5 and 3.7, Chapter 3); these will be referred to as needed.

V; will motivate the assumptions on the kernel b which are needed for positivity of
solutions of (V) and which will be needed throughout tﬁe analysis by means of a simple
linear problem at the end of this section. These considerations suggest the concept of
complete positivity of the kernel b (Definition 1.1 below) v.hleh plays an important role
in the analysis. Some properties agd & useful characterization of completely positive

kernels are obtained in Section 2.
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We shall consider equaticn (V) 1in the sliahtly less general form

(Vg) u{t) + (b*aud(t) 3 Y + (b*g)(t) (0 € ¢t < =),

We assume throughout the following mininal assumptions:

e L’ (0,=),

loc
(H1) A m-accretive in a real Banach space X ,
— 1
{ 3 : .
u0 e D{A), and g ¢ Lloc (0,*;X)

The motivation for taking f = uy + b*g in (V) is given in Section 3 (see argument at the
beginning of Section 3 following (Vg)). The main results of this chapter, described in
Section 3, give a rather complete description of the asymptotic behaviour of the positive
solutions of the abstract equation (V) as t + ®, including a priori estimates for their
rates cf decay. The results are then applied to the physical problem in Section 4.

The additional assumption we shall make on the kernel b in order to insure
positivity of solutions was first introduced in [18]; it is motivated by the following

remark. If b £ 1 then (Vg) reduces to the evolution equation

du

+
T Au 3 g

(DE)

u{0) = Uy
It is well-known [13] that if the resolvent JA = (I + XA)-1 of A maps a closed convex
cone P of X into itself for every A > 0, then u(t) ¢ P for all t > 0, provided
that u, € P and g{t) e P a.e. on (0,®), Let us take for instance

X = {u € cla,b) lu(a) = u(b) = 0}

equipped with the supremut norm; D(A) = {ue X | ue C2[a,b] and L € X} and
Au(x) = -uxx(x) for ue€ D(A), It is standard that A is m-accretive in X. Moreover,
if P = {ue Xlu(x) >0 xe (a,b]l}, then JAP C P for every A > 0; thus, as is
classical, the solution of the heat equation is nonnegative provided that the initial
value uq and the forcing form g are nonnegative.

We want to consider a class of kernels b under which the solution (V), resp. (Vg).

preserves this positivity property. This requirement is useful and natural in the

-7
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application to the model of heat flow in a material with memory discussed in Section <4, an!

in Example 3.4 of Section 3.
Consider (Vg) with Au = -u . with D(A) as in the above exarple. It is easy ‘o

give necessary conditions to be imposed on b in order that positivity is preserved by

(Vq) whenever Uy and a are positive., Let 1 denote the principal eigenvalue and "

the corresponding principal eigenfunction of A, normalized by max G(x) = 1, Clearly
xe€la,b)

D= ()% and a(x) = sin(=t )(x-a). If = ad, glt) = 18(t)d with a >0 a

= ‘b-a n uix sin b-a X . UO = au, g = u a P an

1

g{t) » 0 where B € LIOC(O,"), then, as can be verified directly, the strong solution of
(Vg) is
(1.1) u(t) = [as(Ab)(t) + (B*r(Ab))(t)lu (0t <),

where the functions s{b) and r(b):[0,®) + R are respectively solutions of the linear

Volterra equations

{s(b)) s(b)(t) + (b*s(b))(t) =1 (0 € t < =)
(r(b)) r{b)(t) + (b*r(b))(t) = b(t) (0 € t < =),
Recall the standard fact (see e.g. R. K. Miller [63)) that if b € L;oc(o,ﬂ), the .

1
functions s(b), r(b) are uniquely defined and s(b), r(b) € L (0,°). Moreover, if

loc
F € Lloc(o,w) the unigue solution of the linear Volterra equation 2
(1.2) u({t) + (b*u)(t) = F(¢t) (0 € t ¢ =)

is given by
(1.3) ult) = F(t) = (r(b)*F)(¢t) (0 € £t < =)

In particular, taking ¥ = 1 in (1.2), one has

t
(1.4) s(b){t) = 1 -~ [ r(b)(r)dr (0 <t ¢c=),
0

so that s(b) is absolutely continuous en [0,»®) whenever b € L;oc(o,w). The function

s(b) 1is called the fundamental solution of (l.2), while the function «r(b) is called the

resolvent kerne! associaced with b,




g ol i S g AN G A ——

Returning gp the solution (1.1) of (V) with Au= -u_, X >0, u, Uy, g defined
above, we note that wu(x) > 0 .tor x ¢ (a,b). Thus the solution u(t) will be
nonnegative for every a > 0 and for every 8 ¢ L;oc‘°"" 8 2 0, only if the functions
z{b), s(b) are nonnegative on {0,%). Moreover, if one imposes the requirement that the
solution (1.1) of (Vg) should be nonnegative and independent of the length of the
interval (a,b), it is clear that both Af thé_fu;ctions r(Ab) and s(Ab) wmust dbe
nonnegative for every A > 0. We remark that these latter necessary conditions irposed on
the kernel b have been shown to be sufficient to guarantee the preservation of positivity
by the solution operator of the nonlinear equation (V) in the general case of A m=
accretive on X (see [18, Theorem 4.5]).

'the'above considerations suggest the following concept of complete positivity of the
kernel b:

Definition 1.1 We shall say that the kernel b is completely positive on (0,T]

4f b e L1(0,T) and if the functions r(Ab) and s(Ab) = 1 « 1%r(Ab) are nonnegative
on [0,T] for everv 1 > O.

Some known suftlcignt conditions which insure the complete positivity of the kernel 1
d» on (0,T] are:

(1) >« L’(O.T) is nonnegative, nonincreasing, and log b is convex (see Miller
[62], Levin [52], Clement and Nohel [18]).

(11) (special case of (1)) b e 1(0,T) and b is completely monotonic on (0,T)

(see Miller [62]).

2. Completelv Positive Kernels. In this section we give an alternate and useful

characterization of completely positive kernels (Theorem 2.2) which will de needed for the
development of the asymptotic properties of positive solutions of the abstract Volterra
equation (V’)- Tor this purpose we consider the linear scalar Volterra equation (1.2) in
the form

(2.1) '-ov--u.ovg

«89-




vhere b e1'(0,T), uy ¢ R, ge L'(0,T), and T > 0. Its unique solution (see (1.3),

(1.4)) is given by
(2.2) S wlt) = u S(B)(E) + (x(B)*g) (L) O<e<T .

In the following proposition we list some elementary properties of completely positive

kernels which are needed in the sequel.

Proposition 2.1. Assume that b is completely positive on [0,T] for some T > 0. Then:

1) b is nonnegative on [0,T] and for every u > 0, s{ub) is nonnegative and

hnonincreasing on [0,T].

2) For every u > 0, r(ub) is itself completelvy positive on (0,T].

Mext, assume b is completelv vositive on [0,T] for every T > 0. Then:

3) If be L'[O,"), then for every u > 0

Ma s(ub)(t) = (1+u [ doan™',
| 2o ]
- A [_J
ST = [ Bman( + [ pman” .
£ (0, 0 0
4) If b4 l’.‘(o,'). then for every u > 0
) lin s(ub)(E) = 0 amd Ir(ubll - 1.

oo L 10,

S) it by L‘(O,O) and b e ac{0,=), then for every u > 0, r(ub) € c(0,») and
1im r(udbl)(t) =0 .

} 3 ond ' '
The proof of Proposition 2.1 is elementary and is omitted; for details see (19].
In the next result we give an alternate and useful characterization of completely

positive kernels b. Some arquments used are similar to those of {33).

Theorem 2.2. Let T> 0, b ¢L'(0,7), b § 0. Then b is completely positive on (0,T)

if and only if there exists a 20 and k ¢ x.'(o.'r) honnegative and nonincreasing

satistyingy
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(2.3) ab(t) ¢+ k*b(t) =1 t e [0,T] .
Remarks: (1) It follows from (2.3) that a > 0 4f and only 4f b e L (0,T). If this is
the case b = c“s(c-‘k) and thus b e x[o,7]. ‘Converscly if d e acf0,7), then
a= b(O)-' > 0. Moreover, observe that if a > 0, then Xk € BV{0,T) (equivalently
k(0%) < =) if and only if b' € BV[0,T]).

The importance of the remark a > 0, (ke BV{0,T]) 4is that for kernels b satisfying !
the assumption:
(n) b ¢ acf{0,T), B(0O) > 0 , b* e BV[0,T]
the existence and uniqueness of a generalized solution u € C((0,T]; D(A)) of the abstract
'ol'tcrn equation (V) has been established by Crandall and Nohel (Chapter 2, Theorem 3.5),
vhenever the operator A is m-accretive, and £(0) e D(A), £ ¢ w"‘(o.-r;x). For the ’
special case X -. H a real Hilbert space and A = 3y we refer to Chapter 2, Th?orem 3.10.
Recently Gripenberg [34, Theorem 2]» has extended this result to the case of kernels
b= b‘ + bz, where b, satigsfies the above regularity assumption and where b2 e ! (o,1),
by 1s positive, nonincreasing, and log b, is convex on (0,T) with A and f as above
(see Chapter 2, Theorem 3.7). This result with b' 20 and A 1linear was already
established by Clement and Nohel [18]. These more general completely positive kernels b

correspond to the case a = 0. The problem of existence of generalized solutions of (V)

with only the assumption that Db is completely positive is under study 2nd will be treated

elsevhere. .

(i1} It follows from Theorem 2.2 and Remark (i) that if b is completely positive, then

D need not be nonincreasing; it also need not be convex and a fortiori log convex. Choose
=1 and k(¢t) =1 for t € [0,1] and k(t) =0 for ¢t > 1l; then b = s(k) is
completely positive. But as shown in Levin (52}, b* - =r(k) 4is negative on some interval
(0,0) with @ ¢ (1,2) and positive in (a,2]. Thus b 4is not nonincreasing on

[0,2]. Moreover, assume b to be convex on [0,%). Then b. is strictly increasing for
t > a, and moreover, 1lim b(t) = ®, But this is impossible, since b(t) <1 as seen

Lt
from (2.3) and the fact that k,b are nonnegative and a = 1. Thus D 4is not convex.
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——

(111) It b is completely po's!._tlve and absolutely continuous on {0,T], then it follows
from (2.3) that b(t) < b(0) . for t ¢ (0,T].
LIO;(O,-). b is positive, decreasing, log
b 1is convex and b(o*) = o , then the linear Volterra equation of the first kind

(iv) It follows from Theorem 2.2 that if b

(2.4) k*b(t) = 1 .t>0

possesses a unique solution k € L;OC(O,-) which is nonnegative and nonincreasing. However,

given k ¢ L'[o,'rl, k nonnegative and nonincreasing, equation (2.4) may no! have a

solution in L1(0,T). (Take k(t)

1) Thus wvhen a = 0, equation (2.3) does not
provide a way to generate completely positive kernels which are not absolutely continuous
on [0,T].

We omit the quite technical proof of Theorem 2.2. It makes repeated use of th;

following result due to Levin [51;]. If u satisfies u + b*u=f with b e ! (0,T), b

.nonnegative and nonincreasing, f e r.'(o,'r), nonnegative, nondecreasing, then u is

nonnegative on [0,T). The proof of Theorem 2.2 may be found in [19]).

3. Qualitative proverties of abstract Volterra equations with completely positive

Rkernels. In this section we study some properties of ge;:eralized solutions, including

positivity and the asymptotic behaviour of positive solutions as t + =, of the nonlinear
sbstract Volterra equation
(v,) a4+ d*An 3n°¢b'g (t>0) .
Although our results are stated for generalized solutions, it is cobvious that the results
hold for strong solutions, whenever strong solutions are shown to be generalized solutions
(see Remark (i) following Theorem 3.1 below).

The justification for taking f = uy + btg in (V) is as follows. 1If Db satisfies

assumption (H) (Section 2, Remark (i) following Theorem 2.2), if f ¢ w"‘(o.r;x). and if

£(0) ¢ D(A), then there exists a unique u_ € D(A) and a unique g ¢ t.‘(o.-r:x) such

0
that '
3.%) £(¢t) = Y + (bdtg)(t) (0<ce<T) &
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Indeed, Yy = £(0) ¢ D(A) and g is the unique solution of the linear equation )

(3.2) b(O)g(t) + (b'*g)(t) = £°(t) (0 < ¢t <T) .
Conversely, if b satisfies assumption (H) and uoe D(A) , g € L‘(o,'r;x), then £ given

by {3.1) satisfies f£(0)e D(A), f ¢ w"‘(o,-r;x). " We shall make the following general

assumptions:
A is m-accretive in X
- u_€ D(A)
(H) ° 1
g€ Lloc {0,=;X)

b is completely positive on [0,®) .

The basic preliminary result assuming the global existence of solutions of (vg) under
assumption (H) is known:

Theorem 3.1. If A, u,, g 2nd b satisfy assumption (ﬁ) then:

(1) if u, and u, are the generalized solutions of (Vg) corresponding to the data

Yg,1° 950 1 =1,2, then the following estimate holds:

(3.3) lul(t) - uz(t)l < Iu -

0,1 = ¥,2" * (wg‘ - g(t) t>0 ae.
’

(2) 4if P 1s a closed convex cone in X, Aif JA(P) C P for every A > 0, and if
Uy ¢ P and g(t) € P a.e. on [0,%), then u(t) ¢ P a.e. on [0,%); moreover, if
v=ue¢P implies J’Av - un ¢ P for every A >0, u,ve X, and if uy,2 = uu'.1 e P,

g{t) - gy(t) e P a.e. on [(0,=), then u, i1=1,2, the corresponding generalized

Ssolutions of (Vg) satisfy u,(t) = u,(t) ¢ P, a.e. oOn {0,%).

Remarks: (1) The exister;ce of a generalized solution in the linear case under the
assumption b completely positive was proved in [18]. In the nonlinear case, when

b ¢ Ac(0,T], B(0) > 0 and B €BV(0,T], or when b e L'(0,7), b is positive,
nonincreasing and log b is convex on (0,T), the existence of generalized solutions of
(vg) follows from results Crandall and Nohel [26] and Grlpenb;tg (33), already discussed in
Chapter 2 and in Remark (i) following Theorem 2.2. Moreover, if more regularity is assumed
on b and £, then (see [26], [34]) the generalized solution is also a strong solution of

(V,) .
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{11) Estimate (3.3) was proved in (17).
(11{1) We sketch the proof of the positivity result asserted in (2)) the details appear in
Clement and Nohel [18]; the last assertion in (2) can be established in the same way.
Consider the approximating equation of (V g) resulting from replacing the operator A
by its Yosida approximation
A --'i X -3,0, 3, =(x- .
Wx’ v + b“x“x =y, + beg (0 St ¢m=) ,

equation (vx) is the same as

By the definition of AA

) 1
uy *+3 b'nA = uy ¢ betg + by b'JA“A .
Dsing (2.2) with g replaced by g + -;- JX“X' one easily checks that (vx) is equivalent to
the integral equation
(Vl) u =f "x(“x’ P
wvhere
t. - .(1 blu, + lr(-‘- b)*g
A A 0 A
and
- (3 b)*
. 'A(ul’(t) r(x b) Jl(“l) .
with
'x - “l - fx .
the integral equation (‘.’A’ is equivalent to the nonlinear equation
Let 0 ¢ T <% be arbitrary. By the complete positivity of b and by the hypothesis of
Theoream 3.1, part (2), !‘(t) €? a.e.on [0,T]. Noting that "A maps LY(0,T:X) into
itself aon’ recalling that the operator JA is a contraction (since A is m-accretive),
one proves (for details see [18) and {26)) that some iterate ""A‘ of wx is a strict
contraction on L'(0,T;X) for n sufficiently large. Thus the integral equation “-"x’ has

a unique solution “ e !.1 (0,T:X) given in

[ 4 L‘(o.?,*) -

n
v, = 1im W, (v.) for any v
A n‘.xo
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Therefore, the approximating equation (VA) has the unique solution 9 = fl + e But
‘l ¢P a.e.on [0,T], and if vo(t) € P a.c. on ([0,T)], the complete positivity of
_and the assumption J‘\(P) C P for every A )> 0 insure that wx(vo)(t) € P a.e. On
(0,T) and the same holds for H;‘(vo)(t.)- for every n. Consequently ux(t) € P a.,e. on
(0,T), and if u is a solution of (vg) on [0,T] such that u = weak :i: Uy in
L‘(O,T:X), then u(t) ¢ P a.e. on [0,T). Since T > 0 is arbitrary this completes a
sketch of the proof.

We next obtain some results concerning the asymptotic behaviour of solutions of (Vg)

as t * =, We first consider the case b ¢ t.‘ (0,=).

Theorem 3.2. Let A, Uy, 9 b, satisfy the general assumptions (;) with b $ 0 and

beri(o,=.

(1.) let g ¢ z.'(o,-;x) and assume there exists q. ¢ X such that

1lim 2g(t) - g.l = 0., Let u bec the aeneralized solution of (Vg) and define
0w —- -
u =J_(u) +bg), vhere b= [
b 0
*
implies strong convergence of u(t) to u as t + =, holds:

b(t)dt > 0. Then the following estimate, which

[ ptorar

(3.4) fult)~u § < &

- -
— luo-u 1 + (b*lg - g 1)(¢t) (0 <t <™ .
b .

(2.) In addition, let b € z.'(o,-) and 1lim b(t) = 0. Let g = g, + g;, where
tée
9 satisfies the assumptions of g in pvart 1, and where 9, € L‘(o,-;x) + z.’(o,-;x).

P ¢ (1,%). let u be the generalized solution of (Vq) ard let u- =-=J_ (\l° + —bg.;). Then

b
the followina estimate, which implies strong convergence of wu(t) to u®™ as t + =,

holds;
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- . - L
(3.5) ha(t) ~a < luo ~ul+ (b‘lq‘ - q‘l)(t)

b
+ (b‘lgzl)(t) (0 <t =),

wvhere g'; = lim g,(t).
[T

Remark. Part 2 is proved below. Part 1 of fheo;em 3.2 was proved in Cléement {17) and the
proof will be omitted; it uses ideas similar to the proof of part 2.

Next we consider the case where b ¢ x.‘(o.-) which is needed for the application in
Section 4. In order to establish the strong convergence of u to u. as t * = we shall
require that the nonlinear operator A in (V) satisfy a rather strong coercivity

condition.

Theorem 3.3. Let A, uy, 9, and b satisfy the ceneral assumptions (;l') with

by L' {0,*) and suppose A is coercive in the sense that there exists w > 0 for which

A =wl is accretive in X.

1. Let ¢ be in LT(0,X) and let g € X such that 1lim Ig(t) - g 1 = 0. Let
L 3 ond

u be the generalized solution of (vg) and let u. be the unigue element in X satisfying

M. ? q.. Then the following estimate which imolies strong convergence of wu(t) to n.

as t e+ =, holds;

[ )
r(wb)(t)dt Iu, - u §

(3.6) fufe) - u !t < [ )

t

s Nrwp)tlg - o) (0<cEcm .

2. In nddltion,‘let b be AC{0,~] and q-.g‘ + 9 where 9 9 satisfy the

assumptions of Theorem 3.2, part (2), with q: = lim q,(t). Let u be the aeneralized
(X

solution of (vg), and let u. be the unicue element in X satisfying Au. » q:. Then the

following estimate, which implies strong converaence of u(t) o 'y as t <+ =, holds

-
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fu(t) = u B € [ r(ub)(T)ar Juy ~ u'l
t
.7 + o rtumtig - gih(e)

+ w rnreng e

Remarks. (i) Since b is completely positive and b ¢ :.'(o.-), it follows (see
Proposition 2.1) that r(wd) € L‘(o,-), and iherefore, if the assumptions of part 1 hold,

(3.6) implies 1im fu(t) - u § = O.
(22
When b also satisfies b ¢ AC[0,®) it follows (see Proposition 2.1] that

r(wdb) € L‘(O.') N ¢c(o,»), and lim r(wb)(t) = 0. Therefore (3.7) implies
trm
1im fu(t) - ul= 0, 4if the assumptions of part 2 hold.
toe
(11) As is clear from the proofs, the assumption g€ t..(o,-;x) and there exists

g. such that 1lim 1g(t) - g.l = 0 4n part (1) of Theorem 3.2 can be weakened to
[ )
g L;“(O.':X) and there exists q. € X such that 1lim (b * 1g - g.l)(t) = 0. Similar
tre

generalizations can be made in Theorem 3.2, part (2), and in Theorem 3.3.

Proof of Theorems 3.2, part 2. As in the proof of Theorem 3.2, part (1) in (17], we first

prove the result with A replaced by AA' X > 0, and then we pass to the limit as
A¢0. For 1> 0, let Uy be the strong solution of the approximating equation

u + b'AA“x =u, + b*g (t € [0,=)) .

Using the definition of A, and applying (2.2) we see that u

a\ satisfies the equation

A

(3.8) = 27" B)e3n, + s 7By, + ArA ' byeg

" A
for te {0,%). Since &A is also m~accretive, there is a unique u: satisfying the

1imiting equation

——
o

: [_J - -
(3.9) u + ""x“x = v,

Using the fact that b ¢ !.1(0,-) and g = g, + g; we can rewrite (3.9) in the

- -
+b91o

-

equivalent form

.

[ _J [ J [_J . -«
€(3.10) LY + b.llul =y, + d*g + b'(g, - q‘) - b'gz - 8w, ,

wvhere
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£le) --£ b{s)ds and v.;- Ay ;- q

[_J

1.

et n : {0,2) * R Dbe the unique solution of the linear equation
ned bt

then obviously

- - -3 . - < -

Using (3.10), (3.11), (2.2) and the definition of AX we cobtain

3.12) | ': - ’u-‘b)'ﬁ“x + s(X! Blu, + ar(a"Tbyeg
+ arA" ) e(gr = g) + Ax(A"Tb)eg, - nwy
¥ tgy = 9 x g = vy .
Subtracting (3.12) from (3.8) we obtain

3.13 o 1 ¢ (e D)o 1un - u 1) (E) + A(r(A"Tb)elg. - g 1) (t)
(3.13) ux(t)-ua- (¢ ) uy = Uy ) (e) (x(A b) 9% g,)t

+ A Ibag 1) + Inlte) 13 .

It is shown in c1;ment [17] (see argument following (3.18) in [17]) that n > 0. Thus by

using the sacme arqument ag in [17] one gets (take convolution of (3.13) with l-‘b):

3.14 w i b, .1 -
(3.14) "L“’ - ull < E(t) wil + (belg, - g‘l)(t)

+ (0g,1)()  (0<t<cw) .
The conclusion (3.5) follcws by using (3.9) and rewriting

[ _J "
| bteras
‘"’""A.' -t

[ xs)as
°

l »
\Io - \lxl .

and then letting A ¢ 0. Note that

[ ] - =1 - - ' - =y - & -
% = (X ¢ dA) (u.*bqt)-lul (I‘O-blA )(noibbq‘)-:::ul.

Ad0
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Proof of Theorem 3.3. We first cstablish the results with A replaced by

A = ol ¢ 'X' A > 0, where 'l is the Yosida approximation of B, defined by

()
B = A~ al. Note that B {s m-accretive in X. Llet v be the strong solution of the

spproximating equation to (Vg) written in the form:

(3.15) - -1
ux#ub'ux'l*wbu Bxx Uy + wb*w g .

gince the kernel b ¢ L‘(o,-), we transform this equation into a form which has the
property that its new kernmel will be in L‘ (0,*) and completely positive. Indeed, if we
take the convolution of (3.15) by r(wb), subtract the result from (3.15), and use the
definition of r(udb) we get the approximating eguation equivalent to (3.15):

(3.16) + r(ub)*w By, = u_ + r(ub)*(w 'g - u,) -

A aa 0

From Proposition 2.1, r{(wb) is completely positive and r(uwb) e L‘(o,-), with
-

J rtob)(8)as = 1,

(]
To prove Theorem 3.3, part 1, we wish to apply Theorem 3.2, part 1, to (3.16). 1I1f

g satisfies the assumptions of Theorem 3.3, part 1, so does u-ig = uye Thus all

assunptions of Theorem 3.2, part 1 are satisfied with b replaced by r(wb), A replaced

and u by u,. We obtain (by (3.4)):

by ..1’l' g replaced by u-‘g -u o\

o'

(3.17) lux(t.)'- u:l < [ rteb)(z)dr tu - u;l + w le(ub)tig -~ g 1)(t) (D<t <,
t

vhere n: is the unique solution of the limiting equation
3. ) ‘A ] Bx‘lx = 0 9. »
wvhich exists because BA is m-accretive and w > 0. Note that (3.17) is the estimate

€(3.6) with u replaced by uy .

If g satisfies the assumptions of Theorem 3.3, part 2, and b ¢ AC[0,®], if follows
from Proposition 2.1. that r(wdb) e B'(O.') N ¢c(0,*). Thus with g = 9y *+ 93 we can apply
Theorem 3.2, part 2, to (3.16) and we obtain (from (3.5)) the ‘utmu:

fu,(t) = u t € [ r(eb)(r)aT Tu, = ud
(3.19) A A e o

. (»"‘rwb)'lg‘ = gie) (u-‘r(ub)'lgzﬂ(t) V<t em ,

-69-




vhere u, {is the unique solution of the limiting equation

A
(3.20) “; + ﬁl.‘nxu: - u-‘q.; .

Note that (3.19) is the estimate (3.7) with u replaced by uy.
Since B is maccretive 1lim u; = \x., where in the case of (3.18) u. satisfies the

i 40
1imiting equation

(3.21) v+ u.‘nu. ? u-‘g. .

or equivalently u. satisfies the limiting equation -

(3.22) PR g. .

Similary, in the case of (3.20) we find that u. satisfies the limiting equation

(3.23) M » g: .

It remains to prove that 1lim u, =nu in 1(0,T:X) for every T > 0, where u is
At0

9"
replaced by u thus obtaining (3.6) and (3.7). We know that

the generalized solution of (V Having done so it is immediate that the estimates

(3.17), (3.19) hold with u

A
, L d -~
1a [ fu,(t) - u(t)lat = 0, wvhere u, € 1! (0,e:X] satisties
A A loc
Ato o0
. o ~ - -
(3.2_‘4) u, + b Au, = uy ¢ b*g .

Introduce the notation & = A(t1 + Xu)-'. Since A = wl + B, one easily checks that
R o)l e By -

Thus the solution ;l of (3.24) satisfies the equation

(3.25) B, 4 BB T, = u, ¢ Be(g - w(l + M)-';x) .
or b’ (30‘5)3
(3.26) ug ¢ BOBu, = uy + B*(g - wug) .

To compaxe solutions of (3.25) and (3.26) we apply the inequality (3.3) of Theorem 3.1, and
we obtain (note that wugq = ugy = ug)
15, - ugd < ube(r + 2T, - ot ¢+ W0 e am e,

and hence also the estimate

(.27) 15, = ugd € WbeIg, - u,t ¢ Gn’b'lcxl . |
It follows from (3.27) that for every T > 0 .

«30- )
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(3.28) [ 15, - ughttrae < &bt o« (14 txg-umae ) [ 1, (ttae .
, 0 L (o,T) L {0, T) O
~ T
Since u, converges to u in L'(o.'rzx). we finally obtain 1lim f '“6 - ul(t)dt = 0,
A0 ©

which proves that the u, converges in 1} [0,T:X] to the generalized solution u of
(vg) for every T > 0. This completes the proof of Theorem 3.3.

Example 3.4. A Conservation Law with Memorv. As an illustration of Theorems 3.1 and 3.2

we consider the existence and qualitative properties of positive solution of the problem

<
te) ult,x) + [ b(t-s)¢(uls,x)) ds = u (x) (t?20, xeR) .
]

We assume that ¢ € c' (R) 43 a given function. If b = 1 problem (c) is equivalent to
the nonlinear conservation law in one space dimension:

v, + 0(\;)x =0, u(0,x) = uo(x) (x e R) .
Although no particular physical significance is claimed for (¢), it evidently contains the

usval conservation law as a :pec!al case. The latter has been studied extensively from
special points of view. Crandall {24] has shown that if ¢:R+ R 4s a given smooth
strictly increasing function (actually ¢ continuous is sufficient) such that ¢(0) = 0,
then the operator A defined by Au = ““)x on the Banach space X = t.' (R), with
I o(A) = (u ¢ L' (R):g(u) ¢ LT (R} (see (24, Definition 1.1 and Theorem 1.11), is m-
accretive on X, and D(A) = X. Moreover,. one has: Ja(o) =0 and Jyu <€ v (A > 0),
wvhenever u < v, u, v ¢ L"(l). )
In (c) assume that b ¢ :.;oc(o.-) » D% 0 completely positive on [0,%), and
L ¢ D(A); to be specific take b nonnegative, nonincreasing and log b convex on
(0,*), D% 0. Then by Gripenberg's result (34), see Theorem 3.7, Chapter 2, and Remark
(1) following Theorem 2.2, and by Theoream 3.1, problea (¢) has a unique generalized
solution u; u is nonnegative vhenever u, is nonnegative, and U, > v, vhenever

." > noz. If, 4in asddition, b e :.'(o.-). then this generalized solution u converges

D —— oy -




strongly in LY (R) as t * & to the element u_, € D(A) which is the unique solution of

the limit equation

-
u (x) + ({ ble)de) $lu (x))_ = u,(x) (x ¢ R) 3
. e .
u, exists and is uniquely defined since f b(t)dt > 0 and A is m-accretive. q
0

4. Mpplication to Nonlinear Heat Flow in a Material with Memorv. In this section we apply

the theory developed in Sections 2 and 3 of this chapter to discuss the global existence,

uniqueness, positivity, and decay of positive solutions of the nonlinear heat flow problem

formulated in Chapter 1, Section 2. This problem was discussed from a different point of

view in Chapter 3, Section 4. 1In Chapter 3, Section 4, boundedness and decay results were

obtained without consideration of the positivity of the data. Here the principal concern

is the existence and decay of positive golutions when the data are positive.

Referring to Chapter 1, Section 2, we again study the heat flow 1n£tial-hounduy value

problen (see (1.4) Chapter 1, also (4.1) Chapter 3):

5 by stex) + (Brud(tm] = ¢ oty (tx))_ = (Yol ) )(t.x)

+ h(t,x) (0 <Ct<», 0<¢x<1)

(¢.1) b ult,0) = u(t,l) = 0 (¢t > 0)

u(0,x) = uotg) 0 ¢<x<l)

l . As before we assume that the constants by, co are p;:sitivc. that 8, v ¢ !-'(0 ),

-t that

[_J
+ [ steree >0
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We also assume that the function 0 : R+ R satisfies assumptions (0) of Lemma 1.3,

m;;ter 1, and that the external heat supply satisfies (at least) the assumption

he Lioc(o,°;L2(0,1)). Defining the functions

i ¢t

' o) cle) =c, - | v(nar O<tcew ,

; 0

{

, . .

! G) G(t,x) = by uy(x) + [ ntr,x)ac (0<tce, 0<x<1),
0

P dotie o a e

the heat flow pr;blem (4.1) is equivalent to (see Chapter 1, Section 2) the abstract
Volterra equation

vy a+Bfu+CAu=G (0D<tce, 0<cx<l);

here we have taken the constant bo as 1 without loss of generality. The nonlinear
operator A = 3y, defined in lemma 1.3, Chapter 1, satisfies the properties established in
Lemma 1.3, Chapter 1, provided o satisfies assumptions (o), and if u, € u;(o,l), then

G(0,x) = uo(x) € H;{O,l) = D(¢¥). We note also that in the case of more than one space
dimension, the relevant heat flow problem formulated in Chapter 1, Section 2 is equivalent

to the Volterra equation (v,) with the nonlinear operator A defined in Remark 1.4,

Chapter 1; the theory developed below applies equally well to this case.

The Volterra equation (V4) may be written in the standard form (Vq) of Section 3 adove

;- by defining the resolvent kernel r(8) of £ to be the unique solution of the linear
T equation:
| tx(8)) T(8) + Ber(8) = B W<t cm),

clearly, if B ¢ x.'(o.-). then rx(8) ¢ !.loc(o.-) (at least). Next, define
b [0,) 2R Dy
) : Y b=cC-x(f)ec,

vhere C 4s the function defined in (C). Then the variation of constants formula shows

«73=




that (V,) is equivalent to the Volterra equa-uon
u+ b*au=C - r(B)*c (0 €t <=,
taking by = ¥ in (G) one sees that (V4), as well as the heat flow problem (d.1), is
equivalent to the Volterra equation .
(4.2) u + b*Au = Y ¢ 1*(h - r(8)*h -~ uor(B)) (0 €t e .
The result of applylinq the theory of Section 3 on positivity and decay of solutions of
(Vg) to the heat flow problem {(4.1) is:

Theorem 4.1. Let B8 be bounded, nonnegative, nonincreasing and convex on [0,=). let

Y Dbe nonnegative, nonincreasing, log convex and bounded on [0,®). Let assumption (Y}

hold, and let
(4.3) o) + X% o) <0 ace. for te [0, .
© %o

let the assumption (g) be satisfied, and let A = 3¢ where ¢ is defined in Lemma 1.3,

Chapter 1.
1. Xf u, € thd,l) and if the forcing function h e Lioc([o,-) x [0,1)), then the

nonlinear Volterra eguation (4.2) (equivalent to the hcat flow problem (4.1)) possesses a

onique strong solution u on {0,®), such that ¢t u' e Lioc(o,-:bz(o,l))l iz '

u, € BO(0,1), then ule 1l (o,en%(0, 1.

2, 1f the data u, and h satisfy uy 1(:) < uy 2(:) a.e. on (0,1] and if
L[4 L}

h‘(t.x) < hz(t.x) a.e. on [0,#) x [0,1]; then the corresponding strong solutions vy T

(4 = 1,2) satisfy u‘(t,x) < uz(t,x) a.e. [0,*) x [0,%]; in particular, if uo(x) >0

and h(t,x) > 0 a.e. on (0,1] and (0,=) x {0,1) respectively, then u(t,x) > 0 a.e.
on (0,®) x {o,1].

3. If, in addition, 8 € x.'(o,-), and if h = h" + hz, where h_ € r.'(o,-:x.’(o.n)

1
-
and there exists h. € L°(0,1) such that 1im h_(t) = ny = 0 , and where
———————————— T goe 1 1 sz ) —
. i
hz ¢ l.!’(l)."':r.2 (0,1)) for some p > 1, then the strong solution u of (4.2]) converges

strengly in 2.2(0.1) A8 t*+® to the element u- ¢ r.’(o,m u. is the unique sclution
of the 1limit equation An. - g:, where
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L]
- b | y= ®) = - .
% "2, (v + -I-c(_)), ¥ { v(t)ar, (=) = ¢, { Y(t)at > 0

In particular, if h‘

Befo;'e giving the proof of Theorem 4.1 we state a lemma which establishes some

-
= 0, then u =0,

properties of the kernel b defined by (b).

Lemna 4.2, Let 8, Y, C satisfy the assumptions of Theorem 4.1. Then b defined by (b)

is completely positive on (0,2), b satisfies the assumption (H) (Remark (i) following

Theorem 2.2), and a,k associated with b in Theorem 2.2 satisfv a = c;1 >0 and

ke 1V (0,%) with

1 1 - - 2
(4.4) { k(t)at o e Y1 +8) + 8,
where B = f g(t)ae, ? = f y(t)dt. Moreover, b f L (0,») and b'e L (0,%®).

0 . 0
Procf. Since the functions B and C € Aclocto,-) it follows that the functions r(8)

and b ¢ Acloclo,") {se2 éefinitions (r(8)) and (b) respectively). Note that

.b(O) =C > 0. Define a = b(0 ).‘l and let k be the solution of the linear Vclterra

0
" equation
. b*
(x) Blo)y + B'*y = o (0 < £ < - .

1 1
Since D' ¢ Lloc[o,'-), k e “1oc‘°"" and since

a bi(t)
T (BTRIE) = DIOIK(E) + (B'*KI(E) = = Frgy= .

one has by integration that k satisfies the iinear Volterra equation
(4.5) ab(t) + (k*b)(t) = 1 (0SSt ¢m)

In order to show that Db is completely positive it suffices, by Theorem 2.2, to show
that k is nonnegative, nonincreasing and bounded on [0,®). We first observe that the
assumptions made on Y 1imply that C, ~C* are convel anéd log (=C') 1is convex on

(0,=). This in turn implies that log C is coavex on (0,~), see G. Gripenberg ([33].
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Since C s nonncgative, nonincreasing and belongs to L;w(o,-), C 1s completely

positive on [0,%). Moreover C also satisfies assumption (K) (see Remark (i) following

Theorem 2.2). It follows from Theorem 2.2 that there exists °c > 0, and

1

1m:(o.--), nonnegative, nonincreasing and bounded satisfying

k €L
<

(4.6) 8 Ct) + (k_sC)(t) = 1 O<tce) .

Rote that a = c;‘ - b.1(0) = a . From the definitions of b 4in (b), of r(B), and from
€(1.2) and (1.3) (see Section 1, Chapter 4) it follows that
4.7) C(t) = b(t) + (B*b)(t) (0<tcw) .
Substituting (4.7) into (4.6) yields
ad + "‘c + af + kc's)'b =1,
and thus (4.5) implies that
(4.8) k(t) = kc(t) + af(t) + (kc'ﬁ)(t) (0 <t <™ .
Since kc ¢ BV(0,®) we have
4 t
a—— - . - Y- TS
3c 108 ¢ k_*B1(t) = aB'(t) + k_(0)8(t) + ({ Blt = D)k (1) a.e
on f{0,#). Hypothesis (4.3) and the identity (4.6) imply that

aB(t) + kc(o)ﬂ(t) = :—- [8*(t) + I%ﬂ 8(t)) < 0. Moreover, since k., is nonincreasing
’ 0 0

and 8 1is nonnegative

N .
I Blt - TI&k () € 0 (0<tcm) ,
0
Thus %k is nonnegative and nonincreasing on [0,®). Therefore, one also has k ¢ BV!0,™)

1€ X €L (0,1]. But k. and B are bounded and 8¢ 1'(0,1) imply ke L [0,1] (note

that here the assumption 8 € !.‘ (0,2) is not needed). Uslng' Theorem 2.2 again it follows

that b is completely positive and satisfies assumption (H).




We next establish that b ¢ L'(0,%). Since €= -y ¢ t'(0,»), ana
li: c(t) = C(=) = o = {. Y(s)ds > 0, it follows that C ¢ L‘(O;')- If be L‘(O.‘). it
v:uld follow from (4.7) and the assumption 8¢ L'(0,=) that C e L'(0,=), a
coptradlctlon. Thus b ¢ L‘(O,‘).
We next prove that b’ e L‘(O,ﬁ). Indeed, from (b) it follows that
bU(t) = C'(t) - C(O)r(B)(t) = (r(B)*tc*)(t) .
But C' = -y ¢ L‘(O.‘)I moreover, x(8) € L'(o,-), -since B 1is nonnegative,
nonincreasing, convex and 8 € L‘(O.') (use the Paley-Wiener theorem and the fact that 8
is positive definite),
- Finally, we show that k ¢ L‘(O,-). From {4.8) and the fact that @ € L‘(o,-). it is

sufficient to prove kc € L‘(O,-). From (4.6) and the fact that C is positive,

nonincreasing, C(«) > 0 and k is nonnegative, we have
t
c(=) [ k (t)ar < c*x_ < 1 (0<tcm),
o © c

which proves that kc € L‘(o,-). Formula (4.4) follows easily from (4.8) and the

differentiated form of (4.6). This completes the proof of Lemma 4.2.

n ~8. t
Remark. In Lemma 4.2, if B(t) = ] be * with b >0 and 0 ¢ 8 <8, «eo <8,
k=1
then condition (4.3) i{s satisfied if 81 > YLO, holds. Indeed, since log 8 is convex
0

and nonincreasing, it suffices to require

B (t)  _YtO)

1im
Lo 8(t) <o

Proof of Theorem 4.1. We bdegin with the proof of the existence and uniqueness of

strong solutions of the Volterra equation (4.2). Defining £: (0,~) x 32(0,1) > nz(o.1)
by

(4.9) £= v, + 1°(h - x(B)*h - v r(8))
we have
(4.10) £ e« h = z(B8)*h - uor(s) (0€e ¢, 0<¢Cx<¢Cl) .

It follows from Lemma 4.2 that the kernel b satisfies the assumption
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n) . b(0) > 0, b ¢ ,Clocm'.)‘ b e Bvlocto.-) .
and that £ ¢ w;;:(o;-.-z.ztu,s)) whenever h ¢ Lioc((o,ﬂl x {0,1)). Since under i
assumptions (0), A= 3¢, where ¢ 4is defined in Lemma 1.3, Chapter 1, the existence and
uniqueness of strong solutions u with the properties asserted in conclusion 1 of Theorem
4.1 follows from the result of Crandall and Nohel (26, Theorem 4 and Theorems 3.5 and 3.10,
Chapter 2].

We next establish the asymptotic results assettefl in Theorem 4.1. Since
r(B) € L’(O.") (proved in the demonstration of Lerma 4.2), and since h = hy + hy one
has from (4.10) that

£' = (hy - r(B)*h,) + (h, - z(8)*h,) ~ r(B)u, (0t <0,0<x<11),

where b - r(6)*h e L7(0,%£%(0,1)), and

ln (hy - x(8)*h,)(t) = (1 = [ r(B)(x)dTIh] = s(BI(=)h] = (1 + B) '] ,

o 0 !
moreover,
(h, = £(B)*h, - r(Buy) € 1'0,=2%¢0,1)) + LPt0, =iz %(0, 1)) ,
with 1 <p<w,

By using (4.10), the fact that the kernel b defined by (b) 1s by Lemma 4.2 ﬂ
completely positive, and Theorem 2.2, we can write the Volterra equation (4.2) in the |
equivalent form
(4.11) u 4+ b*Au = u. + b*(af' + k*£*) (0 €t cw)

0
To arrive at (4.11) we use the relation ab+ k * b = 1 in the right hand side of (4.9)

and recombine terms making use of (4.10). 'i‘hus (4.11) is in the basic form (Vg) of Section

3 with
(4.12) g = af' + k*f? (0 €t ¢w)

Prom Lemma 4.2 k ¢ x.'(o,-). ind g= g, ¢ gy, where (using 'h = hy ¢+ hz in (4.10))

(4.13) 9, " clh1 - r(B)'h‘) + k’(h, - r(B)'h,) (0 <t e},
t(e.14) L 92" + 92,2 (0 € ¢t ¢=) -
olith
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9,10 " ~au r(8) - ar(8)*h, + k*(h, - r(B)*h, - u r(B), g,, = ah, .

Clearly 9 ¢ L'(O."';Lz(o,l)) and 9yp ¢ Lp(o,-';!.zto,l)). From Lemma 4.2 one has that
b is completely positive on (0,=), b ¢ L‘(O,‘), and Db' e L‘(O,-). Thus all assumptions

of Theorem 3.3, part 2, are satisfied. We conclude that estimate (3.7) of Theorem 3.3,

Section 3, holds, and therefore 1lim fu(t) - u.l = 0, where u. - A-1
Lo

in the statement of Theorem 4.1; note that to evaluate g: use is made of (4.4) and of

- -
9, with 9, given

Proposition 2.1.

Finally, we establish the "comparison” result asserted in Theorem 4.1, part 2. Let
Pe=f{ue L?(0,1) :u>0}; P is a closed convex cone in 1L2(0,1) and v =-u € P 4f and
: onl} if u € v. Moreover, it is standard that if u < v then un < Jiv for every

A > 0, where Jx = (I + XA)—I. We shall prove the result for solutions of the Volterra

-

equation (V,) which is equivalent to (4.2). As usual we shall prove the result for
solutions of the approximating equation (v'x) of (V1) in which A is replaced by the
i Yosida approximation A,, A > 0, and then obtain the result by letting A + 0.
2 1
Let Y,4 €L (0,1), hy e L(0,1), & = 1,2, satisfy LI < Yy and hl(t) < hz(t)
a.e. on [0,T]; let u oy be the strong solutions of the approximating equation
’

=2 Tew + 1%h

-1
* &y
Vi) U1 BTy, v Chyy A%,i Y Yo,i i

| . (4= 1,2; A>0; 0<¢t<T) & _ }

{ It follows by an elementary calculation (which uses the definitions of b, t(X-‘b), and
the relation C = b + 8%d) that
(4.15) ‘A,i

vhere ‘X g are solutions of the linear vélterra equation
’

- r(x"b)-axux RN (L =1,2; A>0),
[ . .

-1
(4.16) ‘x.x + B'fl" + 2 c'fx,x =y, ¢ 1-h1 (4 = 1,2) ,
| Hence by a familiar calculation one has
i -1 -1 . -
. . ’A.L - uo"-m +12 C)+ h"s(ﬂ +1 € (1 =1,2),

and froom (4.15), (4.1€) the difference U2 T W satisfies the Volterra equation
[ [




L
4,1 = DG, o - e, )

(4.17) Y2.2

-1 -1 '
+ (v ug, ()88 + ATC) + (hy = hyes(8 ¢ 2T C) . .

6,2 ~

P

Since B + X-‘c is positive, nonincreasing, it follows from Levin's result (sece Section 2)

that (8 + A~'c)(t) > 0. Thus

= -1
z = (“0,2 - u°'1) s(B+A C) + (h2 - h‘)'s(B +212 ©C)

satisfies zA(t) 20 a.e. on ([0,%).

A
: -1
: (4.18) 'l = y(A b)'(:"x(\lx + \!x'1 + zx) - Jx(“x")) -

Next, define v = u -u - z,3 using (4.17) we have that v, satisfies 1
A,2 A A A

As in (18] (see also Remark (iii) following the statement of Theorem 3.1, Section 3,

Chapter 4) one shows that v.rA = linm v , where
nte A,

A e

-1
(4.19) = () .b)'(ax(vx‘n + “A,i + zx) - J’x(ul,‘))

2.+l

wvhere a1 e L'(o,-r;x."’(o,n) is arbitrary. Choosing vy 1(t) ¢ep a.e. on (0,T],
e [

T > 0 ardbitrary, one shows easily that vx'n(t) ¢eP a.e. on [0,T}] for all positive
nieqers ne This also uses the fact that «rf l"b) 2 0, that "1 is an increasing map
with respect to the ordering <, and that 'l(t) € P a.e. on (0,T). Thus v‘(t) ¢ P
a.e. on (0,T], and for A > 0:

(4.20) (¢) - “x,1(" = xx(t) + vx(t) 0 a.e.on (O, 7] .

™.2
Since T > 0 is arditrary, (4.20) holds on (0,®), and the conclusion follows dy letting

A ¢+ 0. This completes the proof of Theorem 4.l.




Appendix

Proof of Lemma 2.2: (a) Consider the resolvent equation (k) of B'. Since

B' ¢ x.'(o,-), the Paley-Wiener theorem (69] yields that Xk ¢ L‘ (0,») 4f and only if

Plz) = B(O) + B'(z) = b_ + zB(z) # O (Re £ 3 0) .
With z = x + iy
ner(z)-b,+xn;§(z)-§xm;(z) (x> 0)
Im P(2) = x Im ;(z) +y Re ;(z) (x >0) .

Since P(z) 1is analytic in Re z > 0 and continuvous in Re z > 0, Re P(z) and Im
P(z) are harmonic for x » 0. Hence by the maximum principle for harmonic functioms,
P(z) 20 for x > 0 if either Re P(iy) = b_-y Im ;(ly). or Im P(iy) = y Re ;(1y)
are different fram zero for == < y < ®», But by the frequency domain conc}.ltion (F)
Re P(iy) >0 for == ¢y <®, and thus ke L'(0,).
() since B' € 1L'(0,# N1%(0,#) and ke L'(0,), one has
B'* ®* k= Xk * B'eE L’(o,-), and the result k € L’(o,-) follows by inspection of equaticn
(k). If also B" ¢ L‘(O,'). then B' € C[{0,%) (30 that |B'(0)} < ») and we may

differentiate (k) to obtain

B (¢)

B(0) weeco,

) B(O)Kk*(t) + B'(0)k(t) + (B"*k)(t) = -
and clearly k' e x.' (0,»).

{(c) If, as is the case here k'e x.' (0,»), the energy inequality in (c) is lerived 3

) by the following simple argument (see the method of {67, Theorem 1]). Extend k' evenly
; for ¢t < 0, and let
' w(t) if ¢t e [0,T)
v‘,(t) -
0 othervise .
|
Then
i
L)
4
’ ]
Iy
4 81~
.
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T e e

T T . T
[ wtv) %; (kew)(t)dt = k(0) [ w (t)dt + [ wit)(k**w)(t)at

0 0 )
T, . T .
= xt0) [ vitviae + 2 [ wie) [ k'(t - T)w(T)drde
0 0 0

- ’ [ ] -
2 1
= k(0) w (t)dt + = w {t) k'(t = T)w_(T)drdt .
[ % 2L ww ] ®

int

- -«
Letting vp(n) =f e

w,r(t)d:, (n ¢ R), the Parseval and convolution theorems give
-l

T - ad -
a k(0) - 2 1 y 2
°I we) G ewiniae = 0w miTen + oo )_'. lwg (1K’ (n)an .

. . ) .
But k°(n) = 2Re k'(in), where *“ is the Laplace transform, and

Re k'(in) = Re[ink(in) - k(0)). Therefore,

, - - - :
a - 2
{ v(t) go (k*w)(t)ae = o= I lwg (7)) | “Re[ink(4in)lan . .

¥ow an easyAcalculation from equation (k) yields

Relink(in)] = Re =—V— = Re B(in)
b(in)

2
-~ R b,
(re 3(in))° + (1m B4 - 7)

- n’ne B(in)
“n?(re B(1n)? + (1m B(amIn - B )2

20 (=cncw),

where the last inequality follows from the assumption that B is a kernel of positive type
; on (0,%) (which is equivalent to Re B{in) > 0 (67, Tha. 2); note that it is imposszible to

bound Refink(in)] avay from gzero, even if B is strongly positive on (0,%)).




——

(4) Multiply equation (k) by ’t:

/t B (¢)
b(0)

An elementary calculation involving YE(B'*k) shows that /t x satisfies

BIOIE k(t) + /€ (B'*k)(¢) = = W<t co .

' t t
BOME k(t) + [ B'(t - T)/T X(t)dtr = - -&—b%-‘-?- - [ tft£ - OBt - Dx(nar
) : [)

(0<Ct =) .

Since "t - /T </t -t for 0< t<t, and since also vt B' ¢ x.'(o,-) by assumption
and Xk ¢ L‘ (0,=) by (a), the integral on the right side of the last equation defines a
function 1n‘ L' (0,=). Then vt k ¢ x.’(o,-) by the argqument of part (a). The additional
assumptions and elementary estimates also yield 7t k e L2(0,=).

Finally, differentiating the equation (k) as in part (b), multiplying the resulting
equation by /t, and using elementary estimates yiel_.ds 7t ke :.'(o,-). This corpletes

the proof of Lemma 2.2.
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