PROPAGATING WAVES AND TARGET PATTERNS IN CHEMICAL SYSTEMS. (U)
MAY 80 P C FIFE, J TYSON
MRC-TSR-2074
MRC Technical Summary Report #2074

PROPAGATING WAVES AND TARGET PATTERNS
IN CHEMICAL SYSTEMS

Paul C. Fife and John Tyson

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

May 1980

Received December 14, 1979

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D. C. 20550
A class of models for target patterns (concentric circular waves emanating from a point called the leading center) is constructed in the context of singularly perturbed reaction-diffusion systems of partial differential equations. First, the theory of wave fronts is detailed for scalar equations and systems of equations. A scaling method reduces complex waves to the consideration of a group of simple wave phenomena. It is shown that expanding wave fronts can be generated spontaneously at a point. This process, together with the laws of their subsequent motion, reduces the problem to an ordinary differential initial value problem, whose solution is required to have certain properties. A discussion is given of the connection between these results and experimental observations.

AMS(MOS) Subject Classification: 35K55, 80A20, 35B25

Key words: Reaction, Diffusion, Chemical waves, Wave front, Pattern formation, Singular perturbations

Work Unit No. 2 - Physical Mathematics

*This is a revised and expanded version of a paper presented by Fife at a conference with proceedings published as Dynamics of Synergetic Systems, H. Haken, ed, Springer-Verl (1980).

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and DAAG29-80-C-0041 and National Science Foundation Grant No. MCS79-04443.
Propagating chemical waves, particularly those emanating from a "leading center" or those forming a spiral, may be seen in laboratory reagents involving the Belousov-Zhabotinskii reaction. Chemical and physico-chemical waves also occur in biological media. Typically, these phenomena exhibit multiple natural time and space scales. The mathematical treatment of these waves consists in setting up an appropriate model for them, and then analyzing it. A natural type of model in the present situation involves a system of partial differential equations of reaction-diffusion type; small parameters may be put into the system to effectuate the multiple scales. This paper explains the basic steps in modeling chemical waves this way, and applies them to the case of target patterns (concentric circular waves emanating from a point). The models constructed here reflect the known qualitative kinetics of the R7 reaction. The techniques are expected to be of value in reaction-diffusion-convection problems as well.
PROPAGATING WAVES AND TARGET PATTERNS IN CHEMICAL SYSTEMS

Paul C. Fife and John Tyson

1. Introduction.

The discovery of propagating waves of various types in chemical reagents has provided a great deal of research, during the last ten years, into the phenomenology and the underlying mechanisms for such wavelike activity. The research has been performed by natural scientists and mathematicians alike. Most of it has been experimental, but much computer simulation and mathematical analysis has also been done. Chemical wave activity is believed to be prevalent in biological organisms, but the most readily accessible reagent for laboratory study is that discovered by Belousov and Zhabotinsky (the Z-reagent). This mixture has oscillatory or excitable kinetics, depending on the concentrations of the various chemicals in the solution. Both of these regimes have at least two natural time scales: During one period of an oscillation or during one excited "excursion", most of the variation in the concentration of the reactants occurs within a brief interval of time. The time scale associated with this brief spurt of activity is much shorter than that associated with the slow variation which occurs before and after. This is well known from experiment and computation, and is evident from scaling analyses of model kinetic equations performed in [1] and elsewhere. Spatial structures are also prevalent in unstirred layers of this reagent ([23]; [2], [21], [24], and references therein). Target patterns (expanding concentric circular waves) are among the most prevalent of these structures. Here again, disparate space and time scales are evident from computer simulation of propagating waves [3].

*This is a revised and expanded version of a paper presented by Fife at a conference with proceedings published as Dynamics of Synergetic Systems, H. Haken, ed., Springer-Verlag (1980).

Sponsored by the United States Army under Contract Nos. FANG2-75-C-0001 and FANG2-80-C-0041 and National Science Foundation Grant No. NSF-82-04111.
It is natural, therefore, to use multiple scaling techniques when attempting to reduce
wave and pattern phenomena to mathematical analysis. The study of propagation phenomena in
excitable media such as biological membranes has led to insights from the approach described in
general reaction-diffusion settings, these methods were extended to more detail in
[19,18,28]. Nonetheless, their full implications have yet to be developed. In
particular, their use in analyzing target patterns has been neglected. The purpose of the
present paper is to explain some basic principles in the analysis of wave fronts by scaling
techniques, and to discuss the application of these principles to the task of modeling
target patterns.

We begin with a brief account, in Section 2, of the fundamental theory of wave fronts
for scalar nonlinear diffusion equations, as these are the component parts of the more
complex wave phenomena to be examined in later sections. A scaling method to remove the
study of more complex propagation fronts to that of scalar fronts is elaborated in Section
3. In 1974, Winfree [39] suggested that at least two broad categories of dynamical wave
exist: phase and trigger waves (see also [41]). We can see such a distinction more clearly
in the context of wave fronts associated with relaxation oscillatory, for wave activated
reactions: this distinction is explained and discussed at some length in Section 4.

Besides treating the existence and properties of chemical structures, one may wish to
insure how they might arise in a reaction in the first place. Two such reactions are
detailed in Section 5. Section 6 takes on the problem of modeling target patterns. It is
found that the theory of target patterns may be developed in the general setting, in more
useful form. These patterns are often of the type known as spiral waves, at
least some of which have been associated with target patterns. It should be clear, the
idea is conceptually almost the same as scalar diffusion and when a reaction
occurs: in fact,

\[\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - u + m(u) \]

is the equation of a reaction-diffusion system, and the target waves arise in
such a system in the same way as spiral waves arise in the relaxation oscillator.
Although patterns in the Z-reagent are the motivation for this work, specifics of the Z-reagent chemistry are not touched upon here. We have made a detailed study in [27] of the patterned solutions of a system of equations which realistically models the chemistry of that reagent.

Other writers ([12,13], and especially Kopell and Howard [14]) have studied target patterns within the context of \(\lambda-w\) systems. An approach via Pade approximants is in [25]. These approaches are entirely different from that discussed here. The reader interested in the Z-reagent can profit from the books by Zahotinskii [15] and by Tyson [16]. Some of the material in this paper was presented from a different point of view, and in more mathematical detail, in [17]. Some of the results announced here represent joint work with R. Smock. We wish to thank M. Marek for bringing to our attention papers [4] and [7].
Here we review some basic facts about wave front solutions $u = u(x-ct)$ of scalar nonlinear diffusion equations

$$u_t = u_{xx} + f(u)$$

where f has two zeros: $f(u_1) = f(u_2) = 0$. Under fairly general circumstances, there exist fronts satisfying

$$U(-\infty) = U_1, \ U(\infty) = U_2.$$ (2)

Two important cases arise in applications:

(a) \(f'(u_1) < 0, \ f'(u_2) < 0,\) and \(f\) has only one intermediate zero between \(u_1\) and \(u_2\).

(b) \(f(u) \neq 0\) for \(u\) in the interval between \(u_1\) and \(u_2\).

In case (a), there exists a unique velocity \(c\) and a profile \(U(z)\), unique up to shifts in \(z\), satisfying (2), such that \(U(x-ct)\) satisfies (1) [18]. This front is very stable: if it is perturbed by any bounded function whose bound does not surpass a certain known constant, then the resulting solution of (1) evolves, as \(t \to \infty\), back to the same front (possibly shifted by a certain amount) [19].

In case (b), on the other hand, there exists a whole range of possible front velocities [20]. For example, suppose \(f > 0\) and \(u_1 > u_2\). Then there is a positive minimal speed \(c^*\) such that for any value \(c\), \(c^* < c < \infty\), there exists a unique (except for shifts) wave front solution \(U(z)\), satisfying (2). These fronts are stable to small perturbations which are zero except in a finite interval, but they are certainly not stable to the same extent as those of type (a).

In any case, the front travels in such a direction that for each \(x\),

$$u(x,t) = U(x-ct)$$

approaches the "constant state" \(u = u_1\) for \(x < ct\), \(u = u_2\) for \(x > ct\), \(u = u_2\) for \(x < ct\), \(u = u_1\) for \(x > ct\), as \(t \to \infty\). If this interval equals zero, then \(c = 0\) and the front is stationary.
3. Decoupling and free boundary problems.

In typical singular perturbation problems, a complex system may be reduced to several simpler ones by rescaling and exploiting the smallness of some parameter. The simpler problems may govern the solution in different parts of its domain of definition; thus there may be boundary layers versus regions of relatively slow variation.

Analogous situations arise in reaction-diffusion problems [9,10]. To illustrate this, we consider a system of \(n = n_1 + n_2 \) reacting and diffusing components, \(n_1 \) of them "fast" and the others not fast. Let \(u = (u_1, \ldots, u_n) \) be the vector of fast components, and \(v \) the others. The system of RD equations in one space variable is of the form

\[
\begin{align*}
\frac{du}{dt} &= D_1 u_{xx} + kf(u,v), \\
\frac{dv}{dt} &= D_2 v_{xx} + g(u,v).
\end{align*}
\]

Here \(D_1 \) are (diffusion) matrices; \(k \gg 1 \) is a parameter expressing the fact that reactions affecting the concentration \(u \) are fast; and the parameter \(a \ll k \) is inserted to account for the possibility that the diffusion rate of \(u \) may be small or large \((D_1 = 0(1)) \). The lowest order approximation, in regions where \(\frac{du}{dt} \) and \(u_{xx} \) are not large, is obtained by setting the coefficient of \(k \) equal to zero:

\[
f(u,v) = 0.
\]

We assume that this equation can be solved for \(u \) in a nonunique manner: there are at least two functions \(h^+, h^- : \mathbb{R}^2 \rightarrow \mathbb{R}^n_1 \), such that (4) holds when

\[
u = h^+(v).
\]

In other words, \(f(h^+(v),v) \equiv f(h^-(v),v) \equiv 0 \).

We imagine that the \(x-t \) plane is partitioned into two parts \(Q_+ \), in which (5) holds (approximately) with the corresponding sign. Under certain circumstances, such a partitioning is possible, with sharp wave fronts forming the boundaries between the two domains.

To investigate this further, we scale \(x \) and \(t \) differently in the layer between \(Q_+ \) and \(Q_- \). The scaling will be chosen so as to eliminate the parameters in (3b).
Setting
\[t = \frac{x}{k}, \quad \lambda = \frac{x}{\sqrt{k}ct}, \]
we reduce (3a) to
\[\dot{u} = \eta \frac{\partial^2 u}{\partial \lambda^2} + f(u, v). \quad (6) \]

If we assume that \(v(x^+) \) varies smoothly across the transition zone between \(L_+ \) and \(L_- \), then within this narrow zone, \(v \) may be treated as constant. In this case it is reasonable to suppose that (6), like (1), has a travelling front solution connecting the two known zeros of \(f \), namely \(h_-(v) \) and \(h_+(v) \) (if \(q = 1 \), the theory is governed by the considerations in Section 2). Let us assume this is true, and that this front is a higher-dimensional analogue of the scalar front of type (a) in Section 2. That is, we assume the velocity \(c \) and profile are uniquely determined from the parameter \(v \) in (6). Thus \(u = U(c(v)T; v) \). This type of reasoning was used in [4], [5], and later papers.

In the original variables, \(u = U(\frac{x}{k} (x - \sqrt{k}ct)) \), revealing that the actual velocity is of the order \(\sqrt{k} \), and the width of the front is of the order \(\frac{x}{k} \ll 1 \).

Now let \(x = y(t) \) denote the position of one such front. Knowing its velocity, we may write
\[\frac{dy}{dt} = \sqrt{k}c(v(y,t)). \quad (7) \]

Suppose there is only one such front, and \(U_+ \) lies to the left of it, with \(U_- \) to its right. Then to lowest order, we have found that when \(v \) is known, \(u \) is determined by (6) in \(U_+ \), and that the boundary between \(U_+ \) and \(U_- \) moves according to (7).

Thus, it appears that we have uncoupled \(u \) from \(v \).

This is true if the problem reduces to one for \(u \) alone for \(\varepsilon \to 0 \).

Suggested problem for \(\varepsilon = 1 \): to determine \(U_+ \) and \(U_- \), let \(f(\lambda, v) \) be given by the boundary conditions in a manner consistent with uncoupled \(v \).
In more general situations, the boundary between \(S_+ \) and \(S_- \) could consist of several wave fronts. And, of course, the extension of this reasoning to higher space dimensions is clear.
4 Phase and trigger fronts.

We refer to the setting in Section 3 with $n_1 = n_2 = 1$; corresponding phenomena in higher dimensions remain to be explored. So now u and v are scalar functions. The additional complication we impose is that h_1 are not defined for all values of v; rather their graphs lie on a nullcline of f as shown:

![Diagram showing phase and trigger fronts](image)

Figure 1

For values of v in the interval $\underline{v} < v < \bar{v}$, $f(u,v)$ has the features of the function f in case (a), provided $f(h_1(v),v) \neq 0$.

We assume, mainly for simplicity, that $D_2 = 0$ in (3b), and that $a(h(v),v) : C_-(v) < 0$, $q(h(v),v) : C_+(v) > 0$. If there is a single front with trajectory $y(t)$ and v varying continuously across it, then

$$\frac{dy}{dt} = \begin{cases} C_-(v) < 0, & x < y(t), \\ C_+(v) > 0, & x > y(t). \end{cases}$$

If $\underline{v} < v < \bar{v}$, $y(t)$ is governed by (7), because the function $C(v)$ is discontinuous from consideration of the bistable case ((a), Section 3). Furthermore, if u is initially continuous at the front (as we assume), it must remain so, for otherwise...
front passes a fixed value of \(x \), \(v \) would change discontinuously in time, meaning that \(v_t \) would have a \(\delta \)-function behavior. This is contradicted by (8): the right side, though discontinuous, is bounded.

Now suppose that \(c = y' > 0 \): the front is advancing into the region where \(u - h_e(v) \). This will be the case when \(v \) is near \(y \), for then \(h_e \) is the dominant state, according to the definition in Section 2. Then the values of \(v(x,t) \) ahead of the front \((x > y) \) determine the motion of the front: \(y' = c(v(y,t)) \).

It may happen, however, that \(v(y(t),t) \) attains the minimal value \(y \) at some time \(t_0 \). At that point, \(v \) is prohibited from any further decrease: there can exist no front with \(v < y \). We must therefore have, at \(t = t_0 \),

\[
0 = \frac{\partial}{\partial t} v(y(t),t) = v_x(y(t) + 0, t)y'(t) + v_t = v_x^+ + G_e(y), \quad \text{where} \quad v_x^+ \text{ is the } x^-\text{derivative of } v \text{ at the front evaluated from the right. Hence}
\]

\[
\frac{\partial v}{\partial t} = -G_e(y)/v_x^+. \quad (9)
\]

This relation replaces (7) when \(v \) attains the value \(y \), in fact continues to hold as long as \(v(y,t) = y \).

We may inquire whether a front can exist when \(v = y \), for at this value of \(v \), we are not in the bistable case (a). However, we are in case (b), as \(f(u,v) \) is of one sign for \(h_e(y) < u < h_e(v) \), and fronts exist in this case as well. In fact, as we have seen, their velocity is arbitrary, subject only to a minimal value \(c^* \). This means that one with velocity given by (9) is indeed possible.

We therefore have two types of propagation laws for fronts: (7) and (9). These types correspond to "trigger" and "phase" waves, in the terminology of Winfree [11]. To summarize, trigger fronts occur when \(v < v < \bar{v} \); their speed is determined by (7), where the function \(c \) comes from a law for scalar fronts, and is produced by the combination of diffusion and reaction. Phase fronts, on the other hand, occur when \(v = y \) or \(\bar{v} \); their speeds are totally unaffected by either diffusion or the reaction term \(f \). Either (7) or (9)) they depend on the distribution of values of \(v \) ahead of the front (see (8)); \(\bar{v} \) on \(v_x^+ \). In this sense, the motion of phase fronts is determined by the initial values of \(v \).
Initially, the second term in (3a) is negligible compared to the last term, and we have
\[u_0 \sim k f(u,v). \]
This means that as time increases, \(u_0 \) rapidly (since \(k \gg 1 \)) changes in such a manner that the phase-plane image is drawn from its initial position \(T \) to one or both of the stable descending branches \(u = h(v) \). If \(T \) intersects the ascending intermediate branch (as shown at some value \(u_0 = v_0 \)), then the evolved image curve is split between the two stable branches, as shown by the dotted line. At some point the evolution is...
branches, say h_-. After this happens, a slower process takes place, in which v evolves according to (3b) with u replaced by $h_-(v)$. Again for simplicity, assume $D_2 = 0$, so $v_t = G_x(v) < 0$. Eventually, for some $x = x_0$, v will attain a minimal value of v. Further decrease of v causes the image to leave the branch $u = h_-(v)$ for x in a neighborhood of x_0. Then by the process described in (i) above, that part of the image curve is rapidly attracted to the other stable branch $u = h_+(v)$. This localized attraction to h_+ causes a pair of fronts, facing oppositely, to be formed near $x = x_0$. For each such front, h_+ will be the dominant state, so the fronts will move apart, increasing the interval on which $u \sim h_+(v)$.
6. Target patterns.

These are a series of concentric circular chemical waves, expanding outward, new ones regularly being generated at the center (usually called a "leading center" [21]). Such patterns have been observed in various forms of the Z-reagent ([23]; [2], [22], and references therein). Some of the patterns observed are associated with externally imposed heterogeneities at the center. We shall indicate in (i) below how such targets may be modelled. Self-sustaining target patterns, not dependent upon external stimuli, may also be modelled by the techniques discussed above; see (ii) below.

All of the models we describe involve the same two basic phenomena: (a) spontaneous generation of wave fronts at the leading centers as described in Section 5 (ii), and (b) their subsequent motion, according to the rules brought out in Section 4. The generation process in 5 (ii) was for pairs of diverging fronts moving in one space dimension; its two-dimensional analog is the spontaneous appearance of a small circular front which spreads outward. Since the fronts are very narrow in our analysis, they appear locally as plane waves. Therefore it suffices to treat the problem in a one-dimensional framework, which we shall do. Alternatively, the variable x could be interpreted as distance to the origin in a configuration with radial symmetry.

(i) Imposed heterogeneities. We suppose that near the origin there is a substance with prescribed density distribution \(w(x) \); alternately, \(w \) could represent an imposed temperature distribution. We also suppose that \(w \) influences the reaction process, so that \(f \) and \(y \) in (3) are functions of \(u, v, \) and \(w \). For each value of \(w \), the nullcurves \(f = 0 \) and \(g = 0 \) have the shape shown in Figure 1; but their relative positions may vary with \(w \). In particular, \(h, \bar{v}, \) and \(\bar{v} \) may depend on \(w \).

At \(x = 0 \), fronts involving an abrupt increase in \(u \) (upjump fronts) form, according to the description in Section 5, when \(v \) has a local minimum at the origin which decreases to \(v \). Similarly, downjump fronts form when \(u = h_2(v) \) and \(v \) has a maximum which increases to \(\bar{v} \). The result is that when \(x \) is fixed at \(0 \), the trajectory \((u(0,\tau),v(0,\tau))\) is that of a relaxation oscillator with the kinetics of Figure 1. The nullcurve \(u = 0 \) must be placed as shown, to ensure that the kinetics are oscillatory.
The pattern must be periodic in time. The period T is set by the period of the relaxation oscillatory motion followed by the solution at $x = 0, w = w(0)$. This is presumed known.

The mathematical analysis of the above conceptual model consists in determining the trajectories of the expanding fronts, and the function $v(x,t)$, so that all the above evolutionary laws and constraints are fulfilled. It is convenient to express the fronts' motion by the functions $\tau^+(x)$. Here $\tau^+(x)$ is the time at which some specific upjump front reaches position x, and $\tau^-(x)$ is the time for the next succeeding downjump. The next upjump is then at time $\tau^+ + T$. The equations to be satisfied are:

\[\frac{d}{dx} \tau^+(x) = \pm c^{-1}(v(x,\tau^+(x)),w(x)), \quad \text{(for trigger fronts)}, \]
\[\frac{d}{dx} \tau^+(x) \quad \text{given by (9) (for phase fronts)}, \]
\[\frac{\partial v}{\partial t} = \left\{ \begin{array}{ll} G_+(v,w(x)), & \tau^+ (x) < t < \tau^-(x), \\ G_-(v,w(x)), & \tau^- (x) < t < \tau^+(x) + T \end{array} \right. \]

(it suffices to determine v in the interval $\tau^+ < t < \tau^+ + T$). The periodicity constraint on v is that $v(x,\tau^+(v)) = v(x,\tau^+(x) + T)$. In addition, we must require that $v(0,t)$ be the values of v corresponding to the relaxation oscillator at the center, and that as $x \to \infty$, the $\tau^+(x)$ approach linear functions (corresponding to a plane wave train).

If we insist that all the fronts be trigger, then the inequality

\[v(w(x)) < v < \bar{v}(w(x)) \]

is an additional constraint, and it is a nontrivial matter to determine whether there exist functions v, satisfying all the above. However, the problem becomes somewhat easier when one allows every other front (say, all the down jump fronts) to be of phase type, the remaining trigger. This appears to be the situation commonly observed in the experiment.
The third conceptual possibility is when all fronts are of phase type. Then the configuration of the fronts, as they develop in the reactor, will depend completely on the initial concentrations, and will not in general be circles. Such patterns, if they do exist, would therefore not account for the observed circular fronts.

Self-sustaining target patterns may be modelled by retaining the function \(w(x) \), but supposing it to obey a third reaction-diffusion equation coupled to the first two. Thus the distribution of \(w \) is obtained as part of the model, not imposed by external conditions. This type of model is explored in some detail in [17], assuming all fronts are trigger. Again, the dynamics of the wave front and the functions \(v \) and \(w \) involve complicated mathematics, but some reasonable simplifications are possible.

A conceptually similar model for self-sustaining patterns involving three reaction components had previously been proposed by Zakin and Kawczynski [28]; but its analysis was left incomplete and the question of phase and trigger fronts was not addressed.
7. Targets in excitable media.

With nullcurves as depicted in Figure 1, the kinetic equations
\[u_t = kf(u,v), \quad v_t = g(u,v) \]
have stable relaxation oscillatory solutions. When the \(g \) nullcurve is shifted to one of the positions in Figures 3 and 4, however, the kinetics become excitable or bistable.

For example in Figure 3, there is one stable rest state (the unique intersection point); but when this state is perturbed downward a small amount, the solution makes a large excursion (dotted line) before returning to the rest state.

In modeling target patterns in Section 6, we needed the kinetics to be oscillatory at the origin; but away from the origin, the configurations in Figures 3 and 4 are not excluded. As \(x \to \infty \) the target develops into a regular wave train, so of course the kinetics must support such a train there. Excitable and bistable (as well as oscillatory) kinetics do support wave trains. For example, the phase plane image (orbit) of a train at a fixed value of \(x \) is shown by the dotted loop in Figure 4. Therefore there is no contradiction involved in having a periodic target pattern emerge in an excitable medium.
This is apparently what often happens with the Z-reagent, which can exist in an excitable, as well as oscillatory, regime. The initial formation of a target pattern in such a medium involves a wave train entering a quiescent region at a stable rest state. It may be difficult to visualize this process of excitation into a periodic state, but several mechanisms are available for accomplishing it [24; R. Smock, in preparation].
References

15. A. N. Chabotinsky 1974, Concentration Oscillations (Russian), Nauka, Moscow.

20. A. V. Kolmogorov, I. G. Petrov'skii, and N. S. Piskunov 1937, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskovo Gos. Univ. 17, 1-72

Title: Propagating Waves and Target Patterns in Chemical Systems

Authors: Paul C. Fife and John Tyson

Performing Organization: Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706

Report Date: May 1980

Number of Pages: 19

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:
A class of models for target patterns (concentric circular waves emanating from a point called the leading center) is constructed in the context of singularly perturbed reaction-diffusion systems of partial differential equations. First, the theory of wave fronts is detailed for scalar equations and systems of equations. A scaling method reduces complex waves to the consideration of a group of simple wave phenomena. It is shown that expanding wave fronts can be generated spontaneously at a point. This process, together with the laws of their subsequent motion, reduces the problem to an ordinary differential initial...
value problem, whose solution is required to have certain properties. A discussion is given of the connection between these results and experimental observations.