FESA-TS-2084

INFRARED UTILIZATION

25 April 1980
Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared by:

Alan J. Van den Berg
US Army Facilities Engineering Support Agency
Technology Support Division
Fort Belvoir, VA 22060
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>TYPE OF REPORT & PERIOD COVERED</th>
<th>9. REPORT DATE</th>
<th>10. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAFESA-TS-2904</td>
<td>INFRARED UTILIZATION</td>
<td>25 Apr 1986</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION STATEMENT (of this Report)</th>
<th>13. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. KEY WORDS (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Instrumentation</td>
</tr>
<tr>
<td>Energy Conservation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. ABSTRACT (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information regarding the use of infrared instrumentation and where such use may be technologically feasible and cost effective.</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Discussion</td>
<td>1</td>
</tr>
<tr>
<td>3.0 Conclusions</td>
<td>2</td>
</tr>
<tr>
<td>4.0 Recommendations</td>
<td>3</td>
</tr>
</tbody>
</table>
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>A furnace room and latrine wing of an uninsulated building</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Heat escaping from open latrine window, etc.</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>IR view of a high voltage fuse in sub-station</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>IR view of over-heated fuse holders in sub-station</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Steam trap in Laundry</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Good steam trap in IR viewer. Outlet line is cooler than inlet</td>
<td>6</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Bad steam trap. Note steam in condensate line</td>
<td>6</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Marked off area on leaking roof</td>
<td>7</td>
</tr>
<tr>
<td>Figure 9</td>
<td>IR view of area shown above</td>
<td>7</td>
</tr>
<tr>
<td>Figure 10</td>
<td>IR view of a roof section which is leaking</td>
<td>8</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Break in unconduted, insulated low temperature heating line buried under macadam street</td>
<td>8</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Sidewalk over broken HTW line</td>
<td>9</td>
</tr>
<tr>
<td>Figure 13</td>
<td>HTW line at corner where break was suspected</td>
<td>9</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Aerial IR view used to find location of buried pipe</td>
<td>10</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Aerial IR view showing pipe trace</td>
<td>10</td>
</tr>
</tbody>
</table>
INFRARED UTILIZATION

1.0 INTRODUCTION

The purpose of this report is to present some information regarding the use of infrared (IR) instrumentation and to inform the Facilities Engineer where such use may be technologically feasible and cost-effective. At present, the state-of-the-art is such that infrared thermography will quantify radiative heat losses but will not quantify total building heat losses. Quantitative measurements are expensive, time consuming and difficult. However, when used or interpreted by experienced personnel, infrared instruments are useful diagnostic tools.

2.0 DISCUSSION

Infrared devices, whether airplane mounted photographic scanners or hand-held thermal radiation probes are basically devices dependent on the intensity of energy radiated in a given wavelength band. When they have scales, they indicate the apparent temperature differences on the surface at which they are aimed or they may indicate the temperature differences between the surface and a built-in standard. However, the readings only indicate the radiation temperature of the surface. Temperature is only one variable in the heat transfer equation. Heat is lost from the building by both radiation and convection. For a determination of these losses, the emissivity, the reflectivity, and conductivity of the walls and roof must be known in addition to the temperature. Figures 1 and 2 are illustrative of the problems involved in trying to quantify heat loss using IR equipment.

2.1 The question of cost effectiveness must be considered since modifications and retrofit of buildings is costly. The savings in fuel costs from reinsulation or modification must be large enough to amortize the cost of the repair and the cost of the IR surveys. Infiltration air in a typical building may account for 40 to 60 percent of the building cooling or heating loss. Losses through walls could be a small percentage. A large amount of productive usage is required to amortize, cost effectively, a 40 thousand dollar IR instrument. Rental of the equipment, procurement of the inspection service, obtaining the service from FESA, or a joint (multi-installation) purchase of the equipment should be analyzed to determine the most cost effective method of accomplishing the task.

2.2 For the present, when qualitative answers are satisfactory, or where radiation temperature differences in themselves are significant indications of trouble, infrared devices make excellent diagnostic aids. One
highly remunerative use of infrared scanners and probes is in connection
with the periodic inspection of electric transmission and distribution
lines and associated equipment. Loose connections, over-loaded
transformers, defective high-voltage switchgear, and other similar
problems are readily detected with an infrared scanner (Figure 3, 4).
Most importantly, the entire inspection can be accomplished without
shutting down any of the power lines. Inspection damage, which often
occurs when the joints are mechanically torqued, is completely avoided.

2.3 One use of the infrared scanning which can provide an immediate
payoff is in the detection of moisture in the insulation of a flat,built-up roof (Figures 8 through 10). Here there is no quantitative
question involved. The location of unwanted water is the pertinent
factor. Even though the scanner cannot be used in the daytime because of
signal to noise problems caused by the sun, it can be used at night in
either the summer or winter. There are two contributing effects. One,
heat leaking through the roof from the interior of the building
selectively raises the temperature of the more highly conductive wet
insulation. Two, the sun's heat raises the roof temperature during the
day. At night the wet insulation acts as a heat sink and the surface
temperature over the defective insulation is higher than the surrounding
roof and the wet spots under the roofing felts can be seen. The method
appears to be cost effective since early detection and location of roof
leaks can save large amounts of money later on. It is also effective in
determining whether a roof can be patched or needs total replacement.
Aerial scanning and hand devices are presently being utilized by FESA.
The number and extent of the roofs must be considered. So far, work has
indicated that aerial scanning will point out places that are candidates
for hand-held scanner inspection. From the air, it is difficult to tell
the difference between water on the surface of the roof and water under
the felts. Nor can differences in radiation temperatures due to
different surface emissivities be accounted for. Even when walking a
roof with a hand-held device, the answers concerning temperature
differences are not always immediately apparent. Varying thicknesses of
bitumen cause erratic results. The presence of heated devices, pipes,
and ducts, for example, have also given preliminary false indications on
the scanner. The time of day, the day and night ambient temperatures,
whether or not the building is air-conditioned or heated, and the
wavelengths used in the scanner are some of the factors which contribute
to the problem of interpreting the IR scans. It appears now that a
hand-held infrared scanner is a very effective way to non-destructively
test for the presence of water in built-up roofs. The moisture meter can
be used during the day but is more time consuming than infrared
techniques. Used in conjunction with aerial infrared photography the
time to survey can be cut down. Although the nuclear meter has a higher
operating cost than the hand-held IR scanner, consideration must be given
to the fact that the nuclear meter is significantly less costly than the
IR instruments.
3.0 CONCLUSIONS

Infrared thermography has shown its value in a number of applications. It can assist in determining the pattern of power plant hot water effluent in a stream and has been used to detect changes in agricultural growth. It can be used to locate underground steam and hot water lines and leaks (Figure 11 to 15). It cannot pinpoint the location of a leak in systems whose pipes are installed in conduit. Steam traps can be inspected very quickly (Figures 5 through 7). For example, a laundry with 200 steam traps can be inspected by a walk through type survey in 3 to 4 hours. It is recognized that defective steam traps can be identified by relatively unskilled personnel using heat crayons or similar cheap indicating devices. Infrared probes, which are relatively cheap, can also be used. However, if an IR viewer is available, its use is the fastest and easiest method of inspecting steam traps. A programmed inspection of an installation's electrical systems (anticipatory maintenance), steam traps, hot water and steam lines, flat roofs, and energy consuming buildings, could be beneficial and cost effective.

4.0 RECOMMENDATIONS

IR scanning devices are tools which can be used effectively. However, there is no substitute for an experienced operator who can make "on the spot" judgments related to causes and effects and pursue elusive clues immediately.
Figure 1. A furnace room and latrine wing of an uninsulated building.

Figure 2. Heat escaping from open latrine window is noticeable. Because of wind induced turbulent air flow on end of building, it appears to be losing less heat than side protected from wind, where air flow is mostly laminar. Actually, most of the heat loss is from the wind swept side of the building. Quantitative determination of heat loss is not possible using the IR equipment alone.
Figure 3. IR view of a high voltage fuse in sub-station. Fuse is over-heated and fuse holders are dirty.

Figure 4. IR view of over-heated fuse holders in sub-station. New equipment made possible these views on a sunlit day.
Figure 5. Steam trap in laundry.

Figure 6. Good steam trap in IR viewer. Outlet line is cooler than inlet.

Figure 7. Bad steam trap. Note steam in condensate line.
Figure 8. Marked off area on leaking roof.

Figure 9. IR view of area shown above.
Figure 10. IR view of a roof section which is leaking. Water is being held by individual insulation blocks which are separated by bitumen that has flowed down between them.

Figure 11. Break in unconduted, insulated, low temperature heating line buried under macadam street. Note that heat trace narrows down as the distance from break becomes larger. Straight white line behind trace is curb. Other white is foliage in background.
Figure 12. Sidewalk over broken HTW line.

Figure 13. HTW line at corner where break was suspected. This was the lowest point in conduit. Actual pipe break was an eighth of a mile away.
Figure 14. Aerial IR view used to find location of buried pipe.

Figure 15. Aerial IR view showing pipe trace.
DISTRIBUTION LIST

US Military Academy
ATTN: Dept of Mechanics
West Point, NY 10996

US Military Academy
ATTN: Library
West Point, NY 10996

HQDA (DALO-TSE-F)
WASH DC 20314

HQDA (DAEN-ASI-L) (2)
WASH DC 20314

HQDA (DAEN-MPO-B)
WASH DC 20314

HQDA (DAEN-MPR-A)
WASH DC 20314

HQDA (DAEN-MPO-U)
WASH DC 20314

HQDA (DAEN-MPZ-A)
WASH DC 20314

HQDA (DAEN-MPZ-E)
WASH DC 20314

HQDA (DAEN-MPZ-G)
WASH DC 20314

HQDA (DAEM-RDM)
WASH DC 20314

HQDA (DAEN-RDL)
WASH DC 20314

Director, USA-WES
ATTN: Library
PO Box 631
Vicksburg, MS 39181

Commander, TRADOC
Office of the Engineer
ATTN: ATEN
Ft Monroe, VA 23651

Commander, TRADOC
Office of the Engineer
ATTN: ATEN-FE-U
Ft Monroe, VA 23651

ATN: ATEN-FE-U
Ft Monroe, VA 23651

AF Civil Engr Center/XRL
Tyndall AFB, FL 32401

Naval Facilities Engr Command
ATTN: Code 04
200 Stovall St.
Alexandria, VA 22332

Defense Documentation Center
ATTN: TCA (12)
Cameron Station
Alexandria, VA 22314

USA Cold Regions Research Engineering Laboratory
Hanover, NH 03755

FORSCOM
ATTN: AFEN
Ft McPherson, GA 30330

FORSCOM
ATTN: AFEN-FE
Ft McPherson, GA 30330

Officer-in-Charge
Civil Engineering Laboratory
Naval Construction Battalion Center
ATTN: Library (Code LO8A)
Port Hueneme, CA 93043

USA Construction Engineering Research Laboratory
PO Box 4005
Champaign, IL 61820

Commanding General, 3d USA
ATTN: Engineer
Ft McPherson, GA 30330

DIST 1
Commander
USA Foreign Science and Technology Center
220 8th St. N.E.
Charlottesville, VA 22901

Commander
USA Science & Technology Information Team, Europe
APO New York 09710

Commander
USA Science & Technology Center - Far East Office
APO San Francisco 96328

Commanding General
US Engineer Command, Europe
APO New York 09403

Deputy Chief of Staff for Logistics
US Army, The Pentagon
Washington, DC 20310

Commander, TRADOC
Office of the Engineer
ATTN: Chief, Facilities Engineering Division
Ft Monroe, VA 23651

Commanding General
USA Forces Command
Office of the Engineer (AFEN-FES)
Ft McPherson, GA 30330

Commanding General
USA Forces Command
ATTN: Chief, Facilities Engineering Division
Ft McPherson, GA 30330

Commanding General
1st USA
ATTN: Engineer
Ft George G. Meade, MD 20755

Commander
USA Support Command, Hawaii
Fort Shafter, HI 96858

Commander
Eighth US Army
APO San Francisco 96301

Commander
US Army Facility Engineer Activity - Korea
APO San Francisco 96301

Commander
US Army, Japan
APO San Francisco 96343

Facilities Engineer
Fort Belvoir
Fort Belvoir, VA 22060

Facilities Engineer
Fort Benning
Fort Benning, GA 31905

Facilities Engineer
Fort Bliss
Fort Bliss, TX 79916

Facilities Engineer
Carlisle Barracks
Carlisle Barracks, PA 17013

Facilities Engineer
Fort Chaffee
Fort Chaffee, AR 72902

Facilities Engineer
Fort Dix
Fort Dix, NY 08640

Facilities Engineer
Fort Eustis
Fort Eustis, VA 23604
Facilities Engineer
Fort Gordon
Fort Gordon, GA 30905

Facilities Engineer
Fort Hamilton
Fort Hamilton, NY 11252

Facilities Engineer
Fort A P Hill
Bowling Green, VA 22427

Facilities Engineer
Fort Jackson
Fort Jackson, SC 29207

Facilities Engineer
Fort Knox
Fort Knox, KY 40121

Facilities Engineer
Fort Lee
Fort Lee, VA 23801

Facilities Engineer
Fort McClellan
Fort McClellan, AL 36201

Facilities Engineer
Fort Monroe
Fort Monroe, VA 23651

Facilities Engineer
Presidio of Monterey
Presidio of Monterey, CA 93940

Facilities Engineer
Fort Pickett
Blackstone, VA 23824

Facilities Engineer
Fort Rucker
Fort Rucker, AL 36362

Facilities Engineer
Fort Sill
Fort Sill, OK 73503

Facilities Engineer
Fort Story
Fort Story, VA 23459

Facilities Engineer
Kansas Army Ammunition Plant
Independence, MO 64056

Facilities Engineer
Lone Star Army Ammunition Plant
Texarkana, TX 75501

Facilities Engineer
Picatinny Arsenal
Dover, NJ 07801

Facilities Engineer
Louisiana Army Ammunition Plant
Shreveport, LA 71130

Facilities Engineer
Milan Army Ammunition Plant
Warren, MI 48089

Facilities Engineer
Pine Bluff Arsenal
Pine Bluff, AR 71601

Facilities Engineer
Radford Army Ammunition Plant
Radford, VA 24141

Facilities Engineer
Rock Island Arsenal
Rock Island, IL 61201

Facilities Engineer
Rocky Mountain Arsenal
Dever, CO 80340

Facilities Engineer
Scranton Army Ammunition Plant
156 Cedar Avenue
Scranton, PA 18503

Facilities Engineer
Tobyhanna Army Depot
Tobyhanna, PA 18466

DIST 4
<table>
<thead>
<tr>
<th>Facility Location</th>
<th>Address Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Engineer</td>
<td>Tooele Army Depot 84074</td>
</tr>
<tr>
<td></td>
<td>Tooele, UT</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Arlington Hall Station</td>
</tr>
<tr>
<td></td>
<td>400 Arlington Blvd 22212</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Cameron Station, Bldg 17</td>
</tr>
<tr>
<td></td>
<td>5010 Duke Street 22314</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Sunny Point Military</td>
</tr>
<tr>
<td></td>
<td>Ocean Terminal 28461</td>
</tr>
<tr>
<td></td>
<td>Southport, NC</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>US Military Academy</td>
</tr>
<tr>
<td></td>
<td>West Point Reservation 10996</td>
</tr>
<tr>
<td></td>
<td>West Point, NY</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Ritchie</td>
</tr>
<tr>
<td></td>
<td>Fort Ritchie, MD 21719</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Army Materials & Mechanics Research Center</td>
</tr>
<tr>
<td></td>
<td>Watertown, MA 02172</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Ballistics Missile Advanced Technology Center</td>
</tr>
<tr>
<td></td>
<td>PO Box 1500 35807</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Wainwright</td>
</tr>
<tr>
<td></td>
<td>172d Infantry Brigade 99703</td>
</tr>
<tr>
<td></td>
<td>Fort Wainwright, AK 99703</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Greely</td>
</tr>
<tr>
<td></td>
<td>172d Infantry Brigade 99505</td>
</tr>
<tr>
<td></td>
<td>Fort Richardson, AK 99505</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Tarheel Army Missile Plant</td>
</tr>
<tr>
<td></td>
<td>204 Granham-Hopedale Rd 27215</td>
</tr>
<tr>
<td></td>
<td>Burlington, NC</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Harry Diamond Laboratories</td>
</tr>
<tr>
<td></td>
<td>2800 Powder Mill Rd 20783</td>
</tr>
<tr>
<td></td>
<td>Adelphi, MD</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Missoula</td>
</tr>
<tr>
<td></td>
<td>Missoula, MT 59801</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>New Cumberland Army Depot</td>
</tr>
<tr>
<td></td>
<td>New Cumberland, PA 17070</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Oakland Army Base</td>
</tr>
<tr>
<td></td>
<td>Oakland, CA 94626</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Vint Hill Farms Station</td>
</tr>
<tr>
<td></td>
<td>Warrentown, VA 22186</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Twin Cities Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>New Brighton, MN 55112</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Volunteer Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>Chattanooga, TN 37401</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Watervliet Arsenal</td>
</tr>
<tr>
<td></td>
<td>Watervliet, NY 12189</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>St Louis Area Support Center</td>
</tr>
<tr>
<td></td>
<td>Granite City, IL 62040</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Monmouth</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Redstone Arsenal</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
</tbody>
</table>

DIST 5
<table>
<thead>
<tr>
<th>Facilities Engineer</th>
<th>Facilities Engineer</th>
<th>Facilities Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit Arsenal</td>
<td>Fort Hood</td>
<td>Fort Hood, TX 76544</td>
</tr>
<tr>
<td>Warren, MI 48039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>Fort Indiantown Gap</td>
<td>Fort Indiantown Gap, Annville, PA 17003</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jefferson Proving Ground</td>
<td>Fort Lewis</td>
<td>Fort Lewis, WA 98433</td>
</tr>
<tr>
<td>Madison, IN 47250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dugway Proving Ground</td>
<td>Fort MacArthur</td>
<td>Fort MacArthur, CA 90731</td>
</tr>
<tr>
<td>Dugway, UT 84022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort McCoy</td>
<td>Fort McPherson</td>
<td>Fort McPherson, GA 30330</td>
</tr>
<tr>
<td>Sparta, WI 54656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td>Fort George G. Meade</td>
<td>Fort George G. Meade, MD 20755</td>
</tr>
<tr>
<td>White Sands Missile Range, NM 88002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuma Proving Ground</td>
<td>Fort Polk</td>
<td>Fort Polk, LA 71459</td>
</tr>
<tr>
<td>Yuma, AZ 85364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natick Research & Dev Ctr</td>
<td>Fort Riley</td>
<td>Fort Riley, KS 66442</td>
</tr>
<tr>
<td>Kansas St.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natick, MA 01760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>Fort Stewart</td>
<td>Fort Stewart, GA 31312</td>
</tr>
<tr>
<td>Fort Bragg, NC 28307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Campbell</td>
<td>Indiana Army Ammunition Plant</td>
<td>Indiana Army Ammunition Plant, Charlestown, IN 47111</td>
</tr>
<tr>
<td>Fort Campbell, KY 42223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Carson</td>
<td>Joliet Army Ammunition Plant</td>
<td>Joliet, IL 60436</td>
</tr>
<tr>
<td>Fort Carson, CO 80913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Drum</td>
<td>Anniston Army Depot</td>
<td>Anniston, AL 36201</td>
</tr>
<tr>
<td>Watertown, NY 13601</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIST 6
<table>
<thead>
<tr>
<th>Facilities Engineer</th>
<th>Corpus Christi Army Depot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corpus Christi, TX 78419</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Red River Army Depot</td>
</tr>
<tr>
<td></td>
<td>Texarkana, TX 75501</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Sacramento Army Depot</td>
</tr>
<tr>
<td></td>
<td>Sacramento, CA 95813</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Sharpe Army Depot</td>
</tr>
<tr>
<td></td>
<td>Lathrope, CA 95330</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Seneca Army Depot</td>
</tr>
<tr>
<td></td>
<td>Romulus, NY 14541</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Ord</td>
</tr>
<tr>
<td></td>
<td>Fort Ord, CA 93941</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Presidio of San Francisco</td>
</tr>
<tr>
<td></td>
<td>Presidio of San Francisco, CA 94129</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Sheridan</td>
</tr>
<tr>
<td></td>
<td>Fort Sheridan, IL 60037</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Holston Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>Kingsport, TN 37662</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Baltimore Outport</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21222</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Bayonne Military Ocean Terminal</td>
</tr>
<tr>
<td></td>
<td>Bayonne, NJ 07002</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Bay Area Military Ocean Terminal</td>
</tr>
<tr>
<td></td>
<td>Oakland, CA 94626</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Gulf Outport</td>
</tr>
<tr>
<td></td>
<td>New Orleans, LA 70146</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Fort Huachuca</td>
</tr>
<tr>
<td></td>
<td>Fort Huachuca, AZ 86513</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Letterkenny Army Depot</td>
</tr>
<tr>
<td></td>
<td>Chambersburg, PA 17201</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Michigan Army Missile Plant</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48089</td>
</tr>
<tr>
<td>COL E. C. Lussier</td>
<td>Fitzsimons Army Med Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: HSF-DFE</td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80240</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>US Army Engr Dist, New York</td>
</tr>
<tr>
<td></td>
<td>ATTN: NANEN-E</td>
</tr>
<tr>
<td></td>
<td>26 Federal Plaza</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10007</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>USA Engr Dist, Baltimore</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief, Engr Div</td>
</tr>
<tr>
<td></td>
<td>PO Box 1715</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21203</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>USA Engr Dist, Charleston</td>
</tr>
<tr>
<td></td>
<td>ATTN:: Chief, Engr Div</td>
</tr>
<tr>
<td></td>
<td>PO Box 919</td>
</tr>
<tr>
<td></td>
<td>Charleston, SC 29402</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>USA Engr Dist, Detroit</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief, Engr Div</td>
</tr>
<tr>
<td></td>
<td>PO Box 1027</td>
</tr>
<tr>
<td></td>
<td>Detroit, MI 48231</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>USA Engr Dist, Kansas City</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief, Engr Div</td>
</tr>
<tr>
<td></td>
<td>700 Federal Office Bldg</td>
</tr>
<tr>
<td></td>
<td>601 E 12th St</td>
</tr>
<tr>
<td></td>
<td>Kansas City, MO 64106</td>
</tr>
</tbody>
</table>
USA Engr Dist, Omaha
ATTN: Chief, Engr Div
7410 USOP and Courthouse
215 N. 17th St
Omaha, NE 68102

USA Engr Dist, Fort Worth
ATTN: Chief, SWFED-D
PO Box 17300
Fort Worth, TX 76102

USA Engr Dist, Sacramento
ATTN: Chief, SPKED-D
650 Capitol Mall
Sacramento, CA 95814

USA Engr Dist, Far East
ATTN: Chief, Engr Div
APO San Francisco, CA 96301

USA Engr Dist, Japan
APO San Francisco, CA 96343

USA Engr Div, Europe
European Div, Corps of Engineers
APO New York, NY 09757

USA Engr Div, North Atlantic
ATTN: Chief, NADEN-T
90 Church St
New York, NY 10007

USA Engr Div, South Atlantic
ATTN: Chief, SAEN-TE
510 Title Bldg
30 Pryor St, SW
Atlanta, GA 30303

USA Engr Dist, Mobile
ATTN: Chief, SAMEN-C
PO Box 2288
Mobile, AL 36601

USA Engr Dist, Louisville
ATTN: Chief, Engr Div
PO Box 59
Louisville, KY 40201

USA Engr Div, Norfolk
ATTN: Chief, NAOEN-D
803 Front Street
Norfolk, VA 23510

USA Engr Div, Missouri River
ATTN: Chief, Engr Div
PO Box 103 Downtown Station
Omaha, NE 68101

USA Engr Div, South Pacific
ATTN: Chief, SPDED-TG
630 Sansome St, Rm 1216
San Francisco, CA 94111

USA Engr Div, Huntsville
ATTN: Chief, HNDED-ME
PO Box 1600 West Station
Huntsville, AL 35807

USA Engr Div, Ohio River
ATTN: Chief, Engr Div
PO Box 1159
Cincinnati, OH 45201

USA Engr Div, North Central
ATTN: Chief, Engr Div
536 S. Clark St.
Chicago, IL 60605

USA Engr Div, Southwestern
ATTN: Chief, SWDED-TN
Main Tower Bldg, 1200 Main St
Dallas, TX 75202

USA Engr Dist, Savannah
ATTN: Chief, SASAS-L
PO Box 889
Savannah, GA 31402

Commander
US Army Facilities Engineering Support Agency
Support Detachment II
Fort Gillem, GA 30050
Commander
US Army Facilities Engr Spt Agency
ATTN: MAJ Brisbine
Support Detachment III
PO Box 6550
Fort Bliss, TX 70015

NCOIC
US Army Facilities Engr Spt Agency
Support Detachment III
ATTN: FESA-III-SI
PO Box 3031
Fort Sill, OK 73503

NCOIC
US Army Facilities Engr Spt Agency
Support Detachment III
ATTN: FESA-III-PR
PO Box 29704
Presidio of San Francisco, CA 94129

NCOIC
US Army Facilities Engr Spt Agency
Support Detachment III
ATTN: FESA-III-CA
Post Locator
Fort Carson, CO 80913

Commander/CPT Ryan
US Army Facilities Engr Spt Agency
Support Detachment IV
PO Box 300
Fort Monmouth, NJ 07703

NCOIC
US Army Facilities Engr Spt Agency
ATTN: FESA-IV-MU
PO Box 300
Fort Monmouth, NJ 07703

NCOIC
US Army Facilities Engr Spt Agency
Support Detachment IV
ATTN: FESA-IV-ST
Stewart Army Subpost
Newburgh, NY 12250

NCOIC
US Army Facilities Engineering Support Agency
Support Detachment II
ATTN: FESA-II-JA
Fort Jackson, SC 29207

NCOIC
US Army Facilities Engineering Support Agency
Support Detachment II
PO Box 2207
Fort Benning, GA 31905

NCOIC
US Army Facilities Engineering Support Agency
Support Detachment II
ATTN: FESA-II-KN
Fort Knox, KY 40121

Naval Facilities Engineering Cmc:
Energy Programs Branch, Code 1023
Hoffman Bldg 2, (Mr. John Hughes)
Stovall Street
Alexandria, VA 22332

US Army Facilities Engineering Support Agency
FE Support Detachment I
APO New York 09081

Navy Energy Office
ATTN: W. R. Mitchum
Washington, DC 20350

Mr. David C. Hall
Energy Projects Officer
Dept of the Air Force
Sacramento Air Logistics
Center (AFLEC)
2852 ABG/DEE
Ft Mcclellan, CA 95652

USA Engineer District, Chicago
219 S. Dearborn Street
ATTN: District Engineer
Chicago, IL 60604

DIST 9
Directorate of Facilities Engineer
Energy Environmental and
Self Help Center
Fort Campbell, KY 42223
Commander and Director
Construction Engineering Research Laboratory
ATTN: COL Circeo
PO Box 4005
Champaign, IL 61820
Mr. Ray Heller
Engineering Services Branch
DFAE, Bldg 1950
Fort Sill, OK 73503
HQ, US Military Community Activity, Heilbronn
Director of Engineering & Housing
ATTN: Mr. Rodger D. Romans
APO New York 09176
Commanding General
HQ USATC and Fort Leonard Wood
ATTN: Facility Engineer
Fort Leonard Wood, MO 65473
NCOIC
535th Engineer Detachment, Team A
ATTN: SFC Prenger
PO Box 224
Fort Knox, KY 40121
NCOIC
535th Engineer Detachment, Team B
ATTN: SP6 Cathers
PO Box 300
Fort Monmouth, NJ 07703
NCOIC
535th Engineer Detachment, Team C
ATTN: SFC Jackson
PO Box 4301
Fort Eustis, VA 23604
NCOIC
535th Engineer Detachment, Team D
ATTN: SFC Hughes
Stewart Army Subpost
Newburg, NY 12550
Commander-in-Chief
HQ, USAREUR
ATTN: AEAEN-EH-U
APO New York 09403
HQ AFESC/RDVA
Mr. Hathaway
Tyndall AFB, FL 32403
Commander and Director
Construction Engineering Research Laboratory
ATTN: Library
PO Box 4005
Champaign, IL 61820
HQ, 5th Signal Command
Office of the Engineer
APO New York 09056
SSG Ruiz Burgos Andres
D.F.E., HHC HQ Cmd 193d Inf BDE
Ft Clayton, C/Z
Energy//Environmental Office
ATTN: Mr. David R. Nichols
USMCA-NBG (DEH)
APO New York 09696
Commander
535th Engineer Detachment
PO Box 300
Fort Monmouth, NJ 07703
Commander
Presidio of San Francisco, California
ATTN: AFZM-DI/Mr. Prugh
San Francisco, CA 94129
Facilities Engineer
Corpus Chiristi Army Depot
ATTN: Mr. Joseph Canpu/Stop 24
Corpus Chiristi, TX 78419
Walter Reed Army Medical Center
ATTN: HSWS-E/Mr. James Prince
6825 16th St., NW
Washington, DC 20012
Commanding Officer
Installations and Services Activity
ATTN: DRCIS-RI-IB
Rock Island Arsenal
Rock Island, IL 61299

Commanding Officer
Northern Division Naval Facilities Engineering Command
Code 10
Naval Base, Building 77
Philadelphia, PA 19112

Commander
Northern Division Naval Facilities Engineering Command
Code 102 (Mr. E. F. Humm)
Naval Base
Philadelphia, PA 19112

Commander
US Army Facilities Engineering Support Agency
Support Detachment I
APO New York 09081

Commanding Officer
US Army Facilities Engineering Support Agency
Support Detachment I
APO New York 09081

DIST 11