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NOTICES

When U.S. Government drawings, specifications, or other data are used for

any purpose other than a definitely related government procurement operation,

the Goverment thereby incurs no responsibility nor any obligation whatsoever,

and the fact that the Government may have formulated, furnished, or in any

way supplied the said drawings, specifications, or other data Is not to be

regarded by implication or otherwise, or in any manner, licensing the holder

or any other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be re-

lated thereto.
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I. INTRODUCTION

The current stability prediction calculations for solid propellant rocket

motors are based upon a simple first-order perturbation solution of the in-

viscid equations of motion for the combustion gas flow in the chamber. Thus

there is concern over the applicability of the standard stability prediction

techniques to cases where high-speed mean flows are present. Such flows are

likely to occur in tactical rockets with large length-to-diameter and low

port-to-throat area ratios. Nozzleless motors represent an extreme example

of this type of design; flow velocities may approach the speed of sound at

the grain exit. High-speed flow effects may also be significant in slots

and fins and around submerged nozzles especially early in the motor run when

burning area is large and flow channel area Is small. The purpose of this

study is to assess the impact of high-speed mean flow on the stability pre-

diction approach and to generate correction techniques to be applied to exist-

ing combustion instability models.

High-speed mean flow affects the stability calculation in several ways.

The acoustic wave forms predicted in the linear model are distorted and the

mean thermodynamic properties such as the speed of sound may vary significantly

from point to point in the chamber. These variations may alter both the pre-

dicted growth rates and also the frequencies for the acoustic modes. Correct

frequency calculations are important since they are crucial in mode identifi-

cation in an unstable motor.

All acoustic combustion instability models in current use employ a "line-

arization" of the inviscid equations of otion. This approach was first

utilized by McClure (Refs. 1 end 2) and his coworkers and developed more fully

by Culick (Refs. 3 and 4). Two Parameters representing respectively the ampli-

1. Bird, J. T., McClure, F. T., and Hart, R. W., "Acoustic Instability In the
Transverse Modes of Solid Propellant Rockets," 12th International Astronautical
Congress, Academic Press, 1963.

2. Cantrell, R. H., and Hart, R. W., "Interaction Between Sound and Flow in
Acoustic Cavities: Mass, Momentum, and Energy Considerations," Journal of the
Acoustical Society of America, Vol. 36, No.' , April 196I4.

3. Culick, F. E. C., "Acoustic Oscillations In Solid Propellant Rocket
Chambers," Astronautica Acta, Vol. 12, No. 2, 1966.

4. Culick, F. E. C., "Interactions Between the Flow Field, Combustion, and
2' Wave Motions in Rocket Motors," NWC-TP-5349, Naval Weapons Center, China Lake,
,l California, June 1972.
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tude of the acoustic wave and the mean flow speed are used In expanding the

pertinent physical equations describing the gas flow. Combustion effects are

represented by admittance boundary conditions at the chamber walls, nozzle

entrance and head-end closure. Only linear terms In amplitude and mean flow

Mach number are retained and the result is a simple formula for the growth rate

which can be evaluated by utilizing linear acoustic mode shapes In Integrals

taken over the surface and volume of the chamber (Ref. 3). It is clear that

this procedure is valid if wave growth at the stability boundary only Is re-

quired, and if an incompressible, uniform mean flow Is present. The assumption

of small wave amplitude results In what Is called an "Initially valid" approx-

Imation of the growth process of the waves. Thus the solutions can be consid-

ered valid only at the Instant growth begins. It may seem unnecessary to

emphasize this point since prediction models indeed are based on the stability

boundary idea. However, an understanding is crucial If one seeks to Improve

the linear model by evaluating higher-order terms in the asymptotic expansions.

Specifically, the linear model assumes that the small parameters are related by

the limit process

im (CM) -0b (0)
C, Mb o* 0

where c is the wave amplitude (proportional to the Mach number of the acoustic

velocity) and Mb Is the mean flow Mach number at the burning surface. It Is

readily demonstrated that if one desires to assess the effects of mean flow

compressibility and spatial variation of the mean flow field thermodynamic

properties then higher-order terms (at least to O(Mb 2)) must be retained despite

the fact that Mb at the surface Is very small.* In order that the expansion

process does not lead to spurious results, It Is then necessary to modify the

limit process given In Equation 1 to the following:

lim (C/Mb2) - 0 (2)

, b * 0

That Is, c - o(Mb ) In the notation of perturbation theory.** In view of

* Mean flow Mach number at the burning surface Is typically In the range

0.001 < Mb < 0.01.

* If this restriction is not made, then It is necessary to evaluate terms of

order c2Mb to produce a valid asymptotic expansion.

,Mb



the small magnitude of Mb, this represents a severe restriction on the ampli-

tude of the wave. The difficulty appears when one attempts to correlate

experimental results by use of this theory. By definition, the data repre-

sent finite waves, and even the smallest discernable wave motions 
Imply M>>Mb2

which violates the fundamental assumption. Limitations of the sort described

can only be overcome by either reverting to a completely numerical solution

of the problem or by use of a more appropriate perturbation scheme. In regard

to the latter approach, it appears that a modification of the two-variable method

or method of multiple scales will eventually allow generation of analytical

solutions which are valid for a less limited range of values of wave amplitude

(Refs. 5 and 6). Such expansions can yield uniformly valid approximations

which would be of great utility In understanding the self-limiting character-

istics or "limiting amplitude" behavior of solid rocket instability. Such an

approach was foregone In the present study, since emphasis was to be on

devising computer codes whieh are now in widespread use. Thus the expansion

process Implied by Equation 2 forms the basis for the analysis given here.

All dynamic and thermodynamic parameters of the mean and oscillating flow

fields are expanded In both e and Mb. Figure 1 will aid the reader In Inter-

preting the degree to which we are attempting to Improve the linear theory.

Retention of terms of order (e, Mb) yields the linear stability model. In

what follows, we extend the model to Include effects of O(c, Mb ) in order to

assess the influence of nonuniform, compressible mean flow and mean chamber

thermodynamics. As in the "classical" model, combustion effects and the

Influence of the nozzle are represented by appropriate admittance boundary

El conditions. Also, viscosity Is assumed to be negligible except Insofar as It

affects the wave motions near the solid boundaries of the chamber. These

Influences can be accounted for by corrections to the surface admittance

(Ref. 7). However, vorticity generated at the boundary may be convected through-

out the flow field and subsequently affect both wave growth and oscillation

frequency (Refs. 8 and 9). Since these effects may be especially Important

In the presence of high mean flow Mach numbers, their Influence Is retained in

5. Cole, J. D., and Kevorklan, J., "Uniformly Valid Asymptotic Approximations
for Certain Nonlinear Differential Equations." Nonlinear Differential Equations

I and Nonlinear Mechanics, Academic Press, 1963.
6. Nayfeh, A. H., Perturbation Methods, Wiley, 1973.

7. Flandro, G. A., "Solid Propellant Admittance Corrections," Journal of Sound
and Vibration, Vol. 36, No. 3, 1974.
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the formulation. The analysis is carried out for the full three-dimensional

geometry with arbitrary shape. The results are applied to longitudinal waves

In a high L/D cylindrical grain to demonstrate their potential relevance in

the stability prediction problems. It is shown that significant changes In

mode frequency and growth rates occur; the corrections grow quadratically

with increases in the port length-to-diameter ratio L/D.

Ii

8. Culick, F. E. C., "Rotational Axisymmetric Mean Flow and Damping of

Acoustic Waves in a Solid Propellant Rocket," AIAA Journal, Vol. 4, No. 8,

August 1966.

9. Flandro, G. A., "Rotating Flows in Acoustically Unstable Rocket Motors,"

PhD Thesis, California Institute of Technology, 1967.
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2. ANALYSIS

In what follows, the equations of motion, boundary conditions, and

assumptions which form the basis for the analysis are first reviewed. The

mathematical strategy is then formulated and applied to the problem. Results

are given in completely general form. The reader more interested in the

applications than the details of the calculation might skip all of this

section except the review of the assumptions.

2.1. Assumptions

A rigid internally burning propellant grain is assumed. Only regions

of the flow which are subsonic are considered. Influence of the sonic nozzle
throat are represented by appropriate admittance functions. Although an

inviscid fluid is assumed (no viscous force terms are retained in the momen-

tum equations) the flow is allowed to be rotational; thus a realistic mean

flow field is accommodated (Ref. 8) and vorticity generation and trans-

port is represented. The combustion process is assumed to be concentrated

at the bounding surface of the chamber and its sensitivity to acoustic fluc-

tuations is represented by an admittance boundary condition as in the linear

stability analysis. The effect of regression of the burning surface as

propellant is consumed is neglected since the associated characteristic time

is long compared to the period typical of the gas oscillations and amplifi-

cation time for the waves. The gas is assumed thermodynamically perfect.

2.2. Equations of Motion

The motion of a compressible inviscid gas is governed by

_p + v. (pu) = o (3)
at

Iv

Some effects of rigid body motion of the combustion chamber on structure
and growth of acoustic waves are assessed in Reference 9.

8
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Du VP o (4)
P 6-+

DT y- DP

P'F " D - °  (5)

P - pT (6)

The equations are written in terms of the dimensionless variables:

P - PI/Po

P = pI/po

)I
u = 0

T = T'/To

r - r'/R

t = (ao/R)t'
i0

j where R is a characteristic chamber radius and a is the stagnation speed of

sound in the chamber. Dimensional quantities are denoted by primes and sub-

script o indicates the stagnation values of the principal thermodynamic vari-

ables (dimensional) In the absence of wave motion.

2.3. Perturbation Expansions

In order to extend the linear theory it is necessary to utilize double

perturbation series of the principal variables in terms of the two fundamental

scaling parameters M and c. M is the mean flow Mach number at the burning
Mb b

#+1' :

.. .. ..-. ......-



p(O) = 1 + Mb2  P + 0 (M (10)

p() = p(O) + MbP + 0 (Mb2)

u() u ( 10 ) + M b. ) + 0 (Mb2)

P reflects the effects of compressibility on the steady pressure distribution

in the cavity. P and U are usually determined as functions of position in

the chamber as part of the motor internal ballistics design process. For

complicated geometries they cannot be described in terms of simple mathemati-

cal functions, but can be handled numerically in the calculations.

2.4. Boundary Conditions

Since the combustion process takes place in a thin lamina of fluid at the

wall of the chamber, it is possible to represent the effects of combustion as

a boundary condition on the flow at the interface. This is accomplished by

introducing the admittance function A such that

n *u = -Mb (P)A

at the boundary. u and P are the (complex) velocity and pressure fluctuations

at the wall. n is an outward pointing unit vector normal to the chamber wall,

and y the ratio of specific heats is inserted for convenience. This notation

for A is the same as originally employed by Culick (Ref. 3). In later work

he altered this definition somewhat by defining n to be an inward pointing

normal unit vector and by omitting the scaling factor Mb from the definition.

To distinguish the two definitions, we put

A =b (12)
Mb

Iii
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where Ab is the admittance function normally used in the literature (Refs. 4

and 10). The use of the older notation is adhered to in this analysis since

higher-order expansions in Mb are evaluated--carrying superfluous M b's in

the already sufficiently complicated algebraic expressions is clearly not a

sensible procedure. It is well-known that the algebra involved in perturba-

tion expansions increases enormously as higher order terms are retained; it

is thus essential to use efficient notation. An additional advantage of

the present notation is that numerical values of JAI are in the range
-10<IAI<10 such that very tiny numbers and resulting additional possibility

of error does not affect the calculations. Note that A is a complex number:

A = A (r) + i A )  (13)

It will be shown that knowledge of both real and imaginary parts is necessary

in the proper evaluation of high-speed mean flow effects.

2.5. Derivation of Wave Equation

Equations (3) through (6) may be recombined to yield the set

1)P

+ yPV-u = u.VP (14)

Du
-u VP
-Dt + (15)

Utilizing expansions (9) and (10) one finds to 0(c) (retaining terms to 0 (Mb
2)),

Y(l) + YV.u = -M [U.Vp(l] - Mb2 [u V + Y )* (16)
atbb

10. Anonymous, T-BURNER MANUAL, CPIA Publication No. 191, November 1969.

12
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Mu(_ y-e-(I = Mb [VU.u() -. () X d) (17)

N 2 (1) (I'

Y Y

where = V X U is the inean flow vorticity.

The wave equation governing the acoustic pressure fluctuations is derived

ay subtracting the divergence of the momentum equation (17) from the time

derivative of the continuity equation (16):

2 plM _ 2 (i) = [b [0_ + yv-V(Uu( l )) - yV*(u ( 1) X l)]
t2 .. ... a2 p ~ ~ - ~(18)at

.b2 [_.k (u( 1-V ( , + V" Y + p Vp)]

Again, terms of order M b  are retained to correctly represent the influence of

the high-speed compressible mean flow. It is important to note that this
implies that all 0 (Mb2 ) corrections (e.g. P (11), u (1), etc.) must eventually
be calculated to properly evaluate the wave equation. in anticipation of oscil-

lations, it is appropriate to assume that all dependent variables exhibit expo-

nential time dependence:

eiKt (19)

(1) )Ktq._ (20)

y Is Inserted in equation (19) for convenience; 1) Is spatial distribution
* of acoustic velocity, and K is the complex frequency

K Q2 + iA (21)

13
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The amplitudes p (1) and q(l) may also be complex.

Thus equation (18) may be written in the form of the nonhomogeneous Helmholtz

equation:

V2 p(1) + K2 p(1) = M (1) (22)

where

g(1) =-CK (U-Vp ( )) - V (I) )  + V'(q ( ) (23)

[K((1) VP P~ I
+ Mb+[M K (_q() V _ + PV -q~

Y

+ -(Pvp + p VP)]

(1)
The boundary condition on p is found by combining the definition for the ad-

mittance functioi 111) with the momentum equation:

nVp(1) = Mbh() (24)

where

h ( ) 
= -iK A p(1) + n.[VU.q(1) _ q_(1) Xd, (25)

I
n _ nPVp() + p()VP]

and function h''' is to be evaluated over the chamber bounding surfaces. Equa-

tions 22 and 24 constitute a boundary value problem in which solutions of a

nonhomegeneous wave equation are sought which satisfy a nonhomogeneous Neumann

14
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boundary condition. It is useful at this point to further expand this set in

terms of the mean flow Mach number Mb. Note that the elgenvalue K must also

be expanded; the goal of the calculation is to find K correct to O(Mb 2) to

represent growth rate and frequency shifts due to the high-speed mean flow.

Put

(1) (10) (11) +b 2 p(12)

p +p +Mbp +

(1) =(10) (11) +Mb 2  (12) +... (26)

(10 _q + LA (+1 + (26) .

(10 )  (11) (1 1)  2 ((2) (12)

g =g(10) + Mb g(11)

h(I) = h(10 ) + Mb h

p(10) is the unperturbed mode shape of the acoustic wave; p etc. represent

distortions of the waveform caused by the mean flow perturbations. Inserting

expansions (26) into the wave equation (22) and boundary condition (24), one

finds a series of boundary value problems in increasing orders of Mb; the 0 (1)

problem obviously corresponds to unperturbed acoustic wave motion in the

chamber. Thus

V2 p(10) + Q(10)2 (10)•p = o (27)

nVp(10) = 0 on bounding surfaces (28)

0 I

V 2 p(11) + ()2 p() = (10) _ (10) (Q 00 + iA(ll)) p(10) (29)

15



nVp(11) =-h(10) on bounding surfaces (30)

0 (Mb2) :
v2p (12) + S (10)2 p (12) = (11) - [2 (10) (Q(11) +iA( l)) ( (31)

p = g -(32)_ S [2 (10) (Q (12) + iA (12)) + ( 1( 1) + iA (ll))2 p (10)

n.Vp(12) _h(11) on bounding surfaces (32)

where

(1)=~(10) (10) . (10) £ (10)
g(10) = ( (UVp - (10)v 'v (Uvp O ) + (0) v(Vp X) (33)

h(10) - _i (10) (A (r) + iA(i)) p(10)

S [( )(10) i (10)n " - I v u -V p - ' ) vx _]( 3 4 ).

0 ~l =1 ( ° a_~ p i ) 0 0 )]l + i A ~l ) ( . (10 ) )

S " ( ( ) i( ( )  +iA ((10)
• -V-v i - (10 )2

J v(u'vp(10)2i --(vP (10) x )/!R(10)2
__ _(o)

2  (3)

_ _ _ _ -(10)

+ V(q X ) VP

PV 2 p (10) + V.v (ppO)

16
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and

h(ll) = -€ (10) Ap(ll) ( ( ( 11) + (I ))Ap ( 10) (36)

+_U-q ( 1 1 ) - l - I v(Pp10+ n • _q _q X " .

Previous comments on increasing algebraic complexity with order of expansion

are clearly appropriate. Expressions for the velocity amplitude ( (and its

* expansion in Mach number Mb) are found in terms of pressure fluctuation p(I) by

use of the momentum equation. Thus

q(10) =ivp l °

and q(ll) = V p(Il ) ( ) + i(1)) Vp(lO) + V(U.Vp(O)

(37)

+ (Vp (10)(10 10)

2.6. Zeroth-Order Calculations

Equations (27) and (28) represent the classical acoustics of the combustion
chamber. Eact solutions can be found for simple chamber geometry; numerical

I techniques provide information on mode shape p (10) and frequency 0 (10) for the

sometimes complicated configurations used in solid propellant rockets. Since

this phase of the problem is thoroughly documented in the literature, no more

need be said at this point except that the validity of the higher-order growth

rate and frequency calculation obviously depends on having correct estimates for

p(10) and P(10) for each chamber mode. The unperturbed frequency is found from

the eigenvalue in dimensional form (cycles/unit time) to be

17
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f(0) a 9 P O - (38)

2.7. First-Order Calculations

Equations (29) and (30) govern what is commonly referred to as the "linear

stability" model of combustion instability. In this calculation, one is seldom

interested in the O(Mb) waveform distortion p (1;") what is required is an esti-
Il (11)

mate for the growth rate A (1) and frequency correction Q(11) Culick (Ref. 3)

derived expressions for these quantities by the Green's function method. A

more direct method is to multiply (27) by p (H) and subtract it from (29)
(10)

multiplied by the unperturbed mode shape pO. Integrating the result over

the chamber volume, employing the divergence theorem and the boundary con-

ditions (28) and (30) yields after a few lines of algebra:

(1) + i^A) 129()E2 (0)p (0)dV + h(10 )p(10)  (39)

2Ql) (10) E(2O S

where g(lO) and h(10 ) are given by equations (33) and (34), and the normaliza-

tion constant E is found from

E 2 = (10)2 dV (40)

*V

pi

r •-

. o



Equation (39) can be further simplified (see the papers by Culick for details)

by application of vector integral theorems with the results:

(11) A( 2 (()2= ... dS (1.1)

E2 2

A(I1r)() dS +1 U v(p (10) 2  dV (42)
E) 2 EL

Growth rate (dimensional) a is found from (42) to be

a Iii

a = - M A'('')(43)

where R is the scaling length for the chamber; a is the speed of sound.

Equation (43) forms the basis for all stability prediction models. The results

are discussed at length in the literature (c.f. Refs. 3, 4, 8, 10, etc.) and

no more need be said except that, again, it is obvious that higher-order ap-

proximations depend on correct estimates for A il' and Q(l . The 0 (Mb) fre-

quency correction Q() is usually ignored in stability calculations. This is

probably due more to lack of information regarding the imaginary part of the

admittance than to it being a negligible contribution. The frequency correctiol

in cycles/unit time is found from Ql to be

ta
f (1) =(2_. Q) 11 (44)

2nrR b

The superscript is used to emphasize the order of the estimate; higher-order
approximations are the goal of this study.

19
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This expression is evaluated in the results section of the report for typical

sets of parameters to establish its potential importance.

Another part of the first-order formulation is required before the 0 (Mb 2

2.bcorrections can be determined. Examination of the M equation shows that one

must know the mode shape correct to 0 (Mb) before the higher-order equations
can be evaluated. That is the waveform correction p (ly must first be deter-

mined. There are two approaches to this problem. One is to seek the eigen-

functions for equation (29) directly. This can be done analytically only for

simple geometries. This method is demonstrated in a later section of the

report. A more general method is to use a Green's function solution of

equation (29) using expansions in terms of the unperturbed eigenfunction (Refs.

3 and 4). This yields an infinite series represeitation for p

_ 2 2tf g(lO)p(lO)dv h(10)p(lO)dS (45)
B 2 (10) (10)2)a N -(Q Q V

where N refers to the particular mode of oscillation in question; S identifies

each of the remaining infinity of modal eigenfunctions.* It is the experience

of the writer that this is usually a very slowly convergent series. It is

possible that direct numerical solutions of equation (29) will be a more ef-

ficient technique for determining the mode distortion effects.

2.8. Second-Order Corrections

We finally arrive at the target of the present study--to determine the

effects of mean flow to 0 (Mb2 ) on stability and frequency. It is important

to note that no influence of mean flow compressibility or variation of mean

For three dimensional chambers N (and 0) are three-integer sets which identify
the mode.
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chamber thermodynamic parameters Is reflected in the results of the first

order c.lculation; no questions regarding high-speed mean flow effects can

be answered by use of Equations (41) and (42). We now calculate 0 2) and A(2)

which reflect the effects of interest. Multiplying Equation (27) by p(12)

and subtracting (31) multiplied by p(10) yields

Sg(11) p (10) dV + h(11) p(lO)ds

1(12) +(12) - 1 - E2(A 0 1) +2A 11))2
2E ()E 2  (46)

- (10)lQ(11) +1A(11))f OW() p(11) dV

after Integration over the chamber volume and application of the boundary con-

ditions. Evaluation of these expressions gives the required Information. It

is not necessary to determine p 12) explicitly unless even higher order cor-

rections are required.

The application of these results Is demonstrated in the following section

for a typical motor configuration. It is important to notice that the form of

the frequency and growth rate corrections is identical to the first order ex-

pression. The significance of this observation is that the very same type of

calculation as used in the linear stability model is required to determine the

corrections. Once the waveform distortion is known, the rest of the calcula-

tion is handled by simply adding correction terms to the integrals already

evaluated in the standard codes. The expressions are somewhat more complicated

algebraically than their first-order counterparts, but they are easily incor-

porated by simply adding them to existing codes. In addition to the unperturbed

mode shape data utilized in the standard codes, one must provide the following

additional Input:

1. Waveform distortion (p(l1))

2. 0 (Mb2 ) pressure distribution (7
Ib

*3. Reasonable estimate of mean flow velocity distribution (U)

The appendix Includes a discussion of methods for estimating the O(Mb
2)

* compressible pressure distribution and mean flow velocity pattern In a tubular

grain.
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3. APPLICATIONS

The purpose of this section is to demonstrate in detail the application

of the theory set forth in the previous parts of the report. A simple motor

geometry is analyzed to enable analytic determination of all quantities of

interest.

The simplest configuration which exhibits the features we desire to

emphasize is a tubular grain with high L/D (length-to-diameter) ratio. In

what follows, the effects of high-speed, compressible mean flow on the fre-

quency and growth rate of longitudinal waves in such a motor are determined;

the results are directly applicable to several tactical rocket designs cur-

rently under development. Figure 2 shows the geometry assumed and the co-

ordinate system. The Appendix contains a detailed analysis of the mean flow

pattern and thermodynamics appropriate Eo this configuration.

Assuming longitudinal modes of oscillation (B = Z = I, 2, 3...), solution

of the zeroth-order equations yields the familiar 7esults:

= 10 cos K ZZ (47)

Q(10) K9 -iLR (48)
2 L

where Z is the mode integer (Z = I is the first longitudinal mode, etc.). The

unperturbed frequency (from eqn. 38) is

( ,a
f() o (cycles/unit time) (50)
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a very familiar result. We desire to determine 0 (Mb2 ) mean flow influences
2

on this frequency and the corresponding growth rate correct to 0 (Mb2).

To apply the linear stability equations (eqn. (41) and (42)) we must

first determine the mean flow field correct to 0 (Mb). Using the results of

the Appendix, one finds that

U = 2z ez (51)

is a sufficiently accurate statement of the axial velocity component averaged

over the chamber cross-section. Since only longitudinal oscillation is

assessed, the radial velocity component is immaterial. The corresponding mean
V 2

field pressure variation is ,.I z All integrations are easily performed

and one finds

,E 2 = (L-) (52)

2R

Q(11) = A (53)

A(1) - I - A(r) (54)

where an inert surface is assumed at the head-end and the nozzle admittance is

ignored to keep this sample calculation as simple as possible. Chamber radius

R is used as the scaling length. Application of equations (43) and (44) leads

to frequency and growth rate results correct to 0 (Mb):
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f f f(0)+ f(0) kao 0 + A (W) (55)(= - F+MN (A)(-- l (55)es
(-unit time

= 0() Mbf(O) 2 (L) (A(r)l) (56)b. R

Converting to the more familiar admittance notation we find:

4f (0 ) (L)(Ab(r) _ Mb + 0 (M2 (57)

or

4f(O) L )(Rb-2M + 0 (Mb2) (58)

where Rb ; A + M is the response function (Ref. 10). In an actual motor

calculation these results would be supplemented by nozzle losses, particulate

losses, etc.
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To proceed further, it is necessary to determine the waveform distortion

by solving equation (29) for p(1i). For the cylindrical geometry, the first-

order velocity distribution is

q(0) = i sin (k z) ez  (59)

(10)
where e is the axial unit vector and function g is

(10)
, ( = 4ik, [cos (k~z) kfz sin (k. (60)

Thus the differential equation for p(1l) reduces to:

d2P (11) + k 2 p (11) 4ik z sin (k z) + 4ik 2k (()+ AM cos(kZ) (61)

and the boundary conditions (from equation (30)) reduce to:

dp 0 at z = 0 (Head-end)

(62)

dp = 24Yl) cos (or) at z L (Nozzle entrance)
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Soluti:on s are found easily by conventic'na: richroGm noj t:ie ic,_ult

2 (r)
K, -Lz c (k 7, + ~(A" +I4' A

Figurc 3 shows plots of the waveform p = p(' --1) h P' fr t .r c ko

,ontuC~nal modes. A the imaginary part o& the sur4 W c omr~:c

oelJy 7 sinal effect or the real part of tho rrTcf %r~p; C~ p ;' c' i

wrhA a lyp~cal value, and severa' v~v.~ hse '"0t'

m ttance, A(n/. 'he most 7rlportant feature o' -he 'cus s :io gcnerc:' on

rvb tlesrn M) *rag~nary part of the moce sIhapc. As w. !3( sH.,wn -,hi;,-

cx 0t 's-ronC in~uence or. the chamber- trec-ucrc No-c K t :hc i

:i * ko, C (-n-7tv ,y o' the imag~nary mod c o, or > h( pi j

-h,- sur'ace adm ttarce. -he range of VPle o1 Ae (r ',ivown -ic ty');ct- oi ci

.10 o~b :o e tc'rni'ne -he eff-ct- o" h 0-, eet- rlcor (~ n

"*A'4h r,) 0 - ,qne charmbe-' -cqi.ency by usinc ecual or (4A'. -he ve'octv wive-

*01 ~eI 'StO-* On '0P'- CCLP01 ( 7 s

* K (~Cos (64)

+ k z 2  **n"k7)

1 'ineeded %or evaluzt-iq the integ-a's 'r ecuit on (46).
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Function g for the simple geometry assumed is

(iI) E B--l 3 z3 si koz
I (4+IT) + cos(k z) + 4k z sin(k Z)

+ [(:-,IO) + 2( (SB-C) Kz sin(k z) (65)

+ [4cB- 16- (- I- k9
2 z2 cos(kz)

4-1 (1 (1 n " I.' are used to simplify

' I cjebr 3. n t err, ,, of the - amr nota iion, fur cti ,r; h

l C(A + fA ) cos(k.z) -. (A ( + A( ))B k z sin(k z) 66)

(A .- .j k z cos (kQ?)

/ 2 siriV- ?) J :24';;) f 4,'B K) z cos(k,.')

n - 2 " ( ] .'1+ i6 - z sin(k~z) (67)

+2 k 3 z 3 cos(k z)

boundary surfaces.
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Figure 3. Mode Shapes for the First Two Longitudinal Modes.



The integrals can now be performed and (after some tedious algebra!) one tino

(12) 4L(')A (E) 2 Ar
(-L) (I- - ) [1 - 2 cos(z.f) -- (68)

Imd

(T+2) 2 oS,  
- (3 +

A~r)2

(12 L ~TI 2 [2) (65)

A T.i 2
- + ZA I [j2 - 1)

L +
2

( n) (1 ) d i -
where the previously calculated values of , and hae :' C;

lized. Pw'CCe of darpinq would thus alter these resul t:, 1. Lt they

sentative of the influence of the high-speed mean fcvw. Converting to dim,',-

4. sional form, the qrowth rate and frequency corrections are

0

30

i

. "

-MAN,



3 yl

(n+ 2) cosr - - (3 +

+ (")2 [2 cos(-i) T 0

f (2) 4f (0)Mb2 L 2 1 2 (70)

+ 2A~ r ) [I - 2 cos(n)-(2) T)

ij.2 (r)[ (A )

(2) 1f(0) b2 L 2 AWi  (Z, )2 A~r
a I= T (D) ( zr) 2 [2 cosk +- 3 + 2 1(71)

Growth rate and frequency are corrected by adding (70) and (71) to (55) and
(56) respectively.

Plots of bhese expressions are displayed in Figures 4 through 8 for first,

A -second and third longitudinal modes. Note that the growth rate correction is
linearly dependent on the imaginary part of the wall admittance function AW."

i Since AWi  is positive for lower frequencies typical of longitudinal oscilla-

Stions, this is an additional source of acoustic gain; for higher frequencies,

high-speed flow contributes additional damping. The magnitude of the growth
rate increment is also dependent on the real part of the admittance as illus-

II•trated and is proportional tothe sqaeof th otL/D ratio. It is clear

that this could be an important growth rate element in motors with high L/D.

i
o  For instance, in a tactical motor with L/D = 20, M b = 0.007, =1.2, A t r  2,

• AWi  2 and f - 300 Hz, the growth rate estimate would be increased by about

45 sec -  As shown in Figures 6 through 8, the frequency shift depends on

• .*31



A (r ) and the square of th4e motor L/D. A tactical motor with the parareter-s

just mentioned would experience a frequency shift of about -90 Hz (30 percent

change) which is clearly significant. Since effects of damping phenomena have

not been included in these numerical calculations, the growth rate modification

and frequency shifts are most likely not this large in the actual motor.
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4. CONCLUSIONS

The analysis presented in this report demonstrates the importance of

several factors which are not included in standard solid propellant rocket

conbustion stab I ty preol iccion,,. Th , ior:,iaI 1 1nea ri7ed modu-I of acoustic

instabi 1 ity ;s ,,. ,,d o;, hi, - i,,,,ir: t orio th,- eo].n i)-essure ficid is uniforr:-

and that the 1 or is inc yrebs we. [S, :Arv,,ni arcalysis shows that in high

L!D rockets or in any 'ilotor crli;,uratin~n whjich exhihit hiqh speed mean flow,

f ) compr'-,sibi ityd and rtde ' ' r 3cco o for. Fre-

quency shifts of is much as 30 per,-nt, oi the inear acoustic frequenct pr2 -

d ti n', i nay he b .- h /D - t

!~ ~~t r,- rt, , ,~ ,, !,1 . r, -c . L ' :'. c , rii '<, , ,t;r~cr , g ; iL

c m ,_ c . wi h".e It . ,

thaiL ana yytica I slo t ions ks imi lat toc thc (-nc ,,r o s: :: d i;t o(r i Ong I t:6i na3

mI)LIC i n i t ubu l ; I r ;:, bo c, t-d .,,it I , .:, , - , , ; .

analytical so luticn right i -i ud ,: Il l r , I - , ;,r, h . tuL,. , r

i01 0 n r , I~ 2lP- 1)~ h i' (;n pn J. . -

zl,-s. Such resul tI w-ouI1 prove , .c'U i : ., t " ( (I eve oped

later f, the more gceneral pronle. .

ii
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APPENDIX

COMPRESSIBLE, ROTATIONAL AXISYMMETRIC
FLOW IN A SOLID PROPELLANT ROCKET

1. INTRODUCTION

Required for the assessment of high-speed flow effects in acoustic com-

bustion instability is a practical and realistic model of the compressible mean

flow in the combustion chamber. Such a model would also be of obvious utility

in studies of erosive burning, growth of metallic oxide particles and velocity

coupling effects. Results from detailed computer models of the chamber flow

are usually not in a form useful in theoretical investigations; one-dimensional

models do not represent the geometrical flow features which are crucial in the

problems mentioned.

The incompressible axisymmetric solution for steady rotational flow in a

cylindrical rocket grain devised by Culick (Ref. 11) is the starting point

for the present investigation. It was shown by Dunlap et. al. (Ref. 12) that

the Culick model closely satisfies the viscous equations of motion, and the

results were experimentally verified using a cold flow apparatus. In what

follows, Culick's solution is generalized to Include the effects of compressi-

bility in the.mean flow field. The results of the extended analysis are ver-

fled by comparison to a one-dimensional numerical solution. An Important feature

of the model is its simplicity; this greatly enhances its value in theoretical

studies of the type described above.

2. ANALYSIS 
LbL41i& i F IAW J

The steady, compressible, rotational axially symmetric flow of a perfect

gas Is governed by

A 2 "t 1r jz2 "- p  (Al)

11. Culick, F. E. C., "Rotational Axisymmetric Mean Flow and Damping of
Acoustic Waves in a Solid Propellant Rocket," AIM Journal, Vol. 4, No. 8,

August 1966, pp. 1 62-1464.

12. Dunlap, R., et. al., "Flowfleld in the Combustion Chamber of a Solid
Propellant Rocket Motor," AIM Journal, Vol. 12, No. 10, Oct. 1974, pp. 1440-1442.
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L2 (rp) r~

P = y (A3)

4

where the continuity equation has been exactly satisfied by specification of

*the stream function Q such that

u ( )
u = - -- A4

w =(A5)

u and w are the radial and axial velocity components respectively. Equation

Al is the vorticity equation; C is the azimuthal component of vorticity. Radial

and axial vorticity components are zero in axisymmetric flow. Equation A2 is

the momentum equation and Equation A3 is the energy/state relationship. Viscous

force terms do not appear explicitly in the momentum equation because the ap-

propriate length scale is the chamber radius. This makes the viscous forcc

much smaller than momentum and pressure effects; no boundary layer of the

classical type is formed and vorticity fills the entire flow field. All flow

properties are made dimensionless in terms of the stagnation thermodynamic

properties a., Po and po at the head-end of the chamber; chamber radius R is

the characteristic length. Boundary conditions are

u =w =0 at r = z =o

u =- Mb at r - I

w = 0 at r - I (A6)
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The latter constraint requires the flow to satisfy the no slip condition at

the burning surface; this introduces vorticity into the flow and also forces

it to behave as a viscous fluid 2.

The problem is readily solved by standard perturbation techniques; the

mean flow Mach number Mb at the burning surface is the appropriate small

parameter. The expansions are

(0) + 3 += b  b  +..

p I + Mb2 (I)+

2 p(I)+ . .
P= I + Mb  +

"3~ - +N . (A7)

The first order solution is governed by

3r 2 r ar 3z 2

where 4(o) T r(O to satisfy the boundary conditions specified. This differs

from the vorticity used by Culick (Ref. 11) by an additional factor of w. The

solution to Equation A8 Is

.2.0 s n 2 9



and the corresponding velocity components are

u(0) 1 si 2

W(O) = z Cos (AlO)

Note that the next terms in the expansion for i are 0 (Mb 3 so that Equation

AIO represents the velocity field to a high degree of precision.

Equation A2 is now expanded to yield information regarding the thermody-
namic properties of the flow field.

Retaining terms of 0 (Mb2 ), one finds

- V P 1 
0 IT 

2, (o)  V (o) + V, -V (° )2
2 " VIP(°0- (All)

22

Noting that (o) V(o) = (o)2 ,'-equation All can be integrated directly
2

with the result

p 2 (0) ()
() y 2 (O) + V*. (A12)

2 2L' r

The constant of integration is zero to satisfy stagnation requirements at the

head-end. Inserting Equation A9 yields
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2

P0() - I22 + sn(Al13)
2 2

and using Equation A13 In an expansion of Equation A3 gives

sin 2

p I - 22 + sn L_)(A14)
r 

These functions represent models of the compressible thermodynamic prop-

erties correct to 0 (Mb").

3. RESULTS

The analysis yields a simple and practical representation for the

flow field in a tubular rocket grain.

Rewriting the equations in terms of physical variables,

r(R n/2\ 4 (- fr2 1

= Vb [r) sinU!2 e r +i R') Co (M b)

P= Po 1 -)2) + ( sin 2 (j) )+ O(M

4~~ ~~ 2\v R 2  /\
OT= TO - ( aI0o) r -  sin r

2 ) + O(Mb4 ) (A15)

where vb pr/ ° - a Mb is the velocity at the chamber boundary due

to efflux of combustion gases. r and z are the radial and axial position

c coordinates and R Is the chamber radius.

* Figure Al shows the streamline pattern corresponding to the above so-

lut ion.
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Figure A2 illustrates the velocity prof;les. The upper plot shows the

axial velocity distribution; the lower shows the radial velocity profile. The

axial velocity is conveniently referenced to the centerline speed

Vc =Rb (A16)
c R

while the appropriate reference speed for the radial component is the efflux

velocity vb-

Figure A3 shows the pressure variation along the motor axis. It is

apparent from Equations A15 that the pressure varies quadratically with

axial position. At the centerline, the variation is given by

Pc-Po = _ (z)2 (A17)( PoMb 2)
where the pressure scale is the reference dynamic pressure based on chamber

pressure at the head-end and the burning surface Mach number Mb. A typical

value for yPO b2/2 is 0.02 (corresponding to Po z 600 lb/in2 and Mb - 0.007).

At the burning surface, the pressure variation is

AP = 2 (A18)

Thus the radial pressure gradient is much smaller than the axial component.

Since the flow field predictions based on the present analysis are not

valid when sonic speed is reached, It is necessary to calculate the limiting

axial position. It is readily shown that a Mach number of unity Is exceeded

if z/R exceeds the critical value
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n~b (A19)

where Mb is the burning surface Mach number and y is the ratio of specific heats.

For example, if y = 1.2, Mb = 0.007, (z/F) max m 43.4.

Thus for these typical conditions, sonic flow is reached if the motor L/D ex-

ceeds about 22.

4. HIGHER-ORDER CORRECTIONS

The results presented above suggest that a continuation of the perturbatio

solution can yield a more accurate representation of the flow field. Some ini-

tial attempts in this direction are presented in this section. It should be

emphasized that the impact of the initial assumptions is likely to be of crucial

importance in determining the validity of the higher-order correction terms.

In particular, neglect of viscous terms and the influence of turbulence and the

turbulent transition process in the formulation may make such efforts of aca-

demic interest only. It is the opinion of the writer that attempts to p;'.duce

a theory for motors with large L/D should incorporate a turbulent- flow

model in a rational way. Methods analogous to development of turbulent pipe

flow might be appropriate. Considerable numerical work has been accomplished

in this area, notably the work of Beddini (Refs. 13 and 14), which indicates

the importance of viscous elements of the flow field. Other experimental studies

(Ref. 15) also suggest a similar conclusion, although some features of the test

procedure and their influence on turbulent properties of the flow are in ques-

tion. It is quite likely that the most desirable feature of the present analy-

sis - its simplicity - will most certainly be lost if viscous effects, especially

turbulence, are explicitly included. In spite of these considerations, the

attempt is made in what follows to extend the inviscid model to O(Mb 4). It will

be shown that the corrections are apparently only important for large length to

diameter ratio combustion chambers.

I3. Beddini, R. A., "A Reacting Turbulent Boundary Layer Approach to Solid
Propellant Erosive Burning," AFOSR-TR-77-1310, November 1977.

14. Bddini, R. A., "On the Scaling of Solid Propellant Erosive Burning:
The Threshold Condition," Proceedings of the 15th JANNAF Combustion
Mc'eting, Newport, R.I., September 1978.

i5. Hutsmann, K., and Echert, E. R. G., "Untersuchungen uber die Laminare
Stromung und den Umschlag zur Turbulenz in Porosen Rohren mit gleich-

mass iger Einblasung durch die Rohrwand," Worme und Stoffijbertragunq,

Bd. I, 1968, s. 2.
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The stream function to O(M 3) Is governed by

32V(1)+ a 2Vp 0 VY (0) - rp 0-) (0) rp (A20)

ar 2  r Br az2

and the momentum balance to 0(4b 4) requires that

( ((O 0). VT(0 +  [ (0) *T(I) (i)VT(0).Vu(0)1 (A21)

2r2 r 2

r Y

(0) 2 (0) v I  O ()0 = ()

where P(0) . ir¥(0) and P(8) and T( 0 ) are given by Equations A9 and

A14 as before. The boundary conditions are

__(_) (1) aY(o)
3T"-r--- 0 aP r at z 0 or r I (A22)

and

~ (1) iay(°)
az az at z 0 and r 0 or r- I (A23).~ z 3)zI
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A solution which satisfies these requirements is

ir2

2~ 23
0i sin )  r 2z2 i

= 2 3 + Iz (A24)

The corresponding velocity components are

u () sin 2 i (A25)
U 2r - r21 A5

and

C2 2 2 2 (T)

(l) = z cos [ z + sin 2 1 (A26)

Thus the velocity field is determined to O(M b3) .  Notice that only the axial

correction is likely to be of any consequence; in fact, an appropriate approxi-; mat ion is

tw ~l T 3 z 3 C s r 23 os 2 (A27)

52

'I
I

!I wim~



since the other terms are of order zMb or smaller. Thus the corrected center-

line pressure distribution is to good approximation:

'YP Mb rz 2 b + iMb2 4z

Po 2 3 2' + O lb 4  (A28)

in physical variables. For typical chamber parameters, the correction is of

the order of 23 percent for (.-) = 40.
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