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NOTICES

When U.S. Government drawings, specifications, or other data are used for

any purpose other than a definitely related government procurement operation,
the Government thereby incurs no responsibility nor any obligation whatsoever,
and the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not to be
regarded by implication or otherwise, or in anv manner, licensing the holder
or any other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be re-
lated thereto.

FOREWORD

This report was prepared by the author while he was working as a visiting
Professor in the Combustion Section (PACC) of the Propulsion Analysis

Division (PA), of the Air Force Rocket Propulsion Laboratory, Edwards AFB, CA.
This report documents an investigation conducted during the time period June
through September, 1978, as part of the program entitled "In-House Combustion
Analysis" (JON: 573010CM). The technical program manager for this program
was Mr Jay N. Levine.

This report has been reviewed by the Information Office/TSPR and 1s releasable
to the National Technical Information Service (NTIS). At NTIS 1t will be
available to the general public, including foreign nations. This technfcal
report has been reviewed and is approved for publication; it is unclassified
and suitable for general public release.
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1. INTRODUCT ION

The current stability prediction calculations for solid propellant rocket
motors are based upon a simple first-order perturbation solution of the in-
viscid equations of motion for the combustion gas flow in the chamber. Thus
there is concern over the applicability of the standard stability prediction
techniques to cases where high-speed mean flows are present. Such flows are
likely to occur in tactical rockets with large length-to-diameter and low
port-to-throat area ratios. Nozzleless motors represent an extreme example
of this type of design; flow velocities may approach the speed of sound at
the grain exit. High-speed flow effects may also be significant in slots
and fins and around submerged nozzles especially early in the motor run when
burning area is large and flow channel area is smell. The purpose of this
study is to assess the impact of high-speed mean flow on the stability pre-
diction approach and to generate correction techniques to be applied to exist-

ing combustion instability models.

High-speed mean flow affects the stability calculation in several ways.
The acoustic wave forms predicted in the linear model are distorted and the
mean thermodynamic properties such as the speed of sound may vary significantly
from point to point in the chamber. These variations may alter both the pre-
dicted growth rates and also the frequencies for the acoustic modes. Correct
frequency calculations are important since they are crucial in mode identifi-

cation in an unstable motor.

A1l acoustic combustion instability models in current use employ a '"line-
arization' of the inviscid equations of motion. This approach was first
utilized by McClure (Refs. 1 and 2) and his coworkers and developed more fully
by Culick (Refs. 3 and 4). Two Parameters representing respectively the ampli-

1. Bird, J. T., McClure, F. T., and Hart, R. W., "Acoustic Instability in the
Transverse Modes of Solid Propellant Rockets,' 12th International Astronautical
Congress, Academic Press, 1963.

2, Cantrell, R. H., and Hart, R. W., ""Interaction Between Sound and Flow in
Acoustic Cavities: Mass, Momentum, and Enerzy Considerations,' Journal of the
Acoustical Society of America, Vol. 36, No. 4, April 1964,

3. Culick, F. E. C., "Acoustic Oscillations In Solid Propellant Rocket
Chambers,' Astronautica Acta, Vol. 12, No. 2, 1966.

4. Culick, F. E. C., "Interactions Between the Flow Field, Combustlion, and
Wave Motlons In Rocket Motors,' NWC-TP-5349, Naval Weapons Center, China Lake,
Californla, June 1972,
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tude of the acoustic wave and the mean flow speed are used fn expanding the
pertinent physical equations describing the gas flow. Combustion effects are
represented by admittance boundary conditions at the chamber walls, nozzle
entrance and head-end closure. Only linear terms In amplltude and mean flow
Mach number are retained and the result is a simple formula for the growth rate
which can be evaluated by utllizing 1inear acoustic mode shapes In Integrals
taken over the surface and volume of the chamber (Ref. 3). It Is clear that
this procedure is valld If wave growth at the stability boundary only is re-
quired, and If an Incompressible, uniform mean flow Is present. The assumption
of small wave ampllitude results in what is called an "initially valld" approx-
imation of the growth process of the waves. Thus the solutions can be consid-
ered valid only at the Instant growth begins. It may seem unnecessary to
emphasize this point since prediction models indeed are based on the stability
boundary idea. However, an understanding is crucial If one seeks to Improve
the linear model by evaluating higher-order terms in the asymptotic expansions.
Specifically, the linear model assumes that the small parameters are related by
the limit process
lim (e/M)) = 0

€, Mb* o

where ¢ is the wave amplitude (proportional to the Mach number of the acoustic

(n

velocity) and M_ Is the mean flow Mach number at the burning surface. It Is

readily demonst:ated that If one deslires to assess the effects of mean flow
compressibility and spatial variation of the mean flow fleld thermodynamic
properties then higher-order terms (at least to O(sz)) must be retained despite
the fact that Hb at the surface Is very small.* [n order that the expansion
process does not lead to spurlous results, it Is then necessary to modify the
l1imit process given In Equation 1 to the following:

Tim (e/m %) = 0 2)

€, "b + 0

That is, ¢ = o(Hbz) in the notation of perturbation theory.** In view of

¥ Mean flow Mach number at the burning surface Is typically in the range
0.001 < M, < 0.01.

** |f this restriction Is not made, then it Is necessary to evaluate terms of

order eznb to produce a valld asymptotic expansion.
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. § (Ref. 7). However, vorticity generated at the boundary may be convected through-
'

1 B, WNayfeh, A. H., Perturbation Methods, Wiley, 1973.

the small magnitude of Hb’ this represents a severe restriction on the ampli-
tude of the wave. The difflculty appears when one attempts to correlate
experimental results by use of this theory. By definition, the data repre-
sent finlte waves, and even the smallest discernable wave motions imply s>>Mb2
which violates the fundamental assumption. Limitations of the sort described
can only be overcome by elther reverting to a completely numerical solution

of the problem or by use of @8 more appropriate perturbation scheme. In regard
to the latter approach, It appears that a modification of the two-variable method
or method of multiple scales will eventually allow generation of analytical
solutions which are valid for a less limited range of values of wave amplitude
(Refs. 5 and 6). Such expanslions can yleld uniformly valld approximations
which would be of great utillty In understanding the self-1imiting character-
Istics or '"limiting amplitude' behavior of solld rocket instability. Such an
approach was foregone In the present study, since emphasis was to be on
devising computer codes whigh are now in widespread use. Thus the expansion
process implied by Equation 2 forms the basis for the analysis given here.

A1l dynamic and thermodynamic parameters of the mean and oscillating flow
flelds are expanded In both € and Mb' Figure 1 will aid the reader in Inter-
. preting the degree to which we are attempting to improve the 1inear theory.

Retention of terms of order (e, "b) yields the linear stability model. In
‘ what follows, we extend the model to Include effects of 0(e, Hbz) in order to
‘ assess the influence of nonuniform, compressible mean flow and mean chamber
j thermodynamics. As In the ‘classical' model, combustion effects and the

Influence of the nozzle are represented by appropriate admittance boundary

;g conditions. Also, viscosity Is assumed to be negligible except Insofar as It

affects the wave motions near the solid boundarles of the chamber. These

influences can be accounted for by correctfons to the surface admlttance

out the flow fleld and subsequently affect both wave growth and oscillation

frequency (Refs. 8 and 9). Since these effects may be especially Important
In the presence of high mean flow Mach numbers, thelr influence Is retalned in

! 5. Cole, J. D., and Kevorklan, J., "Uniformly Valld Asymptotic Approximations
: for Certain Nonlinear Differential Equations.' Nonlinear Differentlial Equations
}7 and Non!inear Mechanics, Academic Press, 1963.

7. Flandro, G. A., TSolid FrOpQIIant Admittance Correctlions," Journal of Sound
and Vibration, Vol. 36, No. 3, 1974,




"uolloy 40 suojlenb3 ay3l jo uolsuedxy °| 2.nbiy

. bulweasls otisnode

) $393433 apni||due saAem Aq juodsuedy
m At w>mewwM“Mw wn3usuow Apeays s$d)3snose 5
. pue A3111q! UO11403S P WIOSIABM '
1 MO|j ueadw : : 483U [ UON,, 3

e uaaMIaq uo|lIdeII3U! 16199449 [4

1 Jeaut |uoN apnli|due aaem 33Uy

o
1
$3129349 a3ea yimoub Al1|1qe3sul

) 131ys Adsuanbauy uc13snquod

a UOI1403151p WI0JBABM 2131snode jo s211snooe 3
¢ 1§329439 A1 |1q)ssasdwod Ado3y3 Jesunq Jeauly

HM MO|J uedy

. o U 0= FEVIT)

2 ———- —— T v.\\i‘ - -




the formulation. The analysis Is carrled out for the full three-dimensional

geometry with arbitrary shape. The results are applled to longitudinal waves
In a high L/D cylindrical grain to demonstrate their potential relevance in
the stability prediction problems. It Is shown that signlficant changes in
mode frequency and growth rates occur; the corrections grow quadratically

with increases in the port length-to-diameter ratlo L/D.

8. Culick, F. E. C., '"Rotational Axisymmetric Mean Flow and Damping of
Acoustic Waves In a Solid Propellant Rocket,' AIAA Journal, Vol. 4, No. 8,
August 1966.

9, Flandro, G. A., "Rotating Flows In Acoustically Unstable Rocket Motors,"

-

PhD Thesis, California Institute of Technology, 1967.
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2. ANALYSIS

In what follows, the equations of motion, boundary conditions, and .
assumptions which form the basis for the analysis are first reviewed. The
mathematical strategy is then formulated and applied to the problem. Results
are given in completely general form. The reader more interested in the
applications than the details of the calculation might skip all of this

section except the review of the assumptions.

2.1. Assumptions

-~

A rigid internally burning propellant grain is assumed. Only regions
of the flow which are subsonic are considered. Influence of the sonic nozzle
throat are represented by appropriate admittance functions. Although an
inviscid fluid is assumed (no viscous force terms are retained in the momen-
tum equations) the flow is allowed to be rotational; thus a realistic mean
flow field is accommodated (Ref. 8) and vorticity generation and trans-
port is represented. The combustion process is assumed to be concentrated
at the bounding surface of the chamber and its sensitivity to acoustic fluc-
tuations is represented by an admittance boundary condition as in the linear
stability analysis. The effect of regression of the burning surface as
propellant is consumed is neglected since the associated characteristic time
is long compared to the period typical of the gas oscillations and amplifi-

cation time for the waves. The gas is assumed thermodynamically perfect.

2.2. Equations of Motion

. The motion of a compressible inviscid gas is governed by

g_%-g-v. (p_u_)=0 (3)

. T R

« Some effects of rigid body motion of the combustion chamber on structure .
and growth of acoustic waves are assessed in Reference 9.
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The equations are written in terms of the dimensionless variables:
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t = (aO/R)t'

where R is a characteristic chamber radius and a, is the stagnation speed of
sound in the chamber. Dimensional quantities are denoted by primes and sub-
script o indicates the stagnation values of the principal thermodynamic vari-

ables (dimensional) in the absence of wave motion.
2.3. Perturbation Expansions

In order to extend the linear theory it is necessary to utilize double
perturbation series of the principal variables in terms of the two fundamental

scaling parameters Mb and €. "b is the mean flow Mach number at the burning
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pl) _ 1, M P40 (Mb“) (10)

P pU0) oD Lo 2

M 2 00 4y (M 4o v ?)

P reflects the effects of compressibility on the steady pressure distribution
in the cavity. P and U are usually determined as functions of position in
the chamber as part of the motor internal ballistics design process. For
complicated geometries they cannot be described in terms of simple mathemati-

cal functions, but can be handled numerically in the calculations.
2.4. Boundary Conditions

Since the combustion process takes place in a thin lamina of fluid at the
wall of the chamber, it is possible to represent the effects of combustion as
a boundary condition on the flow at the interface. This is accomplished by

introducing the admittance function A such that

~

TN (-E)A (1)

at the boundary. g_and ; are the (complex) velocity and pressure fluctuations
at the wall. 3 is an outward pointing unit vector normal to the chamber wall,
and vy the ratio of specific heats is inserted for convenience. This notation
for A is the same as originally employed by Culick (Ref. 3). In later work

he altered this definition somewhat by defining ; to be an inward pointing

normal unit vector and by omitting the scaling factor Mb from the definition.

To distinguish the two definitions, we put

>

A =L

b
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where Ab is the admittance function normally used in the literature (Refs. 4

and 10). The use of the older notation is adhered to in this analysis since
higher-order expansions in Mb are evaluated--carrying superfluous Mb's in
the already sufficiently complicated algebraic expressions is clearly not a
sensible procedure. It is well-known that the algebra involved in perturba-
tion expansions increases enormously as higher order terms are retained; it
is thus essential to use efficient notation. An additional advantage of

the present notation is that numerical values of |A] are in the range
-10<|A| <10 such that very tiny numbers and resulting additional possibility

of error does not affect the calculations. Note that A is a complex number:

a=alr) 4 ald (13)
It will be shown that knowledge of both real and imaginary parts is necessary
in the proper evaluation of high-speed mean flow effects.

2.5. Derivation of Wave Equation

Equations (3) through (6) may be recombined to yield the set

N .
—3—: + yPV-u = u-VP (14)

©
=he

+
<l§

=0 (15)

Utilizing expansions (9) and (10) one finds to 0(e) (retaining terms to O (sz)),

(1)
%E + YV.H(') = _Mb [!'Vp(‘)] - sz [E(')_vp... va.g(l)] (16)

10. Anonymous, T-BURNER MANUAL, CPIA Publication No. 191, November 1969.

12
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where ¢ =V X U is the mean flow vorticity.

The wave equation governing the acoustic pressure fluctuations is derived
oy subtracting the divergence of the momentum equation (17) from the time
derivative of the continuity equation (16):

2 (1)
A N N o (R I R TR I NI YS)
at
(18)

(1)

- Mb Fi_ Qi(])-vp+ypv-£(])) + V-(2¥E + p(‘)Vp)]

Again, terms of order sz are retained to correctly represent the influence of

the high-speed compressible mean flow. It is important to note that this
implies that ail 0 (sz) corrections (e.g. P(]]), 2(‘1), etc.) must eventually
be calculated to properly evaluate the wave equation. In anticipation of oscil-

lations, it is appropriate to assume that all dependent variables exhibit expo-
nential time dependence:

P(l) 1) eiKt

= yp (19)

AR - g{1) ikt (20)

Yy Is Inserted in equation (19) for convenience; 9}‘) ts spatial distribution
of acoustic velocity, and K Is the complex frequency

Kz +4A (21)
13




The amplitudes p(]) and 3(1) may also be complex.
Thus equation (18) may be written in the form of the nonhomogeneous Helmholtz

equation:

2 (1) (1) (22)

Vzp(l) + K p = Mb g

where

oV =ik @ veMy - vevweg ) v e @ xe) (23)

(1)

+ My ek (3(')-%8 + Pv.q

+ % V- (PVp(]) + p(]) vP)]

The boundary condition on p(]) is found by combining the definition for the ad-

mittance functioa ‘11) with the momentum equation:

o) = () (24)
b

) where

i

' h(]) = -(KA p(l) + n-{Yg-q(l) - g(l) Xz ] (25)

. t
i
;‘) Mo
S . nol'PVp(l) + p“)Vp]
B '
|

‘ . () . :

' and function h is to be evaluated over the chamber bounding surfaces. Equa-
tions 22 and 24 constitute a boundary value problem in which solutions of a
nonhomegeneous wave equation are sought which satisfy a nonhomogeneous Neumann

g
4
*}t




boundary condition. It is useful at this point to further expand this set in
terms of the mean flow Mach number "b' Note that the eigenvalue K must also
be expanded; the goal of the calculation is to find K correct to O(sz) to

represent growth rate and frequency shifts due to the high-speed mean flow.

Put
oD 00 Ly ) 2 (2) |
b b
3_(]) = 3_(‘0) + My _g_(”) + sz _g_(‘z) +... (26)
Kk = (10 +Mb(9(”) +4LA(”)) + sz (9(12) +¢'A(]2)) +...
g = gl 4y 0D
h() - 00, My SULP I
p(lo) is the unperturbed mode shape of the acoustic wave; p('l) etc. represent

distortions of the waveform caused by the mean flow perturbations. {Inserting
expansions (26) into the wave equation (22) and boundary condition (24), one

, finds a series of boundary value problems in increasing orders of Mb; the 0 (1)
problem obviously corresponds to unperturbed acoustic wave motion in the

chamber. Thus

- 2
J’VZP(IO) + Q(10) p(IO) o (27)
i ;-Vp(lo) = 0 on bounding surfaces (28)
i o] (Mb):
! . 2
- 2 (1N 4 QO SN _ (10) _,,(10) (1) | 4, (1), p(10) (29)

15
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;-Vp(‘l) = -h(lo) on bounding surfaces (30)
0 ("b2)=

’ 2

va(lZ) . Q(IO) p(12) - g(ll) _ [ZQ(IO) (Q(ll) + iA(ll))] p(ll) (31)

_ [29“0) (Q(IZ) +4:A(IZ)) N (Q(ll) +LA(”))2] p(IO)

;°Vp(]2) = -h(‘l) on bounding surfaces (32)

where

000 _ (10 (g (10)) & (10)

= q(10)

10), , &
Q

v-v(u-vp (o) V(P Xz) (33)

h(lo) = -/(',Q(Io) (A(r) + LA(&)) p(‘o)

' ;.%UO) el - i(lo) vl x o) (34)

01 2 000 (4gp () 4 @01 4 14 01)) (g (1))

; () L ()
T v (M) (@ +LA )"7 (10)

2
o(10)

V(Q-Vp(lo)

2
- —- (wp 19 x ¢)/a (19
2 (10) (35)

—

(10)
+v-(q(”)x_c_)-%e VP

v o0 L1 gg (pp 10D
Y

16
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RO | _qU0) (I o I) (), (10) (36)

+n . Eg.ﬂ(”) UL V(pp(uo)ZI

Previous comments on increasing algebraic complexity with order of expansion
are clearly appropriate. Expressions for the velocity amplitude g‘l) (and its
expansion in Mach number Hb) are found in terms of pressure fluctuation p(l) by

use of the momentum equation. Thus

10 4 (10)

(10)
: (1) .. .1 ) N
(vr) _ (i _ (e + A ) ..(10) Lon (10)
nd 4 = CTioy [& ) T+ Sty YT
(37)
+ 4 (v (10) X z)
o (10) P 4 N

2.6. Zeroth-Order Calculations

Equations (27) and (28) represent the classical acoustics of the combustion

chamber. #act solutions can be found for simple chamber geometry; numerical
(10) (10) for the

sometimes complicated configurations used in solid propellant rockets. Since

techniques provide information on mode shape p and frequency Q
this phase of the problem is thoroughly documented in the literature, no more
need be said at this point except that the validity of the higher-order growth
rate and frequency calculation obviously depends on having correct estimates for
p('o) and Q('o) for each chamber mode. The unperturbed frequency is found from

(10)

the eigenvalue 0 in dimensional form (cycles/unit time) to be
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a o(10)

©) _ .
A = 8

2.7. First-Order Calculations

Equations (29) and (30) govern what is commonly referred to as the ''linear
stability' model of combustion instability. In this calculation, one is seldom
interested in the O(Hb) waveform distortion p(ll); what is required is an esti-
mate for the growth rate A(') and frequency correction Q(]|). Culick (Ref. 3)
derived expressions for these quantities by the Green's function method. A

more direct method is to multiply (27) by p(“) and subtract it from (29)

multiplied by the unperturbed mode shape p('o). Integrating the result over

the chamber volume, employing the divergence theorem and the boundary con-
ditions (28) and (30) yields after a few lines of algebra: b

@M 4+ My 2 ! g(10)p(|o)dv N n(10),(10) 4

(39)

(10) are given by equations (33) and (34), and the normaliza-

tion constant £ is found from

where g(|0) and h

2
E2 - p {1007 4y (40)
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Equation (39) can be further simplified (see the papers by Culick for details)
by application of vector integral theorems with the results:

. ) (10)2
(1) A
Q 5 P 5 ds (&)

E

i e ein

2

‘ 10) (10),2

! A0 Az(r) p(2 ds +_|_2 U.!SE._Z._)_ av (42) :

- E 2 |

;} t

- s v E
| i

Growth rate (dimensional) o is found from (42) to be

[P —

o 2o mr (1) * (43)

R

where R is the scaling length for the chamber; a, is the speed of sound.
Equation (43) forms the basis for all stability prediction models. The results
are discussed at length in the literature (c.f. Refs. 3, 4, 8, 10, etc.) and

no more need be said except that, again, it is obvious that higher-order ap-
proximations depend on correct estimates for A(') and Q('). The 0 (Mb) fre-
quency correction Q(') is usually ignored in stability calculations. This it

probably due more to lack of information regarding the imaginary part of the

-

admittance than to it being a negligible contribution. The frequency correction
in cycles/unit time is found from ﬂ(‘) to be

——

a
¢ =20 M (1) (44)

* The superscript is used to emphasize the order of the estimate; higher-order
approximations are the goal of this study.
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This expression is evaluated in the results section of the report for typical

sets of parameters to establish its potential importance.

f Another part of the first-order formulation is required before the 0 (sz)

corrections can be determined. Examination of the sz equation shows that one

must know the mode shape correct to 0 (Mb) before the higher-order equations

can be evaluated. That is the waveform correction p(‘l) must first be deter-

mined. There are two approaches to this problem. One is to seek the eigen-

functions for equation (29) directly. This can be done analytically only for

-

] simple geometries. This method is demonstrated in a later section of the
report. A more general method is to use a Green's function solution of
; 3 equation (29) using expansions in terms of the unperturbed eigenfunction (Refs.

! 3 and 4). This yields an infinite series represeatation for p(ll):

S p, (10)
MUY E 8 — . g{10), (10} 5y L/ (10) (10) 4o (45)
8 2,01 10 8 8
Es (O 'Qe( ") v s
BN

where N refers to the particular mode of oscillation in question; 8 identifies
each of the remaining infinity of modal eigenfunctions.® It is the experience
of the writer that this is usually a very slowly convergent series. It is

{ possible that direct numerical solutions of equation {29) will be a more ef-

ficient technique for determining the mode distortion effects.

! 2.8. Second-Order Corrections

P We finally arrive at the target of the present study--to determine the
{ effects of mean flow to 0 (sz) on stability and frequency. It is important

to note that no influence of mean flow compressibility or variation of mean

* For three dimensional chambers N (and 8) are three-integer sets which identify
the mode,

20




chamber thermodynamic parameters Is reflected In the results of the first
order culculation; no questions regarding high-speed mean flow effects can

(2)

be answered by use of Equations (41) and (42). We now calculate 0(2) and A
which reflect the effects of interest. Multiplying Equation (27) by p(lz)
and subtracting (31) multiplied by p('o) yields

g1 00 [ an (0) )
o(12) | ,(12) _ ‘1) - 20 4 ()2 (46)
| 20'E
‘. - 20(10) (o (11) +M(n))/‘p(io) p(11) dv
v

after integration over the chamber volume and application of the boundary con-
) ditlons. Evaluation of these expressions gives the required Information. It
i Is not necessary to determine p(iz) explicitly unless even higher order cor-

. rections are required.

The application of these results is demonstrated in the following section
for a typical motor configuration. It is important to notice that the form of

the frequency and growth rate corrections is identical to the first order ex-
pression. The significance of this observation is that the very same type of
calculation as used in the linear stability model is required to determine the

——

corrections. Once the waveform distortion is known, the rest of the calcula-
tion Is handled by siinply adding correction terms to the integrals already

evaluated in the standard codes. The expressions are somewhat more complicated
algebraically than thelr first~order counterparts, but they are easily Incor-
porated by simply adding them to existing codes. In addition to the unperturbed

e e m——
— Py v -

mode shape data utilized In the standard codes, one must provide the following
additional input:

1. Waveform distortion (p(l‘))
. 2. 0 (Hbz) pressure distribution (P
' : 3. Reasonable estimate of mean flow velocity distribution (U)

The appendix Includes a discussion of methods for estimating the O(Hbz)
compressible pressure distributfon and mean flow velocity pattern In a tubular

graln.
21
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3.  APPLICATIONS

The purpose of this section is to demonstrate in detail the application
of the theory set forth in the previous parts of the report. A simple motor
geometry is analyzed to enable analytic determination of all quantities of .

interest.

The simplest configuration which exhibits the features we desire to

e

emphasize is a tubular grain with high L/D (length-to-diameter) ratio. In
what follows, the effects of high-speed, compressible mean flow on the fre-
quency and growth rate of longitudinal waves in such a motor are determined;
the results are directly applicable to several tactical rocket designs cur-
rently under development. Figure 2 shows the geometry assumed and the co-
ordinate system. The Appendix contains a detailed analysis of the mean flow

pattern and thermodynamics appropriate vo this configuration.

i Assuming longitudinal modes of oscillation (B =4 =1, 2, 3...), solution
of the zeroth-order equations yields the familiar results: .
p(lo) = cos KZZ (47)
'
!
‘ 1
! (10) R
L
Q = Kl =T (48)

where ¢ is the mode integer (2 = 1 is the first longitudinal mode, etc.). The

e

unperturbed frequency (from eqn. 38) is

(0) lao
f =5 (eycles/unit time) (50)
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a very familiar result. We desire to determine 0 (sz) mean flow influences
on this frequency and the corresponding growth rate correct to 0 (sz)

To apply the linear stability equations (eqn. (41) and (42)) we must
first determine the mean flow field correct to O (Mb). Using the results of

the Appendix, one finds that

¢ U =2z ez (51)

is a sufficiently accurate statement of the axial velocity component averaged
over the chamber cross-section. Since only longitudinal oscillation is
assessed, the radial velocity component is immaterial. The corresponding mean
field pressure variation is P’:'%ﬂzz. All integrations are easily performed

and one finds

P

B = (=) (52)

(53)

PAULP RN (54)

where an inert surface is assumed at the head-end and the nozzle admittance is

ignored to keep this sample calculation as simple as possible. Chamber radius

R is used as the scaling length. Application of equations (43) and (44) leads

. e

. Emape .

to frequency and growth rate results correct to 0 (Mb):
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e 2 f@ L M) %0 E+ M, G )| Qe (55)

unit time

Mm@ g @ wla (56)

Converting to the more familiar admittance notation we find:

o = i{-(—m— G -n)+o w2 (57)
or

o = “;(o) (§) (R,-2M,) + 0 (M ?) (58)
where Rb = Ab(r) + Mb is the response function (Ref. 10). In an actual motor

calculation these results would be supplemented by nozzle losses, particulate

losses, etc.
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To proceed further, it is necessary to determine the waveform distortion

by solving equation (29) for p(ll) For the cylindrical geometry, the first- .
order velocity distribution is
1 ., -
q( 0 .. £ sin (sz) e (59)
= z
T . . . (1o) .
where e, is the axial unit vector and function g is
(0) _ yix (k,z) - k,z sin (k,2) (60) ‘
9 ak, | cos ¢ gz si . !
(11) '

Thus the differential equation for p reduces to:

2 (1)
:—Ziz’- sk, 2 oM = chik %2 sin (ky2) + [ml- 2k, 2+ A(l)ﬂcos(kﬁz) (61)

and the boundary conditions (from equation (30)) reduce to:

(1)
%% =Qat z=0 (Head-end)
(62)
U

(Nozzle entrance)

x|

- = 2{¢m cos () at z =
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Soiutions are found easiiy by conventicna' rcthoGs ane toe ie€sdit oo

00! 2 N A .
pr T = 4K, 2T cos /kzzf + (A0 ) + A Nk
A .
3 ; (el oY
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Function g for the simple geometry assumed is

q(ll) = - [:(h+n) 41Eﬂ cos(sz) + bky3 z3 sin(koz)
o [0 w20 G3-0] Kz sintee) (65)

+ [%LB - 16 - n(Y - ;T] kp2 22 cos(klz)

NORD!

vihiere B8 o= - U + ¢ (1 "‘(H) + (“l)

and ¢ =

- A(ll))

are used to simplify

; : . . vy
"tieoadgebra. in terms of the <ame notatrion, function h P

{

i)

b )="(C(A\r) + (A ()) cos(kyz) - L(A(r) + CA(L))B k, .z sin(kmz) {66)

-y 3
- (A(" + aA(('? kvzzz cos(k07)

\

| 2 sinl<,2) 4+ [{245) + 48, K,z cos(k )

b f { + (6 - /2 - 2(B] k‘_,2 z¢ sin(KOz) i(67)

3

& k,® z

cos(qu)

wn boundary surtaces.
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Figure 3. Mode Shapes for the First Two Longitudinal Modes.

L s Tz VY WASSY 8 ey &




————

L]
The integrals can now be performed and (after some tedious algebra!) one tinas
( 2 (r) '
Ja2) o, sl } (ar)?  A'T)
A = (D) (ln ) [V - 2 cos(an) 3 7 ] (68)
nd
: : 5.1 el
(m+2) cos «a- 5 7 (3 + 3 ) 3
]
i
I
WYY PO 1 B S L =’
v (e )" [2 cos(in ) 37 % 5 )i F
(12) L, , 2 R |
= ) &) < (69
N2k (e) 22
Ty + ZA {“2 (AT ») - | :,'2‘ ) Jj
12 |
«)
Ly A |
5 -
where the previously calculated values of )('n>..l(l‘) and i) have becn uti-
lized. Presence of damping would thus alter these resultz, but they o v v o

sentative of the influence of the high-speed mean fiow. Converting to dim»--

sional form, the growth rate and frequency corrections arc




C T wEEm—— -

(r+ 2) cosim -

+ (Qn)2 [2 cos(am) - 10 % CL:L)]

3 |
2 V] 2 L,2 1,2
fLyey 2 G2 (12 \ (70)
2
+ 2A(r) {1 -2 cos(ln)-(ln)/{ ]
2 2
L +%_ (A(L) - A(f) )
) 2 (r)
u(Z) = l6nf(o) sz %)2 ?;;;2 [2 cosan + iﬁ%l + Az - 1] (71)

Growth rate and frequency are corrected by adding (70) and (71) to (55) and
(56) respectively.

Plots of these expressions are displayed in Figures 4 through 8 for first,
second and third longitudinal modes. Note that the growth rate correction is
linearly dependent on the imaginary part of the wall admittance function A(L).

()

Since A is positive for lower frequencies typical of longitudinal oscilla-
tions, this is an additional source of acoustic gain; for higher frequencies,
high-speed flow contributes additional damping. The magnitude of the growth
rate increment is also dependent on the real part of the admittance as illus-
trated and is proportional to the square of the port L/D ratio. It is clear
that this could be an important growth rate element in motors with high L/D.

p = 0.007, y = 1.2, alr) o g,

= 2 and f = 300 Hz, the growth rate estimate would be increased by about

For instance, in a tactical motor with L/D = 20, M
A0

Ls sec-'. As shown in Figures 6 through 8, the frequency shift depends on

3
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A(r) and the square of the motor L/D. A tactical motor with the parancters

just mentioned would experience a frequency shift of about -30 Hz (30 percent
change) which is clearly significant. Since effects of damping phenomena have
not been included in these numerlcal calculations, the growth rate modification

and frequency shifts are most likely not this large in the actual motor.

r——
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b, CONCLUSIONS

The analysis presented in this report demonstrates the importance of
several factors which are not included in standard solid propellant rocket
combustion stability predictions. The formal iinearized model of acoustic
instability is based on the nwoumntion thar rhe moan pressure field js uniform
and that the fiow is incompressibie. Ihe wrecent analysis shows that in high
L/ rockets or in any motor con*iquration which exhibit high specd mean fiow,

N

o wtion offects masi b

the comproessibility and node 3ccounted for. Fre-
quency shifts of as much as 30 percent of the linear acoustic frequency pre-

diction. may bhe ~bie-¢ in hich L/D mators

Ui rearTe 3 thedt correctior peorms booaduet e tandard stonibily
codes o ineoiporate the eon tlow L dincas-g, P VB R s ey T
provide means of cnloniaticg the oods Shane dic to s Jon carceat v 0 (NE/
This will most cas by be acconmplishod uy runcrcal seih e, T s suagested

that analytical sciutions (similar to the cne gressated beve tor tongitudinal

modes in A tubular arain) be coarered ot Tor ot vt L, Thes
.

analytical solutions riight inctude: 1) toncentosb oo o0 vvan w70 tubkolar

arain, 23 hian Lpeed slot “lear. and 31 hi b voonrorgte s nteeqed o o

2les. Such results would prove ooctul 00 Jlheoxing ooparer Coa Jdeveloped

later tor the more general pronlem,




Bl /L ok

REFERENCES

Bird, J. T., McClure, F. T., and Hart, R. W., 'Acoustic Instability in the
Transverse Modes of Solid Propellant Rockets,' 12th International
Astronautical Congress, Academic Press, 1963.

Cantrell, R. H., and Hart, R. W., '"Interaction Between Sound and Flow in
Acoustic Cavities: Mass, Momentum, and Energy Considerations,' Journal of
the Acoustical Society of America, Vol. 36, No. 4, April 1964,

Culick, F. Z. C.,"Acoustic Oscillations in Sclid Propellant Rocket Chambers,
Astronautica Acta, Vol. 12, No. 2, 1966.

Culick, F. E. C., "Interactions Between the Flow Field, Combustion, and
Wave Motions in Rocket Motors,' NWC-TP-5349, Naval Weapons Center, China
Lake, CA, June 1972.

Cole, J. D., and Kevorkian, J., "Uniformly Valid Asymptotic Approximations
for Certain Nonlinear Differential Equations.'' Nonlinear Differential
Equations and Nonlinear Mechanics, Academic Press, 1963.

Nayfeh, A. H. Perturbation Methods, Wiley, 1973.

Flandro, G. A.,“Solid Propellant Admittance Corrections,' Journal of Sound
and Vibration, Vol. 36, No. 3, 1974.

Culick, F. E. C.,"Rotational Axisymmetric Mean Flow and Damping of Acoustic
Waves in a Solid Propellant Rocket," AIAA Journal, Vol. 4, No. 8, August
1966.

Flandro, G. A., ''Rotating Flows in Acoustically Unstable Rocket Motors,'
PhD Thesis, California Institute of Technology, 1967.

Anonymous, T-BURNER MANUAL, CPIA Publication No. 191, November 1969.

Culick, F. E. C., "Rotational Axisymmetric Mean Fiow and Damping of
Acoustic Waves in a Solid Propellant Rocket,' AIAA Journal, Vol. 4, No. 8,
August 1966, pp. 1462-1464,

Dunltap, R., et. al., "Flowfield in the Combustion Chamber of a Solid
Propellant Rocket Motor,' AlAA Journal, Vol. 12, No. 10, October 1974,
pp. 1440-1442.

Beddini, R. A., "A Reacting Turbulent Boundary Layer Approach to Solid
Propellant Erosive Burning,' AFOSR-TR-77-1310, November 1977.

Beddini, R. A., "On the Scaling of Solid Propellant Erosive Burning:
The Threshold Condition,"' Proceedings of the 15th JANNAF Combustion
Meeting, Newport, R.l., September 1978,

Huesmann, K., and Echert, E. R. G. ”Untersuchungen uber die Laminare
Stromung und den Umschlag zur Turbulenz in Porosen Rohren mit gleich-
massiger Eunblasung durch die Rohrwand,' Worme und Stoffiibertragung,
Bd. 1, 1968, s.

39

e n‘w
'y




——

]
b

APPEND I X

COMPRESSIBLE, ROTATIONAL AXISYMMETRIC
FLOW IN A SOLID PROPELLANT ROCKET

1. INTRODUCTION

Required for the assessment of high-speed flow effects in acoustic com-
bustion instability is a practical and realistic model of the compressible mean
flow in the combustion chamber. Such a model would also be of obvious utility
in studies of erosive burning, growth ~f metallic oxide particles and velocity
coupling effects. Results from detailed computer models of the chamber flow
are usually not in a form useful in theoretical investigations; one-dimensional
models do not represent the geometrical flow features which are crucial in the

problems mentioned.

The Incompressible éxlsymmetffgﬂgalutlon'fbr-steady rotational flow in a
cylindrical rocket grain devised by Culick (Ref. 11) is the starting point
for the present investigation. It was shown by Dunlap et. al. (Ref. 12) that
the Culick model closely satisfies the viscous equations of motion, and the
results were experimentally verified using a cold flow apparatus. In what
follows, Culick's solution is generallized to Include the effects of compressi-
bility in the=mean flow fleld. The results of the extended analysis are veri-
fied by comparison to a one~dimensional numerical solution. An Important feature
of the model is its simplicity; this greatly enhances its value Iin theoretical
studies of the type described above.

B

FRLCEWVIWG FAGE bLaiK-NOT FI.MED
2. ANALYSIS | I

A e SENHE N

The steady, compressible, rotational axially symmetric flow of a perfect
gas Is governed by

3 19y , 9 \/
_!'.-:J’.q-—-'l’--;ﬂ--vw-rpc (A1)

11. Culick, F. E. C., "Rotational Axisymmetric Mean Flow and Dam:lng of
Acoustic Waves In a Solid Propellant Rocket,' AIAA Journal, Vol. h, No. 8,
August 1966, pp. 1462-1464.

12. Dunlap, R., et. al., "Flowfleld in the Combustion Chamber of a Solld
Propellant Rocket Motor,' AIAA Journal, Vol. 12, No. 10, Oct. 197k, pp. 1440-14A2,




oy | DTt T o TR (A2)
2 (rp) Y
P=p' (A3)

where the continuity equation has been exactly satisfied by specification of

the stream function ¢ such that

B 1 A
R S B (Al
o I

(3
<

1\
w=l—-; — (AS)
(/ w0

=)
-

u and w are the radial and axial velocity components respectively. Equation

Al is the vorticity equation; ¢ is the azimuthal component of vorticity. Radial
and axial vorticity components are zero in axisymmetric flow. Equation A2 is
the momentum equation and Equation A3 is the energy/state relationship. Viscous
force terms do not appear explicitly in the momentum equation because the ap-
propriate length scale is the chamber radius. This makes the viscous forcc

much smaller than momentum and pressure effects; no boundary layer of the
classical type is formed and vorticity fills the entire flow field. All fiow
properties are made dimensionless in terms of the stagnation thermodynamic
properties a, Po and j0 at the head-end of the chamber; chamber radius R is

the characteristic length. Boundary conditions are

U=w=0 atr=2=o0
u= - Mb at r = |

w=20 at r = | (A6)
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The latter constraint requires the flow to satisfy the no slip condition at
the burning surface; this introduces vorticity into the flow and also forces
it to behave as a viscous fluidz.

The problem is readily solved by standard perturbation techniques; the
mean flow Mach number Mb at the burning surface is the appropriate sméll
parameter. The expansions are

(o) 3 .(1)
¢=nbw° LA + ...

+H35(l)#... (A7)

The first order solution is governed by

ifm(°3 1.32(0) = 3&2(0) - - ﬂzrzw(°) (A8)
2 2
or r or 9z
where c(o) = "er(o) to satisfy the boundary conditions specified. This differs

from the vorticity used by Culick (Ref. 11) by an additional factor of v. The
solution to Equation AB is

(o) 2
v = 2 sin -5 (A9)




and the corresponding velocity components are

2
() . .
2
W(O) = WZ COS ('1L2l:—> (A‘O)

Note that the next terms in the expansion for y are 0 (Mb3) so that Equation

Al0 represents the velocity field to a high degree of precision.

Equation A2 is now expanded to yield information regarding the thermody-

namic properties of the flow field.

Retaining terms of 0 (sz), one finds

(1) (o) (o)
_vp - nzw(o) vw(°) +y vy 2. vy (A1)
Y 2r
(0) g, (0) )
3 Noting that ¢ ° vy =V !LE—- ,"equation All can be integrated directly
with the result

i
oA
v 2 (o) (o)
| ) P o 2,07 v Wy (A12)

{ r

The constant of integration is zero to satisfy stagnation requirements at the

- e s

head-end. Inserting Equation A9 yields




-
=

L

P(l) .- "222 . sin (A13)

and using Equation A13 in an expansion of Equation A3 gives

) wr)
(1) _ 2.2  sin 2

1
-3 (A14)

These functions represent models of the compressible thermodynamic prop-

erties correct to 0 (Mbh).
3. RESULTS

The analysis yields a simple and practical representation for the

flow field in a tubular rocket grain.

Rewriting the equations in terms of physical variables,

u = [\ sin —) ;r +(1§)cos ]+ O(M 3)
o\ 2 2 2 2
o1 () TR ) ()] o

v 2 2 2 2 4
1 b Tz R . 2 [nwr
= - — — —_— _ — 0
e Poy! 2 (ao) (R > +(r) o (ZR2> * (Hb )
v 2 2 2 2 ’ "
-1 b Tz R 2( nr
T=To{1 (1-2— -a:) (——R-) +<?> sin (-Z—Ri) + O(Hb ) (A15)

where Ve * pp;'/po =a M is the velocity at the chamber boundary due
to efflux of combustion gases. r and z are the radial and axial position
¢ coordinates and R is the chamber radius.

I Figure Al shows the streamline pattern corresponding to the above so-

futlion.
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Figure A2 illustrates the velocity profiles. The upper plot shows the
axial velocity distribution; the lower shows the radial velocity profile. The

axjal velocity is conveniently referenced to the centerline speed

. R (A16)

while the appropriate reference speed for the radial component is the efflux
velocity Vpe

Figure A3 shows the pressure variation along the motor axis. It is
apparent from Equations Al15 that the pressure varies quadratically with
axial position. At the centerline, the variation is given by

2
Pc-Po ) = - (1%) (A17)
YPoMb
2

where the pressure scale is the reference dynamic pressure based on chamber
pressure at the head-end and the burning surface Mach number Mb. A typical
value for yPoMbZ/Z is 0.02 (corresponding to Po = 600 Ib/in2 and Mb = 0,007).
At the burning surface, the pressure variation is

2
APb = Pb-Po 2 = - (-;;—z> + 1 (A18)
YPOMb
2

Thus the radial pressure gradient is much smaller than the axial component.

Since the flow field predictions based on the present analysis are not

valid when sonic speed is reached, it is necessary to calculate the limiting

axial position. It is readily shown that a Mach number of unity is exceeded
if z/R exceeds the critical value
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where "b is the burning surface Mach number and vy is the ratio of specific heats.
For example, if v = 1.2, M, = 0.007, (z/K) max ™ 43.4,

Thus for these typical conditions, sonic flow is reached if the motor L/D ex-
ceeds about 22.

b, Hi{GHER-ORDER CORRECTIONS

The results presented above suggest that a continuation of the perturbation
solution can yield a more accurate representation of the flow field. Some ini-
tial attempts in this direction are presented in this section. It should be
emphasized that the impact of the initial assumptions is likely to be of crucial
importance in determining the validity of the higher-order correction terms.

In particular, neglect of viscous terms and the influence of turbulence and the
turbulent transition process in the formulation may make such efforts of aca-
demic interest only. It is the opinion of the writer that attempts to picduce

a theory for motors with large L/D should incorporate a turbulent- flow
model in a rational way. Methods analogous to development of turbulent pipe
flow might be appropriate. Considerable numerical work has been accomplished

in this area, notably the work of Beddini (Refs. 13 and 14), which indicates

the importance of viscous elements of the flow field. Other experimental studies
(Ref. 15) also suggest a similar conclusion, although some features of the test
procedure and their influence on turbulent properties of the flow are in ques-
tion. It is quite likely that the most desirable feature of the present analy-
sis - its simplicity - will most certainly be lost if viscous effects, especially
turbulence, are explicitly included. In spite of these considerations, the
attempt is made in what follows to extend the inviscid model to O(Mbk). It will
be shown that the corrections are apparently only important for large length to
diameter ratjo combustion chambers,

13. Beddini, R. A::‘“A Reacting Turbulent Boundary Lé}er Approachﬁzo Solid
Prepellant Erosive Burning,'' AFOSR-TR-77-1310, November 1977.

th.  Beddini, R. A., "On the Scaling of Solid Propellant Erosive Burning: ’
The Threshold Condition,' Proceedings of the 15th JANNAF Combustion
Meeting, Newport, R.1., September 1978.

i5. Huesmann, K., and Echert, E. R. G., '"Untersuchungen uber die Laminare
Stromung und den Umschiag 2ur Turbulenz in Porosen Rohren mit gleich-
massiger Einblasung durch die Rohrwand,'' Worme und Stoffubertragung,
Bd. 1, 1968, s. 2.




The stream function to O(HbB) Is governed by

(1), (0 _ ()

S AR R AL AL DI ()
r 39

32 r 522 Tre (A20)
and the momentum balance to O(Mbh) requires that
NS l}w (o);w o] "Ew (0) 5y (1) _ ‘;(')‘7‘" (0.5, .
2r _J r

+%[p(0)w(l) . p(I)W(oﬂ . v:(z)

(0)

where ¢ - ﬂer

(0) (O RS ()

Al4 as before. The boundary conditions are

and o are given by Equations A9 and

ay (D) = () ay @)

Y p =7 atz=0o0rr =1 (A22)
and
(1) (0)
9;;?_.- p(') 3;;—— atz=0and r=0orr =1 (A23)
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A solution which satisfies these requirements is

2
. () 2.2
\y(l) = - sunzT [Tr}z . El , (A2k)

The corresponding velocity components are

) & 2 1'_’_2.)
1 sin' 2 sin 2
A T L N (25)
r
and
nrz
2 2.2 . 2(——
w(l) = 12 cos (ﬂ; ) n3z & 8in 22 - % (A26)

Thus the velocity field is determined to O(Mb3). Notice that only the axial

correction is likely to be of any consequence; in fact, an appropriate approxi-
mation is

é




3

since the other terms are of order zM ~ or smaller.

N b
line pressure distribution is to good approximation:

2 "
P=rPo-—2 (%2 | +3L (T,;—z)2 + o(nb")

the order of 23 percent for 6%—) = 40,

Thus the corrected center-

(A28)

in physical variables. For typical chamber parameters, the correction is of







