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Application of Solidification Theory to

Rapid Solidification Processing

1. Technical Report Summary

This semi-annual technical report for ARPA Order 3751 covers the

period October 1, 1979 to March 31, 1980. Work is reported in the following

areas of rapid solidification processing: (1) Interface Stability during

Rapid Solidification, (2) Eutectic Solidification and the Formation of

Metallic Glasses, and (3) Thermodynamics of Metastable Equilibria.

Manuscripts have been prepared for publication in each of these areas and

will be published in the Proceedings of the Second International Conference

on Rapid Solidification Processing: Principles and Technologies. This

conference was held March 24-26, 1980 in Reston, Va. These papers are included

here as the main body of this semi-annual report. In addition, a paper

entitled Rapid Solidification, which reviews earlier work here, is included

as a final item in this report. This paper was presented at the conference

on Laser and Electron Beam Processing of Materials held November 1979 in

Boston, Massachusetts, and will be published in the proceedings of that

meeting.

Task Objective

The objective of this work is to investigate the theory of rapid solidi-

fication to determine whether major aspects of rapid solidification processes

can be explained by conventional solidification theory and to examine non-

Sequilibrium effects which can arise. In particular, segregation effects,

glass-forming tendencies, and rules governing the formation of equilibrium

*and non-equilibrium phases, including alloy composition limits, reaction

sequences and metastable phase formation, will be investigated.
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Technical Problem and General Methodology

During the freezing of alloys, a planar solid-liquid interface can

become unstable; this leads to a cellular or dendritic interface and causes

solute microsegregation. The transition between planar and non-planar

growth during the directional solidification of binary alloys is being

investigated using morphological stability theory. Conventional constitutional

supercooling theory predicts that the stability of planar solidification

interfaces will decrease as solidification velocities increase. At large

solidification velocities, however, morphological stability considerations

predict that planar interface stability will increase with solidification

velocity. Calculations are being done for rapid solidification conditions to

determine the effect of solidification velocity on interface stability.

Eutectic alloy compositions are frequently found to provide favorable

conditions for formation of metallic glasses. The theory of how rapidly one

needs to solidify to obtain a glassy structure has usually focussed on the

nucleation of the solid phase as the difficult step in crystallization. In

the present work, the focus instead is on the growth process. Diffusional

sorting of alloy components is necessary to form a two-phase eutectic com-

posite structure. Theoretical predictions can be made of the limitation this

imposes on eutectic spacing and at sufficiently rapid solidification rates

this diffusional sorting would no longer be possible, perhaps resulting in

amorphous solids being formed. Experimental methods designed to solidify

eutectic alloys at known velocities and temperature gradients and to test

this theory by providing quantitative correlation of alloy microstructure,

such as eutectic spacing or glass formation, with solidification conditions

are being developed. Two methods are being pursued: (1) rapid directional
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solidification at controlled speeds up to 10 cm/s and (2) electron beam

surface melting for solidification at higher velocities.

Rapid solidification processes are frequently regarded as leading to

non-equilibrium conditions which cannot be predicted by theories restricted

to conventional equilibrium thermodynamics. Nevertheless, a careful con-

sideration of thermodynamic phase reactions and limits on metastable phases

may adequately describe a number of rapid solidification effects. The

thermodynamic theory of multiphase systems is being investigated to determine

rules that should control metastable reaction sequences, relative stability

of heterogeneous microstructure and compositional limits imposed by the

thermodynamics during rapid solidification.

Technical Results, Important Findings and Conclusions

Detailed methods and results are described in the main body of the

report. Important new results, findings and conclusions include:

-(a) The phenomenon of solid-liquid interface stability during directional

solidification of a binary alloy was reexamined with special emphasis on very

rapid solidification rates. Although at low to moderate solidification rates

an increase in solidification velocity leads to a decrease in interface

stability, it was found at very rapid solidification rates (above 0.01 m/s in

copper containing aluminum), the perturbation theory predicts a strong increase

in stabilization. There appear to be two dominant effects leading to this

result. The first effect, known as absolute stability can occur even if

there is local equilibrium at the solid-liquid interface. This effect arises

because only short wavalength perturbations are important at high velocities

and these are stabilized by surface energy. Numerical calculations for

aluminum with various concentrations of copper and a liquid temperature
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4
gradient of 2(10 ) K/m show that absolute stability is important for solidification

velocities above about 0.01 m/s; in fact, for copper concentrations less than

6x10-3 wt. %, the interface is stable at any solidification rate. The second

effect is caused by departure from local equilibrium at the solid-liquid

interface. Although the exact forms of such departures, let alone their

magnitude, is not well known, the perturbation theory can be modified to

include their salient features. Most departures from local equilibrium lead

*to increased stability. For example, all constitutional effects will vanish

as the distribution coefficient approaches unity.

(b) The relationship between eutectic solidification and the ease of

formation of metallic glasses is being investigated. For many systems,

crystallization, including partitionless crystallization, of alloys into a

single phase solid is impossible over a wide range of composition near stable

or metastable eutectics. This fact forces alloys to crystallize into two-

phase solids. Because of the need for diffusional sorting of the components

ajd creation of solid-solid surfaces, the kinetics of eutectic crystallization

are relatively slow and may be closely related to the ease of glass formation

of these alloys.

Experiments Wer4-dhe on the -irctiornal so- i-icati-ion f Pd-6 at _

Cu-17 at % Si alloys which show the evolution of microstructure as a function

of interface velocity. A structure of dendrites and interdendritic eutectic

at low velocity Q< 0.25 ms) becomes a fine eutectic-like structure at

intermediate velocities (Ri 1 um/s) and finally the alloy forms glass when

crystallization is attempted at velocities greater than 2.5 rn/s.

(c) The thermodynamics of metastable phase equilibrium can be shown to

be closely related to that of stable phase equilibrium. Metastable phase
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equilibrium often can be represented by extensions of the curves on phase

diagrams that represent stable phase equilibria. Thermodynamic principles

rank phase equilibria but not phases in a hierarchy of increasing stability.

Thermodynamics imposes precursor rules in multicomponent systems in which a

prior reaction is required before a phase can appear. A given hierarchy

persists over a domain on the phase diagram bounded by surfaces on which the

ranking of two equilibria changes. Multicomponent phases per se do not form

a hierarchy because a given phase can disappear and reappear in a sequence of

spontaneous processes. Processing for producing metastable phases must place

the system within a domain in which the desired phases can form spontaneously

from the available phases.

(d) Modifications were made to an electron beam melting apparatus at

NBS to allow improved surface melting experiments to be performed.

Special Comments

NBS personnel from this contract played major roles in organizing the

Second International Conference on Rapid Solidification Processing held March

24-26, 1980 in Raston, Va. Attendance at the conference was more than 170.

The Chairman of the Conference Steering Committee was Robert Mehrabian, Chief

of the NBS Metallurgy Division and the Conference Secretary-Treasurer was

John Manning. This conference was co-sponsored by DARPA, ONR, AFML, ARO and

NBS. A conference proceedings, containing more than 40 papers, will be

| i published. Robert Mehrabian is Chairman of the Conference Publications

Committee. Three of the papers written for this proceedings by NBS authors,

which report work done on the current contract, are included as part of this

semi-annual report.

-5-

.ft '- ,.""



During the period covered by this semi-annual report, Dr. R. Schaefer,

formerly of the Naval Research Laboratory, joined our staff and has begun

work on electron beam melting aspects of this work. Prof. T. Massalski Qf

Carnegie-Mellon University also is at NBS in the Metallurgy Division this

y. ar and is contributing- as -a consultant to the current work.

Plans and Implications for Future Research

Since the current work has shown that glass formation can be obtained

during directional solidification of Cu-Si-Pd alloys, this system will be

studied in more detail to permit a semi-quantitative evaluation of equations

concerning the effect of solidification velocities. Future work will include

attempts to measure interface temperature, temperature gradient, and the

eutectic spacing along with an identification of phases present during

eutectic solidification at velocities just below the transition to the glass.

Additionally, experiments on the electron beam melting of Al-Ag and Al-Cu

alloys will be initiated to test morphological stability theory at high

velocity and to determine the critical conditions for the onset of massive

(partitionless) solidification, respectively.. ... .

Future work on theoretical aspects of this problem will include

investigation of solute segregation due to curved solid-liquid interfaces,

the effect of non-constant velocities on interface stability during rapid

solidification, and further calculations of interface stability during

growth into supercooled liquids. Equations will be developed to bring into

morphological stability theory the crystal anisotropies and apply the results

to high solidification velocities. The tendency that cells may have to follow

the heat flow direction rather than to take on crystallographic forms

characteristic of ordinary cells and dendrites will be investigated.

* -6-
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2. Report of Technical Progress and Results

Four manuscripts were prepared for publication during the period covered

by this semi-annual report. Since these papers present the major results

obtained in work on this contract they are included here as the report on

technical progress and results. The papers on "Interface Stability During

Rapid Solidification," "Eutectic Solidification and Formation of Metallic

Glasses," and "Thermodynamics of Metastable Equilibria" will be published in

the Proceedings of the Second International Conference on Rapid Solidification

Processing, held March 1980 in Reston, Virginia. The paper on " Rapid

Solidification" will be published in Laser and Electron Beam Processing of

Materials, edited by C. W. White and P. S. Peercy, Materials Research Society

(proceedings of conference held Nov. 1979 in Boston, Massachusetts).

-7-
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interface Stability During Rapid Solidification

S. R. Coriell

National Bureau of Standards
Washington, DC 20234

and

R. F. Sekerka*

Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTRACT

The phenomenon of solid-liquid interface stability during directional
solidification of a binary alloy is reexamined with special emphasis on very
rapid solidification rates. For ordinary solidification rates, the predictions
of the perturbation theory of morphological stability lead to results that are
similar to those implied by constitutional supercooling; however, at very rapid
solidification rates, the perturbation theory predicts a vast increase in
stabilization in comparison to constitutional supercooling. There appear to be
two dominant effects. The first effect can occur even if there is local
equilibrium at the solid-liquid interface; it is knovn as absolute stability
and arises because only short wavelength perturbations are important at high
velocities and these are stabilized by surface energy. Nlumerical calculations
for aluminum with various concentrations of copper and a liquid temperature
gradient of 2(104) K/m show that absolute stability is important for solidifi-
cation velocities above about 0.01 m/s; in fact, for copper concentrations less
than 6x20-3 wt. %, the interface is stable at any solidification rare. The
second effect is caused by departure from local equilibrium at the solid-liquid
interface. Although the exact forms of such departures, let alone their
magnitude, is not well known, the perturbation theory can be modified to in-
clude their salient features. Most departures from local equilibrium lead to
increaced stability. For example, all constitutional effects will vanish as
the distribution coefficient approaches unity. Finally, other factors are
examined with an aim toward the identification of a realm where experimental

test of the theory would be meaningful.

* Consultant, National Bureau of Standards
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I. Introduction

For about the last thirty years, the principle of constitutional super-

cooling has been used as a guideline to ascertain the growth conditions that

result in solid-liquid interface shape instability during alloy solidification.

For about the last twenty of those thirty years, this principle has been

complemented and extended by the theory of morphological stability. (2-4) The

approaches of these analyses are somewhat different, constitutional super-

cooling being largely an application of thermodynamics to decide if a liquid is

supercooled (and therefore deemed to be unstable) with due respect to its

composition, and morphological stability theory being a detailed kinetic analysis

of the growth or decay of a perturbation according to the laws of heat flow and

diffusion. Lxtensive reviews are available in the literature. (5
- 9)

Despite the different approaches of the constitutional supercooling principle

and morphological stability theory, there are a large number of common situations

where they lead to similar results, or at least similar trends within the

inaccuracies of our knowledge of system and material parameters. For this

reason, the constitutional supercooling principle is widely used because of its

simplicity. Nevertheless, there are situations where these two approaches can

lead to quite different results. One such situation occurs when the average
temperature gradient (namely (ksGs+kGL)/(k+k), where G and CL are temper-

ature gradients in solid and liquid, respectively, and ks and kL are the

corresponding thermal conductivities) is significantly different from GL, the

only temperature gradient that the constitutional supercooling principle

considers. A second more dramatic situation occurs in the case of melting, as

analysed by -':n and Jackson, (I 0 ) for which constitutional superheating under-

estimates stability by orders of magnitude because it uses the diffusivity of

the solid rather than the diffusivity of the liquid (where the relevant solute

transport occurs).

A third situation where constitutional supercooling and morphological

stability lead to quite different answers - indeed,.the main subject of the

% present paper - is the case of rapid solidification. At very rapid rates of

I V solidification, the perturbation theory predicts a vast increase in stabiliza-

tion in comparison to constitutional supercooling. There appear to be two

dominant effects. The first effect can occur even if there is local equilibrium

at the solid-liquid interface; it is known as absolute stability (3 ) and arises

because only short wavelength perturbations are important at high velocities

and these are stabilized by surface energy. This case will be presented in

Section II and Illustrated with specific application to dilute alloys of Cu in

Al. The second effect is caused by departure from local equilibrium at the

L -- 9-



solid-liquid interface and is taken up in Section I1. Section IV is devoted

to the spccial case of a supercooled liquid and the results applied to the

solidification of small droplets.

We emphasize that the analyses of the present paper deal with constant

solidification rates and initially planar interfaces. The case of non-constant

high solidification rates - although typical of many experimental situations

- has only been tractable in special cases. (11)

II. Local Equilibrium and the Transition to Absolute Stability

We consider the morphological stability of a planar solid-liquid interface

during unidirectional solidification of a binary alloy at constant velocity V.
(12)We outline a standard linear time dependent stability analysis and then

focus our attention to large velocities where absolute stability prevails and

our results differ significantly from those of constitutional supercooling.

We choose an (x,y,z) coordinate system (moving with the planar interface)

such that the solid-liquid interface is described by z = W(x,y,t) where t is

the time. We assume that W(x,y,t) and any of its derivatives are sufficiently

small that any nonlinear terms can be neglected.

We solve the differential equations

(aTL/3t) - KLV2TL + V(aTL/az), (Ia)

(3T5I/t) - KsV
2T + V(3Ts/3z), (lb)

(ac/at) = DV2c + V(c/3z), (le)

where TL and T are temperatures in the liquid and solid, respectively, c is

the concentration of solute in the liquid (diffusion in the solid is neglected),

KL and Ks are thermal diffusivities of liquid and solid, respectively, and D is

the diffusion coefficient of solute in the liquid.

The boundary conditions far from the solid-liquid interface are

(3TL 3z) - GL exp (-Vz/K L) 2 *, (2a)

(3Ts /3:) - Gs exp (-Vz/ ) 2 - (2b)

e - c a * 2 , (2c)
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where the temperature gradients CL and C and the solute concentration c. are

constants. We consider G. > 0 and CL ! O; the case CL < 0 will be discussed in

Section IV.

The boundary conditions at the solid-liquid interface are

T L -T (3a)

v - V + (OW/3t) (3b)

v - (ks/Lv)(T/3z) - (ILv)(TL /z) (3c)

v - D( c/3z)/Cc-c s ) (3d)
5

TL T - T "HrK + gec) (3e)

CS - ho(c), (3f)

where v is the interface velocity, k and kL are thermal conductivities of

solid and liquid, respectively, Lv is the latent heat per unit volume, cs is

the concentration in the solid at the interface, T is the melting point of a

flat interface in the absence of solute, r is the ratio of the solid-liquid

surface tension y to the latent heat per unit volume, K - - (a 2 W/3x 2 ) -

(32 W/y 2) is the interface curvature, the dependence of melting point on

solute is given by the function g(c) and the relationahip between c5 and c is

given by the function h0 (c). Equations (3e) and (3f) are based on the

assumption of local equilibrium at the solid-liquid interface. In Equation

(13))
(3c) we hdve ommitted corrections 1 ) that might arise from consideration of

surface entropy and also a possible dependence of g(c) and h0 (c) on curvature.(
3 )

In carrying out a linear stability analysis, we write the temperature and

concentration fields as a sum of an unperturbed part, which is a function of z

alone, and a perturbed part which is of the form F (Z) ep [ot+i(u X+Wyy)],

where F is a function of z alone. The perturbed solid-liquid interface is

i given by

a " W(x.y.t) - 6 exp tot + i( xX + Wy)J (4)

x y

frequencies. The interface is unstabla if the real part of the time constant

o Is po:&itive for any perturbation, i.e., any real values of w and w . The

interface I:. stable if the real part of a is negative for all pcrturbtions.



Upon solving the differential equationo, one finds

0 - Vf-kLCcL(OLV/L) - ksGs(as+V/gs) - 2kTMrw 2 +

2i--G c( -VID)/ (a-pV/D) }IL V + 2kC ,;/ (a-pV/D) (5)

with

a = (V/2D) + [(V/2D)2 + W2 + a/D) ,

at. (V/2 L) + ((V/2 L )2 + w2 + CIl L]

a _(V/2K + [(V/2K )2 + '7 + o/]

(k a(a 6 + kLL)/(27),

where 27k k +kL, W2 - W2 + , Gc = Vc (k-l)/D, k c/c(, m (dgldc)

and p = 1 - (dh0/dc) with the derivatives evaluated at c = cO and c

defined by the equation c - h0 (c0 ), i.e., c0 is the solute concentration in

the liquid at the planar solid-liquid interface. If one assumes that the

functions g(c) and h0 (c) are linear in c, then m, k, and p = 1 - k are con-

stants independent of c.

For a given alloy and processing conditions, we can calculate o(w) from

equation (5). If the real part of a is positive for any value of w, the

interface is unstable. Alternately we can specify the real part of a, ar, and

calculate some other variable such as c. as a function of w. For cr 0, the

minimum value of c (w), which occurs at some specific value of w, gives the

stability-instability dermarcation. Except where otherwise specified, we have

also assumed that the imaginary part of a, ci, is zero at the stability-

instability demarcation, consistent with a detailed analysis in the thermal

steady state approxiration. (1
2 )

We have carried out numerical calculations for alloys of aluminum containing

copper for the following values of material parameters:

- 90.7J/(msK), ks  210J/(msK),

-v" l.ORCJ/m 3. THr " -"0( -"?)mK,

O" 4.2(105)m2/s, es a 8.1(10"5 )&/s,

0- 5(1')mr/ i, k - 0.14, m - -2.5 K/(w'.. %).

-12-



II
The curve in Fig. 1, based oil equation (5), shows the critical copper roncen-

tration (below which the planar interface is stable) as a function of growth

velocity V for a temperature gradient in the liquid, CL? of 2(104) K/m. The

dashed straight line with negative slope is the constitutional supercooling

criterion, mnO f GLI and the straight line with positive slope is the absolute

stability criterion, mG¢ . kTH r(V/D) 2 (see eq. (7) at seq.). The constitutional

supercooling criterion is a good approximation at low velocities and the

absolute stability criterion is a good approximation at high velocities. In

Fig. 2, the wavelength A - 2v/w that corresponds to the onset of instability, i.e.

to the value of w for which c().is a minimum, is shown to be a monotonically

decreasing function of interface velocity. Although results are given in

Figs. 1.and 2 for V = 10 m/s, the theory should not be taken seriously at

these velocities since the diffusion length D/V is of atomic dimensions.

From Fig. 2, one finds that (V/2s) w c and (V/2<L) w u, which permits
5L

the use of the thermal steady state approximation according to which we let

the thermal diffusivities approach infinity. For the stability-instability

demarcation (a - 0), Equation (5) then reduces to

0 =Vw(-k\GL-kscs-2Tlr 2 + 2"kgC(a-V/D)/(a-pV/D)}/

(LvV + 2kmGcw/(a-pV/D)}. (6)

The denominator is always positive so that only the properties of the numerator

need be analyzed. The stability criterion may be written as
( 14 )

2kLGL + V.v > 2krG cS(Ak), (7)

where S is a function of the dimensionless variables k and A - kTH rV2 /(D2 Gc ).

For A > 1, the interface is always stable, while for A < 1, the spatial

frequency w at the onset of instability and the function S(Ak), which lies

between zero and unity, can be calculated by finding the one and only real

positive root of the cubic equation

r' + (2k-l) r - (2k/A ) = 0. (8)

The quantities S and w are then given by

S(A,k) = 1 + (A/4k)(1 - r2 + 2k, ') - (3A r/2), (9)

w = (V/2D)(r" - l) . (10)

-3.3-
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I
Revriting equation (10) in the form r4 - 1 + (2Dw /V)2, we recognize two

limiting cases, viz., (2Dw /V) >> 1 and (2Dw /V) << 1. First, we consider
(2D,/a) >' 1, and consequently r >> 1. The solution of equation (8) is then.

r3 =2k/A. It follows that S 1 - (3k/r2) and w v (V/2D)r2 a E(kV/4TZ4 rD)

(2kG L t VL)]1
1 3. If, in addition, VL v << 2kLG,, then o m  CLV/7TmrD]I

and the stability criterion is (k,/k)GL.. mGC. which is shown as the solid

line with negative slope in Fig. 1. At low velocities this line is a better

approximation to the curve than constitutional supercooling to which it would
be identical for k. - kL . The proportionality(15) i/3k.between wt and V is in

agreement with the experimental data of Morris and Winegard on lead-

antimuny alloys.

For the second limiting case, (2Du /V) < 1 and r - 1. If we let r = 1 + e

with 0 < e 1, then

S = (l-k/2)/(l+k)](l-A )2,

a ([kV2(VLv+2kLCL) /[( 1+k)(l-k/2)2kT 1rD2]t

and the stability criterion approaches the absolute stability criterion A - 1.

For VLv >> 
2kGL, we have

- u= =([kV3L] /[(l+k)(l-k/2)2kTMrD 2]}

Thus for small velocities (2Dw a/V) >> 1 and um is proportional to V1
/3 while

for large velocities (2Dw/V) << I and wr is proportional to V3/'. These

approximations are verified by the results in Fig. 2. Plots of S(A,k) and

additional analytic results are available. (1 4 )

We close this section with two additional numerical eznamples for Al-Cu

alloys. The first of these illustrates the effect of CL on the critical

concentration for instability at a sufficiently large solidification velocity

that constitutional supercooling is a poor approximation. From Figs. 1 and 2,

at a velocity of I m/s the critical concentration is 0.21 wt. % Cu and u w

2.05 (107)mI for G ' - 2(10")K/m. Moreover equation (7) shows that the
L

instability criterion Vill be practically independent of GL provided that

GL < v/2kL - 6(106)K/m. Calculations for higher values, viz. CL - 106,

107, lOK/m, give critical concentrations of 0.22, 0.24, and 0.34 wt. : and u

2.1(107), 2.6(107), and 4.2(i07)m "1 , respectively, indicating a relative

H insensttivity to the liquid ttmlperiture rradirit.

A -3.5-



The second numerical example illustrates the degree to which an instability

can develop if only a finite time is available before solidification is complete.

For V - lm/s, a 100 pm layer will solidify in a time t€ - 10 1 s. In order to

observe an unstable interface, the instability should be greatly amplified in

a fraction of this time, i.e., we require that at >> 1 (see eq. (4)]. Taking

t - 0.ltc a 1075s, we require a - 105s s 1 . Calculations with GL a 2(10)K/m

and a - 106 and 107 s
- 1 yield critical concentrations of 0.23 and 0.36 wt. %'

and wa - 2.1(107) and 3.4(10 7 )m- i, respectively. These concentrations are ina

an experimentally accessible range but the wavelengths involved (10.2 um) would

necessitate electron microscopy.

III. Departture from Local Equilibrium

We now briefly discuss the effect of departures from local equilibrium at

the solid-liquid interface upon interface stability. We generalize the local

equilibrium boundary conditions, equations (3e) and (3f), to the form

v - f(Te-T I , ci , TI), (3e')

Cs 81 h (cis Te-TI), (3f')

where the subscript I indicates evaluation at the solid-liquid interface. we

require that v - 0 and h - h0 when Te - T = 0. We expand the above equations

in a Taylor series about the temperature T10, equilibrium temperature Te0 , and

solute concentration c 0 at the planar solid-liquid interface, viz.,

v - V+ P T[(TeTe) - (TI-T 10 )] + va(C1-C10) + %A(TI-TI0)R

c h(c1 0 ,T 0 -T 1 0 ) + kc (ci-C 1) + [kT(Te-TO) - (TI-TI0)],

where pT a af/(Te-T ), PC af/3cI UA - 3f/3TI, k = 3h/ac1  k = 3h/(T-T)

and the partial derivatives are evaluated at Teo, T1 0 , and c1 0 . With this

generalization, we obtain in place of equation (5)

a V([-kLCL(aL-V/K L ) - ksCs(as+V/s)]UA - 2kT Mr. 2  
-

+ 2km°C 3(a-V/D)/(a-pV/D))/(LvVU
CvT

+ [2-km'C l(a-p'VlV)U
C ID K5~

where m m + (i thT), A "p 1-k + (k T
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UA  - (PA/PT]I + (kT='V/D)/(a-p'V/D)],

UT 1 1 - (PA/PT) + 2k /(L vPT),

and

UK - 1 + [V2k.. TDGc)]I1 - LVUA/(2k 3)'].

As P T , we approach local equilibrium and equation (5') approaches equation

(5).

Although equation (5') is rather general in allowing for deviations from
local equilibrium, our knowledge concerning the forms of the functions f and h

is extremely limited and quantitative conclusions based on equation (5') are

not possible. This is clearly an area in which experimental and theoretical

research is desirable. We will attempt to draw some conclusions in a few

simplified cases.

Case A c - c,

The deviation from equilibrium is so large that kc - 1 and G c 0; there

are no constitutional effects and the situation is similar to solidification

of a pure material. In addition to there being no instability, there is no

macrosegregation in contrast to the stable case for k c 1.

Case B cs - h0(c) and v - f(T e-T )

Solid composition depends only on liquid composition as given by the phase

diagram and velocity depends only on deviation of the temperature TI from the

temperature T . We have pc U A - k - 0 so that m' - m, p: - I - kc, UA - U K

1, and UT = 1 + 2k 3/(L vT). Thus, the numerator of equation (5') is un-

changed from the local equilibrium result, equation (5). Further, the denominator

is still always positive since uT 0 0; the stability-instability demarcation

is unaffected by pT" However, for sufficiently small pT we expect that a will

be reduced for fixed growth conditions or, alternatively, a larger value of

concentration will be needed to obtain a given value of a at fixed V. If

1 [2-2kV]/(LvV + 2kmGcQ/[Q-pV/D]) = D/(T Mr) - 0.05m/sK

holds (where the simplification to D/T r is valid for large velocities), the

term in the denominator involving UT is small compared to the sum of the other

two terms, and UT has little effect. Since we are unaware-of any reliable
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measurements of PT for aluminum alloys, we have done some calculations for

values of UT that bracket 0.05 m/sK. These calculations based on equation

(5') are summarized in Table 1; it follows that there is only a small increase

in critical concentrations as uT decreases from - to 0.1 m/sK but that

critical concentrations nearly double as pT decreases from 0.1 to 0.01 m/sK

Note that if f is a linear function of (Te-TI), then a velocity of 1 m/s and a

kinetic coefficient T of 0.01 m/sK correspond to a kinetic undercooling of

100K.

Case C pure material and v - f(Te-T I , T1)

Temkin and Polyakov(19) have considered a kinetic law with the properties

that T > 0 while T - A > 0 for T large (near TM) and vT - vA < 0 for T.

sufficiently small. Such a kinetic law is sketched in Fig. 3 for two different

values of equilibrium temperature, T.1 and TeIt If one writes v - F(Te T1)

instead of v - f(Te-T I, TI), then pT - PA -aF/3TI and iT - 3F/aT, permitting

geometrical interpretation via Fig. 3. A specific analytic example is v -

Uo(Te-T1 ) exp (-O/TI), where i0 and 0 are constants, and from which VT =40

exp (-G/T ) and pT - iA . V exp (-/T )[I-l(Te-Ti)/T21. For such a kinetic

law, equation (5') reduces to

a - Q-C L SiS SV/IcL)kSEa (cz.S+ -
2kTrnz}/

{Lv(VT-UA) + 27k). (1)

Note that UT - 1A - 0 corresponds to the maximum in velocity as a function of

TI for fixed T -

So long as VT - PA > 0, analysis of equation (11) leads to results that are

qualitatively similar to case B. If pT - 1A < 0, further analysis is required

since the sign of the denominator in equation (11) is not obvious. For

simplicity, we let ks  k\ and is K 'L so that = {(V/2K L + W2 + 0/c }

TABLE I
CRITICAL CONCFNTRATIONS AD SPATIAL FREQUENCIES FOR

VARIOUS VALUES OF O AND VT AT GL = 2(l0')K/m ANhD V - 1 r/s

o(sl) UT(m/sK) C(wt. 0) 1-0 (M- )

0 0.21 2-.05
106 0.23 2.1
107 0.36 3.4
106 0.1 0.26 2.9
107  0.1 0.53 5.5
106 0.01 0.40 4.8
107 0.01 1.29 9.4
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5 SOLIDIFICATION

50IJ T; T
> INTERFACE TEMPERATURE TIMELTING

Figure 3. Sketch of interface velocity V as a function of interface
temperature for two different values of the equilibrium temperature.

and
a = ([2ksG c - VL ( - V1 21cL)] [1A- VT] - PT2kLT11rw 2z }/

(2kj - Lv(A - T (12)

We consider growth into a supercooled liquid with G - 0. It is easy to show5

that a - 0 is not a solution of equation (12) for any value of w when (PT-jA)

< 0. This suggests that we need to allow for the possibility that a is

complex. Numerical solution of equation (12) indicates that this is the case.

Taking - K 6.0(10-5)m2/s, k - k -150J/(msK), V 0Olm/sK, "T
6 . 8 -jm3 1.(1-7 T

I A= -0.01 m/sK, Lv - 1.08 GJTm3 , ,Tr - 1.O(10-)mK, and V - 1 m/s, we find

that the Interface is unstable for w < l.6(l04) e'; the maximum value of the
real part of a occurs at w =8(103) m "I with a - (2.9(103) + 1 2.5(10")] s"1.

Thus, for either sign of vA V the interface is unstable for small values
of w and is stabilized by surface tension for large values of w; however, for

(T-P A) < 0 the nature of the instability is oscillatory. The treatment by

Temkin and Po.y-ikov ( 19 ) did not uncover these oscillatory instabilities be-

cause it used steady state heat flow equations.

-19-

[ Z'k



IV. Growth into Undercooled Melts

Solidification into undercooled melts (CL<0) deserves special attention

because for this case, the constitutional supercooling principle always predicts

instability. As shown below, the interface can be stable under these conditions

for sufficiently large values of Cs . In the thermal steady state approximation,

the previous analysis, equations 6 and 7, is still valid as long as ks C +

kLGL - 2kLL + VLv > 0; however, if this inequality does not hold, equation

(6) predicts instability as w - 0. This suggests that a more rigorous analysis

is required since the thermal steady state approximation assumes that W

(V/2Ks ) and w >> (V/2icL).

We let a - 0 and define the quantity R(w) - (-LGL(aL-V/KL) - ksGs(a+V/Ks)}/

{2ka. If R() < 0, the thermal field is stabilizing while for R(w) > 0 the

thermal field is destabilizing. Clearly R(0) - -CsksL/(kLs) and R(-) -

(-kLGL ksCs)(2k and these have opposite signs when LGL + ksG < 0. These

results indicate that the thermal field is stabilizing for very small .4

(provided Gs > 0) and is destabilizing for large w (when LGL + keGs < 0).

The special case of G - 0 requires a more delicate analysis which wes

undertake only for kL k. and KL = Ks Then R(w) - (-GL/2)(1 - [l+(2cw/)2]- }

is a monotonlcally increasing function of w with R(O) = 0 and R(-) - (-G L/2) > 0.

Hence, the thermal field is destabilizing in this case. Since the solute

field is always destabilizing and surface tension is important only for large

w, we conclude that such a situation is unstable.

In applying such an analysis to the solidification of supercooled droplets,

there is an additional factor that needs to be considered, viz., that in a

small droplet only rather large values of w can occur. If the droplet is of

radius R, then the largest meaningful perturbation wavelength A = 2c/ < 2R

or w > i/R. Thus, for a droplet of 1 pm diameter w > 6(106)m I so that w >

V12KL even for velocities of the order of 1 m/s. Thus, R(w) '- (-kLCL/2k), and

the surface tension term T jw2 > 3.6(106 )K/m. For Gh I -l.2(10
7)K/m or V <

5 -1.0 m/s, we would expect a stable interface for the solidification of a

droplet of pure aluminum. When solute is present, the magnitude of the surface

tension term must be sufficiently large to overcome the destabilizing tempera-

ture and solute gradient terms. Numerical calculations with G = 0 and W >

6(10G)m- yield critical concentrations of 0.12, 0.028, and 7.7(10- ) wt. %

for velocities of 0.01, 0.1, and 1.0 m/s, respectively. If we take o/V - i0G

•_m rather than zero, we find critical concentrations of 0.15, 0.038, and

0.034 wt. % for velocties of 0.01, 0.1, and 1.0 m/s, respectively with w

b )m l a 1iLted by the particle radhiu. For a/V 10 7 
in', w is

I, -20-



no longer limited by the particle radius and we find critical concentrations

of 2.34, 0.37, and 0.33 wt. % with w= 1.5(107), 1.7(107), and 2.9(107) m-
1

for V = 0.01, 0.1, and 1.0 m/s. respectively, Thus, although an undercooled

melt with Gs - 0 Is unstable, strictly speaking, for any composition, some

minimum composition is needed for this instability to be observed in small

droplets because of capillary stabilization.

V. Discussion

We have demonstrated in some detail how the principle of constitutional

supercooling and morphological stability theory can lead to quite different

results at rapid solidification rates. In particular, this occurs because of

increased cap-illary stabilization of the short-wavelength perturbations impor-

tant at high velocities (absolute stability), because of increased departures

at the solid-liquid interface from local equilibrium, and because of the

important role of the temperature gradient in the solid in the case of under-

cooled melts. We have also presented some numerical calculations that illustrate

the refinements in the growth conditions needed to observe instabilities in

the cases of solidification of thin films and fine droplets. These effects

suggest the need for more careful experimental observations at rapid solidifica-

tion rates.

We emphasize that all of the above conclusions are based on the use of

macroscopic transport theory. Surely, when solidification rates become so

rapid that critical lengths, such as D/V, become the order of atomic dimensions,

the use of macroscopic transport theory cannot be justified. For Cu in Al, D

- 5 x 10-9 m2/s and DIV would be less than 10A for V > 5 m/s. The critical

wavelength for instability is greater than DIV for large V; thus, D/V Is the

length with which we have to be concerned. As we have seen, departures from

local equilibrium can be handled in a formal way but there is little known

about exact forms and magnitudes of these departures. We caution again that

our results are only strictly applicable to constant V; the case of large but

time-dependent V is probably prevalent in most experiments that involve rapid

solidification rates and remains as a ripe subject for further research.
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EUTECTIC SOLIDIFICATION AND THE FORMATION OF METALLIC GLASSES
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Washington, DC 20234

ABSTRACT

The relationship between eutectic solidification and the ease of formation
of metallic glasses is investigated. For many systems, crystallization,
including partitionless crystallization, of alloys into a single phase solid
is impossible over a wide range of composition near stable or metastable
eutectics. This fact forces alloys to crystallize into two-phase solids.
Because of the need for diffusional sorting of the components and creation of
solid-solid surfaces, the kinetics of eutectic crystallization are relatively
slow and may be closely related to the ease of glass formation of these alloys.

Experiments are reported on the directional solidification of Pd-6 at % Cu-
17 at % Si alloys which show the evolution of microstructure as a function of
interface velocity. A structure of dendrites and interdendritic eutectic at
low velocity (< 0.25 mm/s) becomes a fine eutectic-like structure at inter-
mediate velocities (n- 1 mm/s) and finally the alloy forms glass when crystalli-
zation is attempted at velocities greater than 2.5 mm/s.
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Introduction

Eutectic systems are multicomponent systems in which liquid remains the
equilibrium phase to low temperatures because no solid with the same composition

is stable. Because of the stability of the liquid at low temperatures these
systems have been prime candidates for glass formers by rapid solidification.
The theory and practice of how rapidly one needs to solidify has primarily

focussed on the nucleation and growth of a single solid phase as the difficult

step in crystallization (1-3). We have focussed instead on the coupled

growth of two (or more) solid phases.

There are two aspects being explored: 1) the thermodynamic question for

each system of the absence of a solid phase with the same composition as the

liquid which at some temperature below the eutectic becomes stable relative to

the liquid, 2) the kinetic question of how fast a liquid can crystallize into

mixtures of crystals of differing 9omposition. The diffusional sorting of
the components is a relatively well understood slow step which governs the

crystallization rate. These ideas have led to a series of predictions for
such systems which are being explored experimentally.

The thermodynamic question is best answered by examination of the position

of the T curves (4) for all possible solid phases on the phase diagram. A T0

curve is the intersection of the solid and liquid free energy curves plotted
on a phase diagram. It marks the bound on compositions of a solid phase which

can form from liquid of any composition at that temperature. Figure la shows

a hypothetical phase diagram with a stable and a metastable eutectic. If the

composition range of an individual phase is very narrow or if the solidus is
retrograde (5), the T curves will not extend far from that phase at temperatures
of interest. This produces a rather wide range of alloy compositions between

the T0 curves of the different phases which must crystallize as two-phase
solids. Even partitionless (massive) crystallization of liquids in this
composition range into a single phase is impossible. Wider composition ranges

requiring two phase crystallization are possible if a particular phase fails
to nucleate (for example, 0 in Figure la).

7U

iCOMPOSITION TEMPERATURE T T

(a) (b)

Figure 1. a) Hypothetic phase diagram with a stable and a metastable
eutectic. The Tf curves for the three solid phases relative to the liquid

are shown. In t~e shaded region of composition between TO curves,

crystallization to a single phase crystalline solid is impossible.
b) Relationship of interface temperature to interface velocity for
coupled growth of two phases. TE is the eutectic temperature.

The growth of a two-phase solid from the liquid requires the diffusional
sorting of the components in the liquid phase as well as the creation of new
surface area between solid phases. These requirements for coupled growth lead
to wefl known relationships (6,7) between interface undercooling AT below the
eutectic temperature, interface velocity V and eutectic spacing )A; namely,

-24-
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V = D(T)(AT) 2  (1)
4A1 A2

A2V = D(T)A2 (2

AV A (2)

and redundantly

X = 2A2/AT. (3)

Here D(T) is the interdiffusion coefficient in the liquid which is a strong
function of interface temperature at large. undercoolings. The parameters A,
and A2 are approximated by mAC/8 and 2y /AS, respectively, where m is an
average positive liquidus slope, AC is He composition difference between the
solid phases, y is the a-$ surface energy and AS is an average entropy of
fusion of the sgid phases. The above equations use the extremum principle
although refinements of this aspect are possible (8). Extension of eutectic
solidification theory to ternary systems has been performed (9) and leads to
similar results.

For a given interface velocity, the interface undercooling required for
eutectic solidification based on equation (1) is much greater than for single
phase crystallization. In fact for this reason, interface attachment kinetics
are neglected in equation (1). For examp e, for velocities of 10 pm/s one
expects undercoolings of the order of 10- K (10) for single phase crystallization
of metals, whereas for eutectics such a velocity would lead to an undercooling
of the order of IK (11). For larger interface velocities the temperature
dependence of the diffusion coefficient becomes very important and the under-
cooling becomes much larger. Figure lb shows schematically the form of Eqn.
1 for a diffusion coefficient with Arrhenius behavior. A maximum velocity
exists beyond which eutectic solidification cannot occur. Such a maximum also
occurs for single phase solidification but it occurs at a much higher velocity.
Similarly, minimum transformation times from time-temperature transformation
curves have been calculated by Boswell & Chadwick (12). Alloys required to
crystallize at velocities greater than this maximum due to the rate of heat
extraction and which cannot crystallize as a single phase material will
undoubtedly form a glass.

The purpose of this research is to determine whether this prediction of a
maximum crystallization velocity for a eutectic is related to the ease with
which certain alloys form glass. Preliminary experiments are reported in
which a glass-forming alloy has been directionally solidified at various
interface velocities. Alloy microstructure including the transition to the
glassy state is described as a function of interface velocity.

*Experiments

Rapid directional solidification is being conducted by quenching thin
* alloy-filled quartz tubes (0.75 mm I.D. x 1.5 mm O.D. x 10 cm long) from a

furnace at 1100 *C into liquid Ga at various controlled speeds. Samples are
initially lowered at 0.25 mm/s to obtain about 3 cm of crystalline solid.
This step prevents bulk undercooling of the liquid and permits study of the
growth aspects of the alloy unencumbered by nucleation difficulties. Samples
are then quenched at the desired speed. An important consideration here is
whether the interface velocity is equal to the quenching rate. Care was taken
in the present experiments to maximize the extraction of heat from the samples
during quenching by the use of thin samples with thin container walls and a
high boiling point quenchant. If the heat flow is directional and parallel to
the tube axis in the alloy, the interface velocity must be less than or equal

to the quenching rate. In fact an initial transient where the interface
accelerates to the quenching speed was expected and observed microstructurally
to be about 2 cm long. -25-
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A conclusion of this paper is that the maximum velocity of eutectic
solidification of this alloy is between 1.0 and 2.5 mm/s. Attempts to crystal-
lize at velocities greater than this lead to glass formation. We have also
seen similar sharp interfaces between fine eutectic structures and glass in
electron-beam surface melted samples.

Future work will include attempts to measure interface temperature,
temperature gradient, and eutectic spacing along with an identification of the
phases present during eutectic solidification at velocities just below the
transition to the glass. This information will permit a semi-quantitative
evaluation of Eqn. 1.
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THERMODYNAMICS OF METASTABLE EQUILIBRIA
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ABSTRACT

The thermodynamics of metastable phase equilibrium is closely related to
that of stable phase equilibrium. Metastable phase equilibrium can often be
represented by extensions of the curves on phase diagrams that represent
stzable phase equilibria. Thermodynamic principles rank phase equilibria but
not phases in a hierarchy of increasing stability. Thermodynamics imposes
precursor rules in tulcicomponent systems in which a prior reaction is
required before a phase can appear. A given hierarchy persists over a domain
on the, phase diagram bounded by surfaces on which the ranking of two equilibria
changes. Multicomponent phases per se do not form a hierar-chy because a given
phase can disappear and reappear in a sequence of spontaneous processes.
Processing for producing metastable phases must place the system within a
domain in which the desired phases can form spontaneously from the available
phases.
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Introduction

Thermodynamics is the science of the impossible. It enables us to tell
with certainty what cannot happen, but is noncommittal about the things that
are possible. Thermodynamics is at its best when nothing more can happen, a
condition called equilibrium. The concept of equilibrium has been fruitfully
extended to reversible processes which are on the verge of being impossible.

When a system is not at equilibrium, thermodynamics retains its certainty
about the impossible. However, the domain of the thermodynamically possible
may be so large that thermodynamics has lost much of its usefulness as an aid
to prediction. In a complicated nonequilibrium system such as we often
encounter in rapid solidification, thermodynamics would be almost totally
useless if applied to the entire system, for then an irreversible process in
one part, combined with an impossible process in another, could lead to an
overall reduction in the appropriate thermodynamic potential and a verdict of
"possible". Hence, it is a common assumption that we apply thermodynamics
locally, unless we know specifically that there are long-range interactions.
Similarly, we often assume that different processes are Independent, and apply
thermodynamic criteria to each individually.

Another important assumption is that of constrained equilibrium, in which
certain processes are assumed not to occur or to occur so slowly that thermo-
dynamics is fully applicable to all the other processses remaining. These
three assumptions permit us to apply thermodynamics locally and to individual
processes, but the validity of such assumptions must be checked experimentally.

An example of constrained equilibrium is metastable phase equilibrium.
Here, the constraint is that one or more of the stable phases is absent. The
phases that are actually present reach equilibrium subject to this constraint.
This definition of metastable phase equilibrium focusses on the absence of one
or more of the equilibrium phases, and does not ascribe any unusual charac-
teristic to the metastable ones present.

A second example of constrained phase equilibrium occurs when the solidifi-

cation is so rapid that one or more of the components cannot redistribute
among the phases in the time scale of the experiment. In a completely
partitionless solidification to a single solid phase, the temperature where
the liquid and solid have equal free energies traces out a surface (T0 ) on
the multicomponent phase diagram between the liquidus and solidus for that
phase and its extrapolation. Below this surface, provided diffusion is
limited, it becomes thermodynamically possible to solidify a liquid completely
even though the system may be above its solidus.

In this paper we will focus on metastable equilibria and partitionless
(sometines called massive) transformations, their representation on phase
diagrams and the hierarchical laws governing the thermodynamically possible
sequences of phases and metastable phase equilibria. Certain basic concepts
and relationships described in earlier reviews (1,2) and standard textbooks
will be assumed. We begin with the single component case and highlight the
major complications introduced for multicomponent systems.-

Metastable Phase Equilibria in Single Component Systems

A single phase can reach a metastable phase equilibrium when nothing more
is possible except the formation of new phases. Nucleation theory tells us

.* that there are natural barriers to the formation of new phases from metastable
ones. The range of conditions under which a phase can be metastable is
bounded by kinetic factors, imposed by nucleation and growth, and thermodynamic
limits commonly called spinodals.

-30-



What is important is that it is reasonable to assume that there are no
discontinuities in thermodynamic properties as a phase moves from stable to
metastable. The same thermodynamic measurements that are made on stable

phases can be, and have been, made on metastable phases. Heat capacity,
volume, vapor pressure, and other such properties are rigorously defined and

have been measured. From such measurements, energy, entropy, and free energy
can be rigorously determined. Metastable phases obey the usual solution laws.
If they are dilute, Henry's and Raoult's laws apply. They can even be ideal:
to wit, a supersaturated vapor at a density far below the critical-point
density.

In a single component system phases are in equilibrium when the chemical
potentials p of the component, which in this case are the same as the molar
Gibbs free energies, in the several phases are equal. A graph of the free

energies of several phases as a function of temperature at constant pressure
is shown in Figure 1. At each temperature the stable phases are the ones with
the lowest value of F. Consistent with the phase rule only one phase is
stable except where the two lowest curves cross. All other phases are
metastable. With changing pressura the free energy curves will shift at a
rate proportional to the volumes of each phase and different phases may become

stable.

I'Liquid

L

S L !y

L I L

Toy T-P TmY Tmy TmO

Temperature

Figure 1. Chemical potential (free energies) of various one-

component stable and Metastable phases as a function of
temperature at constant pressure. The stable phase at each
temperature is the one with the lowest W. Stable and metastable
two-phase equilibria occur where two curves cross. Between
crossings the hierarchy of phases ranked according to their
values of 4 is listed.

A graph of the domains where each phase is stable is called a phase diagram

and is shown in Figure 2. It consists of areas in which a phase is stable
bounded by curves in which two phases are the equilibrium. Three curves come
together at triple points of three-phase equilibrium. Vapor-liquid critical
points where a two-phase curve terminates are of little concern in rapid
solidification. The axes can be any two independent combinations of T, P, or .
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Such a metastable phase diagram also features points where three metastable
phases are in equilibrium and where three two-phase curves cross.

The metastable diagram is seen to consist of many regions bounded by no
more than three curves. Within each region there is a definite hierarchy of
phases according to their free energies which is unchanged over the entire
region. At a bounding curve a pair of phases change place in the hierarchy
and a different hierarchy exists in each adjacent region. In region X the
phase hierarchy is a -* y - - 6, while in region Y the order of 0 and y have
been reversed by the traversing of the metastable 0 - y equilibrium curve.

Each triple point represents a place there three phases have equal p.
Three two-phase equilibria curves representing the three pairings of the three
phases must cross there. The crossings of two curves representing two pairs
of two phases with none in common are not triple points.

The thermodynamic hierarchy for a one-component system ranks phases by
their molar free energies. In a thermodynamic processing path of heating,
cooling, and pressure changes, a phase can be retained and moved into a region
where it is metastable and above one or more phases in the hierarchy. During
spontaneous phase changes it can only move down the hierarchy. A liquid
undercooled just below its equilibrium melting curve becomes metastable only
with respect to the stable crystal. It does not become metastable with
respect to a metastable crystal until it has been brought below the melting
curve of the metastable phase. This metastable melting curve can often be
observed as a reversible phenomenon, and can often be estimated from the
stable phase diagram if the metastable phase becomes stable elsewhere in phase
diagrams.

Figure 3 included only phases which were stable in some portion of Figure
2. All curves in Figure 3 are extrapolations of curves from the stable phase
diagram. Metastable equilibria as well as the metastable hierarchies of all
the phases that are stable in some part of a stable phase diagram are thus
easy to estimate. For example, bismuth can be made to crystallize at ambient
pressure into a high pressure phase which appears to have a metastable melting
point of 175 *C consistent with the metastable extensions in the phase diagram
(3). It is not surprising that most observed metastable phases appear as
stable phases somewhere in phase diagrams either at different pressure, temper-
ature or with small additions of other components. In order for a phase to be
formed by rapid solidification it has to be within a few hundreths eV af the
stable phase and it is unlikely that a phase will come that close to the
lowest free energy without breaking through at some adjacent pressure, temperature
or alloy addition. It is not impossible though. Figure 4 gives a hypothetical
case where a metastable phase 6 comes close to being stable without ever
becoming so, and having a free energy curve which is not parallel to that of
any other phase. It is quite straightforward to construct the hypothetical
free energy surfaces corresponding to the metastable equilibria of Figure 4.

While there is no singularity in thermodynamic properties of the liquid at
any of the stable or metastable melting points, there is a rapid change in
heat capacity near the glass transition (4). The heat capacity of the amorphous

phase at the glass transition is cooling rate and heating rate'dependent but
seems at the slowest rates to approach a well behaved reversible limit (5,6).
For the faster rates there is a lack of reversibility, but heating and cooling
curves can establish an upper and lower bound to the free energy of a glass
when its properties depend on its thermal history. The slow cooling limit of
the glass transition seems well defined, and indicates that the free-energy
curves of glass and liquid merge smoothly, exhibiting only a rapid change in
curvature. On phase diagrams, the curves representing the metastable equilibria
between the amorphous phase and some other phase are continuous through the
glass transition, but exhibit a rapid chan-e in slepe. If the metastable
crystalline phase does not catalyze the nucleation of a stabler crystalline
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phase, the reversible growth or dissolution of this phase in contact with a
glass should be observable.

!0 Y
C

d

0

Figure 4. A metastable phase diagram similar to Figure 3 except that
the 6-phase is nowhere stable.

Solidification processing permits a climbing in free energy away from the
equilibrium. The solidification cycle is not unlike a heat engine. Energy is
added at the melting point and the maximum rise in free energy Al depends on
how far the system can be cooled while retaining the latent heat AH. In fact
because AF=AH(T/T M ) the analogy with the Carnot efficiency (,%T/T M) can be
made. Like the heit engine, the usable stored free energy is reduced by
irreversible processes such as diffusion, heat flow, and interface kinetics.
Rapid solidification is a means for forstalling solidification and achieving a
high free energy, but its irreversible aspects dissipate much of the available
free energy. Slow cooling with controlled nucleation is a very good way of
producing glass or highly metastable crystalline phases. In multicomponent
solidification slow cooling can through segregation, produce a system with
much free energy stored in the wide composition range and in the eutectic
phases that would not be part of the equilibrium solid, while rapid segregation-
less cooling could in one stage produce an equilibrium homogeneous solid.

The controlled ability to get either closer to equilibrium or further from
equilibrium by rapid solidification through the manipulation of the kinetic
and thermodynamic variables must surely be one of the most important attributes
of this new processing field.

4' Multicomponent Phase Equilibria, Partitionless Phase Changes
and Metastable Hierarchies

The complication's introduced by several components are not obvious at first
glance. Metastability of each phase is again common and limited only by
spinodals and nucleation and growth kinetics. Thermodynamic properties of
metastable phases are well behaved and often smooth extensions of behavior in
stable ranges. Equilibria are still dictated by equality of chemical potentials
of each component but this no longer implies equal free energies. A phase
diagram having as axes T, P, p2 .... u or more symmetrically T, l, 2 ....
would be a (N+l)-dimensional analogue of the single component diagram where N
are the number of components. Single phases would occupy (N+l)-dimensional

* hyper-volumes, bounded by N-dimensional hypersurfaces representing two-phase
equilibria, which intersect at (N-l)-dimensional hypersurfaces representing
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three-phase equilibria, etc. until there are points representing (N+2)-phase
equilibria. Such a phase diagram is useful for an open system in which material
reservoirs keep the chemical potentials fixed by letting compositions change.
In a few situations we do impose open system conditions for some of the com-
ponents by e.g., fixing the partial pressures of a gas containing these components,
but more generally, we fix the composition of our system, which leads to
profound complications in the thermodynamics. The open-system metastable
diagram would be constructed by extension of all two-phase hypersurfaces and
would divide the space into simplexes in each of which a hierachy of phase
equilibria would exist.

In open systems the entire phase diagram is occupied by Single phase

hypervolumes with multiphase equilibria occupying hypersurfaces of lower
dimension and thus of zero measure. Unless we take pains to fix chemical
potentials and temperature to lie precisely on one of these multiphase surfaces,
the system will almost always be single phase. If it is multiphase an
infinitesimal shift in conditions off the surface will return it to be single
phase. The open system metastable phase diagram is a multidimensional version
of a one-component phase diagram and.the same rules including the hierarchial
one apply. Indeed Figures 2-4 could serve as examples of a two-dimensional
section of a multicomponent phase diagram.

Major changes occur when we shift to closed systems in which the overall
composition rather than the Ii's are fixed. This is the usual situation in
rapid solidification. Phase diagrams for closed systems have compositions as
axes and contain (N+l)-dimensional hypervolumes of one-, two-, and N-phase
equilibria with (N+l) and (N+2)-phase equilibria occupying hypersurfaces of
zero measure. The same phases remain in equilibrium throughout the volume

as temperature, pressure and composition shift.

A common graphic method of depicting the multiphase equilibria is the
common tangent hyperplane to the free energy hypersurfaces for the various
phases at a given temperature and pressure. It is full- equivalent to the
condition of equal chemical potential of all the components, and the range of
the line segment between tangent points readily demonstrates how the same two
phases can remain in equilbrium over a wide composition range (Fig. 5).

The stable multiphase equilibria are those where the hyperplane tangent to
the free energy surface of the equilibrium phase does not cross the free
energy surface of any phase. If it does cross, the equilibrium is metastable
with respect to the formation of the phase.

It is immediately apparent from Figure 5 that there is a hierarchy of
metastable phases denoted by free energy curves (or hypersurfacas) and phase
equilibria denoted by tangent line segments (or hyperplanes). The boundaries
to a given hierarchy are given first of all by the tangent points on the free
energy curves. These tangents map out the stable and metastable phase diagram
(Fig. 6).

Three other features mark changes in the hierarchy. The intersections of
free energy curves (or hypersurfaces) define the T curve (or hypersurface)
which can appear on phase diagrams. It defines a restricted equilibrium for
partitionless transformation. The T0 curves do not denote a stable or
metastable equilibrium. They do pass through congruent points on the phase
diagram and lie within the corresponding two-phase field. They also intersect
at T0 triple points (or hypercurves) where three phases have the same free

energy.

T curves in Figure 6 mark the intersections of tangent planes and therefore
form ruled hypersurfaces on phase diagrams. T2 curves mark the intersectionof a surface of one phase with a plane tangent to two others.
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The features of multicomponent phase diagrams can be readily imagined to
originate from free energy surfaces of various phases that evolve and shift
rtlative to each other with changing temperature and pressure. It is seen
that the metastable continuation of a stable equilibrium involves only the
free energy curves of the participating phases and should be unaffected by the
new phase whose free energy surface happened to move through the tangent
plane. Thus all stable equilibria can again be extended to depict the
metastable equilibria between the same phases. The qualitative evolution of
the metastable portion of Figure 6 can be understood by the more rapid rise in
Figure 5 of the liquid free energy relative to that of the two solids with
decreasing temperature. These free energy curves could be obtained quantitatively
by a number of methods and then extrapolated to allow determination of the
metastable diagram. For some of the curves it seems far simpler and probably
more accurate to extrapolate the portions of a measured stable (or metastable)
phase diagram.

As for the single component, wherever a liquid undergoes a glass transition
the curves will be continuous witn only a rapid change of slope.

It should be immediately pointed out that no simple hierarchy of phases
exists. A system at a point in region X in Figure 6 is in equilibrium when a
and B are present as the stable phases, and the liquid is metastable. Yet
when stable B is brought into contact with liquid in X under conditions where
a does not nucleate, stable 8 will dissolve in metastable liquid. Such a
reaction in which a stable phase dissolves in a metastable one is impossible
in single component systems, but quite common in multicomponent ones. Only
when a finally nucleates can B reappear. This disappearance and reappearance
of a phase in spontaneous processes indicates that there can be no hierarchical
listing of phases.

This can also be indicated by listing the metastable hierarchies in regicn
X. Because X lies outside the B + L field, no equilibrium between B and L is
possible. The remaining five equilibria are ranked as follows: single-phase
B is highest in free energy, followed by single-phase a. single-phase liquid,
two-phase a + L, and equilibrium is reached with two-phase a + B. In region W
the sequence 8 + L is inserted between L and a + L. In such metastable
sequences phases can appear, disappear, reappear with a different composition
and disappear again. Once a particular phase equilibrium has disappeared it
can not reappear unless the system is reprocessed.

The inability of B to form from liquid in X unless a has also appeared is
an example of a thermodynamically required precursor reaction (7). Such
requirements do not occur in single component systems, because any of the more
stable phases can appear at any time. Consider a multicomponent system in

metastable equilibrium of one or more (m) phases. The composition must lie
within that m-phase field on the metastable phase diagram. The addition of a
new phase can occur only if the composition lies also beyond where the
metastable (m+l)-phase field first intercepts the m-phase field. In Figure 6,
B can form from liquid in W but not in X, while a can form in either. This
places a strong and easily formulated constraint on the phase-sequences that
can occur in a given hierarchy which can be locally applied even if the system
has only reached local equilibrium.

During such isothermal sequences the free energy is monotonically decreasing,
but chemical potentials can increase as well as decrease. In the graphical
construction of Figure 5, the chemical potentials of the two components are
the intercept with the component axes of a tangent to the single phase curve
at the system composition or of the common tangent in a multiphase equilibrium.
These ups and downs of chemical potentials of a component go hand in hand with
the appearance or disappearance of a phase enriched in that component.
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In solidification, thermodynamics put bounds on the solid composition that
can form from liquid given the composition and temperature of the liquid at
the interface (1). The T curves pertaining to liquid with a given solid form
an upper bound to the solid composition that can form from liquid of any
composition at that temperature. Because the T lies between the liquidus and
solidus, systems in which the extrapolated solidus appears to span the entire
composition range are good candidates for segregationless solidification to
that particular phase. Systems with retrograde solidi (stable or metastable),
even where the corresponding liquidi sweep across the composition axis, can be
shown to have T0 curves which are bounded in composition. Compositions beyond0
this bound, which is approximately the liquidus composition at the retrograde
temperature (8), can not undergo segregationless solidification to that
crystalline phase at any temperature. Because crystallization involving
segregation is much slower, retrograde systems might be good candidates for
glass formers.

Two T curves in Figure 6 intersect at the eutectic point Z. The eutectic
horizontal is a stable TI, the other moving downward in temperature is
metastable and defines bounds to conditions where it is impossible for one
metastable two-phase equilibrium to follow another. A T2 curve (not shown)
also goes through point Z. It indicates the temperature where eutectic
solidification in the absence of a proeutectic reaction first becomes thermo-
dynamically possible although unlikely.

Because of the segregation accompanying most solidification and the slowness
of diffusion in the solid state, most solidification processes yield solids in
which the individual phases are not homogeneous. The hierarchy diagrams rank
equilibria, and homogeneity of a phase is, apart from minor gravitational and
defect segregation phenomena, a necessary condition for equilibrium whether
stable or metastable. These segregation effects can bring the system into a
state there it contains phases that it would not contain in any metastable
sequence.

This can be illustrated by an example. A liquid cooled to a point in
region Y could at no temperature during its cooling path reach any equilibria
other than a, L, L + a. Yet during conventional cooling, segregation will
lead to the formation of B and the system as a whole will not reach equilibrium
until all the $ has disappeared. The hierarchy diagrams can only be used for
conventional solidification on a local equilibrium basis. They are more
useful for the solid state sequences following a segregationless solidification
or a homogenized solid formed by rapid solidification.

The usefulness of metastable equilibrium diagrams lies in. the fact that
* like stable diagrams there are rules for their construction which guide

measurement and permit our experience to be organized. The ability to extra-
polate and interpolate is one aspect which lets us make rapid strides in
sketching in the main feature of such a diagram. When metastable equilibria
is reached, thermodynamics can make its full range of predictions. For
single components a sequence of equilibria are likely. The possibility of
segregation makes it difficult for us to bring in strong predictions about
multicomponent systems, except in rapid solidification and ona local level in
conventional solidification.

With new techniques of producing phases increasingly far from stable
equilibrium, the need for metastable phase diagrams becomes pressing. Uhile
extrapolation of curves from stable diagrams has been long used for estimation
and T curves have been in use for diffusionless transformation, a systematic

approach in a few important systems should prove the usefulness of the ideas
presented here in charting processes far from stable equilibrium.
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RAPID SOLIDIFICATION

J. W. Cahn, S. R. CorieZZ a.d W. J. Boettinger
National Bureau of Standards

kachington, D. C.

Rapid solidification phenomena are descriybed in terns of a
hierarchy of increasing deviation from equilibrimn. Results
of morphoZogical stability theory applied to silicon regrowth
indicates t;-at factors outside of conventional constitutional
supercooling can explain the observed absence of lateral
segregation. A model for interface response functions
applicable to solute trapping is presentdd and a thcrmodyn ic
limit to the =ount of solute trapping, which seems to be
operating in some systems, is proposed.

I. INTRODUCTION

All solidification processes, slow or rapid, involve some
nonequilibrium effects. With increasing solidification rates
deviations from equilibrium tend to become more extreme. The
extent of disequilibrium, however, is nonuniform and different
nonequilibrium phenomena becoMe important at widely differing
rates. We shall adopt a scheme of classifying solidification
effects by their nonequilibrium aspects.

A. Full Diffucioal Equilibrium (Global Equilibrium)

At the very slbwest solidification rates, diffusional
equilibration can occur. In this state of equilibrium,
materials are characterized at any time by constant temper-
ature and chemical potential throughout the dimensions L of a
sample; i.e., phases are homogeneous, but there will be dis-

,4 continuities in composition at the interfaces. This equilib-
rium requires solid state diffusion over distances of the
specimen and hence geological times (L/0. where D is tle
solute diffusion coefficient in the solid'phase). The ex-
istence and coipositions of homogeneous phases are given by
stable (or metastable) phase diagrams. This kind of global
equilibrium will not be approached in solidification pro-
cesses, except in extremcly small systems such as ultrafine
dispersions of droplets. Surprisintjly iecause the titr.e scale
for nucleatiun can also be of geological times, metastable
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phases can occur in this regime (1). In classical thermo-
dynamics metastable equilibrium is a full equilibrium and
indistinguishable from stable equilibrium except that one or
more stable phases are prevented from nucleation (2).

B. Local. Equilibrizx

This next range of phenomena is characterized by the
absence of diffusional equilibration in either solid or melt.
Each element of the system is assumed to have reached a state
where it can be adequately described by the local state
variables of temperature, pressure (stress), and comlposition.
The interface is also in local equilibrium. Temperature and
chemical potentials of each species can be assumed continuous
across the irterface, and thus the limiting compositions of
each phase at the interface will be given by a knowledge of
the interface temperature and the equilibrium phase diagram,
with appropriate corrections for the effect of interface
curvature. These limiting compositions then form boundary
conditions to the transport equations within each phase and a
wide range of solidification processes can be modelled with
these assumptions (3). Within each phase local equilibrium
can be established in times of the order of the diffusional
jump frequency. At the interface depending on orientation and
defect structure there are a number of relaxation processes
with widely differing time scales (e.g., nucleation of a new
layer of crystal), that can lead to early breakdown of localequilibrium there (4).

C. Deviations from Local Eqiilibrium

Effects due to deviations from local equilibrium at the
interface already become obvious in some systems at very small
undercoolings and very small interface velocities. For ex-
ample, dislocation-free crystals in contact with Slightly
superheated or super-cooled melts show no measurable growth
rates. With increasing interface disequilibrium, growth or
melting will begin (4,5). While the facetted form can be an
equilibrium form in contact with a fluid of uniform temper-
ature and chemical potential, a growing facetted crystal
rarely is at lorcal equilibrium, since melt isothers or satura-
tion contours are not likely to follow a facetted shape (4).
At equilibriu-m, segregation of solutes bet..een solu:ion and
crystal is indcpendent of interface orientation. Thus the
observation of co'ipositional discontinuities in Czochralski
grow.:n crystal betveen regions that grew behind face:s (core)
and ,'e.jio-'s that gre.s behind smoothly curved (off-core) liquid
melt int ','faceS ildica tes that nonequil11i,'ium interface
effects are frequently observed at conventional crpstallization

-41-



rates (6). The prediction of the extent of nonequilibrium
interface phenomena has thus been an important goal which has
received renewed attention with the investigation of rapid
sol idi fication.

This goal may be sunmarized by response functions (7)
which for example give local growth velocities and solid
compositions at the interface as a function of conditions at
the interface. These response functions replace local

i equilibrium conditions at the interface and become the boundary

conditions to the transport equations in each phase.
While it is clear that many rapid solidification effects

can only be understood if the concept of local equilibrium is
discarded, some predictions based on local equilibrium have
not been fully explored. In the present paper %we describe a)
results ofmorphological stability theory relevant to silicon
regrovith at high velocities using local equilibrium and b)
results of a model for the interface response functions
applicable to solute trapping.

11. MICROSEGREGATION AND STABILITY AT THE SOLIDIFICATION
INTERFACE

During the freezing of alloys, a planar solid-liquid
interface can become unstable. The solute rejected by the
growing crystal can lead to a thin layer of undercooled-liquid
surrounding the crystal which then makes the shape unstable
with respect to dendrites that could protrude into this thin
layer. This leads to a cellular or dendritic interfaces and
causes solute microsegregation. The classical theory of
constitutional supercooling (3,S) predicts increasing in-
stability with increasing velocity (for constant liquid
temperature gradient) and would predict cellular or dendritic
solidification for most rapid solidification experiments.
There are, however, several assumptions that may not be valid
for rapid solidification. (1) Local equilibrium at the inter-
face is assumed to describe quantitatively the amount of
solute rejected by the growing crystal. (2) Capillarity and
latent heat evolution which could stabilize the interface are
neglected. (3) The theory indicates a layer of liquid cooler
than its local melting point, but does not show how the
growing crystal breaks through to this layer.

Beginning with the work of Mullins and Sekerka (9-12), a
method of analysing morphological instabilities has evolved
which properly solves the transport equations assucling local
equilibrium at the interface or making so-me allowance for
deviation from equilibrium. The principal result is that
there is far greater stability during rapid solidification

1thn predictcd by constitut ion il supercool ing eve if local
equiliLri i i is mainrtaini.-d. The transition betwueen planar and
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nonplanar growth during the directional solidification of
binary alloys can be calculated from linear morphological
stability theory assuming local equilibrium. For constant
velocity V solidification in the z-direction, the perturbed
solid-liquid interface is of the form

z = 6 Cxp (at + iWxX + iWyy},

where S exp (ut) is the amplitude and w and w are spatial
frequencies of the perturbed interface. If th real part of a
is positive for any perturbation (for any values of w and
w ), the interface amplitude increases exponentially 6ith time
tyand the planar interface is unstable. If the real part of a
is negative for all possible perturbations, the interface is
stable. The value of a can be deteirmnined by solving the heat
flow and diffusion equations with appropriate boundary con-
ditions. Assuming local equilibrium at an isotropic solid-
liquid interface, Sekerka (13) found

a = V{-kLGL(GL-V/=L) + kGs(sV/=s) - 27TMr 2 -+

2ThG ca(a-V/D)/(cc-pV/D)}/(L vV + 2knG 7/(a-pV/D)} (1)
with

s (V/2D) + [(V/2D)2 + w2 + T/D] ,,

= (V/2L) + [(V/2 L) + W2 + a/KL]

as = .(V/2Ks) + [(V12s)z + W2 +

" it (ksas + kLaL)/( 2 k),

where _ and K are thermal diffusivities of liquid and solid,
respect!vely, i, and ks are thermal conductivities of liquid
and solid, resp ctively, D is the liquid diffusion constant
(diffusion in the solid is neglected), w = (Wx2 + W 2)'i, =
(ks + )/2, G and G are the unperturbed .tenperatur gradients
in thb liqui1 and s~lid, respectively, Gc is the unperturbed
solute gradient i.e., G = Vc (k-l)/Dk,k is the equilibrium

;t distribution coefficient, c 's the bulk solute concentration,
T is the melting point of the planar interface in the absence
of solute, " the ratio of the solid-liquid surface energy, ',

and the litcnt hcat of fusion per unit volu:mi, L., m is the
slope of the liquidus line on the phase diagram, and p = l-k.

For a given alloy and specified values of the processing
conditions we can calculate nu;;erically - as a functior of .,
, frori the above equation. Alternatively, vie set o 0
and calculate the bulk concentration c as a. fjuctij:i of
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c (w). The minimum value of c(w) gives the stability-
Instability demarcation.

The sign of a is determined by the sign of the numerator
in the above equation since the denominator is always positive.
The numerator consists of four terms proportional to G , GS,
r, and G,, respectively. For the usual case of positive 
temperatbre gradients, the first tw-o terms are negative re-
flecting the stabilizing influence of the temperature field.
The surface tension term is always stabilizing. Instability
occurs vhen the destabilizing solute gradient term is suffi-
ciently large to overcome the stabilizing influence of the
temperature gradients and surface tension.

It is usually an excellent approximation to neglect the
thermal diffusivity terms in the above equations, i.e., let
K- -, and K ., . In this limit, Sekerka (14) has shown that
tie stability criterion is

2k GL + VLv > (ks+kL)mGCS(A,k), (2)

where S(A,k) is a function of the dimensionless variables k
and A:(kT i'V2)/(D2mG ). The function S(A,k) can be calculated
by solvin a cubic euation; among its properties are that 0 <
S(A,k)< 1, S(O,k) = 1 and S(A > l,k) = 0. The stability-
instability demarcation for siTicon containg arsenic and
antimony for GL = 200 K/cm is indicated by the curve in Figure1.

The following values were used for the calculations;

kL 70 Jm-] sK - ,  k 5= 22.Jm-1s' k' I

D = 3x10"8 m2/s, k = 0.3 (As),.k = 0.02 (Sb),

L = 4.56 GJ/m 3 , T 1r 1.3xlO-  Kin,

K= 3x10 5m2/s, sK 9.4xlO 6 m2/s,

m = -440K/at. fract.(As), m = -370 K/at. fract. (Sb).

SFor a given velocity V for solute concentrations below the
curve the planar solid-liquid interface is stable. The

straiyht line with negative slope in the figure is the con-
stitutional supercooling criterion, mG = G or c G 0O/
[V(k-l)mi], for intL.rfacL stability. This fbllo,s froh the
above equation in the limit S(A,k) -, 1, k" - k,, and 2k, G,>>
VL,. For Si, it appears that even at mod.st vlocities , 6e
preceding inequality, i.e., G >>3.26xlO'V(sK/m.), is not a
goo( appro.i : ,l ion, and the l, tent heat term in the stabili ty
criterion c:!n Iv- iil m'rto•t. The straight line ,.iti positive
slupe is the Mmllins-Sekerka absolute stability criterion (9),
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A=I or mG kT,,r(V/D) 2 or c. k2T rV/[O(k-l)m3. For small
velocities, the constitutional supecooling criterion is a
good approximation to the morphological stability calculations.
For very large velocities the absolute stability criterion is
a good approximation. Mullins and Sekerka have shown that the
exact curve will alw.ays lie above the absolute stability line.
Thus. for solute concentrations below those given by the
absolute stability equation, the interface is stable. Whereas
the constitutional supercooling criterion depends linearly on
the temperature gradient in the liquid, G , the absolute
stability criterion is independent of GL *although we require
that k G + k G > 0). In Figure 2 we how the wavelength,
, = 2Iw, at th6 onset of instability as a function of velocity.

The wavelength decreases monotonically with increasing velocity.
Although we sho(.i results for V = 10 m/s, the theory is no
longer valid at such high velocities since the diffusion
boundary layer length, D/V, is only a few atomic distances.

The theory has been extended to include nonlinear effects
(12), some limited interface anisotropy and deviations from
local equilibrium (15,16).
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III. NONEQUILIBRIUM AT THE INTERFACE

Crystal growth or dissolution can only occur with some
deviation from equilibrium at the interface. The response of
the interface to a given deviation from equilibrium has been
called the response function (7). Theories attempt to predict
for single component systems a relationship between interface
undercooling, orientation, crystal perfection, components of
interface curvature and the local interface velocity. For a
binary system an additional relation is needed to link the
solid and liquid compositions to the above variables.

For the single component systems theories have concen-
trated on mechanisms of crystal growth which broadly fall into
two classes: continuous additions to the crystal or lateral
spreading of new crystal layers. Crystal perfection only
matters for the latter class of mechanisms, in which case
imperfect crystals (containing certain types of dislocations
or twins) could grow much closer to equilibrium than perfect
crystals. A rule based on entropy of fusion and packing on
planes parallel to the interface has considerable success in
approximately classifying those systems in which lateral
growth is likely (17). It has been predicted that at high
undercoolings many of these systems change mechanisc.s and grow
by the continuous mechanism (4).

For binary systems an early kinetic theory (18) predicted
for tie continuous growth mechanism the growth rate and
partitioning of'solute in terms of four rate constants
describing the frequencies with which the two kinds of atoms
jump from melt to solid and v.ice versa. An examination of its
predictions showed that this theory predicted that the solid
composition could never exceed the equilibrium composition of
solid in contact with liquid at the interface temperature
(19). To exceed the solid solubility maximum at a eutectic,
solidification would have to occur at temperatures %'here the
extrapolated metastable solidus curve exceeded the solid
composition. A test of this theory required either knowing
the interface temperature during solidification or choosing a
system with a maximunm in the sQlidus, a system with retrograde
solid solubility. Several such systems have now been examined
and the finding of solid solutions in excess of the maximum
equilibrium solidus conclusively shows that this kind of
theory is inadequate (19-21).

Such a kinetic theory leads to the result that each com-
potent .ust experience a decrease in chemical potential at the
interface, if that component is to jullmp into the solid. The
experience with the retrograde systems proves that the minor
component can incre.se its cheical potential upon sol idifica-
tior,, a condition teri:zd solute trapping (7,19-21). This.
condition does not violate thermodynami~s and is easily
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modelled if one assumes that the solute is passively carried
into the solid by the solidification, but can respond to this
indignity by diffusing back into the liquid (22). Baker
worked out several such models including a fairly interesting
one that examined a wide variety of parameters and showed how
sensitive the predictions of such models are to minor adjust-
ments.

This model is shown in Figure 3. The interface is a
moving sno;plow for the solute, whose energy is higher in the
solid. Following a suggestion by Chernov (23) that trapping
might occur by having the interface be a state of low solute
energy to which the solute voluntarily rushes only to be
(passively) buried by the addition of the next layer, Baker
permitted a variable solute energy at the interface. He also
allowed for diffusion in both phases. The resulting con-
tinuous steady state diffusion equation with drift term when E
is a function of z is readily integrated (24,25) to give the
composition profiles as a functional of velocity, E(z) and
D(z). Taking the ratio of the limiting compositions of liquid

I I
iiL

-I .

Ott)

SOLID INTERFACE LIQUIDI I

EIz)I

I,,

FIGURE 3. Baker's model for solute redistribution allowed
for an arbitrarily varying diffusion coefficient and potential
energy for solute near the moving interface. The particular
form depicted above leads to the redistribution given in
equation (3) and depicted in Figure 4.
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and solid at the interface leads to the following expression
(22).

(CL/Cs)int ( exp(-c&-S) + exp(-O)[k e/kiexP(_ct)1/

[I +' lfl(k e/ki )/a]J+k e [lexp(-r)/k]I[l+lnkiIa])Ik e (3)

where

ke x~E-S/T
k.exp [(E -E )/kTJe ~Li

are the equilibrium segregation coefficients between liquid
*and solid or interface respectively and

aV/D sJ

8 5 /L

are reciprocals of diffusion distances (in units of the bound-
ary thickness 6) in solid and liquid respectively. Figure 4
shot-s the result for k e =0.1 and D s/D L 0l-s.
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Let us first examine curves 3 and 4 for which E. is E and
E, respectively. For these special conditions the nergy
cbrve in Figure 3 has a single ramp wvhich occurs in a region
of liquid or solid diffusion respectively. Comparison of the
two shows the effect of shifts of the energy ramp relative to
the discontinuity in diffusivity. When the solute is in the
energy ramp it experiences a drift force. In curve 4 this
drift is exerted when the diffusivity is much lower than it is
for the model of curve 3. Trapping occurs at lower velocities.
For curves 1 and 2 the solute is first repelled from the
interface. Segregation over a wide range of velocities is
stronger than equilibrium until at the highest velocities
trapping finally occurs. Chernov's ideas are modelled in
curves 5 and 6. The solute is attracted to the interface and
then buried in the solid. Trapping occurs at quite low
velocities, but in the intermediate velocity range segregationto the solid is so strong that the effect overshoots. Baker
concluded that Chernov's ideas were not necessary to explain
trapping. He also concluded that very accurate modelling of
interface structure, kinetics and energetics 4,ould be neces-
sary to obtain valid predictions about solute trapping except
at the very highest velocities. Curves 3 and 4 are quite
similar to the model presented by Jackson, et al. (26) at this
conference.

The thermodynamic questions raised by solute trapping were
explored extensively by Baker and Cahn (7). Of particular in-
terest is the T curve which is the intersection of the solid
and liquid free energy plotted on a phase diagram. It not
only marks a bound for diffusionless solidification in which
solid and liquid can have the same composition; it also marks
the bound on solid compositions .hich can form from liquid of
any composition at that temperature. W1here thermodynamic dataI are accurate enough to predict metastable extensions of free
energy functions, T curves can be obtained. For the retro-
grade systems a simple estimate can be constructed for the
maximum composi tion that the T curve reaches at OK. No
solid of this phase in excess 2f this maximum can form frcn
the liquid no matter how rapidly cooled, unless local equilib-
rium ceases for the liquid phase itself.

This estii;iate is obtained from a rigorous relationship
(27,28) for the slope of the solidus curve.

dT. . (cLcs)T(:iGs/'cs ) (P)

dc 1iL(cL)-[(I-CL)iTls(cs)+Cl T2s (cs))

where llL(C¢ is tile molar enthalpy of liquid of composition c,
and II 3w are the partial aolar enhal pies of the t,':o
comppoa\nts in th solid at composition cs and G is the molar
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Gibbs free energy of the solid. At a given temperature the
denominator has a simple geometric interpretation onl an crithalpy
vs. composition plot for the liquid and solid phases (twhic' is
relatively independent of temperature). The denominat-or is
the vertical distance at the licjuidus composition for that
temperature between the liquid enthalpy curve and the tangent
drawn to the solid enthalpy curve at the solidus comiposition.
Hence, at the retrograde temperature, %..here thle slope of the
solidus is infinite, the denominator is zero and the tangent
crosses the liquid enthalpy Curve at the'liquidus composition
(q) in Figure 5. At low tcaiperatures whore enthalpy is the
dominant term in the free energy, the T 0 composition can be
approximated by the intersection of the enthalpy curves. In
the absence of any informnation about the curvature of the
solid enth'alpy to determine the intersection (p) of the en-
thalpy curves, an approximate limit on the T composition can
be obtained by the intersection of the previ~usl'y mientioned
tangent and the liquid enthalpy curve (q). This intersect1-ion
is the liquidus composition at the retrograde temperature.
'The T0Curve is an absolute limit to solute trapping and its
exact location is important for many rapid solidification
predictions (31) Such a limit seems to have been observed by

R~oqo~ ~FIGURE 5. Usinc h
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White et al. (20). In Table I we givp the maximum equilibrium
solid solubility at the retrograde c , the liquid composition
at the retrograde c , or where it i.n't known an estimate
C /k and the axium solid compositio hat been

oger c o date. Except for Si(As), co"'> ^ is less than
c, (or c /kn) consistent with the esthated thermodynamic
bbund given 'bove. Every one of these systems shows solute
trapping but T is a limit to how .far this can be pushed
regardless of 2he solidification rate. These systems are
approaching our estimate of this limit. It will be worthwhile
to increase solidification rates still further to test the
existence of this limit. When calorimetric or free energy
data for these systems become available a more precise
estimate of the composition at the crossing of the enthalpy
curves, which is the rigorous basisr of the thermodynamic
limit, should be substituted for c r
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Tab le I. Ccparlson of the Liq-'Lqaus Composition at the
Retrograde T',perature with the A.'axim.,an Solid
Solubility Found in Rapid Solidiftcation

Solvent c cL r O sr/kI 0 n-a Cozn'.ents
(solutc) s ____.... Ob1erved

Zn(Cd) 0.025 .22(29) .10(09) mole
' fractions

Si(As) 1.5x10 2 1  5X21 6x10 21  atoms/co k0

(20) from (30)

Si(Sb) 7.X1019 3xO 2 1  .1.3x0 21  atons/co k0
(20) frort (30)

Si(Ga) 4.,xl01 9  6x10 21  4.5-1 020 atoms/ackN
20) from (30)

Si (U) $X 101 7 .X102 1  IX10 ato'vis/c0,k 0
(i2o) fy.r? (3o)

:.U([) 21022 *!O-O! monot0 10:.

U20.. °?,~oW
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