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Application of Solidification Theory to
Rapid Solidification Processing

1. Technical Report Summary

This semi-annual technical report for ARPA Order 3751 covers the
period October 1, 1979 to March 31, 1980. Work is reported in the following
areas of rapid solidification processing: (1) Interface Stability during
Rapid Solidification, (2) Eutectic Solidification and the Formation of
Metallic Glasses, and (3) Thermodynamics of Metastable Equilibria.
Manuscripts have been prepared for publication in each of these areas and
will be published in the Proceedings of the Second International Conference
on Rapid Solidification Processing: Principles and Technologies. This
conference was held March 24-26, 1980 in Reston, Va. These papers are included
here as the main body of this semi-annual report. In addition, a paper

entitled Rapid Solidification, which reviews earlier work here, is included

as a final item in this report. This paper was presented at the conference
on Laser and Electron Beam Processing of Materials held November 1979 in
Boston, Massachusetts, and will be published in the proceedings of that

meeting.

Task Objective

The objective of this work is to investigate the theory of rapid solidi-
fication to determine whether major aspects of rapid solidification processes
can be explained by conventional solidification theory and to examine non-
equilibrium effects which can arise. In particular, segregation effects,
glass-forming tendencies, and rules goveraing the formation of equilibrium
and non-equilibrium phases, including ailoy composition limits, reaction

sequences and metastable phase formation, will be investigated.

-1-
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Technical Problem and General Methodology

During the freezing of alloys, a planar solid-liquid interface can
become unstable; this leads to a cellular or dendritic interface and causes
solute microsegregation. The transition between planar and non-planar
growth during the directional solidification of binary alloys is being
investigated using morphological stability theory. Conventional constitutional
supercooling theory predicts that the stability of planar solidification
interfaces will decrease as solidification velocities increase. At large
solidification velocities, however, morphological stability considerations
predict that planar interface stability will increase with solidification
velocity. Calculatioms are being done for rapid solidification conditions to
determine the effect of solidification velocity on interface stability.

Eutectic alloy compositions are frequently found to provide favorable
conditions for formation of metallic glasses. The theory of how rapidly ome
needs to solidify to obtain a glassy structure has usually focussed on the
;;cleation of the solid phase as the difficult step in crystallization. 1In
the present work, the focus instead is on the growth process. Diffusional
sorting of alloy components is necessary to form a two-phase eutectic com-
posite structure. Theoretical predictions can be made of the limitation this
imposes on eutectic spacing and at sufficiently rapid solidification rates
this diffusional sorting would no longer be possible, perhaps resulting in
amorphous solids being formed. Experimental methods designed to solidify
eutectic alloys at known velocities and temperature gradients and to test

this theory by providing quantitative correlation of alloy microstructure,

such as eutectic spacing or glass formation, with solidification conditions

are being developed. Two methods are being pursued: (1) rapid directional




solidification at controlled speeds up to 10 cm/s and (2) electron beam
surface melting for solidification at higher velocities.

Rapid solidification processes are frequently regarded as leading to
non-equilibrium conditions which cannot be predicted by theories restricted
to conventional equilibrium thermodynamics. Nevertheless, a careful con-
sideration of thermodynamic phase reactions and limits on metastable phases
may adequately describe a number of rapid solidification effects. The
thermodynamic theory of multiphase systems is being investigated to determine
rules that should control metastable reaction sequences, relative stability
of heterogeneous microstructure and compositional limits imposed by the

thermodynamics during rapid solidificatiom.

Technical Results, Important Findings and Conclusions

Detailed methods and results are described in the main body of the
report. Important new results, findings and conclusions include:
- (a) The phenomenon of solid-liquid interface stability during directiomal
solidification of a binary alloy was reexaminedﬂﬁith special emphasis on very
rapid solidification rates. Although at low to moderate solidification rates
an increase in solidification velocity leads to a decrease in interface
stability, it was found at very rapid solidification rates (above 0.0l m/s in
copper containing aluminum), the perturbation theory predicts a strong increase
in stabilization. There appear to be two dominant effects leading to this
result. The first effect, known as absolute stability can occur even if
there is local equilibrium at the solid-liquid interface. This effect arises
because only short wavalength perturbations are important at high velocities
and these are stabilized by surface energy. Numerical calculations for

aluminum with various concentrations of copper and a liquid temperature




velocities above about 0.0l m/s; in fact, for copper concentrations less than

i 6x10>

wt. %Z, the interface is stable at any solidification rate. The second
effect is caused by departure from local equilibrium at the solid-liquid
interface. Although the exact forms of such departures, let alone their

magnitude, is not well known, the perturbation theory can be modified to

include their salient features. Most departures from local equilibrium lead
to increased stability. For example, all constitutional effects will vanish
as the distribution coefficient approaches unity.

(b) The relationship between eutectic solidification and the ease of
formation of metallic glasses is being investigated. For many systems,
crystallization, including partitionless crystallization, of alloys into a
single phase solid is impossible over a wide range of composition near stable

or metastable eutectics. This fact forces alloys to crystallize into two-

phase solids. Because of the need for diffusional sorting of the components

and creation of solid-solid surfaces, the kinetics of eutectic crystallization
are relatively slow and may be closely related to the ease of glass formation

of these alloys.

Experiments werg done on the diréctional solidification of Pd=6 at 2

Cu~17 at 7% Si alloys which show the evolution of microstructure as a function

of interface velocity. A structure of dendrites and interdendritic eutectic

( . at low velocity ({ 0.25 mm/s) becomes a fine eutectic-like structure at

intermediate velocities (v 1 mm/s) and finally the alloy forms glass when

crystallization is attempted at velocities greater than 2.5 mm/s.
y (c) The thermodynamics of metastable phase equilibrium can be shown to

be closely related to that of stable phase equilibrium.

Metastable phase

4=

gradient of 2(104) K/m show that absolute stability is important for solidification
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equilibrium often can be represented by extensions of the curves on phase
diagrams that represent stable phase equilibria. Thermodynamic principles
rank phase equilibria but not phases in a hierarchy of increasing stability.
Thermodynamics imposes precursor rules in multicomponent systems in which a
prior reaction is required before a phase can appear. A given hierarchy
persists over a domain on the phase diagram bounded by surfaces on which the
ranking of two equilibria changes. Multicomponent phases per se do not form
a hierarchy because a given phase can disappear and reappear in a sequence of
spontaneous processes. Processing for producing metastable phases must place
the system within a domain in which the desired phases can form spcntaneously
from the available phases.

(d) Modifications were made to an electron beam melting apparatus at

NBS to allow improved surface melting experiments to be performed.

Special Comments

NBS persomnel from this contract played major roles in organizing the
Second International Conference on Rapid Solidification Processing held March
24-26, 1980 in Reston, Va. Attendance at the conference was more than 170.
The Chairman of the Conference Steering Committee was Robert Mehrabian, Chief
of the NBS Metallurgy Division and the Conference Secretary-Treasurer was
John Manning. This conference was co-sponsored by DARPA, ONR, AFML, ARO and
NBS. A conference proceedings, containing more than 40 papers, will be
published. Robert Mehrabian is Chairman of the Conference Publications
Committee. Three of the papers written for this proceedings by NBS authors,
which report work done on the current contract, are included as part of this

semi~-annual report.

-5-




During the period covered by this semi-annual report, Dr. R. Schaefer,

formerly of the Naval Research Laboratory, joined our staff and has begun

work on electron beam melting aspects of this work. Prof. T. Massalski qf_

_ _Carnegie-Mellon University also is at NBS in the Metallurgy Division this

f;yéa;uéég";§;3§gggibuting’as‘a corisultant to the current work.

Plans and Implications for Future Research

Since the current work has shown that glass formation can be obtained
during directional solidification of Cu~Si-Pd alloys, this system will be
studied in more detail to permit a semi-quantitative evaluation of equations
concerning the effect of solidification velocities. Future work will include
attempts to measure interface temperature, temperature gradient, and the
eutectic spacing along with an identification of phases present during
eutectic solidification at velocities just below the transition to the glass.
Additionally, experiments on the electron beam melting of Al~-Ag and Al-Cu
alloys will be initiated to test morphological stability theory at high

velocity and to determine the critical conditions for the onset of massive

(partitionless) solidification, respectively.

Future work on theoretical aspects of this problem will include
investigation of solute segregation due to curved solid-liquid interfaces,
the effect of non-constant velocities on interface stability during rapid
solidification, and further calculations of interface stability during
growth into supercooled liquids. Equations will be developed to bring into
morphological stability theory the crystal anisotropies and apply the results
to high solidification velocities. The tendency that cells may have to follow
the heat flow direction rather than to take on crystallographic forms

characteristic of ordinary cells and dendrites will be investigated.

-6~




2. Report of Technical Progress and Results
Four manuscripts were prepared for publication during the period covered
by this semi-annual report. Since these papers present the major results
obtained in work on this contract they are included here as the report om

technical progress and results. The papers on "Interface Stability During

Rapid Solidification," "Eutectic Solidification and Formation of Metallic
Glasses,” and "Thermodynamics of Metastable Equilibria" will be published in
the Proceedings of the Second International Conference on Rapid Solidification
Processing, held March 1980 in Reston, Virginia. The paper on " Rapid

Solidification” will be published in Laser and Electron Beam Processing of

Materials, edited by C. W. White and P, S. Peercy, Materials Research Society

(proceedings of conference held Nov. 1979 in Boston, Massachusetts).
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Interface Stability During Rapid Solidification

S. R. Coriell

National Bureau of Standards
Washington, DC 20234

and
R. F. Sekerka%*

Carnegie-Mellon Unjversity
Pittsburgh, PA 15213

ABSTRACT

_ The phenomenon of solid-liquid interface stability during directional
solidification of a binary alloy is reexamined with special emphasis on very
rapid solidification rates. For ordinary solidification rates, the predictiomns
of the perturbation theory of morphological stability lead to results that are
similar to those implied by constitutional supercocoling; however, at very rapid
solidification rates, the perturbation theory predicts a vast increase in
stabilization in comparison to constitutional superceoling. There appear to te
two dominant effects. The first effect can occur even if there is local
cquilibrium at the solid-liquid interface; it is knowm as absolute stabjility
and arises because only short wavelength perturbations are important at high
velocities and these are stabilized by surface energy. Numerical calculations
for aluminum with various ceoncentrations of copper and a liquid temperature
gradient of 2(10) K/m show that absolute stability is important for solidifi-
cation velocities above about 0.0L m/s; in fact, for copper concentratious less
than 6x10°3 wt. #, the interface is stable at any solidification rate. The
sccond effect Is caused by departure from local equilibrium at the solid-liquid
interface. Although the exact forms of such departures, let alone their
magnitude, is not well known, the perturbation theory can be modified to im-
clude their salient features. Most departures from local equilibrium lead to
increased stability. For example, all constitutional effects will vanish as
the distribution coefficient approaches unity. Finally, other factors are

examined with an aim toward the identification of a realm where experimental
test of the thecory would be meaningful.

*® Consultant, Natfonal Burcau of Standards
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I. Iatroduction

For about the last thirty yecars, the principle of constitutional super-
cooling( ) has been used as a guideline to ascertain the growth conditions that
result in solid-liquid interface shape instability during alloy solidification.
For about the last twenty of those thirty years, this principle has been
complemented and extended by the theory of morphological stability. (2-4) The
approaches of these analyses are somewhat different, constitutional super-
cooling being largely an application of thermodynamics to decide if a liquid is
supercooled (and therefore decemed to be unstable) with due respect to its
composition, and morphological stability theory being a detailed kinetic analysis
of the growth or decay of a perturbation according to the laws of heat flow and

diffusion. Extensive reviews are available in the literaCUre.(s-g)

Despite the different approaches of the constitutional supercooling principle
and morphological stability theory, there are a large onumber of common situations
where they lead to similar results, or at least similar trends within the
inaccuracies of our knowledge of system and material parameters. For this
reason, the constitutional supercooling principle is widely used because of its
simplicity. Nevertheless, there are situations vhere these two approaches can
lead to quite different results. One such situation occurs when the average
temperature gradient (namely (ksGs+kLGL)/(ks+kL), where Gs and GL are temper-
ature gradients in solid and liquid, respectively, and ks and kL are the
‘corresponding thermal conductivities) is significantly different from GL’
only temperature gradient that the constitutional supercooling principle

the

considers. A secund more dramatic situation occurs in the case of melting, as
analysed by 7 :n and Jackson,(lo) for which constitutional superheating under-
estimates stability by orders of magnitude because it uses the diffusivity of
the solid rather than the diffﬁsivity of the liquid (where the relevant solute
transport occurs). '

A third situation where constitutional supercooling andi morphological
stability lecad to quite different answers - indeed,.the main subject of the
present paper - 1s the case of rapid solidification. At very rapid rates of
solidification, the perturbation theory predicts a vast increase in stabiliza-
tion in comparison to constitutional supercooling. There appecar to be two
dominant effects. The first effect can occur even if there is local equilibriunm
at the solid-1ltquid fnterface; it is known as absolute stability(J) and ariscs
because only short wavelength perturbations are important at high velocitiecs
and these are stabflized by surface energy. This case will be presented in
Scction IT and {lluscrated with specific application to dilute alloys of Cu in

Al. The sccond effect s caused by departure from local equilibrium at the

.
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solid-1liquid interface and £{s taken up in Section ITII. Section IV is devoted

to the special case of a supercooled liquid and the results applied to the
solidification of small droplets.

Ve emphasize that the analyses of the prescnt paper deal with constant

solidification rates and initially planar interfaces. The case of non~coastant
high solidification rates ~ although typical of many experimental situations
-~ has only been tractable in special cases.(

IX. Llocal Equilibrium and the Transition to Absolute Stabilicy

We consider the movphological stability of a planar solid-liquid interface
during unidirectional solidification of a binary alloy at constant velocity V.
We outline a standard(lz) linear time dependent stability analysis and then
focus our attention to large velocities where absolute stability prevails and

our results differ significantly from those of constitutional supercooling.

We choose an (x,y,z) coordinate system (moving with the planar interface)
such that the solid-liquid interface is described by z = W(x,y,t) where t is
the time. We assume that W(x,y,t) and any of its derivatives are sufficiently

small that any nonlinear terms can be neglected.

We solve the differential equations

(o1, f3t) = szer + VQT, /32), (1a)
(a-rs/ac) = <;vzrs + V(AT /32), (15)
(3c/3t) = DV + V(3e/32), (1c)

where TL and 'rs are temperatures in the liquid and solid, respectively, ¢ is

the concentration of solute in the liquid (diffusion in the solid is ncglected),
<L and x, are thermal diffusivities of liquid and solid, respectively, and D is
the diffusion coefficient of solute in the liquid.

The boundary conditions far from the solid-liquid interface are

(QTLlsz) =G exp (-Vz/:L) z > o, (2a)
(DTSIO:) = G, exp (-Vz/:s) 2> -, (2b)
c=c_ z v, (2¢)




where the temperature gradients cL and G_ and the solute concentration ¢, are

8
constants. We consider G8 > 0 and GL 2 0; the case cL < 0 will be discussed in
Scction 1V,

The boundary conditions at the solid-liquid interface are

TL - T. (3a)
v = V 4+ (3W/3t) (3b)
v e (ks/Lv)(BTs/az) - (kL/Lv)(a'rL/Dz) (3¢)
Ve~ D(aclaz)/(c-cs) (34)
IL =T 2T, - THPK + g(e) (3e)
c, = ho(c), (3f£) .

where v is the interface velocity, ks and kL are thermal conductivities of
gsolid and liquid, respecctively, Lv is the latent heat per unit volume, Ce is
the concentration in the solid at the interface, TM is the melting point of a
flat interface in the absence of solute, [ is the ratio of the solid-liquid
surface teusion vy to the latent heat per unit volume, K = -~ (32W13x2) -
(32W/3y?) is the interface curvature, the dependence of melting point on #
solute is given by the function g(c) and the relationship between g and ¢ is
given by the function ho(c). Equations (3e) and (3f) are based on the
assumption of local equilibrium at the solid-liquid interface. In Equation

(3c) we have ommitted corrections I3 thae might arise from consideration of

. )
surface ontropy and also a possible decpendence of g(c) and ho(c) on curvature.(3

In carrying out a linear stability analysis, we write the tcmperature and
concentration fields as 3 sum of an umperturbed part, which is a function of 2
alone, and a perturbed part which is of the form Fj(z) exp [oc+1(mxx+uyy)].

vhere Fj is a function of z alonec. The perturbed solid-liquid interface 1is
given by

z = W(x,y,t) = & exp [ot + i(wxx + uyy)]. (4)

where & 1s the perturbation amplitude at t = 0, and w_ and w_ are spatial

LA, it St hutnn At e abebntinuitn s maisien

frequencies. The interface is unstable 4f the real pare of the time constant

o i3 positive for any perturbation, {.e., any real values of w_ and w . The

interface s stable 1f the real part of 3 is negative for all perturbations.
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Upon solving the diffcrential cquations, onc finds %
- V{~ - - c Y - 2 v

o= V{ kLGL(aL V/KL) kscs(as+v1»s) 2k1ﬁrw o +

Zl-unGc;(a-V/D)/(u-pV/D)}/(LVV + zincc‘c'./ (a-pV/D) } (5) :

with

a = (V/20) + [(V/2D)2 + w? + o/D) %,

~———

ay = (V/26) + [(W/2¢)2 + u + c/.:Ll”

: By = ~(V/26) + [(V/26 )2 + w2 + olxs];’

i (ko + kLaL)/(zE) .

K = % 2 u 2 2 = - = - -3 *
; where 2k kg + kL' w wl + Wy G, Vco(k 1)/p, k c./cc, m Sd,/dc)
‘ and p=1- (dholdc) with the derivatives evaluated at ¢ = S and 9

defined by the equation c_ = ho(co), i.e., co is the solute concentration in
the liquid at the planar solid-liquid interface. If one assumes that the
functions g(c) and ho(c) are linear in ¢, thenm, k, and p = 1 - k are con~-
stants independent of c.

For a given alloy and processing conditions, we can calculate o(w) from '
equation (5). If the real part of ¢ is positive for any value of w, the
i interface is unstable. Alternately we can specify the real part of o, Ty and
{ calculate some other variable such as c_ as a function of w. For LA 0, the

minimum value of cn(w), which occurs at some specific value of w, gives the

stability-instability demarcation. Except where otherwise specified, we have ﬁ
also assumed that the imaginary part of g, 9y is zero at the stability-
instability demarcation, consistent with a detailed analysis in the thermal

Qa2)

steady state approximation.

; LI We have carried out numerical calculations for alloys of aluminum coataining

i copper for the following values of material parameters:
kL = 90,73/ (=sK), k' = 210J/(nsK),
3 I L, = 1.08a3/ad, T T = 1.00107 )ux,

; v M

< " 4.2(10"%)m?/s, g = 8.1(10">)n?/s,

D= 5C10°m7 /8, k = 0,14, m = =2.5 K/(u.. 2).

-12-

e - ﬁ~TT._1!!:;:;’III';___.__,,,, e e . \.




The curve in Fig. 1, based on cquation (5), shows thc critical copper soncen-
tration (below which the planar interface is stable) as a function of growth
velocity V for a temperature gradient in the liquid, CL’ of 2(10") K/m. The
dashed straight line with negative slope is the constitutioral supercooling
criterion, mcc - GL' and the straight line with positive slope 1is the absolute
stability criterion, uG_ = kTHr(V/D)z(sce eq. (7) et seq.). The constitutional
supcrcooling criterion is a good approximatfon at low velocities and the
absolute stability criterion is a good approximation at high velocities. 1In
Fig. 2, the wavelength A = 2w/w that corresponds to the onset of instability, i.e.
to the value of w for which c-(w).is a winimum, is shown to be a monotonically
decreasing function of Iinterface velocity. Although results are given in

Figs. l-and 2 for V = 10 m/s, the theory should mot be taken seriously at

these velocities since the diffusion length D/V is of atomic dimensions.

From Fig. 2, one finds that (V/2K3> << w and (VIZKL) << @, which permits
the usc of the thermal steady state approximation according to which we let
the thermal diffusivities approach infinity. For the stability~instability
demarcation (o = 0), Equation (5) then reduces to

0= Vu(-kLGL-kscs-2ITMPu2 + 2Ehcc(u-v/n)/(a-pv/o)}/
Ly + ZI_cchu/ (a-pV/D) }. 6)

The denominator is always positive so that only the properties of the numerator

need be analyzed. The stability criterion may be written as(14)

ZkLcL + VLV > kaGcS(A,k), . 7
where S is a function of the dimensionless variables k and A = kT“rvzl(Dzmcc).
For A > 1, the Interface is always stable, while for A < 1, the spatial

frequency w, at the onsetlof instability and the function S(A,k), which lies

between zero and unity, can be calculated by finding the one and only real
positive root of the cubic equation

134+ (2k-1) r - (2k/AT) = 0. (8)
The quantities S and wy are then given by

S(ALK) = 1+ (AMK)(L - £2 + 2k ") « (3aTe/D), (9)

w = (/) (e - 1Y, ' (10)
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Rewriting equation (10) in the form =1+ (Zbum/V)z, we recognize two
limiting casecs, viz., (ZDm /v) >> 1 and (2Dwm/V) << 1. First, we consider
(ZDm /v) >> 1, and consequently r >> 1. The solution of equation (8) is then

= zk/A5 It follows that S = 1 - (3k/r?) and w = (v/2D)r? = [(kV/4KT,D)
(ZkLp + VL )11/3. If, in addition, VL << 2KkG;, “then oy = (kG V/2T rn] 13,
and the stability criterion is (LL/k)G = mG e’ which is shown as the solid
line with negative slope in Fig. 1. At low velocitics this line is a better
approximatfon to the curve than constitutional supercooling to which 1t would
be identical for k - kL' The proportionality(ls) between w_ and V1/3 is in
agreement with the experimen:al data of Morris and Winegard( 6 on lead-
antimony alloys.

For the second limiting case, (2Dum/V) << landr+1. Ifweletr=1+c¢
with 0 < ¢ << 1, then

[k/(14K) ) [ (1-A%) /A7),

[, ]
n

[(1-k/2)/ (14K) ] (1~ 2,

n
n

o, = [[kVZ(VLv+2kLGL)]/[(1+k)(l-k/Z)zETMrbzl}k,

and the stability criterion approaches the absolute stability criterion A = 1.
For VL >> 2kG., we have
v L

T, %
w, = ([kVJLv]/[(l+k)(1—k/2)2LTHF02]}

Thus for small velocities (2Du /V) >> 1 and @ is proportional to Vll3 while
for large velocitics (ZDu /V) << 1 and @y is proportzonal to VJIA These
approximations are verified by the results in Fig. 2. Plots of S(A,k) and

additional analytic results are available. (14)

We close this section with two additional numerical examples for Al-Cu
alloys. The first of these illustrates the effect of GL on the critical
concentration for instability at a sufficiently large solidification velocity
that constitutional supercooling is a poor approximation. From Figs. 1 and 2,
at a velocity of 1 n/é the critical concentration is 0.21 wt. % Cu and w, =
2.05 (lO’)m‘1 for c{ = 2(20")K/m. Morcover equation (7) shows that the
instability criterion w1l be practically independent of GL provided that

L << V1, IZkL = 6(10°)K/m. Calculations for higher values, viz. GL = 108,

107, 10°k/m, give critical concentrations of 0.22, 0.24, and 0.34 wt. 7 and Wy
2. 1(]07). 2.6¢107), and 4.2 (107)m » respectively, indicating a relative
insenstitivity to the liquid temperature pradient.

-15-
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The second numerical example fllustrates the degree to which an inscabilicy
can develop if only a finite time is available before solidification is complete.
For V = 1m/s, a 100 ym layer will solidify in a time tc - 10’“3. In order to
observe an unstable interface, the instability should be greatly amplified in
a fraction of this time, i.e., we require that ot >> L [see eq. (4}]. Taking
t = 0.1t =10 sa, we requirc ¢ >> 105 s}, cCalculations with G, = 2(10"*)YK/m
and ¢ = 106 and 107 71 yield critical concentrations of 0.23 and 0.36 wt. %’
and v, 2.1(107) and 3.4(107)m ,» respectively. These goncentrations are in
an experimentally accessible range but the wavelengths involved (v0.2 um) would

necessitate electron microscopy.

I1XI. Departure from Local Equilibrium

We now briefly discuss the effect of departures from local equilibrium at
the solid-liquid interface upon Interface stability. We generalize the local

equilibr{um boundary conditions, equations (3e) and (3f), to the form(17-19) .
v = (T Ty, e Tp)s (3e") E
cgr = h (e T TP, Q£

wvhere the subscript I indicates evaluation at the solid-liquid interface. We
require that v = 0 and h = ho when T, - T, = 0. We expand the above equations

in a Taylor series about the temperature T equilibrium temperature Teo’ and

10°
solute concentration ¢1g 2t the planar solid-liquid interface, viz.,

VeV (T ,-T ) - ('rI Tig)] + 1 ¢ °I ¢ * A (Tr=Tyg)s
cqr = We10iT oo Trg) + ko lepmeyg) + kpl(T =T g) = (T-Tygdls
where o = 3E/3(T,~T)), B, = 3€/dc;, u, = /T, kc = 3n/3cy, ky = 30/3(T-T;)

and the partial derivatives are evaluated at TeO’ 10° and 10° With this
generalization, we obtain in place of equation (5)

o = V([-KC, (a,-V/xp) -~k C_(a+V/x )]U, - ZETMN»T; -
+ zEa'ccE(a-v/o) /(a=p V/D) }/ (L VU,

+ [ﬁm'cg/ (a=p“V/D) U, }, (5°)

wvhere n’ » a + (“c/"T)' p° =1 - k, + (kT"c/uT)'
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Case B ¢g1 ™ ho(c) and v = f(Te-TI)

. "n
-

Uy = 1= [y /ugdl + (kym“V/D)/ (a~p~V/D)],

Up = 1= (v,/up) + 2k o/ (L up),

g = L+ V2R (upDG ) ML - Low,/ (2K Q).

As By > = we approach local equilibrium and equation (5°) approaches equation
(5).

Although equation (5°) is rather general in allowing for deviations from
local equilibrium, our knowledge concerning the formws of the functions f and h
is extremely limited and quantitative conclusions based on equation (5°) are
not possible. This is clearly an area in which experimental and theoretical
research is desirable. We will attempt to draw some conclusions in a few N
simplified cases.

Case A csI =<
The deviation from equilibrium is so large that kc = 1 and GC = (; there 1

are no constitutional effects and the situation is similar to solidification

of a pure material., In addition to there being no instability, there is no

macrosegregation in contrast to the stable case for kc $# 1.

Solid composition depends only on liquid composition as given by the phase
diagram and velocity depends only on deviation of the temperature TI from the
temperature Te. Né_bi?e B ™ By ™ kT = 0 sothat o’ =m, p* =1 - kc’ UA - UK
= 1, and UT =1 4+ 2k a/(LvuT). Thus, the numerator of equation (57) is un-
changed from the local equilibrium result, equation (5). Further, the denominator
is still always positive since u_ > O; the stability-instability demarcation

T

is unaffected by e However, for sufficiently small Hp we expect that o will
be reduced for fixed growth conditions or, alternatively, a larger value of

concentration will be needed to obtain a given value of o at fixed V. 1If
bp >> [ZkaV]/(LV + thchvta-pvlnj) = D/(T7) = 0.05m/sK
holds (where the simplification to D/IMF is valid for large velocities), the

term in the denominator involving by is small compared to the sum of the other
two terms, and u

T has little effect. Since we are unaware.of any reliable
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measurcacnts of My for aluminum alloys, we have done some calculations for
values of p that bracket 0.05 m/sK. These calculations based on equation
(5°) arc summarized in Table 1; it follows that there is only a small increase
in critical concentratious as 12 decreases from = to 0.1 m/sK but that
critical concentrations nearly double as Hp decreasas from 0.1 to 0.01 m/sK
Note that if £ is a linear function of (Te-rl). then a velocity of 1 m/s and a

kinetic coefficient e of 0.01 m/sK correspond to a kinetic undercooling of
100K.

Case C pure material and v = f(Te-TI, TI)

Temkin and Polyakov(lg) have considered a kinetic law with the properties
that vy > 0 while Hp = My 2 0 for TI large (necar T}p and Bp = By < 0 for '1‘I
sufficfently small. Such a kinetic law is sketched in Fig. 3 for two different
values of equilibrium temperature, T ' and T ", If one writes v = F(T . TI)
instead of v = (T -TI, TI), then By = My ™ -3F/3T and up = ar/ar , permitting
geometrical interpretation via Fig. 3. A specific amalytic example isv =
uo(Te-TI) exp (-G/TI), where Ho and O are c¢constaats, ;nd from which Pp = Y¥g
exp (-GITI) and Hp = By ™ Mg exp (-G/TI)[I-G(Te-TI)ITI]. For such a kinetic
law, equation (5°) reduces to

o = ([=kG; (o =¥/ )=k G _(a4V/x )1 [up,] = up2kTyFu?al/

{L, Gupmn,) + %k al. ‘ (11)

Note that Bp = Wy = 0 corresponds to the maximum in velocity as a function of
TI for fixed T .
e

So long as By = M, > 0, analysis of equation (1l1l) leads to results that are

qualitatively similar to case B, If Hp = By < 0, further analysis is required
since the sign of the denominator in equation (11) is not obvious. For

simplicity, we let k -'kL and x -“L so that & = {(V/ZKL)Z + w? + c/:L}%

TABLE I

CRITICAL CONCENTRATIONS AND SPATIAL FREQUENCIES_FOR
VARIOUS VALUES OF o AND up AT G = 2¢(10")K/m AND V = 1 m/s

a(s ) ur(m/sK) e (we. ) 10 mm(m )
0 —
0.21
. 2. 05
ig7 L] 0.23 2.1
1 L 0.36 3.4
19 g.i 0.26 2.9
. 0.53
106 0.01 0.40 ¢
o b 4.8
0.01 1.29 9.4
=18~
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Figure 3. Sketch of interface velocity V as a function of interface
temperature for two different values of the equilibrium temperature.

and .
= - - - - 2
a {[stcsu VL (a V/ZKL)][u uT] uTszFMrw al/

2ga - Lo (u, - updl) '. (12)
We consider growth into a supercooled liquid with Gs = 0. It is easy to show
that g = 0 is not 2 solu;ion of equation (12) for any value of w when (uT-uA)
< 0. This suggests that we need to allow for the possibility that ¢ is
complex. Numerical solution of equatioan (12) indicates that this is the case.
Taking k= x; = 6.0(10-5)m2/s, k= kg = 1503/ (usKk), Uy = 0.01lm/ <K, My =
u, = -0.0l @/sK, L_ = 1.08 GJ/w?, T,[ = 1.020")uk, and V = 1 /s, ve find
that the interface is unstable for w < 1.6(10%) m'i; the maxflium value of the
real part of o occurs at w = 8(10%) w™? with o = [2.9(10%) + £ 2.5¢10")] s 1.
Thus, for cither sign of My T M the interface i{s unstable for small values
of w and is stabilized by surface tension for larpge values of w; however, for
(ur-uA) < 0 the nature of the instabilicy is oscillatory. The trcatment by
Temkin and Polynkov(lg) did not uncover these oscillatory instabilitics be-

cause it used steady state heat flow cquations.
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IV. Crowth into Undercooled Melts

Solidification into undecrcooled melts (GL<°) deserves special attention
because for this case, the constitutional supercooling principle always predicts
instabdility. As shown below, the interface can be stable under these conditions

for sufficiently large values of cs. In the thermal steady state approximation,

.the previous analysis, equations 6 and 7, is still valid as long as k G +

kLG = ZkLG +w, > 0; however, if this inequality does not hold, equation

(6) predicts instabiliny as w -+ 0. This suggests that a more rigorous analysis
is required since the thermal stecady state approximation assumes that w >>
(V/2Ka) and w >> (V/ZKL).

_Hi let ¢ + 0 and define the quantity R(w) = {-kLGL(uL—v/KL) - ksGs(as+V/xs)}/
{2k a}. If R{w) < 0, the thermal field is stabilizing while for R(w) > O the
thermal field is destabilizing. Clearly R(0) = -GsksKL/(kas) and R(») =
(-kipoksGs)IZk and these have opposite signs when kLGL + ksGs < 0. These
results indicate that the thermal field is stabilizing for very small w
(provided Gs > 0) and is destabilizing for large w (when kLFL + ksGs < 0).

The special case of G = ) requires a wore delicate analysis which we
undertake only for k = k and &, = x_. Then R(w) = (-G /2)(1 - [1+(2xm/v)2]'%}
is a monotonically 1ncreas1ng function of w with R(0) = 0 and R{=) = (-G /’) > 0.
Hence, the thermal field is destabilizing in this case. Since the solute
field is always destabilizing and surface tension is important only for large

w, we conclude that such a situation is unstable.

In applying such an analysis to the solidification of supercooled droplets,
there is an additional factor that needs to be considered, viz., that in a
swall droplet only rather large values of w can occur. If the droplet is of
radius R, then the largest meaningful perturbation wavelength A = 27/w < 2R
or w 3_x/R.' Thus, fotr a droplet of 1 um diameter w > 6(105‘)11\.1 so that w >
VIZKL even for velocitics of the order of 1 m/s. Thus, R(w) ~ (_kLGL/ZE)' and
the surface tension term T“rmz > 3.6(10%)K/m. For G, > -1.2(107)K/m or V <
1.0 m/s, we would expect a stable fnterface for the solidification of a
droplet of pure aluminum. When solute is present, the magnitide of the surface
tension term nmust be sufficiently large to overcome the destabilizing tempera-
turc and solutc gradicat terms. Numerical calculations with G =0 nnd w >
6(105)m yield critical concentrations of 0.12, 0.028, and 7. 7(10 ) wt.
for velocities of 0.01, 0.1, and 1.0 m/s, respectively. 1If we take o/V = 10G
m-l rather than zerw, we find critical councentrations of 0.15, 0.038, and
0.034 wt. % for velocitles ;f 0.01, 0.1, and 1.0 m/s, respectively with w =
8(10%) m™! as 1tnlted by the partfele radius. For o/V = 107 o !, u is

.
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" cooled melts. We have also presented some numerical calculations that illustrate

no longer limited by the particle radius and we find critical concentrations

of 2.34, 0.37, and 0.33 wt. % with w_ = 1.5(107), 1.7(107), and 2.9(107) u?

for Vv = 0,01, 0.1, and 1.0 m/3, respectively, Thus, although an undercooled

melt with Gs = 0 is unstable, strictly speaking, for any composition, some

minimum composition is nceded for this instability to be observed in small .
droplets because of capfllary stabilizatioa.

V. Discussion

We have dcmonstrated in some detail how the principle of constitutional
supercooling and morphological stability theory can lead to quite different
results at rapid solidification rates. In particular, this occurs because of
increased capillary stabilization of the short-wavelength perturbatfons impor-
tant at high velocities (absolute stability), because o§ increased departures
at the solid-liquid interface from local equilibrium, and because of the

important role of the temperature gradient in the solid in the case of under- N

the refinements in the growth conditions needed to observe instabilities in
the cases of solidification of thin f£ilms and fine droplets. These effects

suggest the need for more careful experimental observations at rapid solidifica-
tion rates.

We emphasize that all of the above conclusions are based on the use of
macroscopic transport theory. Surely, when solidification rates become so
rapid that critical lengths, such as D/V, become the order of atomic dimensions,
the use of macroscopic traansport theory cannot be justified. For Cu in Al, D
=5x 10-9 n?/s and D/V would be less than 10; for V > 5 m/s. The critical
wvavelength for instability is greater than D/V for large V; thus, D/V is the
length with which we have to be concerned. As we have seen, dcpartures from
local equilibrium can be handled in a formal way but there is little known
about exact forms and magnitudes of these departures. We caution again that
our results are only strictly applicable to constant V; the case of large but

time-dependent V is probably prevalent in most experiments that involve rapid

solidification rates and remains as a ripe subject for further research.
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EUTECTIC SOLIDIFICATION AND THE FORMATION OF METALLIC GLASSES
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ABSTRACT

The relationship between eutectic solidification and the ease of formation
of metallic glasses is investigated. For many systems, crystallizationm,
including partitionless crystallization, of alloys into a single phase solid
is impossible over a wide range of composition near stable or metastable
eutectics. This fact forces alloys to crystallize into two-phase solids.
Because of the need for diffusional sorting of the components and creation of
solid-solid surfaces, the kinetics of eutectic crystallization are relatively
slow and may be closely related to the ease of glass formation of these alloys.

Experiments are reported on the directional solidification of Pd-6 at Z Cu-
17 at % Si alloys which show the evolution of microstructure as a function of
interface velocity. A structure of dendrites and interdendritic eutectic at
low velocity (< 0.25 mm/s) becomes a fine eutectic-like structure at inter-
mediate velocities (v 1 mm/s) and finally the alloy forms glass when crystalli-
zation is attempted at velocities greater than 2.5 mm/s.

-23-




] i Introduction

- Eutectic systems are multicomponent systems in which liquid remains the
equilibrium phase to low temperatures because no solid with the same composition
is stable. Because of the stability of the liquid at low temperatures these
systems have been prime candidates for glass formers by rapid solidification.

‘ The theory and practice of how rapidly one needs to solidify has primarily

b focussed on the nucleation and growth of a single solid phase as the difficult

5 step in crystallization (1-3). We have focussed instead on the coupled

f growth of two (or more) solid phases.

There are two aspects being explored: 1) the thermodynamic question for
each system of the absence of a solid phase with the same composition as the
liquid which at some temperature below the eutectic becomes stable relative to
the liquid, 2) the kinetic question of how fast a liquid can crystallize into
: mixtures of crystals of differing composition. The diffusional sorting of
the components is a relatively well understood slow step which governs the
crystallization rate. These ideas have led to a series of predictions for
such systems which are being explored experimentally.

The thermodynamic question is best answered by examination of the position

of the T, curves (4) for all possible solid phases on the phase diagram. A T

curve is the intersection of the solid and liquid free energy curves plotted

on a phase diagram. It marks the bound on compositions of a solid phase which
: can form from liquid of any composition at that temperature. ¥Figure la shows
! a hypothetical phase diagram with a stable and a metastable eutectic. If the
! composition range of an individual phase is very narrow or if the solidus is
retrograde (5), the T, curves will not extend far from that phase at temperatures
of interest. This produces a rather wide range of alloy compositions between
the T, curves of the different phases which must crystallize as two-phase
solids. Even partitionless (massive) crystallization of liquids in this
composition range into a single phase is impossible. Wider composition ranges
requiring two phase crystallization are possible if a particular phase fails
to nucleate (for example, f in Figure la).

; >
b : '>-.
w S
x o
2 o
- g >
w
. g S
l : :
1 ]
; -
L =
' T
3 COMPOSITION TEMPERATURE T €
; (a) (b)

Figure 1. a) Hypothetic phase diagram with a stable and a metastable
eutectic. The T, curves for the three solid phases relative to the liquid
are shown. In tge shaded region of composition between T, curves,
crystallization to a single phase crystalline solid is impossible.

) b) Relationship of interface temperature to interface velocity for

coupled growth of two phases. TE is the eutectic temperature.

The growth of a two-phase solid from the liquid requires the diffusional
sorting of the components in the liquid phase as well as the creation of new
surface area between solid phases. These requirements for coupled growth lead
to well known relationships (6,7) between interface undercooling AT below the
eutectic temperature, interface velocity V and eutectic spacing 2; namely,

-24-
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_ D(T)(aT)
V=T, L
D(T)A
2 2
AV = ———= 2)
A
and redundantly
A = 2a,/aT. 3

Here D(T) is the interdiffusion coefficient in the liquid which is a strong
function of interface temperature at large undercoolings. The parameters A1
and A2 are approximated by mAC/8 and 2y _ _/AS, respectively, where m is an

i average positive liquidus slope, AC is gﬁe composition difference between the

solid phases, Yy is the o-f surface energy and AS is an average entropy of

fusion of the soﬁid phases. The above equations use the extremum principle

although refinements of this aspect are possible (8). Extension of eutectic
solidification theory to ternary systems has been performed (9) and leads to
similar results.

For a given interface velocity, the interface undercooling required for
eutectic solidification based on equation (1) is much greater than for single
phase crystallization. 1In fact for this reason, interface attachment kinetics
are neglected in equation (1). TFor examg&e, for velocities of 10 um/s one
expects undercoolings of the order of 10 K (10) for single phase crystallization
of metals, whereas for eutectics such a velocity would lead to an undercooling
of the order of 1K (11). For larger interface velocities the temperature
dependence of the diffusion coefficient becomes very important and the under-
cooling becomes much larger. Figure 1lb shows schematically the form of Egn.
1 for a diffusion coefficient with Arrhenius behavior. A maximum velocity
exists beyond which eutectic solidification cannot occur. Such a maximum also
occurs for single phase solidification but it occurs at a much higher velocity.
Similarly, minimum transformation times from time-temperature transformation
curves have been calculated by Boswell & Chadwick (12). Alloys required to
crystallize at velocities greater than this maximum due to the rate of heat
extraction and which cannot crystallize as a single phase material will
undoubtedly form a glass. : .

The purpose of this research is to determine whether this prediction of a
maximum crystallization velocity for a eutectic is related to the ease with
which certain alloys form glass. Preliminary experiments are reported in
which a glass-forming alloy has been directionally solidified at various
interface velocities. Alloy microstructure including the transition to the
glassy state is described as a function of interface velocity.

Experiments

Rapid directional solidification is being conducted by quenching thin
alloy-filled quartz tubes (0.75 mm I.D. x 1.5 mm O.D. x 10 cm long) from a
furnace at 1100 °C into liquid Ga at various controlled speeds. Samples are
initially lowered at 0.25 mm/s to obtain about 3 cm of crystalline solid.

This step prevents bulk undercooling of the liquid and permits study of the
growth aspects of the alloy unencumbered by nucleation difficulties. Samples
are then quenched at the desired speed. An important consideration here is
whether the interface velocity 1is equal to the quenching rate. Care was taken
in the present experiments to maximize the extraction of heat from the samples
during quenching by the use of thin samples with thin container walls and a
high boiling point quenchant. If the heat flow is directional and parallel to
the tube axis in the alloy, the interface velocity must be less than or equal
to the quenching rate. 1In fact an initial transient where the interface
accelerates to the quenching speed was expected and observed microstructurally
to be about 2 cm long. -25-
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The alloy chosen for this research is Pd-6 at % Cu-17 at % Si because of
its well known ease of glass formation. Unfortunately, the Pd-Si as well as
the Pd-Cu-Si phase diagrams are not well known (13-15). Figure 2a and 2b show
micrographs of this alloy solidified at 0.25 and 1.0 mm/s, respectively. Both
samples show strong alignment of microstructure parallel to the tube axis and
indicate directional heat flow for this geometry and these quenching speeds.
At 0.25 mm/s (Fig. 2a) the microstructure consists of both faceted and unfaceted
dendrites and an interdendritic two phase eutectic. Suprisingly both types of
dendrites appear to be the same phase and have a composition, determined by
electron microprobe, of 78 at % Pd, 20.6 at % Si and 1.4 at % Cu and an
electron diffraction pattern which has been indexed based on an orthorhombic
cell with a = 7.46%, b = 9.27% and ¢ = 9.60R. The phase occurring along with
this phase in the eutectic has a composition 73 at % Pd, 12.1 a/o Si and 14.9
a/o Cu and appears to have cubic symmetry.

Figure 2. Longitudinal sections
of Pd-Cu-Si alloys solidified at
various velocities, solidification
direction up; (2) 0.25 mm/s,
optical micrograph; (b) 1.0 mm/s,
optical micrograph; (¢) transi-
tion from dendritic to coupled
growth with increasing velocity,
SEM micrograph (inverted signal).
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At 1.0 mm/s the dendritic phase is absent and the microstructure consists
of a fine eutectic structure as shown in Figure 2b. A complete characterization
of this structure is currently underway. The tranzition from dendritic to
fine eutectic structure with increasing velocity is quite significant. This
transition is shown dramatically in Figure 2¢ which occurred in the initial
transient region of the sample quenched at 1 mm/s. Similar transitions from
dendritic to eutectic-like structures with increasing velocity have been
observed in off-eutectic Pb-Sn alloys by Cline and Livingston (16). It
appears that alloys over a range of compositions near eutectics can undergo
coupled growth of two or more phases at high velocity. Hence the kinetic
treatment presented in the Introduction applies.

Alloys quenched at 2.5 mm/s exhibit a very different microstructure — they
are amorphous. In the initial transient there is the transition from dendritic
to coupled growth already described, a refinement of the eutectic spacing and
then a sharp interface as shown in Figure 3a. The light region above the
sharp interface is featureless and has been determined to be glassy from its
x-ray and electron diffraction patterns. The glassy region extends the re-
maining 5 cm length of the sample and occupies the region where steady state
interface speed is ordinarily observed. It is believed that the general
vicinity of the sample shown in Figure 3a represents the place where the
interface velocity reached the maximum shown in Figure 1b. The transition
from the dark to gray-etching area below the glass interface represents a
dramatic reduction in the eutectic spacing. However, the structure appears to
remain eutectic-like right up to the glass interface as seen in Figure 3b.
This region of fine eutectic spacing may possibly be the material that
crystallized on the part of the kinetic curve (Fig. la) with positive slope.

A small star-shaped dendrite visible in Figure 3a formed in this region,
possibly due to large liquid undercooling, but was overtaken by the eutectic
interface.

Figure 3. Transition from fine eutectic growth to glassy alloy observed
when crystallization at 2.5 mm/s is attempted, optical micrograph, entire
sample width. (b) SEM view of interface between fine eutectic structure
and glass.
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A conclusion of this paper is that the maximum velocity of eutectic
solidification of this alloy is between 1.0 and 2.5 mm/s. Attempts to crystal-
lize at velocities greater than this lead to glass formation. We have also
seen similar sharp interfaces between fine eutectic structures and glass in
electron-beam surface melted samples.

Future work will include attempts to measure interface temperature,
temperature gradient, and eutectic spacing along with an identification of the
phases present during eutectic solidification at velocities just below the
transition to the glass. This information will permit a semi-quantitative
evaluation of Eqn. 1.
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THERMODYNAMICS OF METASTABLE EQUILIBRIA

J. W. Cahn

Center for Materials Science
National Bureau of Standards
Washington, DC 20234

ABSTRACT

The thermodynamics of metastable phase equilibrium is closely related to
that of stable phasc equilibrium. Metastable phase equilibrium can often be
represented by extensions of the curves on phase diagrams that represent
scable phase equilibriz. Thermodynamic principies rank phase equilibria but
not phases in a hierarchy of increasing stability. Thermodynamics imposes
precursor rules in mulcicomponent systems in which a prior reaction is
required before a phase can appear. A given hierarchy persists over a domain
on the phase diagram bounded by surfaces on which the ramking of two equilibria
changes. Multicomponent phases per se do not form a hierarchy because a given
phase can disappear and reappear in a sequence of gpontaneous processes.
Processing for producing metastable phases must place the system within a
domain in which the desired phases can form spontaneously from the available
phases.
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Introduction

Thermodynamics is the science of the impossible. It enables us to tell
wvith certainty what cannot happen, but is noncommittal about the things that
are possible. Thermodynamics is at its best when nothing more can happen, a
condition called equilibrium. The concept of equilibrium has been fruitfully
extended to reversible processes which are on the verge of being impossible.

When a system is not at equilibrium, thermodynamics retains its certainty
about the impossible. However, the domain of the thermodynamically possible
may be so large that thermodynamics has lost much of its usefulness as an aid
to prediction. In a complicated nonequilibrium system such as we often
encounter in rapid solidification, thermodynamics would be almost totally
useless if applied to the entire system, for then an irreversible process in
one part, combined with an impossible process in another, could lead to an
overall reduction in the appropriate thermodynamic potential and a verdict of
"possible". Hence, it is a common assumption that we apply thermodynamics
locally, unless we know specifically that there are long-range interactions.
Similarly, we often assume that different processes are independent, and apply
thermodynamic criteria to each individually,

Another important assumption is that of constrained equilibrium, ian which
certain processes are assumed not to occur or to occur so¢ slowly that thermo-
dynamics is fully applicable to all the other processses remaining. These
three assumptions permit us to apply thermeodynamics locally and to individual
processes, but the validity of such assumptions must be checked experimentally.

An example of constrained equilibrium is metastable phase equilibrium.
Here, the constraint is that one or more of the stable phases is absent, The
phases that are actually present reach equilibrium subject to this constraint.
This definition of metastable phase equilibrium focusses on the absence of one
or more of the equilibrium phases, and does not ascribe any unusual charac-
teristic to the metastable ones present.

A second example of constrained phase equilibrium occurs when the solidifi-
cation is so rapid that one or more of the components cannot redistribute
among the phases in the time scale of the experiment. In a completely
partitionless solidification to a single solid phase, the temperature where
the liquid and solid have equal free energies traces out a surface (To) on
the multicomponent phase diagram between the liquidus and solidus for that
phase and its extrapolation. Below this surface, provided diffusion is
limited, it becomes thermodynamically possible to solidify a liquid completely
even though the system may be above its solidus. ’

In this paper we will focus on metastable equilibria and partitionless
(sometines called massive) transformations, their representation on phase
diagrams and the hierarchical laws governing the thermodynamically possible
sequences of phases and metastable phase equilibria. Certain basic concepts
and relationships described {n earlier reviews (1,2) and standard textbooks
will be assumed. We begin with the single component case and highlight the
major complications introduced for multicomponent systems."

Metastable Phase Equilibria in Single Component Svstems

A single phase can reach a metastable phase equilibrium when nothing more
is possible except the formation of new phases. Nucleation theory tells us
that there are natural barriers to the formation of new phases from metastable
oncs. The range of conditions under which a phase can be metastable is

bounded by kinetic factors, imposed by nucleation and growth, and thermodynamic
limits commonly called spinodals.
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What is important is that it 1s reasonable to assume that there are no
discontinuities in thermodynamic properties as a phase moves from stable to
metastable. The same thermodynamic measurements that are made on stable
phases can be, and have been, made on metastable phases. Heat capacity,
volume, vapor pressure, and other such properties are rigorously defined and
have been measured. From such measurements, energy, entropy, and free energy
can be rigorously determined. Metastable phases obey the usual solution laws.
If they are dilute, Henry's and Raoult's laws apply. They can even be ideal:
to wit, a supersaturated vapor at a density far below the eritical-point
density. .

In a single component system phases are in equilibrium when the chemical
potentials p of the component, which in this case are the same as the molar
Gibbs free energies, in the several phases are equal. A graph of the free
energies of several phases as a function of temperature at constant pressure
is shown in Figure 1. At each temperature the stable phases are the ones with
the lowest value of F, Consistent with the phase rule only one phase is
stable except where the two lowest curves cross. All other phases are
metastable. With changing pressurz the free energy curves will shift at a

rate proportional to the volumes of each phase and different phases may become
stable.

Fory

Temperature

Figure 1. Chemical potential (free energies) of various one~
component stable and metastable phases as a function of
temperature at constant pressure. The stable phase at each
temperature is the one with the lowest u. Stable and metastable
two~-phase equilibria occur where two curves cross. Between
crossings the hicrarchy of phases ranked according to their
values of u i3 listed.

A graph of the domains where each phase is stable is called a phase diagram
and is shown in Figure 2. It consists of arcas in which a phase is stable
bounded by curves in which two phases are the equilibrium. Three curves come
together at tviple points of threce-phase equilibrium. Vapor-liquid critical
points where a two-phase curve terminates are of little concern in rapid
solidification. The axes can be any two independent combinations of T, P, or .
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Figure 2. A one-component phase diagram with T. P. or u as axes, showing
stable two and three-phase equilibria as curves and (triple) points.

Equilibria between metastable phases can also be mapped on phase diagrams.
Each of the curves in the metastable phase diagram represents a crossing of
two free energies. As in the case of the stable diagram each curve is identified
with the equilibrium of the two phases, one of which is stable on one side of
the curve, the other is stable on the other. 1In Figure 3 this sidedness of
each curve has been identified by labelling the stabler phase on each side.
The properties of these two-phase equilibria are unaffected by whether or not
there exists a more stable phase. If in some part of the diagram the two-
phase equilibrium is stable, the curve representing it can be extrapolated
beyond the triple point where it becomes metastable. The stable triple points
also have become the crossings of three two-phase curves. The six rays
emanating from a stable triple point are alternately stable and metastable.
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Figure 3. A metastable phase diagram with the same phases as shown in Figure
2. Triple points have become triple crossings with metastable equilibria
indicated by light lines. Within each region a given phase hierarchy persists.
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Such a metastable phase diagram also features points where three metastable
phases are in equilibrium and where three two-phase curves cross.

The metastable diagram is seen to consist of many regions bounded by no
more than three curves. Within each region there is a definite hierarchy of
phases according to their free energies which is unchanged over the entire
region. At a bounding curve a pair of phases change place in the hierarchy
and a different hierarchy exists in each adjacent region. 1In region X the
phase hierarchy is a - vy - 8 + §, while in region Y the order of 8 and y have
been reversed by the traversing of the metastable 8 - y equilibrium curve.

Each triple point represents a place there three phases have equal u.

! Three two-phase equilibria curves representing the three pairings of the three
! phases must cross there. The crossings of two curves representing two palrs

\ of two phases with none in common are not triple points.

The thermodynamic hierarchy for a one-component system ranks phases by
their molar free energies. In a thermodynamic processing path of heating,
cooling, and pressure changes, a phase can be retained and moved into a region
where it is metastable and above one or more phases in the hierarchy. During
. spontaneous phase changes it can only move down the hierarchy. A liquid
: undercooled just below its equilibrium melting curve becomes metastable only

with respect to the stable crystal. It does not become metastable with
i respect to a metastable crystal until it has been brought below the melting
curve of the metastable phase. This metastable melting curve can often be
i observed as a reversible phenomenon, and can often be estimated from the

stable phase diagram if the metastable phase becomes stable elsewhere in phase
diagrams.

Figure 3 included only phases which were stable in some portion of Figure
2. All curves in Figure 3 are extrapolations of curves from the stable phase
t . diagram. Metastable equilibria as well as the metastable hierarchies of all
‘ the phases that are stable in some part of a stable phase diagram are thus
easy to estimate. For example, bismuth can be made to crystallize at ambient
pressure into a high pressure phase which appears to have a metastable melting
- point of 175 °C consistent with the metastable extensions in the phase diagram
(3). It is not surprising that most observed metastable phases appear as
stable phases somewhere in phase diagrams either at different pressure, temper-
ature or with small additions of other components. In order for a phase to be ]
" formed by rapid solidification it has to be within a few hundreths eV of the ‘
stable phase and it is unlikely that a phase will come that close to the
lowest free energy without breaking through at some adjacent pressure, temperature
or alloy addition. It is not impossible though. Figure 4 gives a hypothetical
case where a metastable phase § comes close to being stable without ever
becoming so, and having a free energy curve which is not parallel to that of
any other phase. It is quite straightforward to construct the hypothetical
free energy surfaces corresponding to the metastable equilibria of Figure 4.

-——

. While there is no singularity in thermodynamic properties of the liquid at
’ any of the stable or metastable melting points, there is a rapid change in
heat capacity near the glass transition (4). The heat capacity of the amorphous
phase at the glass ‘transition is cooling rate and heating rate“dependent but
: ’ secms at the slowest rates to approach a well behaved reversible limit (5,6).

For the faster rates there is a lack of reversibility, but heating and cooling

curves can establish an upper and lower bound to the free energy of a glass
when 1its properties depend on its thermal history. The slow cooling limit of
the glass transition secms well defined, and indicates that the free-€énergy
curves of glass and liquid merge smoothly, exhibiting only a rapid change in )
curvature. On phase diagrams, the curves representing the metastable equilibria
between the amorphous phase and some other phase are continuous through the
glass transition, but exhibit a rapid change in slcpe. If the metastable i
crystalline phase does not catalyze the nucleation of a stabler crystalline
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phase, the reversible growth or dissolution of this phase in comtact with a
glass should be observable.

™
e

Pressure or chemicsl potentle!
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Temperature

Figure 4. A metastable phase diagram similar to Figure 3 except that
the é-phase is nowhere stable.

Solidification processing permits a climbing in free energy away from the
equilibrium. The solidification cycle is not unlike a heat engine. Energy is
added at the melting point and the maximum rise in free energy AF depends on
how far the system can be cooled while retaining the latent heat sH. In fact
because AF*AH(AT/T,,) the analogy with the Carnot efficiency (AT/T,) can be
made. Like the heit engine, the usable stored free energy is reduced by
irreversible processes such as diffusion, heat flow, and interface kinetics.
Rapid solidification is a means for forstalling solidification and achieving a
high free energy, but its irreversible aspects dissipate much of the available
free cnergy. Slow cooling with controlled nucleation is a very good way of

producing glass or highly metastable crystalline phases. In multicomponent

solidification slow cooling can through segregation, produce a system with

much free energy stored in the wide composition range and in the eutectic
phases that would not be part of the equilibrium solid, while rapid segregation-
less cooling could in one stage produce an equilibrium homogeneous solid.

The controlled ability to get either closer to equilibrium or further from
equilibrium by rapid solidification through the manipulation of the kinetic

and thermodynamic variables must surely be one of the most important attributes
of this new processing field.

Multicomponent Phase Equilibria, Partitionless Phase Changes
and Metastable Hierarchies

The complications introduced by several components are not obvious at first
glance. Metastability of each phase is again common and limited only by
spinodals and nucleation and growth kinetics. Thermodynamic properties of
metastable phases are well behaved and often smooth extensions of behavior in
stable ranges. Equilibria are still dictated by equality of chemical potentials
of each component but this no longer implies equal free energies. A phase
diagram having as axes T, P, M2: sl OT moTe sympetrically T, u;, B2oee by
would be a (N+l)-dimensional analogue of the single component diagram where N
are the number of components. Single phases would occupy (N+l)-dimensional
hyper~volumes, bounded by N-dimensional hypersurfaces representing two-phase
equilibria, which intersect at (N-1)-dimensional hypersurfaces representing

.
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three-phase equilibria, etc. until there are points representing (N+2)-phase
equilibria. Such a phase diagram is useful for an open system in which material
reservoirs keep the chemical potentials fixed by letting compositions change.

In a few situations ve do impose open system conditions for some of the com~
ponents by e.g., fixing the partial pressures of a gas containing these components,
but more generally, we fix the composition of our system, which leads to

profound complications in the thermodynamics. The open-system metastable

diagram would be constructed by extension of all two-phase hypersurfaces and

would divide the space into simplexes in each of which a hierachy of phase
equilibria would exist.

In open systems the entire phase diagram is occupied by single phase
hypervolumes with multiphase equilibria occupying hypersurfaces of lower
dimension and thus of zero measure. Unless we take pains to fix chemical
potentials and temperature to lie precisely on one of these multiphase surfaces,
the system will almost always be single phase. If it is multiphase an
infinitesimal shift in conditions off the surface will return it to be single
phase. The open system metastable phase diagram is a multidimensional versiomn
of a one-component phase diagram and.the same rules including the hierarchial
one apply. Indeed Figures 2-4 could serve as examples of a two-dimensional ]
section of a multicomponent phase diagram. "

Major changes occur when we shift to closed systems-in which the overall .
composition rather than the u's are fixed. This is the usual situation in
rapid solidification. Phase diagrams for closed systems have compositions as .
axes and contain (N+l)-dimensional hypervolumes of one-, two-, and N-phase
equilibria with (N+1) and (N+2)-phase equilibria occupying hypersurfaces of
zero measure. The same phases remain in equilibrium throughout the volume
as temperature, pressure and composition shift.

A common graphic method of depicting the multiphase equilibria is the
common tangent hyperplane to the free energy hypersurfaces for the various
phases at a given temperature and pressure. It is fully equivalent to the
condition of equal chemical potential of all the components, and the range of
the line segment between tangent points readily demonstrates how the same two
phases can remain in equilbrium over a wide composition range (Fig. 5).

The stable wultiphase equilibria are those where the hyperplane tangent to
the free energy surface of the equilibrium phase does not cross the free

energy surface of any phase. If it does cross, the equilibrium is metastable
with respect to the formation of the phase.

It is Immediately apparent from Figure 5 that there is a hierarchy of
metastable phases denoted by free energy curves (or hypersurfaces) and phase
equilibria denoted by tangent line segments (or hyperplanes). The boundaries
to a given hierarchy are given first of all by the tangent points on the free

energy curves. These tangents map out the stable and metastable phase diagram
(Fig. 6). *

Three other features mark changes in the hierarchy. The intersections of
free energy curves (or hypersurfaces) define the T, curve (or hypersurface)
which can appear on phase diagrams. It defines a restricted equ#librium for
partitionless transformation. The T, curves do not denote a stable or
metastable equilibrium. They do pass through congruent points on the phase
diagram and lie within the corresponding two-phase field. They also intersect

at To triple points (or hypercurves) where three phases have the same free
energy.

T, curves in Figure 6 mark the intersections of tangent planes and therefore
form"ruled nypersurfaces on phase diagrams. T, curves mark the intersection
of a surface of one phase with a plane tangent“to two others.
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Figure 5. Two-component free energy curves for various phases at
constant temperature. The left and right portions of the curves
for a and B respectively, and the tangent between them represent
the stable equilibrium. Several metastable equilibria are depicted
by other tangents. The crossing of free energy curves represent
points on the T, curves, while the crossing of tangents represent
Tl curves. Witgin each region of composition separated by the
vértical lines a given phase-equilibrium hierarchy holds.

Tomperature

Composilion

Figure 6. A binary-eutectic diagram at constant pressure with
metastable extension of all curves and the T, and T, curves. .
Because metastable liquid at point X wili dissolve Stall amounts
of the stable phase 8, no stability hierarchy based on phases

per se can exist.
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The features of multicomponent phase diagrams can be readily imagined to
originate from free energy surfaces of various phases that evolve and shift
relative to each other with changing temperature and pressure. It is seen
that the metastable continuation of a stable equilibrium involves only the
free energy curves of the participating phases and should be unaffected by the
new phase whose free energy surface happened to move through the tangent
plane. Thus all stable equilibria can again be extended to depict the
metastable equilibria between the same phases. The qualitative evolution of
the metastable portion of Figure 6 can be understood by the more rapid rise in
Figure 5 of the liquid free energy relative to that of the two solids with
decreasing temperature. These free energy curves could be obtained quantitatively
by a number of methods and then extrapolated to allow determination of the
metastable diagram. For some of the curves it seems far simpler and probably

more accurate to extrapolatc the portions of a measured stable (or metastable)
phase diagram.

As for the single component, wherever a liquid undergoes a glass transition
the curves will be continuous with only a rapid change of slope.

It should be inmediately pointed out that no simple hierarchy of phases
exists. A system at a point in region X in Figure 6 is in equilibrium when «
and B are present as the stable phases, and the liquid is metastable. Yet
when stable B is brought into contact with liquid in X under conditions where
a does not nucleate, stable B will dissolve in metastable liquid. Such a
reaction in which a stable phase dissolves in a metastable one is impossible
in single component systems, but quite common in multicomponent ones. Only
when o finally nucleates can B reappear. This disappearance and reappearance

of a phase in spontaneous processes indicates that there can be no hierarchical
listing of phases.

This can also be indicated by listing the metastable hierarchies in regicn
X. Because X lies outside the B + L field, no equilibrium between 8 and L is
possible. The remaining five equilibria are ranked as follows: single-phase
8 is highest in free energy, followed by single-phase a, single-phase liquid,
two-phase a + L, and equilibrium is reached with two-phase a + 6. In region W
the sequence 8 + L is inserted between L and a + L. In such metastable
sequences phases can appear, disappear, reappear with a different composition
and disappear again. Once a particular phase equilibrium has disappeared it
can not reappear unless the system is reprocessed.

The inability of 8 to form from liquid in X unless a has also appeared is
an example of a thermodynamically required precursor reaction (7). Such
requirements do not occur in single component systems, because any of the more
stable phases can appear at any time. Consider a multicomponent system in
metastable equilibrium of one or more (m) phases. The composition must lie
within that m-phase field on the metastable phase diagram. The addition of a
new phase can occur only if the composition lies also beyond where the
metastable (mt+l)-phase field first intercepts the m-phase field. In Figure 6,
B can form from liquid in W but not in X, while a can form in either. This
places a strong and easily formulated constraint on the phase-sequences that

can occur in a given hierarchy which can be locally applied even if the system
has only reached local equilibrium,

During such isothermal sequences the free energy is monotonically decreasing,
but chemical potentials can increase as well as decrease. In the graphical
construction of Figure 5, the chemical potentials of the two components are
the intercept with the component axes of a tangent to the single phase curve
at the system composition or of the common tangent in a multiphase equilibrium.
These ups and downs of chemical potentials of a component go hand in hand with
the appearance or disappearance of a phase enriched in that cowponent.
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In solidification, thermodynamics put bounds on the solid composition that
can form from liquid given the composition and temperature of the liquid at
; the interface (1). The T, curves pertaining to liquid with a given solid form
; an upper bound to the sol?d composition that can form from liquid of any
composition at that temperature. Because the T, lies between the liquidus and
solidus, systems in which the extrapolated soligus appears to span the entire
composition range are good candidates for segregationless solidification to
that particular phase. Systems with retrograde solidi (stable or metastable),
even where the corresponding liquidi sweep across the composition axis, can be
shown to have T  curves which are bounded in composition. Compositions beyond
this bound, which is approximately the liquidus composition at the retrograde
temperature (8), can not undergo segregationless solidification to that
crystalline phase at any temperature. Because crystallization involving
segregation is much slower, retrograde systems might be good candidates for
glass formers. )

Two T, curves in Figure 6 intersect at the eutectic point Z. The eutectic
horizontal is a stable T,, the other moving downward in temperature is
metastable and defines bounds to conditions where it is impossible for ome
metastable two-phase equilibrium to follow another. A T, curve (not shown)
also goes through point Z. It indicates the temperature“where eutectic
solidification in the absence of a proeutectic reaction first becomes thermo-
dynamically possible although unlikely.

Because of the segregation accompanying most solidification and the slowness
of diffusion in the solid state, most solidification processes yield solids in
which the individual phases are not homogeneous. The hierarchy diagrams rank
equilibria, and homogeneity of a phase is, apart from minor gravitational and
defect segregation phenomena, a necessary condition for equilibrium whether
stable or metastable. These segregation effects can bring the system into a

. state there it contains phases that it would not contain in any metastable
sequence.,

PR —— g

This can be illustrated by an example. A liquid cooled to a point in

- region Y could at no temperature during its cooling path reach any equilibria
other than a, L, L + a, Yet during conventional cooling, segregation will
lead to the formation of B and the system as a whole will not reach equilibrium
until all the B8 has disappeared. The hierarchy diagrams can only be used for
conventional solidification on a local equilibrium basis. They are more
useful for the solid state sequences following a segregationless solidification
or a homogenized solid formed by rapid solidification.

-

The usefulness of metastable equilibrium diagrams lies in the fact that
like stable diagrams there are rules for their construction which guide
measurement and permit our experience to be organized. The ability to extra-
polate and interpolate is one aspect which lets us make rapid strides in
sketching in the main feature of such a diagram. When metastable equilibria
) is reached, thermodynamics can make its full range of predictions. For
‘ ) single components a sequence of equilibria are likely. The possibility of
' segregation makes it difficult for us to bring in strong predictions about
multicomponent systems, except in rapid solidification and on<a local level in
conventional solidification.

b mre e e —— gy P A————
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With new techniques of producing phases increasingly far from stable
equilibrium, the necd for metastable phase diagrams becomes pressing. While
. extrapolation of curves {rom stable diagrams has been long used for estimation
and T, curves have been in use for diffusionless transformation, a systematic
approach in a few important systems should prove the usefulness of the ideas
presented here in charting processes far from stable equilibrium.
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operating in some systems, is proposed.

RAPID SOLIDIFICATION

" J. W. Cahn, S. R. Coriell ard W. J. Boettinger
National Burecau of Standards
Wachington, D.C.

Rapid solidification phencmena are described in terms of a

hierarchy of inereasing deviction from equilibriwn. Results
of morphological stability theory applied to silicor regrowth
indicates that factors outside of conventional constitutional
supercooling can explain the observed abscnce of lateral
segregation. A model for interface response junctions
applicable to solute trappirg is presented and a thermodyrnanic

limit to the amount of solute trapping, which seems to be

I. INTRODUCTION

A1l solidification processes, slow or rapid, involve some
nonequilibrium effects. With increasing solidification rates
deviations from equilibrium tend to become more extreme. The
extent of disequilibrium, however, is nonuniform and different
nonequilibrium phenomena become important at widely differing
rates. e shall adopt a scheme of classifying solidification
effects by their nonequilibrium aspects.

A. Full Diffustioral Equilibrium (Global Equilibriwn)

At the very slowest solidification rates, diffusional
equilibration can occur. In this state of equilibrium,
materials are characterized at any time by constant temper-
ature and chemical potential throughout the dimensions L of a
sample; i.e., phases are homogeneous, but there will be dis-
continuities in composition at the interfaces. This equilib-
rium requires solid state diffusion over distances of the
specimen and hence geological times (L”/D. where D_ is the
solute diffusion cocfficient in the solid’phase). SThe ex-
istence and cowpositions of homogencous phases are given by
stable (or metastable) phase diagrams. This kind of global
equilibriun will not be approached in solidification pro-
cesses, except in extremely small systems such as ultrafine
dispersions of droplets.  Surprisingly because the tine scale
for nuclcation can also be of geological times, metastable
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phases can occur in this regime (1). In classical thermo-
dynamics metastable equilibrium is a full equilibrium and
indistinguishable from stable equilibrium except that one or
more stable phases are prevented from nucleation (2).

- B, Local Equilibrium

This next range of pheromena is characterized by the
absence of diffusional equilibration in either solid or melt.
Each element of the system is assumed to have reached a state
where it can be adequately described by the local state
variables of temperature, pressure (stress), and composition.
The interface is also in local equilibrium. Temperature and
chemical potentials of each species can be assumed continuous
across the interface, and thus the limiting compositions of
each phase at the interface will be given by a knowledge of
the interface temperature and the equilibrium phase diagram,
with appropriate corrections for the effect of interface
curvature. These limiting compositions then form boundary
conditions to the transport equations within each phase and a
wide range of solidification processes can be modelled with
these assumptions (3). Within each phase local equilibrium
can be established in times of the order of the diffusional
Jump frequency. At the interface depending on orientation and
defect structure there are a number of relaxation processes
with widely differing time scales (e.g., nucieation of a new

layer of crystal), that can lead to early breakdown of local
equilibrium there (4).

C. Deviations from Local Equilibriwn

Effects due to deviations from local equilibrium at the
interface already become obvious in some systems at very small
undercoolings and very small interface velocities. For ex-
ample, dislocation-~free crystals in contact with slightly
superheated or supercooled melts show no measurable growth
rates. With increasing interface disequilibrium, growth or
melting will begin (4,5). While the facetted form can be an
equilibrium form in contact with a fluid of uniform temper-
ature and chemical potential, a growing facettad crystal
rarely is at local equilibrium, since melt isotherms or satura-
tion contours are not likely to follow a facetted siape (3).

At cquilidbrium, segregation of solutes between solution and
crystal is indcpendent of interface orientation. Thus the
observation of compositional discontinuitics in Czochralski
grovn crystal between regions that grew behind facets (core)
and regions that grew behind smoothly curved (off-core) liquid
melt interfaces indicates that nonequilibium interface

effects are frequently observed at conventional crystallization
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rates {6). The prediction of the extent of nonequilibrium
interface phenomena has thus been an important goal which has
received renewed attention with the investigation of rapid
solidification. '

This goal may be sunmarized by response functions (7)
which for example give local growth velocities and solid
compositions at the interface as a function of conditions at
the interface. These response functions replace local
equilibrium conditions at the interface and become the boundary
conditions to the transport equations in each phase. -

While it is clear that many rapid solidification effects
can only be understood if the concept of local equilibrium is
discarded, some predictions based on local equilibyrium have
not been fully explored. In the present paper we describe a)
results of morphological stability theory relevant to silicon
regrowth at high velocities using local equilibrium and b)
results of a model for the interface response functions
applicable to solute trapping.

1. MICROSEGREGATION AND STABILITY AT THE SOLIDIFICATION
INTERFACE : : :

During the freezing of alloys, a planar solid-liquid
interface can become unstable. The solute rejected by the
growing crystal can lead t0 a thin layer of undercooled-1iquid
surrounding the crystal which then makes the shape unstable
with respect to dendrites that could protrude into this thin
layer. This leads to a cellular or dendritic interfaces and
causes solute microsegregation. The classical theory of
constitutional supercooling (3,8) predicts increasing in-
stability with increasing velocity (for constant liquid
temperature gradient) and would predict cellular or dendritic
solidification for most rapid solidification experiments.
There are, however, several assumptions that may not be valid
for rapid solidification. (1) Local equilibrium at the inter-
face is assumed to describe quantitatively the amount of
solute rejected by the growing crystal. (2) Capillarity and
latent heat evolution which could stabilize the interface are
neglected. (3) The theory indicates a layer of liquid cooler
than its local melting point, but does not show how the
growing crystal breaks through to this layer.

Beginning with the work of Mullins and Sekerka (9-12), a
method of analysing morphological instabilities has evolved
which properly solves the transport equations assuaing local
equilibrium at the interface or making some allowance for
deviation from cquilidbrium, The principal result is that
there is far greater stability during rapid solidification
than predicted by constitutional supercooling even if local
cquilibrium is maimtained.  The transition between planar and
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nonplanar growth during the directional solidification of
binary alloys can be calculated from linear morphological
stability thcory assuming local equilibrium. For constant
velocity V solidification in the z-direction, the perturbed
solid-liquid interface is of the form

2=28cxp (ot + iuxx + iuyy),

where § exp (ot) is the amplitude and w_, and w_, are spatial
frequencies of the perturbed interface.® If th¥ real part of o
is positive for any perturbation (for any values of w_ and
w,), the interface amplitude increases exponentially §ith time
t¥and the planar interface is unstable., If the real part of o
is negative for all possible perturbations, the interface is
stable. The value of o can be determined by solving the heat
flow and diffusion equations with appropriate boundary con-
ditions. Assuming local equilibrium at an isotropic solid-
1iquid interface, Sekerka (13) found

o = V{-k G (o ~V/x|) = kG (agtV/x.) - 2KT rula +
2knG a(a-V/D)/ (a-pV/D)}/ AL V + 2KmG 3/ (a-pV/D)} ~ (1)
with
a = (/20) + [(V/20)2 + a2 + o/0¥%,
a = (V/2e) + [(¥/26)% + u? + o/ T*
og = ~(V/2e) + [(V/2)2 + u? + o/x ]
o= (ka, + ko )/(2K),

where x, and x_ are thermal diffusivities of liquid and solid,
respect*ver, R, and k_ are thermal conductivities of liquid
and solid, rcspkctive!y, D is the 1iquid diffusion constant
(diffusion in the solid is neglected), w = (w2 + 0 2)%, X =
(ks+kg)/2’ G, and G< are the unperturbed 1empbratur¥ gradients
in“the liquih and sdolid, respectively, G_. is the unperturbed
solute gradient i.e., G_ = V¢ (k-l)/Dk,kcis the equilibrium
distribution coefficient, c, 1s the bulk solute concentration,
Tr is the melting point of the planar interface in the absence
oé solute, T the ratio of the solid-liquid surface energy, v,
and the latent hcat of fusion per unit volume, L, m is the
slope of the liquidus line on the phase diagram,vand p = 1-k.
for a given alloy and specified values of the processing
conditions we can calculate numerically v as a function of o,
o(w)y from the above equation. Alternatively, we set o = 0
and calculate the bulk concentration ¢ as a.function of ..,

43~




'
]
'

N

c_(u). The minimum value of c_(w) gives the stability-
instability demarcation.

The sign of o is determined by the sign of the numerator
in the above cquation since the denominator is always positive.
The numerator consists of four terms proportional to G, , GS,
r, and G_, respectively. For the usual case of positibe
tcmperatﬁrc gradicents, the first two terms are negative re-
flecting the stabilizing influence of the temperature field.
The surface tension term is always stabilizing. Instability
occurs when the destabilizing solute gradient term is suffi-
ciently large to overcome the stabilizing influence of the
temperature gradients and surface tension. _

It is usually an excellent approximation to neglect the
thermal diffusivity terms in the above equations, i.e., let

ky»> » and x. » «=. In this 1imit, Sekerka (14) has shown that
the stabilily criterion is '

ZkLGL tw, > (ks+kL)mGCS(A,k), (2)

where S(A,k) is a function of the dimensionless variables k
and A=(kT,rv2)/(D2mG_). The function S(A,k) can be calculated
by solving a cubic equation; among its properties are that 0 <
S{(A,k)< 1, S(0,k) =1 and S(A > 1,k) = 0. The stability-
instability demarcation for silicon containg arsenic and
antimony for GL = 200 K/cm is indicated by the curve in Figure

The following values were used for the calculations;
k =70 m skt kg= 22.9m sk,
D = 3x10"°m2/s, k = 0.3 (As), k = 0.02 (Sb),
L, = 4.56 GJ/m3, Tyr = 1.3x1077 Kn,
K = 3x]0'5m2/s,»<s'= 9.4x10"%m?/s,
m = -440K/at. fract.(As), m = -370 K/at. fract. (Sb).

For a given velocity V for solute concentrations below the
curve the planar solid-liquid interface is stable. The
straight line with negative slope in the figure is the con-
stitutional supercooling criterion, mG_ = G, or ¢ = G, 0L/
{V(k-1)m], for intorface stability. This fb]]ows"frob the
above equation in the Vimit S(A,k) » 1, ke =k, and 2k, G, >>
VL . For Si, it appears that cven at moddst vElocitiesE bhe
priceding incquality, i.e., G, >>3.26x10°V(sK/m"), is not a
goud approxication, and the 15tent heat term in the stability
criterion can boe dmpartant. The straight line with positive
stope is the Hullins-Sckerka absolute stability criterion (9),
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WAVELENGTH m

=} or mG6_ = kTMr(V/D)2 orc_= szIrV/[D(k-l)m]. For small
velocitick, the constitutional supe?cooling criterion is a
good approximation to the morphological stability calculations.
For very large velocities the absolute stability criterion is
a good approximation. Mullins and Sekerka have shown that the
exact curve will always lie above the absolute stability line.
Thus, for solute concentrations below those given by the
absolute stability equation, the interface is stable. Whereas
the constitutional supercooling criterion depends linearly on
the temperature gradient in the liquid, G, , the absolute
stability criterion is independent of GL kalthough we require
that k G + k,G, > 0). In Figure 2 we Show the wavelength,
A= Zniu, at ¥h5 onset of instability as a function of velocity.
The wavelength decreases monotonically with increasing velocity.
Although we show results for V = 10 m/s, the theory is no
longer valid at such high velocities since the diffusion
boundary layer length, D/V, is only a few atomic distances.

The theory has been extended to include nonlincar effects

(12), some limited interface anisotropy and deviations from
Yocal equilibrium (15,16).
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II1. NONEQUILIBRIUM AT THE INTERFACE -

Crystal growth or dissolution can only occur with some
deviation from equilibrium at the interface. The response of
the interface to a given deviation from equilibrium has been
called the response function (7). Theories attempt to predict
for single component systems a relationship between interface
undercooling, orientation, crystal perfection, components of
interface curvature and the local interface velocity. Ffor a
binary system an additional relation is nceded to link the
solid and liquid compositions to the above variables.

For the single component systems theories have concen-
trated on mechanisms of crystal growth which broadly fall into
two classes: continuous additions to the crystal or lateral
spreading 'of new crystal layers. Crystal perfection only
matters for the latter class of mechanisms, in which case
imperfect crystals (containing certain types of dislocations
or twins) could grow much closer to equilibrium than perfect
crystals. A rule based on entropy of fusion and packing on
planes parallel to the interface has considerable success in
approximately classifying those systems in which lateral
growth is likely (17). It has been predicted that at high
undercoolings many of these systems change mechanisms and grow
by the continuous mechanism (4).

For binary systems an early kinetic theory (18) predicted
for the continuous growth mechanism the growth rate and
partitioning of "solute in terms of four rate constants
describing the frequencies with which the two kinds of atoms
Jump from melt to solid and vice versa. An examinaticn of its
predictions showed that this theory predicted that the solid
composition could never exceed the equilibrium composition of
solid in contact with liquid at ‘the interface temperature
(19). To exceed the solid solubility maximum at a eutectic,
solidification would have to occur at temperatures where the
extrapolated metastable solidus curve exceeded the solid
composition. A test of this theory required either knowing
the interface temperature during solidification or choosing a
system with a maximum in the solidus, a system with retrograde
solid solubility. Several such systems have now bean examined
and the finding of solid solutions in excess of the maximum
equilibrium solidus conclusively shows that this kind of
theory is inadequate (19-21).

Such a Kkinetic theory leads to the result that each com-
ponent rust expericence a decrecase in chemical potential at the
interface, if that component is to jump into the solid. The
experience with the retrograde systems proves that the minor
component can increase its chemical potential upon solidifica-
tion, a condition termod solute trapping (7,19-21). This
condition docs not violate thermodynamics and is easily
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modelled if one assumes that the solute is passively carried
into the solid by the solidification, but can respond to this
indignity by diffusing back into the liquid (22). Baker
worked out several such models including a fairly interesting
onc that examined a wide varicty of parameters and showed how
sensitive the predictions of such models are to minor adjust-
ments.

This model is shown in Figure 3. The interface is a
moving snowplow for the solute, whose energy is higher in the
solid. Following a suggestion by Chernov (23) that trapping
might occur by having the interface be a state of low solute
energy to which the solute voluntarily rushes only to be
(passively) buried by the addition of the next layer, Baker
permitted a variable solute energy at the interface. He also
allowaed for diffusion in both phases. The resulting con- '
tinuous steady state diffusion equation with drift term when E
is a function of z is readily integrated (24,25) to give the
composition profiles as a functional of velocity, E(z) and
D(z). Taking the ratio of the limiting compositions of liquid

' |
| | O,
\ {
0. ; !
0(2) S ‘ ;
| |
| !
| 2, SoLID INTERFACE LiQuip
! l
re25+
€ l !
Etz) L A |
N\ e
l |
L
FIGURE 3.

] Baker's model for solute redistribution allowved
for an arbitrarily varying diffusion coefficient and potential
energy for solute near the moving interface. The particular
form depicted above leads to the redistribution given in
equation (3) and depicted in Figure 4.
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?nd solid at the interface leads to the following expression
22).

(C/C )5y = (exp(-a-8) + exp(~p)[k /K -exp(-a)]/

[V + In(ky/ky)/ad +k [1-exp(-8)/k 1/ 140k, /8] /K, (3)

adl
|l

e = exp[(EL-ES)/kT] .
; = exp [(E -E;)/KT]

are the equilibrium segregation coefficients between liquid
and solid or interface respectively and

6V/DS ¢
dV/DL

>
n

a

1

8

are reciprocals of diffusion distances (in units of the bound-

ary thickness §) in sol1d and liquid respectxye1y Figure 4
shows the result for k = 0.1 and D /D

i 'S L e b I A

U N SC T2 +3
L0Gyg [ v] —
'O[DL ]

FIGURE 4. Partitioning at interface as a function of
imposed growth rate for the model depicted in Figure 5 (from
(22
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Let us first examine curves 3 and 4 for which £, is £_ and
E, respectively. For these special conditions the énergyS
chrvc in Figure 3 has a single ramp which occurs in a region
of Yiquid or solid diffusion respectively. Comparison of the
two shows the effect of shifts of the energy ramp relative to
the discontinuity in diffusivity. When the solute is in the
energy ramp it experiences a drift force. In curve 4 this
drift is cxerted when the diffusivity is much Tower than it is
for the model of curve 3. Trapping occurs at lower velocities.
For curves 1 and 2 the solute is first repelled from the
interface. Segregation over a wide range of velocities is
stronger than equilibrium until at the highest velocities
trapping finally occurs. Chernov's ideas are modelled in
curves 5 and 6. The solute is attracied to the interface and
then buried in the solid. Trapping occurs at quite low
velocities, but in the intermediate velocity range segregation
to the solid is so strong that the effect overshoots. Baker
concluded that Chernov's ideas were not necessary to explain
trapping. He also concluded that very accurate modelling of
interface structure, kinetics and energetics would be neces-
sary to obtain valid predictions about solute trapping except
at the very highest velocities. Curves 3 and 4 are quite
similar to the model presented by Jackson, et al. (26) at this
conference,

The thermodynamic questions raised by solute trapping were
explored extensively by Baker and Cahn (7). Of particular in-
terest is the T, curve which is the intersecticn of the solid
and liquid free“energy plotted on a phase diagram. It not
only marks a bound for diffusionless solidification in which
solid and liquid can have the same composition; it also marks
the bound on solid compositicns which can form from liquid of
any compesition at that temperature. Where thermodynamic data
are accurate enough to predict metastable extensions of free
energy functions, T, curves can be obtained. For the retro-
grade systems a simgle estimate can be constructed for the
maximum composition that the T, curve reaches at 0°K. No
solid of this phase in excess 8( this maximum can form freom
the liquid no matter how rapidly cooled, unless local equilib-
rium cecases for the liquid phase itself.

This estimate is obtained from a rigorous relationship
(27,28) for the slope of the solidus curve.

a . (cL-cS)T(a¥GS/3c52)

de, "L(CL)'[(]‘CL)ﬁls(cs)+cLﬁés(cs)]

whore N (¢, ) _is the wolar enthalpy of liquid of composition ¢,
and H\q .mh.:!.,R are the partial wolar enthalpies of the two *©
compondnts in“the solid at composition < and Gs is the molar




PR

- A gt - SR

Gibbs free energy of the solid. At a given temperature the
denominator has a simple geometric interpretation on an cnthalpy
vs. conposition plot for the Yiquid and solid phases {(whic™ is
relatively independent of temperature). The denominator is

the vertical distance at the liquidus composition for that
temperature between the liquid enthalpy curve and the tangent
drawn to the solid enthalpy curve at the solidus composition.
Hence, at the retrograde temperature, where the slope of the
solidus is infinite, the denominator is zero and the tangent
crosscs the liquid enthalpy curve at the liquidus comcasition
(q) in Figure 5. At low temperatures where enthalpy is the ]
dominant term in the free energy, the T, composition can te .
approximated by the intersection of the enthalpy curves. In
the absence of any information about the curvature of the
solid enthalpy to determine the intersection (p) of the en-
thalpy curves, an approximate l1imit on the T, .composition can
be obtained by the intersection of the previgusly nientioned
tangent and the 1iquid enthalpy curve (q). This intersection
is the liquidus composition at the retrograde temperature.

The T, curve is an absclute 1imit to solute trapping and its
exact location is important for many rapid solidification
predictions (31). Such a limit seems to have been observed by

; = =\- = ==X: ~ ~ Retrogroca Temperature FIGURE §. US‘!:?’.g the
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White et al. (20).

solid solubility at the retrograde ¢
at_the retrograde ¢

c r/k
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Table I. Comparison of the Liquidus Composition at the
Retrograde Temperature with the Masimwn Solid
Solubility Found in Repid Solidification

Solvent cor ch csr/ko qmax Comments

(solite) M Observed

Zn(cd) 0.025 .22(29) .10019) mole

fractions

SitAs) |1.5z10%1 sz10%2 62102 | atoms/ce,k o

(20) from (30)

sitsb)  |7z10?® 32027 | 1.32:10% | atoms/ce, x ,

(20) Jrom (30)
Si(Ca) |4.5z10"° 621022 | 4.5210%0 | atoms/ce,
(20) from (30)
. . 2 »
SilIn) ::1017 Sx10 I 1x10‘0 atoma /oo, N
(20) from (30)
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