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VARIATIONAL 'METHODS OF CONVOLUTION INTEGRAL AND OF
LARGE SPRING CONSTANTS - A NUMERICAL COMPARISON

Julian J, Wu
U.S. Army Armament Research and Development Command
Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

SUMMARY . Finite element solution formulations have been carried
out for a simple initial value problem based on two different varia-
tional statements: that of convolutional integral developed by Gurtin
and that of large spring constants adapted by this writer for initial
value problems, Numerical results indicate that both generate conver-—
gent solution to the given initial value problem of a spring-mass
system subjected to a harmonic forcing function., -

1. INTRODUCTION. Through a simple initial value problem, this
note demonstrates the use of the finite element discretization in con-
Jjunction with two variational formulations and compares the numerical
results. The variational Principles of convolutional integral for
initial problems were developed by Gurtin some sixteen years ago (ref.
1 and 2). Since then these formulations have been applied to obtain
solution of transient problems (ref. 3 and 4). However, the time dim-
ension was treated separately from the spatial dimensions in the finite
element approximation schemes. The viewpoint adopted in this note is
that the separate treatment of spatial and time coordinates is unnec-
essary. Since the initial value Problems are nonself-adjoint, the
corresponding variational problems can be formulated with the help of
adjoint field variables and thus can be used in Ritz-finite element
solutions. One such formulation is used here to compare with the for-
mulation using convolution integral in terms of numerical results for
a simple initial value problem,

Let us consider a simple mass-spring system., The differential
equation of the displacement u(t), a function of time t is

mu + ku = f, cos wet (1)
vhere m is the mass, k, the spring constant. A dot (:) denotes differ-
entiation with respect to t. The parameters f, and wg denote magnitude

and frequency respectively, of the forcing function. The initial condi-
tions are given as

u(0) =uy , u(0) = uy (2)



We shall further use the equatzon

2k = S0
W z £ =~
Thus Eq. (1) has the form
4+ w?y = f cos wet (3)

2. VARIATIONAL FORMULATION OF CONVOLUTIONAL INTEGRALS. The varia-
tional principle for the problem defined by Eqs. (3) and (2) is (ref. 2):

SI(u) = 0 (4a)

where
I-= -;— [ut)au(t) + w?eru(t)ru(t)]

f f
- + =7 + ust - -2, cos wet t (4b)
[uo ™ uy e co gtlxu(t)

The operator * defines a convolution integral in the following equation

t
“u(t)av(t) = [ u(t-T)v(r)dT (5)
o
where u(t) and v(t) are two arbitrary functions of t.

To see that the variational problem of Eqs. (4) is indeed equiva-
lent to the original problem defined by Eqs. (3) and (2), one writes,
from Eqs. (4):

8T = [u(t) + w?txu(t) - (u0 + Bgf + ut - Bir cos mft)]*éu(t) =0
£ b3

for arbitrary Su(t). Thus, 61 = 0 leads to Eq. (6)

2 3 £
u(t) + wtru(t) - (uo + 5;{ + ult - B;T cos mft) =0 (6)

It is clear from Eq. (6) that u(0) = uge
Differentiate Eq. (6) once, one has

t
u(t) + w? f u(t)dt = u, - £ cosw.t =0 )
s 1 I f:
Eq. (7) gives u(0) = uj. Thus >oth of the initial conditions are sat-
isfied. The differential equatlon is recovered when Eq. (7) is differ-
entiated once more., Note that in obtaining Eq. (7) the following

differentiation formula has beea used.



Let
t
F(t) = [ v(t-T)u(T)dr
o
Then

dF *3
=== [ X (e-)u(T)dT + v(0)u(t)
de o oT
3. VARIATIONAL FORMULATION WITH A LARGE "SPRING" CONSTANT. Consider
the following variational problen

8§I(u,v) = 0 (8a)

with : 1 1
I(u,v) = - [ a0 de + [ (wu-f)v de
0 0
+ afu(0) - uo]v(l) - ulv(O)

In Eqs. (8), u(t) is the physical field variable and v(t) is the adjoint
variable. This variational problem is unconstrained since the trial
functions of neither u(t) nor v(t) are subjJect to any end condition
requirements. To see ‘that the set of Eqs. (8) 1is equivalent to the
original initial value problem, it is only necessary to carry out the
first variation and perform once integration-by-part. Thus, one has

8I(u,v) =0
= fl (G+o%u-£) 6v dt
+ g&[u(O) = ugl = G }8v(1) + [8(0) - u;18v(0)
+ fl (V+w?v) 8u de
+ fi v(1) + v(0)}8u(0) v(1)8u(1) (9)
It 1s clear then 1f one chooses v(t) = 0 and let 8(t) be completely
arbitrary, Eqs. (9) reduce to the original initial value problem as a
approach to infinity.
4. PROCESS OF FINITE ELEMENT DISCRETIZATION. In case of convo-

lutional integral, the variational equation used 1s Eq. (6) in Section
2. Rewrite Eq. (6) as

6I = [u(t) + w?txu(t) - F(t)]*bul(t) = 0 (10a)



where . £ ¢
F(t) =u, + —5 + u t - —5 cos w_t (10b)
0 w il we2 f
: f £
In Eq. (10a), there are three convolution integrals to be evaluated:
(a) u(t)#Su(t); (b) w?t*u(t)*3u(t); and (c) F(t)#Su(t).

(a) For u(t)*6u(t):
t

u(t)x6u(t) = f u(t-t)du(t)dr
[o]

Let ~ -
=1/t

one has then

1

u(t)#bu(t) =t [ u(l-t)Su(r)dt

0

Consider
1

I=[ u(l-1)8u(r)dT
0

This integral is evaluated by finite element discretization.

L Y
I= ) [ u-0éu(r)dT
=1 2,
Let
8,=0, 2. =1, ’“1"’11:
g2t o714
T=2{E+1-1]
at = L 4t
Hence

a® = 8k -1 = M@
a(1-T) = alf (L-E-141)]

- G[% (1-E41-141)] = @+ (1 _ry



Thus

!

L 1 _ =
1= ] L) a0 g gy sa @ eyar
i=1 0

Use the matrix representations for the shape function and generalized
coordinates. One writes

WDy - aTey y®

and
Thus
o1,y A T (L-1+1)
I= ] féu [ a®a @-p)ac v
1=1 © ~ 0o~ - ~
Or
1=1 E syDT 4 yL-tH)
L S
where 1 T
‘ A=[ a(E)a (1-£)dg (11a)
~ =R
Hence
I
u(t)xdu(e) = ex = £ §  ypy y-itd (11b)
i=1 ~ -

(b) For w?txu(t)xbu(t):

The evaluation of this double convolution integral is somewhat more
complicated. First consider
t
txu(t) = [ (t-T)u(T)dT
o
Then

I = [txu(t)]*xSu(t)
t  t-A
=[ {f (2-Du(m)dr}su)dr
[o]

[0}

t t-A
=[ [ (t=A-1)u(1)Su(r)dTd)
[o] [o]



Again let
= T LA
THR s A t

Thus u(t) becomes u(T), u(\) to Su(X), etc. One has
I=¢t*f [ @xDu(®)su)sérdx (12)

It should be pointed out that the change of variables from T,\ to T,A
(so that the limit of integration is changed from t to unit) is carried
out after writing down explicitly the double convolutional integral

and not before. This is due to the fact that the definition of a
convolution integral requires that t appears explicitly in the inte-
grals., To evaluate I of Eq, (12) we write

L= 9%

and work on I instead. -
1 1-x - - e -
I=f [  (@A-0)u(r)su(X)drdr
' 0 0

" The area of integration in (i,;) plane is the triangle bounded by lines
X = 0Ob T=0and T = 1-% (shown in shaded area in Figure 1). Using the
step function

H(1-A-T) = 1, T <1-2X
0, ® 50N
one can write
AR 1 | ENe f P N o =
I=[ [ HQ@-X-T) @-X-T)u(T)68u(X)dTdX (13)
0 0

Equation (13) will be used for finite element discretization. We shall
divide the unit square in (A,T) plane into smaller squares of L x L
(Figure 2)., Let

A T G
_ (14)
n= n(i) =Llt-3j+1
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Figure 1. Area of integration for a double integral
of convolution: txu(t)*Su(t).
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Figure 2, Area of integration using finite elements.




Thus
s53) + 67 (5
y@ + y D)

1-X-1 --% {L+1-1-3+ (1-€-m}

and
_ L L 1 1 4
1= f% 2 Z f f H( j)(L+1—1—j+1—E-r1) *
i=1 j=1 0 O
T (L+1-1—j+1—€—n)§(j)(n)éy(i)(E)dndE
Or,
P- 1§ og,n
Tis I,./L
=1 34 ij
with

11
I, = [ [ a9 (i1-1-y41-£-n) -
% %

o @-1-341-E-)5 D () sy (£)agan
since 1 =A-T=0 , L+1-13+ (1-E-n) =0 .
Or,
l1-f£-n=1+3 - (L+1)
Thus, three cases to consider for H(11)
) HA) w1 | 1 +3<L+1

) D 2o , 1+3>L+1

1) HD am@-gn) , 1+3=L+1

For case (i), one has

_ 11 ) i
Ty = | -1y P @65 @ana
0 0 '

1 1

T
= st [ [ (w2t-g-g-ma(®)aT(myandg 9

0 0
- st ANy

~

(15)

(16)

an

(18)



1 1
g(ij) -/ (L+2~1-j-5—n)g(E)gT(E)dndE

00
For case (ii),
1, =0
For case (i11), .
11 . . _
I, = [ 860 Q-e-m3 P mysy D £yanae
3 % %
r 1-E ) _
=[ (l—E-n)y(j)(n)Gy(i)(E)dndE
00
T 1 1-¢ _
=t ) [ (t-e-myaTimyanae P
- 1 1~ T
A=f a@®) [ = (1-E-n)aT(n)dndt
S 2
Consequently,
R If If (19)
I =¢l1 =t 1
Lo yoy go 19

i+j>L+1+Iij-0 (20)
L+g=L+1 »1y, = sxPE @

-~ ~

1 1
A4 oy (L#2-1-3-E-n)a (£)aT (n)dEdn
0 0 (21)
.1 1-E .
A=[ a() fo (1-g-n)a”(n)dndg
0



And thus

= 2.3 L L
witru(t)*bu(t) = wie® I =2 7 7§ I, (22)
L" fa1 3m

(c) For F(t)x8u(t) with F(t) given in Eq. (10b), one has

F(t)*8u(t) = (a+bt+c cos wft)*éu(t)
= a[lx8u(t)] + b[txSu(t)] + c[cos wgt]*Su(t) (23)

where, from Eq. (10b):

f f
a-u0+——5- » b=u1 » C“-——z- (24)
wf wf
Now, for Eq. (23), one has ; .
L T
wouee) =+ 1 U7 [ aeyae (25)
i=1 ~ o ~ «
2 L g1 1 1
t*éu(t) = 55 [ UV {(L-141) [ a(E)dE - [ Ea(E)dE} (26)
L% 4=1 ~ 0~ o -
and
L T 1 t :
cos wet *8u(t) --% X 69(1) f E(E) cos [Eé— (L-1+1-£) ]14d& (27)
i=1 0

Now, Eqs. (11b), (22), (23) through (27), a global matrix equation can
be written as

sul xua=2o6uT F (28)

~

Or
KUs=F (29)

which is then solved.
The finite element discretization procedure for the variational for-

mulation using a large spring constant has been described elsewhere (see,
for example, ref., 5) and will not be repeated here.
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5. NUMERICAL RESULTS. Numerical values of the parameters in the
glven example as stated in Section 1 are as the following:

m=1.0, k=10, £ =1.0, = 0.5

We
yo =1.,0, yl = 1,0

Computational results are presented in Tables 1 through 4. Table 1 and

2 compare results of the two methods in an interval of 0 < t < 10, which
is about the time for a complete forcing cycle. The results for y(t)

and y(t) are excellent for both methods, As the interval becomes shorter,
0 <t <2 as shown in Table 3 and 4, the convergence is further improved.

TABLE 1. NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARIATIONAL METHODS

0<ts 10.0 10 Elements
y(t) Convo Spring Exact ‘]
t Integ. M Const. M Solutio
0 0.999 1.000 ‘ 1.000
2.0 1.769 1.770 1.768
4.0 -1.094 -1,094 -1.094
6.0 -1.920 -1.920 -1,919
8.0 0.167 0.167 0.167
0.0 0.113 0.114 0.114
TABLE 2, NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARTATIONAL METHODS
0Lt<1.0 10 Elements )
y (t) Convo Spring Exact
t ' Integ. M Const, M Solutio
0 1.011 1.004 1.000
2.0 -0.675 -0,.675 -0.674
4.0 -1.520 -1,518 -1.512
6.0 0.780 0.778 0.773
8.0 0.691 0.690 0.689
10,0 -0.391 -0.385 -0.381

11




TABLE 3, NUMERICAL COMPARISONS BETWEEN TWO
' UNCONSTRAINED VARIATIONAL METHODS

0st<2,0 10 Elements

y{t) Convo Spring Exact
t Integ. M Const, M Solution
0 1.000000 1.000000 1.000000
0.4 1.389154 1.389154 1.389153
0.8 1.713203 1.713203 1.713203
1.2 1.911703 1.911702 1.911701
1.6 1.938251 1.938251 1.938249
2.0 1.768413 1.768416 1.768416

TABLE 4, NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARTIATIONAL METHODS

0st< 2,0 10 Elements
ye(t) Convo Spring Exact
t Integ. M Const, M Solutio
0 0.99999 1.00000 1.00000
0.4 0.91844 0.91843 0.91842
0.8 0.67623 0.67622 0.67621
1.2 0.29662 0.29662 0.29661
1.6 -0.17425 ~-0.71424 ~0.17425
2.0 ~-0.67425 -0.67413 ~0.67403

In conclusion, we have observed that the numerical convergence of the
method of large spring constan=s, in the simple example given, is at least
as good as that of the formula*ion through the variational principle of
convolutional integrals. Both are easily adapted for finite element
discretization. Due to the fact that the variational principles of con-
volutional integrals can be formulated only for a very restricted class of
problems (of constant coefficients, for example). The alternate approach
of large spring constants appears to be quite attractive to obtain solu-
tions of non-self-adjoint problems in general and of initial value prob-
lems and initial boundary value problems in particular,

12
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