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ACCURATE COMPUTATION OF DIVIDED DIFFERENCES

Allanr Charles McCu*d

* Abstract

The standard recurrence scheme does not always yield accurate divided differences in

finite precision arithmetic. When the function of interest is known analytically and/or its values

are easily calculated, methods other than the recurrence scheme can be used. In particular, a

table of divided differences can be regarded as a function of a special bidiagonal matrix. For-

mula andcomputational techniques suitable for computing matrix functions may, thus, be

exploited for divided differences.

Divided difference tables of* the exponential function are profitably treated as the
exponential of a special matrix. This approach is good precisely when the standard recurrence

is bad, namely when the abscissae of the divided differences are cloase. When the abscissae are

scaled down by powers of 2, the resulting scaled divided difference table may be squared to give

the wanted table. For real abscissae this scaling and squaring technique, in combination with

the standard recurrence where suitable, yields a hybrid algorithm which permits computation of

any exponential divided difference to an accuracy dependent only on the order of the

* difference. For appropriate arrangements of complex abscissae, such as conjugate pairs, a simi-

lar result is established. A good way to compute the exponential of a real square matrix A is to

* use the Newton divided difference interpolating polynomial. Our algorithm finds an important

application in computing accurately the coefficients of this polynomial.~
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ACCURATE COMPUTATION OF DIVIDED DIFFERENCES

A function of a matrix, f (A), may be defined in terms of a polynomial which interpolates

f at A's eigenvalues. One such interpolating polynomial is derivable from Newton's divided

difference interpolation formula. Coefficients in this interpolating polynomial are divided

differences of f at the eigenvalues of A. Thus f(A) may be represented in terms of divided

differences off.

The opposite is also true, though this is not widely known. That is, divided differences of

f may be represented in terms of the function of a special matrix. Matrix functions and divided

differences, then, are profitably studied' together. In particular, techniques used to compute
matrix functions may be exploited to study and calculate divided differences. The exploitation

of matrix function theory for the study of divided differences is the prime purpose here. In a

number of cases it will lead to new methods for accurate computation of divided differences.

The first chapter is a brief introduction to matrix functions. The interpolating polynomial

definition leads immediately to several matrix theoretic properties of f(A), for example A and

f (A) commute. The Newton divided difference polynomial explicitly shows the use of divided

differences in defining f(A). An extension to a divided difference series representation of

f(A) is given for holomorphic f

The second chapter is a general study of divided differences. 12.1 introduces a new com-

pact divided difference notation and lists, in this new notation, a number of facts about divided

differences. For completeness, the following sections outline the classical approach to the study

of divided differences and the advantages of an entirely different view of them as functions of

I ~i their data points. §2.6 establishes the matrix function formula for divided difference tables.
The remaining sections exploit this formula to develop series expansions for divided

differences.

Chapter 3 is a study, in detail, of divided differences of the exponential function and

methods for computing them. The speci&l nature of f - exp gives its divided differences pro-

perties not shared by those of other functions. These properties are presented in §3.1. §3.2

develops bounds on exponential divided differences with real data. These bounds show how



2

errors grow in computing divided differences by the standard method. The following sections

present, with error analyses, a Taylor series algorithm and a scaling and squaring algorithm for

computing exponential divided differences. The latter is a direct consequence of representing

the divided difference table as an exponential of a matrix. §3.5 then outlines a hybrid of those

two algorithms and shows how real exponential divided differences can be computed with a

bounded relative error. Of prime importance is the fact that the error bounds depend only on

the order of the difference, not the data. Finally, the remaining sections study complex

exponential divided differences, with particular attention paid to methods for computing divided

differences with data consisting of conjugate pairs.

I
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1. Matrix Functions

1.1 Definitions and representations of matrix function.-.

The extension to matrices of the concept of furction has led to several definitions of

matrix function. Nonetheless. Rinehart [19551 has shown *hat ail cummon Jefinitions of

matrix function are equivalent for functions holomorphic on a region containing the eiken-

values of the matrix. Since here we concentrate on holomorphic functions, we are 'r2e to

choose a definition which makes presentation easiest. A definition of a function cri nr.'.-'x in

terms of interpolating polynomials has a natural reationship with divided differences. We

choose this as our primary definition.

Let A be an (ni+1) x (n+i) constant matrix whose elements may be complex numbers.

We display the eigenvalues of the matrix A in the sequence

,. X,, ... X.,, .. ... .A.. ij . X n which 1l or the eigenvalues are distin,:t

and each distinct eigenvalue occurs n,+I times. i=0,1. . . / 4. has +(n += !
, -0

entries. The elements of -%A are just the roots of A's characteristic Poivnomial

(X - , .1 [A - A t
.. (, =- tx-A)' ( ," - .A-.A;)' (!.i.;i

The definition we give for .1(A) requires simply that I A) be defined for each A E A

wht.a the eigenvaluez are ail distinct. To allow for multiple eigenvalues, however, we ieeuire

that ./ be defined on A : as follows.

Detiition: The function ./ is said to be "defined on the characteristic values of A" when ( (A

' . . .. "''(,) are defined for each , -0. 1 .'. For brevit.I, we denote this -euence o;I i values byf$.'A)
For any 'atisfying this definition, /(4) is defined in terms of an interpolaitng polvrio-

mial for.'

* I• .



§1.1 4

Function of a matrix. When J is defined on the characteristic values of A and p is any po-

lynomial such that

P(AA) -f(AA),

then

P(A) m- p(A).(..2

The polynomial p is an osculating interpolation polynomial for f on AA. That is,

p(x,)-./'(p,), p'(,,)-.X,).p(?,,)f '(k,) for each i-0,1,. I. When the eigen-

values are distinct this definition of f(A) becomes particularly simple, as then p is just an ordi-

nary interpolating polyfiomial for f at the elements of AA.

The rationale behind definition (1.1.2) is that for two functions f and g, f(A) is indistin-

guishable from g(A) when f(A4)--g(AA). The sequence of zeros of f,) -g( () includes

AA, the roots of XA(X), and XA(A)-o by the Cayley-Hamilton theorem. The interpolating

polynomial p has degree at least n, since it must satisfy the n+l conditions given in the

definitiont An interpolating polynomial p may be chosen to satisfy additional conditions, but

the degree of the polynomial is increased. We write p,, for the unique polynomial of least

degree interpolating /'on AA.

p,, need not be the polynomial of least degree defining f(A). The characteristic polyno-

mial XA is an annihilating polynomial for A because X, (A) -0. However for some matrices .4.

there are polynomials of smaller degree which are also annihilating polynomials. The minimal

polynomial AA is the non-trivial annihilating polynomial for A of least degree. If jIA() has

degree m +1, m < n, it is possible to define f(A) in terms of a m degree polynomial p,, which

interpolates f at the m+1 roots of ALA. Gantmacher (19591 uses this slightly more general

approach in his definition of f(A). The roots of , (?A ) are eigenvalues of A. For m < n fewer

derivatives or f need be specified, however /AA and the multiplicities of its roots may be difficult

and costly to obtain. Thus we shall not try to form f(A) -p,,(A) for the smallest possible

degree m. p, can have significantly higher degree than p,,,, see Fig. 1.2.1, but here we achieve

greater simplicity in that less need be known about the matrix A.

IA polynomial of degree k can interpolate at, at most, k+I points. In general k+l
points uniquely determine a polynomial of degree k higher degree polynomials are not
uniquely determined.

100



§1.15

A [ O 1 21 - (- 1)0,-2)
A - 10 1 0

1 1 3 XA(0-) - (X,-!)(X -2)

Fig. 1.1.1: Degree ofIAq may be less than degree of X A.

The polynomial representation of f(A) leads to several elementary, but very useful,

consequences.

Similarity transformations. For any (n+l) x (n+l) nonsingular matrix P,

f(PAP - ') - P-f(A).--. (1.1.3)

In theory this permits performing all computations to form f(A) on the simplest matrix similar

to A, e.g. A's Jordan canonical form. In practice, however, the transformation matrix P may be

difficult to compute accuratelyt or may be nearly singular. Some less simple form may be

required. The triangular Schur form T, which is unitarily similar to A, eliminates the above

objections.! However, f(T) is not always simple to compute with accuracy.

Commutativity.

A .f (A ) - f (A ).A (1.1.4)

Parlett [19761 has presented a very fast method for computing functions of upper triangular

matrices T based on this property. In brief, the diagonal of f(T), which is also upper triangu-

lar, is computed directly;

f (T"),., "fE,

for each i -0, 1 .... , n. Then successively by diagonals towards the upper right, the general

recurrence is

tKagstr6m and Ruhe [19761 present an algorithm for computing the Jordan form,

while Golub and Wilkinson (19761 discuss limitations on computing it accurately.
Wilkinson (19651 presents a detailed analysis of the QR algorithm which reduces A to ,
T by a sequence of unitary similarity transformations; the algorithm is implemented in
the EISPACK [Smith, 19741 collection of computer subroutines.

Iii



§1.1 6

I--,-

f(T),- I w [f(T).,+.T, A.j - TJcf(T),_J}/(T.,-T,.) (!.1.5)
A-0

where i < j n. T may be A's Schur form; this recurrence may be used to form f(A) by
(1.1.3).

When f is symmetric in the real axis, that is f(Z) -- (C), polynomials interpolating f have

real coefficients. We denote the conjugate transpose of A, ', by A".

Conjugate transpose. When f is symmetric in the real axis,

f (A 0) - f(A ).(.!.6

Expression (1.1.6) shows that conjugate symmetries in A are inherited by '(A).

Formula (1.1.3) shows that f(A), defined as in (1.1.2), may always be computed from

A's Jordan canonical form. Conversely, we may wish to define f(A) from the Jordan form by

way of (1.1.3). This latter definition is more general than our polynomial definition, as the fol-

lowing shows.

The 2 x 2 identity matrix has, among others, the square roots

°,1 and I0 1 1
The former root is representable by either definition; the latter is obtained by separately

defining vd-1 and VT--1 on each Jordan block. The function is permitted to be mul-

tivalued, but only on separate Jordan blocks. The polynomial definition does not allow this,

since polynomials are never multivalued.

Even the Jordan form definition of f(A) is not the most general possible. For example a

square root of

,~~~i 10o 1o ,I~o.
E. Cartan proposed a contour integral definition which applies to holomorphic functions f

[Rinehart, 19551.

NA



Cartan definition. If Iis holomorphic inside and on a simple closed contour C enclosing

A A, then

f(A) =-!ff(C).(CI-A)-'dC.(..)

Additional representations of f*(A) are derivable from those just mentioned. Gantmacher

119591 and Rinehart (19551 discuss f(A) in further detail. In the next section we present a

particular polynomial representation for f(A) and discuss related series representations.

Nae



§1.2

1.2 The Newton polynomial of (A), and series representations.

Because we are free to choose any polynomial interpolating f on AA, definition (1.1.2)

allows many representations of f(A). There is, however, a unique interpolating polynomial p.

of least degree, though even this may be arranged in many ways.t One arrangement of p,,,

which clearly illustrates the use of divided differences for defining matrix functions, is based

upon Newton's divided difference formula for the interpolating polynomial, namely

H k-I

pMx ) - .A .f.'(A-x). (1.2.1
A-0 j-0

The coefficient A :f is the k-th order divided difference of f defined on the abscissae

ho. X I ...... \k. This compact divided difference notation is further explained in §2.1.

The first few terms of the interpolating polynomial (1.2.1), which we call a Newton poly-

nomial, are

f(O) + Af ( \ 0 ) + Ajf "(. -Xo) (- I) + Adf(X- Ao)(A-A,)(A-A 2 ) + .

Because p,(AA)-f(AA) where AA-O.A i. A, the eigenvalues in AA having been

renumbered, f(A) has the following representation.

Newton polynomial of f(A). When f is defined on the characteristic values of A,

f(A)- L&0f.H(A-x 1 ). (1.2.2)
-0 i,-0

AA is the sequence of abscissae for the divided differences.

In §2.1 we shall see that the conditions on f necessary to define all the divided difference

coefficients A4'f, k -0, 1 . n, are exactly those required to assure the existence of some

interpolating polynomial p,,. Thus when p. exists, it may be arranged as a Newton polynomial;

so (1.2.2) is equivalent to definition (1.1.2).

tFor example Lagrange's interpolating formula p, (A) - A. (A).f(AA), where for each
k-0

k 1() nfl(X-X)/][( X-Xj), is one of the simplest. Here It(,)-O0 when k ;d i,
a I j-n jn )" and 1k(OXk)" 1.
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2 2

AA W - U-l)(x-2) a (k) - (A -1 ) 4(k -2)
XAW, _ (X- 1)4(.k-2) X'900 == pA' W
p,,(A) -1'(1)1 + Vf(2)-f(1)(A -I) p,,,(B) - ik (8 + A ]'(B -) 4

.--

p( 3)- _ 1 (l) (A A4f(A -I) 4 p,,(B) p,,(B)A- - k! . - ) +

Fig. 1.2.1: p,,, depends on the eigenspaces of the matrix.

T!e Newton polynomial representation of f(A) requires no more of f than that it have

enough derivatives to define f(AA). Our interest here, however, concerns functions f holo-

morphic on a region containing AA. In such cases there is a natural extension of the Newton

polynomial to a series. Such a series may be viewed as an interpolating polynomial of infinite

order.

This extension derives from a Newton divided difference series,

*0 k-1

f(L) - .At4f. 'l(X -j), (1.2.3)
k-0 J-0

where the divided differences of f are defined on a sequence of expansion points

M--{Ao.A 1, A2.... I which lies in the domain of holomorphy of f. Because (1.2.3) may be

unfamiliar, Appendix A. I presents an elementary proof demonstrating its convergence. Appen-

fdix A.2 establishes the following representation of f(A). Gantmacher (19591 establishes more

general series representations for f(A), and Gel'fond [19711 discusses more complicated

divided difference expansions. These more extensive results are not needed here.

,j.



§1.2 !0

Newton series representation of f(A). Let f have the Newton divided difference expan-

sion (1.2.3) on an open disk containing AA. Then

l(A) - Aomf I(A -/s,l). (1.2.4)
k-0 I-0

When the first n+I elements of M comprise AA, i.e. po Xo... IA,, - X,,, the Newton expansion

of f(A) (1.2.4) terminates after the n-th term and is just the Newton polynomial (.2.2). This

is the Cayley-Hamilton theorem, fl(A - 1 ) -A (A) -0.

When M-l., .,, A.... ) consists of one point, then each A&f-.P(JA)lk! (§2.1). The

Newton expansion (1.2.3) is, then, just a Taylor series; the representation (1.2.4) reduces to a

* fTaylor series for f(A).

Taylor series representation of f(A). Let f have a Taylor series on an open disk about j/

containing A,4. Then

f(A) Pk) (,L.A /).(125

The above shows that f(A) is representable in terms of f's divided differences. In the

next chapter we reverse this situation. Divided differences of f are expressed in terms of a

function of a special matrix. Hence everything said here concerning f(A) applies to divided

differences of J, and techniques suitable for computing f(A) may be applied to compute them.

In turn, these differences may be used to compute f(A) by the Newton polynomial.

dt,!



2. Divided Differences

2.1 Definitions and properties of divided differences.

Divided differences were studied extensively in classical precomputer numerical analysis

as part of a finite difference calculus. They primarily saw use in tabulation of tables of function

values. A quite different purpose is envisioned here; however, much of the classical theory is

still relevant. Before proceeding to develop formulas for the calculation of divided differences,

we present a few well-known definitions and their consequences. Our notation is somewhat

different from that of other authors, but it is felt to be an improvement. Once understood, it

will cause no confusion to those already familiar with divided differences.

Most common notations for divided differences are cumbersome. For clarity we begin

with such a notation, but later reduce it to more compact form by suppressing unneeded infor-

mation. Let f be a function of a single variable C and be defined, at least, on a sequence

Z - (Co. C . , .  of distinct complex numbers. Z is called the sequence of abscissae, or

sometimes the sequence of data points or nodes. The O-th divided difference of f at C0 is

(Af)(PCo) f(Co) •

The first divided difference of fat Co is a function of the two variables (abscissae) Co and CI; it

is formed from the 0-th divided difference by the familiar formula

(A If)(401 ) - (AOf)(C) - (Af) (oI) P f ) - f(Co)
C-Co CI-Co

The k-th order divided difference of f at Co is, then, a function of the k+l abscissae

Co, C; .... C., and is defined iteratively from k-I-st order divided differences.

A first definition of divided differences. When f is defined on Z, each k-th order divided

difference of fat C, j-O. 1,... n-k, is

(Akf)(Cj.C I, . C. +) --- CJ+ k C(CJ.tk-Cj

(Akf)(CP, .;, . j+k) has no dependence on abscissae with indices <j or >j+k, and so

no generality is lost when considering just (Af) (Co, C ... ).
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Divided differences are very special functions of the data points in Z. Not only does the

number of data points used increase with the order of the difference, but the divided difference

is symmetric in its arguments. This is obvious in the equivalent representation of the divided

difference in terms of determinants [Milne-Thomson, 19331.

f(Co) f -) -() 0 1 n

(A (. .,) - + (2.1.2)

The abscissae may be arranged in any order without changing the value of

....................... ..... .)1 .

Symmetry property. Let ir be a permutation on the set of indices 0, .... n. Then

( ( . .- (A f)(,(o. , . . . •(2.1.3)

When f is symmetric in the real axis, i.e. f(Z) - f', (2.1.2) leads to a conjugate symmetry.

For odd values of n, (Aff)(Co,{ C..... C,) is real whenever C2, 1 " b, i-. I . (n-l)/2.

And for n even, (A "f) (Co, C 1 . C,) is the conjugate of (A'f)(Co,1, .... ,) when each

C2i+, - 2,, i - 0. 1 ..... (n-2)/2.

The defect in definition (2.1.1) is that data points must be distinct. However when f is

differentiable, (2.1.1) may still be defined even for confluent (i.e. equal) abscissae. In particu-

lar when Z - (C o. .. C1, (2.1.1) is defined when fP" (Co) exists. For confluent abscissae

the divided difference reduces to

(A Y)(oCo.......- O) (2.1.4)

Since the data points may be arranged in any order without changing the value of the divided

difference, (2.1.1) is defined when (2.1.4) is used when confluent abscissae occur. The require-

ment that the abscissae be distinct may be removed.

Definition: Let Z={C(o... .Co..... ..... ...... t.... } be a sequence of abscissae

oust a renumbering of the previous Z) where each C,, i-0,0 .. .1 I, appears m,+I times,

I(n,+ l)- n +1. The function f is "defined on the sequence of abscissae Z when f(C),
,,-0
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........ .... ...... (,) are defined for each i -0. 1. . This sequence of values is denoted
.f(Z).

Before rewriting definition (2.1.1) in more generality, we introduce a compact notation.

The sequence of data points Z-{O.1..... ... is given and, usually, in a fixed order.

Hence reference to Z may be suppressed. Thus we define

SkJ .tJf (,i.ptl.. . ..A) . (2.1,5)

The subscript i is understood to mean that we locate the abscissa labled C, and use it and the

next k abscissae in the sequence. In the event that the particular sequence Z must be

emphasized, .c ,'will be written for 1,1j)"

Standard iterative divided difference scheme. When f is defined on the sequence of

abscissae Z,

(2.1.6)

for each k- 1,2. nandj-O. !. t-k, where ,Ao/--..(,).

This definition of divided differences and our earlier definition of matrix functions in §1.1

are consistent. Indeed when Z - A,4, "defined on the sequence of abscissae Z" and "defined on

the characteristic values of A" are the same. We shall see later in §2.6 that this similarity in

definitions is no coincidence.

Divided differences have many useful representations and properties. We list several of

these here.

[ Divided difference tables. Divided differences are most conveniently displayed in tables. Trad-

itionally, tables are arranged as in Fig. 2.1.1. Each divided difference is computed from its two

immediate neighbors in the column to its left. For our purposes it is most helpful to arrange

tMilne-Thomson (19331 writes AOf as [.0, C1, ..... , ,1, suppressing the function, Davis
119731 uses JA"1(Co. , . ... ,); and Kahan and Farkas 11963] use AJi(Co,,C1. .... C.),
which suggested the notation used here. Gabel [19681 also uses a similar notation.
This compact notation is used in McCurdy [19781, from which much of this introducto-
ry section is taken.

ASO,
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Co f(Co)

f (C1) A
A If AR?

C2 f( ) IAf A0f4Ajf AW'
0. f(j) Alf

Alf
C4 f(C4)

Fig. 2.1.1: Standard divided difference table.

the table as an upper triangular matrix, for example

f(l) AIf it-if

f(42) A2-If

Af - (2.1.7)

f(C.)

The symbol Af, without the superscript, is used here to represent a matrix, not a scalar. Ele-

ments of the matrix depend on their immediate neighbors in the diagonal to the left. This

leads to a "pattern of dependence" in which A if is independent of all table entries in rows

before the j-th and columns after the j+k-th. Af depends only upon the block of the table

matrix between it and the main diagonal. Such patterns of dependence are characteristic of tri-

angular matrices.

Linearity. For constants a and 0,

A,(af +fig) - a.-Af + /'Ag. (2.1.8)

Translation Invariance. For Z+a-- (Co+a., C+a. .+a....) and f.(C) =f(--C+a),

A44 - (o+.f (2.1.9)

For example,

A fi f.(Q)-f(4O) i f(C fa)-f(4o+A) -I -
I - (C I+ao) -(+) "
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,, '2 - Aru 3 j,4-
I

- ' ;.P - ?fd - ,f - A'kf

-I i).. f - I,+ - f

f(,+2) - A+f - '2.f

f(C,+3) +- A

t
; Jf(C;,4)

Fig. 2.1.2: Pattern of dependence in a divided difference table.

Scaling Invariance. For some r 0 let TZ -- {1jCo, rT; ......... I and f,(C) f-. Then

A4/A - r" /. (2.1.10)

For example,

f, Q f - , (40) f ( Tc ) - f (TCo) . .. , .

4 ,1 -o CO r '-'rro

1.000 1.718 1.476 .8455 .3632
2.718 4.671 4.013 2.298

7.389 12.70 10.91
20.09 34.51

54.60

Fig. 2.1.3: Divided difference table for f-exp, with Z- (0, 1,2,3,4).

i .Mean value representation. When the abscissae are real,

min C. maxC,, (2.1.11)

for any f having m continuous derivatives in the interval containing the data points. This has

no equivalent for complex abscissae. For example when f- exp and C(o-f and C f-+2v'i,

Afexp anf+2t- 0 ec

for any finite C.,
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Integral representation. Another representation for An./, when f has a bounded nt-th order

derivative on a closed convex domain containing Z, is [Gel'fond, 19711

I 1a .-
0. f " " d."'[{o+ (-o)i+"" "+(- ) d,, 'dr 2 dr1 . (2.1.12)

0

Contour integral representation. When I is hoiomorphic inside and on a simple closed con-

tour C enclosing Z, [Gel'fond, 19711

1" F ]ro) doJ (2.1.13)

Bound. If " has a bounded n-th derivative on a closed convex domain 0" containing Z, then

[Gel'fond, 19711

,-"ft I --1 -max IJf"'(;) I (2.1.14)

n! Ceff

This is an immediate consequence of (2.1.12).

In later sections we present a new way of looking at divided differences and develop addi-

tional ways to express them.

ii
"- j .. . .. .. I l .. I .. ..
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2.2 A traditional attitude towards divided differences: tables and Interpolation.

Before beginning our study of divided differences, we present a short discussion of the

traditional attitude towards them in order that contrasts may be made with our approach.

Divided differences are often encountered as an adjunct of the subject of ordinary

differences in interpolation and table making. Their treatment in the literature [e.g. Milne-

Thomson, 1933, and Miller, 19501 is patterned on that for ordinary differences. The arrange-

ment of the divided difference table (Fig. 2.1.1) is one example. Others are divided difference

interpolation formulas which resemble formulas for ordinary differencest Indeed, our borrowed

notation A for the divided difference operator is a modification of A for the foreward difference

operator.

-4

-3

-2 E

- 1 E-. "

E -3e lo
0 -2c 6

U 3-10
1 E -4

_e€ 5e

2 E

3

4

Fig. 2.2.1: Error growth pattern in table of ordinary differences.

The lack of interest in divided differences shown by some authors [e.g. Ralston, 19651 is

explicable when we recall their use in interpolation and the available means of computation. In

t'Divided difference interpolation formulas are derived from the Newton divided
difference interpolating polynomial (1.2.1) in the same way that the Stirling and Bessel
formulas are derived from Newton's foreward difference scheme. For example, averag-
ing polynomials using the two sequences of abscissae, , C-:, C2, C-2 .... and
(C0 C-1, C , C-2, 42 ...-I yields the divided difference generalization of Stirling's formula:

.jd__

P (C -(C) +I I A Ir) 1)+ (A0 (o. 1)1. ( Co + 12 Co. 1,4 -1) 4 CO (C L!L ) +..
2 2
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hand or desk-top calculation, we desire few and simple computations. Ordinary difference

interpolation formulas may be scaled to minimize divisions and complicated fractions (worse

than s etc.). This is one reason mathematical tables with unevenly spaced datathan say 2. 3 12
2312'

are seldom encountered. Comrie [19591 remarks that "computers try to avoid tabulations at

unequal intervals and divided differences

A 40exp A'exp 3xp Aexp 14exp Alexp 4 6exp

0.00 1.000
0.284

0.25 1.284 0.081
0.365 0.122

0.50 1.649 0.203 -0.392
0.568 -0.270 1.000

0.75 2.217 -0.067 0.608 -1.997
0.501 0.338 -0.997

1.00 2.718 0.271 -0.389
0.772 -0.051

1.25 3.490 0.220
0.992

1.50 4.482

0.00 0.000
0.000

0.25 0.000 0.000
0.000 0.100

0.50 0.000 0.100 -0.400
0.100 -0.300 1.000

0.75 0.100 -0.200 0.600 -2.000
-0.100 0.300 -1.000

1.00 0.000 0.100 -0.400
0.000 -0.100

1.25 0.000 0.000
0.000

1.50 0.000

Fig. 2.2.2: Example of error propagation in ordinary differences (see Fig. 2.2.5).

The study of error behavior in divided difference computations also shows the domination

of ordinary difference theory. For example when an error a occurs only in the f(0) entry, the

familiar error growth pattern (Fig. 2.2.1) reveals itself in a table of ordinary differences. The

coefficient (exclusive of sign) of the (n, A) entry is the binomial coefficient

1/2' nimi
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where n is assigned half values for entries where j is odd.

Miller (19501 writes, "It is also proposed to give error patterns, such as that in [Fig. 2.2.11.

for tables of divided differences, for use with tables having certain common arrangements at

unequal intervals, for example, with a table having arguments

01 1 2 3 1, 1 11.4' 3''3'4' 4 3

Such an error pattern might resemble Fig. 2.2.3.

! ( f. A, A2  A'. A4  A5

2IC,-4

C-3S

C-2 4.-4, 4

41-3. 3 'E-4. 5

Fl. --|:Ero growth patrni-abeo-dvdd ifrecs

E-IT r ge-2.3 Ce-3.5
40 d-1, 2 C-2.4

to. I E- I. 'E-2.5

4. 10.2 e-1,4
e0. 3 4- 1,5

C2 4E0. 4

,4

Fig. 2.2.3: Error growth pattern in table of divided differences.

Each e, - e [ l (4o- 0)]=. The error growth pattern reduces to that of Fig. 2.2.1I when the

data points are evenly spaced with unit separation and each entry ejj is multiplied by j!.

Because n-th order differences of polynomials of degree n-I are zero (see §2.7), one

expects high order differences of a function to be small when it is well-approximated by a poly-

nomial. When high order differences begin resembling the alternating sign binomial pattern of

Fig. 2.2.1, an error in the tabulated function values is suspected [Miller,19501. Multiple tabula-

tion errors lead to more complicated patterns, and round-off errors in the difference computa-

tions may further obscure any pattern. Statistical methods have been suggested for spotting

aberrations in tables [Blanch, 19541.

2"
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Ii 0exp A'exp A2exp A -exp 1'4exp A 5exp .I exp

0.00 1.000
1.136

0.25 1.284 0.6454
1.459 1.311

0.50 1.649 1.629 -4.197
2.273 -2.886 8.549

0.75 2.217 -0.5360 6.489 -11.37
2.005 3.603 -8.513

1.00 2.718 2.166 -4.152
3.098 -0.5493

1.25 3.490 1.754
3.965

1.50 4.482

0.00 0.000 0.000

0.25 0.000 0.000
0.000 1.067

0.50 0.000 0.800 .4.267
0.400 -3.200 8.533

0.75 0.100 -1.600 6.400 -11.38
1.00 0.000 -0.400 3.200 -8.533

1.0 0000.800 -4.267

0.000 -1.067
1.25 0.000 0.000

0.000

1.50 0.000

Fig. 2.2.4: Example of error propagation in divided differences (see Fig. 2.2.5).

A situation where divided differences, rather than ordinary differences, are usefully

employed in interpolation is presented by Salzer (19471. Bessel functions J,.(). , ( (). etc,

are commonly tabulated for integral values of v, as well as v- ±t1/4, : 1/3, ±1/2, t2/3, and

:3/4.1 For f fixed, divided differences are used to interpolate for any v, -1 P <, < 1, or zo

check entries in a table.

Very high (say greater than 10-th) order differences, ordinary or divided, are seldom of

practical interest in interpolation problems. The reason is that when the function is tabulated to

a fixed number of digits, adjacent table entries often have several initial digits in common.

fSee for example tables of the National Bureau of Standards [19481.

,1tl
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Differencing such entries leads to differences containing fewer significant digits. After a few

steps no correct digits may remain. The tables in Fig. 2.2.5 illustrate this phenomenon. Less

correct information (significant digits) is retained after every differencing step. In interpolation.

one is interested only in making a small correction in the last digits of already tabulated values.

The information remaining in the first few differences is adequate for this task. However when

accurate high order differences are the objects of interest, this loss of information, coupled with

magnification of any previously introduced errors when we divide by a small number, is a disas-

ter. We must consider other methods for computing divided differences. The approach neces-

sary to develop such methods forsakes the idea of interpolation between table entries and

emphasizes the underlying function.

example: We use the Newton divided difference formula and the four figure divided

differences in the second table of Fig. 2.2.5 to interpolate for exp(0.30).

exp(0.30) - 1.000 + 1.136x (0.30-0.00) + 0.648 x (0.30-0.00)(0.30-0.25)

+ 0.2347 x (0.30-0.00)(0.30-0.25)(0.30-0.50) +

- 1.349816

This result correctly interpolates to four figures exp(0.30) - 1.350. The errors in the

divided differences do not affect the most significant digits that we want.
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Ordinary differences of the exponential

1 0exp alexp Alexp A&exp I'mx 45exp I'exp

0.00 1.000 0.284 0.081 0.022 0.008 0.000 0.003
0.25 1.284 0.365 0.103 0.030 0.008 0.003
0.50 1.649 0.468 0.133 0.038 0,011
0.75 2.117 0.601 0.171 0.049
1.00 2.718 0,772 0.220
1.25 3.490 0.992
1.50 4,482

Divided differences using 4digits

S A~exp i'exp Ablexp A 3exp V4exp i 5exp i~exp

0.00 1.000 1.136 6.480E-1I 2.347E- I 8.530E.2 0.000 1.712E-2
0.25 1.284 1.460 8.240E-1I 3.200E- I 8.530E-2 2-568E-2
0.50 1.649 1.872 1.064 4.053E-1 1. 174E- I
0.75 2.117 2.404 1.368 5.227E- I
1.00 2.718 3.088 1,760
1.25 3.490 3.968
1.50 4.482

Correct value of divided differences to 4 digits

4 11 0exp L'exp i 2exp i lexp Vkexp I 'exp i 6 exp

0.00 1.000 1.136 6.454E-1 2.444E-1I 6.942E-2 1.577E-2 2.987E.3
0.25 1.284 1.459 8.287E-1 3.138E-1 8.913E-2 j2.025E-2
0.50 1.649 1.873 1.064 4.029E-1 I. 144E-1I
0.75 2.117 2.405 1.366 5.174E- I
100 2.718 3.088 1.754( 150 4.482

Fig. 2.2.5: Example of loss of accuracy in computing differences.



§2.3 23

2.3 An analytic approach to divided differences.

Up to this point, divided differences are seen as a tool for interpolating in mathematical

tables. We assume only that we are given a table of numbers, presumably representing the

values of some function at certain arguments. No reference to a particular function or expres-

sion is required.

In contrast, we now consider how divided differences depend on the function ./and make

full use of the theoretical tools presented in §2.1. We treat the divided difference itself as a

function. hence, we always assume we can evaluate f and its derivatives at any valid abscissa.

A discussion of tables and interpolation is no longer relevant; neither is a limitation to common

arguments. as suggested by Miller [19501 and Salzer (19471. Indeed, complex as well as real

data points are possible. Further, we are interested in floating-point computation on a com-

puter; the desire to avoid divisions, complicated numbers (many digits) and fractions is less

important. Finally , we consider divided differences of any order.

example: The power of the analytic approach can be illustrated as follows. We wish to evalu-

ate A1exp at the abscissae o-0 and C I- 10- 20 on a pocket calculator that can hold

only a ten digit number. In the calculator the number 1 +10
- 2

) would be

1.000000000; the 10-20 is chopped off. Hence we compute

lo'exp _ exp(lO-2°)-exp(O) 1 - I10-1o_0 10-'0

as exp(10 -20) - I to ten digits. Alternatively we may write

. pex - xp ) -exp( e) xp[( 1 +4))/21 sinh[(4,;--)/21

and then

iexp - exp(0.S x 10- )~ sinh(0.5 x 10- ) -

0.5 x 10- 20

to ten digits, if we can evaluate sinh accurately.

fIn a computer, abscissae must be representable in the machine; the value of f is
rounded (or chopped) at full machine precision.
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Divided differences of g using 4 digits

Og A'g AAg Ag 9 9

0.00 0.000 1.406E-6 1.812E-4 2.212E-3 6.913E-3 7.446E-3 2.989E-3
0.25 3.516E-7 9.199E-5 1.840E-3 9.125E-3 1.622E-2 1.193E-2
0.50 2.335E-5 1.012E-3 8,684E-3 2.534E-2 3.113E-2
0.75 2.764E-4 5.354E-3 2,769E-2 5.647E-2
1.00 1.615E-3 1.920E-2 7.004E-2
1.25 6.416E-3 5.422E-2
1.50 1.997E-2

Fig. 2.3.1: Analytic approach to computing A "exp.

example: Consider the second table in Fig. 2.2.5. The value 0.01712 for A06exp contains no

correct digits. Any sixth order difference of a polynomial of degree five is zero

(§2.7). By linearity

A exp -A g,

where g - exp-ps and ps is any fifth order polynomial. We set

PS) I+ +L + .0 + .
p~~ 1+~+2! 3! 4! 5!

the first terms of exp's Taylor series. For this choice,

Using g instead of exp we get Aiexp - AOg - 0.002989, which has three correct

decimal digits. The polynomial ps(C) which dominates the information in the left

most digits of exp(C), the digits lost in differencing, is removed in forming g(C).

I The information needed to give L06exp accurately is retained in g(C), but is lost in

exp(C) because too few digits are carried.

There are many cases in which the standard divided difference scheme (2.1.6) works very

well (Fig. 2.3.2). Because the scheme is so simple and computationally fast we want to use it,

when possible. We need, then, an analysis of the standard formula in order to distinguish

those cases where we may wish to employ it. This leads to criteria for deciding when to use it,

rather than some other formula.

.4'
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Divided differences or expl0 by the recursive formula

C A'exp10  A 'explo A 2explo &3exp, A 4 exp,0  'isexplo A'expj0

0.0 1.000 4.472E+ I 1.OOOE+3 1.492E+4 1.668E+5 1.491E+6 1.1 13E+7
0,25 I.218E+l 5.449E +2 1.219E+4 l.817E+S 2.031E+6 1.818E+7
0M5 1.484E+2 6.638E+3 1.485E+5 2.213E+6 2.475E+7
0.75 1.808E+3 8.089E+4 1.808E+6 2.696E+7
1.00 2.203 E+ 4 9.851E+5 2.203E+7
1.25 2.683E +5 1.200E+7
1.50 3.269E+6

Fig. 2.3.2: Recursive scheme on expl 0(C) e e10
C correct Aolexp 1 0- 1. 1 12E+ 7 to 4 digits.
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2.4 An error growth analysis of the standard divided difference formula.

The standard divided difference algorithm (2.1.6) propagates, and may magnify, errors

introduced at earlier steps! Algorithms which exhibit this unfortunate error magnification pro-

perty are often shunned in practice; however, (2.1.6) is just too attractive from the point of

view of speed and simplicity to be discarded out of hand. We study here the standard scheme's

error behavior and obtain error growth bounds. This analysis provides criteria for deciding

when to employ the standard scheme, or another method, to compute A'./:

We analyse the error propagation in a typical step of (2.1.6),

,l "h ( 2.4.1I)
4,,-O

For any expression g let 1(g) represent its computed, or "on hand," value. Employing previ-

ously computed values in (2.4.1),

fl( , -f1) _flu I.)

4;,,-40

Define

fl(u'f) =-- Id + 8'. (2.4.2)

80' is the absolute error in expressing A4'fbyfl(A6'f). Then

(k,, - 1 .1o

* I

and so

- 8 0

(2.4.3) represents 86' as the error propagated from errors in the n-l-st order differences. The

tAlgorithms which magnify previously introduced errors from step to step are often re-

ferred to as "unstable." This term is commonly applied to algorithms for the numerical
solution of differential equations. In this context it is employed, for example, in texts
by Richtmeyer and Morton [19671 and Gear [19711.

I
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growth in this propagated error is governed by (4,,-Co)- 1, the inverse spread in the abscissae.

We may also define

fl(A d./') = A '/f(1 -- eI+ ). (2.4.4)

ed' is the relative error in expressing Ad'.!by its computed value fl(A'f). Then

AdJAl ('-(I/.("') - A'. E' - I )

-Ad"'f[1+ el", + I,(lale

and so

e '+.(+ - (2.4.5)

Ad'r(,,- -Co

is the relative error in fl(Ad'f) propagated from relative errors in n-I-st order differences.

Expression (2.4.5) indicates the relative error may grow from step to step in (2.1.6), espe-

cially when the abscissae and C, are close. This relative error growth is equivalent to the loss

of information discussed in §2.2. Such growth in practice may nearly approximate the upper

bounds on error growth we derive in §3.2.

FrmInsisting on small relative errors is often inappropriate in divided difference computations.

Frm(2.4.5) one expects a large increase in the relative error when IA4U' is small compared

with IA'lf 1. However a large relative error, in a small number is not a disaster when the

absolute error is small relative to the final quantity in the computation in which the divided

difference is used. Our interest here is accurate computation of n-th order divided differences;

we must then, at least, compare the absolute error with an appropriate estimate of the magni-

tude of it-th order divided differences of f. Conclusions regarding the bounding of the errors

expressed in (2.4.3) and. espc.cially, (2.4.5) depend on the particular function J, and its own

divided diffierences. We study the exponential function in Chapter 3.

example: Large relative errors in small numbers are not always disastrous. Let f - cosh.

*Using four digits we compute the following differences. The entry

A,'cosh -5.970E-3 has a greater relative error than the other entries; yet subse-

quent table entries are unaffected by this error because the number 5.970E.3 is

Ad
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Table using 4 digits Correct values to 4 digits

A "cosh A 'cosh A 2cosh A 'cosh A 0cosh A 'cosh A 2cosh A "cosh

-2.00 3.762 .2.219 0.7392 0.1638 3.762 -2.219 0.7392 0.1637

-1.00 1.543 0.005970 1.722 1.543 0.005885 1.721

1.01 1.555 8.614 1.555 8.613

4.00 27.31 27.31

Fig. 2.4.1: Large relative errors in small numbers may not be important.

small. In four digit subtraction 0.005970- (-2.219) forms A 2cosh-0.7392: the

incorrect rightmost digits play no role.

1

S'5

A e

ta .
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2.5 The divided difference as a function of its abscissae.

Our approach to divided differences has not escaped the notion that their formation is an

operation performed on entries in a mathematical table. In §2.3 we illustrated the usefulness of

an analytic approach. The basis of this approach is that divided differences are functions of

their abscissae and may be treated as we treat other mathematical functions.

To aid our discussion we introduce a vector notation for divided differences.t The

sequence of abscissae Z . ,, is conveniently viewed as an n + I-tuple. Hence Z is

equivalent to a vector z . ,,) in C" ' (or R +' for real abscissae). We speak,

then, of a divided difference function A"J]being defined for a vector z in the same sense as the

function .being "defined on the sequence of abscissae Z" (§2.1). Thus

A y"(') (A.. .A"f(z) F_(A9' ( 0, ,. c,) .(2.5.1)

When every vector z in a region of C"+ ' is equivalent to a sequence of abscissae Z on which .f

is "defined," "f is a function on that region. Thus when defined,

A"f : C"+ 1 - C,

in brief. Our new notation expresses ,,-th divided differences off, V "/, as functions from C"+

into C. The value of this function at the point z E C"+ 1 is A"J(z). The ordering of the abscis-

sae is suppressed here.

When f is holomorphic on a region containing the abscissae, A"]'is holomorphic in each

of its abscissae. In particular for each i - 0, 1 ..... n,

- A"f(z)- lim A "f(z + (,',-,)e,) - A "'(z)

- h"+f(z, ). (2.5.2)

The vector e, (0,0 . 0.. 0. 1,0 .. 0 ) is the i.th coordinate vector in C"'1. The partial

derivative with respect to C, of ,"f is an n+l-st order divided difference with the abscissa ,

repeated; this is indicated by (z, 4,).

t The first notation (Atf)(C0, . ... C,,) emphasizes both the sequence of abscissae

and its ordering. The second notation A'f merely emphasizes the sequence ordering; it
suppresses reference to a particular sequence.
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That i "I is holomorphic in each of its abscissae separately suggests it may be expanded in

a series. The next three sections develop such expansions.

example: By differentiating successive divided differences we can show that

(.k"exp)(O,;,. ) - C.
A-,, k!

Start with

(Aexp)(0, C )- 4 e4 e-C e ( _

With 41-C.

(A2exp) (0, C. C) - -, (A'exp)(0, 1,) - A(i, 'exp) (0. ,)
dC

- eq -: -  - (-) }

I! -2

- (__-2 A-2

- ~ - (k-I)
A--2 (k-01..

- (-C) A -
k-2 k

Using the chain rule in the general case,

(.A"+lexp)(O,C, .. C) - - L ,,exp)(0.4,4 .... . .- (A-"exp)(O,, .. )

n d1; I (_-/-,, (_--,-
n I-,)A k- + ll-e .{(k-n)

A-,,+1 (k-I)! k
! #k!

n-,,+ Ii-D kkn) k

This may be compared with a method based upon the standard formula,
SC)-("ex(0 . )

(A"+Iexp)(0,C. ) (A "exp)Q,.C . C)-(A xp (0,

L I I,{

.. .. . . .... • ,,,
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(_ )-,, -
- k !

example: Two-point divided differences. Just as divided differences for confluent abscissae

(which may be referred to as one-point divided differences) reduce to a special

form, divided differences about two repeated abscissae also have special properties.

Let the vector - (1,- . , -C) consist of n repetitions of the two data points

and -C. Recalling the contour integral formula for divided differences (2.1.13), for

n -0,1.2,...

• 2,f(zC) - ._f f'(a) do,

I f~ f~o) dw

j 2nfZ.C _ 1 rf W() dw
7(,-I) -21riJC(-)"o l)+

and

A2n+1f (z, C -f r f1-W do

The first 2n abscissae are represented by z, for compactness. For each n define the

functions b,, and a, by

b,(4;) = {iL ' C. + A 2 "f(Z-C} - If (o,) df(W +

2 2iri~ a-"'w V~

and

a, A "'+f(zC,-C) - L 2 "+lI'(z,-- - .. f f( ) dw

These functions are holomorphic in C,

d I di f__ W_____7Cb,, (, = -)- ni-l 0i1)
1

2(n+) Cf /Wf(o )d A
2ri c
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- 2(n+l)'b.+i().

and similarly

d - 2(n+l)'a,,+1 ).

The functions, then, satisfy the recurrences

I db,,() - 74b,,_ (O

I d
(0" 2 dC (0

and can be defined when we know bo(C) and aO(4). For example when f-exp,,

exp,(4 = e'C with r >0,

bo(C - cosh(,')

ao() - sinh(rC)/C.

Since

the divided differences are recoverable from b,, () and a.(C). The values b,, (4) and

a. (4) yield coefficients of a Newton expansion of f about C and -4. Note that when

C-iq is pure imaginary, both b,,(,) and a,,(C) are real for any f such that

(() -f(". We extend this example in §2.8.

, 9

=NNW
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2.6 The divided difference table as a function of a matrix.

The entire divided difference table (§2.1) of f for the sequence of abscissae

may be expressed as an (#+l) x (n+l) upper triangular matrix'

f(;o) idf AR A'f

f (C) -) A , -

f(Q2) .

.[ (2.6.1)

U .l)

f( 

,~)

Let Z be the special (n+) x (n+l) bidiagonal matrix

CO I

;2 1
Z -(2.6.2)

CD,,-I 1

Opitz [19641 refers to Z as a "steigungsmatrix" (ascent matrix). We shall call Z a "step matrix."

The same conditions on f imply the existence of both the divided difference table Af

(§2.1) and the Newton polynomial representation of f(Z) (§1.2). The two are related as fol-

lows.

Theorem: "The divided difference table is a matrix function."

Af - f(Z) (2.6.3)

* proof: The Newton polynomial representation of f(Z) is

f(Z) - f(CD)4 + Ajf'(Z -;oi) + + 6'Pfl(Z -C1)
k-4)

A Azf is written when the sequence of abscissae Z must be emphasized. Recall that
A.f, no superscript, is a matrix and A "f is a scalar function.
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Because Z - C, each k, is bidiagonal, the product matrices rI(Z - C/) for m < n-I have
A -0

t- I

(nn) element zero, while the (O,n) element of n=(z -CAI) is one. Thus the (0.n) element
k-"

of f(Z) is Aod, the (0,n) element of Af By the pattern of dependence (§2.1), the choice of

0-th and n-th abscissae is arbitrary. Hence equality holds between every element of f(Z) and

A.: o

Parlett's recurrence (1.1.5) reduces to the standard divided difference scheme (2.1.6)

when the upper triangular matrix T is replaced by the step matrix Z. This provides another way

to establish (2.6.3).

Several important and useful consequences follow from the theorem.

1. Function of a Jordan block. When the sequence of abscissae Z- o, 4o.. o is

confluent,

f() f'(CO) (C) J 4'.t()
f( o) f{O) Cn)

fC) f (4o) -(;)
(n-)! J 0

,kf. (2.6.4)

! f({o)

This is the well-known special form for a function of a Jordan block.

2. Multiplication formula. Let the function f, be defined by f,(C) ---f("), then

j Af,- f(7Z). (2.6.5)

3. Sealing abscissae. Let D a diag(l, r, .2, r"), a diagonal matrix, and

rZ {Co, r.. ,, then

Az;- D'A&fD - . (2.6.6)

proof: AzfJ'-f,(Z) -f(Z) -f(DZ,D - ') - Df(Z,)D -' - DA,zf'.D- I, where
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rCO

?Za C

This is the scaling invariance property (2.1.10) in matrix form.

4. Special functions. Divided difference tables of certain functions inherit some appealing

properties from the functions themselves. For example when f- ' the ]-th power func-

tion' 114) Cfor i- 0. ,2.

i J.A t'. (2.6.7)

Also when f -expT. exp7.(C)=e

Aexp,. e(r+rr Z -e rZ.erz - IkeXP-A exp,. (2.6.8)

tOur divided difference notation suppresses variables, so clarity demands that every
function have a name. The notation 1for the j-th power function is used by Davis
[19731.

RA
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2.7 Divided differences of polynomials.

To aid in the development of series expansions for A"f; we first examine divided

differences of polynomials. Let Pj be a monic polynomial of degree j given in factored form'

p( I(-a,) - ,Pi(q)'(C -a,-i) (2.7.1)
1-O

for any j- 0, 1. 2. [ P0(oC) = II. The polynomial p, appears in the ,-th term of the Newton

expansion (§1.2) of (about the sequence A (aOa1.a 2 ....

j-O

p, reduces to the j-th power function j' when all the a, are zero. For any j and step matrix Z

(any sequence of n+l abscissae), the matrix function theorem of the previous section yields

'-I

Api - pi(Z) - r(Z-o:,1). (2.7.2)
1-0

example: When n - 4 and j-3,

Ap 3 p 3(Z) - (Z -a o)'(Z-al)'(Z-a 21)

Co-a, 1

-C2-a i

tFor a polynomial p - .3,T' in non-factored form, the linearity property (2.1.8) yields
,-0

"IeI-.
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! t 2(Co- ad Q o- a,) Q o- a2) T. .{-a,+.)(C-a,) 1. (4, - ,o
A-00-0 0-0

i (

A-0'-0

(4 2-- ao) (2- a1) (C2- a2)

1 0
2

i-0
I k 2

~ (C A+2 -tk + ) (C, +2-(C) 2 a
A -Oi-0 1-0

j A(C 3 ad"0 (C3 --a 1) (C3 -- "2) T., Q A-; +3 -aj + 1) (C 1,+3 --a,

(C4 --a0d (C4 -- 1) (C4 -a2d

In particular, the 0-th (top) row of Ap3 is

A - (40o- ao) (Co - , 1) (Co- a2)

A0P3 - (o-ao)(Co-aI) + (Qo-ao)(Q -a 2 ) + (C -IQ)( I-a 2 )

AO'P- (4 0 -a) + (C I-a 1 ) + (42- a)

,,pI -1

A,3 - 0

For general n and j the (An) element of Api, that is &'p,, is the (A.n) element of the

matrix product (Z -a 0 )(Z - a 1 ) • (Z -cr_.f/). The following formulas can be verified by
A &

actually writing out the products. We freely use the convention that Is, - and Is, 0

when k < j, where s, represents some expression.

Fl
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Divided differences of polynomials.

Ao°p, - 0 when j < n

A- p - -

AoP,,+2 -CI -a , ).

-O1-0

In general for all j n,
i n- -I

~~~~~A s  - l''l ' (j - a,, _,,) (2.7.3)

f-0 n.i-O

where n0  n. A rearrangement of this expression is

A P fi I]r , C ,, + .... ,_,)}. (2.7.4)
A0 4kl+" +kj---O -0

A ;b0

In the special case of the j-th power function F', expression (2.7.4) reduces to

A, )10

This is a well-known symmetric polynomial formula for the divided difference of power func-

tions [Milne-Thomson, 19331. When n - 1 the first divided difference of pj obtained from

(2.7.4) is

- k(o- ,) --k-2

A -0 1-0 ,-0

.ZIfl(Co-a) t q 275
- A-0 ,-0 #-k+7

A simple recurrence for computing divided differences of the functions p,+,

j--1,0. 1.2. may be developed from expression (2.7.2). We begin by writing

Ale
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AP,+I - Apj(Z-a,)). (2.7.6)

By writing out the right-hand matrix product, the (0.k) element of Apj+I is

A -pj+l - (CA -aj)Ajp + AA-1p, (2.7.7)

for any k -0,. . .. n. All the elements Abpi+j for 0 K k < n comprise the 0-th (i.e. top) row

of the matrix Api,.

Formula (2.7.7) is a recurrence in k and j. To see this, we replace the index j in (2.7.7)

by j+k where 0 < k < n, and still j--lO, 1,2..... That is,

AbPj+A+I - (C-ai+)APj+, + A 7pj+. (2.7.8)

is the (0,k) element of the matrix Apj+A+,. Thus for fixed j, varying k in (2.7.8) has us look-

ing at elements from the top row of different matrices.

example: Let j-2, then for

k -0, AAp,++ I "- AOp 3 is the (0. 0) element of Ap 3;

k -, ,AdoPj+k+ i -A 0
1p4 is the (0, 1) element of Ap 4;

k- 2, AOPi+A.+I - Ajps is the (0, 2) element of Aps;

and finally for

k - n, ep/+A+j - Adp,,+3 is the (Mn) element of Ap,,+..

Since A4pk -1 for all k, the elements AoP,+4+j are known for j--l; so all the ikOP+pkl

are defined by (2.7.8) [we define ,-IpA -- 0 for any k]. Thus all the Aop,+4+j are computable

for j- 0, and recursively for any j > 0 as well. This procedure is summarized in Algorithm 1,

and its first few steps are illustrated in Fig. 2.7.1. Note that if we want all the top row elements

of the table p,,+I, m > n, one element appears in each step of the algorithm from j - m-n to

j-n. A0 'p.,, appears first (step j- m-n) and A0p,,+ 1 appears last (step j-n). Each J-step

of the algorithm requires n+l multiplications. Three storage n+l-vectors are needed: one to

hold the abscissae C,, one to hold the j-th level results AkpA*,.j (the results for level j-1 may

be overwritten), and one to hold the n+l currently active cr,, namely aj, i+- .. .. a/+.

e~
,,€IMW

. .. .. .. .. 1
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Algorithm 1: Recursive computation of (p&P.,j.

I. Initialize A 4Pk" I for each k -l0. ..... n

2. For j -, ,2 ....

,LopP+A+ - (- +j)'A&A.P&j + A '-pk+j, k -0, 1 ..... n.

(A If 0 for k < 0, any function /)

Initialize

iPO AO PI - Ip2 I

For j-0,

ARPI (4o-ao)'4Po + Ai3'Po - o-aO

iO P2  (4 -a|)'Ajp 1 + aopI (4 -a 1) + (o-ao)

op3- ( 2 -a 2)'A1P 2 + AO'P2 - (C2 -a 2) + (Cl-a,) + (40-ao)

For j - 1,

*AOp 2 - (C;o-aVo~pt + - (;o-a0)(o-ao)

i4A0P3 - Q I -oa2) 'AtP 2 + ARP2

- ({l-a2)(CI-a) + (CI-a2)(Co-ao) + (40-a)(Co-ao)

A ib14 - (C2-a 3)'kip3 + AO'P3

- (42-a3)(C2-42) + (CZ-a3)(4Q-,) + (C2 -a 3)(Co-ao)

I i + (4, -a)(41 -a,) + (, - a2)(CO-ao) + (CO-a1)(CO-ao)

Fig. 2.7.1: First couple of steps of Algorithm 1 for n -2.

A companion algorithm for computing the n-th column of Ap,+, also exists. Obtaining it

merely requires rewriting (2.7.6) as

. v
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-(Z-a,I)f(Z -a,/) -( a,)A (2.7.9)
I -0

and following the same approach as before. Again just one element of the M-th column of a

particular matrix is computed at each step. The first few steps of the algorithm are illustrated in

Fig. 2.7.2.

Algorithm 2: Reursive computation ofj..p+. k .

2. Fo I, .2
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Initialize

A 2PO - -iI' AJP2 =1

For j -0,

2PI- Q 2 - aO)'A 2PO + i' PO - CE

='2 (41 - Ci )'A'P I + A 2P I - Q I - a 1) + Q 2 - Ci)

A'3- (CO - C0)AJP 2 + A 1P2 - (40 - C2) + (41 - Of) Q ( 2 -o

For j - 1,

A29P2 - (C2 -a,)-A20P + Ajp- (42 -Ct)(C 2 -aO)

AP3- (CI-Cid)A'P 2 + 120P2

- (, -~)~ -,)+ (C, -a2)(C2-ao) + (Q2-a,)(42-Cid

A b4 - (CO - a3 ) OP3 + A 1'P3

- (40 -a,)(C0 -a 2) + (CO-a 3)(4 1 -C1,) + (40 -a3)(4 2 -a 0 )

+ Q, -a 2 )Q, -c,) + (Q1-a 2 )(Q 2 -aO) + (Q2 -al)(4 2 -a 0o)

Fig. 2.7.2: First couple of steps of Algorithm 2 for it -2.

Al
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2.8 Series expansions of A It.

The matrix function theorem for divided difference tables leads directly to series represen-

tations for divided differences. For example suppose that on the disk D, - P jp> I -a), .

has a Newton expansion about the sequence of expansion points A- (ao, j, a 2....). That is

f" 1A o"P (2.8.1)
-0"

A-I
on Dp, where Pi(4) - "l(4 -a). In Appendix A sufficient conditions are presented for the

j-0

existence of such an expansion. Under the same conditions the matrix function f(A) has a

Newton expansion when all the eigenvalues of A lie in D. Thus when the data points

Z - 14o, .1, ,, lie in D,,, the divided difference table has the Newton expansion

Jf- f(Z) - A,.P&(Z). (2.8.2)
k-O

In the vector notation introduced in §2.5, Z C D, is equivalent to a vector

Z- (Co. C . ,.) in DRn  C C"'. The previous section leads us to examine the (On) ele-

ment of the table. The result is summarized in the following theorem.

Theorem: Newton expansion of the divided difference function. Suppose Jf has a Newton

series on DP. Then

Ai"f I i Pk (2.8.3)

k-I
over all D,7AC, where P). (4) - l(C-aj).

The important point is the identification by (2.7.2) of the (O,n) element of pA.(Z) with ik,'p4.

A Taylor series expansion formula for A "f is an immediate corollary. Recall that

,./j--f")(O,)k! in the confluent case.

The reader is asked to distinguish between the divided differences Af/ forming the
series coefficients which have abscissae in A, and the elements A,"f of the divided
difference table which have abscissae in Z. Brent [1973) presents a simple Taylor ex-
pansion for the divided difference.

...
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Corollary: Taylor expansion of the divided difference function. Suppose [is holomorphic

on a region D containing the point a. Let D, - (CIp > IC -a[ be the largest open disk

such that D,, C D. Then

A"f- (2.8.4)

over all D,7"', where t( -)a)'.

proof: Because f is holomorphic on D,,, it has a Taylor expansion about a for all E D,. The

theorems in Appendix A establish that

-/k(a)
f(Z)- j" f---(-)-l(Z-al).-o k

Formulas (2.8.3) and (2.8.4) suggest ways to compute divided differences for perturbed

abscissae when the unperturbed divided differences are available. The computation of divided

differences by (2.8.4) for functions such as exp, sin, and cosh is quite straightforward since the

Taylor coefficients are easily obtained. Functions such as log and -F may also be treated; how-

ever, care is required to ensure that we use a series representation whose circle of convergence

contains all the data points.

The algorithms of §2.7 in combination with (2.8.3) lead to a method for computing 0.f,

0 4 k K n, when we already know the coefficients ,lf t3, 1-0,1,2,..., of fs Newton

expansion. Let s,,, - Pip, be the partial sums of the Newton expansion (2.8.1) of J" so
1-0

s,, as m - co. Then by linearity

m

0S I-k

and by (2.8.3) A Os,,, - A fas m -c- for any k. The following algorithm computes kA'ffor all

k-0,1 .... n by forming the partial sums A&S for m-j+k+l. One additional term is

added to Aoks,+k+i, for each k, at each j-step.

,e

A -; , ,. . . . .. .. ... ..
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Algorithm 1: Newton expansion of A1f.

1. Initialize Aop- I, Absi" -3. for each k -0, 1. n

2. For -O, 1,2....

topj+.+l - (A -aj+)Apj+k + A t-1Pi+Ak A
Osi+4+1 - A s+s + P+4+j" tP++ , for each k -0, 1. n.

Exclusive of the coefficient evaluations, the scheme requires 2n+2 multiplications per j-step.

Initialize

'1o°Po - OP- tZPo I

0-0o - 00, idls - 31, to2S2 - 62

For j - 0,

-gP" (Co-Co)'9Po + ATo'Po "o-ao

Ato f: A 0os,- ,0so + #3. Op, - 0 + P f4 0 -ado)

p - (4 1-ad&Ojp, + top, - (4,-a) + (4o-ao)

.inI "O.s 2 - 'LOsI + 26"AJp2 - ,3 + ,32'(4, -a,) + (4o-ao)]

f-o p" (- 2 -a2) Jp 2 + Ai0P2 - (4 2 -a 2) + (41 -a) + ({ 0 -aO)

1 ./ •0s, - A s 2 +/h3-yop.l -/32 +/31(42-a) + (4 -a,) + (CO-ao)j

Fig. 2.8.1: First step of Algorithm I when n -2.

There is also a companion algorithm which computes the n-th column of the matrix &.f

-2t za.. . . t:.. i. : , :
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Algorithm 2: Newton expansion of & -kf.

1. Initialize 1_p - 1. &,kNSA - A for each k -0, 1 ..

2. For j-O, ,2 ....
A+, ,- -j l (rn-A --/k' ,-~~ + A ,AI ~.

,+k+I -Aki+ + j+-+rlIl....APi+A4. for each k -0,1 ... n.

example: Two-point divided differences (cont. from §2.5). The Newton expansion of f/about

a sequence of two repeated points A - la. -a, a. -a_ ...) is

f() - f(a) + (A If)(a.-a).(4 -a) + (A 2 )(a,-a,a).(
2-- a 2 )

+ (Af)(a,-a,a.-a).(C2 -- a 2)(C -a) +

We may also expand about the rearranged sequence -A - (-a. a, -a, a, ... I,

f () -f(-a) + ('f)(-a ,a).(C+a) + (A2f)(-a,a.-a)(C 2-- 2)

+ (h 3f) (-,a, -a.).(C 2-a 2 )(C+) +

Recalling the definitions of the functions

b,(a) - "1((A 2f) (a, -a . . a) + (A2"f) (-a,a . -a))

and

a,,(ai) - (A 2" 4 f)(a,-a .... a,--a)

from §2.5, the average of the two expansions is

; f(0) " bo(a) + ao(a)'C + b(a)'(C2-a 2 ) + aI(a)'(C2-a 2 )C + "

We remarked earlier that when a-i'q is pure imaginary, a,,(a) and b,,(a) are real

for any I'such that f( ) -fCU. Hence the expansion

f() - bo(in) + ao(il)C + bl(i-q).(C2+1 2 ) + aI(ivj).(C2+7j 2)C + ...

is entirely real when is real.

Z.
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example: Two-point divided differences of the exponential. When f-exp, exp,(C) erC

with T > 0, the coefficients b,,(a) and a,(a) satisfy the recurrences

b, a) 2n
2n

- rb,,_(a) - (2n-)a._ (a)
2na 2

To show this, recall that (§2.5)

bo(a) - cosh(7a)

aO(a) - sinh(ra)/a

and

l d sinh(7-a) 7tao(Cf)
b1 (a) --- be(a) - a 2

2a da 2a 2

1 d Tcosh(a) -sinh(-ra)/a -rbo(a) - ao(a)a () - 2 a aO() - 71c222 da2a 2  2,a2

In general (suppressing a for compactness),

a,, - a 2( - (2--l)a,,l}.

Differentiating we obtain

1 (, l{ ra'" - (2n-1)a',,_4} -2a,2ha'" 2(n-1) a t

4 or

I 1 -( 1 2a,,
2(n~~a-a, 2, ra-a~ - 2n (n-aa,,,

. I { a.-I- - (2n -1) a.).
a 2n

where we have used that a',-, - 2na-a,. Thus

I {rai- 2 , rb.-(2n+l)a,,
+a- 2(n -(22(n+l)a 2

,-.
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This, along with a similar result for b,+,, establishes the recurrences.

For example when a - 5i and ? - 1, we obtaint

bo(5i) - cos(5) - 2.837E-I
a0 (5i) - sin(5)/5 - -1.918E-1

bi(5i) - -9.589E-2

a1 (5i) - -9.509E-3
; b2(5i) - -2.377E-3

a2(50)- 6.737E-4

b3(50)- 1.123E-4
i . a3(50)- 3.830E-5

b4(5i) - 4.788E-6

a4(5i) - 7.792E-7.

exp(l.5ri) - 0.2837 - 0.1918 x 1.5ri - 0.09589 x [(1.5ri) - (509 +•

- -1.000i, as it should.

example: Suppose we want to compute do2eXp for the slightly perturbed abscissae o-5.01i.
p C - -5.01 iand 2 - 4.99i. Let us follow the steps of Algorithm 1.

Initialize

01o~ - Ao1(4 - 5 0 - A01 Q + 50_ - 2o(42 + 25) - I

Aoso - 0.2837, Aos, - -0.1918. A-oS2 - -0.09589

For j - 0,

A (C -50) -- (5.01i -5i) x I - 0.01i

io°(C +50) - (5.01i+ 50 x I - 10.01 i

Ao00C - 5.01 i

A 0°s, - 0.2837 - 0.1918 x 5.01i - 0.2837 - 0.9608i

tMost of the numerical examples here were done on a pocket calculator which, unless a
particular working precision is specified, carried more digits than are shown.

i
'-4 •



§2.8 49

Ad(CQ+25) - (-5.01i+5i) x I+ 0.01i -0

Ads 2 - -0.1918

Ad( 2+25) (C-5i) - (4.99i- 5) x I + 0- -0.01i

2(C2 +25)(C+ 5) - (4.99i +5i) x I + 0 - 9.99i

A (C + 25)C - 4.99i

As 3 - -0.09589 - 0.009509 x 4.99i - -0.09589 - 0.04745i

For j - 1,

~o° + 25) - (5.01i + 5) x 0.01i - -0.1001

AoS 2 - 0.2837 - 0.9608i - 0.09589 x (-0.1001) - 0.2933 - 0.9608i

Aj'(Q+25)(C-5i) - (-5.01i-5i) 0x - 0.1001 - -0.1001

A + 25) (C +50) - (-5.01i+5 ) x0 - 0.1001 - -0.1001

ol (C2 + 25)C - -0.1001

A Is3 - -0.1918 + 0.009509 x 0.1001 - -0.1908

j (C2 +25)2 - (4.99i + 5i) x (-0.01i) - 0.1001 - -0.0002

ioS4 - -0.09589 - 0.04745i - 0.002377 x (-0.0002) - -0.09589 - 0.04745i

The algorithm may be continued for j- 2, 3 .... To four figures, the correct values
are

Aoexp - 0.2932 - 0.9560i

Aoexp - -0.1908

Ajexp - -0.09589 - 0.04745i

Note that the conjugate pair divided difference (A lexp)(5.01 i, -5.01) is real.
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2.9 Computing divided difference tables.

We have presented essentially two very different methods for computing divided

differences. The first was the standard algorithm (2.1.6) which is simple and fast. but may

magnify errors from step to step. The second was the more complicated series algorithm of

§2.8.

Because Taylor series coefficients are most easily obtained, the series algorithm is most
* easily applied for a single expansion point. When the abscissae are closely enough clustered

about this expansion point, the series is rapidly convergent. Hence the series algorithm need

be computed for only a few steps to obtain divided differences with small error. This is pre-

cisely opposite to the case for the standard algorithm, where in §2.4 the error magnification was

seen to depend inversely on the separation of the abscissae.

A general purpose algorithm for computing divided difference tables, then, will be a

hybrid. Each algorithm above will be used where it is best suited, with primary consideration
given to speed and accuracy of computation. The question is then to decide which method to

use for a particular element of the table. This is the prime topic of Chapter 3 where divided

differences of the exponential function are discussed.

The series algorithm presented in §2.8 computes only one row (or column) of the divided

difference table. It could have been written in matrix form in order to give the entire table at

once. This is equivalent to applying the given algorithm on each row of the table.

Such repeated applications of the series algorithm is not necessary, however. After one
application of the algorithm, the O-th row of the, divided difference table is obtained. We now
have sufficient information to flil out the remainder of the table, row by row, by running the

standard scheme (2.1.6) backwards.

* Backfilllln: the divided difference table. When divided differences A'tfor k -0. 1. ii

areknonthe remainder of the table may be obtained by computing successively for

(Ci+k -d. 1 A j' +I (2.9.1)

k 0, 1. n-.
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x X X X x

1 2 3 4 5

6 7 8 9

Fig. 2.9.1: Possible order of bqckfilling using (2.9.1).

As in §2.4, we check how errors are propagated in one step of the backfill algorithm, say

to compute j ' o .' (C, -Co)'A'. The absolute error is

8 8- ' + (C,,-Co)8'; (2.9.2)

the relative error is given by

A ,-i. &OUf
.' "1 )- + (C. -co)g'. (2.9.3)

The absolute error growth is governed by IC,, - When &A'-fand A '-'fare of comparable

magnitude, the coefficient of E$',governs the growth of the relative error. In both (2.9.2) and

(2.9.3) the expressions governing error growth are essentially inverses of those governing error

growth in (2.4.3) and (2.4.5), respectively. Thus the backfill algorithm is most attractive pre-

cisely when the series algorithm is most attractive and the standard scheme is not.

'I
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3. Divided Differences of Exponentials

3.1 Special formulas for exponential divided differences.

The ideas presented in the last chapter are illustrated by considering the exponential func-

tion. Because the exponential function is entire, all formulas and algorithms discussed so far

are applicable for any abscissae. Further, the special properties of the function permit useful

simplification of our previous formulas. In addition, results obtained for the exponential may

be modified to cover related functions, such as sin or cosh, by means of the linearity property

(2.1.8) of divided differences.

The behavior of exponential divided differences under a constant shift in the abscissae

illustrates a useful simplification of the translation invariance property (2.1.9). It is convenient

to consider the more general function exp, with scaling parameter r, that is exp,(C _a e(C.

Translation property of exponential divided differences. Let z be a vector whose elements

are data points (§2.5). Then for any constant a,

A "exp,(z + au) - eG'di "exp,?() (3.].)

where the constant vector u-(1, 1. 1).

It is clear from (3.1.1) that no generality is lost when we restrict attention to sets of

abscissae with, say, 4- 0 or ,, -- Co. In the latter case the first divided difference simplifies to

Aexpr . e-14
o-  er(o  sinh(rCO)-40- (40) CO

In general for non-centered abscissae any first divided difference of the exponential can be writ-

ten as

A olexp, " e'" sinh(.i,) (3.1.2)

where w a (C + Co)/2 and t- (1-Co)/2.

The integral representation formula for divided differences (2.1.12) acquires a simpler

form when the parameter " is non-negative. We have
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_7xp mf-expCo+ (C1 -Co)r 1  +(C r dr1

I r! .- I

n- f rJexp[rO+(Cl-CO)T "+ + (c-, ITdT,, d-r

by the definition of exp,. The change of variables oi- rr- for j- 1.2 .... n yields the alter-

native expression

, fexp, . ... exp[,r{o+ (Q,-)o 1 + + Q, da, ... do. (3.1.3)
0 0 0

We recognize that this is a recurrence for AO;exp,, namely

i,'exp, - erofe-'-(O.A '-Iexp,, do

where o o. By the symmetry property (2.1.3), the ordering of the abscissae is arbitrary, we

may replace CO by any C,, 0 < i < n. To deal with such cases we define

A(,) -exp, exp( ) (Co, 1. i-l. ,+ . C,,) (3.1.4)

the n-l-st divided difference with the i-th abscissa omitted. (3.1.5) summarizes the formula.

Recursive integral formula for Ahexp,. For any r > 0 and index i -0. 1. n,

,L exp, - er"fe-r" A',';Texp, do. (3.1.5)

This result will prove useful in the next section. In addition, one recognizes that formula
(3.1.5) is a convolution,

(exp,, * ,-'exp)(-),

where A,T'exp is treated as a function in r. The correspondence is obvious from the convolu-

tion formula, with g(a) A ,l,-,,,,,

(* g)(") - ff(r-O) g(o) do.

S~,0

LL 1-1j
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3.2 Real exponential divided differences.

Exponential divided differences for real abscissae are positive and increasing functions of

their abscissae. These properties permit derivation of both upper and lower bounds which show

how the divided differences and the error growth in the standard formula depend on () the

spread in the abscissae. (ii) the order n of the difference, and (iii) the parameter r.

In this and the next four sections we consider exclusively divided differences of the func-

tion f-exp with parameter r > 0, for real sequences of abscissae X if- , f.1. All

such divided differences have two properties which characterize them.

Theorem 1: For all r > 0 and n 0 0, A"exp, is

(i) positive,

(ii) strictly increasing in each abscissa ,. i-O, 1. n.

proof: The result is almost immediate from the recursive integral formula (3.1.5),

AO'exp, - e"'f e-r".A,7 'exp, do-.
0

All O-th order real exponential divided differences are positive [LAexp,(f)-eTI. The

recurrence implies all first order differences are also positive, and hence by induction all n-th

order differences are positive for any n. For (ii),

o1 exp,f (-a)e . (r ,if-expa-do > 0,

since the integrand is positive. 0

f The recursive integral formula also provides an easy way to develop expressions relating

divided differences of orders n-I and n.

• Ww

AM"
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Theorem 2: Suppose 13 4 f, 4 y for every abscissa f,, 0 < i < n. Then for each i there ex-

ists a f E 13. 7] such that

l,-Ilexp, - (f-f, + - o' ,0exp,. (3.2.1)

proof: By the translation (3.1.1) and scaling invariance (2.1.10) properties,

r

.A"explr(x- fu) - 1-"e-1(-'Aexp, - r e /'f je "' x'exp,, do
0

for any i -0. 1 .... ,i and . Differentiating with respect to r yields

-" "exp[-(x - fu)] - r-C°I (1,- - n)'A 'exp, +, ,7-'expj. (3.2.2)
dr

Every element of the vector x-Ou is non-negative, and so i"exp[t(x-f-u)] is increasing in r.

Similarly, every element of x-yu is non-positive and A"exp[r(x-yu)] is decreasing in r.

Hence

dd
Tr di

so for some E y y,, the derivative is zero. [

A plethora of upper and lower bounds on .k1'exp, can be derived from the simple expres-

sion (3.2.1) by choosing particular values of f and i. The two simplest follow by choosing f as

one or the other of the end points of the smallest interval containing the abscissae. Note that

equality holds when the abscissae are confluent.

Corollary I: Lower bound on AE'exp,. lf , > , for each i-0. 1 ..... it, then

A6'exp, > . ".6'exp,. (3.2.3)

proof: Choose i-n and y/,. in (3.2.1), and note that f-f,, <0. 03

,i
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Corollary 2: Upper bound on A&exp,. If fo 4 f, for each i-0. 1 ... n, then

Ao exp, 4 !-A.'I'exp'. (3.2.4)

(3.2.3) leads directly to a bound on the relative error growth in one step of the standard

divided difference algorithm (2.1.6). From (2.4.5) the error in fl(A('exp,) relative to Ai'exp, is

n -exp •, ,- -el -
do - + A exp,(- o)

The factor

A d'-exp 7
r6(7'x) = (3.2.5)AO'exp,-j.l ,- f01

which we call the growth factor, controls the growth of the relative error in computing 1.'exp,

by (2.1.6). Clearly when r' (r;x) is small, the relative error growth is small; conversely when it

is large, the relative error growth may be large. By (3.2.3) the growth factor satisfies

rn (r;x) (3.2.6)
'"(f, - fo)

*when f,, > f, for all i,.

(3.2.6) illustrates the dependence of error growth on the three factors mentioned at the

beginning of this section. It also permits us to bound propagated errors in the divided

difference table in the manner shown in Fig. 2.2.3. We illustrate this in Fig. 3.2.1 for a single

initial relative error e in ioexp,.t Each element of the bottom diagonal satisfies

Note that for equispaced abscissae, say fj-j8, we have k0"I 4 IeI/(r8)", and the factorial can-

cells.

The abscissae are . . .(-4 14 f-1 4 f-2 4, f-1 4 G < f ,< 2 4 f3 4 f4 in contrast
with our usual numbering.

.. . . . . ..1 ,n a .. . . , .. . . . . . . . . . . . . " ' . _ : : _L - .. - ". . .. .
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4: A~exp,. A 'exp, A 2exp, A -exp, Aexp, A 5exp,

4-

4 
-5

f-2 e-4

f_1 e-2 345

-o e 2 4

f E-2

) , 3 5:
4

f:3

f44

Fig. 3.2.1: Relative error growth pattern in table of real exponential divided differences.

A sharper error growth bound than (3.2.6) is obtainable. We improve (3.2.3) by further

refining expression (3.2.2). which was used in the proof of Theorem 2.

Theorem 3: Suppose /3 < 4:, y v for all abscissae f:,, 0 < i < n. Then there exist values

4', E [/3. y]. 0 j < n, such that for any value of f and every index i
A :T'exp, - If - f+-i + -1 + ).'exp. (3.2.7)

proof: By the chain rule for differentiation, (3.1.1), and (2.1.10),

-4'A~xp((x-f.4u)1 (4,4)Ajep~~-:) (:-:
dr /-0

1-0

Combining this with (3.2.2) yields

A'-,T'exp, - (-In+f -f,)'-Aexp, +
1" 7 -0

Now by Theorem 2, for each j there exists a f', E (/3. E] such that

.V.I-
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A"exp,(x.4j) r AO"exp,.

Setting - n and -- s',, for all 0 4 j < n yields a sharper inequality than (3.2.3) when

f,, is the largest abscissa.

Corollary: If f,, for each i -0, 1 .... ,n, then

-AO'exp, > -!A6''expr. (3.2.8)
+0n+l

Even better inequalities can be derived, but at the sacrifice of simplicity. We also note that

" 1
J-0on+l +,(f', _-C,-

because the left-hand side of (3.2.7) and A'exp, are independent of f, thus giving a relation

amongst the f',.

example: For evenly spaced data points real exponential divided differences can be presented

analytically. Let X--{f 0.f 0 +28, 0+48 ..... 0+2n81, where 28 is the spacing.

Then

AO1exp e2 A - 1 11 I e sinh(rg) (3.2.9)
n! 28 a

This expression yields very accurate divided differences, especially if we have avail-

able a good routine to evaluate the function Sh(f) -sinh( )/e. Fig. 3.2.2 compares

divided differences A&iexp, for n -0,. . 24 computed according to (3.2.9) and

the standard algorithm (2.1.6). i"-1, o0-0 and 28-1. The initial values inexp

are rounded to seven digits, and all arithmetic is performed in greater precision in

order to isolate error growth due to initial errors.

The table in Fig. 3.2.3 compares the actual error growth per step in using the stan-

dard scheme with bounds derived from

Ieo"I ( e"'I + r"(r~x).(IE''I + leo')

under the assumption I-r-11 1ed'"'1, That is, fe"l K< p '-jo-I where

A41
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24 1 r'(r-,x).

if A4'exp by (3.2.9) io~exp by (2.1.6) Reaierorn
Ai('exp by (2.1.6)

0 1.000000 1.000000 0.0
1 1.718282 1.718282 0.0
2 1.476247 1.476246 6.774E-7
3 8.455359E-1 8.455363E-1 -4.73 1E-7
4 3.632173E-1 3.632166E-1 1.927E-6
5 1.248219E-1 1.248225E- I -4.807E-6
6 3.574655E-2 3.5 74611 E-2 1.231 E-5
7 8.774665E-3 8.774811 E-3 -1.664E-5
8 1.884669E-3 1.884642E-3 1.433E-5
9 3.598214E-4 3.598186E-4 7.782E-6

10 6.182746E-5 6.183118E-5 -6.017E-5
I1I 9.657909E-6 9.655845E-6 2.137E-4
12 1.382918E-6 1.383742E-6 -5.958E-4
13 1.827879E-7 1.825252E-7 1.437E-3
14 2.243437E-8 2.249849E-8 -2.858E-3
15 2.569905E-9 2.558588E-9 4.404E-3
16 2.759888E-10 2.772152E-10 -4.444E-3
17 2.78956SE-1 I 2.787636E- IJ 6.926E-4
18 2.662925E-12 2.645633E-12 6.494E-3
19 2.408240E- 13 2.422432E- 13 -5.893E-3
20 2.069018E-14 2.148605E- 14 -3.847E-2
21 1.692931 E- 15 1.349106E-15 2.03 1E-l1
22 1.322242E-16 2.119468E-16 -6.029E- I
23 9.878198E-18 -3.198523E- 18 1.324
24 7.072304E-19 2.272222E-18 -2.213

Fig. 3.2.2: 10"exp computed from initial values rounded to 7 digits.
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Error growth factors p

Average error growth per step - 2

Error growth bound using ro'(r,x) I + 2/(e'- 1) - 2.16

Error growth bound using (3.2.8) to bound rj"(r',x) < I+ 21og2-2.4

Error growth bound using (3.2.3) to bound r (rx) 3

Fig. 3.2.3: Relative error growth and bounds for divided differences in Fig. 3.2.2.

I

I

I J

I
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3.3 The Taylor series algorithm for Ajexp,.

The error growth bounds of the last section show that accurate computation of A,'exp,

when r ,,-f0o is small demands that we consider a method other than the simple scheme

(2.1.6). The series algorithm presented in §2.8 suits our requirements. In particular the Taylor

coefficients are easy to compute and convergence of the Taylor expansion accelerates as the

abscissae cluster more closely together.

The algorithm is derived directly from the Taylor expansion formula (2.8.4). Without

loss of generality let K, , ,, for each i -0, 1 ... n, and define

a- 2 and , (3.3.1)

a is the Taylor series' expansion point, and 0 is the spread in the abscissae. With ./-exp, the

basic formula yields

A 'x -er. r,11+1
- (n+j)!ek't +' (3.3.2)

where ,'(f) =-a) " . Let

/-0 J

be a partial sum of the Taylor series for exp,; so

- (n+j)! io)
/-0

is a partial sum of 16'exp,. Algorithm I of §2.8 translates into the following.

Algorithm: Taylor series algorithm for A'exp,.

1. Initialize AT - I , A4s - -e-,e-A for each k -0,1. . n0 k!

2. For j-0.1.2....

Ai -+k+. (QA -a).,Ah.,+k + j4-11+A

jASIA l &A erar"'i+k+l k l

AoS,++ Sj+ + (J+.k+l A(t for each k-U0... n.

I
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The algorithm produces all the values hoexp, 0 4 k < n, as a bonus because the quantities

needed to form them are intermediate in forming just AO;exp,. Also, the coefficient evaluations

can be performed iteratively for greater efficiency.

We now wish to examine how the error in computing A0'exp, by this algorithm is affected

by the parameter r, the order it, and the spread in the data points 0 - . Since lower

order divided differences play no role in the series computation, the subject of propagating ini-

tial errors is not relevant. Instead, we examine the effects of round-off errors in each step of

the series computation and obtain an overall error bound.

The algorithm involves many inner product computations. We consider two possible error

conditions. In the first, the computed inner product fl 2(Eca,3,) satisfies
* ,-0

l2( a, ,) I (3.3.3)
1-0 f-0 1-0

for all n. The error analysis here is based upon methods presented by Wilkinson (19631 who

takes e as 1.06 times the machine precision, The error bound (3.3.3) holds, for example, when

all additions are performed in double precision arithmetic (hence the subscript 2 in .Y2) and

rounding to single precision is done only when the summation is completed.

In the second case, the computed sum fl(,a,p,) satisfies
,-0

I<l( _y (n +) - 0 (3.3.4)
,-0 1-0 ,1-0

This bound holds when the entire summation is performed in single precision arithmetic.

The following error bounds for A0 exp, are established in Appendix B. Under the double

precision condition (3.3.3)

Lf2(A'exp,) - A0'expI (2 + rO/2le 102  .(3.3.5)

and under the single precision condition (3.3.4)
* i

Lfl(A 'exp,) - &'expI 4 e(m + n + 7 + 70/2)e'"/2- . (3.3.6)
0 n!

The factor 7"e'*/n! is A"exp, evaluated for data points confluent at a. m+1 is the number of

;.

tt
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terms added in our computed partial sum of the Taylor expansion and is chosen so that, say.

JAI'exp, - &djs.+. - le' 0 4 ,, ee2
AC..1-,+! (n+j)' a, i t !"

in depends on e, r, and 0 in a complicated way; only a general estimate can be given. For

example Appendix B shows that when e - 10- 11 and r9 < 2, m > 16 satisfies the above condi-

tion.

The bounds (3.3.5) and (3.3.6) are converted to relative error bounds by

ne w < 11'exp, < n !

which follows from A "exp, being increasing in its abscissae. Then because 0 < a<,,

n! *p e-(a-(°)' 'exp, - e' t/2"&d'exp?.

Relative error bounds for the Taylor series algorithm. The relative error E' in represent-

ing io'exp, by its computed value satisfies

eo"I < e(2+TrO/2)er" (3.3.7)

for double precision accumulation (3.3.3), and

0le") 4 e(m+n+7+O/2)er" (3.3.8)

for single precision accumulation (3.3.4).

The relative error bound in the first case does not depend on n. In both cases it is

increasing in the *spread" -O. These error bounds are uniform in the sense that if the Taylor

series algorithm were used to compute any other divided difference of the table (any A, exp,

* for k-0,1 ..... n and i-0.1 ..... n-k), a smaller error bound would result. This follows
from the ordering condition 0 , <i,,. Error bounds for &,'exp, would either involve

replacing n by k <, n or 0 by a smaller number.

example: In Fig. 3.3.1, 8-th order divided differences correct to 7 digits are given initially for

the standard scheme; the scheme is used only to compute the remaining higher

order differences. The relative error increases by a factor of about 3 per step. Thus

A Ii

IN . .,A . L
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abscissae AD exp. Ad'exp using A4'exp using A"'exp using
i correct to 7 standard scheme Taylor series Algorithm of

decimal digits after n - 8 Algorithm §3.4

0 -13.0 2.260329E-06 2.260332E-06
1 -12.5 2.932648E-06 2.917451E-06 2.932650E-06
2 -12.0 1.902471E-06 1.905751E-06 1.902472E-06
3 -11.5 8.227822E-07 8.215427E-07 8.227824E-07
4 -11.0 2.668782E-07 2.669856E-07 2.668782E-07
5 -10.5 6.925181E-08 6.925365E-08 6.925180E-08

6 -10.0 1.497504E-08 1.496362E-08 1.497505E-08
7 -9.5 2.775608E-09 2.777049E-09 2.775609E-09
8 -9.0 4.501490E-10 4.501490E-10 4.501040E-10 4.501491E-10
9 -8.5 6.489361E-l I 6.489360E- II 6.490737E-1 I 6.489364E-! I
10 -8.0 8.419572E-12 8.419580E-12 8.420343E- 12 8.419573E-12

11 -7.5 9.930829E-13 9.930800E-13 9.930225E-13 9.930829E-13
12 -7.0 1.073723E-13 1.073727E-13 1.073735E-13 1.073724E-13
13 -6.5 1.071611E-14 1.071609E-14 1.071603E-14 1.071611E-14
14 -6.0 9.931098E-16 9.931271E-16 9.930869E-16 9.931100E-16
15 -5.5 8.590019E-17 8.590612E-17 8.590039E-17 8.590021E-17

16 -5.0 6.965660E-18 6.951898E-18 6.965612E-18 6.965660E-18
17 -4.5 5.316202E-19 5.402473E-19 5.316202E-19 5.316201E-19
18 -4.0 3.831926E-20 3.486964E-20 3.831920E-20 3.831926E-20
19 -3.5 2.616686E-21 3.650387E-21 2.616686E-21 2.616687E-21
20 -3.0 1.697500E-22 -6.986900E-23 1.697499E-22 1.697500E-22

21 -2.5 1.048766E-23 5.010054E-23 1.048766E-23 1,048766E-23
22 -2.0 6.185062E-25 -1.792933E-24 6.185061E-25 6.185063E-25
23 -1.5 3.489027E-26 -1.236419E-24 3.489027E-26 3.489027E-26
24 -1.0 1.886172E-27 6.496526E-25 1.886172E-27 1.886172E-27

i 25 -0.5 9.788799E-29 -1.931645E-25 9.788798E-29 9.788797E-29

Fig. 3.3.1: Top row of ,exp using several methods.

A where e 5 5 x 10
- 7, whereas the growth factor bound

2n

p -1+

discussed along with Fig. 3.2.3 gives a bound of 5 for the increase. The Taylor

scheme yields good results for n-25 because the data points are symmetrically

placed about the expansion point a- -7; however, the lower order differences have

less relative accuracy than A45exp. The relative error bound (3.3.7) with - 12.5 is

4Ed 2.3 x I 6 .

" ,liv
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For the lower order differences (small n). this overestimates Ieo"I by a factor of

about 10. Without a correct value of the divided difference to compare with.

bounds such as the above must be accepted as the uncertainty in the computed

divided differences. for all ni.

The example shows that both the Taylor series algorithm and the standard scheme (even

with some low order differences initially provided) may produce i(,"ex,p. with large relative

errors when ro is neither large nor small. The algorithm presented in the next section is

* - designed to deal with this intermediate situation.
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3.4 A scaling and squaring method.

At the end of the last section we saw that there are situations where neither the standard

scheme nor the Taylor series algorithm yields a value of &6'exp, with small relative error for all

n of interest. We present here a third approach for computing divided differences of the

exponential which, in many cases, gives significantly better error bounds. The method is based

on the matrix function theorem for divided difference tables (§2.6) and is suggested in formula

(2.6.8).

The entire divided difference table is representable as a function of the special "step

matrix" Z (2.6.2). Specifically for f-exp,,

Aexp, - exp(,rZ) - e'z (3.4.1)

where the diagonal of Z consists of the abscissae C , .... ,,. Special properties of the

exponential function are reflected in the divided difference table, denoted by Aexp... In particu-

lar for any non-negative integer j,

Aexp, - [exp(2-s7'Z)] 2 - [Aexp2-,,]2 ' ,  (3.4.2)

a formula for scaling and squaring the divided difference table. Ward [19771 has suggested scal-

ing and squaring as a method for computing the exponential of a full matrix, whereas we pro-

pose to use it only in connection with Z.

example: With abscissae (0. 1, 2, 3.41,

1.0000 6.4872E-1 2.1042E-1 4.5501E-2 7.3794E-3

1.6487 1.0696 3.4692E-1 7.5019E-2

,exp,: - 2.7183 1.7634 5,7198E-1

4.4817 2.9074

7.3891

to five digits. Squaring this matrix yields

1.0000 1.7183 1.4763 8.4553E-1 3.6322E-1

2.7182 4.6709 4.0129 2.2984

(Aexp,) 2 - 7.3892 12.696 10.908

20.086 34.513

54.599
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For example,

4
A4exp - I &4exp,/,, tAexp,.

A -0

- (1.0000) x (0.0073794) + (0.64872) x (0.075019) + (0.21042) x (0.57198)

+ (0.045501) x (2.9074) + (0.0073794) x (7.3891)

- 0.36322;

and we check by (3.2.9)

t & xp -41-T(el 1 ) 4 - )- 4

A4exp - ! I (.7183) -0.36323.

4! 4!

Basic scaling and squaring algorithm. For (3.4.2) to be the basis of a useful algorithm, we

first must obtain an initial divided difference table iexp2,. In the last section we saw that the

relative error in the Taylor series algorithm decreases with the parameter r. By choosing j large

enough we can make, say, the error bound (3.3.7)

; I EI'I e(2 + 2-i+I' r)e 2 -'

small for any spread 9 in the abscissae. Let 3j represent one of the coefficients of f in (3.3.7)

or (3.3.8). that is

: 13- (2 + 2-" r0)e2'-' or 3, - (in + n + 7 + 2- '+ ; r0)e2 ' " . (3.4.3)

The relative error bound O3,e is uniform for every element of the divided difference table

!Cexp,, computed by the Taylor algorithm. ThusI

Lf(&pexp 2 , Lexp 2-,,l e 9 eXP2_,. (3.4.4)

The inequality holds element by element.t

iFor a matrix B. I BI denotes the matrix all whose elements are the absolute values of
the elements of B, i.e. it,.,-,. Our notation B <C means that B,, < C,, for
every i and j.

4 I... ..l" . ..- ,. .a . .. a



§3.4 68

In §2.9 we remarked that it is not necessary to compute an entire divided differcnce table

by the series algorithm. The Taylor algorithm need only produce the top row of iexp,-,. The

backfill formula (2.9.1) generates the remainder of Aexp,-v. Specifically when AjOexp,-,, ~.

Ao'exp2 -,, are generated by the Taylor algorithm,

,,kexP 2-. - (f')+AAiep,, + 'A lrexP 2 - (.45

for k -0. 1. .. n-i are obtainable successively for i - 1,2,. . . We show that this

* modification does not increase the error bound (3.4.4).

example:

1.0000 6.4872E- 1 2. 1042E- 1 4.5501 E-2 7,3794E-3

1.6487 1.0696 3.4692E-lI 7.5019E-.2

Aexp, 2.7183 1.7634 5,7 198E-1

4.4817 2.9074

7.3890

The top row is from the matrix in the previous example. The remainder of the table

* was filled in by (3.4.5). For example,

~ ?CXP - 0). 4 eXp,/ + j 3p~'

- 4 x 0.0073794 +0.045501

- 0.075019

Lemma: The relative error bound on every element of the divided difference table is no

greater than the largest error bound on the elements in the top row of the table. This error

bound is not increased when the table is filled out by the backfill scheme (3.4.5).

proof: Consider one step of the backfill routine

AI''exp..., - (f,, -fO).dexp 2 -,r +LoIez-
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Let e ' be the relative error in the computed value of A 'exp2_,, . The propagated error in
A ,I ex 21 is

I1 I. "ex -1-1n-

"-'PA ('-Cxp 2-,, - ( -o)A6'exp 2-,, + f "^ex2-,-

Both l, "I < EO3, and IEll'I < efli, by the uniformity of the bound /3, for the Taylor series

method. Thus

I~"'~i'ep2 , EI%~I-(lA"e"p2 , + "1x_,), ~~ ~ ~ 6 IE-{Al"exP2-,, e) 31[(f",,-o'AO 'T, £0ep-,,

so

When the abscissae are ordered fo (< f14 f,,, the sum in (3.4.5) involves non-negative

numbers only and the above argument may be repeated. It shows that, considering only pro-

pagated errors, the uniform error bound (3.4.4) holds also when only the top row of Aexp2_, is

computed by the Taylor series algorithm and the remainder of the table backfilled according to

(3.4.5). 0

The outline of a new approach for computing the divided difference table Aexp, is sum-

marized as follows.

I Algorithm 1: Scaling and squaring algorithm for kexp,.

With the abscissae ordered such that f < 4 f I " " ,< f,,,

I. Choose j and form 'Afexp2,v Pir k- 0 .... , n by the Taylor series algorithm

; (§3.3),

2. Backfill the remainder of the table Aexp,-, according to (3.4.5);

3. Square the divided difference table matrix j times.

Error bounds and selection of a scaling parameter. An error analysis of the algorithm shows

how to select j. The elements of the divided difference table iexp, are non-negative for all

7 > 0. When inner products involved in matrix squaring are accumulated according to the error

condition (3.3.3), not depending upon n, we have an element by element error bound

Lfl2(8 2) - 1 g E 2  (3.4.6)

0 I
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l'or any non-negative matrix B, such as 8 - exp,-,. When a computed matrix /!,(B) satisfies

lq2(B) - 8 =_E where jE1 <, e$B, (3.4.7 1

as in 13 .4.4). then

[ff8)] -B21 - IBE + EB + E21 (20 + ~3)

* Thus squaring a computed matrix IY2(8) yields

l!flt2B)12 - 81 IfAI12(B)] 2  [,'2(B)12 + [418112 B 21

e tfl2 (B) 1 + (2e3, + e/32) B2

< R 4(+ 29,) + e (2 + 0,))S, + e- 21 B.

e is so small that terms in e- are negligible when compared with terms linear in e. We take

I tfl2fl2(B)j2 - 821 < W( +2,6,)82. 13.4.8)

In (3.4.8) B lxp-, so

The first computed matrix square satisfies

.!exp.,,pI W l +2/3,)VAexp,_,,

This inequality Is ihe same as (3.4.7). but now with B - lep-,-. and j3 replaced b%

2(;- 3 E -NO 1. H-ence iteratively

!fl2( ~ -AexP2"-,)-'eP 2 .:12'I <, e403, + 1) - l]-lexp,.

and after ,' steps

fl2C2(exp,) - .kexp~l < e[21(93, + 1) - lV-lexp.

This last inequality is a relative error bound on the divided difference table computed according

to the scaling and squaring algorithm. The bound depends on the Taylor series bound through

03 and increases exponentially in j, the number of squaring operations performed.
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It is clear both from the error bound (3.4.9) and the amount of work involved in squaring

matrices that we wish to choose j as small as possible. However 0, increases as j decreases.

We demonstrate here how to select j to minimize the bound in (3.4.9). With j so chosen, we

obtain an expression of the form KrO for the relative error bound. The value of the constant K

depends on ihe specific assumptions made in bounding round-off errors in the Taylor algorithm

and the matrix squaring.

We want to minimize the coefficient in (3.4.9): that is we want to choose I to minimize

the expression

g(j) = 2(/j, + 1) - I = 211(2 +2-"+1rO)e 2_-"+ 11 - I.

Define 2-1-rO. r and 0 are fixed here, so minimizing g(j) in./ is equivalent to minimizing

(a-) --.1-(2 +0./2) e" + I]
0

in c-. The minimum is ,(o) 7.7885 which occurs for 0a = 0.9606. 2-'-rO-0. 9606 is probably

not true for integer values of j. Nevertheless for integer j, the a- 2- 'rO yielding the smallest

value of (a) must satisfy .o0 < 2-'i < 2o-" where ,(Y"O) -,(2o' 0 ).

iA

Fig. 3.4.1: Graph of ,(o) showing (aOx, 2aO" is the largest interval containing (T - 2-'

for just one integer value of j.

0oo=0.6646, so 0.6646< 2-'rO 1.3292. The minimizing j is the smallest non-negative

integer satisfying

2-(r0 4 1.3292. (3.4.10)

For all a E (0.6646, 1.3292). (a") < k(1.3292). We are assured that for the above choice of j,
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,k(2-'rO) < (.3292) -8.3259= K2. Then

g(j) - r -1j(a) < - 2rO - 1.

Hence

fl 2(Uexp,) - iexpTI < E[K-rG- ].Aexp, (3.4.11)

when the scaling parameter j is chosen according to (3.4.10). This bound may fail when 70 is

very small: in this case j-0 and the Taylor series bound (3.3.7) is appropriate.

By a similar argument we derive a bound like (3.4.11) for the single precision error condi-

tion (3.3.4). in this case we write

[3, - (n+)y-- (in +n 7 + 2-')rO)e ' " .

which is consistent with the other Taylor series error bound (3.3.8) The error in matrix squar-

ing satisfies

Lfl(B 2) - B21 < e(n+1)B 2

for any non-negative matrix B. From (3.4.7),

1(B) - B E where )E) < E(n+l)y,B.

Replacing e by e(n+l) and /, by -y, in our arguments leading up to (3.4.9),

* fl(exp) - ,expr K< e(n+l)[2/(y, + 1) - ll].exp, (3.4.12)

In Appendix B we show that when e < 10-
7, m can be taken as small as 10. We assume

also all first order divided differences are computed by a special formula as in (3.1.2), so our

bounds here are applied only when n > 2. Also, jwill be such that 2-" "ro < I. Hence

+ (1 m +6+2-J~"i0 e 2  < 7e2-,. (3.4.131
n+I

As before we want an integer j to minimize the expression

"1 2'(7e 2-" + 1) - !.

This is minimized when j is the smallest non-negative integer satisfying

f A
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2-IrO <1.4542. (3.4.14)

For this j

Lf(Aexp,) - iexp,.i < E(n+l)[KtrO- I -¢exp,. (3.4.15)

where K1 = 21.2950. The following box summarizes these bounds.

Scaling and squaring error bounds. For double precision accumulation of inner products

(3.3.3),

Ifl2(Aexp,) - AexpjI < E[K 2rO- 1].Aexp,

where K 2 - 8.3259, 9 is the maximum spread in the abscissae, and the number of squarings

j is the smallest non-negative integer such that

2-'rO < 1.3292.

For single precision accumulation (3.3.4),

Ifl(Aexp,) - ,expI < (n+1)[,Kr0-l].exp,

where KI "21.2950 and j is the smallest non-negative integer such that

2-"O < 1.4542.

example: The entries in the right hand column of Fig. 3.3.1 were computed by scaling and

squaring. The bound (3.4.11) has the coefficient

K2rO- 1 - 8.3259x I x 12.5-1 = 103.

and log 0103 2.01. This indicates a loss of two decimal digits, at most, in all the

divided differences computed.

Modift,... scaling and squaring algorithm. The algorithm can be made more efficient by

extending our use of the backfill scheme. Squaring a (n+l) x (n+1) triangular matrix (such as

iIexp,_.,) requires (n+3)(n+2)(n+l)/6 multiplications. The j squarings needed to get iexp,

from iexp,? involve O(jn 3/6) operations. This operation count can be reduced to O(in2 ).

Once the top (0-th) row of .f/2(exp 2 _(,_,,) is computed from squaring fl2(Aexp,.,), the

backfill scheme (2.9.1) will generate the remainder of fl 2 (exp 2_,,_j, ) in exactly the same

manner we generated the remainder of fl 2(Aexp2 ,) given its top row by the Taylor series algo-

• thm Because relative errors in the elements in this top row of 2(Aexp 2_,,,) are uniforml)
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bounded by E(I + 2,S),

Al2(,iexp2, _(,.,)  - iexp 2 (,,,I < E(! +1 2,6). exP2_,,_t,

for the entire table. This idea holds for all the squarings. We notice also that the uniform

bounds are exactly those employed in the analysis of the scaling and squaring algorithm. Thus

all our just derived error bounds are applicable when the matrix squaring is modified in the

above manner. The same argument holds for single precision accumulation when e is replaced

by r(n+]).

Now, how does the operation count change? Obtaining the top row of a matrix square

requires (n+2)(n+l)/2 multiplications. Backfilling the rest of the matrix requires one multipli-

cation per element, or n(n+1)/2 multiplications. Thus computing each matrix square by this

modified method requires (n+l) 2 multiplications, compared with (n+3)(n+2)(n+1)/6 for the

direct squaring approach. This is an improvement for all n > 1.

Algorithm 2: Modified scaling and squaring algorithm for 1kexp,.

With the abscissae ordered such that o < f ) < " - " f,,

1. Choose j according to (3.4.10) or (3.4.14) and form 1 exp,_. for k-0.1 . n

by the Taylor series algorithm (§3.3);

2. Backfill the remainder of the table Iexp 2-,,;

3. Square the divided difference table matrix iexp,:,, j times in the modified manner:

I compute the O-th row of the matrix square and then backfill the remainder of the

table.

I
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3.5 A hybrid algorithm for the divided difference table Aexp.

We have now presented three quite different methods for computing AI'exp,

(A "exp,)(fo ..... i,,): () standard divided differences, (2) Taylor series, and (3) scaling

and squaring. These algorithms have complementary error propagation properties. but they

vary in computational efficiency. We summarize here these two aspects of each algorithm and

present a hybrid algorithm which may be used when none of the above alone is satisfactory for

computing an entire table. For our hybrid algorithm we give error bounds which depend only

on the order of the divided differences computed: these bounds are independent of the choice

of abscissae and parameter r.

(1) Standard. The propagated relative error e$' in a typical step of the standard algorithm

satisfies

where by (3.2.6)

r(r;x) <0( 7 ,- o)

when ,, > ., for all i.

When the abscissae are ordered, f 0 < I< < f, and all initial relative errors e° in

the function values , °exp, - e ' are uniformly bounded (that is je°I < e for all ), we obtain

a simple bound on eo'. Let 4 represent the minimum separation of the data points, that is

= min (f, -,_). The relative error in all first order divided differences satisfies

IE,' (1+2/r). ,-0.-..... n-I.

Continuing, we obtain

i *JJO l'( +2k/r46). (3.5 .i1
I.-'

This bound is decreasing in rO. Given the (initial) n+l exponentials e p, computing kn'exp,

in fact the entire divided difference table, requires only it(n+l)/2 divisions.

(2) Series. The Taylor series method (§3.3) needs 2n+2 multiplications (exclusive of

coefficient evaluations) to add a new term to the partial sums we form for each Aniexp,

k -0.1. n. When each partial .um has m+l terms, the total is 2m(iv+I multiplications

-Bob
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(the initial term requires no inner products) to get A6'exp,. as well as all Ahexp, for

k -0. 1. n.

(3) Scaling and squaring. Squaring a (n+l) x (n+l) divided difference table by the special

method described in §3.4 requires (n+l) 2 multiplications, and we do this j times. For any but

small it, the table squaring dominates the rest of the calculation.

Fig. 3.5.1 summarizes this information on bounds and operation counts. The error

bounds listed in the second column assume that inner products satisfy the double precision

error condition (3.3.3), that is

Lfl(Y'CAdI - J>Ali, < e-IaI3,I.1 -0 1-0 '-0

Those in the third column reflect the single precision error condition (3.3.4), namely

it it t

Ifl(ja ip,) - Xca,3, I < e I(n + 2 -0 a,, -0 1 -0 , -0

The bounds depend on the minimum separation to and the maximum spread 9 in the abscissae.

The constants K 2 and Kj in the bottom entries depend on the details of the arithmetic in the

scaling and squaring algorithm. In §3.4 we derived the values ic,-8.3259, and K1=21.2 9 50

when e - 10-7.

Relative error bound coefficients
Method Double precision Single precision Operations

Standard algorithm with 2

minimum separation b 2

* Taylor series, using m+ltems wthspea 0(2 + 7/2) e"" (m + n + 7 + rO/2) e"" - 2rain,, terms, with spread 9

Scaling and squaring w2r9-I (n+I)Kcr0-l1 -in 2

with spread 9

Fig. 3.5.1: Summary of three divided difference algorithms for A6'exp,.

Decision criteria and the hybrid algorithm. Our error bounds suggest a hybrid algorithm: com-

pute all divided differences having closely clustered abscissae by scaling and squaring, and the

LiNN
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remainder of the table by the standard formula. The Taylor series is a special case of scaling

and squaring with j-0. The operation counts suggest employing scaling and squaring on

divided differences of the smallest practical order. Our desire for good accuracy and our desire

for efficiency, however, are in conflict. Here we lean towards the former in presenting criteria

for deciding which method to employ when computing a particular difference in the table; we
develop an overall error bound which holds for any sequence of abscissae and parameter T.

A simple criterion is to use the "best" method to compute each divided difference in the

table. By best we mean that method (either scaling and squaring or standard) which yields the

smallest relative error bound for that particular divided difference we are considering. All lower

order divided differences are assumed to have been computed already by the best method, or

by a special formula.

For example in computing A1exp, with double precision accumulation, we use scaling and

squaring when

(12 ?0- 1)e < (I +2/r0)E,

and the standard algorithm, otherwise. Here 0- -f0 is both the spread and the minimum

separation in the data points. The worst possible error bound for this hybrid, then, occurs

when

C2 rO- I - I + 2/rO.

This has the solution

r 0 -N +vfI + 2K2)/2 -=r# ,.

For K2- 8.3259 (as derived in §3.4). r9l =0.62 and

K2?0j -I - I+ 2/r01 -= 4.20.

Thus the relative error toI is bounded. jedi I< 4.20e, when the "best" method is used. This

bound does not depend on the abscissae or r, only on the value of K 2. We have obtained a

bound independent of the abscissae and r when we use scaling and squaring for r@ < rG, and

the standard formula for rG t rjO. This is a simple criterion for deciding which method to

employ.

A,7
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rel.. error

Fig. 3.5.2: Uncertainty in computed values of &lexp,.

It is important to note exactly what our criterion means. The case TO- rO does not mean

that the two methods are equally accurate, only that our convenient error bounds for each

method are equal. Each bound may be viewed as our maximum uncertainty in the computed

iojexp, when the appropriate method is used. Thus when rO -ro t our uncertainty is equalized

for the two methods, and is maximized over all rO for the hybrid method. The number 4.20G,

for example, represents our maximum uncertainty in the computed A&exp, when the "best"

method is used. More refined error bounds using information about r and the abscissae will

reduce the uncertainty, but at the loss of the simplicity we have here.

For 1 2exp, and 0 2 - f0, the relative error for the standard formula is bounded by

(K 2 701 - 1)(1 +4/r)e. We use scaling and squaring when

(K 2r-I)e < (K2r0-1)(-+4/rO)E.

The largest error bound occurs when equality holds. Let this happen for rO re2, thus

j #~Kr 2 -I - (K2 r.e9- 1)( +4/r 6 2).

This procedure may be followed for all divided differences. For Ako'exp, we obtain the

recurrence in rO,

i2re,,- I - (c 2re, 1 - l)(l + 2n/ro,,). (3.5.2)

The criterion for scaling and squaring in computing Ae'exp, is

r(,- o < re,,, (3.5.3)

,

i'

.. . , OoT .. . . . . . . .... , ,e r . . . . .+.. - ... . _. . . .
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Error bound Bound on decimal (it - logjO[.~n(n-3) - 11
coefficient digits lost

1 0.62 4.20 0.62 .2
2 1.77 13.71 1.14 -2
3 4.15 33.54 1.53 0
4 8.12 66.59 1.82 4 1.51
5 13.88 114.57 2.06 10 1.92

6 21.55 178.38 2.25 18 2.17
7 31.17 258.51 2.41 28 2.37

78 355.19 2.55 40 2.52
9 56.40 468.55 2.67 54 2.65
2o 72.02 598.66 2.78 70 2.76

21 89.67 745.55 2.87 88 2.86
12 109.32 909.22 2.96 108 2.95
13 13.00 1,089.68 3.04 430 3.03
14 154.69 1,286.92 3.11 154 3.11
15 180.39 1,500.94 3.18 180 3.18
16 208.11 1,731.73 3.24 208 3.24

17 237.85 1,979.28 3.30 238 3.30
18 269.59 2,243.58 3.35 270 3.35
19 303.35 2,524.63 3.40 304 3.40
20 339.11 2,822.43 3.45 340 3.45
21 376.89 3,136.95 3.50 378 3.50
22 416.68 3,468.21 3.54 418 3.54

23 458.47 3,816.18 3.58 460 3.5824 502.27 4,180.88 3.62 504 3.62
25 548.08 4,562.29 3.66 550 3.66

30 807.23 6,719.91 3.83 810 3.83

35 1,116.50 9,294.88 3.97 6,120 3,97
40 7,475.87 12,286.96 4.09 1,480 4.09
45 9,885.31 15,695.94 4.20 1,890 4,20
50 2,344.82 19,521.72 4.29 2.350 4.29

60 3.413.96 28,423.30 4.45 3,420 4.45
70 4,683.24 38,991.19 4.59 4,690 4.59
80 6,152.62 51,225.09 4.71 6,160 4.71
90 7,822.07 65,124.80 4.81 7,830 4.81

100 9,691.591 80,690.18 4.91 9,700 4.91

Fig. 3.5.3: Error bounds and decision criteria for hybrid algorithm.

and the relative error is bounded by (K2r9. - 1). Since KC270 - 1 1, the recurrence (3.5.2)
, can be evaluated to yield rg,, for any n. These values, along with corresponding relative error

bourds, are listed in Fig. 3.5.3 when K2 - 8.3259.

We can now summarize a complete algorithm for computing divided differences of the

exponential with real abscissae.
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Algorithm: Hybrid algorithm for Aexp,.

I. Compute C" - e'*' for each i -0. 1. .

2. For k - 1. 2 ...... , and i -0, 1. n-k, when

compute Aexp, by scaling and squaring; otherwise, when

r( ,+- ,)> rek

compute A,'exp, by the standard formula.

The hybrid algorithm requires us to decide which divided difference scheme to use for

each divided difference. For example in computing A&j2exp, by employing the values in Fig.

3.5.3, when all lower order divided differences have been computed according to the algorithm,

scaling and squaring is used when

Q(e12 -fo) < r0 12 = 109.32.

The standard scheme is used otherwise. The relative error in our computed Aj0exp, that is

E", satisfies

IJeO2 1 < (K270 12 -f)E 90 9 .22E.

loglo(909.22) = 3 bounds the number of decimal digits lost in computing Aj 2 exp, by the hybrid

algorithm. That is, when all ,k°exp, are given to 10 correct decimal digits, -1y, our computed

od2exp, contains, at least, 7 correct decimal digits.

To gain a better idea of how the decision criterion 70,,, and its associated error bound

KC2T0,, -1, depend upon the order of the divided difference it, we bound solutions of the
i recurrence (3.5.2). Appendix C shows that

rO,, < n2 + n + 2 (3.5.4)K¢2

for n > I and any Kc2 > 0. Hence the relative error in Ao'exp,, computed according to the

hybrid algorithm with double precision accumulation, satisfies

J.$' < [i 2(n2+n) + I]C. (35.5)

The relative error, then, increases in n, at worst, as O(n 2 ). This bound holds regardless of our
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choice of abscissae and parameter r. For our example with x2- 8.3259,

n(n-4) < 70,, < n(n-3)

when it > 17 (Appendix C). For comparison, the last two columns of Fig. 3.5.3 contain values

of n (n-3) and log111[K21f( -3)- I]. The latter numbers closely bound the digits lost values

for large n.

Single precision decision criteria. A similar analysis in the case of single precision accumula-

tion shows that the hybrid algorithm error bound behaves as O(1). Here the scaling and

squaring error satisfies

but the bound on the standard scheme is unchanged. The same argument as before leads, now,

to the recurrence

(n+1)(st"O,,-1) - n(KjrO,,_- 1)(1 +2n/rO,,). (3.5.6)

In deriving the scaling and squaring bound we assumed all first order differences are computed

by a special method, therefore we require initially

2(KirO|- l) - 1;

hence

t 3

is the initial value. The table in Fig.3.S.4 lists values of the decision criterion rO,, and its asso-

ciated error bound for Kc1 21.2950, which was derived in §3.4.

We can also show how r@, and its associated error bound for the hybrid algorithm depend

upon n in the single precision accumulation case. From Appendix C,

.12 + (-L_ 2r6 -3 2x, -)n (3.5.7)

for n > I and all Kt > 0; hence

I_( )n2K - 11 (3.5.8)

Ale
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11Error bound Bound on decimal rr(2n-5)/3 logjO[(II+1 j~
coefficient digits lost it Onn-503- 1))

1 0.07 1.00 0.00 -1.00
2 0.28 15.11 1.18 -0.67

4 3.16 33.96 2.52 4.00 2.62

5 6.58 835.34 2.92 8.33 3.02

6 11.50 1,707.08 3.23 14.00 3.32
7 17.90 3,041.99 3.48 21.00 3.55
8 25.77 4,930.48 3.69 29.00 3.75
9 35.08 7,460.36 3.87 39.00 3.92

JO 45.80 10,717.98 4.03 50.00 4.07

11 57.92 14,789.00 4.17 62.33 4.20
12 71.42 19,758.68 4.30 76.00 4.32
13 86.29 25,712.06 4.41 91.00 4.43
14 102.53 32,734.11 4.52 107.33 4.53
15 120.12 40,909.77 4.61 125.00 4.63

16 139.06 50,323.94 4.70 144.00 4.72
17 159.35 61,061.56 4.79 164.33 4.80
18 180.98 73,207.55 4.86 186.00 4.88
19 203.96 86,846.88 4.94 209.00 4.95
20 228.28 102,064.51 5.01 233.33 5.02

21 253.94 118,945.43 5.08 259.00 5.08
22 280.93 137,574.66 5.14 286.00 5.15
23 309.27 158,037.22 5.20 314.33 5.21
24 338.94 180,418.14 5.26 344.00 5.26
25 369.95 204,802.47 5.31 375.00 5.32

30 545.01 359,752.88 5.56 550.00 5.56
35 753.42 577,551.81 5.76 758.33 5.76
40 995.17 868,839.39 5.94 1,000.00 5.94
45 1,270.26 1,244,258.17 6.09 1,275.00 6.10
50 1,578.67 1.714,452.19 6.23 1,583.33 6.24

60 2, 295.47 2,981,746.70 6.47 2,300.00 6.48
70 3,145.59 4,755,889.66 6.68 3,150.00 6.68
80 4,129.02 7,122,053.25 6.85 4,133.33 6.85
90 5,245.78 10,165,412.46 7.01 5,250.00 7.01

100 6:495.85 13,971,143.98 7.15 6,500.00 7.15

Fig. 3.5.4: Single precision decision criteria and error bounds

for the hybrid algorithm.

for the hybrid algorithm. Thus the relative error is, at worst, 00d,) in n. We stress that this

bound holds for any choice of abscissae and parameter T. Further, in the example with

Pc 1 .2950, Appendix C shows that
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,,2 - 2n < rO,, < -Il, - -ii
33 3

for n > IS. The rightmost two columns of Fig. 3.5.4 list values of n(2n-5)/3 and

log0[(n+ ){ III (2n-5)/3 - 1M1.

The hybrid algorithm demonstrates that it is possible to compute exponential divided

differences to a desired accuracy. Our error bounds, particularly the digits lost bounds, tell how

many decimal digits we must carry in order to be assured that Ai'exp, has desired accuracy. A
short discussion of some useful modifications of the basic hybrid algorithm follows in the next

section, along with a numerical example in which a rather large divided difference table is com-

puted.

ii
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3.6 Comments on the hybrid divided difference algorithm.

The hybrid algorithm of the last section demonstrates that we can compute high order

exponential divided differences with only a modest loss of precision. For this reason, the algo-

rithm is a valuable theoretical tool. In this section we propose some modifications which make

its implementation more efficient.

We gave scant consideration to computational efficiency when deriving the hybrid algo-

rithm. Our error bounds and decision criteria apply without reference to any particular

sequence of data points or parameter r. As a result, the algorithm recomputes; low order

divided differences when scaling and squaring is used for differences whose "patterns of~ depen-

dence" overlap. Also, the decision criteria are based upon worst case arrangements of the

abscissae. These arrangements cannot be achieved since it is impossible to arrange even three

points on a line such that their separations are quadratic. A relaxed decision criterion may

greatly increase efficiency, without sacrificing accuracy. We now propose a possible modification

to the algorithm by introducing an arbitrary criterion to cluster the data points.

Clustering. Let g be a positive increasing function of the order k of the divided difference

under consideration. We decide to use scaling and squaring to compute Lk,"exp, when

otherwise, we use the standard formula. In addition, however, we do not permit the computa-

tion of overlapping table blocks by scaling and squaring. For example. suppose the decision cri-

terion (3.6. 1) demands that both 1,exp, and i lexp-, with i (<,j <, i+k <,.+/, be computed byI scaling and squaring. We compute only 1A 4'1''exp, by scaling and squaring, regardless of
whether or not

The picture in Fig. 3.6.1 shows how overlapping blocks may be combined. We now speak of

the abscissae f,,, . .. as being "clustered," and refer to the block of the divided

difference table formed by A 1'''exp,'s pattern of dependence as corresponding to this cluster

of abscissae. So when two clusters overlap, they are combined.

When the clustering procedure is completed, the resulting clusters have no abscissae in

common'. the corresponding blocks in the table do not overlap. This clustering depends on the

abscissae, not on the divided differences, and it may be performed prior to any divided
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x x x x x

x x x
x x X x X/*-

x x x x

X x X

X X

X

Fig. 3.6.1: Clustering of overlapping blocks in a table.

difference computations. Table blocks corresponding to the resulting clusters are computed by

scaling and squaring with backfill. The picture in Fig. 3.6.2 shows what the table might then

resemble. The remainder of the table is filled in by the standard scheme.

K X X X
X X X

K Kx x

x x

X

X X X

X X
X

x x x

X x
x

Fig. 3.6.2: Block structure of a divided difference table after

the scaling and squaring step.

Our error bounds make possible a quick a priori error bound computation. For example,
the bound (3.4.11) may be used when scaling and squaring is indicated, and the iterative bound

(3.2.10) when the standard scheme is called for. We may even wish to compute the differences

using the decision criterion (3.6.1) and then examine a postiori error bounds. In any event,

when these bounds are unacceptable the original hybrid algorithm does guarantee a bound on

the error and may be used when more efficient alternatives fail.

'A"

-C--
J4
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Divided Differences by the Hybrid Algorithm

/I Abscissae Clsein nexp by Correct values A priori Relative
iiCuteig algorithm to 7 digits bound error

0 -34.5 0 1.039538E-15 1.039538E-l15 0.00 0.00
1 -33.1 0 2.268571 E-l15 2.268571 E- 15 0.50 0.00
2 32.9 0 1.498804E .15 1.498804E- 15 2.00 0.00
3 -14.4 3 8.015853E-1l1 8.015853 E-l11 0.77 0.00
4 -14.4 3 6.755117E-1 I 6.755117E-lI1 0.69 0.00
5 -14.4 3 2.879424E-1 I 2.879424E-lIl 1.61 0.21

6 -14.4 3 8.262803E- 12 8.262803E- 12 1.83 0.00
7 -14.1 3 1.891783E- 12 1. 891783 E- 12 1.96 0.06
8 6.1 8 2.013388E-09 2.013388E-09 1.23 0.00
9 6.4 8 1.522937E-09 1.522937E-09 1.05 0.32

10 6.8 8 6.118262E-10 6.118264E-09 3.54 0.78
11 7.1 8 1.663523E-10 1.663523E-09 3.95 0194
12 11.3 8 7.59063 3E-l11 7.590636 E- 11 4.01 0.92
13 11.3 8 1.883713E-I11 1.883713 E- 11 4.16 0.58
14 11.3 8 3.359880E- 12 3.359880E- 12 4.35 0.15
15 12.2 8 5.323018E-1 3 5.323021 E- 13 4.51 0.90
16 12.2 8 6.841381E-14 6.841383E- 14 4.'70 0.65
17 13.1 8 8.156695E- 15 8.156692E- 15 4.85 0.89

18 25.6 18 5.861817E-15 5.861819E- 15 4.61 0.50
19 28.7 19 2,750415E- 15 2.750417E- 15 4.42 1.16
20 32. 9 20 1.381999E-l 15 l.382000E- 15 4. 22 0.73
21 33.4 20 3.448419E- 16 3.448422E- 16 4.07 1.17
22 33.4 20 5.740436E- 17 5.740418E-17 4.21 1.71
j23 34.5 20 8.395-1 8.3390(4-1 4.72 2.14

Fig~. 3.6.3: Example of~ the hybrid algorithm with clustering for r.- I

example: The modified hybrid algorithm, with clustering, is illustrated in Fig. 3.6.3 for a col-

lection of abscissae which includes confluent, close and well-separated data points.

The clustering function is g(k) =_k. The third column of Fig. 3.b.3 indicates thc

resulting clustering of the abscissae. The fourth column contains the top row of the

divided difference table computed in single precision with about seven decimail

digits. The fifth has, for comparison, the same differences computed in double pre-

cision. Finally, a priori error bounds, calculated from (3.4.15) and a growth factor

bound from (3.2.8), and the actual relative error are given in a digits lost form.

Complete tables corresponding to Fig. 3.6.3 are presented in Appendix D. Fig. 3.6.4

repeats the same computation, but with r - 2. Finally. Fig. 3.6.5 shows the result of

computing the entire table in one scaling and squaring for .k03exp:.

LEaA
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Divided Differences by the Hybrid Algorithm

11 Abscissae Clseig Ao~exp 2 by Correct values A priori Relative
f1 Clsern algorithm to 7 digits bound error

0 -34.5 0 1.080639E-30 1.080639E-30 0.00 0.00
1 -33.1 1 1.192152E-29 1.192152E-29 0.50 0.00
2 -32.9 1 1.986183E-29 1.986183E-29 0.77 0.26
3 -14.4 3 4.467%66E-l17 4.467966E- 17 0.51 0.16
4 -14.4 3 8.233205E- 17 8.23320SE- 17 0.58 0.00
5 -14.4 3 7.604186E- 17 7.604185E- 17 1.85 0.13
6 -14.4 3 4.69280SE- 17 4.692805E-17 1.97 0.08
7 -14.1 3 2.444065E- 17 2.444065E-17 2.03 0.07
8 6.1 8 8.977370E-07 8.977370E-07 0.95 0.00
9 6.4 8 1.963505E-06 1.963505E-06 0.72 0.00

10 6.8 8 2.30925SE-06 2.309258E-06 2.38 0.50
11 7.1 8 1.760567E-06 1.760566E-06 2.59 0.32

12 11.3 12 1 .305495E-05 I .305495E.05 2.23 0.00
13 11.3 12 1.217449E-05 1.217449E-05 1.9 0.53
14 11.3 12 6.5584S0E-06 6.558482E-06 3.41 0.80
15 12.2 12 3.453429E-06 3.453430E-06 3.86 0.43
16 12.2 12 1.281568E-06 1.281569E-06 4.26 0.98
17 13.1 12 4.751205E-07 4.751204E-07 4.48 0.55
18 25.6 18 9.602053E-04 9.602055E-04 3.93 0.63
19 28.7 19 1.412638E-02 1.412640E-02 3.28 1.17
20 32.9 20 4.335487E-01 4.335489E-01 2.54 0.93
21 33.4 20 6.106924E-01 6.106929E-01 1.92 1.04
22 33.4 20 3.836830E-01 3.836832E-01 2.55 0.84
23 34.5 24 2.381056E-01 2.381055E-01 2.94 0.54

Fig. 3.6.4: Example of the hybrid algorithm with clustering for r - 2.

Special methods for low order differences. It is sometimes possible to compute low order

divided differences by a special formula. From (3.1.2) where

AJexp, - eT(gI+fo)f? sinhfr(f , - f)2

we see that first order differences may always' be computed accurately when a good sinh func-

tion is available. Error growth in using the standard divided difference formula is primarily

* dependent on errors propagated from low order differences. Special computation of these

differences may be very effectivet in reducing errors in higher differences and in extending the

tFig. 3.8.3 gives an example (for complex abscissae) of dramatic improvement in the

error when first order divided differences are computed by a special formula.
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area over which this simple formula may be used. In addition, scaling and squaring never need

be used for these low order differences.

Divided Differences by Scaling and Squaring

n Abscissae Clseig Adexp2 by Correct values A priori Relative
n Cuei algorithm to 7 digits bound error

0 -34.5 0 1 .080639E-30 1.080639E-30 0.00 0.00
I -33.1 0 1.192152E-29 1.192152E-29 0.50 0.00
2 -32.9 0 1.986174E-29 1.986183E-29 4.85 1.88
3 -14.4 0 4.467955E-17 4.467966E-1 7 4.85 1.60
4 -14.4 0 8.233186E-17 8.233205E-17 4.85 1.57
5 -14.4 0 7.604169E-1 7 7.604185E-17 4.85 1.55
6 -14.4 0 4.692796E-17 4.692805E-17 4.85 1.50
7 -14.1 0 2.444060E- 17 2.444065E-17 4.85 1.56
8 6.1 0 8.977336E-07 8.977370E-07 4.85 1.80
9 6.4 0 1.963496E-06 1.963505E-06 4.85 1.89

10 6.8 0 2.309243E-06 2.309258E-06 4.85 2.06
11 7.1 0 1.760551E-06 1.760566E-06 4.85 2.16

12 11.3 0 1.305484E-05 1.305495E-05 4.85 2.13
13 11.3 0 1.217439E-05 1.217449E-05 4.85 2.12
14 11.3 0 6.558430E-06 6.558482E-06 4.85 2.12
15 12.2 0 3.453403E-06 3.453430E-06 4.85 2.11
16 12.2 0 1.281559E-06 1.281569E-06 4.85 2.11
17 13.1 0 4.751175E-07 4.751204E-07 4.85 2.02

18 25.6 0 9.601986E-04 9.602055E-04 4.85 2.08
19 28.7 0 1.412635E-02 1.412640E-02 4.85 1.71
20 32.9 0 4.335491E-01 4.335489E-01 4.85 1.00
21 33.4 0 6.106924E-01 6.106929E-01 4.85 1.04
22 33.4 0 3.836829E-01 3.836832E-01 4.85 1.13
23 34.5 0 2.381053E-01 2.381055E-01 4.85 1.09

Fig. 3.6.5: Example of the scaling and squaring algor;thm for r -2.

Second order differences also may be computed accurately by a special formula when a

routine is available to evaluate the function

f - (/+1)!

accurately for all f. Let Cof Cfi < 2 then

e 
- 1  --! 1 - r( f - f j)

Aexp," e'f'{ le - - o
tCIg

-MOM
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7f =f (f(~- 1)J
-ee j'''h['(f2-f,)] - hI'(fo-f )]}

Because sign[/i(f)] -sign(f) and f-1 > 0 while fo-Ci f 0, the subtraction is actually an

addition of non-negative numbers.

Perturbations and shifts In the abscissae. Abscissae used in computing divided differences

may be obtained either experimentally, or as the result of earlier computations. In either case

we may be uncertain what are the exact abscissae (represented here by the vector 1, say). The

abscissae, say x, we have in hand are only approximations. The most we can expect is to have

a bound in terms of x on our uncertainty in the value of 1. Thus given x and a bound on the

uncertainty, we ask how far can the divided difference Alexp,(x) be from A"exp,(i). That is,

how unsure are we of the value of a divided difference, given our doubt about its data.

As an example, we have presented without comment several formulas in which abscissae

are shifted by a constant amount, say a. In finite precision arithmetic, a computed shifted

abscissa fl(f + a) satisfies

To have a uniform bound for all abscissae represented in a vector x, we write

ILlf(x+au) - (x+au). < (ItxIo-+IaI)e.t

The bound describes our maximum uncertainty in where the exact shifted vector of abscissae

lies, given knowledge only of the computed vector.

It is convenient to think of !" as a perturbation of the given vector x. The following per-

turbation bound describes the sensitivity of iVexp, to a bounded change in its abscissae.

tRecall that u is a vector of l's, u -(1,1. 1).
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Perturbation bound. Let x -(to, .. ,,) be a vector of abscissae, and

!C-o .. ,) a perturbation of x such that max lj,-C,J 4ye for a constant y.

Then

l,"expU) - Alexp,(x)l 4 (e"- l).A"exp,(x). (3.6.2)

proof: From Theorem I in §3.2, A"exp, is increasing in each of its abscissae, thus

A"exp,(x-yeu) 4 A"exp,(,U) < A"exp,(x+,yeu).

By the translation property (3.1.1),

e-'.A'exp,(x) < Aexp,(.) < el E.AIexp,(x). 0

For small rye the bound (3.6.2) is equivalent to a relative error of size rYe. Hence com-

putational errors may be viewed in the same way as uncertainties in the data. In particular

when data uncertainties of size ye lead to uncertainties of size 7ye in the value of Aexp7 (,)

relative to A"exp,(x), computational errors or comparable, or smaller, size do not greatly

increase our uncertainty. Thus, there may be no reason to compute A"exp,(x) to greater accu-

racy than about ryf. Hence our uncertainty in the data helps answer the question of how much

accuracy we are justified in demanding when computing divided differences. We may, then.

use the fast standard scheme more in practice, as the data may not warrant using more accu-

rate, but more costly, methods.

Additional modifications of the basic hybrid algorithm may be desireable in practice. For

example Ad'exp, decreases as r"/n!; so special provisions may be required to represent small

numbers during computation. These details, however, must not obscure the important fact

about the hybrid algorithm, which is that real exponential divided differences can be computed
with high relative accuracy. Such a general statement cannot be made when the abscissae are

complex. However, a hybrid type algorithm with error bounds comparable to the above can be

developed for some arrangements of complex abscissae. We turn to such a problem in the next

three sections.
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3.7 Divided differences of the exponential function with complex abscissae.

For applications exponential divided differences with complex abscissae are more impor-

tant than the real case. In particular a real non-Hermitian matrix A may have complex eigen-

values. These eigenvalues are the abscissae used in forming coefficients of the Newton polyno-

mial fornm of exp(rA). Therefore it is important to understand which aspects of the real case

go over to the complex case, and which do not.

The algorithms presented earlier are applicable to complex abscissae. The theory used to

derive the Taylor algorithm, scaling and squaring, and even the hybrid algorithm, depends only

upon the exponential function itself. There is no need to distinguish between real and complex

data points. Our error bounds and decision criteria, however, do depend explicitly upon the

fact that real exponential divided differences are positive. Since complex differences can be

zero, we must abandon the idea of strict relative error bounds. Instead, we give error bounds

relative to a quantity that bounds or estimates our divided difference.

In this section we examine a few special cases of complex exponential divided differences

in order to gain a better understanding of the behavior of such differences. In particular we

shall observe how these divided differences are affected by the imaginary parts of the abscissae.

Later we indicate how our algorithms may be applied.

We continue studying divided differences of the function f- exp, with parameter r >, 0.

Our sequence of abscissae Z Co . may now contain rn'mplex elements. We

look at three special arrangements of the abscissae. (1) The abscissae lie on a line in the com-

plex plane and are evenly spaced along this line. (2) The sequence of abscissae consists of

repetitions of two points, C and -C; we also look at the case where the two points are conju-

gates 4 and ?. (3) Finally, we examine the case where the sequence of data points consists

exclusively of conjugate pair points, In the first two examples we achieve explicit formulas for

the divided differences. In the final case, we characterize the differences by upper bounds on
them. This final case is of most interest in matrix function computations because the eigen-

values of real matrices are either real or members of complex conjugate pairs.

Evenly spaced. linear abscissae. On a line the abscissae can be ordered. Let Co be an extreme

data point and let 28 be the spacing between the abscissae. Then

Z -(Co. 40+28, CO+48.C4o+2n8.... is the sequence of data points. Exactly as in the real

case in 03.2,
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A4 Cexp,- --e , qnj' - e.t40 "A sinh(r8) (3.7.1)

We note that &4,'exp, -O if, and only if, r , kfi for some non-zero integer k. Thus high order

divided differences can be zero. Since two points lie on a line, this also implies that first

divided differences are zero if, and only if, their abscissae are separated by A ki

Suppose 8 is pure imaginary, say 8-Pi. Let us observe how lAo'expI varies with J,. We

have

.e l e... ,1  4 sinh(rvi)

. l---f0 O1 sin(p )11 ,,
!

where o -- Re(CO). IA0'exp, I, then, behaves as a damped sine wave, becoming smaller with

increasing ,. It has local maxima when tan(rv)-.T,. For fo-0 and ?-i, the table in Fig.

3.7.1 lists some of these maxima for n - 1,2 .... 7.

,, IAo'expI JA expi IAexpi J&gexpj IAjexpj IAoexpI IAoexpj

0 1.00 5.OOE.I 1.67E-1 4.17E-2 8.33E-3 1.39E-3 1.98E-4
4.49 2.17E-1 2.36E-2 1.71E-3 9.28E-5 4.03E-6 1.46E-7 4.53E-9
7.73 1.28E-1 8.24E-3 3.53E-4 1.13E-5 2.91E-7 6.22E-9 1.14E-10

10.90 9.13E-2 4.17E-3 1.27E-4 2.90E-6 5.29E-8 8.06E-10 1.05E- II
14.07 7.09E-2 2.51E-3 5.94E-5 L.OSE-6 1.49E-8 1.771-10 1.79E-12

17.22 5.80E-2 1.68E-3 3.25E-5 4.71E-7 S.46E-9 5.27E-1 4.37E-13
20.37 4.90E-2 1.20E-3 1.96E.5 2.41E-7 2.36E-9 1.93E-1l 1l.35E-13
23.52 4.25E-2 9.02E-4 1.28E-5 1.36E-7 i.15E-9 8.16E-12 4.95E-14
26.67 3.75E-2 7.02E-4 8.77E-6 8.22E-8 6.16E-10 3.85E-12 2.06E-14
29.81 3.35E-2 5.62E-4 6.28E-6 5.26E-8 3.53E-10 1.97E-12 9.44E-15

Fig. 3.7.1: Maxima of I Aeexpl, as a function of P, for evenly

Kspeced imaginary abscissae.

The magnitude of these divided differences is strongly affected by the difference in the

imaginary parts of the abscissae. Our study of complex exponential divided differences must

take this into account. The next example even more clearly illustrates this dependence on the

imaginary parts.

LI
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Two-point exponential divided differmoces. In an example in §2.8 we saw that divided

differences of exponential functions for sequences of data points like Z-{(.- .C.-C.... 1.

where a point and its negative are repeated, have many special properties. In particular, we

found that the related functions

b,,() - {(A2 "exp,)(4,-.. C) + (A2"exp,)(- .4 . ... -4)) (3.7 .2a)2

a,,(&) -(, 2"exp,)(C,-,. .-C) (3.7.2b)

satisfy the recurrences

' rta,,_ (C;)

b, (C) - 2n, (3.7.3a)

2n - (2n-I)a,,_.(C)

a,,(C) - 2n;2 (3.7.3b)

for n -1,2,..., where

bo(C) - cosh(?C) (3 .7.4a)

ao(C) - sinh ( ) (3.7.4b)

From these relations, we show that the functions b,, and a,, are representable in terms of spher-

ical Bessel functions, commonly denoted j,. In addition, we derive a simple assymptotic

expression for the two-point divided difference (Wl"exp,)(4,-C. ..... C) as rTIcI-oo

Representation of two-point exponential divided differences. For each H -0, 1, 2....

b,,(P) r (3.7.5a)

a,, (4)- J,,n (i(r) , (3.7.5b)
2"n ! (C)"

where the j,, are spherical Bessel functions. Also as ri - ,

(A 2"exp,) (C, -C..... ) - e . (3.7.6)2"n !C"

proof: Spherical Bessel functionst are related to the more familiar Bessel functions of the first

The introduction to the National Bureau of Standards' Tables of Spherical Bessel Func-
tions [19471 gives a brief explanation of these functions.
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kind, J,,. according to

j,,(aa) - 7''iJ,,+.(D).

where the index m - n+l/2 indicates a half-order Bessel runction. The well-known Bessel

recurrence

2ntJ,,,(ow) - wIJ,,.(a.) + J,,,-..(o.,)}

becomes

(2n+l)j,(w) - wjj,,+1 (w) +j -. (o)) (3.7.7)

for spherical Bessel functions. Initially

jo(w) and j-(w) - cos(_.i) (3.7.8)

When n -O in (3.7.5a-b). a comparison of (3.7.4a-b) with (3.7.8) shows tha initially the

J-1 and Jo in (3.7.5a-b) are spherical Bessel functions. For general n we derive the Bessel

recurrence (3.7.7) for j, from the recurrences (3.73a-b) for b, and a. Inserting (3.7.5a-b)

into (3.7.3b) yields

1..+- I ___ ______
+

__._ . (2n-1)i"" . ..

2,,n!(0ClY,(l") 2nC212,-I(nI)!(C),,-2J' -2 1 " )  2,,- D!04t' ,,',-Ir

or

. j,,(il"C) -- j,_2(i7") i(2n-l) ,_l-C ).
iC -

When this is rearranged and the index n is increased by 1. we obtain (3.7.7) with w-rrC-;

hence each j,, in (3.7.5a-b) is a spherical Bessel function.

For large W- spherical Bessel functions behave, asymptotically, as

4(w) - icos[w -(n+l)r/2].

Thus as rICI-.oo we have

(A 2 exp,)(€,- ..... ) - b,(Q) + Can(€)

- L""* {.-.,r) - j(T)
'2. V( -
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2 () [cos(irC - ,r/2) - isin(urC - ,r/2)I

2", C"

The translation property (3.1.1) provides an immediate corollary to the above when the

sequence of abscissae consists of C and ?, repeated.

Corollary: Let the sequence of abscissae Z-C.C.C.C.... I, where CfC + i and its conju-

gate C- q-in are repeated. Then for each, - 0. 1. 2.....

Re(Al"exp,) - eEb,,(iq) - I,-, eJ,,.1 (-r) (3.7.9a)2"n!71 ' € .,- - n)(..a

lm(A "exp,) - 7.AJ2"'+exp, - era,,(iq) - (-rn). (3.7.9b)

Further as 71-"
F aA "exp, - iz ') eL r. 

(3.7.10)
2"n !71"

proof: By the translation property,

Ad"exp, = (A2"exp,)(C, C. ) - el-(j 2"exp=)(-n,-i71 .. .

The results follow from (3.7.Sa-b) and (3.7.6) by inserting iin for C, and then multiplying by

e t . C

From (3.7.10).

A"expJ - (3.7.11)

The imaginary part leads to a r-" damping of AJ"exp. Also since J,,-(-ri) and j,,(-,n) are

never simultaneously zero, for all r > 0 the divided difference i "exp,;d 0.

Exponential divided differences with conjugate pair abscissae. We now turn to the case of a

sequence of abscissae consisting of conjugate pair elements. In particular let

Z- ,'o'c . .. ,... where ,-C,+i7j and ,-,-i, with each q, >0. The fol-

lowing bounds, depending on divided differences of exp, for the real abscissae f, alone, help to

describe the dependence of conjugate pair exponential divided differences on both the real and
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imaginary parts of the abscissae.

Bounds for conjugate pair exponential divided differences. Let Z - ICE.. -,

he a sequence of conjugate pair abscissae. Then for each it > 0.

IAO"expJ < (I7,,)'.Aeexp, (2.7.1 2a)
I--N-

and

Ad"+'expI (f['q,)-'A",exp,. (2.7.12b)
/-0

proof: The proof is by induction on n. We note first, employing a remark after (2.1.3), that

since

, (A2"exp,)(Co.Zo. . , -,,) - (A 2"exp,)(Qo. o. ,,. ,,c,,)
cot - cot

1- -Im(A2"exp,),

(3.7.12b) is an immediate consequence of (3.7.12a). When n -0 and r .>0.

JAoexpJ - le r .O- e-eO - A 0 exp,.

and (3.7.12a) certainly holds. Now let us assume it is true for all orders up to (2n-2). That

is, we assume for all r ,> 0

lj°,"-2 expl < (][I-n-)-LAe -exPr

and hence

0-0

By the recursive integral formula (3.1.5),

A Iexp, - e"C" f e- ".AI-Iexp,, da.
0

Thus

id
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I, ,d"exp,I 4 efo &'-,"J" IA exp, I do"
0

-I•

i-fl

71 (fv,).& ex P,.
,-0

When the real parts i of the abscissae are equal, that is - -. .,,, this corollary

follows.

Corollary: Let Z-1 {± it, .-0 ... n). Then for each n >0.

I& I"expJ 4 ttj (3.7.13a)
t-i"

and

lIoJ"+Iexp,l < (f'lni) -' (3.7.13b)
/-0

With the exception of the factor 2", the bounds in our corollary resemble our assymptotic

results for two-point conjugate pair divided differences. This leads us to suspect that
01-1o

,a' - I I e

2-(IlI/i) "A,(oexpT and 2-"(Iod-')&if ;eXpr (3.7.14)
,-0 i-O

are reasonable estimates of 11(2"expI and I0 A"+'exp:I, respectively, when the 71, are large.

The values in Fig. 3.7.2 illustrate this. Note that not every estimated value by (3.7.14) is large

enough to be a bound.

General complex exponential divided differences. When we are unable to make assumptions

about the abscissae, we can say little about the behavior of the divided differences. Just as the

simple bound derived from (2.1.12),

1 rC . rit ,r
* lexpI i, max r"e'i - e

poorly describes the behavior of &dexp, when f,,-f0 is large, even when all the abscissae are

real, a bound depending only on the real parts of complex abscissae poorly describes I1A'expI

when some data points have large imaginary parts. All complex exponential divided differences

Ua
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Adexp bounds from estimates from(3.7.12a-b) (3.7.14)

0 (0.6+ 1.00 1.00 1.00
I (0,-10i) 5.44E-2 1.OOE-I L.OOE-I
2 (1,+9i) 8.39E-2 1.72E-1 8.59E-2
3 (1,-9i) 9.31E-3 1.91E-2 9.55E-3
4 (2,+ I Ii) 3.64E-3 1.64E-2 4.10E-3
5 (2,-l 1 i) 2.71E-4 1.49E-3 3.73E-4

6 (3,+ 1Oi) 9.18E-5 8.54E-4 1.07E-4
7 (3,-40i) 3.16E-6 8.54E-5 1.07E-5

t 8 (4,+9i) 2.41E-6 3.67E-5 2.29E-6
9 (4,-9i) 2.50E-7 4.08E-6 2.55E-7

10 (5,+10i) 4.20E-8 1.40E-6 4.38E-8
! 1 (5,-10i) 1.96E-9 1.40E-7 4.38E-9

Fig. 3.7.2: Bounds and estimates for I&'expJ with conjugate pair abscissae.

do satisfy the following bound regardless of the imaginary parts of the data points.

Upper bound on AIexp, I for complex abscissae. Let Z-, 0 . . . . . . . . . be a se-

quence of complex valued abscissae, and let ,- ReQj) for each - 0.1..... ... Then

IA'expt 4 Ai'oexp, (3.7.15)

for all n , 0.

proof: Directly from (3.1.3). namely

1 0exp, - ff... f exp[7r* 0 + (4-4)ao + -+ (gn.i)iJdoa,, do, dl,do

we have

IAg'expJ y < • • f exp[rfo+ (f 1-o)al + + ( 1,- ,- I do,, • do2 do'1

0 0 0

-AfkOexp,. 0

Comparing (3.7.15) with our conjugate pair bounds shows that the imaginary parts of the

abscissae may be very important and should be reflected in any bounds we use. In the next

.,
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sections we apply our divided difference algorithms to conjugate pair abscissae and use the

upper bounds and estimates we have presented here to derive error bounds ror the computa-

tions.

1
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3.8 Divided difference tables with conjugate pair abscissae.

The elements of divided difference tables whose abscissae are conjugate pairs are quite

special in that some are real and some are conjugates of others. These properties do not

depend upon the exponential function, but apply to any function .f/symmetric about the real

axis. For this reason we digress in this section from our study of exp, and revert to the func-

tion f, where .1() -f( . The results are more general and the notation is more compact.

Applications to exp. follow in the next section.

.(';-2) A1J. A21
'  A J A-J/* A- ' f 1.

;) -o. A-2 A3 , A-IJ '  A-4

P40.) Ao f AJ f ADf

. ) ) A IV A1J
( ;2) Aj

J( 3)

Fig. 3.8.1: Rearranged divided difference table A! for _

We have seen that abscissae should be ordered so that close values are adjacent to each

other. It follows that should not be adjacent to 4 when Im(C) is large, as would be natural. A

good, but unorthodox, ordering for complex conjugate pairs of abscissae is

Z - Z ,, o. Co. 1.. ,,. Some extra dividends follow from this choice as we

show below. In order to maintain (as closely as possible) our notation A f to indicate the use

of , . we write C._, for 4. The table in Fig. 3.8.1 shows a typical A/where

n - 3. The entries corresponding to the top row in a naturally ordered table are underlined.

These are the entries that are used, for example, as coefficients in a Newton polynomial.

Let Z be the "step matrix" associated with the sequence Z, that is

i- A- .
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'--, I

o I

I,.

This extra property referred to above is that both Z and Af-f(Z) are Hermitian about the

secondary diagonal (bottom left to top right). This property is most conveniently expressed in

terms of the permutation matrix

I-I

Secondary symmetry of Af. if Z-,. O. Co. and ]"(Z)-f(C, then both

IZ and .Af'are Hermitian.

proof: Any complex matrix 8 is Hermitian if F - B. We denote the conjugate transpose of B

by B*. By inspection, i.Z is Hermitian,

Iz - Vi.

From the conjugate transpose property (1.1.6),

f(Z") f(Z) ;

S..i

...... ... . .. .
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so employing (1.1.3) for similarity transformations.

.f(Z)- () - i..f(1z)

- i -(iiz) - i1(z).

and I'(Z is Hermitian. C3

This result means every divided difference lying on the secondary diagonal of Af is real,

and every divided difference below this diagonal has a conjugate above the diagonal. For exam-

ple in Fig. 3.8.1. AI/, A2J- A-2./"and ,_,f are all real, and AI3',,A .2' while Ad -A-/JL :

Only the portion of the table on and below the secondary diagonal ever need be computed. For

example. AdWf and all differences upon which it depends might be computed by a series method

because the abscissae may be close. The standard formula and taking conjugates will fill out the

rest of the table. The idea is illustrated in Fig. 3.9.1.

From our discussion here, the reordered table is clearly ideal for computation by a hybrid

algorithm. We consider this for f-exp, in the next section.

example: Fig. 3.8.2 shows that reordering abscissae and computing first order differences by a

special formula may have a dramatic effect on error propagation when the standard

scheme is used. The abscissae here are

C,0 - -1.414214 :t i8.585786

- 1.412799 :t i1l.41563

C12 - 1.414214 :t t11.41421

C13- 1.417039 :t ill.41138

First order (initial) differences were computed correct to seven decimal digits. The

standard scheme was employed, thereafter, in greater precision to isolate propagated

errors. The figure compares divided differences from the top row of the table for

the natural ordering of the data points with the identical differences when the data

points are reordered as suggested in this section.

* Reordering permits many differences, for which error growth would be large by the stan-

dard scheme, to be computed by a special method. We see here with reordering that close

abscissae contribute only to first and second order differences. These first order differences do

not contribute to error growth when computed specially. However, failure to compute first
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Order Correct values to Natural ordering with
n7 diisspecial computation of

digitsfirst differences

0 (-1.624537E-1, 1.809715E-1) (-1.624537E-1. 1.808715E-1)

I ( 2.106638E-2, 0.0 ) ( 2.106638E-2, 0.0
2 (-5.2691 39E-2. 1.21 360SE-2) (-5.269140E-2, 1.21 3604E-2)
3 1 .063108E-3, 0.0 ) (1.063107E-3, 3.965390E-10)
4 (4. .1 14105E-4, 1.907577E-3) (-1.1 13896E-4, 1.907435E-3)

5 1 .671230E-4, 0.0 ) ( 1.671291E-4,-2.643648E-9)

6 (3.230809E-5, 1.838758E-5) ( 3.215634E-5, 1809E5
7 1 .611337E.6, 0.0 ) ( l.547398E-6,-3.597914E.8)

Order Reordering with Reordering without
special computation of special computation of

first differences first differences

0 (-1.624537E-1. 1.808715E-1) (-1.624537E-1. 1.808715E-1)

1 ( 2.106638E-2, 0.0 ( (2.106639E-2. 0.0
2 (-5.269141 E-2, 1.21 3605E-2) (-5.2691 39E-2, 1.2 13604E-2)

3 (1.063108E-3, 0.0 ) (1.063108E-3, 0.0
4 (-1.1 14107E-4, 1 .907577E-3) (-1.11 3844E-4, 1 .907667E-3)

5 1.671230E-4, 0.0 ) (1.671309E-4, 0.0

6 (3.230604E-5, 1.838538E-5) ( 3.203465E-5, 1.802915E-5)

7 (1.611144E-6, 0.0 ) ( 1.579928E-6, 0.0 ) }
Fig. 3.8.2: Effects of reordering data points and special computation of

first divided differences on A "exp.

order differences accurately destroys any benefit from reordering, as the numbers show.

computation of low order differences very effective in controlling error growth. In the next sec-

tion we shall see that a hybrid algorithm effects even more dramatic improvements in accuracy.

.1~--dim
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3.9 A hybrid allgorithm for Aexp, with conjugate pair abscissae.

The table rearrangement presented in the last section strongly suggests implementing a
hybrid algorithm for computing Aexp, when the abscissae are conjugate pairs. A hybrid algo-

rithm using scaling and squaring, as well as the standard scheme, is most accurate for abscissae

having imaginary parts nearly equal in absolute value, but large. Fig. 3.9.1 illustrates the conju-

gate symmetry relationships in a reordered conjugate pair divided difference table. The "" indi-

cates an element which may be computed by scaling and squaring, "x" by the standard scheme,

while "r" means the element is real.

S S S x X x r

s S S X X r X

r x x

r x x x

s s s

s s

s

Fig. 3.9.1: Relation of entries in conjugate pair table.

e A2 T!2 A124-£~

Aexp. - t  A Ad 0

e712 A?

ItI

Fig. 3.9.2: Conjugate pair divided difference table showing symmetries.

j' . .. .. . .... . .. : . .. .. . ...- ... ,r. . . I '1II IB 9 "1 u I~ m , m'14, j
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Algorithm: Hybrid algorithm for conjugate pair abscissae. For conjugate pair abscissae

C-f,+PiQ, and , with vj, >> j-0. , . n, form the divided difference

table matrix as follows:

. Reorder the sequence of data points as C-. .-- o, Co. C1. CJ and, if possible

(by reindexing if necessary), so that f o

2. Compute A oexp,. and hence each AAexp, for i-0. 1. it and k -0. 1.. .- i, by

scaling and squaring (§3.4).

3. For each i-0, .... ncompute (-i+ 1-0 when i-0)

a. on the secondary diagonal of the table

A!_,+Iexp, - I-lm(3_i,,exp,)

b. for k - 2i+2. i+n+l each Aiexp, by the standard scheme, e.g.

- k x ,.'i+iexp, - A±k7iexp,

-,-I - -,

4. Fill the remainder of the table using conjugate symmetry about the secondary diagonal.

When n- 3 the matrix in Fig. 3.9.2 illustrates the relation between various elements in a

table. (Some references to the function exp, are suppressed.) In the hybrid algorithm entries

below the horizontal line in Fig. 3.9.2 are computed by scaling and squaring (step 2), while

entries to the left of the vertical line are just conjugates of these, as indicated.

Next in step 3a of the algorithm,

exp,(Co) - exp,(ZO) I to sin (v"°)o)

A2.oxp,- - - -m[exp,(Co)J e"

This and the row immediately below, already known from the scaling and squaring step, permit

completion of the -0 table row by the standard scheme (step 3b). Then again in step 3a,

A2 exp, - ±Lm(A.exp),

and the elements to the right of Alexp, are computed by the standard formula (step 3b). For

example

AO '
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A _lexp, - A!nexp ,exp ,

Step 3 is, then, repeated until A-3exp, is computed. The remaining elements to the right of

the vertical line are conjugates of elements above the horizontal line, as indicated. The ele-

ments on the secondary diagonal (indicated by underlining in Fig. 3.9.2), computed in step 3a.

are all real.

ere., A A2 A3 -LA 3 AL3 I 13 1 A '0''2'3

etoAJ, A 71 _o o J--J1ti o 71071112. o 7107)172 A

e ?E j A' 2-A -A j I

10 o 07)1

71 71o 710 'J o 'no E

erfl A A
AtI

rfr

e Al

Fig. 3.9.3: Table of upper bounds based on real divided differences.

Upper bounds. For an error analysis of the hybrid algorithm we must first develop error bounds

on the scaling and squaring portion of the computation. Then we can see how these errors are

propagated during the remainder of the computation by the standard formula. An examination

of the upper bounds (3.7.12a-b) and (3.7.15) yields quantities relative to which we may con-

struct error bounds. For example, the table in Fig. 3.9.2 is bounded, element by element, by

t the table in Fig 3.9.3. Here we omit the function reference exp, for clarity, and point out that

the divided differences in Fig. 3.9.3 are for the real abscissae J . ,,). Our error

bounds will be relative to an upper bound matrix such as the one in Fig. 3.9.3.

I ,*



A I A

-ll 2 a I ' , ,, I E " S I 7I

271 2170 )1 1  
4h71o'ni

I e en 1 ,
e a

When the are nearly equal, but large. the error may be estimated, element by element,

by EK times the matrix in Fig. 3.9.4. The constant K depends only on errors introduced in the

scaling and squaring part of the algorithm. This result is not surprising. When the "q, are large,

the standard scheme is employed only for well-separated abscissae. From our earlier studies

there is little error growth in this case. Indeed, such separation of the data points is the reason

for reordering them, in the first place.

example: With the data from the example at the end of §3.8. namely

4±0 - -1.414214 ± 18.585786

- 1.412799 ±t it1.41563

± 1.414214 -- ill.41421

C3" 1.417039 ± ill.41138,

the tables in Fig. 3.9.5 show that upper bounds, as in Fig. 3.9.3. and estimated abso-

lute values, as in Fig. 3.9.4, describe the size of the divided differences. From sym-

metry, only the portion of each table on and below the secondary diagonal is sho'6'n

The divided differences themselves are listed in Fig. 3.9.6.

Scaling and squaring error bounds. Error bounds from our earlier analysis of scaling and

squaring in §3.4 carry over immediately to that portion of the conjugate pair table computed by

this method. The bounds are no longer valid relative to the computed difference itself, but

rather to an appropriate upper bound on this difference. A quick reexamination of the

, If ? .,,.
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Layout of tables Correct absolute values

*A2.3exp 1.61lE-6
*A!2exp i! 2exp 1.67E-4 3.72E-5

Ailexp A 41eXp Allexp 1.06E-3 1.91lE-3 7.80E-4

A oexp A loexp Aloexp hJ~exp 2.11 E-2 5.41 E-2 4.26E-2 1.74E-2

e 40 Adlexp &(?exp Ao~exp 2.43E-l1 1.08 8.54E-1 3.53E-1

e 1 A 'exp A 'exp 4.11 4.11 2.06

e4 A21exp 4.11 4.12

e 43 4.12

Upper bounds (Fig. 3.9.3) Estimated values (Fig. 3.9.4)

3.01IE-5 .. 3.76E-6

8.67E-4 3.43E-4 . 2.17E-4 4.29E-5

1.39E-2 9.90E-3 3.92E-3 . 6.97E-3 2.47E-3 9.80E-4

2.83E-2 1.59E-1 1.13E-1 4.47E-2 2.83E-2 7.96E-2 5.65E-2 2.24E-2

2.43E-1 1.37 9.70E-1 3.84E-1I 2.43E-1 1.37 9.70E-1I 3.84E- I
4.11 4.11 2.06 4.11 4.11 2.06

4.11 4.12 4.11 4.12

4.12 4.12

Fig. 3.9.5: Example of bounds and estimates for conjugate pair

divided differences in Aexp.

derivation of scaling and squaring error bounds will show this. We study only the double preci-

sion accumulation case, as the argument is exactly the same in the single precision case.
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Scaling and squaring bound. Consider only the non-conjugate portion of the sequence of

abscissae, namely {Co. C 1. .... c,,4. For double precision accumulation of inner products,

LfZ2(Aexp,) - Aexpj 4 E[KZTe- lI-Axexp,, (3.9.1)

where K2-8.3259, 9 is the maximum spread in the abscissae, and Axexp, is the related di-

vided difference table whose abscissae are X-{ Re(C,). j -0. i). For single precision

accumulation,

[fL(Aexp,) - AexpI < e(n+l)[jrG-I].Axexp,, (3.9.2)

where K- 21.2950.

proof: We first compute a scaled divided difference table by the Taylor algorithm. The expan-

sion point a may be the center of the smallest circle enclosing the data points, and the spread 9

is the diameter of that circle. Let the data points be ordered so that the real parts satisfy

o4, I< " 4 f,,. Because exponential divided differences with real abscissae are increasing

in each abscissa, we have

n- Ae"oeXp"

and

7 e < Iler~o+@/2 ero/2. 710 < ero!2, 11 ....( -e " -. e'° 2/ r e?o e°'^xp"

In Appendix B we derive the error bound

lfl2(Aoexp,) - Ao"exp,. e(2 + .0/2)erl
/2 '  ': I

Therefore,

VL2(Aolexp,) - A&'exp, < e(2+r@/2)e'?.A('exp,. (3.9.3)

The Taylor series error bound (3.9.3) applies to every element of the divided difference

table. The error in the original scaled matrix in scaling and squaring, then, must satisfy the

matrix inequality

.-A(Aexp2 ,7 ) - AexpP2 , 4j e a(2 + 2-( r)e2- -A xexp,(3.9.4)

I4
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where 2-' is the scaling ractor!t The subscript X indicates the divided difference table matrix

A~xexp 2 -., has real abscissae X- 0. .

For

the error in each element of ./12(Aexp 2.4,) is bounded by to, times the corresponding element

of A (eXP2.,?. This P, is exactly that used earlier in V3.. For any complex matrix 8

Also bound (3.7.15) yields

I&eXP2 -,4 AXeXP 2 1;

hence,

"I Ap,..,12 '< AXeXp 2.r,-1i,.

The same argument that led up to (3.4.9) gives

Lfl2(Aexp,) - AexpI < e[2'(f,+ 1) - ll-Axexp,,

where 20(, + 1)- I is the same as in (3.4.9). It is minimized in the same way. For jthe smal-

lest non-negative integer satisfying (3.4.10), namely

2-r 1.3292,

we obtain

Lfi2(AeXP,) - AeXP,I 14 E[K2T9- lj'AXeXP,

where K2 - 8.3259. The same argument shows the single precision bound is (3.4. 15).

M~e malrix bound (3.9.4) does not hold, rigorously, when Aexp2-,r is backfilled from
its top row. This is because

At-lexp, < Atlexp, + IC,+k -C,b-AAeXPr

when q,+k. d 71, If the Taylor formula is used on the entire table, (3.9.4) does hold.
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Relations (3.9.1) and (3.9.2) mean that the error in complex exponential divided

differences, relative to corresponding real divided differences, has the same bound for scaling

and squaring as in the exclusively real case.

Standard scheme error bounds. When all the imaginary parts 71,, j -0. 1. it, are large and

nearly equal, the portion of the table computed according to the standard scheme satisfies the

following error bounds.

Standard scheme error bound. When each -qj, j -0, 1. n, is large compared with n/r,
A

Lfl(A 34,xp,) - A +'exprlI < CK(]f[, )-'.A,/-'exp, (3.9.5)
,-0

for each k -0, 1 . n and/- 1, 2 .... n-k+l. K is one of the scaling and squaring er-

ror coefficients K270- I or (n+l) [KIrO - 11, depending on the arithmetic used.

The recursive nature of the standard scheme makes it easiest to describe bounds on the

propagation and growth of errors in terms of examples. Also, this will make clear what large

compared with n/ means. Errors introduced in the scaling and squaring portion of the compu-

tation of the table in Fig. 3;9.2 are propagated during the computation of the remaining

differences. We bound these errors relative to the table in Fig. 3.9.3.

From (3.9.1-2), depending on our arithmetic assumptions,

Lfl(,Lexp,) - Aoexp, I < EK.AAoexp,

for each k -0.1 .... n. To keep the analysis simple we forget that all zeroth, and even first,

order differences may be computed specially with a smaller error coefficient than K. The

difference Aioexp., --e' in Fig. 3.9.2 is computed with an absolute error 8 -fi(e 'C) -e "'O

such that 1A8 < eKe"40. Now,

&2exp, - 1lm(AOexp,);10o

the propagated error 8-10 satisfies

er'o

11o



112Since 1()exp, isi computed by scaling and squaring, its absolute error fio satisfies

18,1 < EKc1A',exp,. By (2.4.3) the propagated absolute error in the computed Auexp, is

thus

EI4expK + It AE0  (+
4- < C ) l 71

where bound (3.2.3) is used on e ' . When 7o ", and 7)0 is large compared with I/r,

no0+ h/r _

or is even smaller than /2 when the difference in the real parts I - -o is large. 8-j satisfies the

simple bound

18_ol = If(Al2exp,) - iloexpI < 6 E-h40 exl
710

One more step makes the general case (3.9.5) clear. Since I8 1 < EKAfexpr by scaling

and squaring,

fpexp , + -iflexp,

18J < I 2 - 4-01

70+2/7 ' ,
[ t .< .-;--):-- e --A exp, .

• 'l)t) -- -;) 7n

Thus when 7io ? = :n,, and -qo is large compated with 2/-r,

q)o+ 2/r" IIC2 -- 01 2'.

and again we have the simple bound

18o 1  fl(A&±exp,) - Aloexp,] ' E--2.kexp?.
10

LAI

~ AL.



By continuing this process. (3.9.5) can be checked.

When the r, are large compared with n/, the coefficient of 1/2 that appears above sug-

gests the assymptotic estimates for the divided differences, as in Fig. 3.9.4.

Estimated error bounds: When each 71, J,-0, 1 . ... i, is large compared with 1/r,

1./(A_4j1exp1) - A_'exp -- EK2-&(f,),)-A., exp, (3.9.6a)

'_0

and

fl(A- exp,) - A 2A expJ - eK2-+"(H,,,)I-1,,k+1-1exp, (3.9.6b)

for each k -0, 1. it and - 2 . . -k-I.

(3.9.5) shows that eK times a matrix like that in Fig. 3.9.3 bounds the error. (3.9.6a-b)

indicates that EK times a matrix as in Fig. 3.9.4 is a good approximate bound. The elements in

Fig. 3.9.4 are the estimated values for the conjugate differences (3.7.14). These are good esti-

mates when the 71i are large; hence, a bound using them is nearly a relative error bound.

Because K depends only on the scaling and squaring, the standard formula portion of the hybrid

algorithm does not lead to error growth, which is the purpose of reordering the data points.

example: The data from the previous example, namely

;,0o- -1.414214 ± i8.585786

,, - 1.412799 ± i11.41563

12 - 1.414214 ± i11.41421

- 1.417039 ± /11.41138,

generate the divided differences shown in Fig. 3.9.6 (only half the table is exhi-

bited). The data were generated by assigning each C, -a +pe , 1-0, 1.2.3. and

rounding to seven digits. ot-lOi, p-2, and 00--37r/4, 01-r/
4 +0.001, 6,- -r4

and 63 - ir/4 - 0.002. This yields both closely clustered and moderately separated

data points. The arithmetic is seven digit single precision, so condition (3.4.14) with

spread 0 -4 gives j -2 squarings. From (3.9.2) the error coefficient is

K a (3+1)[xK.4 - 11 := 337.

In Fig. 3.9.5 the estimated bounds are very close to the true absolute values of the

o .. . -



divided differences. so sc indicates a loss of, at most, 2.5 decimal digits. This xc is

clearly excessive. Indeed, the double precision coefficient

iK j2-4 -l I =32.3.

giving a loss of' about 1.5 digits, is also larger than the results in Fig. 3.9.6 warrant.

Differences correct to seven decimal digits

Row Index Divided difference table

4 -1 1 .063108E-3, 0.0
-0 (2.1 06638E.2, 0.0 ) (-5.269139E-2, 1.213605E-2)
0 (-1.624537E.1, 1.808715E-1) (-3.7063I0E-1,-1.019594

I ( 1.675059 ,-3.750361

-3 ( 1.611337E-6, 0.0
-2 (1.671230E-4, 0.0 ) (3.230809E-5, 1.838758E.5)
-1 G 1. 114105E-4. 1.907577E-3) (-2.524930E-4, 7.375033E-4)
-0 (-4.248672E-2,-2.S40785E-3) (-1 .694748E-2.-3.8529 58E-3)
0 (-1.220463E.1,-8.447846E-1) (-1.342108E-2,-3.523S10E-l I

I ( 1.673579 ,-3.754205 ) (8.35SS60E-1,-1.880302)
2 ( 1.672096 -.3.758050 ) (1.669130 ,-3.765728
3 (1.666154 ,-3.773412

Differences computed by hybrid algorithm

Row Index IDivided difference table

-1 ( 1.063106E-3, 0.0
-0 (2.106639E-2, 0.0 ) (-5.269139E-2. 1.213603E-2)
0 (-1.624537E-1. 1.808715E-1) (-3.706307E-1.-1.019594
1 (1.675059 *-3.750361

-23 .722E4 . 1.611334E-6, 0.0
-2 1.61228E4, 0. 3.230808E-5, 1.8387154E-5)

-1 (-1.114093E-4, 1.907575E-3) (-2.524923E-4, 7.375030E-4)
-0 (-4.248669E-2,-2.540757E-3) (-I.694747E-2,-3.852943E-3)
0 1(-1.220468E-1.-8.447842E-1) t-1.3)42I32E-2,-3.S23509E-l)
1 ( 1.673576 *.3.754205 ) (8.355546E-1.-1.880302)
2 ( 1.672096 ,-3.758050 ) (1.669127 ,-3.765729
3 (1.666154 ,-3.773412

Fig. 3.9.6: Conjugate pair exponential divided differences.
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Exponential divided differences with real abscissae are accurately computed by a hybrid

type algorithm. This idea of decomposing the divided difference table into blocks, each best

computed by a particular method, may be extended to additional cases, such as conjugate pair

exponential divided differences. Indeed any sequence of abscissae which readily decomposes

into well-separated clusters is well suited to the hybrid approach; and the idea need not be res-

tricted to exponential divided differences. Though scaling and squaring does not work in gen-

eral, the function may possess special properties which are exploitable through representing its

divided difference table as a matrix function. The series algorithms are still applicable for

clustered abscissae. Certainly many extensions are possible, only the simplest and most basic

have been dealt with here.

Our original intention in studying divided differences was to find a quick and accurate way

to compute the matrix exponential. We have always kept in mind the Newton polynomial

representation and techniques appropriate for computing matrix functions. The techniques we

have employed, scaling and squaring, the standard divided difference recurrence, Taylor series,

and decomposing the table to apply a hybrid algorithm, all have analogues appropriate for com-

puting the exponential of a matrix [Moler and Van Loan, 19781. Indeed, it was these analogues

that suggested many of the approaches pursued here. Thus our study of divided differences not

only aids in computing more general matrix functions (the Newton polynomial), but it also pro-

vides an indication of difficulties that lie in wait in matrix function evaluations. Precisely

because divided difference tables are matrix functions, a full understanding of methods for

computing such tables is essential to an understanding of functions of a matrix.

tI



9A.I I16

Appendix

A.1 The Newton divided diference series.

For those readers who may be unfamiliar with divided difference expansions such as

we present here a convergence proof sufficient for our purposes. Similar expansions are stu-

died, for example, by Gel'fond [19711, but they are not quite what we require.

A simple derivation of the Newton divided difference series is obtained from the contour

integral formula (2.1.13)

A". iC f(w) dwa2vif =" (w -ao) (W-a I) ... (W-)"

Our proof follows a method commonly employed to establish the convergence of complex Tay-

lor series. The Taylor expansion of f, of course, is a special case of the more general Newton

expansion.

We begin by deriving a Newton formula with remainder. The expansion points are the

abscissae of the divided differences which are coefficients in the expansion.

Newton divided difference expansion with remainder. Let A,, (ao,a . a, be a se-

quence of expansion points and let .f be holomorphic on a simply connected region D con-

taining A,,. Then for any simple closed contour C in D enclosing A,, and a point C.
i - I

f -() - ',Ajf.I (;-a ) + R"(4)
k-O J-0

where the remainder

R(0- jLf (- 'd.

proof: From (2.7.5) where p,(c) m II(c-a),
J-0

"n.~in() -a,) C) -(-
)- 0 1-

2" f
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- :(J(4-a,)- (W-adl.
A-f I.-f i-4 +1

Dividing by p,,+I(w) and rearranging yields

A01 A-I 1. 
-ZII(-,,)'(,,-a,,)-' + ,l( -a,)((a-a,)'1.
A-0 1-O /-0 _0

By Cauchy's integral formula,

)- 2JJ(o-0'./'(c) dco
2vC

A-0 i c 1-0 1-

A-I
- ~.~o4.fll(-a) + R,,(.

k-0 J-0

When A,, consists of the eigenvalues of a matrix A,

- f f(,)dj

XA (a) fl( - a) is the characteristic polynomial of A. When f is holomorphic inside and on
, -0

C, the integral is bounded in C. R,,(A)-O by the Cayley-Hamilton theorem, thus establishing

the Newton polynomial representation of f(A) for holomorphic f

We need only show that R, (C) -0 as n -,oo to establish the Newton series formula.

Newton divided difference expansion. Let A:- ,aa2,...) be a sequence of expansion

points and suppose only finitely many points of A lie outside a circle of radius e about a

point a. Suppose further that f is holomorphic on a simply connected region D containing

A and a disk about a of radius p > 2e. Then for all C such that IJ -al < p-2e,

f( " - EA ll( -aj).
A -0 /-0

proof: Select a simple closed contour C in D enclosing A and such that

pc E injwal> IC-al +2e.

jvet
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Because f is holomorphic on C. there exists a constant K such that If (W) I < K for all a. ( C.
Let ME fj I-E < Ia'aI. j-O. 1. 2....)I and let it be the number of elements in M. Since it is
finite,

a(C max (l, max max
I(M 40(' -Ia-,I7

exists. C was selected so that a, d a, for any . C was also selected such that for all w. E C

Ia.-CI > lw-al - kC-al > e

and

4 -Y+ E(C) <

for all j E M', the complement of M. Thus

_C. iEMj; /a-aI E a-,-Fu

where L is the length orfC. Then as n - , R(C) I-O. 03

On every closed disk IC-al < p' where p <p -24, the series converges uniformly to f
p may be chosen as the radius of the largest open disk about a in D. When the sequence of
expansion points (aO, a1 ,a2 .... ) converges to a, the e of the theorem may be chosen arbitrarily
small. Convergence of the Newton expansion may then be clamed for all C such that

tIC < p. In particular when all the expansion points are confluent at ar, the Taylor expan-3 sion of fappears as a corollary.
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Taylor expansion. Suppose ./'is holomorphic on a simply connected region D that contains

a disk of radius p about a. Then for all C such that ] -a < p,

,'ok!

proof: Recall that 11f-. (&(a)/k! for confluent abscissae. 0

It should also be noted that because f is holomorphic on D, the theorem applies equally

well to any derivative of .f

Li

I

it,

.....r, . . . . " t.I . ...
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A.2 Divided difference expansion of matrix functions.

The results of the previous section will now be extended to functions of a matrix. For a

(n+l) x (,+1) matrix A, the matrix function .(A) has a Newton series representation when

A's eigenvalues all lie inside the series' circle of convergence.

Newton divided difference series for a matrix. Suppose .f has a Newton series expansion

(as in §A.1) on the disk Di,- (m I p- 2* > 14 -al). Then if every eigenvalue X, 0 i n,

of A lies in D,,,

f(A) - FAofl(A (-a,
A-0 1-0

proof: For any (a 0,, 0 < i < n, the matrix (W.i - A) is non-singular and

~ A-I A Ii A -c i1
(W-A)- TL-(A -aj 1 )'[[(,-a)- + ]I (I-A)-'.

k-0. 1-0 i-0 -0 c -ai

By the Cartan definition (1.1.7)

.'(A) - iff(oJ)(caI-A)-Idw.

The simple closed contour C is selected such that it encloses all the expansion points and

Pc ---- min -al > max IX,-a1 + 2e.

Then

f(A) - :A~f-fl(A -cztI) + R,,(A)A ,-0 i'O

where the remainder

R,, -a-)

2irc J-.0 Wa

To complete the proof, we need only show that in some norm II R,(A) II-0 as ff ..

Define the set M as in the proof in §A.l. Thent

' Il811l.- max ItlbAl.
0((0

* ps-~
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2w /(M 12 W-a,

The curve C has finite length L. For all w E C,

If( )I 1 K

for some constant K because fis holomorphic on C, and

11(w/-A)-Ill. 4 K'

for some other constant K' because C is bounded away from A's eigenvalues. The constant

max l, max max 1 A -ail.
.,EM wEK W-1,

exists because M is a finite set and C does not contain any a,. For all j E Mc each eigenvalue

,, of A, 0 < i < n, satisfies the inequalities

jX,-,ajl IA,,-a1+E _,,-,_+___

max max = < 1.
.C IW-aPj c-e o0,, Pc-e

Let A p-VP where the upper triangular matrix J is A's Jordan canonical form. Then

A -aM l "i-aal
iEW(aM x iEM¢W (a-Cj

pD" [.1 D-JD -*D,! D-p
jEMC aj~

where D -diag(l. , 72 . . ). q > 0. Taking norms,

S A -ail D-'JD - aj I
[I l'[~ ~ -"-1.l Ila*DI-'1 D-1PI.[ II D-l ll*.-

JEW (d -a jErii  (a Ja

For any j E M e

II D-'JD I- max x +
W - ,,' o (,(n iw -- l j

~ '+ ...2. a 7 <1
PC -
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for all 1< (p(.-0)( - y'). Thus

II A -a,/I. K "--
&)M W-aj

where the constant K" IIP-'DII I-'PII. for some fixed , < (pc-0)(1- f). Combining

these bounds yields

I R,,(A)fI.. ( T--KK'PK"VI-'.
2v

and IIR,,(A)II.-O as n- . 0

W4

I.,

jg)
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B. Error bounds for a Taylor series computation of Aeexp,.

The Taylor series is one of a number of proposed methods for computing Ao exp,. It

involves no previously computed divided differences; so its study does not concern propagation

of errors, but just computational errors. Here we develop error bounds on the computation of

Aod'exp by a Taylor series and demonstrate that the method is best applied when the abscissae

are closely clustered.

In §2.8 Ai'exp,, with real or complex abscissae 1(, . . . .4,J and r > 0. is shown to

have a Taylor expansion about a

Aj'exp, :( + A "£ , .,.o (n+J).
i-O

where the power function T" is T "+(C) - _a)", j-0, 1.2 ..... It is convenient to consider

the shifted abscissae (o-a. i-z. C,,-a) exact; the numerical effects of shifting abscissae

are discussed in §3.6. With

8 S max kc,-al, (B.2)

the bounds we obtain resemble

FRLf(Aonexp,) - AoexpJI 4 ge ' 7- I

where 1L represents a coefficient dependent on the arithmetic details to be introduced shortly.

fl(A0'exp,) represents the computed floating-point value of Ao'exp,.

The Taylor series algorithm outlined in §3.3 requires many inner products. We consider

two separate conditions for bounding round-off error accumulation in inner product computa-

tions!t

ii, I. Double precision accumulation. The error in the computed inner product 12 (0,10,)

satisfies

L92(la* ')- Iatif 4 4,,l fpl,. (B.3)
,-O 1-0 ,-0

tSee Wilkinson (19631 for a general treatment of rounding error analysis.

I'

* *t
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where e M 1.06 x (machine precision). e is assumed so small that any 0(E2) expressions are

negligible when compared with expressions linear in e and may. because of the arbitrary 1.06,

be absorbed into such linear expressions. Error condition (B.3) holds for double precision

accumulation of sums and inner products. It does not depend on the number of terms summed

and leads to simple illustrative error bounds. Additionally, we assume the series coefficients

rP+' r,,( n +P) are all calculable to machine precision, namely

(n+j)! (n+j)! (n+j).4

2. Single precision accumulation. The second condition applies to single precision computation

of all quantities. Wilkinson [19631 shows that

LM 'A#,)- F..o,,l,4 e(n+l)j- 0o01 + (,+2-;)la,Pjj].

1-0 1-O I-1

We simplify this to the more convenient

el I,

LAIa,fij) - .. , e (n+2-i)-,13,l. (B.5)
-0 i-O -0

In addition, we assume the series coefficients are evaluable with no more than five rounding

errors (say, errors in the evaluation of r" ', et7, and (n+j)!, plus a multiplication and a divi-

sion); so

(B.6)

Bounds derived from (B.5), though more complex, are more generally applicable than those

from the first condition.

13 We start by deriving bounds on divided differences of power functions.

Lemma 1: Forj- 1,2....
iAQf +! 8i ?+) , k-0,1,... .,n. (B.7)

proof: From the recurrence (2.7.8),

.'I

- *,

J+

. . . . . . .' . . . .. . . . .: " . . . . . ' I ' ... - - " : , " .. ,
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" (CA -a)'A I - + (A '-1 -. 'I. -t 2 + A +A2

k

- --

Forj-1. =OA A+ '(C-a) andso

< (k+l)8. k-0, 1,.

If for some j >!

* j -!< (j+k-l)! -

k! (j-l)

for each k -0. . n, then since A k A 1+ .-,C,- of) -A ,

___+__ A (j+i--l)! . (j+k).
1,+ <(j)! k!j!

i-0

for k - 0, .. n. o

We now give bounds on the error in fl(,k0 4[ + k) for each k and j. When the error is not

too large,.( I,+') may also be bounded as in Lemma 1.

Lemma 2: Let AO'Ao be computed according to Algorithm I of §2.7. Then for each

j1.2.... and k-0.1...... ,

L/f2(A°lt'+) - Jift+AI <  (iik)! "jE8 (B.Sa)
4! ' k

for double precision accumulation (B.3), while for single precision accumulation (B.5),

fAk) (j+kl)! + (- (j+k)! (B.8b)
k! Q+U! Vj!

proof: For (B.Sa),

AW(&T.") - ht. 41 ! I <,e.C (k+l)8, k -0,1.

by (B.3) when j -1. If for some j >

,

-'...I . , o- -,--

~ ~ ~*
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LI~f2 AAoI ) - &AIA-I< E8gsj~-1)

, 0 k! (j-2)!

for each k -0., I t. , then

A A

If,,(.ka~r,+) - Ao~t "LA , LvIc(,ar - -W-'
,-0-

1-0

< Tg' + -(7-2)! iI! +

(j+k)!
' k! (Q-l!"

Similarly for (B.8b), when j - 1,

[fl(' 'Ol i a 4 eT.(k+l-i)IC,-aI
-0

(k+2) (k+ ) k- , 1, . n

by (B.5) modified slightly to reflect that AoA14'+ is just a sum. Now if for some j I 1

[flu ( o,+A -- 41 +I " -1 E8'1+,J-k-) +

0 o < k!j! + Q-2)'k ( -)!

for each k -0. 1 . n, then

I1l(A A/+A) - AAi.,+AI e {k+2-i) At, -/Ifi(Adt11'-)I
1-0

+
1-0

< es..[(k+2_i ) (ji-l)! i! j! (,-2 Q, -I!

J+k+ l)! +(j-D ()---I C-
• =Q D0.4 ! + -- k!j!

,
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Theorem: In computing A6'exp, by a Taylor expansion about a, the error is bounded by

L/#2(An'exp,) - Ao"exp,I < eeA(2+rS) T le '
a (B.9a)n I

for double precision accumulation (B.3), while for single precision accumulation (B.5)

l//(Ao'exp,) - Ah'exp, < e(m + n + 7 + r8)e hT, (B.9b)n!

where t??+l is the number of terms actually summed in the expansion.

proof: Let Aos,+,, -- PL,+j" Ao#)I," be partial sums of the Taylor expansion (B.1), where each
i-0

coefficient 3,,+, r"+'e"u/(n+j)!. The error is bounded by four terms,

Lfl(A6'exp,) - A expI Lf(A'exp,)- ,ft(/3,,+, )f(AoT, ")
I -/

+ I~lInf(~T~ ) - I.,+P 0  
+)1

j-O j-0

+ IAo'S,,+,,,- AO exp,I

I + II + III + IV.

We bound each of the four terms separately. In addition we note that

fl(Aol*exp,)----f,.,(,,)f(oT*'.

2 Double precision accumulation (B.3): By (B.3) and (B.7),

I M r"f2 ',+)Ji(A':~ ~E ~IeIl (n+j)'8'
i-o j-o (n+j)! j

n! X n! '

By (B.4) and (B.7),

AO
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II

< I

,T. 11,/I12 (Ao, O 1 < .!
I-0

And using (B.8a),

lin < EI,,+,I i,,'" t:""')o, - Ad't:+Jl < (nT*q'l 9+S)'5J

< E

,-o(1 +- ntj)! n! (Q-IIP

,-I -, -- tA Ie

We may ignore the truncation error IV because

IV < I zp3 , , +,, - 1, .- ,,t,,+j
.- 0 J-0

~ ~ ~~ t re,,t,., 00 ,< 7ofile j . '
inel

is negligible for in large enough. Summing the bounds, then, yields (B.9a).

Single precision accumulation (B.5): The same steps are repeated for (B.9b). By (B.5) and

(B.7),

.,.,+1Ioral (n+/)! 8.

I <, e (tl+2-j)i(A,,,)LL/( oT 1 < (/-0(m+ a j (n+j)! j

, n! '- -0

- E 1 Lm+h-JJ_---i-..

In the same manner as before, by (B.6)

1145te'?ee I!

By (B.8b)

III .I Lf.,I(A"T1 -4 0 - j't r+'Jj-0

J''er'I .(/+R+I)!, + (j-1 (j+n)!-
,. (n+j)! "! -(1+ 1)! + !] - . 1

'i

.-- . -
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-I- I

and so

r"ler"l opt '
i+ 11I< 6 E ,, J (m+l+ .- A+j)!. -n!. 0t- J+I J!

jl
A e t + n + I + r8 ) e a le S a t

Finally, we choose ?n so large that, say,

j-4+ J e (B.1)

From the discussion earlier for IV,

IV 4< te'a I

Summing our bounds on I + Il1, II and IV yields (B.9b). 0

r"e"/n! is iAoexp, for abscissae confluent at z, the bounds (B.9a-b) make clear why the

Taylor series method is best applied to closely clustered abscissae.

Relation (B.10) permits determination of m when a particular f and r8 are given. For

example when E - 10-7 and r8 < 1, (B.10) yields

.7 -( Ee' -= 2.72 x 10-.

The smallest value of m for which this inequality holds is m 10. And when e 10- 14, the

' smallest m is m - 16.

' 1



C. Decision criteria for the hybrid algorithm.

Double precision accumulation. In §3.5 we found that the decision criterion re, for the hybrid

divided difference algorithm, with double precision accumulation (3.3.3), satisfies the

recurrence (3.5.2)

(K27@,, - I) - (x2r,,_. - ) (I + 2n/TO,,) - 0 (C.1)

where orQO 2/K 2. This recurrence has no simple closed form solution for to,,. However it is

possible to give a simple bound on TO,,.

The recurrence (C. I) is quadratic in rO,,; thus

tO, - Iro,,_, + /(rO,,_,)2 + 8n(r@,,-_ - 1IC2)1 (C.2)

is a rearrangement of (C.1) where ro,, appears explicitly. We attempt to bound rO,, for every n

by finding a function in n which satisfies a majorizing recurrence. A little exercise in complet-

ing the square gives

n (n+1 )+2/uC2 - !In (n-l)+2/1C + [n (n-)+2/,(22 + 8n [n(n-1 )+ 2/ 2-1/2] + 16n 2+ 8n/w 2 .

which is nearly the same as (C.2). Since TO00 - 2 /K2, it is clear that

t, n(n+l) +2/;r2 (C.3)

for all n >, 0 and any Kc2 > 0. Also in a similar way,

n(n-3) - 2{(n-I)(n-4) + .V[(n-l)(n-4) 2 + Snf(n-I)(n-4) - /K 2 + 16n + 8n/ 2 .2

We compare this with recurrence (C.2). For the value of #2-8.3259 derived in §3.4, we find

that O 7 -237.85 < 17.(17-3)-238 from the table in Fig. 3.5.3. Thus TO,, < n(i-3) for all
n >l 17. However,

"(n-4) -l{(n-l)(n-) + ./[(n-l)(n-5)12+S [(n-1)(n-5) - I/ 21-4n2 +40n + 8n/c 2I.2

For iK2- 8.3 2 59 , -4n 2+40n +8n/ic2 < 0 when i ; II. Since reo 0-
7 2.02 > 10-(0-4) -60,

rO, > n(n-4) for all n )t 10. Combining these two results yields, for n ;0 17 and O€2-8.3259,

that tO, is bracketed by

I

-9

L " all_______
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n(n-4) < r9,, < n(n-3). (C.4)

Single prerislon accumulation. The decision criterion r#. for single precision accumulation

(3.3.4) satisfies the recurrence (3.5.6), namely

(i+l)(Kj70,,-D! - n(scj-r1.-j- I(l+ 2n/-r#.) 0 . (C.5)

This is also quadratic in 70,,; so we have the equivalent recurrence

0,- (GnI I (nr,,-,I,+ 1) +-./(wlnr9,_t..I)2 + 8Ktn 2(n+l)( 't,- I)1 (C.6)2Kz (n+i

in which rO. appears explicitly. Initially re I-3/21.

For 0o = 2n2/3 + (3/2w ,-2/3) n, we find by completing the square that

' g(1) 1(wtno,,_,+ I) + J(w~nu,,_..+lI)2 + 8wtn(n+)(wo,,,-) + ,,) (C.'7)o,-2#gt(n+l)

where r,,._,-12(n-1) 2 /3+(3/2K,-12/3)(n-I) and

4 ,.3  9 16w1  4 " "K
v,, - 4# (n+1)1(2+ + ("O'I 9-- + )n 2 + ( - )n).

3 4K, 9 3 3 2#c

a,, was chosen so that o,-3/2K I, -r@ I and P,, > 0 for any K1 > 0 when n >2. Comparing the

recurrences for o,, and rO,, shows that

.oe. -n2 + 2 -- n (C.8)
3 2ec1  3

I. for, > 1.

To bracket rO,,, for large n, o., 10 n (2n-S)/3 satisfies the recurrence (C.7) with

,,, -,4ic(n+l)((2wt+.i)n2 + -14.

A check of the first and fourth columns of Fig. 3.5.4. which has O1 -21.2950, reveals that

3.16-094<a4-4. Thus rO,,<o-. n(2n-5)/3 for all n ; 4. Similarly, o,, a 2n(n-3)/3

satisfies the recurrence (C.7) with

,- 4xa(n+I)-±- n3 + (4,_+ )n + 2n).

9
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When n >, 10, P',, < 0. From Fig. 3.5.4, 12.2-rgls > ali- 120. Thus r9. > 2##(nu-3)13 for

it >, 15. Combining the two bounds shows that r@., is bracketed by

2 1-2n < re., < ln'-- 7 n (C.9)

for it >, 15 and K ,21.2950.a
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D. Numerical examples.

The tables on the following pages illustrate the example in 13.6 of the hybrid algorithm
with clustering. The first table (3 pages) is the hybrid computation in single precision for r - 1.

The correct seven digit divided differences are presented in the following table for comparison.
The two following tables exhibit in a digits lost (logi 0) form the actual relative error and the

results of an a priori error bound computation. The data in these tables are summarized by Fig.
3.6.3. A second set of tables for r - 2 then follows (see Fig. 3.6.4). Finally for comparison,
the table for r - 2 is recomputed by scaling and squaring only (Fig. 3.6.5). The abscissae are
listed to the left of each table. The computations were performed on a PDP- I I computer.

which has a precision slightly greater than seven decimal digits.
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