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Quasisteady Viscous Flows

I Introduction

In an earlier paper [I] the author showed the following:

In an internal region of the flow where significant variations

occur only over many mean-free paths, the viscous terms of the

compressible Navier-Stokes Equations provide only a small pertur-

bation on the forces described by the inviscid equations. This

conclusion, although consistent with known results concerning

strong shocks and thin boundary layers, presents difficulties

in regard to incompressible flows. In [I1 the following was

stated:

... there exist many calculations, with the incom-
pressible Navier-Stokes Equations, in which the
viscous effects are pronounced and yet significant
variations occur only over many mean-free paths.
The analysis of the present paper indicates that
the use of the time-dependent incompressible
Navier-Stokes equations in these situations is
totally unjustified.

However, no resolution of this problem was offered.

In later work [2,3] the author considered atmospheric inviscid

flows. The atmospheric problem is not unlike the incompressible

boundary layer situation: The hydrostatic assumption in atmospheric

models is much like the assumption z = 0 of incompressible models.

In [2,3] the approach was to use quasisteady analysis to obtain

simplified mathematical models whichare, 1) consistent with the

scale of the physical problem, and 2) consistent with the original

mathematical model. The results of these investigations leads

one to conclude that quasisteady analysis is both valid and useful.
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In order to use the approach of the atmospheric problem, it

is necessary that the mathematical model consist of a system of

first order hyperbolic partial differential equations. For viscous

flows such a model exists in the form of Cauchy's Equations if an

appropriate specification is made for-the viscous parameters.

The purpose of the present paper is to apply quasisteady analysis

to Cauchy's Equations, in which relaxation equations are used

to model the viscous terms.

Section II considers two relatively simple situations , both

of which will be needed in the later analysis: 1) a single hyper-

bolic equation with a forcing term, and 2) the non-Fourier heat

conduction equation. In Sections III and IV quasisteady models

are obtained from Cauchy's Equations of motion for, respectively,

the one-dimensional and two-dimensional cases. Section V considers

the problem of specifying boundary conditions. In Section VI

application is made to boundary layer situations for both the

compressible and incompressible cases. Some conparison is made

between these models and existing models. Finally, Section VII

discusses several analytical and numerical solutions to the in-

compressible case.
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Section II: Examples Using Quasisteady Analysis

Two examples are considered in this section. Both will be

needed in the later analysis of the viscous equations.

A) A Single Hyperbolic Equation with a forcing Term

The following equation is to be considered:

Ot + Cox = f(o, x, t). (1.1)

Two distinct phenomena are involved in this equation:

(i) The hyperbolic effect - through c, the "sound speed",

information is transmitted from the boundaries to

interior points of the region.

(ii) The forcing effect - the forcing term, f, does not

transmit, but rather "creates" information as a

point source.

Each effect occurs at its own rate. Our specific interest

was in the consideration of quasi-steady situations related

to these rates. One typical special case of eq.(l.l) is the

following:
0-0o

e + cOx = t (1.2)

where c, 00, and tI are positive constants and 0 < x < L. The

characteristic curves of the hyperbolic system have slope

dt = 1 Thus, a unique solution is determined by initial data
Ux c

and a boundary condition at x = 0. Considering only the boundary

condition,

e(t,0) = el(t) + 60, (1.3)

the solution for t > 1 can be written as,
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x
-(t (c-) C (t + (1.4)

0,x) =e Ct 1( 0*

Suppose first, that the hyperbolic term is dominant. That

is, assume

L << . (2.1)
ct1

Also, suppose the boundary data varies slowly. That is, assume

1e1(t) - 0 1 (t -)I is negligible for all t. (2.2)

(This assumption was also important in our earlier work,

[2, assumption (2)1). Then, from eqs. (1.4), (2.1), and (2.2),

O(t,x) - 61 (t 0) e0- o1 (t) + 00. (2.3)

Returning to eq. (1.2), the quasi-steady solution is,

0-0

a - t0 or 0(t,x) ~ 0l(t) + 00. (2.4)

Thus, assumptions (2.1) and (2.2) lead to a meaningful quasi-

steady solution.

Suppose next that the forcing term is dominant. That is,

suppose

L >> . (2.5)
ct

1

Then, from eq. (1.4), 8(t,x) ~ 0 except near x = 0; at x = 0,

e(t,O) = 81 (t) + 0. We see then that the dominance of the

forcing term produces a boundary layer effect unless 6,(t) = 0.

Furthermore, in this case a quasi-steady solution would not be

valid near the boundary. If 81 (t)- 0, the solution is simply

x - 0, or 6e = 0 . The latter situation will arise in the study
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of the pressure equation in Section V.

B) The Non-Fourier Heat Conduction Equation

The heat conduction equation,

Tt = kTxx 0 < x < L, t'> 0, (3.1)

involves the assumption,

q - kTx . (3.2)

That eq.(3.2) is a quasi-steady equation is a fact that was

heavily emphasized by early researchers (see, for example,

Maxwell [41). The following non-quasi-steady equation, or

non-Fourier equation, has been investigated by various people;

see, for example, refs. 5 and 6:

Tt = - qx
(3.3)

ti 11

In vector form we obtain:

Vt = AVx + BV,

(3.4)
T=) = 0 -l B 0 0V A = (-k t I  0 1).

qi

Eqs. (3.4) and (1.2) have the same form. Letting

c2 k
C - tl , (4.1)

the matrix A has eigenvalues ±c with corresponding character-

istics of slope - . Also, the matrix B has the eigenvalues

0, It follows, then, that both characteristic speeds for
,t.
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the hyperbolic system have the same magnitude, namely 1; however,
C

the forcing term always has a zero eigenvalue, although the other

may become large. As in eq. (1.2), it is first necessary to

compare the magnitudes of c and tI.

Eq. (3.4) is very interesting and was studied in some depth.

Complete details will not be given here. A major difference

between eqs. (3.4) and (1.2) is that in the latter c and t

can be considered independent quantities while in eq. (3.4) they

are related through eq. (4.1). There are three time scales to

consider:

AtI = tl: forcing term scale, (4.2)

At 2 = Ax/c: hyperbolic scale, (4.3)

At 3 = Ax
2 /k: parabolic scale (4.4)

Ax is not here intended as a numerical quantity, but rather as

some physically significant length. In order to take a quasi-

steady limit with respect to the forcing term, we would need

At 1 = EAt 2, c small. (5.1)

[Eq. (5.1) should be compared with eq. (2.5)]. From eqs. (4),

we obtain At 2 
= A = AX 2 t, = At At Then, from eq. (5.1),2 c2 k1

At2 = eAt 3 * (5.2)

Suppose a physical situation is such that a priori one

knows that At 3 is the appropriate time scale. If, then, E is

small, the quasi-steady solution requires that in eq. (3.4)

Vt =0, or we obtain the steady-state solution to eq. (3.4).
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Such a solution can be valid; the requirement is that boundary

conditions for eq. (3.1) vary slowly with time, in the sense

of eq. (2.2).

The general situation, however, would be that c, of eq.

(5.2) is small, but the steady-state solution is not valid.

This means that it is not possible to independently take quasi-

steady limits of the forcing term or the hyperbolic term.

Apparently, if c is small, the forcing term effect occurs more

rapidly than the hyperbolic effect, but both disappear in the

limit of c = 0. This situation is still somewhat unclear. The

different eigenvalues of the matrix B are a factor here.

Analytic solutions were obtained for specific problems, such as

T(t,O) = T(t,L) = 0. These solutions indicate that the limit

t 1 -0 of the solution of eq. (3.3) does approach the solution

of eq. (3.1), although convergence is somewhat "precarious".

The opposite case, e-1, is also surprising, but more infor-

mative. In this case, since AtI~At 2 ~At 3 f the relaxation effect

occurs on the same scale as the other effects and consequently

cannot be deleted.

The above analysis is directly applicable to the Navier-

Stokes Equations in the following ways:

i) The situation of -l will correspond to a "mesh Renolds

Number" of approximately 1.

ii The two-dimensional viscous equations have a "subsystem"

with precisely the form of eq. (3.4).



Section III: The One-Dimensional Viscous Flow Equations

The one-dimensional equations of motion, Cauchy's equation,

[7] are as follows:

P UP+pu = 0,

Pt + Upx x

P (Ut + UU x) + Px =  aX 6px'uu+ =~ (6)

pCV(Tt + uTx) + PUx = -qx + aux.

Where p = pressure, p = density, u = x component of velocity,

T = temperature, t = time coordinate, x = distance coordinate,

cv = specific heat, q = heat flux, a = shear stress.

Upon introducing the quasi-steady assumptions,

q = -kTx, (7.1)

a = Pux , (7.2)
X

p = pRT, (7.3)

eq. (6) becomes the classical Navier-Stokes Equations. In

the following, we introduce relaxation terms into eqs. (7.1)

and (7.2):
N

Pt = -Up - PUx

Pt PP 1
u t =-uu - -T -- p +ox p x p x x

T t = -uT - q - U

qt = Ux -C tpx t

a= -Ua _ a
X - 2 X t 2

p - p(p,T).



where k =coefficient of thermal conductivity, p = coefficient

of shear viscosity, and t1 and t2 are relaxation times.

In vector form,

V =-AV -F, V T F 0
q x/

0 Gq/t 2

/U P 0 0 (9

p P/P U PT /P 0 -l/p

A= 0 pj U 1/pc 0

0 0 k/t 1  0

0 -pt2 0 0

Various features of ea. (9) were studied. First, the

eigenvalues of A were found to be the solution of the

following equation in X:

(u - )[I(u -X) 4 a(u -X) 2+ b] 0 (10.1)

where

2 2 2 a2 2 2 2
a cq CY s p Tq a p

2 2 2 2 2 P
C S CT P p C T= 1

C2 k C2 pi

v 2
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In order that eq. (9) be hyperbolic it is sufficient

that the roots of eq. (10) be real and distinct. A necessary

condition, since b > 0, is that,

a > 0. (10.2)

A complete analysis of eq. (10.2) would require specific

information regarding the relaxation times tI and t2 . Although

such an analysis will not be attempted here, eq. (10.2) can

be considered a restriction on the parameters tI and t2 .

Assuming eq. (10.2), eq. (9) will be hyperbolic if,

a - 4b > 0 (10.3)

Various special cases were examined. For example, since

a 22 4b = (a - 2c2)2 + 4c C2(1 - - ), (10.4)
q q T p

eq. (10.3) is satisfied in the special cases where 2 < I or
p

cT = 0. Also, intuitively there is reason to suppose that

cs , cq. and c0 are comparable quantitities. If one assumes= 2 2 2 2

c s = Cq c = c then a2 - 4b = (c2 - c) + 4cc( -
s q pc) -qcT~ D

If one further assumes that p = pRT and that o = 0, then

a2 - 4b = c4 [1 + 4 (y-1 )].* Letting y = 14, the eigenvalues are

found to be X = u, u ± 1.494c, u ± .8764c.

It is not of course intended that the above be a defini-

tive study of assumptions (10.2) and (10.3). Nevertheless,

at this point it is reasonable to suppose that eq. (9) is

hyperbolic for many, if not all, cases of interest. In

particular, this is so for the incompressible limit cT = 0.

Secondly, the normalized variables were considered [8].

This is a somewhat complex study, in that the diagonalizing
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matrix for A needs to be found (as well as its inverse).

The result is that the normalized variables for eq. (9)

are comparable to those obtained in ref. 8 for the inviscid

equations. This was considered important since the impli-

cation is that perturbation properties for eq. (9) are similar

to those for the inviscid equations.

Thirdly, it is necessary to find a set of variables for

which the eigenvalue corresponding to X = u is in some sense

uncoupled from those involving the sound speed. Assuming that

2 constant, (11)

a suitable set is,

/P*
u t 2

W T * pe- o * = p (12.1)

q

Then

Wt  -A1W x - B1 W,

/ U 0 0 0 0 (12.2)

0 u 0 0 1/p
1 0*

A1 =I 0 u 1/pc 0
A, 0 PC IP V 0

0 0 k/t1  U 0
PT

0 c 0 uPC v

PP +o P I
-P T +pp PCv  t 2

o 1 -0}[

B1 = Diag.{ , 0, 0, 1l t2
1 t2
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Remark: If assumption (11) does not hold, it may not be

possible in all cases to achieve an uncoupled form through an

analytic transformation. This does not affect the validity

of the quasisteady equations, but the analysis needs to be

considerably modified. It is of interest to note that the

term p*2 , which in the steady-state limit reduces to pux, is

now a forcing term, and not part of the hyperbolic effect.

Finally, the possibility of quasisteady solutions was

considered. If a quasisteady situation exists relative to

the various "sound" speeds and if the flow velocity is small

relative to these speeds, then one must use the steady-state

form of the last four equations. The system is then,

= -up - p*ux , (13.1)

t X X

o -uu -- (p - Pu ) , (13.2)

PIJU k
P-PUx )u - uT +- T (13.3)

PC x X PC XX
V V

If we then let t2-O, eq. (13.1) becomes the continuity equation.

Summarizing, the momentum and energy equations are in quasi-

steady equilibrium with respect to the continuity equations.

In addition, a condition such as eq. (2.2) is also implied for

validity of eqs. (13).

Suppose next that the length of interest is small; that

is, suppose

Ax A mean-free path -- (14.1)
PCs
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where Ax is again intended as a physically significant length.

Suppose also that the relaxation times are on the order of

the time required to traverse a mean-free path at the sound

speed,

t (14.2)
1 '2 c_

2 lie 2
c CS  (14.3)

kc
2 s k 2

C -- =( - )Cs, (14.4)q pc v  PC v

"cv

where, as noted in [il, - is essentially a Prandtl number.

If this Prandtl number is near unity, then cq - cs = c = c,

and the hyperbolic time scale for the problem, At ~1, is

comparable to the forcing time scale t1 .

If u is comparable to c, then in this case, as in

the discussion of the heat conduction equation, eq. (12)

should be used as it is. Under assumptions (14.1) and (14.2),

eq. (12) is on the same order of difficulty, in terms of

obtaining a numerical solution, as the usual inviscid system.

One expects the solution to steady-state flows to be similar

to those obtained from the Navier-Stokes Equations. On the

other hand, solutions to time-dependent flows (such as shock

interaction problems) could be considerably altered.

If lul << c, then eqs. (13) could be a feasible set of

quasisteady equations.
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Section IV: The Two-Dimenstional Viscous Flow Equations

The Cauchy equations now take the following form:

P + uP + wP + Pu + PWz = 0,
t X z X

P(u~ + uu +Wu )+ pX T +a
t X z x z x1

P(wt + uw + WWz) + Pz = T + **, (15.1)t X z "

PC (Tt + uT + wT ) + P(u + wz) = -q*

-q**+ o*u + T(w + U ) + **W
z X x z $

where u, w are velocity components in the x,z directions,

respectively, q* and q** are the components of the heat flux,

and the 2x2 stress matrix has the form (T* a *), see ref. 9,

p. 46. Using

T = V(w x + Uz),

2
a* = p[2u x - (ux + Wz)

** =  p[2w 12 
(15.2)

z 3 x z

q* = -kT and q** = -kT
x z

Eq. (15.1) becomes the compressible Navier-Stokes Equations.

As in [2] and [3], the top of the region will be allowed

to float so as to remain a streamline. This is accomplished

by the transformation,
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= t(16.1)

= x, (16.2)

z-f (t,x)

f2 (t,x) f1 (t,x)

with

(f2)t = w + u( (16.4)
2 Cz

where f1 and f2 represent, respectively, the position of the

lower and upper boundaries.

If we then also add relaxation parameters to the viscous

terms, eqs. (15) become:

PE + + rp + p(un + U 1x ) + pczw = 0, (17.1)

p(ui + uu + ru ) + P + P C - + a* + G*x (17.2)

P(wt + uw +rw)+ PCz C* + T +T Cx, (17.3)
tz z~

Pc (T + uT + rT ) + p(U + + W) =

-(q* + q*1) - q**z + a*(u + u ) (1.7.4)
11 ix C z Ti C X

+ r(w + w C ) U)+ a**wz

P(w + w C + u ) - T
T + uT + rT* = (17.5)

4 2 2
a! + ua* + ro* = (17.6C

t T2 (17.7)

z  n  - x] W C U CY**

u k(T +T Cx ) q*
4+ uq + rq* = C (17.8)

t4

q-* +uq** + rq** (17.9)
.~~~ n "(79
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where

r t + Ux + W1Z'

The variable propagating at the flow velocity is uncoupled

from the system by defining,

3t 2  3t 3o* + _o**)

p* = pe (18.1)

0* = p - o , (18.2)

= p - o* (18.3)

t2  t

With assumption (11), namely that -- and - are both constant,

eqs. (17) become,

pt + up* + rp* = 3P (* + o**), (19.1)
t TI2)

p(u + uu + ru ) = T - 0* - x '  (19.2)

p(w+ uw rw ) = T ZC* (19.3)

PCv(TZ + uTn + rT C -*un - z*tx o**CzW

(19.4)

+ T(w + xW + rzu ) - (q* + xq* + Czq*),

o**+ui* + r*=. 2  2 T~z 2 u +cp 2

t nP(xc -I CT) - + TW

2 2 (19.5)

2 TC T
z 2 CZ C ~ X n Z C C

-p 2 2 _ TCz 2u + p 2
5* + u**+r* peu - p(C P -c)UC +- CwT
t n C x 3 p T p Tn

2 2 (19.6)
2 ~xTT PCT (*+ q

pCz ( C  )w P.p(q*+xq* +- q**) +-,
S p C Con xC
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where

2 = p + 4 C + p (19.7)

2= P + * c2 + 4p (19.8)
2 P p T 3-Pt 2'C 2 2

2 =* 2 2P (19.9)
3 = p T -pt 3 ,

2 =** C2 + 4w (19.10)
4 +P pCT 3P t 3

2 PPT(19.11)cT - _T(9.Ii

p c

Eqs. (17.5), (17.8), and (17.9) are unchanged.

Suppose that solutions are desired in the region,

0 < < L, 0 < < 1, t > 0 (20.1)

Some simplification in eq. (19) is obtained by assuming

that the vertical height and vertical variation is small:

jf2 - flj < several hundred mean-free paths, (20.2)

1 j(f2 - f 1. (20.3)

From (20.2) we assume that vertical velocities and pressure

gradients are small. In particular, we assume:

Cz wl << ju~l (20.4)

xPC << l (20.5)

z CT

We therefore delete w from eq. (17.5) and &*x from eq. (19.2).

C
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The equations then take the following form:

V = -AV T)- BV c- CV, (21)

where

V =(P*, w, T, q*, q**, cy**, -c*, u, r,

u 0 0 0 0 0 0 0o

0 U 0 0 0 0 0 0 1
P

o T~ 1 0 0 0 c* 0
Pcv PCV PCv

o 0 k u 0 0 0 0 0
t4

A= 0 0 0 0 U 0 0 0 0

2 2
0 Tpc T 0 PCT 0 u 0 PC3 0

p p3
2 2

0 -p T PCT 0C, 0 U P 0
p p

0 0 0 0 0 0 10
P

0 ~ t Ia 0 0 0 0 a
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r 0 0 0 0 0 0 0

0 r 0 0 0 CQ0 0 LCxz Cx

0 0 k r 0 0 0 0 0

P pob 2  r 0 0 b I  0

k74x r 0 00

B0 0 r 0 0 0 02 
2

o b 0 TPCT x PCTCz  0 b
4  p p 3

pc2 x  pc 2
z

0 b Tx Tz 0 r b 06 p p 5

o 0 0 0 0 0 0 r P

o 0 0 0 0 0 0r

3(a* + a**) O O, - - , -1 -1 1C 0, , 0,2= t 4 t 5  t3' t2  t I

b *x z I*b z xPC = 2  = ,
Pv  P v

2 2
2( 1C - T , p( 2  

-r xTTbx3 = p( 
zxC3 T  b 4 = PCz(C 4 )

2 2
2 TCT = 2  C xCT

b 5 = p( xcl p 6  Pz(2 Zp

The solutions of IB-XII = 0 are X = r, r, r +

pt I

r - and the solutions of IBI-XII 0, where B I is thept 1 '-

indicated 5x5 submatrix. The latter 5 are solutions of the

polynomial,
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(r - X)[(r - X) 2 a(r - X) + b] (22)

where

a =-b5 +- + -
p 4 PCvt 5  PCvt4

b k 2 + k 2)(b 4  b 2 pv zCT
PC vt 4 z PC v t5 x 0 p

The discussion of the one-dimensional system given in Section III

is applicable to eq. (22). In particular, we assume the following:

i) The solutions of the 4th degree polynomial in eq.(22)

are

X = r ± al' r ± Z2" (23.1)

ii) Irl ch where ch = min(a1 , c2  --- ). (23.2)

iii) As a consequence of assumption (20.2), the relaxation

times are comparable to the hyperbolic time scale, (23.3)

(f-2 fl)/ch"

In the discussion of boundary conditions we will need the

correspondence between eigenvalues and the variables. These are

as follows:

i) A = r, r, r correspond to p*, a*, and q*, (24.1)

ii) A = r ±4 correspond to u and T, (24.2)
PtI

iii) A = r ± al' r ± a2 correspond to w, T, q**, and 5**. (24.3)

Remark: Eqs. (24) are not quite accurate in that the variables

involved in the above matrix B need to be modified so as to

uncouple the variable corresponding to X r. However, because
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of assumption (20.3), rx is small and the appropriate variables

will be small perturbations of the present ones. The result

will not affect the final quasisteady equations and so the

derivation is not carried out here.

The eigenvalues of the matrix A of eq. (21) are given

by,

JA - AII = (u-A) 3 [(u-A) 2  - L ][(u-A)4 - 2 + b], (25)
Pt1

where

2 k
a= c + 4

-2
b k 2 y cTb= vt 4 (C - --_- )

PC t 41 p

The solutions of the 4th degree polynomial in eq. (25)

are easily seen to be real. Consequently, the eigenvalues of

A are {X = u,u,u, u ± U ptI , u ± c3 , u ± a where & and
pt,

c4 correspond to the 4th degree polynomial. It is assumed

that,

lul < c9 = min( 3 , -4' -- ) "  (26)

The correspondence between eigenvalues and variables is as

follows:

i) A = u, u, u correspond to p*, q**, a**, (27.1)

ii) A = u ± -it correspond to w and T, (27.2)

M11) A = u ± U ± correspond to T, q*, 0*, u. (27.3)
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As in the atmospheric problem, the goal here is to con-

sider quasisteady situations induced by "distortion" in the

spatial scale; that is, we consider boundary layer situations.

The physical scale assumptions for the present problem can

be stated as follows [2, assumption 2]

i) The physical region, given by eq. (20.1), (28.1)
is such that f2 - fl)/ch << L/c .

ii) Boundary conditions and initial conditions
are such that the flow variables will
experience significant variations only (28.2)
over time scales which are large compared
to (f2 - fl)/ch "

Remark: Assumptions (28) would be typically satisfied in

thin boundary layers. In many such problems the vertical

mesh has caused severe numerical problems [10,11].

Because of assumption (28.1), we need not consider the

possibility of simultaneously having quasisteady limits with

respect to both n and C. By assumption (28.2), however,

quasisteady limits with respect to C are feasible. We

conclude, therefore, as follows: By eqs. (24.2) and (24.3)

and assumption (23.2), the variables {u,T,w,T,q**,a**} are

in quasisteady equilibrium with respect to p*; by assumption

(23.3), the variables q*,a* are in quasisteady equilibrium

with respect to p*. The viscous parameters are then,

T = P(w n + zC ) (29.1)

4 2
0* = A U(U + rU, ) Z 1 W , (29.2)

= 4 2 2I ** = U( WC1z - un X C x ' (93
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q= -k(T + X T ) (29.4)

q** =-kT (29.5)

with the final partial differential equations as follows:

p + up + rp= -p(u + C u + W ), (30.1)

0 = -p(uu + ru) + c(W +U) - P + ay, (30.2)

0= -p(uw + rw) + Tr + x1 (W + - zp(fl0 X z ) (30.2)

4 2 2

Z -Z 3 -3 3 c X

4 +2

0 p - PCv(uT+rT) + [I-P(u xU) - J-zW ](uq+ xU )

4 2 2
p(x u +u ) - PzW + ( w4 

z  2 2 u )W z

(30.4)

+ P(W + U )(w +xW +CZ u) + k(Tn +x T )

+ k( (T +T ) + 2 kT

where in eq. (30.1) it has been assumed that p*-p.

Summarizing, the quasisteady equations (30) are proposed

as an approximation to eqs. (17) if the several assumptions

{20.2, 20.3, 20.4, 20.5, 23.1, 23.2, 23.3, 28.1, 28.2} are

satisfied.
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Section V: Boundary Equations for the Quasisteady Model

The approach used to obtain boundary equations for the

quasisteady model will be the same as that described in [3]:

First, at each boundary an appropriate set of characteristic

equations and boundary conditions is specified for the time-

dependent model; secondly, we attempt to simultaneously take

the quasisteady limit of the internal partial differential

equations and the boundary equations.

As a specific problem, we will consider viscous flow

over a flat plate: n = 0 will represent a position somewhere

downstream of the leading edge and c = 0 represents the wall.

The nine equations needed at each boundary for the time-

dependent model, eq. (21), will consist of boundary conditions

(whose number is determined by the number of incoming character-

istics) plus characteristic (linearized) equations.

We assume that,

q = 0 is an inflow boundary and q = 1 is
an outflow boundary (Except at C 0, u , 0 (31)
at n = 0 and n = 1).

From eqs. (25), (26) and 30, at n = 0 six eigenvalues are

positive, indicating six incoming characteristics, and three

are negative. The nine equations can be chosen as

o = hl(t,C), (32.1)

q** = 2 ( t C) ,

C-** = 3( ,  ,  -

w = h4 (tC), (32.2)

T = 5 (t,

u =h 6 (t,,
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where hi are specified functions, plus the three character-

istic equations which will have the form (see [3] for more

detail):

allW + al2't , a 1 3

a21Tj + a22qt + a2 a* + a =1 22 3  a2 4ut 25 (32.3)

a31T + a32q + aa3* + = a
33 f a34ut 35

At n 1 there are three incoming characteristics. The

equations can be chosen as follows:

w 0, (33.1)

q* 0, (33.2)

Yp  ut, (33.3)
Pt c5  's

(see [3] for a further discussion of (33.3) as an outflow

lateral boundary condition. The six characteristic equations

will consist of the partial differential equations for pt,
t

qf, a-**and three equations of the form (32.3).

At C = 0, r = 0 or, referring to eqs. (22) and (23), the

following equations can be chosen: p*, a*, and q* can be

calculated from their differential equations; the boundary

conditions can be taken as,

u= f X

t z

w = ft/[l + (z) 2, (34.1)

T = h7 (t)
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and the characteristic equations have the form,

a4l' . + a4 2TE = a4 3 ,

a5 1Tt + a52 w + a53 q* + a54  = a5 5 , (34.2)

a61 T + a62w + a63q +a64t a65

At C 1, we again have r = 0. Thus, the equations for o*,

a*, and q* can be used. The characteristic equations will

have the form (34.2) and the boundary conditions are chosen

as,

T = 0,

(34.3)
q** = 0 T = 0.

P t = Put (34.4)

(See 1
(See ('3 for a discussion of the last equation in the

context of an upper boundary condition.)

Eqs. (24) were obtained by assuming that the variables

{u, w, T, T, q*, q**, 0*, G**} were in quasisteady equilib-

rium with respect to p*. Quasisteady boundary conditions are

obtained by applying the following principles [2, eqs. (15

and (16)]:

If a boundary equation involves any one of {u£,

qt *, -* **} and if the equationw T q , q , t o

is driven by flow conditions internal to the region

of computation, then the equation will be put in
quasisteady equili'rium. (35.1)
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The basic quasisteady assumptions, (28.1) and

(28.2) require that eqs. (29.1)-(29.4) and eqs.

(30.2)-(30.4) be applied at all points of the (35.2)

lateral boundaries, except possibly at the corner

points.

The following is thereby obtained:

a) At n = 0, eqs. (32.2) are deleted because of (35.2)

and eqs. (32.3) are deleted by (35.1). Thus, p is

obtained from eq. (32.1) and the remaining variables

are determined by quasisteady equations.

b) At 1 = , eqs. (33) and all characteristic equations,

except the equation for p*, are deleted because of

(35.2). Thus, p is obtained from eq. (30.1) and

the remaining variables are determined by quasi-

steady equations.

c) At the upper and lower boundaries, C = 0 and 1,

the equations for a* and q*, as well as eqs. (34.2)

are deleted because of (35.1). Thus, p is obtained

from eq. (30.1) at both C = 0 and 1. Also eqs. (34.1)

are retained at C = 0 and eqs. (34.3) are retained

at C = 1. (the last equation in (34.3) is retained

because it is intended as a simulation of external

flow conditions [3]).

Summarizing, the proposed quasisteady model is as follows:

i) p is obtained at n = 0 from eq. (32.1) and at

all other points from eq. (30.1).

ii) u is obtained from eq. (30.2) and the boundary

conditions (34.1) at C = 0 and T = 0 at c = 1.

iii) w is obtained from eq. (30.3), the boundary con-

ditions (34.1) at c = 0, and a condition, to be discussed

below, at = 1.
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iv) T is obtained form eq. (30.4) and the boundary

conditions T = h(t,n), where h is specified, at - 0 and

T =0 at =l.

v) Eq. (16.4) is a first order hyperbolic partial

differential equation in the variable f2 (fl is specified)

and, because of eq. (30), requires a boundary condition at

= 0. We will imDose,

(f2) - 0 atri= 0. (36)

The third condition of eqs. (34.3), = p ut, has nott c ts

been used. It is the missing condition for w. Its use

requires an additional iteration between eqs. (16.4), (34.4),

and the calculation of u given above.

Remark: Clearly, eqs. (30.2), (30.3), and (30.4) are coupled

and would in fact need to be solved simultaneously. The above

description of the model is intended to display the primary

dependence between the variables and the differential equations.

Finally, we need to consider the corner points. As

discussed briefly in [3], inconsistencies can arise here in

regard to boundary conditions:

i) r = 0, n = 0: p is specified by eq. (32.1), T

is specified or h 5 (t,0) = h7 (t,0) - see eqs. (32.2) and (34.1),

u and w are specified by eqs. (34.1).

ii) i, n = 0: p is specified by eq. (32.1) and

the remaining conditions are T = 0, T = 0, and Pt c-
S

iii) r = 0, = 1: P is calculated from eq. (30.1), and

the other variables are as at r = 0, n = 0.

iv) C = 1, n = 1: p is calculated from eq. (30.1), and

the other variables are as at c = 1, n = 0.
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Section VI: Boundary Layer Approximations

Assumption (28.1) has the effect of requiring that the

width of the region be small relative to the length. The

following assumption insures that the length itself is large:

L is large relative to the mean-free path, so that
significant variations in the x-direction occur only (37)
over many mean-free paths.

From the results in [1] we conclude that the viscous terms,

in the n-direction, of the Navier-Stokes Equations can be

deleted. Assuming this conclusion also holds for the Cauchy

Equations, eqs. (30) reduce to the following:

P +up +rQ =-p +cU + zW) (38.1)

t~ ri X (81

2

0 -p(uu + ru ) + 2zu - P (38.2)

0 -p(uw + rw ) + - (zp3-p~u n  x 'zU~r"(38.3)

4 2+ C zj( r zW C - -5 CxUY)C

0 =-PCv (uT + rT ) - p(u + xu C + z w )

+ P 2 [u 4w 2 ] + k2 2 T (38.4)

where, on the basis of assumptions (20.3) and (20.4), several

viscous terms involving ix have been deleted from eq. (38.4).

Remark: Assumption (37) could have been applied before making

the transformation to {t, n, i}. In this case the viscous

terms involving ix would not appear in eq. (38.3). This is

consistent with the well-known result in boundary layer

theory that the final approximation is dependent to a certain

extent on the coordinate system.
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Ecs. (38) are similar to Stokes' Equations for compressible

flow [12, eqs. (20)], which are obtained as the limit of the

Reynolds Number approaching zero. Letting,

M = Mach Number - u (39.1)

Re = Reynolds Number - uL p (39.2)

X = mean-free path - P (39.3)pc

we obtain,

Re = M(L). (39.4)

L/X is large, by assumption (37), but there is as yet no

restriction on M (assumption (26) was introduced only for the

purpose of specifying boundary conditions). Thus, eqs. (38)

are valid for large Reynolds Number, as long as the scale

assumptions are satisfied.

Eqs. (38) should also be compared with the boundary

equations conmonly used for time dependent compressible flows,

as, for example, given by Lagerstrom [12, eqs. (20-12)]. Very

fundamental differences are seen:

i) Lagerstrom's equations retain the time derivative

in the horizontal momentum equation and the energy equation,

whereas both have been deleted in eq. (38).

ii) Lagerstrom's equations have replaced the vertical

momentum equation with the condition p, = 0. In eqs. (38)

a further assumption, to be discussed below, is required

before such a simplification can be attempted.

An incompressible version of eqs. (38) is obtained by
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assuming PT = 0. Eq. (38.4) is then uncoupled from the

remaining equations. With the notation,

p = p(p) and pp = c2, (40.1)

eqs. (38) become,

2

pE + up1 + rp, = -Pc (u + Cx u + zW ), (40.2)

p(uu + ru ) -C2 Pu + P - 0, (40.3)

P(uw + rw )-C x Uu - CzP(4wC - 2U) +CpC= 0. (40.4)

Eqs. (40) can be compared with, for example, Prandtl's

boundary layer equations [9, eqs. (7.7) & (7.8)]. The essential

differences would be as follows:

i) In Prandtl's equations, eqs. (40.2) and (40.4) will

be replaced respectively by un + CXuC + =0 and p = 0.

ii) In Prandtl's equations, the time derivative term

would be added to eq. (40.3).

Boundary equations for eqs. (40), corresponding to

those given in Section V, would be as follo's:

Cx = :u f Lx) 2= 0 u) w = ft /[l + (-z ], eq.(40.2); (41.1)

C= i: ur 0, Pt c s ut , eq. (40.2); (41.2)

= 0: p specified, eqs. (40.3) and (40.4), (41.3)

n = 1: eqs. (40.1), (40.2), (40.3). (41.4)

A further simplification of eqs. (40) can be achieved

by analyzing the time scales associated with these equations.

Since, in the time dependent form, the right side of eq.(40.1)
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is a forcing term, then with our assumptions the hyperbolic

time scale for eq.(40.1) is,

At1 = L (42.1)

Integrating eq.(40.4) in the form,

Sx 3 ) u 2 + + bi  (42.2)

where

1 P(uw + rw )d,

p* = p(t, n, 1),

and substituting into eq.(40.4), we obtain,

p++up + rp = - At + b2 (42.3)P T+up1 At 2

where

b 2 =-pc 2(u + rxu + b),

At - 4P

Next, defining w and w* by,

w = W* + w (43.1)

and

CzW = -(u + CxU ), (43.2)

eq. (40.2) becomes,

pi + up + rp, = -pc z WE. (43.3)

Integrating eq. (43.3) approximately, with the time increment

Atl, and then differentiating with respect to , we obtain,
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(pn+l) (pn) . - At1 [(up + rpC)n] - Atlz(c 2 W )2 . (43.4)

where the superscripts n and n+l denote respectively times

tn and tn + At1 . With eq.(43.4), eq.(40.4) becomes,

4 2 Atl 4 2 * I
+ Z At 2Zc= - - f¢2ZuW -

2 2 2
+ 51jz(Cx)C U + p(uw + rw ) - At lCz(pC ) we (43.5)

CZ Pn At (up ) C-

At1  3
From eqs.(39), _ = i Assuming that the Mach NumberFrm qs(3),At2 - .TxM

is not large, say,

M < 1, (44.1)

we conclude, from assumption (37), that

At1 >> . (44.2)

At2

It is therefore appropriate (see Section II.A) to take the

quasisteady limit of eq.(42.3), which thereby becomes,

p = p*, or p, = 0. (45.1)

At the same time eq.(43.5) becomes,

4 2 Atl - 4 2 1Tz (I + At2 1E z C

+ 2 + p(uw + rw Atlz (pc 2 ) w (45.2)
7 z( x)U C C~ w rw C - C E

- Atl zucp .

Because we have taken an additional quasisteady limit,
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boundary eqs.(41) need to be reexamined in terms of (35.1)

and (35.2). Eq.(40.2), at = 0 and c = 1, presents some

difficulty: It is assumed that the equation reflects only

internal properties of the fluid at = 0, while at = 1 it

gives information regarding the external flow (since it is

applied at the dividing streamline between the boundary

layer and the external flow). Thus, eq. (40.2) is deleted

at = 0 but retained at = 1. The proposed model is then

as follows:

i) At {0 < < 1, 0 < n < 1}, (46.1)

eqs.(40.3), (43.2), (45.1), (45.2).

ii) At { = 0, 0 < n < 1}, (46.2)

f Cx

t Cz

rx 2]w* Ifl/[l + (t) ,

t z

w = 0.
E

iii) At { = 1, 0 < n < 11, (46.3)

u = 0,

Pt = cut

t t

w = _ --- (pE. + up )

f2t z-

iv) Att{ 1, n 01, (46.4)

p* specified,

f 0,
f2t O
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=t -ut !
Pt c j

= 2-- (Pt +  upn)wt pc

Remark: The possibility of inconsistencies arising at corner

points was discussed in [3]. In eqs. (4) such a difficulty

occurs at { = 1, n = 0}: Since p* is specified, either

U= 0 or pt u must be deleted. This could result inc t

some type of "inlet adjustment" length in the solution.

Finally, it is clear, from eq. (44.2) that the w* term

in eq. (45.2) is negligible. In addition, under usual con-

ditions in which incompressible models are applied, one expects

the remaining terms on the right side of eq.(45.2) to be small.

In any case, with the assumption,

w C << w*, (47)

w becomes a purely diagnostic quantity. The resulting model

in {p, u, wi is as follows:

Eqs. (46) with w = w* and wC deleted. (48)

In comparing model (48) with Prandtl's boundary layer

equations [9, eqs.(7.7) and (7.8)], one sees that the remaining

discrepancy is in the time dependence. In eqs. (48), time

dependence occurs only through boundary conditions, while in

Prandtl's equations, time dependence occurs through the time

derivative term in the horizontal momentum equation. In some

problems, particularly those involving small perturbations in

time, this difference might be significant.
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Summarizing, we have derived several models for possible

use in boundary layer problems:

i) Eqs. (38) are proposed for compressible flow.

However, this model is still incomplete:

a) The derivation needs to be carried out for the

case of variable t2 (assumption (11)),
P

b) The effect of the forcing terms needs to be

considered in eq.(38.1).

ii) Eqs.(46) and (48) are proposed for incompressible

boundary layers. Solutions to these equations will

be presented in the next section.

Although the above models are intended to be time-

dependent, a serious question remains concerning the types of

time-dependent behavior retained in quasisteady models. The

following remarks address this question.

Remark 1: Quasisteady models assume that appropriate time

dependence for the quasisteady variables is provided by boundary

conditions. A clear example, discussed in [2], is the following:

Suppose the flow is completely one-dimensional (say, in

the n-direction), but a thin C-region is maintained. Then,

eqs.(38) might still be valid, but clearly cannot by themselves

provide time-dependent propagation of the flow. The important

point here is that eqs.(38) are internal equations, while the

boundary conditions are considered separately. Appropriate

boundary conditions could be to apply the full one-dimenstional

equations at, say, c = 0; these equations would be unaffected

by the internal quasisteady procedure with respect to C.

In this regard note that eqs.(46) and (48) were derived for

specific boundary conditions.
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Remark 2: As a second example, consider flow in a narrow

channel bounded by two parallel flat plates. Without going

through all details, the quasisteady model corresponding to

eqs. (48) would be as follows:

i) At the "internal" points {O < r < 1, 0 < n < ,

the same set of equations would be used: eqs. (40.3), (43.2),

(45.1), (45.2),

ii) At { = 0 and = 1, 0 < < 11, u = 0, w = 0,
2

pE = -pc w f

iii) p* specified at the inlet line n = 0.

(Note that in this problem f2 E 0 and the equation

p t ut is not appropriate).Ptt

It is not expected that the above model can predict +he develop-

ment of the flow, beginning with stationary flow at time

zero and a time-dependent pressure input at n = 0. This can

be explained by noting that two of the major assumptions are

not satisfied for this problem:

a) One expects the initial propagation for this

problem, at any point in the flow, to resemble a one-dimensional

compression wave (following which, the vertical viscous terms

dominate the flow). Thus, assumption (37) is not valid at

all times.

b) Unless the region is extremely thin (say, 20

mean-free paths), assumption (28.1) will not be satisfied

in the neighborhood of the moving compression wave (here

we interpret L to be the width of the wave).

Remark 3: Eqs. (46) cannot predict the formation of the

boundary layer resulting from impulsive motion; assumption
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(28.2) would not be valid. They should, however, be applicable

to some types of perturbations of an existing boundary layer.

An example of such a problem will be given in Section VII.

..............
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Section VII: Solutions to the Incompressible Boundary

Layer Model

In Part A we consider analytic results regarding eqs. (46),

and in Part B we present some numerical solutions to several time-

dependent and steady-state problems.

A) Analytic Considerations

Assuming,

i) that w -0, (49.1)

ii) that the convective terms in eq.(40.3) are (49.2)

negligible,

iii) that 2P=pc can be considered constant in eq. (49.3)c

(46.3),

eqs. (46) take the following form:

Pu f2pnu(t,n,0) = u (t,n,l) = 0, (50.1)

w =-fun + (f1 + r
f ) u  w(t,n,O) = 0, (50.2)

PC = P0 c0 utoP, p (t,0) specified, (50.3)

f2t =wtP - f utop, f 2 (tO) - f2(0,r) - f 0  (50.4)

where f = f2 - fl, P = p(t,n,l) - P0' top denotes c = 1.

It has been assumed that u ---0 at t = 0 and that f 0.
t

From eqs.(50.1) and (50.2),

u - - (utOp)( 2  2c,) utop - T, (51.1)- , =(512P



40

W (s C-2)f(utop) C' (2_ -2cf u top_(2;3  2 )f torl (51.2)
3 1

From eqs.(50.3) and (51.1),

u top - f2 p 0 (utop)

or (51.3)

(u top) = 2X utop.

From eqs. (50.4) and (51.2),

f 2 (fu top) (51.4)

From eqs.(51.3) and (51.4),

22 t (ffT 2A). (51.5)

Fromn eqs (51. 3) and (50. 3), one finds the initial conditions

to be as follows:

utop(O'n) U u eO 0.

(52)

0 top 0 p (t,O).

The steady-state solution must satisfy

(fur)op) 0 (53.1) .

and

ff =2X. (53.2)

Note that eq.(53.l) implies the conservation of mass condition,

( 'f ud c),= 0. From eqs.(53 .2), (51.3), and (50.3) the steady-

state solution is,
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f =f0 A- + 4x (533)0 77

to top top~ 0 ~~'~

PC = P0 C0 u t op  (53.5)

w = ( 2 + fl )utoP (53.6)

One can also verify from the given solutions that assumption

(49.2) is valid for small Mach number:

I PUU I < lutopI
pi - p p

Pru I PW~zUr + 1PUCxUC I

I l fl P rl

utop utop<_21- --I + 21- I

(The last inequality assumed that fi = 0).

It would appear from eq.(52) that, by specifying p,(O,O) = 0,

the solution could start with stationary flow and generate a

boundary layer. However, because f0 > 0 must be arbiLrarily

specified, this orocedure would not seem to be reasonable.

Eq. (53.3) indicates that, as expected, the steady-state

boundary layer grows as v-. Also, eq.(51.5) indicates that the

rate of growth of the time-dependent boundary layer would be 4ut~p

(assuming X < f).

Note in the above that the model is "consistent" in terms

of mass conservation independently of eq.(50.3). Thus, as is

commonly done in boundary layer problems, one could specify pq

arbitrarily and obtain solutions. However, because I - 1 is
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always a streamline, not all functions for p will give sensible

answers. For example, p constant will give ut  constant

and, from eq.(52.1), f = constant.

The above indicates that defining the edge of the boundary

layer as a streamline is considerably different than assuming

that the "outer flow" is achieved at the edge (see, for example,

[9, eqs.(7.5),(7.7),(7.8)]). The use of the streamline requires,

for a complete interpretation, the existence of an additional

transition region from the edge of the boundary layer to the free

stream conditions. On the other hand, the streamline definition

avoids the inconsistency in other boundary layer models of

nonzero vertical velocity at the edge of the boundary layer.

Inconsistencies at the outer edge were also discussed by

Telionis and Gupta [13], where it was stated that u, p, and T

should satisfy the one-dimenstional time-dependent inviscid

equations at the outer edge. Thus, only one of the three

variables is arbitrary. Likewise, in the quasisteady model one

upper boundary condition is specified, but the other variables

are calculated from quasisteady equations rather than the time-

dependent inviscid equations.

B) Numerical Solutions to Eqs. (46)

The problem is that of flow over a flat plate. The initial

stationary fluid was chosen with properties,

0 = 3.2632 x 10- 4 k (54.1)
m

T = 260°K. (54.2)0
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(These are typical atmospheric values at a height of 60 km.[141).

We then have,

c=c o = I0 = 3 23.24m/sec, (54.3)

= 2.556 x 10 6v5 4.121 x 10 - 5 km (54.4)m sec'

- = .3907 x 10- m, (54.5)n0c 0

P = P0 = P0 RT0 
= 24.35 k , (54.6)

m sec

As discussed in Section VI, there is an initialization

problem at time zero. Our procedure was as follows:

i) An initial f2 (9,0) E f2  and an initial pressure
0

p(0,O) p P0 + p* are specified.

ii) With the exception that the quantities f2  and f are

maintained at zero, the remaining equations of eqs.(46) are

integrated timewise until a steady-state is achieved. These

values are then the initial conditions for the complete time-

dependent problem, and, for small Mach number, should be in

close agreement with eqs.(52).

In the first problem to be discussed we chose,

f = .02m 51.2X, (55.1)
20

L = 2.5m - 6399X, (55.2)

p(OO) - Po = .01 (55.3)

fl(tTv ) c 0. (55.4)

The above lengths are consistent with the scale assumptions ofI
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the model. The pressure value is small so that the computation

will represent a low Mach number.

One expects the time step in the problem to be determined

by the time-dependent partial differential equations. Upon

examining eqs. (46), one sees that only one such equation

remains, namely that for f2:

f = - uf 2 + w. (56.1)
2t 2n

Eq.(56.1) is a simple first order hyperbolic partial differential

equation. The time step restriction, the stability condition

for the upstream differencing scheme, is,

At < A" (56.2)

u

The first computation was chosen with a 5 x 13 spatial mesh,

AC = .25 and An = L/12, or

Ac = .25

An = .2083 (57)

At = 2.

(As will be seen in the results, eq.(55.3) produces a maximum

u of .09482, which then accounts for the choice of At). The

computations were then repeated with the mesh cut by a factor of

2. All results discussed below are for the finer mesh.

Figures 1-6 show results obtained for this problem. Figure

I shows the initial p and u distribution at the top after the

initialization has been completed. The pressure drops from

.01 at n = 0 to .000066 at n = 1, while u drops from .09482

to .000627.
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Figure 2 shows the time-dependent development of the boundary

layer, assuming the above initial conditions. Figure 3 displays

the boundary layer growth at two specific points. Although the

precise rate of growth of the boundary layer is difficult to

recover from the numerical results, Figure 4 attempts to show

the rate of growth: At each point x, we plot the time at which

the boundary layer achieves 90% of its final steady-state

thickness. Figure 5 shows the development of the pressure

field and Figure 6 shows the final steady-state horizontal

velocity distribution.

The initial and final steady-state values are in good

agreement with the results established in Part A, as can be seen

from the following tabulation.

Calculated Analytic

utOP(0,2.5) .6270 x 10-3  .7176 x 10- 3

ptOP(0,2.5) .6613 x 10- 4  .7569 x 10-4

eq. (52)

utOP(0, 1.25) .7711 x 102 .8249 x 102

petoP(0 ,1.2 5 ) .8133 x 10-  .8700 x 10- 3

f(-,2.5) .06817 .06562

f(-,1.25) .049j8 .04851 e

utOP(,,,2 .5) .02773 .02889 1 eq. (53.4)

utOP(w ,.25) .03792 .03838 J

wtOP(-,2.5) .3659 x 10-3  .3440 x 10- 3 3

wtOP(,l.25) .662'4 x 10-
3  .6182 x 10 3 eq.(53.6)

f(-,2.5)utOP(-,2.5) .001890 .001897 } eq. (53. 1)

Table I
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The results are generally as expected. The following com-

ments are perhaps worth noting:

i) w is not displayed, but throughout 1w I < 10-4w.

Thus, eq.(43.2) is the appropriate equation for vertical velocity.

ii) In this calculation, Iwi = 10-2u. Nevertheless,

because of eq.(46.3), the vertical velocity is a significant

quantity.

iii) As noted earlier, it is not claimed that the above

results represent the correct time development of a real boundary

layer (the difficulty being in the initialization). However, the

time scale, particularly as exhibited in Figure 4, seems reason-

able: The time rate of growth seems to be on the order of the

horizontal velocity.

iv) The input quantity f0 is clearly related to the distance

one must travel from the leading edge before the quasisteady

assumptions are valid.

The accuracy of the computations was checked as follows.

Since the numerical scheme is first order in the time-dependent

equations, the error in the computation should be reduced by at

least a factor of two if the mesh is reduced by a factor of two.

Let V(t, n, , h) represent the quantity V obtained at (t, r, i)

with a mesh {At, AC, An}, and V*(t, n, ) reDresent the correct

value. Letting then 7 represent the mesh {t-, =2-, }, we can

make the following two checks [2]:
hI

i) A2  !V(t, q, , h -V*(t, i, 0 1 Al

(58.1)

1 IV(t, n, :, h) - V*(t, n, c)j,
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W Ah Vtn' h <1
A2  I V(t, n, T-Vt ,~ )

(58.2)

2h2 (v(t , 1)-v(t h)(l.

With h representing the mesh given by eq. (57) and with V*

values taken from the analytic column of Table 1, we can tabulate

as follows:

V A2  A1  A2/A I

utoP(0,2.5) .906 x 10-4  1.958 x 10-4  .463

f(-, 2.5) .00255 .00598 .426

f(,1 .25) .00087 .00243 .358

utop(,2.5) .00116 .00242 .479

utop (-,i.25) .00046 .00188 .245

wtop (-,2.5) .00002190 .00004708 .465

Table II

One concludes that the test defined by eq.(5 8 .1) is satisfied.

To test eq.(58.2), a third calculation, using a mesh defined

by h/4, was made. The results tabulated below, again indicate

that this test is also satisfied.

V A2 AI A2/Al

f(100, 2.5) .00012 .00044 .273

f(100, 1.25) .00054 .00148 .365

u(l00, 2.5) .00072 .00145 .497

u(l00, 1.25) .00064 .00136 .471

w(l00, 2.5) .46 x 10-5  1.63 x 10 - 5  .282

w(l00, 1.25) 1.76 x 10- 5  6.98 x '0 - 5  .252

p(lO0, 2.5) .76 x 10-4  1.55 x 10 - 4  .490

p(lO0, 1.25) .73 x 10-4  1.41 x 10 - 4  .518

Table III
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Having achieved a steady-state solution, the model should be

able to predict the time-dependent effect of subsequent pertur-

bations of the flow field. In the next problem, the lower boundary

(namely, the flat plate) is perturbed to, an "angle of attack"

position by the following equation:

i 16nfmax

, 6nf1  2 2 to+t 1

f, (ti-to)4-Z (t - to) (t - t1)  : to  < t < -2---9)flt=-t0+t (59)

0: t < t and t > 0 1

Eq.(59) is such that fl is linear in n and achieves its

maximum fl = f m ax at = and t - +1 For the sample

calculation we chose,

flmax = .25 = (.I)L, (60.1)

to = 130 sec. and tI = 170 sec. (60.2)

With this input the plate will rotate from zero incidence at

t = 130 sec. to 5.710 at t = 150 sec.

Results of the above computation are shown in figures 7 and

8. At time 130 sec., the flow field is near steady-state. The

plate then rotates at an average velocity of .0125 m/sec. at

n = 1 during the next 20 sec. Thus the vertical velocity is

comparable to the horizontal velocity during a portion of this

period. Figure 7 shows that the boundary layer thickness first

expands and then experiences a slow decay. The final steady-state

value, f= .0667, occurs near t = 270 sec., and represents

approximately a 2.8% decrease in the boundary layer thickness.
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Figure 8 shows horizontal velocity. One sees an initial

drop followed by a rapid overshoot, and then a gradual decay.

Steady-state values are achieved more rapidly then the thickness

shown in figure 7. The final value, u = .02820 represents a

2.4% increase.

The steady-state vertical velocity for this problem is on

the order of 10% of the horizontal velocity, while we still have

1Wel ~ 10- 4 Iw I .

Remark: The actual "length of computation" along the physical

plate increased from 2.5 m. to (2.5)7 (.25)2 2.5125m,

AiL_
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