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ases, and specific application is made to both compres-
Several analytical
ssible models.,

{~
1"\;

dimensional ¢

sible and incompressible boundary layer situations.
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Quasisteady Viscous Flows
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I Introduction

M
[§
In an earlier paper [1] the author showed the following:

In an internal region of the flow where significant variations

. occur only over many mean-free paths, the viscous terms of the

i T T . (1 SRR v e - !

compressible Navier-Stokes Equations provide only a small pertur-
bation on the forces described by the inviscid equations. This
! .conclusion, although consistent with known results concerning
strong shocks and thin boundary layers, presents difficulties
in regard to incompressible flows. 1In [1l] the following was
stated:
there exist many calculations, with the incom-
pressible Navier-Stokes Equations, in which the
viscous effects are pronounced and yet significant
variations occur only over many mean-free paths.
The analysis of the present paper indicates that
the use of the time-dependent incompressible
Navier-Stokes equations in these situations is
totally unjustified.
However, no resolution of this problem was offered.
In later work [2,3] the author considered atmospheric inviscid
. flows. The atmospheric problem is not unlike the incompressible

boundary layer situation: The hydrostatic assumption in atmospheric

models is much like the assumption %% = 0 of incompressible models.

::& In [2,3) the approach was to use quasisteady analysis to obtain
.f simplified mathematical models whichare, 1) consistent with the
scale of the physical problem, and 2) consistent with the original

mathematical model. The results of these investigations leads R

one to.conclude that quasisteady analysis is both valid and useful.
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In order to use the approach of the atmospheric problem, it
is necessary that the mathematical model consist of a system of
first order hyperbolic partial differential equations. For viscous
flows such a model exists in the form of Cauchy's Equations if an
appropriate specification is made for the viscous parameters.

The purpose of the present paper is to apply quasisteady analysis

L —

to Cauchy's Equations, in which relaxation equations are used
to model the viscous terms.

Section II considers two relatively simple situations , both
of which will be needed in the later analysis: 1) a single hyper-
bolic equation with a forcing term, and 2) the non-Fourier heat
conduction equation. In Sections III and IV quasisteady models
are obtained from Cauchy's Equations of motion for, respectively,
the one-dimensional and two-dimensional cases. Section V consiaers
the problem of specifying boundary conditions. In Section VI
application is made to boundary layer situations for both the
compressible and incompressible cases. Some conparison is made
between these models and existing models. Finally, Section VII
discusses several analytical and numerical solutions to the in-

compressible case.
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Section II: Examples Using Quasisteady Analysis

Two examples are considered in this section. Both will be

needed in the later analysis of the viscous equations.

AL S S - o e

A) A Single Hyperbolic Equation with a forcing Term
The following equation is to be considered: |
8, + co, = £(8, x, t). (1.1) <

Two distinct phenomena are involved in this equation:

(i) The hyperbolic effect - through ¢, the '"sound speed",
information is transmitted from the boundaries to

interior points of the region.

(ii) The forcing effect - the forcing term, £, does not
transmit, but rather 'creates" information as a i

point source.

Each effect occurs at its own rate. Our specific interest :

was in the consideration of quasi-steady situations related

to these rates. One typical special case of eq.(l.1) is the

following: ;

Gt + cex = - — (1.2)

where ¢, 60, and t, are positive constants and 0 < x < L. The

’ characteristic curves of the hyperbolic system have slope
g% = % . Thus, a unique solution is determined by initial data

and a boundary condition at x = 0. Considering only the boundary

condition,
8(t,0) = Bl(t) + Y

the solution for t > % can be written as,
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_ _x
6(t,x) = e ‘cty’ 8,(t 2 o, (1.4)

Suppose first, that the hyperbolic term is dominant. That

g is, assume
i L
g oty << 1. (2.1)
Also, suppose the boundary data varies slowly. That is, assume ;
lo,(£) - 8;(t - )| is negligible for all t. (2.2)
(This assumption was also important in our earlier work, i
[2, assumption (2)]). Then, from eqs. (1.4), (2.1), and (2.2),
N X .
8(t,x) el(t - E)+ 60 Ol(t) + 90- (2.3)
Returning to eq. (1.2), the quasi-steady solution is,
6-60
; 6, = - Ec or o(t,x) ~ el(t) + eo. (2.4)
Thus, assumptions (2.1) and (2.2) lead to a meaningful quasi-
J steady solution.

Suppose next that the forcing term is dominant. That is,

suppose

L
gty >> 1, (2.5)

k-

Then, from eq. (1.4), 6(t,x) - 6, except near x = 0; at x =0,
§' 8(t,0) = el(t) + eo. We see then that the dominance of the
forcing term produces a boundary layer effect unless el(t) = 0.

Furthermore, in this case a quasi-steady solution would not be

valid near the boundary. If el(t) = 0, the solution is simply

Bx =0, or 6= 60. The latter situation will arise in the study
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of the pressure equation in Section V.

B) The Non-Fourier Heat Conduction Equation

The heat conduction equation,

s | Tt = kax' 0 <x<L, t>0, (3.1)

involves the assumption,
q = - kT. (3.2)

That eq.(3.2) is a quasi-steady equation is a fact that was

heavily emphasized by early researchers (see, for example,

Maxwell [4]). The following non-quasi-steady equation, or
non-Fourier equation, has been investigated by various people;

see, for example, refs. 5 and 6:

p Tt=..qx
1 (3.3)
'; In vector form we obtain:
Vt = AVx + BV,
‘ (3.4)
- (T _( 0 -1 _ 0 0
V=@ A= Ggey 00 B o Ly |
Eqs. (3.4) and (1.2) have the same form. Letting é
i
CZ = EL , (4.1)
1

the matrix A has eigenvalues tc with corresponding character-

istics of slope * Also, the matrix B has the eigenvalues

0, 1 It follows, then, that both characteristic speeds for F

tl'

ol




the hyperbolic system have the same magnitude, namely %; however,

the forcing term always has a zero eigenvalue, although the other
may become large. As in eq. (1.2), it is first necessary to
compare the magnitudes of ¢ and t,.

Eq. (3.4) is very interesting and was studied in some depth.
Complete details will not be given here. A major difference
between eqs. (3.4) and (1.2) is that in the latter ¢ and ty

can be considered independent quantities while in eq. (3.4) they

are related through eq. (4.1). There are three time scales to

consider:

Aty = tg: forcing term scale, (4.2)
at, = Ax/c: hyperbolic scale, 4.3)
Atg = sz/k: parabolic scale (4.4)

Ax is not here intended as a numerical quantity, but rather as
some physically significant length. In order to take a quasi-

steady limit with respect to the forcing term, we would need
Aty = eAtz, € small. (5.1)

[Eq. (5.1) should be compared with eq. (2.5)1. From egs. (4),

2 2 .
we obtain Atg = Ax A%t Aty At3. Then, from eq. (5.1),

c2 k

At2 = eAt3 . (5.2)

Suppose a physical situation is such that a priori one
knows that At3 is the appropriate time scale. 1If, then, ¢ is
small, the quasi-steady solution requires that in eq. (3.4)

Vt = 0, or we obtain the steady-state solution to eq. (3.4).




Such a solution can be valid; the requirement is that boundary
; conditions for eq. (3.1) vary slowly with time, in the sense ;
| of eq. (2.2).

The general situation, however, would be that ¢, of eq.
(5.2) is small, but the steady-state solution is not valid. ]
This means that it is not possible to independently take quasi-
steady limits of the forcing term or the hyperbolic term. 1
Apparently, if € is small, the forcing term effect occurs more ‘

rapidly than the hyperbolic effect, but both disappear in the

limit of ¢ = 0. This situation is still somewhat unclear. The

e s

different eigenvalues of the matrix B are a factor here.

Analytic solutions were obtained for specific problems, such as

T(t,0) = T(t,L) = 0. These solutions indicate that the limit

t; >0 of the solution of eq. (3.3) does approach the solution L
of eq. (3.1), although convergence is somewhat 'precarious'.
The opposite case, e€~1, is also surprising, but more infor-

mative. In this case, since At1~At2~At3, the relaxation effect

occurs on the same scale as the other effects and consequently
cannot be deleted.

The above analysis is directly applicable to the Navier-
Stokes Equations in the following ways:

i) The situation of e~1 will correspond to a "mesh Renolds

Number' of approximately 1.

ii) The two-dimensional viscous equations have a "subsystem'
with precisely the form of eq. (3.4).
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Section III: The One-Dimensional Viscous Flow Equations

The one-dimensional equations of motion, Cauchy's equation,

[7) are as follows:

Py + up + pu_ = 0,

D(ut + uux) + pX = Ox’ 6)

T + + = -q <+ .
pcv(lt UTX) pux qx Oux

Where p = pressure, p = density, u = x component of velocity,
T = temperature, t = time coordinate, x = distance coordinate,
cy = specific heat, q = heat flux, o = shear stress.

Upon introducing the quasi-steady assumptions,

q = -kT_, (7.1)
: o= (7.2)
| X
. p = 0oRT, (7.3)
L
1 eq. (6) becomes the classical Navier-Stokes Equations. 1In
% the following, we introduce relaxation terms into eqs. (7.1) 3
and (7.2): K
Pp = TUPL T PUys
p P
= -t _F 1
g U T YUY o Tx o Px + p Ix?
rr T = _uT __.}'_._ _.&Gu
: t x ~ pc. % T e "’
v v (8)
k 9
q. = -uq_ - — T - —=,
t X t:l X tl
n o]
o, = -uo_ +—u - —,
t Xty x ot

o~
L}

P(D 9T) -




where k = coefficient of thermal conductivity, u = coefficient

of shear viscosity, and ty and t, are relaxation times.

In vector form,

Various features of eq. (9) were studied. First, the

eigenvalues of A were found to be the solution of the

following equation in A:

(- MNiw-n-aw-02+b]=0 (10.1)

where
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In order that eq. (9) be hyperbolic it is sufficient
that the roots of eq. (10) be real and distinct. A necessary

condition, since b > 0, is that,
a > 0. (10.2)

A complete analysis of eq. (10.2) would require specific
information regarding the relaxation times t; and t,)- Although
such an analysis will not be attempted here, eq. (10.2) can

be considered a restriction on the parameters ty and t,y.

Assuming eq. (10.2), eq. (9) will be hyperbolic if,

a2 - 4b > 0 (10.3)

Various special cases were examined. For example, since

2

a~ - 4b = (a - ch)2

2 2 o
+ 4cch(l S ), (10.4)

eq. (10.3) is satisfied in the special cases where % <1 or

Cp = 0. Also, intuitively there is reason to suppose that
Cg» cq, and c, are comparable quantitities. If one assumes

2 2 o 2 2 2 o}

= = = - = - - + - =
cg cq Cg ¢ then a 4b (c = co) 4cch(1 p).

If one further assumes that p = pRT and that o = 0, then
a2 - 4b = c4[l + éﬁ%fl)]. Letting vy = 14, the eigenvalues are
found to be A = u, u * 1.494c, u * .8764c.

It is not of course intended that the above be a defini-
tive study of assumptions (10.2) and (10.3). Nevertheless,
at this point it is reasonable to suppose that eq. (9) is
hyperbolic for many, if not all, cases of interest. 1In
particular, this is so for the incompressible limit cp = 0.

. Secondly, the normalized variables were considered (8].

This is a somewhat complex study, in that the diagonalizing




matrix for A needs to be found (as well as its inverse).
The result is that the normalized variables for eq. (9)
are comparable to those obtained in ref. 8 for the inviscid
equations. This was considered important since the impli-
cation is that perturbation pr0perties for eq. (9) are similar
to those for the inviscid equations.

Thirdly, it is necessary to find a set of variables for
which the eigenvalue corresponding to X = u is in some sense

uncoupled from those involving the sound speed. Assuming that

= constant, (1)

k]
u

a suitable set is,




Remark: If assumption (11) does not hold, it may not be
possible in all cases to achieve an uncoupled form through an
analytic transformation. This does not affect the validity
of the quasisteady equations, but the analysis needs to be
considerably modified. It is of interest to note that the !
term p*%, which in the steady-state limit reduces to puy, is
now a forcing term, and not part of the hyperbolic effect.

Finally, the possibility of quasisteady solutions was
considered. If a quasisteady situation exists relative to

the various ''sound" speeds and if the flow velocity is small

relative to these speeds, then one must use the steady-state

form of the last four equations. The system is then,

% = —upk — ok :
oX upk — p*u_, (13.1) |
0 =-uu -+ (p-tu), ' (13.2) |

X p X x

i

p-u ;

0 = —( X Ju - uT +—£— T . (13.3) i
DCV X X QCV XX

If we then let t,.0, eq. (13.1) becomes the continuity equation. ;
Summarizing, the momentum and energy equations are in quasi-
steady equilibrium with respect to the continuity equations.
In addition, a condition such as eq. (2.2) is also implied for
validity of eqs. (13).

Suppose next that the length of interest is small; that

is, suppose

Ax ~ X = mean~free path = -‘% ; (14.1)
s

—— I.............-..iiili




where Ax is again intended as a physically significant length.

Suppose also that

the time required

13

the relaxation times are on the order of

to traverse a mean-free path at the sound

aere =FLEY

speed,
i {; | (14.2)
2 = %ﬁ’ -2, (14.3)
2o k2 (14.4)
q pch uey, s

ue

where, as noted in [1], —EX is essentially a Prandtl number.

If this Prandtl number is near unity, then cq ~ ey =c.=c,
A

and the hyperbolic time scale for the problem, At ~ e is
comparable to the forcing time scale ty-

If u 1is comparable to ¢, then in this case, as in
the discussion of the heat conduction equation, eq. (12)
should be used as it is. Under assumptions (14.1) and (14.2),
eq. (12) is on the same order of difficulty, in terms of g
obtaining a numerical solution, as the usual inviscid system. ;
One expects the solution to steady-state flows to be similar i
to those obtained from the Navier-Stokes Equations. On the %
other hand, solutions to time-dependent flows (such as shock ‘

interaction problems) could be considerably altered.

If |u| << ¢, then eqs. (13) could be a feasible set of

quasisteady equations.
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Section IV: The Two-Dimenstional Viscous Flow Equations
The Cauchy equations now take the following form: ;
p'c + upX + wpz + puX + owz =0,
ko = *
: p(ut + uu + wuz) + Py T, + ok,
; p(wt + uw_ + wwz) + P, = T, + 0:*, (15.1)
pcv(Tt + uTx + sz) + p(ux + wz) = —q::
-q**% * ok
qz+oux+T(wx+uz)+0 W
where u, w are velocity components in the x,z directions,
respectively, q* and q** are the components of the heat flux,
*
and the 2x2 stress matrix has the form (: ;**), see ref. 9,
p. 46. Using
T = u(wX + uz),
o* = puf2u_ - g(u +w )]
x 37 x z
) (15.2)
*k = 2 - — -
g ul v, 3(ux + wz)] ‘
* = o *k = —
. q ka and q sz .
Eq. (15.1) becomes the compressible Navier-Stokes Equationms.
As in {[2] and [3], the top of the region will be allowed
to float so as to remain a streamline. This is accomplished
. 1
by the transformation,
3

l\

5 - T BT T e Y TR Y g
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€=, (16.1)
nE X (16.2)
z—fl(t,x)
©TE (0 - £ (60 (16.3)
with
C}(
(fz)t=w+u(—c-—), (16.4)

z

where f1 and f2 represent, respectively, the position of the

lower and upper boundaries.

If we then also add relaxation parameters to the viscous

terms, eqs. (15) become:

-+ + + + =
pg +uo e, p(un ugcx) + pczwc 0, (17.
olu, + ue +ru ) +p o+ Prly = 0,7, tok+ T (17.
(we + + + = *%
plwy + uw rwc) Prl, = LR T T L, 7.
¢ (T« + uT + rT + + =
p v( g Ful +r C) p(un u + wccz)
—(g* + ag* — g*% *
(af + qfe) - af*c, +o*(u +ug) ar.
+ + *k
T(Wn wcl;x + uCCZ) + 0 wccz,
Ww +wig +uctg)-r1
. - n L°X L’z
T + urn + rrc : (17.
1
4 4 2
wlzu +3uig -Zwrg ] - ok
% * £ -_3 n 3 g’x 3 ¢’z
ot + uon + roc t (17
2
wEtwe =24 -2y g ] - o**
O 4 ouokk 4 pork = > 52 3 n 3 g’x (17
t n 4 t :
3
- kKT + T ) - q*
* * * = n L X
ag * uqp + rqy T (17.
4
-kT z - q**
** * - L'z .
¢ +uq: + rq:* __—_—E-——___- (17.

- e

2)

3)

4)

5)

.6)

7)

8)

9)

.
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where

r = ct + ug, + wcz.

The variable propagating at the flow velocity is uncoupled

from the system by defining,

3t2 3t
(= 0% + —= o**%)
p* = pe 24 2¢ (18.1)
o% = p - o%, (18.2)
okk = p - gkk (18.3)
ty t3
With assumption (11), namely that 'y and —r are both constant,
eqs. (17) become,
% * * =..§Ef * *%
Py +upn+rpc o (o* + o*%), (19.1)
~ + + = - g% - [ ok
p(ut uun rug) CzTc cn I;xoc, (19.2)
- + + =t + - [ _ok*
plug +uw 1w ) =71 + LT - L07 (19.3)
~ + + 1T ) = - g* - g% — g¥k
pcV(Tt uTn r C) ] u, o Cxuc o% czwC
(19.4)
+ + — (g% * %%\
T(wn Lt Cz“;) (qn + Zy97 + Z,a5%0s
XS
Gh* 5% + rok = -pcly - 2 _ "z 2 I 2
0% + uon 1:0C pclun p(cxcl > CT)UC + o C'I‘wn
2
@ T T et
z 2 z,p t” p tdn T S TS t,
T
CAX 4 UTh% 4+ rok* = —pcy - -z 2 I 2
0% uoy r : pc3un p(cxc3 > cT)uc + > vy
2
. (c2 ) z Ty o Efi @+ o qh 4 ) + gk (19.6)
z 4 P 4 p 9 xdg Czqc t3’




]
¢
)
|
§

where
2 _ o* 2 4y
_ o*k 2 4y
T T A T (19.8)
_ g% 2 2u
¢3 = P, + T ey - §BE§ , (19.9)
2 _ Gt 2 4y
C4—pp+—p—CT+Tﬂ, (19.10)
PP
2 T
Cp = —5— (19.11)
pc
v
Eqs. (17.5), (17.8), and (17.9) are unchanged.
Suppose that solutions are desired in the region,
0O<ns<L,0<z<1,%>0 (20.1)

Some simplification in eq. (19) is obtained by assuming

that the vertical height and vertical variation is small:

]f2 - fllyf_ several hundred mean-free paths, (20.2)

AR ANIERE (20-9

From (20.2) we assume that vertical velocities and pressure

gradients are small. In particular, we assume:

x 20.4
|g;'WC| << fu. |, (20.4)
Lx

Iz ool << el (20.5)

We thérefore delete w

zox

from eq. (17.5) and Gtcx from eq. (19.2).

P S

Ry
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; The equations then take the following form:
i
‘ V_=-AV_ - BV_ -~ CV,
where
i
v v = (p*) w! T’ q*’ q.**) 8**’ 8*’ u’ T),
u 0 0 0 0 0 0 0 0o\
1
0 u 0 0 0 0 0 0 -
a*
J—— u L 0 0 0 o 0
pCy pcy pcy
0 0 X u 0 0 0 0 0
t
4
A = 0 0 0 0 u 0 0 0 0
e pc2 :
0o - —1T 0 I 0 u 0 oc’ 0
p p 3
Tpc2 pc2
0 - —2t 0 I 0 0 u pc? 0
p p 1
1
0 0 0 0 0 0 ' u 0
o -+ 0 0 0 0 0 0 u




oczc oc2C
T x T z
0 b4 0 P P r 0 b3 0
2 2
pe&t (o] F34
T x T2
b
0 6 0 > 5 0 r b5 0
0 0 0 0 0 0 0 r T
;
: M
0 0 0 0 0 0 0 - tl Z;Z r
3(o* + o** -1 -1 -1 -1 1
C= (—(—_2_“_'_) ’ 0’ 09 E—ﬁ t_’ —t—_’ "t."’ 09 t— )
4 5 3 2 1
Skr - Skkr  — !
. I\ cx Tcz _ o cz ’tl’,’x
- - bl = R — bl
i 1 pcV 2 pc,
1 2 2
_ 2 &S _ tx'CT
£ b3 - D( CxC3 = P ), b4 - pgz(cl' - CZP )y
2 ngc% 2 CXTCT )
bs = D( Cxcl - P )9 b6 = OCZ(CZ - CZP )
‘ . .
3 The solutions of [B-AI| = 0 are A =r, r, r + /L%— ,
3 Pt
r - /3%— , and the solutions of IBl-AI| = 0, where B, is the f
1 j
indicated 5x5 submatrix. The latter 5 are solutions of the

polynomial,




e T

(r - VIr - N2 - a -1 +b) (22)
where
g
Nz b, + kt 24 kt 2
P peyts 2 pCyt, X
. : b 2
~ kK 2 K 2 z 2275501
b= pc t &, t oot Cx)(b4 o )
v 4 PCy 5 e P

The discussion of the one-dimensional system given in Section III

is applicable to eq. (22). 1In particular, we assume the following:

i) The solutions of the 4th degree polynomial in eq.(22)
are

r t ¢&.. (23.1)

ii) |r| << ¢

. ./
L Where ey = m1n(él, gy B?I ). (23.2)

iii) As a consequence of assumption (20.2), the relaxation

times are comparable to the hyperbolic time scale, (23.3)

In the discussion of boundary conditions we will need the
correspondence between eigenvalues and the variables. These are

as follows:

i) A =r, r, r correspond to p*, o%*, and q*, (24.1)

ii) A =1r¢ th correspond to u and T, (24.2)
1

iii) A =1 ¢ él, r t 62 correspond to w, T, q**, and ok*, (24.3)

Remark: Eqs. (24) are not quite accurate in that the variables

involved in the above matrix B1 need to be modified so as to

uncouple the variable corresponding to A = r. However, because
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of assumption (20.3), Sy is small and the appropriate variables
will be small perturbations of the present ones. The result
will not affect the final quasisteady equations and so the
derivation is not carried out here.

The eigenvalues of the matrix A of eq. (21) are given

by,
[A - AT] = (u=2)>[(u-1)? - E‘C’— w0 - a@-1)2 + b, (25)
1
where
2 k
a= c::1 + s t4 ,
g*c
b = ckt (ci - T )
e v 4 P

The solutions of the 4th degree polynomial in eq. (25)

are easily seen to be real. Consequently, the eigenvalues of ]

/U

Qtl !
64 correspond to the 4th degree polynomial. It is assumed

A are {A = u,u,u, u # u * 63, u + 64} where 83 and

that,

lul < cg = minz,, g, /;%I ). (26)

The correspondence between eigenvalues and variables is as

follows:
15 A = u, u, u correspond to p*, q¥*%*, okk, (27.1)
ii) A =u ¢ /5:_ correspond to w and T, (27.2)
1
iii) A =u # 63, u * éa correspond to T, g%, o*, u. (27.3)




As in the atmospheric problem, the goal here is to con-

sider quasisteady situations induced by "distortion'" in the
spatial scale; that is, we consider boundary layer situations.
The physical scale assumptions for the present problem can

be stated as follows [2, assumption'Z]

i) The physical region, given by eq. (20.1),

is such that (f2 - fl)/ch << L/qa' (28.1)

ii) Boundary conditions and initial conditions
are such that the flow variagbles will
experience significant variations only (28.2)
over time scales which are large compared
to (f2 - fl)/ch.
Remark: Assumptions (28) would be typically satisfied in
thin boundary layers. In many such problems the vertical
mesh has caused severe numerical problems [10,11].
Because of assumption (28.1), we need not consider the
possibility of simultaneously having quasisteady limits with
respect to both n and ¢. By assumption (28.2), however,
quasisteady limits with respect to ¢ are feasible. We
conclude, therefore, as follows: By eqs. (24.2) and (24.3)
and assumption (23.2), the variables {u,t,w,T,q**, o**} are
in quasisteady equilibrium with respect to p*; by assumption i
(23.3), the variables q*,o* are in quasisteady equilibrium .

with respect to p*. The viscous parameters are then,

T = Ll(wn + CzuC)’ (29.1)
o* -4 W(u  +Z u) - - ul w (29.2)
3 X ¢ z g’ *
Oh% 2

= (= w. G —%—u Cuc),

(29.3)




q* —k(Tn + CXTC)’ (29.4)

q¥* = -kT,, (29.5)

with the final partial differential equations as follows:

- = - + + )
Py + uo + ro, o(un r,xuC czwc), (30.1)

0=- + + + - p + o*, 30.2
p(uurl ruc) czu(wn czug)c P, oF ( )

0=-p(uw + rw ) + + w +zu -
p(uw ot Tt e ate, C)c L, p

X z' g )
R S ) (30.2)
&3 ccz 3 Y T3 Yk g’
0 = - pc (uT +rT) + [4 (u +z_ u ) 2 w_J(u 4z u)
PeV T e e S L A i i
-plzu+u) - prw + u(é'w ;.- 2 u - g-u T Iv I
XC n z'g 37¢72z 3 n 3 Trx' g

(30.4)
+ + + + + +
u(wn Cz“c)(wn cch Cz“;) k(Tn CXTC)H

2
+ kcx(Tn+TCz_;X)C + CZkTCC

? where in eq. (30.1) it has been assumed that p*-p.

| Summarizing, the quasisteady equations (30) are proposed
as an approximation to eqs. (17) if the several assumptions
{20.2, 20.3, 20.4, 20.5, 23.1, 23.2, 23.3, 28.1, 28.2} are

satisfied.

;i
|




Section V: Boundary Equations for the Quasisteady Model

The approach used to obtain boundary equations for the
quasisteady model will be the same as that described in [3}:

First, at each boundary an appropriate set of characteristic

equations and boundary conditions is specified for the time-

dependent model; secondly, we attempt to simultaneously take
the quasisteady limit of the internal partial differential
equations and the boundary equations.
As a specific problem, we will consider viscous flow
over a flat plate: n = 0 will represent a position somewhere
downstream of the leading edge and ¢ = 0 represents the wall.
The nine equations needed at each boundary for the time-
dependent model, eq. (21), will consist of boundary conditions
(whose number is determined by the number of incoming character-
istics) plus characteristic (linearized) equations.

We assume that,

n =0 is an inflow boundary and n = 1 ig¢

an outflow boundary (Except at ¢z = 0, u . 0 (31) 1

at n =0 and n = 1). i
From eqs. (25), (26) and 30, at n = 0 six eigenvalues are

positive, indicating six incoming characteristics, and three

are negative. The nine equations can be chosen as

o = hy(t,0), (32.1)
q** = hz(&;C)r
6** = hB(Er C) »
w = hA(EaC), (32-2)
T = hs(t:C):
u = hg(t,z),
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where h, are specified functions, plus the three character-
istic equations which will have the form (see [3] for more

detail):

+ a

211%¢ 127t T 13

-~ * pus = =
ap1Tg ¥ 89997 + 330% * ap,up = ayg (32.3)
T. + X+ a0t + =
431 ¢ T 2329 T 8339 T 234U T 235

At n = 1 there are three incoming characteristics. The

equations can be chosen as follows:

w =0, (33.1) -
qv‘: = 0, (332)
P, = & uy, (33.3)

(see [3] for a further discussion of (33.3) as an outflow
lateral boundary condition. The six characteristic equations |
will consist of the partial differential equations for p%,
q%f 8%* and three equations of the form (32.3).

At ¢ =0, r = 0 or, referring to eqs. (22) and (23), the
following equations can be chosen: o*, 0%, and q* can be
calculated from their differential equations; the boundary

conditions can be taken as,

C
u=f, (&,
1 Cz

t
C
w= £ 10+ (D, (36.1)
t b2
T = h,(t,n) ,
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and the characteristic equations have the form,
a1 + 0T = as3»
a51TE + ag Wi + ko 3546%* < ac., (34.2)

a539¢
-~ ~ ?5* _t* s
ag1Tg + agoWi * agaqp’ + ag,0F ¢ ags

0. Thus, the equations for o*,

At ¢ = 1, we again have r
o*, and q* can be used. The characteristic equations will

have the form (34.2) and the boundary conditions are chosen

as,
T =20,
(34.3)
q¥* = 0 :;TC =0.
P = £ u, (34.4)
S

(See (3] for a discussion of the last equation in the
context of an upper boundary condition.)

Eqs. (24) were obtained by assuming that the variables
{u, w, T, 1, g%, gq**, o*, o**} were in quasisteady equilib-
rium with respect to p*. Quasisteady boundary conditions are
obtained by applying the following principles [2, egs. (15

and (16)]:

If a boundary equation involves any one of {uE,

- - - * % % k% . .
Yt, TF, TE qE, q% , 0%, OF } and if the equation
is driven by flow conditions internal to the region

of computation, then the equation will be put in

quasisteady equilidsrium. (35.1)




The basic quasisteady assumptions, (28.1) and

(28.2) require that eqs. (29.1)-(29.4) and eqs.
(30.2)-(30.4) be applied at all points of the (35.2)
lateral boundaries, except possibly at the corner

points.

The following is thereby obtained:

a) At n =0, egs. (32.2) are deleted because of (35.2)
and eqs. (32.3) are deleted by (35.1). Thus, p is
obtained from eq. (32.1) and the remaining variables
are determined by quasisteady equations.

b) At n =1, eqs. (33) and all characteristic equations,
except the equation for p*, are deleted because of
(35.2). Thus, p is obtained from eq. (30.1) and
the remaining variables are determined by quasi-

steady equations.

c) At the upper and lower boundaries, ¢ = 0 and 1,
the equations for o* and q*, as well as eqs. (34.2)
are deleted because of (35.1). Thus, p is obtained
from eq. (30.1) at both ¢z = 0 and 1. Also eqs. (34.1)
are retained at 7 = 0 and eqs. (34.3) are retained
at ¢ = 1. (the last equation in (34.3) is retained
because it is intended as a simulation of external

flow conditions [3]).
Summarizing, the proposed quasisteady model is as follows: {

i) p is obtained at n = 0 from eq. (32.1) and at
all other points from eq. (30.1).

ii) u is obtained from eq. (30.2) and the boundary
conditions (34.1) at ¢ = 0 and 7 = 0 at ¢ = 1.

iii) w is obtained from eq. (30.3), the boundary con-

ditions (34.1) at ¢ = 0, and a condition, to be discussed

below, at 7 = 1.
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| iv) T is obtained form eq. (30.4) and the boundary

é conditions T = h(t,n), where h is specified, at ¢z = 0 and

i* T(,,:OatC:l

; v) Eq. (16.4) is a first order hyperbolic partial
differential equation in the variable f2 (f1 is specified)
and, because of eq. (30), requires a boundary condition at
n=0. We will imnose,

(fZ)E =0 atn= 0. (36)

The third condition of eqs. (34.3), Py = %R u,, has not
s

been used. It is the missing condition for w. Its use
requires an additional iteration between eqs. (16.4), (34.4),
and the calculation of u given above.
Remark: Clearly, eqs. (30.2), (39.3), and (30.4) are coupled
and would in fact need to be solved simultaneously. The above
description of the model is intended to display the primary
dependence between the variables and the differential equations.
Finally, we need to consider the corner points. As

discussed briefly in [3), inconsistencies can arise here in
regard to boundary conditions:

i) 7 =0, n=0: p is specified by eq. (32.1), T
is specified or hS(E,O) = h7(f,0) - see eqs. (32.2) and (34.1),
u and w are specified by eqs. (34.1).

ii) ¢=1, n=0: p is specified by eq. (32.1) and

L . Ypu,
the remaining conditions are TC =0, t =0, and Py = ngr'

iii) . =0, £ = 1: p is calculated from eq. (30.1), and
the other variables are as at 7 = 0, n = 0.

iv) ¢=1, n=1: p is calculated from eq. (30.1), and

the other variables are as at ¢ = 1, n = 0. .
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Section VI: Boundary Layer Approximations

Assumption (28.1) has the effect of requiring that the
width of the region be small relative to the length. The
following assumption insures that the length itself is large:
L is large relative to the mean-free path, so that
significant variations in the x-direction occur only (37)
over many mean-free paths.

From the results in [l] we conclude that the viscous terms,

in the n-direction, of the Navier-Stokes Equations can be

deleted. Assuming this conclusion also holds for the Cauchy

Equations, eqs. (30) reduce to the following:

pp + up, + rp, = -p(un + CxY, + Czwg)’ (38.1)
_ 2

0 = —p(uun + ruc) + Qzuucc - Py (38.2)

0=-p(uw_+ 1w ) + g g ,uu__ - g_p
n C X722 e zt g (38.3)

+ ¢ _u( 4w - 2 g u )

P B A S I A
0 =-pc, (uT + rTL) - pu + txly t o) )
(38.4
2.2 4 2 2 N
+ pgz[uC + ki wc] + kcz TCC'

where, on the basis of assumptions (20.3) and (20.4), several
viscous terms involving Ly have been deleted from eq. (38.4).
Remark: Assumption (37) could have been applied before making
the transformation to {t, n, z}. In this case the viscous
terms involving Ly would not appear in eq. (38.3). This is
consistent with the well-known result in boundary layer

theory that the final approximation is dependent to a certain

extent on the coordinate system.
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Egs. (38) are similar to Stokes' Equations for compressible
flow [12, eqs. (20)), which are obtained as the limit of the ;

Reynolds Mumber approaching zero. Letting,

M = Mach Number = éL s (39.1)
s a

R, = Reynolds Number = 3%9 , (39.2)

A = mean-free path = éL , (39.3)

c
we obtain,

R = M(Z

e = (T)' (39.4)

L/X is large, by assumption (37), but there is as yet no
restriction on M (assumption (26) was introduced only for the
purpose of specifying boundary conditions). Thus, egs. (38)
are valid for large Reynolds Number, as long as the scale
assumptions are satisfied.

Eqs. (38) should also be compared with the boundary

equations commonly used for time dependent compressible flows,

as, for example, given by Lagerstrom (12, eqs. (20-12)]. Very
fundamental differences are seen:

i) Lagerstrom's equations retain the time derivative
in the horizontal momentum equation and the energy equation,
whereas both have been deleted in eq. (38).

ii) Lagerstrom's equations have replaced the vertical
momentum equation with the condition pg = 0. In eqs. (38)
a further assumption, to be discussed below, is required

before such a simplification can be attempted.

An incompressible version of eqs. (38) is obtained by
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assuming Pr = 0. Eq. (38.4) is then uncoupled from the
remaining equations. With the notation,

_ _ 2
p=rp() and p,  =c", (40.1)
egs. (38) become,
: ' 2
; . Py + up, + rp, = -oc (un + CxYc + Czwc)' (40.2)
Ky 2 _
i p(uun + rug) _Cz“ugg + pn =0, (40.3)

2

v 4 rw ) - - b2 - =
D(LJnF W, ) =g, C,uu Czu(gczwC 3cxuc)c+czfc— 0. (40.4)

4

Eqs. (40) can be compared with, for example, Prandtl's
boundary layer equations [9, eqs. (7.7) & (7.8)]. The essential

differences would be as follows:

i) 1In Prandtl's equations, egs. (40.2) and (40.4) will
be replaced respectively by u, + CxUr + LW, = 0 and P, = 0.

ii) 1In Prandtl's equations, the time derivative term
would be added to eq. (40.3).

Boundary equations for eqs. (40), corresponding to

those given in Section V, would be as follovs:

G g
c=0: u=f; D, w=£ /11+ (25)2], eq.(40.2); (41.1)
V4

t %z t
= . = =XR .
C l: u, 0, P o, u_, eq. (40.2); (41.2)
n=0: p specified, eqs. (40.3) and (40.4), (41.3)
n=1: eqs. (40.1), (40.2), (40.3). (41.4)

. A further simplification of eqs. (40) can be achieved

by analyzing the time scales associated with these equations.

Since, in the time dependent form, the right side of eq.(40.1)




SR

e d

T T SO e

is a forcing term, then with our assumptions the hyperbolic

time scale for eq.(40.1) is,

e

Aty =

Integrating eq.(40.4) in the form,

CX 3 D- b
ngC = - ug + E(Cx)cu + + bl'
where
3 fc N
bl = z‘—l-i_(,_z_ 0 D(an + rwc)d(,,
p* = p(t, n, 1),

and substituting into eq.(40.4), we obtain,

N = . 2p*
Pg + up, + rpg At2 + b,,

~

where

- 2
b2 =-pC (un + SR + bl)’

4u
3pc

At, =

]

Next, defining w_ and w* by,

w = w¥ + W

* = o
CVE (un + cxuc).
eq. (40.2) becomes,

_ 2
P; + upn + rpC = -pC czwec

Intégrating eq. (43.3) approximately, with the time

(42.1)

(42.2) -

(42.3)

(43.3)

increment

Aty, and then differentiating with respect to %, we obtain,
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n+1) - (pn)

(p 4 C - At]_[(upn + rpc)n]C" Atl(;z(pczwE ) (43.4)

¢ &

where the superscripts n and n+l denote respectively times

t_ and t + Atl. With eq.(43.4), eq.(40.4) becomes,

n
At
4 2 1 - 2 . 1
quc, (1 + -——Atz)wecc = gucz Tr T 3oxb MU,
+ 2 z . (z ) u, + pluw_ + rw ) - At Cz(pcz) w (43.5)
FHo2 0%/ Ve n 1%z Ve, .
n n
- +
cz[p Atl(upn rpc) ]C’
At
From eqs. (39), E( )( ) Assuming that the Mach Number
is not large, say,
M<1, (44.1)
we conclude, from assumption (37), that
KE; >> 1. (44.2)

It is therefore appropriate (see Section II.A) to take the

quasisteady limit of eq.(42.3), which thereby becomes,

p = p¥*, or pC = 0. (45.1)

At the same time eq.(43.5) becomes,

At
4 2 1 4 o2, 1
gUCz(l + KEE)WECL gUC, tr ngCzuugg
+ 2 + 2 (pe? 9
gucz(cx)cuc p(uwn + rw ) - Atyg, (pc )CWEC (45.2)

Because we have taken an additional quasisteady limit,




boundary eqs.(41) need to be reexamined in terms of (35.1)

and (35.2). Eq.(40.2), at £ = 0 and ¢ = 1, presents some
difficulty: It is assumed that the equation reflects only
internal properties of the fluid at ¢ = 0, while at ¢ = 1 it

gives information regarding the external flow (since it is

" applied at the dividing streamline between the boundary

layer and the external flow). Thus, eq. (40.2) is deleted
at ¢ = 0 but retained at ¢ = 1. The proposed model is then

as follows:

i) Ae {0 < g <1, 0 <n <1}, (46.1)

eqs.(40.3), (43.2), (45.1), (45.2).

ii) At {¢ =0, 0 < n < 1}, (46.2)
c
u=f, =,
1t cz
bx 2
wr = £ /{1 + (=71,
1 b2
w =0
€ ;
iii) At {¢ =1, 0 < n < 1}, (46.3) ;
u_ = 0,
g 4
= YD,
Pe = ¢l
W o= - i (pg + up ),
sC pCZ t n
g
f2 =w+ u — ,
t P
iv) at{z =1, n =01}, (46 .4)

p* specified,




= XP

Pt = ¢ Yo

w, = —iz (pE + upn).
4 pc

Remark: The possibility of inconsistencies arising at corner

points was discussed in [3]. 1In eqs. (46) such a difficulty

1, n =0}: Since p* is specified, either

occurs at {¢

u, = 0 or P, = %? u, must be deleted. This could result in

some type of "inlet adjustment" length in the solution.
Finally, it is clear, from eq. (44.2) that the wéc term

in eq. (45.2) is negligible. In addition, under usual con-

ditions in which incompressible models are applied, one expects

the remaining terms on the right side of eq.(45.2) to be small.

In any case, with the assumption,
|W€l << W*, (47)

W becomes a purely diagnostic quantity. The resulting model

in {p, u, w} is as follows:

Eqs. (46) with w = w* and W deleted. (48)

In comparing model (48) with Prandtl's boundary layer
equations [9, eqs.(7.7) and (7.8)], one sees that the remaining
discrepancy is in the time dependence. In eqs. (48), time
dependence occurs only through boundary conditions, while in
Prandtl's equations, time dependence occurs through the time
derivative term in the horizontal momentum equation. In some
problems, particularly those involving small perturbations in

time, this difference might be significant.




Summarizing, we have derived several models for possible

use in boundary layer problems:

i) Egs. (38) are proposed for compressible flow.
However, this model is still incomplete:

a) The derivation needs to be carried out for the

t
case of variable 7% (assumption (11)),

b) The effect of the forcing terms needs to be
considered in eq.(38.1).

ii) Egs.(46) and (48) are proposed for incompressible
boundary layers. Solutions to these equations will

be presented in the next section.

Although the above models are intended to be time-
dependent, a serious question remains concerning the types of
time-dependent behavior retained in quasisteady models. The
following remarks address this question.

Remark 1: Quasisteady models assume that appropriate time
dependence for the quasisteady variables is provided by boundary
conditions. A clear example, discussed in [2], is the following:
Suppose the flow is completely one-dimensional (say, in

the n-direction), but a thin f-region is maintained. Then,
eqs.(38) might still be valid, but clearly cannot by themselves
provide time-dependent propagation of the flow. The important
point here is that eqs.(38) are internal equations, while the
boundary conditions are considered separately. Appropriate
boundary conditions could be to apply the full one-dimenstional
equations at, say, ¢ = 0; these equations would be unaffected

by the internal quasisteady procedure with respect to ¢.

In thié regard note that eqs.(46) and (48) were derived for

specific boundary conditions.




Remark 2: As a second example, consider flow in a narrow

channel bounded by two parallel flat plates. Without going
through all details, the quasisteady model corresponding to
eqs. (48) would be as follows:
i) At the "internal" points {0 < < 1, 0 < n < 1},
the same set of equations would be used: eqs. (40.3), (43.2),
(45.1), (45.2),
ii) At {¢=0and 7 =1, 0 <n<1l}, u=0, w=0,

~ o= - c2w
pt p (1

iii) p* specified at the inlet line n = 0.
(Note that in this problem f, = 0 and the equation
t
= XP
P =¥

¢ is not appropriate).

It is not expected that the above model can predict the develop-
ment of the flow, beginning with stationary flow at time

zero and a time-dependent pressure input at n = 0. This can

be explained by noting that two of the major assumptions are

not satisfied for this problem:

a) One expects the initial propagation for this
problem, at any point in the flow, to resemble a one-dimensional
compression wave (following which, the vertical viscous terms
dominate the flow). Thus, assumption (37) is not valid at
all times.

b) Unless the region is extremely thin (say, 20
mean-free paths), assumption (28.1) will not be satisfied
in the neighborhood of the moving compression wave (here
we interpret L to be the width of the wave).

Remark 3: Eqs. (46) cannot predict the formation of the

boundary layer resulting from impulsive motion; assumption
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They should, however, be applicable

(28.2) would not be valid.

to some types of perturbations of an existing boundary layer.

An example of such a problem will be given in Section VIIL.

| i W gl
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Section VII: Solutions to the Incompressible Boundary

Layer Model

In Part A we consider analytic results regarding eqs. (46),

and in Part B we present some numerical solutions to several time-

dependent and steady-state problems.

A) Analytic Considerations

Assuming,

i) that W~ 0

ii) that the convective terms in eq.(40.3) are
negligible,

iii) that %?=pc can be considered constant in eq.

(46.3),

eqs. (46) take the following form:

pu,, = £2p u(t,n,0) = u (t,n,1) =0,
w, ="fun + (fln + Cfn)uc’ w(t,n,0) =0,
P, = pocoutOP, p (t,0) specified,
£y, = WP - £ P, £5(,0) = £5(0,m) 5 o,

"
top denotes ¢ =

where f = f2 - fl' P, = p(t,n,1) - Pg:
It has been assumed that u 20 at t = 0 and that f1 E
t

From eqs.(50.1) and (50.2),

t
u=- @ (P - 20), uP - D

i
o

(49.

(49

(49.

(50.

(50.

(50.

(50.

(51.

|9

.2)

3)

Y

2)

3)

4)

1
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2
3

1
A

40

3 3
z 2 t 2 t )
w = - D™D -G 208 u PoZ - D ur (51.2)

From egs.(50.3) and (51.1),

2
top _ _ £ top
u o pgCq(u )n'
or (51.3)
topy _ _ 2\ _top
(u )n = ;_'2' u
From eqs. (50.4) and (51.2),
__ 2 top
f2t 3 (fu )n' (51.4)
From eqgs.(51.3) and (51.4),
9 otoP
f2t -3 (—--f——)(ffn - 2X). (51.5)
From eqs.(51.3) and (50.3), one finds the initial conditions
to be as follows:
to top - 2in/f£2
u p(O,n) = u, P e < 0.
(52)
top _ 1 -
uO - poco pE(‘-—’O)-
The steady-state solution must satisfy
(futop)n =0 (53.1)
and
ffn = 2X. (53.2)

Note that eq.(53.1) implies the conservation of mass condition,

(hifudgin= 0. From egs.(53.2),

state solution is,

(51.3), and (50.3) the steady-
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£=rg, A+ 2% (53.3) :

£o |

;

top _ top utoP - 1 - :

u (CDuEP, Eo? - e Pe(™0), (53.4) 1

= top

p€ - pocou , (535)
WP = (2L 4 fln)ut0p (53.6)

One can also verify from the given solutions that assumption
(49.2) is valil for small Mach number:

A
N
o~

+

top utop

< 213 —] + 2| |

(The last inequality assumed that f1n = 0).

It would appear from eq.(52) that, by specifying p.(0,0) = 0,
the solution could start with stationary flow and genzrate a
boundary layer. However, because fO > 0 must be arbirrarily
specified, this procedure would not seem to be reasonable.

Eq. (53.3) indicates that, as expected, the steady-state
boundary layer grows as vx. Also, eq.(51.5) indicates that the

rate of growth of the time-dependent boundary layer would be %utoP

(assuming X < f).

Note in the above that the model is "consistent'" in terms .

of mass conservation independently of eq.(50.3). Thus, as is
commonly done in boundary layer problems, one could specify Py

arbitrarily and obtain solutions. Yowever, because ¢ = 1 is




always a streamline, not all functions for p will give sensible
n

answers. For example, P, = constant will give utopP - constant
and, from eq.(52.1), f = constant.

The above indicates that defining the edge of the boundary

layer as a streamline is considerably different than assuming
that the "outer flow" is achieved at the edge (see, for example,
[9, eqs.(7.5),(7.7),(7.8)]1). The use of the streamline requires,
for a complete interpretation, the existence of an additional
transition region from the edge of the boundary layer to the free
stream conditions. On the other hand, the streamline definition
avoids the inconsistency in other boundary layer models of
nonzero vertical velocity at the edge of the boundary layer.
Inconsistencies at the outer edge were also discussed by
Telionis and Gupta [13], where it was stated that u, p, and T
should satisfy the one-dimenstional time-dependent inviscid
equations at the outer edge. Thus, only one of the three
variables is arbitrary. Likewise, in the quasisteady model one
upper boundary condition is specified, but the other variables
are calculated from quasisteady equations rather than the time-

dependent inviscid equations. y

B) Numerical Solutions to Egs. (46)

The problem is that of flow over a flat plate. The initial

stationary fluid was chosen with properties,

kel
]

3.2632 x 107% kg (54.1)
m

260°X., (54.2)

-3
n
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(These are typical atmospheric values at a height of 60 km.([14]).

We then have,

c=cqy= /7§T6 = 323.24m/sec, (54.3)
w=2.556 x 10"0/TC°RY = 4.121 x 1079 Ke_ 0 (54.4)
Mo -3
A= —o— = .3907 x 107 n, (54.5)
P00
P = py = 0RT, = 24.35 KB (54.5)
msec

As discussed in Section VI, there is an initialization

problem at time zero. Our procedure was as follows:

i) An initial fz(n,O) = f2 and an initial pressure
0
p(0,0) = Py + p* are specified.

ii) With the exception that the quantities f, and £, are
t

maintained at zero, the remaining equations of eqs?(46) are
integrated timewise until a steady-state is achieved. These
values are then the initial conditions for the complete time-
dependent problem, and, for small Mach number, should be in

close agreement with eqgs.(52).

In the first problem to be discussed we chose,

£2, .02m ~ 51.21, (55.1)
L = 2.5m ~ 63991, (55.2)
p(0,0) - py = .01 (55.3)
£,(t,n) = 0. (55.4)

The above lengths are consistent with the scale assumptions of

e et Al e i -
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the model. The pressure value is small so that the computation
will represent a low Mach number.

One expects the time step in the problem to be determined
by the time-dependent partial differential equations. Upon
examining eqs. (46), one sees that only one such equation

remains, namely that for fZ:

f2 = - uf2 + w. (56.1)
t n

Eq.(56.1) is a simple first order hyperbolic partial differential
equation. The time step restriction, the stability condition

for the upstream differencing scheme, is,

An
At < - (56.2)
The first computation was chosen with a 5 x 13 spatial mesh,
Ag = .25 and An = L/12, or
Az = .25
An = .2083 (57)
At = 2, ]

(As will be seen in the results, eq.(55.3) produces a maximum
u of .09482, which then accounts for the choice of At). The
computations were then repeated with the mesh cut by a factor of
2. All results discussed below are for the finer mesh.

Figures 1-6 show results obtained for this problem. Figure
1 shows the initial p and u distribution at the top after the
initialization has been completed. The pressure drops from

.01 at n = 0 to .000066 at n = 1, while u drops from .09482

to .000627.
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Figure 2 shows the time-dependent development of the boundary
layer, assuming the above initial conditions. Figure 3 displays
the boundary layer growth at two specific points. Although the
precise rate of growth of the boundary layer is difficult to
recover from the numerical results, Figure 4 attempts to show
the rate of growth: At each point x, we plot the time at which
the boundary layer achieves 90% of its final steady-state
thickness. Figure 5 shows the development of the pressure
field and Figure 6 shows the final steady-state horizontal
velocity distribution.

The initial and final steady-state values are in good
agreement with the results established in Part A, as can be seen

from the following tabulation.

Calculated Analytic
-3

-4

ut©P(0,2.5) 6270 x 10 .7176 x 10

p."°P(0,2.5) 6613 x 10 .7569 x 10

-3
-4

utP (0, 1.25) 7711 x 1072 8249 x 1072
-3 8700 x 1073

p.t°P(0,1.25) .8133 x 10
£(,2.5) 06817 .06562
£(,1.25) .049 58 .04851
utoP (=, 2.5) 02773 .02889

utOP (= 1.25) .03792 .03838

-3 3

wiOP (= 2.5) 3659 x 10 3440 x 10

wtOP (= 1.25) 6624 x 1073 6182 x 1073

£(=,2.5)utP(=,2.5) | .001890 .001897
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The results are generally as exnected. The following com-
ments are perhaps worth noting:

i) w_ is not displayed, but throughout le] < 10'a|w|.
Thus, eq.(43.2) is the appropriate equation for vertical velocity.

ii) In this calculation, |w]| = 10_2|u[. Nevertheless,
because of eq.(46.3), the vertical velocity is a significant
quantity.

iii) As noted earlier, it is not claimed that the above
results represent the correct time development of a real boundary
layer (the difficulty being in the initialization). However, the
time scale, particularly as exhibited in Figure 4, seems reason-
able: The time rate of growth seems to be on the order of the
horizontal velocity.

iv) The input quantity f, is clearly related to the distance
one must travel from the leading edge before the quasisteady
assumptions are valid.

The accuracy of the computations was checked as follows.
Since the numerical scheme is first order in the time-dependent
equations, the error in the computation should be reduced by at
least a factor of two if the mesh is reduced by a factor of two.
Let V(t, n, ¢, h) represent the quantity V obtained at (t, n, 7)
with a mesh {At, Az, An}, and V¥(t, n, ) represent the correct

At AT An}

value. Letting then % represent the mesh {TT" 7, ), we can

make the following two checks [2]:
. _ h %* -
1) Az - !V(tn n, va 2') - V (t’ n, C)‘ _<_ 2‘ A]. =

Lvee, noo by - vRGe, o, O,




115 8, = [VCe, n, 6, P - V(e 0, o, DI < 3o =
(58.2)
Lvee, o, o B - vee, n, o h) |
2 ’ ’ ’ 2’ , ) s .

} With h representing the mesh given by eq. (57) and with V¥
values taken from the analytic column of Table 1, we can tabulate

as follows:

\Y A2 Al AZ/A1
ut®P(0,2.5) 906 x 10°%  1.958 x 107% 463
£(o, 2.5) .00255 .00598 426
£(,1.25) .00087 .00243 .358
ut®P(x,2.5) .00116 .00242 479
ut°P(w,1.25) .00046 .00188 245

wOP (=, 2.5) .00002190 .00004708 465 !

Table II 1

One concludes that the test defined by eq.(58.1) is satisfied. 1

To test eq.(58.2), a third calculation, using a mesh defined

by h/4, was made. The results tabulated below, again indicate

that this test is alsoc satisfied.

\Y Az Al AZ/Al

£(100, 2.5) .00012 .00044 273

£(100, 1.25)  .00054 .00148 .365

; u(100, 2.5) .00072 .00145 497
u(100, 1.25)  .00064 .00136 471

w(100, 2.5) 46 x 107 1.63 x 1072 282

w(100, 1.25)  1.76 x 10°°  6.98 x "0 .252

p(100, 2.5) .76 x 1074 1.55 x 1074 .490

p(100, 1.25) .73 x 10”% 1.41 x 1074 .518

Table III




Having achieved a steady-state solution, the model should be

able to predict the time-dependent effect of subsequent pertur-
bations of the flow field. In the next problem, the lower boundary

(namely, the flat plate) is perturbed to an "angle of attack"

.8

position by the following equation:

max
16nf1 (t - t )2(1: -t )2 . t. < t < t0+t1
(t,-t )Z 0 1 ’ 0 2 ’
£ = 1 -0 (59)
1 to+t1
0: t < t0 and t > — .

Eq.(59) is such that f; is linear in n and achieves its
to+f1

maximum f1 = flmax at n =1 and t = —7—— . For the sample
calculation we chose,
£, = 125 = (D)L, (60.1)
t0 = 130 sec. and ty = 170 sec. (60.2)

With this input the plate will rotate from zero incidence at
t = 130 sec. to 5.71°9 at t = 150 sec.

Results of the above computation are shown in figures 7 and
8. At time 130 sec., the flow field is near steady-state. The
plate then rotates at an average velocity of .0125 m/sec. at
n = 1 during the next 20 sec. Thus the vertical velocity is
comparable to the horizontal velocity during a portion of this
period. Figure 7 shows that the boundary layer thickness first
expands and then experiences a slow decay. The final steady-state
value, f-= .0667, occurs near t = 270 sec., and represents

approximately a 2.8% decrease in the boundary layer thickness.

B e T T I WP~ 17 1 T oY (I S S5 W W E T 197 7 7



Figure 8 shows horizontal velocity. One sees an initial

drop followed by a rapid overshoot, and then a gradual decay.
Steady-state values are achieved more rapidly then the thickness
shown in figure 7. The final value, u = .02820 represents a
2.47% increase. |

The steady-state vertical velocity for this problem is on
the order of 107 of the horizontal velocity, while we still have

4, *
lw™ .

jw_| ~ 10

el

Remark: The actual "length of computation'" along the physical

plate increased from 2.5 m. to V(3 5)7 [ 25;5—'~ 2.5125m.
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