LEVEL

MODELS IN INSURANCE: PARADIGMS, PUZZLES, COMMUNICATIONS AND REVOLUTIONS

by

WILLIAM S. JEWELL
MODELS IN INSURANCE: PARADIGMS, PUZZLES, COMMUNICATIONS AND REVOLUTIONS

by

William S. Jewell
Department of Industrial Engineering and Operations Research
University of California, Berkeley

JUNE 1980

This research was supported by the Air Force Office of Scientific Research (AFSC), USAF, under Grant AFOSR-77-3179 with the University of California, Berkeley. Reproduction in whole or in part is permitted for any purpose of the United States Government.

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
Title:
MODELS IN INSURANCE: PARADIGMS, PUZZLES, COMMUNICATIONS AND REVOLUTIONS

Authors:
William S. Jewell

Performing Organization Name and Address:
Operations Research Center
University of California
Berkeley, California 94720

Controlling Office Name and Address:
United States Air Force
Air Force Office of Scientific Research
Bolling AFB, D.C. 20332

Report Date:
June 1980

Number of Pages:
125

DISTRIBUTION STATEMENT (of this Report):
Approved for public release; distribution unlimited.

MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE):

DECLASSIFICATION/Downgrading Schedule:
Unclassified

KEY WORDS:
- Insurance Models
- Life Contingencies
- Risk Theory
- Bayesian Statistics
- Credibility Theorem
- Insurance Business Planning
- Utility Theory
- Risk Classification

ABSTRACT:
(SEE ABSTRACT)
ABSTRACT

Every scientific community reveals its shared beliefs and values, its great achievements and persistent problems, and its current state-of-the-art and evolutionary future through its model-building activity and its scientific communications. To survey and comprehend the field of actuarial science, then, one must examine, classify, and comment upon the basic paradigms -- the accepted concepts-models-puzzles-solutions -- that are revealed in the literature of risk and insurance theory.

This paper attempts such a survey, based upon the communications submitted to Topic 1 of the 21st ICA, 'Generalized Models of the Insurance Business,' and upon a selected portion of the explosive numbers of papers and books which have appeared in the open literature in the last decade. Clearly, many of the basic paradigms are still in a state of flux, as new ideas and methods, in many cases imported from other disciplines, have begun to compete with previously accepted paradigms, causing, in some cases, displacements of methodology and minor revolutions in conceptual approach.

In addition to a general model survey, the paper considers the influence of ideas from other scientific disciplines, and then examines in detail two specific areas where traditional modelling has been called into question -- the classical approach to statistical estimation and prediction, and the fair-premium approach to risk classification. In conclusion, some inferences about the near-term future of insurance modelling are made.
INTRODUCTION

It is a distinct privilege and a personal pleasure to address the 21st ICA on the topic of "Generalized Models of the Insurance Business". In addition to thanking the Organizing Committee for their invitation, I would also like to acknowledge the role of the U.S. Section of the International Actuarial Association in graciously proposing my name for membership in this international scientific community; however, I must say that it was not at all clear to me that the by-laws require that every new member must present a communication at his first International Congress!

As I read through the 42 papers offered on this topic, I became somewhat uneasy at the variety and divergence of the concepts and models presented, and this feeling was only heightened when I began to reflect upon the many and varied papers and textbooks in insurance and risk theory which have appeared in the past decade. To comprehend all of this is, as we say in English, "like trying to take a drink of water out of a firehose." What could a physicist-engineer-operations researcher who has not had extensive actuarial practice hope to add to this topic, which is central to the profession?

Nevertheless, model-building is an activity which is common to all scientific disciplines, and upon which scientific historians and philosophers have had much to say. I resolved, therefore, to first of all set out a philosophical framework -- a model of model-building -- in which we could begin to understand this recent explosion of activity in insurance model-building.
SOME PHILOSOPHY ON MODELS AND MODEL-BUILDING

Basic Characteristics

All of you are, I am sure, familiar with the means and ends peculiar to what we call the scientific approach [B47, W4]. This complex of shared values and attitudes towards problem-posing and problem-solving is so ingrained in our everyday work and communication with our colleagues that it is difficult to explain to the layman exactly what we mean by hypothesizing, experimentation, measurement, model construction, calibration and validation, and implementation.

The communication problem becomes even more difficult when we attempt to define what we mean by a model, for the term is used in bewildering variety of ways by the scientific community, ranging from material representations of phenomena through factual interpretations of real-world behavior to purely symbolic idealizations of abstract theories [B47]. For our purposes, we can, however be more pragmatic, and attempt a definition as follows:

A model is a set of verifiable mathematical relationships or logical procedures which is used to represent observed, measurable real-world phenomena, to communicate alternative hypotheses about the causes of the phenomena, and to predict future behavior of the phenomena for the purposes of decision-making.

We might call this an operational definition, for I have purposely excluded certain gedanken exercises by focusing on observable, measurable phenomena, and insisting that the ultimate goal of model-building is either as a tool for communicating with other scientists and society at large about the nature of the
phenomena, or for predicting and making decisions about the future behavior of the phenomena -- which in our case are all the risky contingencies associated with life, death, and the loss of economic property on this Earth. I hope you agree with this starting point.

Paradigms, Puzzles, Communications, and Revolutions

But to gain a better perspective upon current activity in models and model-building in actuarial research and insurance practice, we shall need a broader Weltanschauung than a mere description of model characteristics and model-building activities; I have adopted the title and organization of this paper from the seminal ideas put forward by Thomas S. Kuhn in *The Structure of Scientific Revolutions* [K7].

To paraphrase broadly, Kuhn defines a paradigm as those universally accepted scientific achievements, concrete concepts-models-puzzles-solutions-examples, that for a time provide model solutions for a community of scientific professionals; more generally, it can stand as a banner for the entire constellation of symbolic generalizations, shared beliefs, judgement values, techniques, and so on shared by the community -- for example, those ideas, concepts, models, and solutions shared by the actuaries of the world. When such a paradigm is universally accepted, then the researchers in this community are free to engage in normal science, that is, the highly-directed, paradigm-based theoretical, experimental, and empirical investigations which provide the elaboration and mop-up work needed to apply the paradigm in the businesses and general society which support the
community.

But, in addition to the "bread-and-butter" work permitted by normal science, it must be recognized that these accepted scientific laws, models, and concepts are inherently self-limiting in guiding the theoretical activity of the profession, since the paradigm itself provides the criteria for choosing future research areas, which can only be assumed to possess solutions of an accepted and understood nature. In other words, normal science

"...seems an attempt to force nature into the preformed and relatively inflexible box that the paradigm supplies. No part of the aim of normal science is to call forth new sorts of phenomena; indeed those that will not fit the box are often not seen at all. Nor do scientists normally aim to invent new theories, and they are often intolerant of those invented by others. Instead, normal scientific research is directed to the articulation of those phenomena and theories that the paradigm already supplies." [K7, p.24].

But how, then, is science to make progress and overcome this inherent limitation? Kuhn believes that, at first, progress occurs precisely because of this restriction of focus and attention to detail, which means that, as scientists increasingly satisfy the needs of the society which pays the bill, they will tend to turn their research attention to puzzles, "that special category of problems that can serve to test ingenuity or skill in solution." Increasingly, communications with other research workers become more esoteric and inaccessible to the general public, research monographs and conferences are devoted to single mathematical puzzles, and there is increasing tension between the theoreticians and the practitioners, who feel that there are important real problems still unsolved, but find it more and more difficult to communicate with the specialists. Nevertheless, the normal science
seems to be progressing more and more rapidly and predictably, as judged by the shared paradigm.

Then, something begins to happen which provokes a crisis within the profession. In the physical sciences, this might be anomalies in experimental data which cannot be explained away, or the empirical discovery of a completely new phenomenon not covered by the old paradigm. I believe the correct analogy in actuarial science, which is governed by the laws of economics and the marketplace, is that some new phenomenon, such as hyper-inflation, changing living habits, or the application of novel technology begins to affect our collective social and economic behavior, which in turn contradicts the assumptions behind traditional insurance products. Or, the occurrence of certain natural phenomena, such as earthquakes, transportation disasters, sickness and disease, affects insurance statistics through the ways in which man and nation attempt to adapt and organize themselves to combat these disasters.

At first, the reaction to these crises is simply increased activity within the old paradigm, as attempts are made to study the anomaly and to patch up those methods and models which worked so well in the past. But at some point, the difficulty in the paradigm-nature fit will not be able to be set right by the traditional processes, and, precisely because of the excellent, specialized communication network between specialists:

"...the anomaly itself now comes to be generally recognized as such by the profession. More and more attention is devoted to it by more and more of the field's most eminent men. If it still continues to resist...many of them may come to view its resolution as the important subject matter of the field" [K7, p.82].
Many divergent partial solutions will be attempted, and specialists from neighboring disciplines will try their hand at resolving the anomaly through the introduction of other points of view and methodologies. Corporate management, regulators, and legislators will also try to resolve matters directly through their powers, rather than waiting for the community to resolve the anomaly. Through this proliferation of ad hoc adjustments, the rules governing the paradigm will become increasingly blurred, practitioners may begin to disagree on the nature and basic hypotheses of the field, and shared standards of value and judgement may be called into question.

Then finally occurs what Kuhn calls a scientific revolution -- the appearance of a competing paradigm which begins to accumulate a weight of evidence and coherence and to attract an increasing number of disciples and camp-followers -- especially if it satisfactorily resolves the pressing anomaly and provides useful guides to action by the practitioners who pay the bills and the regulators and legislators who answer to the general public. But this revolutionary process may proceed slowly, for it often requires an important, discontinuous shift in world-view in the scientific community. Some practitioners are forever resistant, because lifelong, productive careers and reputations commit them to an older tradition of normal science. And often, the arguments which are most convincing in favor of the new paradigm are not easily explained in the old terminology. "In a sense that I am unable to explicate further, the proponents of competing paradigms practice their trades in different worlds" [K7, p.150].

Evolutionary progress according to Kuhn, then, must occur
through a series of discontinuous steps: the formulation of a successful paradigm and the development of the professional community which shares that paradigm; the solution of a large variety of practical problems which establishes the discipline and leads to an active phase of normal science; then, a movement towards more and more "purposeless" puzzle-solving and increasingly specialized and esoteric communication; followed, sooner or later, by an anomaly in theory or an application disaster which forces a crisis upon the profession. The resolution of this crisis requires the appearance, testing, and acceptance of a competing paradigm which more successfully solves the problem at hand. But because this scientific revolution causes a dramatic shift in values and concepts, its further growth and influence cannot be predicted, but only be discussed, tested, and applied by the reformed community, which must adapt to survive.

A Personal View

My personal view, if you will permit, is that something like this progression described by Kuhn is, in fact, now occurring in insurance modelling. Perhaps revolution is too strong a term. Nevertheless, I hope to convince you that, as revealed by your own communications, we are at a very interesting epoch in the history of actuarial science -- on the one hand, there is a fruitful and prosperous synthesis between and multiplication of basic paradigms which are shared by all, and yet, at the same time, there is a progression towards more and more academic puzzle-solving, together with disquieting news from the real-world-application front line.
Let us begin by considering those risk and insurance business paradigms upon which we all agree and surveying their current development, with a few remarks on their strengths and weaknesses. I will next comment upon the introduction of new points of view from other scientific disciplines, and then consider in detail two specific areas where a crisis is in progress -- statistical estimation and prediction, and risk classification.

In selecting additional references to demonstrate the variety and growth of the field, I have rather arbitrarily limited myself to articles which have appeared within the last five years, or which seemed to be particularly useful. And because many national society journals were not available to me, these contributions are also underrepresented. My apologies to colleagues who find their favorite references missing.
BASIC RISK PARADIGMS

General Characteristics

Traditionally, the basic models of risk are divided into two distinct classes: those used in life insurance companies, and those which arise in non-life applications. This class distinction has been slowly vanishing, as new risk coverages have demanded a combination of the two approaches, and as work on more easily shared insurance business models has progressed.

As stated by Professors Amsler [80.1], Bühlmann [76.20], and Franckx [76.21], and many others, there seems now to be general agreement that the basic mathematical models common to all branches of insurance have three key elements:

(1) One or more random variables which characterize the major dimensions of the risk, such as duration, size, and number;

(2) A set of well-defined states of nature, separated by observable transition events or epochs, together with a deterministic or stochastic law of motion between the states;

(3) An economic function, associated with the underlying random variables and/or the states and transition events, which may also be deterministic or random, but is most often linked to uncontrollable economic externalities, such as market growth, inflation, currency risk, etc., but also to economic performance under the control of the company, such as profit margin, portfolio performance, etc.

Even though one or more of these elements may appear to be missing in the simplest models, it is usually merely suppressed by long-standing convention, hypothesis, or for reasons of simplicity. As one begins to construct more and more complex models of actual insurance operations, or to build large-scale
simulations, then all of these factors begin to come into play -- indeed, one is often forced to synthesize and orchestrate a number of simpler, specialized risk models.

To illustrate this rather philosophical point, let us consider some of the basic risk paradigms currently in use. Some of the results expressed in this Section may seem like "old wine in new bottles," but I hope that the new bottles and labels will help you in reorganizing your wine cellar, and eliminating vintages which are past their prime years.

We shall use tildes to denote random variables, and \(E \) and \(V \) to denote the expectation and variance operators, respectively. In other words, \(\tilde{x} \) is a random variable with observed value \(x \), and \(E\tilde{x} \) and \(V\tilde{x} \) are its mean and variance.

Life Contingencies

In life assurances, the state space is extremely simple -- a person is living, and then after the unique event, death, makes a transition to deceased status; the basic random variable of interest is \(\tilde{T}_x \), the remaining lifetime from moment of underwriting until death, given the information \((x) \), usually the individual's age, sex, health, etc. The probability distribution of \(\tilde{T}_x \) is usually given by an empirically observed mortality table, although certain analytic laws are sometimes explicated, calibrated, and used. Often, the remaining life of an individual insured at age \(x \), but now aged \(x+t \), given that he is still alive, is assumed to be given by the same ("non-select") table or law. Life companies worry a lot about receiving business from individuals who may know more about their own personal mortality
than that reflected in this general law.

There are two primary cash flows of interest: $1 lump sum payable at time t, and a hypothetical stream of $1 per year, payable continuously from time zero to time t. The economic functions of interest are the associated present values at the origin. If the force of interest is δ per year, then we find easily the present value of the lump sum as $A(t) = \exp(-\delta t)$, and the present value of the continuous annuity as $a(t) = \delta^{-1}[1 - \exp(-\delta t)]$. These functions and their present values can be moved forward h time units by multiplying by the "shift operator", $\exp(\delta h)$; different fixed "face amounts" of $F\$, or $f\$/year just multiply A and a, respectively; more complex combinations of cash flows follow by superposition, or superposition and shifting, or convolution. For instance, the present value of an annuity of $1/\text{year}$ from epoch t_1 to t_2 is simply $a(t_1, t_2) = a(t_2) - a(t_1)$; a perpetuity beginning at t_1 has value $a(t_1, \infty) = \delta^{-1} - a(t_1) = \delta^{-1}A(t_1)$; etc. Even a variable-face continuous annuity of amount $f(t)$ $\$/year at time $t(0 \leq t \leq \infty)$ has present value $\int e^{-\delta t}f(t) \, dt = \int A(t)f(t) \, dt$, from which integration by parts gives $F(0+) + \delta \int A(t)F(t) \, dt$, with $F(t)$ the integral of $f(t)$; from this "transform calculus" a whole new variety of forms and interpretations can be gotten. But that's essentially all there is to economic forms in life assurance.

The link to the underlying risk process is through the durations or epochs of these forms which are now random variables like \tilde{T}_x. For instance, the present value of 1 paid at the death of (x) is simply the transformed random variable $A(\tilde{T}_x)$, and
the present value of $1/year payable until the death of (x) is

the transformed random variable \(a(T_x) = \delta^{-1}[1 - A(T_x)] \). Making

the necessary transformation between a given analytic form of the
density for \(T_x \) to the densities of these new values, and calcu-
lating the moments, etc., is a standard exercise in a first-year
course in probability.

In fact, as has been forcibly stated many times [G8, G11, H17,
T13], the fair premiums which are of interest to the actuary are
nothing more than the mean values of these random variables; in
classical notation:

\[
\bar{a}_x = \mathbb{E}(a(T_x)) ; \quad \bar{a}_x = \mathbb{E}(a(T_x)).
\]

Note that this approach to fair premiums is independent of whether
\(T_x \) is continuous or quantized to end-of-year deaths, and that
periodic rather than continuous payments will be reflected in the
choice of economic function, not necessarily in the range of the
random variable. Further, many of the so-called "theorems"
relating different fair premiums are trivial in this context, and
(see above) may often hold for the random variable as well as for
its mean value.

Multilife contingencies are also simpler from the point of
view of the random variable. Consider, for example, the reversion-
ary continuous annuity to (x) after (y), and suppose we know
the joint density of the two random remaining lifetimes, call them
\(T_x \) and \(T_y \). If we define a new random variable, \(T_{xy} = \min(T_x, T_y) \),
then by direct arguments, this new economic function is nothing
more than the present value of a continuous annuity paid from
\tilde{T}_{xy} to \tilde{T}_x, i.e., $a(\tilde{T}_{xy}, \tilde{T}_x) = a(\tilde{T}_x) - a(\tilde{T}_{xy})$. Not only is the usual magical identity true for the random discounted value as well as the mean, it can be seen immediately that the assumption of independence of the two lives is not needed, provided simply that the marginal density of \tilde{T}_{xy} is correctly calculated.

In an obvious analogy to reliability engineering, more complicated multi-life contingencies are easily handled through Boolean logic, and associated min and max operators.

Another advantage of modelling directly with the random variables is that variances and other moments can easily be obtained, Hattendorf's theorem proven, prospective reserves calculated, and even full distributions of outcomes obtained (see [G8, H11, T13] and references therein).

The reason that I have spent so long on this elementary modelling is, first of all, to convince you that a major educational overhaul is overdue in this area. I regularly teach the material covered in life contingency textbooks to (post)graduate engineering and statistics students in about six hours of lecture; we are then free to analyze variances and reserves (such as the adaptive reserve model described in the Section on Bayesian Statistics), do mortality estimation, or to proceed to casualty risk models. I admit that, at the undergraduate level, where a student may have had only one course in probability theory with little application, it might take longer, say, thirty hours, to introduce the basic principles of life contingencies; but by using random variable concepts and methods with which the student is already familiar, it is possible to move quickly into more "advanced" topics. In my opinion, there is a mismatch
between the formation and the capabilities of today's students, and the demands which are placed upon them using the traditional expected-value models. Furthermore, by not properly laying down the fundamental concepts of random variables and the basic model assumptions, a potential for future change in actuarial modelling is being wasted -- for example, in developing newer models for equity-linked assurances, pension and health-care applications, or in strengthening corporate modelling and simulation.

Secondly, I suppose I must say something about the archaic notation with which the life actuary is burdened, and which is the subject of continued, in my opinion rather pointless, discussion [76.22, B22]. In comparison with other scientific communities, it seems as if actuaries lead the way in insisting that all of the hypotheses about the model, not just the features of interest, be hung as "bells and whistles" on the underlying variable, as in

\[T_{i \cdot k \\ n|m^a} \] or \((k)(n:m)a(x)(i;T) \).

Although this approach may guarantee full-employment for typesetters, it does not help in actual computations (where the parameters would be passed to the computation subroutine by global variables, a standardized calling sequence, a data block, etc.), and it definitely impedes scientific communication outside of actuarial circles. Being rigid about notation for mean values, and requiring that the density for \(\tilde{T}_x \) always be written \(T^{P_x}_{x+T} \), etc. makes the problem of defining efficient, easily recognized random variable notation more difficult, as examination of some of the earlier references will reveal.
Finally, from a modelling point of view, focusing on the mean values of discounted random cash flows can obscure the fundamental hypotheses being made, lead to erroneous interpretations and conclusions, may give incorrect or misleading financial projections, and will impede the construction of more general, meaningful models -- in short, "normal science" at its worst. Because this point is so important, I would like to give a simplified example using random variables.

Suppose we are trying to find the fair level continuous premium, Π_x s/year, to charge (x) for a life assurance of $s1, payable at death. There are two random cash flows involved -- the receipt of premium income until death, and the payment for benefits provided at death. Their difference -- the underwriting gain to the company -- is also a time-dependent random cash flow. Suppose we let $\tilde{G}(0)$ be the present value, at the moment of underwriting, of this random future gain. Using random variables introduced previously, we obtain:

$$\tilde{G}(0) = \Pi_x a(\tilde{t}_x) - 1 \cdot A(\tilde{t}_x).$$

Now, to find the premium rate, we must invoke a new modelling assumption -- the equivalence principle, which states that we define a random cash flow to be "fair" if its mean value is zero (and note that even this assumption may be modified if we adopt the viewpoint of utility theory, see later). This new hypothesis that $\mathbb{E}\tilde{G}(0) = 0$ is what furnishes the classical result $\Pi_x = \tilde{A}_x/\tilde{a}_x$. But now we find directly other results, such as the variance of this random gain:
which is not always significant for human mortality, but adds a considerable risk in engineering-economic equipment replacement studies.

As time t passes, and the individual has not yet expired, the random current value grows to $\tilde{G}(t) = e^{\delta t} \tilde{G}(0)$. A priori, this new random variable has zero mean for a fair premium rate, but, at time t, we will know that death has not yet occurred, and the distribution of the random remaining lifetime, \tilde{T}_{x+t}, will have to be recalculated, according to $\tilde{T}_{x+t} = \left[\tilde{T}_x - t | \tilde{T}_x > t \right]$. Using basic definitions and rearranging terms, we find the current value of random underwriting gain at time t, given that (x) is still alive, to be:

$$\tilde{G}(t) = \Pi_x \delta^{-1} \left[\exp(\delta t) - 1 \right] - \left[1 \cdot A(\tilde{T}_{x+t}) - \Pi_x a(\tilde{T}_{x+t}) \right]$$

We recognize the first term as the accumulated "sure-thing" premium income; the second term is the random future net liability to the company, discounted back to epoch t -- indeed, it is immediate that the mean value of this discounted liability is just the legal level-premium reserve, Π_x. So far so good.

But now, having "led you down the garden path" with familiar results, slightly generalized, let us calculate an unfamiliar variable -- the random amount of gain to the company at the moment of expiration, which must be

$$\tilde{G}(\tilde{T}_x) = \Pi_x \delta^{-1} \left[\exp(\delta \tilde{T}_x) - 1 \right] - 1$$

A priori, this amount is not zero in expectation -- indeed, a little
calculation will show that for small forces of interest:

\[E\{ \tilde{G}(T_X) \} - 5\nu \{ \tilde{T}_X \} / E\{ \tilde{T}_X \} > 0 \quad (\delta > 0) , \]

or for usual interest rates and standard mortality tables, about 5-10% of the face value, on the average, is "left on the table" for the company at expiration! This unexpected result cannot even be developed through the use of classical expected-value notation. And, I submit, explaining why this result does not affect the profitability of the company is a valuable exercise for the student in understanding the basic models of life contingencies.

Health and Pension State Models

The element of a state variable is especially important when we progress to the more complex models of health and pension insurances. As shown in Figure 1, we imagine that the covered individual moves from one state to another at certain random transition epochs, and that these states define different coverages or benefits and different mortality laws. In health insurance, these states are the observable differences in health, conditions of heart, limbs, or teeth, progress of a disease, marital and family status, parturition, etc.; in pensions, the states can refer to active or disability status, eligibility and participation status, wage category, employment and participation history, vesting, retirement status, and so on. In most cases, death is the terminal state, although it is often important to condition on the previous status or history.

The traditional way of describing the associated laws of...
FIGURE 1

Pension and Health States, Epochs and Transitions
motion is through **multiple decrement theory**, that is, a failure-rate-oriented competing-risk approach (see, e.g. [H11]). While this approach is useful for simple problems because it can be explained in terms of related single-decrement tables, it supposes that the sequence of states is in extended (tree-like) form. In more complex models, it is often convenient to assume (like the dotted line in Figure 1) that certain states can be recurrent. Then, the more natural formulation is in terms of Markov chains ([Cl, H14], and the references in [H17]). With arbitrary continuous duration random variables, the model is, in fact, a Markov-renewal (or semi-Markov) process, whose transition and duration laws can be easily related to an equivalent competing-risks formulation. Economic functions can be tied to both the transitions and to the durations in certain states, but, of course, making certain states recurrent implies equivalence of economic sequences after re-entry.

If the underlying duration law is discrete, as in transitions only at the end of the year, or on birthdays, etc., then the Markov chain approach can have the state space expanded to include age, years of service, etc., and the only law of interest becomes a rather large, special-structure set of transition probabilities determined from the associated decrement tables [B2, H15]. The advantage of this approach is that the only practical calculations involved are the multiplications of large matrices, which can be easily carried out on computers. Numerous other insurance calculations [80.26] can be similarly simplified, and there are many related models in the fields of demography, sociology, educational planning, manpower planning, and so on.
With such a natural and well-understood paradigm, it is surprising to see that most of today's pension mathematics is still oriented towards certainty equivalents. Admittedly, the large numbers of variables and laws makes analytic manipulations rather formidable; even recent dynamic models [B35, 80.48, 76.5] require rather heroic mathematics to get expected-value results. But there are other studies of more specialized topics [B2, S11, S12, S13] which are beginning to apply a complete random-variable analysis to pension problems, which, of course, is essential to answering questions, such as the probability that a given method of funding will be adequate; this calculation need not be analytic, but can be easily explored with modern computers. I expect to see a rather substantial evolution of stochastic pension models over the next few years.

The field of health insurance seems to be currently oriented towards data-gathering and empirical investigations, rather than formal modelling -- in part, because of the explosive growth in the technology and costs of health-care delivery (see Topic 3 of this Congress). So I believe it will be many more years before one can give a balanced survey of this field. [J3] mentions a qualitative state-space model for monitoring the rehabilitation process in worker's compensation claims, and there are similar operations-research-oriented models in the health care field.

Accumulations of Risk

The basic and most successful casualty insurance paradigm is the accumulated claim, or aggregate claim, or risk model, in which two random variables of interest are explicitly recognized -- the
random number of claims $\tilde{k} = \tilde{k}(t_1, t_2)$ in some exposure interval (t_1, t_2), and the random value of each claim $[\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_\tilde{k}]$ [B37, S6]. The economic function of interest is the random total of accumulated claims, $\tilde{s} = \tilde{s}(t_1, t_2)$, which is a random sum of random variables:

$$\tilde{s} = \tilde{x}_1 + \tilde{x}_2 + \ldots + \tilde{x}_\tilde{k};$$

the stochastic curve generated by \tilde{s} as t_2 increases, with t_1 fixed, is sometimes called the accumulated claim process, to distinguish it from the underlying point process of the claim epochs, which generate the monotone claim counting process, \tilde{k}, as t_2 increases (Figure 2). Usually two assumptions are made:

1. Given $\tilde{k} = k$, the random variables $[\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k]$ are mutually independent and identically distributed;

2. Further, their common distribution does not depend upon k.

The first assumption is apparently satisfied or is a satisfactory approximation in practice, for I can find no discussion or verification of this in the literature. There are occasionally examples where (2) is not verified, as when someone who has a large number of claims turns out to have smaller (or larger) claims, on the average, than someone with a smaller number of claims; but there is another explanation for this observation, given below in the Section on Credibility Theory.

Assuming both (1) and (2), the first two moments are the important and familiar relations:

$$E(\tilde{s}) = E(\tilde{k}) \cdot E(\tilde{x}); \quad V(\tilde{s}) = E(\tilde{k}) \cdot V(\tilde{x}) + V(\tilde{k})[E(\tilde{x})]^2,$$
Accumulated Claim Process, $s(t)$

Claim Counting Process, $n(t)$

Claim Epochs

FIGURE 2

Claim Epochs, Claim Counting Process, Claim Amounts and Accumulated Claim Process
where \(\bar{x} \) stands for a generic claim amount. Notice that, although these assumptions require the claim sizes to be stationary in time, the claim number process may still have a time-varying law. Different formulations, such as underlying birth-and-death, renewal, or time-varying Poisson, have been attempted, but as a practical matter, it is difficult to work with models in which the numbers of claims in adjacent intervals are dependent. So, usually, a stationary, or simple time-varying Poisson assumption is made. The resulting distribution of \(\hat{s} \), after a possible operational time transformation, is the familiar mixture of convolutions of the distribution of \(\bar{x} \).

Surprisingly, in spite of the Central Limit Theorem and the Poisson assumption, it turns out to be difficult to get exact results or good approximations to the total claim distribution in the case of general individual claim distributions [B7, S6]. As the controversy over which is the best approximation method is still going on, I will close simply with the remark that all paradigms, including approximations, should be judged in terms of their usefulness for making decisions, or in communicating with other scientists, but, as far as I can tell, this has not yet happened.

Collective Variability

The next model was developed primarily to explicate certain non-obvious variations in observed outcomes from a portfolio, or collective of risks; however, it has, as we shall see, profound implications for model-building and for estimation.

Consider that, for a single risk contract, we are measuring
some outcome random variable, \tilde{x}, and that the distribution density of \tilde{x}, $p(x|\theta)$, depends upon one or more parameters which we here symbolize by θ. Now, if θ were an observable physical quantity, then we can imagine that it would be easy to assemble a cohort of M individual risks, $i=1,2,...,M$, each of which had the same parameter values, $\theta_1 = \theta_2 = ... = \theta_M$, but from each of which we could draw one sample outcome, $x_1, x_2, ... x_M$ as M independent, identically distributed, random samples from the same "urn", $p(x|\theta)$. But many of the interesting parameters in casualty insurance, such as "accident-proneness", are difficult to measure, and one can easily imagine that, no matter how hard one would try to assemble a homogeneous portfolio, there would be still factors which could not even be described, and which would lead to unexplainable residual variabilities [A3].

The intuitive leap which makes this a most useful paradigm is to imagine that, in fact, the abstract parameters θ_i for each risk $i=1,2,...,M$, are not the same, but are given by selecting the risk parameters from some structure function density, $u(\theta)$, which describes the variation of the θ_i as if they were independent samples of some random quantity $\tilde{\theta}$ [B37]. This leads to an "urn of urns" interpretation, shown in Figure 3, in which the drawing of a particular random outcome, $\tilde{x}_i = x_i$, is a two-stage process, in which a risk parameter $\tilde{\theta} = \theta_i$ is selected using the structure density, $u(\theta)$, and then x_i is an independent sample from the conditional density $p(x|\theta)$. This means that each x_i has the same marginal mixed density, $p(x) = \int p(x|\theta) u(\theta) d\theta$, but more importantly, means that the joint density of several samples from the same risk i, $[\tilde{x}_{i1}, \tilde{x}_{i2}, ... \tilde{x}_{in}]$ appears, a priori,
 Collective Variability and the Urn of Urns Paradigm
(before knowing \(\theta \), and averaging over the collective) to be dependent,

\[
p(x_{i1}, x_{i2}, \ldots, x_{in}) = \int p(x_{i1}|\theta) p(x_{i2}|\theta) \ldots p(x_{in}|\theta) \, u(\theta) \, d\theta ,
\]
even though, when the particular urn value, \(\theta_i \), is given, the successive samples will be independent. This leads to a dependency which makes it possible to successively "narrow in" on the correct value of \(\theta_i \), even though it is unobservable, by taking a large enough number of samples from urn \(i \) (see the Section on Bayesian statistics).

The practical importance of the mixing model is that it introduces a new source of variability due to the variation of \(\tilde{\theta} \) in the collective. If we let

\[
m(\theta) = \mathbb{E}\{\tilde{x}|\theta\} ; \quad \nu(\theta) = \mathbb{V}\{\tilde{x}|\theta\} ;
\]
be the first two moments of the observable value \(\tilde{x} \), drawn using \(p(x|\theta) \) from an urn with a given \(\theta \), then it can easily be shown that the result of making a draw from an arbitrary urn in collective (e.g. from \(p(x) \)) must have first two moments:

\[
m = E\tilde{x} = Em(\tilde{\theta}) ;
\]
and

\[
\nu = V\tilde{x} = E + D ; \quad E = Ev(\tilde{\theta}) ; \quad D = Vm(\tilde{\theta}) .
\]

The first result is expected, since the overall mean is simply the average-over-the-collective mean. But the total variance has two components: the first, \(E \), being the average-over-the-collective of the individual urn variances, and the second, \(D \), representing
the variability-over-the-collective of the mean result from each risk. If the portfolio were homogeneous, this unexpected term D would vanish.

Practically, the mixing of distributions leads to new forms which are often very useful, and match empirical data well. For instance, if \(p(x|\theta) \) is Poisson with parameter \(\theta \), and the structure density is Gamma distributed, then the mixed density is the useful Negative Binomial.

The only serious challenge to this paradigm seems to be the philosophical point that we perhaps have no business modelling with a quantity which is unobservable, and may not follow the usual laws governing a random variable. This is a fine point which depends upon what one means by "random". But if we believe that the model holds, there are ways to infer the law of \(\tilde{\theta} \), if the data set is large enough, which we shall describe in a later Section.

Extreme and Dangerous Values

There is another concept which is part of the model-building tradition in non-life insurance, but as yet is only partly formed -- the idea that, no matter what model we use, actual data will always contain some dangerous "surprises" that can lead to business instability and ruin.

Leaving aside personal views that "Nature is always perverse", we might first of all attempt to describe this behavior by using extreme value theory to estimate the largest observed claims and to set reinsurance treaties [76.9, B19, T15]. See also [80.30, 76.15, R1, R2] for applications where extreme values are part of
the risk process.

Another approach is to develop justifications and estimation methods for long-tail "dangerous" distributions, such as the Pareto [80.44, B14]; these distributions are not often used for regular modelling because higher moments may not exist.

Yet another approach [76.17] is to consider that what is really happening is a mixture of two models, in which the "regular" values are being contaminated by the "abnormal" ones. This, of course, is related to the collective model just analyzed, and to the Bayesian problem of model mixtures (see later).

There is also a well-developed theory of outliers in the statistical literature, but I am not certain if the ideas represented above are simply expressions of this phenomenon, or whether the authors mean that a more structured, as yet imprecise, kind of dangerous risk mechanism is at work. It will be interesting to see if this paradigm develops further.
THE DYNAMIC RISK PROCESS PARADIGM

Reserves versus Stability

The first model which analyzed the effect of random fluctuations upon the risk business of the insurance company as a whole is the venerable collective risk theory, which to avoid confusion with a previous usage, will be referred to as the dynamic risk process paradigm. If we imagine that a company has developed a fixed portfolio of individual risk contracts in a given business line, then its accumulated net premium income in interval (0,t) can be approximated by the straight line Πt, where Π is the total premium rate. Against this pure premium income must be paid out the stochastic accumulated claim process, $\xi(t) = \xi(0,t)$, described in the last section, assumed now to be aggregated over all the contracts in the homogeneous portfolio, with the distribution of claim amount, X, the same for all risks, and the claim number process $\tilde{k}(t) = \tilde{k}(0,t)$ referring to the counting of all claims from the portfolio. This cohort is said to be "in balance" if $\Pi = E(X) \cdot E(\tilde{k}/t)$, either for the interval (0,t) under consideration, or for t "large enough", depending upon the underlying claim number process.

The difference between the two accumulating processes, the underwriting gain for the portfolio, will, on the average be zero, but of course may vary widely into negative and positive values. To provide an element of stability, management furnishes an initial amount of risk (fluctuation, free, technical) reserve, R_0, and then describes its underwriting results in terms of the risk reserve process, $\tilde{R}(t) = R_0 + \Pi t - \xi(t)$, shown in Figure 4. The
FIGURE 4
The Dynamic Risk Process Paradigm

FIGURE 5
Virtual Waiting Time Process in a Single-Server Queue
steadily increasing value due to the net premium income is
interrupted at random epochs by random-sized drops due to losses
(benefits) paid out to the policyholders. Although this process
now fluctuates around R_0, if balanced, it clearly is possible
that, at some random point ξ_*, a large loss when the portfolio
is in an already precarious position will cause $\check{R}(\xi_*) < 0$, a
condition known as technical insolvency, or to use the more
graphic term, ruin, in the portfolio, or in the company. In its
classical form, this model does not examine the cost to the
company of providing R_0, nor the economic consequences of ruin,
but concentrates simply on the trade-off between stability and
ruin, that is, on the effect of R_0 on the probability of ruin,
$P_*(t) = \Pr (\check{R} < 0 \text{ for some } 0 < t_* < t)$, or on the mean time to
ruin, $E(\xi_*)$, as $t \to \infty$, given that ruin occurs.

This important model was pioneered in the early part of this
century by Filip Lundberg, and then developed by Cramér, Segerdahl,
Esscher, Ammeter, Philipson, Sparre-Anderson, and many other
famous names in a principally all-Scandinavian school of actuaries
and academics. It is impossible to provide an overview of this
voluminous field in this short space, but there are numerous
surveys starting with Cramér's in 1955 [C5], and the papers which
appeared in the two symposia which bear Lundberg's name [F6, F7]
not to mention actuarial texts [B7, B37, S6], and monographs
[B8, S10].

An examination of the literature will reveal that serious
study of this paradigm continues unabated. For example, even
though the basic theory and methods needed to compute $P_*(t)$ and
other measures were known very early, analytical computation is
difficult enough, and has so many intriguing variations and insights, that it has continued to attract actuarial researchers. See, among others, [80.31, 76.12, 76.18, D14, F7, T2, T8]. [B23, S9] mention elementary simulations, and there are no doubt many investigations which have preferred to follow this route for specific empirical assumptions.

Stochastic Evolution

But the dynamic risk process paradigm has been of value to scientists for more than just the analysis of performance measures; this extraordinary activity has also given the basic theory and applications of stochastic processes an important impetus. Indeed, it would not be an exaggeration to say that many of today's standard topics in stochastic processes -- the models of random walks, stationary point and increment processes, renewal processes, Poisson and birth-and-death processes, diffusion processes, martingales, etc. -- would be much less fully developed if Scandinavian actuaries had not been concerned with stability and ruin. For some recent stochastic model generalizations, see [80.8, 80.22, B8, B9, B10, B11, B12, D12, D15, T14, V2].

I see this especially in my own specialty of operations research, where this influence has been felt in a most circuitous way. We know, for example that the early work on telephone traffic problems by A. Erlang was related to and influenced by the early work on risk theory, and that this then lead to the earliest developments of mass service systems -- what we now call queuing theory. For example, Figure 5 shows the virtual waiting process, $\hat{W}(t)$, in a single-server queue, defined as that time which a hypothetical
customer, just joining the queue at time \(t \), would have to wait until he reached the front of the queue, and began service. As time progresses, the current customer in service is completing his service at a uniform rate of unity, so the residual waiting time of the virtual customer is also decreasing; but then, a new (real) customer joins the queue at some random instant, and adds his random service time to the waiting time of the (bumped) virtual customer. Clearly, this stochastic process is just the mirror image of the risk reserve process, and often has similar underlying assumptions.

In fact, when I explain the risk reserve process to my students in operations research, one of the first things they usually say is that, since there have been so many powerful advances in queuing theory in the last 20 years (many of which they have studied), obviously they can be of tremendous assistance to actuaries faced with a reserve-setting problem! Which only indicates the universality of a good scientific paradigm, and the importance of good communications. I have looked in vain for a comprehensive survey of this insurance-telephone traffic-queuing theory development; perhaps some of you may know of references in addition to [H19, S7, T2].

Dividends versus Ruin and Other Generalizations

Returning to insurance applications, there have been many generalizations of the model to make it more realistic. For example, it was quite early realized that if the risk reserves get too high, the company should declare dividends to its stockholders, or if ruin is imminent, it should take some corrective
action, such as obtaining new financing; this then leads to a random walk between two barriers, and various "band strategy" decision problems. See, e.g. [80.31, 76.8, B37, G4, P3].

Other typical generalizations include a discounted ruin probability [A4], compounding assets [E5], the use of credibility theory [D21], and behavior under inflationary conditions [T9]. There is also an interesting body of literature which takes the most-used approximation forms from the analytic theory, and uses these forms to suggest general rules for reserve estimation and regulation [A5, A6, B25, D14, W5].

In reviewing the many contributions to stochastic risk processes, I have been struck at how closely its development parallels the normal science concept proposed by Kuhn. In my opinion, the theory has now far outstripped the actual applications, in insurance and elsewhere, and is proceeding as an active area of theoretical activity merely because of the attractive difficulty and beauty of the model -- in short, it has become a puzzle-solving activity. In fact, the basic model has apparently not been calibrated with real-life experiences; to quote John Woolley [L2]:

"...I should like to see more cases where a problem is seeking a theory and fewer where a theory is seeking a problem. I had an interesting conversation at the recent ASTIN Colloquium with Harald Bohman, who has written extensively on ruin theory. He asked me what the causes of actual insurance company insolvencies have been. In the United States in the past ten to fifteen years we have had a significant number of failures of both life and non-life companies. We thus have a large amount of data for studies of, say, causes of insurance company insolvency, or stages along the road to failure. Here is a prime subject for actuarial research whose results would be of intense interest to many people."

I do not intend to be critical of the pioneers in this field --
we have already seen the singular importance of their work to actuarial science and to other scientific communities. Furthermore, it is an intrinsically interesting paradigm that will continue to attract attention and generate communications.

"Few people who are not actually practitioners of a mature science realize how much mop-up work of this sort a paradigm leaves to be done or how quite fascinating such work can prove in the execution" [K7, p.24].

I believe this does mean, however, that for further practical advances in the management of the insurance enterprise, we shall have to look into other models and methods.
INSURANCE OPERATIONS PARADIGMS

Premium Setting

We turn now to the various functional areas of the insurance company where the skills of the actuary and his basic models are employed. First and foremost is in underwriting, in setting premiums.

Assuming an adequate data base, then the first step is to calculate the fair (net, pure) premium which is just the expected value of the loss under the contract exposure, using one of the models previously discussed. But then, especially in casualty applications where the risk is immediate and the variance is high, comes the idea of adding a security (fluctuation) loading to the fair premium, which was originally motivated by the concepts of dynamic risk reserves and protection against stability just discussed. Three simple ideas come immediately to mind:

(1) One can simply gross up the fair premium;

(2) If the risk distribution is approximately normal, then we can protect against exceedance of a given loss with a certain probability by adding a risk loading proportional to the standard deviation of random outcome;

(3) If we require that the premium be additive, in the sense that the loaded premium for the coverage of two independent risks shall be the same as the sum of the individually loaded premiums, then (1) is still applicable, but (2) is not -- however, we may use a loading proportional to the variance of the risk.

This means that the fluctuation-loaded premium \(\Pi \) for a risk \(\hat{x} \) might have the form

\[
\Pi = (1 + a)E\hat{x} + b\sqrt{\text{VAR}} + cV\hat{x}
\]

with \(a, b, c \) constants chosen from stability considerations.
The question of desirable premium calculation principles is still under active discussion, and a variety of other proposals have been made, such as the use of the semi-variance [B21] and concepts from capital market theory [K1]. We shall examine the application of utility theory ideas in a later Section.

The next step in premium setting is to determine the additional 50-200% increase which determines the commercial premium by adding expense and profit loadings. Except in life insurance, where there are specific cost models for sales commissions (in many cases of regulated form), there seems to be no further modelling principle used, except the adjustment of the factor a above, or grossing-up of μ itself. This lacuna in the literature is all the more surprising, as it is in sharp contrast to the fields of engineering and business management, where extensive and sophisticated cost allocation and modelling are the order of the day. Are these activities outside of the realm of the actuary, or are they considered extremely Company Confidential? Perhaps someone can enlighten me.

Tariff Construction

I am using tariff construction to mean that underwriting activity in which the entire structure of rates between related but not identical risk contracts is classified, compared, and rationalized by further adjustments -- for example, in setting the physical damage portion of automobile insurance by comparison across the class of all different vehicles covered, including their special characteristics such as cost, cost of repair, size,
horsepower, etc., plus characteristics of the driver(s) and the use to which the vehicle is put, where it is garaged, and so on. It seems to me that this structuring away from purely individual risk setting is done for two reasons:

1. To provide a smoothness or functional form of premium variation across the variation of the risk characteristics which approximates some desirable statistical or physical law, giving the structure a robust, rational, and defensible form; or

2. For competitive reasons in comparison against another company's or the industry-average tariff structure.

It should also be admitted that for many lines of insurance, there are an extremely large number of different rates to be determined by many small companies who cannot afford the continuing service of an actuary, and that the underlying tariff structure is essentially furnished by an industry-wide rating bureau.

The first problem in tariff construction is to select the risk factors on which the structure will be based. Where these variables are not given by law, tradition, or public policy, this search can be rather complex and "artistic", limited only by the imagination of the actuary (and the company's sales force). Usually, various proposals are made, and then examined by statistical regression or cluster analysis methods within the preferred model structure which is usually an additive or multiplicative model with a certain number of free parameters. The statistical parameter estimation method chosen provides the mechanism for ranking the influence of the various factors and for suggesting which ones should be dropped, although there are usually various technical problems relating to the independence of the factors and the validity of the model form chosen (80.43, 80.46, 76.2,
This structure is then presented to management, the regulating agencies, and the general public, and further iterations are made as necessary to develop an acceptable risk classification and tariff structure.

Speaking as an engineer-physicist, I must say that I am not very satisfied with these blind, statistically-based, "try-it-and-see" procedures. For one thing, there are few general principles involved [R3, S4] to help guide this search, and to give insight into the business management trade-offs between factors included, and factors dropped. For another, there is usually very little physical or economic motivation behind the choice of an additive or multiplicative model, except possibly the reduction of costs through administrative simplicity, or for ease in statistical estimation. And, there is always the problem of risk factors that are overlooked [A3].

In a few lines of casualty insurance, there are basic physical laws which seem to be guiding tariff construction. In fire insurance, there is not only experimental knowledge about the inflammability of the structure and its contents, there are certain physical dimensions and relationships of volumes, together with experience in using protective devices and sprinkler systems and information about fire-department response times, which enable decomposition of the problem into the probability of ignition, the rate of spreading and "contagion", the ultimate damage potential, and the observed degree of damage [B13, B15, J20, J21, R2, S15, S16]. There is also an obvious motivation for using the theory of extreme values in examining fire losses, and other catastrophic situations, such as earthquakes and floods [80.30, 76.15]. In my opinion,
actuaries could benefit from working more with engineers and physical scientists who have a lot to say about the physical laws and risk factor relationships which hold for fire, collisions, explosions, earthslides and earthquakes, floods, windstorms and hail, contamination and pollution, radioactivity effects and dispersal, occupational health and safety, rehabilitation management, and so forth. Every large insurance company has specialists in these areas, of course, but they are busy with contract and claims administration matters, rather than influencing tariff construction. This is rather like driving an automobile by looking out the rear-view window only.

Also, none of these approaches provides the economic and competitive rationale for moving income and profitability between different risk classifications for the sake of structural consistency. In [J7], I made a modest proposal that perhaps the underwriting specialists could express their preferences through simple inequality relationships between the classes -- e.g., that the premium should be a non-decreasing function of horsepower; however, this model has sunk without a trace.

In the next-to-last Section, I shall examine the conflict between previously acceptable risk classification procedures and recent shifts in public opinion and societal objectives.

Underwriting Exposure and Risk Selection

There appear to be few general models which can be used to analyze underwriting exposure directly; yet, redesign of risk contracts is badly needed, for example, in product liability [O1]. A few recent works have appeared on the decision problem of offering or withdrawing a risk contract [80.29, 76.11, G9].
Bonus/Malus and Consumer Behavior

Most insurance underwriting recognizes the possibility of rate revision for the individual risk, based upon retrospective experience rating. In a later Section, we will consider the Bayesian approach to this problem through Credibility Theory. The focus of this Section will be on Bonus/Malus systems, where a policyholder is moved from one premium-rating class to another, based upon his immediate past experience; for example, in automobile insurance, it is usually only the number of recent claims which affects the policyholder's transition from one class to another. These systems are usually posed empirically, and then analyzed through Markov chain techniques [S6].

It turns out that most automobile bonus/malus systems currently in use do not seem to be very good risk discriminators, and various methods have been proposed to analyze and improve their efficiency [D5, L16, N3]. Interestingly, recent communications have explicitly recognized a well-known aspect of consumer behavior -- namely, that if not reporting or under-reporting a claim will affect future premiums in a way known to the policyholder, then his "hunger (thirst) for bonus" will cause him to choose that strategy which is, in total, least costly. Assuming that the rational consumer will behave this way, then leads to a new series of actuarial models in which this effect is taken into account [D6, H2, H3, L5, L7, N2]. This bonus hunger is also recognized in other insurance settings where there is a consumer choice of deductibles and the possibility of "anti-selection" exists [A7, S21].
Claim Reporting Delays

An interesting new model has recently appeared, beginning essentially with a Boleslaw Monic Fund Competition in 1971 [N1], to help with a long-recognized problem with certain long-duration claims, namely, the delays in reporting the numbers of total amounts of the losses -- the so-called IBNR (Incurred But Not Reported) problem [80.17, B6, D16, K6, S19, T3, T6].

The situation is depicted in the "Run-Off Triangle" in Figure 6. If we imagine that all reporting is quantized according to some common accounting period, say, the calendar year, then in a given Observation Year the vertical axis represents the interval in which the claim event was incurred -- the Accident Year -- and the horizontal axis represents the number of periods intervening -- the Development Years -- since the claim. Obviously, earlier events have had more chance to "develop" than later ones; if we place in the corresponding cells the cumulative claim costs from a given Accident Year, then we can empirically observe the "run-off", as the figures mount toward their asymptotic totals with each Development Year. Note that each additional Observation Year is represented by a diagonal line in this triangle; the literature contains many of the 23 other ways of representing the triangle.

As with all useful paradigms, this model was quickly generalized and extended to include many features of interest. The basic modelling problem is to describe how each year's loss components are generated, compared with previous experience for the same Accident Year (e.g., row-wise run-off), and what effects, such as
FIGURE 6

Run-Off Triangle for Incurred But Not Reported (IBNR) Claims
inflation, may affect losses reported in the same Observation Year (e.g., diagonal coupling effects). In fact, as Bühlmann, Schnieper, and Straub [B45] point out, there are two separate delay effects -- the Incurred But Not Yet Reported (IBNYR) effect due to initial delays in filing claims with the reporting system [F2, K4], and the Incurred But Not Fully Reported (IBNFR) effect, due to the manner in which claim costs are generated by the loss (as in worker's compensation and health insurance), but also due to the delays in the claim processing and the reporting system.

Retention and Reinsurance

If a given portfolio of risks has too much variability relative to the reserves of a company, then that company will normally enter into a risk-sharing agreement with another carrier, or obtain reinsurance; we will examine the optimal forms of such contracts under utility theory assumptions in a later Section. But relatively early models (see e.g. [B7, S6]) revealed that, under reasonable assumptions, a company should prefer to "lay off" the tail \(\hat{x} > M \) of its risk \(\hat{x} \), and retain only the reduced risk \(\hat{y} = \min(\hat{x}, M) \) -- e.g., it should obtain Stop-Loss reinsurance. Other authors have studied other objectives and forms of retention (see, e.g. [B16, B18, B19, L4, S20, W1]).

Determining the properties of \(\hat{y} \) as a function of \(M \) when \(\hat{x} \) is a compound risk sum \(\hat{s} \) turns out to be one of those interesting puzzles which continues to occupy actuarial attention [80.15, B42, C4, G1, G10, G14, H9, T4, V1]. Recent papers have considered the connection with utility theory (see later) [80.12, 80.23, G14].
Other Operations Areas

At this point there is a lacuna in the actuarial literature, with the next level of models oriented towards planning, management, and investment problems. Except for some simple models of sales office and agent operations, and an interesting paper on loss prevention [S17], there seems to be little activity devoted towards the daily problems of Underwriting Services, Claims, Data Processing, Records Plant, Inspection, Engineering, Medical, Rehabilitation, Legal, District Offices, and all the other operating divisions of a large modern company. Perhaps it is felt these problems are the purview of other specialists, or that insufficient holistic models of the entire firm are available. Certainly we know that the costs of these departments affect corporate profitability, and that the portfolio of risks supervised by the actuary is what entrains these costs. As a systems engineer, I feel instinctively that the actuary should at least be aware of his influence on all aspects of company operations. Here are some questions to think about: What would be the affect on your company's profitability if claim reporting delays were cut in half? What would be the effect if loss prevention activities were doubled? How much would each of these changes cost?
INSURANCE BUSINESS PLANNING AND MANAGEMENT PARADIGMS

Basic Accounting Models

The past decade has seen a great deal of interest in developing analytic and simulation models for the management of the business enterprise. In fact, a simplified model of the firm has been in use for many years, represented by the accounting equation

\[PI = CP + OE + UP \]

that is, **premium income balances claims paid plus operating expenses plus underwriting profit**, which holds over the long run either by adjusting premiums (rate-making), reducing claims (improved underwriting and loss reduction), or reducing expenses (cost-cutting). This insurance "production function" was assumed to be linear over a wide range of business volume, with the **loss ratio** \(CP/PI \) and the **expense ratio** \(OE/PI \) almost universally accepted as stable corporate objectives and measures of performance.

The simple static accounting model needs, of course, to be expanded to include investment income, and the associated dynamic versions include inflation, changes in reserves, run-off profit, etc. Led by the deceptively simple yet elegant ideas of Harald Bohman, there continue to be fresh insights into model office analysis and understanding of management accounting and control problems through these dynamic, deterministic models [80.6, 80.33, 80.37, 80.38, 76.7, B26, B27, B28, E3]. In many cases, these linear accounting relationships can be used to analyze the associated variances, and then reserve levels and profitability standards can be set by specifying a **certainty-equivalent protection level**;
we might call this the safety margin or deterministic-plus approach to modelling.

Solvency and Regulation

If one may judge by the number of papers submitted to Topic 1 of this Congress, the question of appropriate modelling for reserve setting, solvency margins, financial stability, and external regulation is one of the hot issues in actuarial circles [80.4, 80.6, 80.7, 80.11, 80.20, 80.24, 80.25, 80.27, 80.32, 80.35].

As I understand it, the problem is one of managing the relationship between different types of reserves, especially between the technical reserves (such as the fluctuation reserve, claim reserves related to IBNR estimation, etc.) that are specified by traditional actuarial models, and the legal reserves that are required to guarantee the solvency of the corporation under changing conditions which are outside the usual paradigms. To an increasing extent, these latter reserves are being mandated by regulatory agencies based upon rather simplistic "maximum probable loss" or "deterministic-plus" concepts.

Inasmuch as this area is still under active development, and will be the theme of one of the discussion sessions, I will not comment further at this time. However, I draw your attention to some recent work on models for the surveillance of solvency in the insurance industry using discriminant analysis [C2, G17, P9].

Projection and Simulation

Another rapidly developing area in business management modelling is in the use of computers for projecting operating
results and for the simulation of the overall operation of an insurance company, including sales and investment performance. The papers offered on this topic will form another of the discussion sessions today [80.2, 80.6, 80.10, 80.14, 80.18, 80.19, 80.34, 80.35, 80.39].

Most of these working programs and simulation proposals seem to be based on the deterministic, linear accounting models just discussed, with the addition of random-number generators to represent mortality or other risk mechanisms, and investment and inflation variability. While it is important to encourage these proposals at this early stage of their development, I must say that they are still relatively unsophisticated by comparison with other business and engineering management simulations. I am particularly concerned that there has been insufficient modelling of the sales function, underwriting risk selection dynamics, claims management and loss reduction activities, and insurance services cost components, to be able to rely upon a linear production function and to use past operating ratios for the projection of future performance. I would hope that many actuaries would be challenged to develop appropriate sub-models for each of their company's operations areas, for use in the overall simulation. A related problem will be the need to develop simulation-support data-collection schemes, as many of the traditional data bases and management reporting systems currently in use are based on the simple accounting paradigm.

Stochastic-Dynamic Models

A more structured and sophisticated approach to corporate
simulation is taken by T. Pentikäinen and his coworkers [80.25, 76.14, B7, P4, P5, P6]. Based upon the Dynamic Risk paradigm, and using only a stochastic simulation of total claims and an empirical sales response model, their approach permits the rapid exploration of the joint effect of a number of decision-variables, such as reserves, dividends, and sales effort upon the evolution of corporate performance. This approach is an appealing one to me, because it is "top down" decision-oriented modelling, rather than an effort to create a comprehensive simulation "ground up", and to let it run in an unstructured way. Apparently, experience with the simulations has permitted the authors to make certain simplifications in the model structure by appeal to known analytic results, and by using dynamic programming control methods (see also [76.8, F10]).

The counterargument to this approach is that it is relatively sophisticated in concept, and more difficult to explain to managers than a financial-report-oriented simulation. In fact, very few insurance modellers have reported on their successes and failures in selling their results to their management. Is this because most of the work to date has not been supportive of actual business decisions, or is it because the practical details of successful applications do not make interesting communications? An early paper [M4] suggests that management gaming may be an effective communications device, but I have not seen any of these management exercises reported in the insurance field either.

I would also like to call your attention to [76.16], which has some interesting criticisms of the ultimate applicability of purely mathematical methods to insurance management. The study
of how management objectives change in the face of market forces is of course an interesting topic in itself, but about which there has been little discussion. In fact, the important management function of market development and sales strategy is greatly underrepresented in the insurance literature, by comparison with other management science applications. Is this because actuaries do not participate in these decisions, or are these activities considered to be too sensitive for general communication?

We turn now to concepts and methods from other disciplines which have influenced insurance modelling.
THE INFLUENCE OF COMPUTERS

The advent of the modern high-speed digital computer has revolutionized every scientific field, not only eliminating old computational burdens, but obsoleting traditional procedures, greatly extending the sophistication of solvable models, and affecting future attitudes and progress in ways which can only be dimly perceived.

Two examples from actuarial science come to mind. The late David Halmstad was a strong proponent of a high-level computing language called APL, and delighted in pointing out its simplicity and power in computing actuarial functions. As an example, suppose that I is a scalar variable representing the annual interest rate in %, and Q is an arbitrary-length vector variable representing the probability of death at the end of year $0,1,2,\ldots$. Then the following two lines of program:

\begin{align*}
[1] & \quad S+\phi+\phi N+\phi+\phi D+Q \times (1+0.01 \times I)^{\text{-}0.1}+p Q \\
[2] & \quad R+\phi+\phi M+\phi+\phi C+(D+1+0.01 \times I)^{-1}+D,0
\end{align*}

will calculate the complete commutation functions D, N, S, C, M, R for this arbitrary mortality table and interest in about 10 seconds on my desk-top computer, about the same time it takes me to open a text and find one value for a given table and interest!

The other example involves calculating the first two moments of the one-year loss distribution in a large life insurance portfolio. While the mean is straightforward, the presence of a large number of different face values and mortality rates makes the calculation of the variance untidy; actuaries have for many
years used an approximation formula based upon grouping of the data. Two years ago, Hans Bühlmann and I talked with an actuary in San Francisco who was going to carry out this calculation on his company's computer, and discovered that he had a few milliseconds of idle central processor unit time while reading the policy master file. So he wrote a small program which "for free" calculated the **exact distribution** of losses for the entire portfolio through convolution!

Let me pose the following scenario, which I do not think is at all unreasonable; imagine that, by 1985:

1. All university graduates will be quite sophisticated in the programming and use of computers, including scientific computations, such as large-scale optimization and stochastic simulations, as well as basic data management principles;

2. The economics of digital computation will have continued to drop to such a point that any of the calculations or simulations that have been proposed at this Congress can be routinely accomplished in a few seconds -- and further, that hand-held calculators or local mini-computers will be able to compute all of the life and many of the non-life actuarial functions instantaneously upon demand;

3. That extensive computer communications networks will enable the global transmission (via satellite) of insurance experience data banks, economic variables, industrial and trade statistics, etc., at nominal cost.

My questions to you are: How should the actuarial student then be trained? And what will you have him do when he joins your company?
The Utility Theory Paradigm

Insurance is, we hope, an economic enterprise; and yet the two fields had surprisingly little to say to each other until the expected utility hypothesis, first proposed by Daniel Bernoulli in 1732, was given adequate justification by J. von Neumann and O. Morgenstern in 1947 (see [B29]); in this important work, they gave a set of behavioristic assumptions which showed how a "rational economic man" (REM) would consistently choose between any two random outcomes with known distributions, say, between \bar{x} and \bar{y}. Given these assumptions, together with some technical fine points, it follows that a REM would behave as if he evaluated the outcomes by using a personal utility function, $u(.)$, mapping the outcomes and their associated probabilities into a single scalar value used for comparison. In other words, (if large values of outcome are desirable) an REM would consistently prefer a random outcome \bar{x} to a random outcome \bar{y} if and only if

$$U_x = Eu(\bar{x}) > Eu(\bar{y}) = U_y,$$

for some nondecreasing function $u(.)$. Because this paradigm only purports to rank outcomes, the scale of $u(.)$ is undefined; a utility function $v(x) = au(x) + b$ ($a > 0$) will give the same preference. Therefore one cannot simply say that an individual should have a nonlinear preference for money.

Although there have been many attacks on this paradigm, based usually upon experiments in which individuals can be tricked into violating the REM hypothesis, it has still withstood the test of
time reasonably well. Moreover, it is a useful paradigm in insurance, as has been demonstrated repeatedly by Karl Borch [80.47, 76.8, B29, B30, B31, B32, B33, B34] and many others, in a variety of different applications.

Demand for Insurance

The first success of this paradigm was in satisfactorily "explaining" why anyone would buy insurance against a random loss ξ and be willing to pay more than the "fair" expected value, $E\xi$. Suppose an individual with basic wealth W is faced with such a loss, but can purchase an insurance policy to cover the loss at cost Π; essentially, this is a problem in choosing between a random outcome $W - \xi$ and a deterministic outcome $W - \Pi$. According to the von Neumann-Morgenstern paradigm, a rational economic man would buy the insurance only if the premium were less than the indifference value Π given by the solution of $u(W - \Pi) = Eu(W - \xi)$. It is a relatively simple matter to show that such an indifference value greater than $E\xi$ exists for all W only if $u''(x) < 0$, that is, if the individual has a concave-downward utility curve, when he is said to be "risk-avoiding". It is also possible to show that if the range of outcomes is not too large, then the fluctuation loading, $\Pi - E\xi$, an individual is willing to pay to get insurance is proportional to the variance of the loss and the "risk-aversion coefficient" $-u''/u'$, evaluated at the reduced wealth $W - \Pi$ [P11].

The same approach can of course be applied to a (rational) insurance company to set acceptable premium limits over which it will underwrite a given risk, given its current reserves and
portfolio. Luckily, since the risk aversion coefficient of a company is usually much less than that of an individual, there is usually room for negotiating a commercially viable actual premium.

Premium Calculation Principles

The above result on a REM's permissible fluctuation loading is, of course, reminiscent of our previous discussion of premium setting, where a loading proportional to variance was justified on the basis of additivity. Led by the works of H. Gerber, a variety of recent papers have explored the variety of abstract properties which one might require of a premium calculation principle, including the utility theory approach [80.12, 76.10, F8, G3, G5, G14, G16, L3].

One interesting result is that, if we require that the utility theory premium Π be independent of the individual's wealth (or the company's reserves and current portfolio), the associated utility function must either be proportional to $u(x) = x$ (the **expected value principle**), or $u(x) = c^{-1}(1 - \exp(-cx))$, the **exponential utility principle**. In the latter case, the risk aversion coefficient $-u''/u'$ is just the constant c over all values of outcomes, and the utility premium is simply $\Pi = c^{-1} \ln[\mathbb{E} \exp(cx)]$. This model is now being applied to a variety of traditional risk problems, and, like all alternative paradigms, at least forces the scientist to rethink his basic assumptions; no doubt we shall see more discussion on this point.
Risk-Sharing and Game Theory

The utility theory paradigm also gives a fresh viewpoint on the problem of risk retention and optimal reinsurance and risk-sharing arrangements. The basic results are due to Borch [B31]. Suppose that we have a group of \(n \) insurance companies, indexed by \(i=1,2,...,n \), each of which is facing a random outcome \(x_i \), and behaves as if it has a risk-avoiding utility function \(u_i(.) \). The question is: under what circumstances can they agree to form a risk-exchange (REX) or risk pool, in which company \(i \) will now assume the random risk \(\tilde{y}_i = y_i(x_1, x_2, ... , x_n) \)? We will, of course, require that the treaty (contractual agreement) functions \(\{y_i(.)\} \) be such that all claims are paid, i.e. \(x_1 + x_2 + ... + x_n = \tilde{y}_1 + \tilde{y}_2 + ... + \tilde{y}_n \). (Reinsurance arrangements are a variation of this model in which conservative side payments are permitted.)

Two interesting results obtain. The first is that, if there is any treaty which improves the expected utility of all companies, then there are many such treaties, defining a Pareto-optimal set of arrangements over which the companies must bargain for individual advantage. On the other hand, the treaties depend only upon the sum of the pooled outcomes, \(\tilde{x}_n = \tilde{x}_1 + \tilde{x}_2 + ... + \tilde{x}_n \), even if the outcomes are statistically dependent.

Even though the exact REX is not specified by this model, the form of the \(y_i(x_i) \) are given in terms of the individual \(u_i(.) \); for example, if all utilities are exponential, then linear (quota) risk-sharing takes place, so that \(\tilde{y}_i = a_i x_i + b_i \) with the \(a_i \) related to the individual risk-aversion coefficient. The indeterminacy in Borch's result is reflected in the fact that
the side payments b_i ($\Sigma b_i = 0$) are still open to negotiation, and must be determined in terms of some other model, for example, by reference to the theory of games. A variety of papers have explored the various implications of this Pareto-optimal solution (see, e.g. [76.13, 76.19, B31, B32, B43, L6, M6, P12, R5]).

Gerber [G12] was the first to add inequality side conditions to the REX model, which limits the possibility that the treaty will permit the invasion of reserves of an individual company. This modification leads to the optimality (under the utility paradigm) of the stop-loss contract for simple reinsurance, and gives linear quota-sharing-by-layers for the general REX treaties under exponential utilities; the game-playing arbitrariness is now reflected in the unspecified layer values. Recently, the author and Hans Bühlmann have attempted to remove this element of negotiation by invoking an additional principle, namely, that the REX also be a fair Pareto-optimal risk exchange, that is, the treaties must satisfy $E\tilde{y}_i = E\tilde{x}_i$. This mixture of the utility theory paradigm and a traditional insurance business concept is somewhat confusing at first glance, but it does lead to unique risk sharing treaties, for example the unique determination of the layers in the exponential cases. Unfortunately, if the participants are grossly mismatched in risk-capacity and risk-aversion, then this unique solution may not improve the expected utility of all participants, and the pool will not form; further details may be found in [B44].

The fact that this new model leads to justification of some of the reinsurance and risk pool treaty forms actually used in practice has generated considerable interest, and there will no
doubt be continued development of these ideas [B5, B41].

Notice also that there is a considerable economic literature developing in the area of agent/principal risk-sharing agreements, with emphasis on incentive fee structures, and problems of partial observability (see, e.g. [H18, S14]).
THE INFLUENCE OF OTHER DISCIPLINES

A number of other disciplines have contributed concepts, models, and methods to insurance. For example, I am pleased to see that many papers now reference my own field of operations research, and that many national societies include at least some exposure to O.R. in their training recommendations. However, many actuaries and most of the recent articles seem to equate O.R. with a collection of analytic methods [W6], such as mathematical programming (optimization) [80.16, 80.28, J7, S3, S5], dynamic programming [P6], linear systems [80.16, G15], queuing analysis, reliability theory, decision analysis [S16], and so on. This is not at all what I had in mind when I surveyed O.R. applications in the insurance industry in 1972 [J2] and tried to stress the model-building opportunities in the operations and management areas of the insurance enterprise. Even though operations research/management science societies continue to sponsor sessions on insurance models, they too seem to be mostly methodology-oriented, rather than demonstrating the constructive interaction I had hoped for between the two communities. Perhaps operations research has itself gone too far in its own pursuit of normal science [J18].

Contributions to this Topic also reveal concepts from other disciplines such as information theory [80.5], systems and cybernetics theory [80.3, 80.40], control theory [80.36], and futurism [80.21]. I believe that it is important to keep these dialogues open with other fields, for one is never able to predict where the next successful paradigm will be generated.
Of course, probability and statistics has been a continuing source of techniques and ideas for actuarial science. Because this area is the subject of Topic 2, I will confine my remarks to modelling issues in Bayesian statistics.
MODELS FROM BAYESIAN STATISTICS

A Controversial Paradigm

I would like now to discuss a statistical methodology which has proven to be an especially rich source of actuarial models over the past 20 years--I refer of course to the Bayesian revolution which was foreseen by de Finetti in 1957 [D3], and developed by L. J. Savage [S1], D. V. Lindley [Lll] and many others interested in applications of statistics.

It would take several days of lecturing to cover the philosophical implications of the Bayesian approach and to contrast it with traditional methods; there are many advocates who are much more qualified for this task than I--see, e.g. [B1, B3, B4, C3, E2, E4, Lll, L13, L14, S1]. The "controversial" nature of the Bayesian approach seems, in my opinion, to be related to a personal worldview of many professional statisticians, namely that, as specialist consultants, they are not a priori permitted to have any opinion about the real problem at hand, but "the data must speak for itself." This attitude leads to a variety of ingenious theoretical constructions, which unfortunately can in many cases be shown to have very poor conditional properties or exhibit a lack of coherence to the laws of probability [B4, Lll, R4].

Fortunately, the issue of whether the analyst has any prior or collateral information about the problem at hand is hardly a difficulty for the actuary or the engineer. As Norberg points out (emphasis added):
"... in class-rating situations the actuary must to some extent rely on subjective judgement since the rate-making decision is forced upon him right here and now and cannot be deferred or put off. If he wants to remain in business, he should not tell the client that, 'Your new gas-tanker is, of course, a most interesting object of insurance, and we look forward to negotiate the terms as soon as the hazard can be assessed from objective facts, say in 10 years or so.'" [N4]

This compulsion to a decision is so embedded in historical insurance underwriting, it seems difficult to imagine a philosophical discussion in London coffeehouses about whether or not to permit subjective judgements. Of course, coherent actuaries--ones who agree to use the laws of probability--may disagree on the probabilities to be associated with certain unknown random quantities, since they do not share the same training and experience in the real world, i.e., their current information states differ.

But the advantage of the Bayesian paradigm is that it provides a mechanism for the orderly sharing and rationalization of this information, both when making the initial underwriting decision, and later, as experimental facts are accumulated.

And this is the point I would like to emphasize [L14]:

"The Bayesian approach to statistics is a complete, logical framework for the discussion and solution of problems of inference and noncompetitive decision-making."

Thus, in addition to providing a methodology for estimation, prediction and decision-making [A1], as in Subject 2 of this Congress, it also helps the model-building process, since the scientist is forced to make explicit all of his underlying
assumptions about the influences of one random quantity upon another, especially which quantities are conditionally independent of each other, and what is his relative uncertainty about as-yet-unobserved quantities (his current information state). This "warts and all" specification of the model is somewhat embarrassing when first attempted, since it prevents the subterfuge, tacit assumptions, and "ad-hocery" which sometimes characterize traditional estimation methods.

And, as suggested above, the requirement for complete specification permits scientists who dissent on underlying probabilities or on the exact form of a model relationship to communicate in an orderly manner about their differences, to explore the consequences of their differences, and to rationalize these differences or change their minds, in the face of experimental data. At any point in the analysis they are free to make approximations or use appealing empirical methods, and it will be apparent to all exactly what has or has not been "swept under the rug."

I would like to try and illustrate some of these points with reference to traditional insurance models, approached from the Bayesian point of view.

Life Table Analysis under Competing Risks

Consider the classical problem of estimating mortality rates in a life table with two decrements, death and withdrawal. For simplicity, consider the single age interval \((0,1]\) in which we observe that \(\tilde{N} = N\) "starters" at time \(t = 0\) have resulted in \(\tilde{D} = D\) deaths in service, \(\tilde{W} = W\) withdrawals while alive, giving
then \(\hat{E} = E = N - D - W \) "enders" at \(t = 1 \). Making the usual modelling assumption that mortality and withdrawal are independent competing risk processes, with the (continuous) age cumulative distribution functions:

\[
\Pr \{ \text{age at death} \leq t \} = P_D(t) \quad \Pr \{ \text{age at withdrawal} \leq t \} = P_W(t)
\]
defined over \(t \) in \((0, \omega]\), the problem is to estimate the absolute rates of decrement for this interval,

\[
q_D = P_D(1) \quad q_W = P_W(1)
\]

from the data \((N,D,W,E)\). The estimate of \(q_D \) should, of course, be greater than \(D/N \) because the observed death data did not include those in \(W \) who died after withdrawal.

The traditional approach to this problem is to make some additional special assumptions about the forms of the cdfs \(P_D(\cdot) \), \(P_W(\cdot) \) (or their associated failure rates); for example, if the decrements are assumed to be uniformly distributed over \((0,1]\), we obtain the familiar:

\[
\hat{q}_D = D/(N - \frac{1}{2}W) \quad \hat{q}_W = W/(N - \frac{1}{2}D)
\]

A difficulty with these estimators is that they are inconsistent, in that they need not approach the true absolute rates, as \(N \to \infty \).

Lindley [L12] points out that all of the information contained in the data is given by the likelihood:

\[
L(\pi_D, \pi_W) = (\pi_D)^D (\pi_W)^W (1 - \pi_D - \pi_W)^{N-D-W}
\]
where \(\pi_D \) and \(\pi_W \) are the observed probabilities of death and withdrawal under competing risks, respectively:

\[
\pi_D = \int_0^1 [1 - P_W(t)] dP_D(t) \quad \pi_W = \int_0^1 [1 - P_D(t)] dP_W(t) \quad \pi_D + \pi_W = q_D q_W.
\]

At first glance, it appears from the likelihood that a Bayesian analysis would now require some prior probabilities on \(\pi_D \) and \(\pi_W \) to proceed. However, since the desired estimators are for \(q_D \) and \(q_W \), it makes sense to use the above relationships to eliminate the observed probabilities in favor of the absolute rates of decrement insofar as possible. By defining

\[
r = \int_0^1 P_D(x) dP_W(x)/q_D q_W,
\]

the likelihood can be rearranged into:

\[
L(q_D, q_W, r) = (q_D)^D (1 - q_D)^E (q_W)^W (1 - q_W)^E (1 - rq_D)^W (1 - (1 - r) q_W)^D.
\]

The additional "nuisance parameter," \(r \), indicates explicitly what additional (dependent) information is contributed to the model by \(P_D(\cdot) \) and \(P_W(\cdot) \); or stated another way, the complete forms of the age cdfs are irrelevant, and only the three parameters \(r \), \(q_D \), and \(q_W \), should enter into the estimation process.

Notice that if the Bayesian analyst had well-developed experience regarding these three parameters prior to the experiment, he would now be able to compute a posterior-to-data distribution.
for q_D and q_W in the obvious application of Bayes' law, even if he specified that the parameters were dependent.

What about r? A physical interpretation is somewhat elusive; it is essentially the conditional probability of death "winning out" over withdrawal, given that both death and withdrawal will occur in $(0,1]$. But—and here is the surprising part—it turns out that under many of the usual additional assumptions made in mortality processes, r will have a value at or near 0.5, for example, under constant failure rates or with linear splines used for the cdfs. In other words, after further additional modelling assumptions, r seems to be near-deterministic, in the sense that it has a very "tight" prior around $r_o = 0.5$, or some other natural value given by valuation calendar assumptions; it is thus hardly relevant whether r is correlated with q_D and q_W, a priori.

Lindley [L12] carries out additional numerical analyses which show that, when N, D, and W are large, most of the information is carried by the likelihood, rather than the prior, and that the mode of the posterior-to-data density of q_D is given by

$$\hat{q}_D = D/(N - (1 - r_o)W),$$

thus validating traditional estimators. But, even more satisfactorily, it is possible to obtain estimates of the variance of the density of q_D, which helps to understand what is a "large" data set. It is also possible to address the question of whether or not this estimator is consistent as $N \to \infty$; it turns out that
it is impossible to eliminate the (admittedly small) original uncertainty about \(r \), no matter how large the data set.

(The same problem is tackled by classical maximum likelihood methods in [H14].)

Graduation

If we have only mortality effects \((W = 0)\), then grouped data still exhibits significant fluctuation. One possible approach to the problem of estimating mortality rates is to apply Bayesian ideas directly in graduating (smoothing) raw observed mortality rates [J22, H13]. In my opinion, this approach reveals immediately (through the explicitness of the assumptions required in the Bayesian methodology) a major modelling difficulty—the graduator must specify a great deal of prior information about the covariance structure of the random parameters associated with each age interval, assumed to be multinomially distributed. Under certain additional assumptions, and the use of a clever transformation to obtain an approximately normal likelihood of the correct conjugate type, [H13] obtains smoothed rate estimates reminiscent of multidimensional credibility theory [J6, J9].

It should be emphasized that the difficulty here is not in the use of Bayesian methodology, but rather in the fact that the King-Whittaker-Henderson free-form graduation and smoothing techniques are rather too tightly posed; either one believes specifically in the fit-versus-smoothness objective and accepts the traditional machinery, or one must make a large number of supplementary probabilistic assumptions about the way in which
the data roughness is generated. In the latter case, it is clear that focusing the attention of the modellers upon the dependency assumptions about roughness in adjacent intervals is extremely useful in clarifying the model. This structured argumentation also gives insight into the classical procedures and into other proposals for automatic graduation (see the discussions in [G15, H13, S5]). Of course, it does not help much in more artistic ad hoc approaches.

Mortality Law Models

In many reliability problems [J16] and in the comparison of certain mortality tables (see, e.g. [80.45, W3]), it may be possible to make a stronger assumption about the form of mortality versus age, and leave our uncertainty associated with certain free parameters. For example, if we assume that the shape of the failure rate is known as a continuous function of age, except for a scale parameter, this would give a complementary distribution function

\[
\Pr \{\text{remaining lifetime} > t \} = \exp \{-\theta Q(t)\},
\]

where \(\theta \) is the unknown parameter, and \(Q(\cdot) \) is the prototype cumulative hazard function, for example, Gompertz' form. If one assumes that prior information about values of \(\theta \) can be expressed in terms of a Gamma density, this leads to particularly simple Bayesian updating formulae.

In [J19], the author applies this model to the adaptive modification of life contingency premium reserves, assuming that
the underwritten cohort consists of lives which have the above lifetime distribution, but in which there is a common value of $\hat{\theta}$, selected from a larger collective of lives under surveillance by the insurance company. For example, just after underwriting at common age x, the actuary would examine all of his prior knowledge about the variation of θ over previously insured, similar cohorts, and would set an initial reserve at the a priori average value $E\{v_x(\hat{\theta})\}$, where $v_x(\theta)$ is the deterministic legal reserve at age $t + x$ for the assurance to x, given $\hat{\theta} = \theta$.

As time passes, expirations in this cohort will occur randomly, changing our posterior estimate of $\hat{\theta}$, as more or less expirations than expected occur (this model also has the property that it uses information about the lives still in existence at time t). The correct Bayesian adaptive reserve per contract at time t is then $E\{v_x(\hat{\theta}) | \text{Expiration History in } (0,t)\}$, obtained through routine use of the updating formula. This generates a curve which drifts (upward for annuities, downward for assurances) through the family of classical reserve curves when no one dies, then jumps (down or up) at the random instant of death; naturally, with a large number of lives in the cohort, it seeks out and tends to follow the curve corresponding to the correct θ for this cohort. A similar model could of course be useful in other life insurance problems, for example, in the valuation of a portfolio for reinsurance purposes. ([76.3] suggests a credibility approach to group term life insurance.)

There seem to be few other Bayesian models in life assurances; however, it is a natural approach for pension systems studies,
most of which are still dominated by the deterministic-plus approach. Shapiro studies the adequacy of projected retirement costs in a pension model in which persistency of participants, mortality rates and interest factors are random variables whose parameters are also stochastically distributed \([S11, S12, S13]\). The projected probability distribution of final accumulation given could be updated dynamically by Bayesian methods through population experience.

Credibility Theory

The most-developed Bayesian model in insurance must be credibility theory; surely you have all heard something about it already, good or bad. In its simplest form, we imagine a risk collective, similar to that already described, in which each risk is characterized both by his outcome random variable, \(x\), and by an unknown risk parameter, \(\theta\), which describes his particular risk variability within the collective; the model for the outcome is the simple likelihood density \(p(x \mid \theta)\) and \(u(\theta)\) is the structure function for the distribution of \(\theta\) over the collective. For the selected risk, we cannot observe his risk parameter \(\theta\) directly, but we can record his experienced outcomes \(x = (x_1, x_2, \ldots, x_n)\) over \(n\) years of experience. By a direct application of Bayes' law, then, it is possible to update our estimate of the risk's parameter distribution from \(u(\theta)\) to \(u(\theta \mid x)\). In experience-rating applications, the basic problem is to predict the value of the unknown future outcome \(x_{n+1}\), using both the experience \(x\) for this risk, together with
information about the collective. This emphasis on future values of observables, rather than on unverifiable values of parameters, is typical of practical applications, but has only recently begun to receive its proper emphasis in Bayesian statistics [Al].

Perhaps the most fascinating part of the credibility story is that the practical importance of this problem was recognized by the American actuaries A. H. Mowbray and A. W. Whitney over 60 years ago, when statistics was in its infancy. They proposed a formula which we would write in the above notation as:

\[\hat{x}_{n+1} = (1 - Z)m + Z\bar{x} \]
\[\bar{x} = \bar{x}_t/n \]
\[Z = n/(n + n_0) \]

\(\bar{x}\) is, of course, the average observed experience of this particular risk, and will, as experience accumulates, be a "good" estimator of \(\hat{x}_{n+1}\); however, these pioneers reasoned, with small amounts of experience data, \(\bar{x}\) may be a highly variable estimator—why not mix it with the manual premium, \(m\), which is already tabulated for the collective as a whole?

Using heuristic reasoning based upon pooling of data arguments, they argued that the mixing coefficient, \(Z\), which they called the **credibility factor**, should be of the form indicated above, with the time constant, \(n_0\), chosen from experience.

The next part of the story comes in the 1950's, just at the beginning of the resurgence of interest in the Bayesian approach, when A. L. Bailey [B1], and A. L. Mayerson [M3] showed that the experience rating problem could be posed as the problem
of estimating a posterior-to-data mean, \(E(\tilde{x}_{n+1} \mid x)\), which is already implied in our collective model above. They carried out this calculation for several important likelihoods \(p(x \mid \theta)\) and structures \(u(\theta)\), and showed that the linear credibility form was exact, even to its dependence on \(n\) and the interpretation of the manual premium as \(m = E\{\tilde{x} \mid \tilde{\theta}\}\). The time constant \(n_0\) was a function of the (hyper)parameters of the structure function. A good summary of this "American school of partial credibility" can be found in [L18].

The scene now shifts to Switzerland, where Bühlmann showed in 1967 [B36] that, if one choose to approximate \(E(\tilde{x}_{n+1} \mid x)\) by a linear function of the observed data, say \(a + bx\), then the least-squares estimate was again the familiar credibility form, only now there was an interpretation for \(n_0\) as well as \(m\). More precisely, if \(D\) and \(E\) are the two components of collective variance previously defined, then \(n_0 = E/D\). This result gave impetus to a number of works from E. Straub and the rest of the "Swiss School."

It also stimulated the author to think in 1973 about various extensions of the basic model, and also to examine the link between the exact linear formulae of Bailey and Mayerson, and the approximate results of Bühlmann. Now, it is known from statistics that if the sample mean is the only sufficient statistic (apart from \(n\)) for the parameter \(\theta\) in a sequence of i.i.d. trials (and if the range of \(\tilde{x}\) is fixed, and certain technical regularity conditions are met), then the likelihood must be one of the members of the Koopman-Pitman-Darmois exponential family, i.e.,
\[p(x \mid \theta) = \frac{a(x) \exp(-\theta x)}{c(\theta)} \]

over some appropriate range and measure for \(\tilde{x} \), making the likelihood of the experience data \(x = (x_1, x_2, \ldots, x_n) \) equal to

\[L(\theta) = p(x \mid \theta) = \frac{\prod a(x_i) \exp(-\theta \bar{x})}{[c(\theta)]^n}. \]

This family includes many of the favorite models in insurance, such as the Poisson, the Binomial, the Exponential and the Gamma with fixed shape, the Normal with fixed variance, etc. Now, if we simultaneously assume that the collective structure function (e.g. the Bayesian prior density on \(\theta \)) is the so-called natural conjugate prior

\[u(\theta) = [c(\theta)]^{-n_0} \exp(-\theta x_0), \]

(again, over some natural range for \(\tilde{\theta} \)), then it is extremely easy to form the posterior-to-data density of the structure function for the risk under study, \(u(\theta \mid x) \); essentially, it is of the same form as \(u(\theta) \), but with the hyperparameters \(n_0 \) and \(x_0 \) replaced by \(n_0 + n \), and \(x_0 + \bar{x} \), respectively. This closed-under-sampling property is extremely convenient, and for many of the practically useful likelihoods gives also a convenient prior, such as the Gamma, or Normal \([\text{Al, J5}]\). So far, so good. The bonus comes after making a regularity assumption which is always satisfied in practice, whence we find \([\text{J6, J8}]\) that these conjugate families of densities imply that

\[E(\bar{x}_{n+1} \mid x) = (x_0 + \bar{x})/(n_0 + n) \]
exactly! In other words, the hyperparameter n_o is just the ratio E/D found by Bühlmann, and the hyperparameter $x_o = n_o n/m$.

So, now we know that the linear credibility rule is exact for a rather wide class of important distributions, and there are further indications that it is extremely robust in many other situations as well.

Well, since that time there has been a virtual explosion of research into various extensions and mathematical properties of linearized Bayesian credibility models. I hope that my many friends in the American-Swiss-Belgian-Australian-Italian-Portuguese-Norwegian-plus School of Credibility will excuse me if I do not try to enumerate and compare all their various contributions. 1974-1975 saw the first monograph [D8], as well as the first research conference [K3] on credibility; a 1976 bibliography [D7] lists 141 items, to which must be added at least another 30 recent contributions.

Among the types of different models which have been developed, we might mention:

(i) the problem of claim frequency and severity (see below);

(ii) the effect of premium volume [B46];

(iii) estimation of extreme values and probabilities [B39, D21, F11, J4, P7, S18];

(iv) minimax estimators [M1, S18];

(v) other sufficient statistics and "best" estimator forms [D10, D17, J6];
(vi) seasonal and other nonstationary models [G6, J9, K3, S22];
(vii) hierarchical models [Dl9, J11, S24, T1, Tl2, Z4];
(viii) multidimensional models [J1, J6, J9, J10];
(ix) conditionally linear models [B46, J9];
(x) regression and inverse regression models [H1, J12, J13, J14, S24];
(xi) general, abstract, and "nonparametric" models [H1, L15, S25, T5, Z1, Z2, Z3, Z4]

and many other special topics, such as: the influence of different risk factors [A3]; rate classification [Dl1, W2]; bonus hunger [N2, W3]; network flows [J15]; reliability [J16, J19], etc.

It is difficult to get a perspective on the field at this point; my survey [J17] is already out of date, a more recent one is given by Norberg [N4]. The only obvious trend is that the Scandanavian Actuarial Journal seems to have taken the lead over the ASTIN Bulletin and the Swiss Mitteilungen in publishing articles of this type!

It should also be pointed out that linearized Bayesian formulae are constantly being developed in other fields; for example, in communications theory, similar results arise in Wiener-Kalman filter theory, where the emphasis is on adaptive updating formulae for nonstationary processes. There have also been a number of related articles in statistics, beginning with [E6, H8], see also references in [J17]; unfortunately, these do not often reference or acknowledge priority from credibility, in part,
because of the limited circulation of actuarial journals. Two recent statistical works which do reference credibility are [D20, F1].

The Problem of Severity

The economy and simplicity of Bayesian model-building can be illustrated by considering the problem of estimating the total severity of a casualty claim; this problem has previously been analyzed by Hewitt, Bühlmann, and the author using credibility theory [B38, H10, J1]. Extending the compound claim process described earlier, we suppose that in time period t ($t = 1, 2, ..., n$) a random number of claims \tilde{x}_t occur, with random individual claim amounts $[\tilde{x}_{t1}, \tilde{x}_{t2}, ..., \tilde{x}_{tk_t}]$, whose total, \tilde{s}_t, a random sum of random variables, is the total severity for this time period.

We imagine that the number of claims is governed by an unknown parameter ϕ, and the claim size by an unknown parameter θ, which are fixed for an individual risk, but whose structure distribution density, $u(\theta, \phi)$ is known over the collective. As usual, we assume that, given the parameters, the individual claim amounts and the number of claims are mutually independent, and that all the claim amounts are identically distributed. The problem is to estimate the total severity next period of this particular risk, \tilde{s}_{n+1}, given the underlying probability laws, and the observed data $\mathcal{D} = [k_1, k_2, ..., k_n; x_{11}, x_{12}, ..., x_{1k_1}; ..., x_{n1}, x_{n2}, ..., x_{nk_n}]$.

Suppose we assume that individual claim size, given θ, is modellable by a density for which the sample mean claim is the
only sufficient statistic and that the claim frequency, given \(\phi \), is also modellable by a density for which the mean claim rate is the only sufficient statistic; these are strong assumptions, but are satisfied by many of the particular models used in the literature. This means that the two basic model laws for \(\tilde{x} \) and \(\tilde{k} \) belong to the simple exponential family, say:

\[
p(x \mid \theta) = \frac{a(x) \exp(-\theta x)}{c(\theta)}; \quad p(k \mid \phi) = \frac{b(k) \exp(-\phi k)}{d(\phi)}.
\]

(These are different densities; we are using the usual Bayesian trick of letting the arguments describe the form, range, and measure of the (possibly discrete) density, rather than defining new functions.) Now, only from the assumptions above, we can show that this implies the likelihood of observing the data \(D \) must be:

\[
L(\theta, \phi) = p(D \mid \theta, \phi) = \left[\prod_{t=1}^{n} a_{t}^{s_{t}} b_{t}(k_{t}) \right] \frac{\exp(-\theta s_{t} - \phi k_{t})}{[c(\theta)]^{s_{t}} [d(\phi)]^{k_{t}}}.
\]

where the asterisk indicates convolution, and

\[
k_{t} = \sum_{i} k_{t}^{i}; \quad s_{t} = \sum_{i} s_{t}^{i} = \sum_{i} x_{t}^{i};
\]

are the total number of claims and total severity observed over all the time periods.

Clearly the term in square brackets in the data likelihood can be ignored, and it follows that the new data \(D' = [k_{t}, s_{t}, n] \), the total number of claims, the total severity, and the number of time periods, are sufficient for \((\theta, \phi) \); in other words, any additional combination or arrangement of the data is noninformative.
Now, if as Bayesians, we were able to completely specify the joint prior density, \(u(\theta, \phi) \), then an analytic or numerical application of Bayes' law would update this prior to \(u(\theta, \phi \mid D') \), and this could be used to get a predictive density for \(\tilde{s}_{n+1} \), in principle.

But this calculation appears difficult in the general case, and so we look for simplifications. If we consider predicting only the mean severity next period (the experience-rated fair premium), it can be shown that:

\[
E\{\tilde{s}_{n+1} \mid \theta, \phi\} = \frac{c'(\theta) d'(\phi + \ln c(\theta))}{c(\theta) d(\phi)}
\]

and this function might be easier to integrate than the complete predictive density with particular choices for the underlying models.

Notice that we have not yet assumed that the parameters assumed are independent; if they are dependent, this means that observed (mixed) data from the collective will show a correlation between average frequency and average claim size—which is sometimes observed in automobile statistics.

If we are willing to additionally make the assumption that the parameters are independent, \(u(\theta, \phi) = u_1(\theta) u_2(\phi) \), say, and that the natural conjugate priors to the basic likelihoods are reasonable choices for \(u_1 \) and \(u_2 \), then we get almost immediately that \(E\{\tilde{s}_{n+1} \mid D\} \) is exactly the product of two credibility formulae, one for claim amounts and one for frequency! In fact the independence assumption has often been made in the literature.
If as Bayesians, we feel that these modelling assumptions are too restrictive, we are free to make a credibility approximation to the desired mean, by assuming that it is a linear function of the data. But, from the likelihood, we see that there are only two sample variables of interest, s. and k. (or their corresponding sample averages s./n and k./n). The corresponding 2-dimensional credibility prediction in the correlated case has been carried out in [J1]; [B38] shows the expected result that, in the uncorrelated case, the credibility forecast factors into the product of two independent forecasts for amount and frequency. I freely admit that in using credibility this way we are not obtaining exact results, but only approximations; however, by starting out with a full Bayesian analysis, we at least "know where the cards lie." If the result that only s. and k. need be used seems suspicious, we must change the basic likelihoods to more appropriate forms, and not blame dependence of the parameters.

Daboni [76.1] has adopted an interesting approach to the problem of correlation in severity which illustrates the Bayesian approach to model uncertainty through the method of model mixtures [J19, L11, L14]. Essentially, he proposes to use a prior density of the form:

\[v(\theta, \phi) = \pi u_{11}(\theta)u_{21}(\phi) + (1-\pi)u_{12}(\theta)u_{22}(\phi) \]

in the initial choice of the mixing coefficient \(\pi \) and the parameters for the four (conjugate) priors, \(u_{11} \) and \(u_{12} \), are based upon observable means, variances, and
covariances for the collective. The hyperparameters for the
priors are updated in the usual simple fashion, but now there is
a rather complex updating of the mixing coefficient, from \(\pi \) to
a data-dependent \(\pi(\mathcal{D}) \). This approach is often used when there
is uncertainty about the prior model form. The only philoso-
phically unsatisfactory thing about this particular model is that,
in order to restrict the number of hyperparameters to be estimated,
the shape parameters of the four priors are constrained in a
special way. The paper does show that, as \(n \) approaches
infinity, the exact nonlinear-mixed-linear mean forecast does
factor into the product of two independent linear forecasts,
since (aha! now we remember our basic assumption) claim amounts
and frequencies are independent, given \((\theta, \psi) \), and, in the usual
Bayesian way, we may expect, for increasing data sets, to have
the posterior density approach a degenerate density at the true
values, with probability one. Furthermore, there are ways within
the Bayesian paradigm to estimate this convergence!

Prior Estimation and Empiricism

In closing this section on Bayesian modelling, I would like
to respond to Norberg [N4], who implies that I am clearly of
the genuine Bayesian persuasion, even if I do not display the
colours, and wonders whether I would surrender, or use some em-
pirical approach if a prior density \(u(\theta) \) were not available.
Well, as a philosopher, I am a good engineer; I find it difficult
to imagine that I would not have some prior opinion, based upon
observation, about almost everything in our real, physical world
of man. But I am also of an empirical rather than abstract bent, and, heeding Occam's razor, would much prefer a simple model of known limitations and verifiable dimension, to a more complex, untested model which may be "more accurate." Thus, when being empirical, I prefer to make explicit the simplifying assumptions and computational shortcuts I am taking, in order to be able to make surprise-free projections. And here, displaying my colours at last, I would like to discuss what I think is a potential heresy in implementing credibility theory under certain circumstances: the problem of justifiable empiricism.

Recall the simplest model for predicting the mean value
\[m(\theta) = E(x | \theta) \]
for a particular risk whose parameter \(\theta \) is fixed, but unobservable; to use credibility, we need only three moments from the collective:

\[m = E(m(\theta)) ; E = Ev(\theta) ; D = Vm(\theta) \]

(in fact, we really only need \(n_o = E/D \)). The underlying conditional moments \(m(\theta) , v(\theta) \), are not at issue, since they come from the model likelihood \(p(x | \Omega) \), whose form is always assumed to be modellable. But taking the expectation and variance of these moments to find \(m , E , D \), has bothered many analysts, since it involves the structure function, \(u(\theta) \). They reason that, as scientists, they would prefer not to have too "personal" an opinion about this prior, but would like to set to work immediately, estimating \(m , E , D \) from the collective [80.42, B46, D13, L16, N4, Z3, Z4].
variation of these statistics about the true values, for whatever reasonable range (and distribution?) of θ values he wishes to make explicit, so that I can be scientifically satisfied that both n and M are "large enough." In fact, I expect, from my experience, that "large enough data" implies that all of the unbiased niceties in the above formulae can be eliminated, with $n-1$ and $M-1$ replaced by n and M, respectively, and \hat{E}/n ignored relative to \hat{D}. After all, the credibility formula is itself just a point estimate, and is known through experience to be quite robust to choices of m and E/D, in the sense that the data variability noise overwhelms any slight error in the underlying conditional mean, when observing an actual sample path of the credibility statistic. If this variability in credible predictors is of concern, then the modeller should forego credibility theory, and make a full distributional analysis of $\tilde{x}_{s,n+1}$, conditional on X, by whatever methods give him satisfactory results.

The extension of the above heuristic to the case of uneven data record lengths, n_i ($i = 1, 2, \ldots, M$) is straightforward. Now, to be "confident," we would ask that "almost all" lengths n_i be large in order to use $\hat{m}, \hat{E}, \hat{D}$ (clearly, for the risks we are trying to rate, n_s could still be small--in fact, this is region in which the credibility approach is most useful). Incidentally, the classical approach often gets hung up on whether or not it is correct to include x_s in the data X used to estimate m, E, D, given that we have already specified a linear form in \tilde{x}_s in the remainder of credibility estimator; this seems to me to be a problem in theology!
Suppose that we have data sets of the same record length,
\(x_i = [x_{i1}, x_{i2}, \ldots, x_{in}] \) from \(M \) members of this collective,
indexed by \(i \), each one of which has an unobservable risk parameter \(\theta_i \) \((i = 1, 2, \ldots, M)\). (Note that our notation is transposed from other authors.) We shall henceforth let index \(s \) be the particular risk that we are trying to experience-rate by estimating \(\mathbb{E}(m(\theta_s) | X) \), where \(X \) is the total collective data file \(X = [x_i] = [x_{it}] \).

The authors cited above consider the unknown \([\theta_i] \) to be statistically mutually independent, and empirically propose replacing \(m, \mathbb{E}, \) and \(D \) by point estimators of classical form, viz. if

\[
\bar{x}_i = \frac{1}{n} \sum_{t=1}^{n} x_{it}/n; \quad \bar{x} = \frac{1}{M} \sum_{i=1}^{M} \bar{x}_i/M;
\]

then use:

\[
\hat{m} = \bar{x};
\]
\[
\hat{E} = \frac{1}{M(n-1)} \sum (x_{it} - \bar{x}_i)^2;
\]
\[
\hat{D} + \frac{1}{n} \hat{E} = \frac{1}{(M-1)} \sum (\bar{x}_i - \bar{x})^2.
\]

As an empiricist, I have no quarrel with this approach, in fact it is probably the one I would use, because I know that these "unbiased, minimum variance" point estimators have certain robust and appealing properties, especially when \(n \) and \(M \) are both large and the underlying sums are essentially normally distributed. But I would insist that anyone who uses (large) sampling-school results should also be able to bound the possible
The philosophical deviation about which I am most concerned, however, is the implication that estimates like the above, and their generalizations to more complex models, can be used in place of prior moments no matter what the dimension of M or the n_i. The modelling goal seems to be to create a formula in which there is no information needed about $u(\theta)$, only data X (and x_s). This approach is called empirical Bayes (eB), and the corresponding formula the empirical credibility premium.

The point is further confused by reference to the Empirical-Bayes (EB) school, due to Robbins, Maritz and others, and to the estimator of Stein. Now the EB approach is a schism of a different colour, and I am not enough of a philosopher to either defend it or attack it. Essentially, the EBers would presumably use data X of any size to first estimate a density $\hat{u}(\cdot)$ and then use this in Bayes' law to find $E\{m(\theta) \mid X\}$; but I suppose we might stretch the point and say that an EBer would also estimate m, E, D directly from the data, and use it in a Bayesian formula. I do know that EB computational machinery is complex, and that it can have other serious drawbacks such as incoherence, poor small-sample properties, unknown rate of convergence, or even lack of asymptotic optimality [D2, L11]. I am wary of any help from this quarter.

But, what about the possibility of using the empirically derived eB formula for arbitrary n_i and M—couldn't this also have some nice, robust properties? Well, yes, I would have to admit—but they haven't been demonstrated yet! In other words,
if you propose to "ad hoc" up a complicated formula involving both sums, squared sums, and sums of squares of the data by appeal to two different schools of thought, then I can only be amazed at your ingenuity. But I suspect that you will have a difficult time in proving these good properties analytically, and will have to resort to, say, simulation (that is, to experience). Note that even Norberg [N4] recommends that, for small sample sizes, one should use all of the known information about the particular form of \(p(x | \theta) \) at hand in setting up empirical estimators—for example using \(\hat{E} = \bar{x} \) if the outcome is Poisson with parameter \(\theta \).

But what, you persist, would I do if I actually did not have much data from the collective risks either? Fortunately, there is another approach I could take which would take me back into the realm of acceptable (to me) empiricism, by referring the estimation problem to a higher level data source. As Lindley so often remarks [L14], there are really no completely unconditional statements in statistics, since our mathematical conversation can be extended just so far, and there will always remain hypotheses, data, beliefs, physical conditions which it is not efficient to include in our model unless our model proves to be unsatisfactory; contrary to popular belief, even a Bayesian may change his mind about his model after looking at new data. In this case, since the Bayesian approach does not use the collateral data \(\{x_i | i \neq s\} \) (because of the independence assumption on the \(\theta_i \)), I raise the question as to what tacit conditions were present when I made this assumption? The answer
is that I assumed that the collective was a relatively homogeneous cohort of customers for the same company. However, I know also from experience that different insurance companies have different collectives with widely different risk characteristics, which I might parametrize by a company parameter, ϕ. Furthermore, I know that there often exist extremely large, albeit highly variable, statewide or nationwide data banks covering many insurance companies. By creating a hierarchical credibility model, I can use not only data from my risk s and my collective, but also the "good" statistics from the collective of collectives. The resulting linear three-part credibility formula mixes \bar{x}_s, \bar{x} (including risk s data), and the "manual premium," estimated from nationwide data; also to be estimated by straightforward empirical methods are three components of variance at nationwide, company, and individual levels. Further details may be found in [J11]; a generalization to multiple levels is in [T12]. [D2] generally exorcises the EB spirit, for those of you who are still of uncertain faith.
In closing this survey of modelling in insurance, I would like to discuss two recent examples of conflict between the traditional methods used for risk classification and the goals of society.

The first issue is whether or not classification by sex may be legally used in the U.S.A. for defining pension benefits. The rationale for male-female differentiation is, I am sure, familiar to all of you. By reference to a life table, such as the one illustrated in Figure 7, one sees that the mortality rates are substantially different at all ages, and one calculates, for example, that:

"If a male and a female employee reach age 65 with an accumulation of, say $100,000 each, and if each elects the Single Life Annuity Option, the annuity income is $11,450 a year for the man and $10,175 a year for the woman" [El].

In a series of rulings handed down, beginning in 1975, to various municipal, state, and educational pension systems, various U.S. District Courts and then our Supreme Court have determined that sex-classified annuity tables violate Title VII of our Civil Rights Act of 1964, which makes it unlawful "to discriminate against any individual with respect to his compensation, terms, conditions or privileges of employment, because of the individual's race, color, religion, sex, or national origin." Of course, as specific court cases, they raised a variety of other issues, such as whether the mortality tables were representative of the plaintiffs, whether graduation and a set-back approximation were equitable, the
FIGURE 7

Mortality Rates - United States Life Tables 1969-71
differences between money purchase and formula benefit plans, and so on. But the general theme was that collective-based arguments for "cost-based pricing" must be set aside in favor of individual considerations of equity:

"The use of group mortality tables attempts to predict only the life expectancy of a group and does not consider the individual female. These tables cannot predict the life expectancy of any particular individual, regardless of sex. Since actuarial tables do not predict the length of any individual's life, any claim that such tables may be used to assure equal pension benefits to males and females over their lifetime, must fail" (quoted in [M2]).

Of course the issue is much broader than retirement annuities, and includes all employee benefits which might involve discrimination [76.4, El, H7, K5, Ll, M2, ZZ1].

A related social issue concerns classification schemes for automobile insurance [ZZ2, ZZ3, ZZ4]. As illustrated in Figure 8, group-average accident rates vary significantly by the age and the sex of the driver. Although there is no Federal law covering access to the highways, the freedom to use an automobile has become almost an inalienable right in the mass-transportation-limited United States, and the skyrocketing cost of insurance is viewed as a form of social injustice by many of our working poor, particularly when ghetto and barrio geographical territory rating classifications are imposed. The insurance commissioners of several states have taken a look at this problem, and have come to rather different conclusions. The basic philosophical issue is again related to the perceived differences between individuals in different risk classifications. As shown in Figure 9, there is a significant overlap between the distributions of losses
FIGURE 8
Reported Accident Rate as a Function of Age,
California Motor Vehicles Records 1973-8
FIGURE 9

Loss Distribution Densities - Massachusetts Drivers, 1975
between two classification which have significantly different pure premiums, meaning that a significant fraction of the "worse" classification will see themselves as better drivers than a large number of the "better" classification. A related problem is that the process of classification often produces low-volume, highly-variable, and heterogeneous high-risk classes, whereas the low risk classes are much larger and more homogeneous.

J. Ferreira, Jr., has developed an interesting model based on utility theory which focuses on the individually perceived inequities in being overcharged; by weighting overcharges more heavily than undercharges, a certain redistribution of the total premium takes place which dramatically reduces the perceived inequities for the high-risk without affecting very much the more stable classes [F3, F4, L10]. (Of course, individual experience rating is a possible remedy for high initial automobile insurance classifications.)

The literature on these problems is fascinating to read, although the arguments raised on both sides often raise more heat than light. Insurance professionals, for example, quote medical studies on the effect of prostaglandins on mortality, comment on the difficulty of constructing unisex mortality tables, and speak direly of anti-selection, plan funding instability, unfair benefit transfers between classes, government interference, and so on. Lawyers and social advocates point out that current insurance does not normally discriminate on a racial basis, nor include a variety of other obvious "causal" factors, and that the principle that private companies must be responsive to social objectives has been well established in other areas, such as hiring policy,
accident prevention, product liability, environmental protection, and so on.

Rather than add to the discussion of these issues -- I am sure you all have strong feelings on them -- I would like to return again to a point made at the beginning: namely, that model-building is not only a tool for predicting and making decisions about natural phenomena, but also has a useful function as a communications medium with other scientists and society at large. And, in this case, I think we have a classical case of a breakdown in communications; neither party is talking about the same issue. In using the risk classification paradigm, actuaries are relying upon the mean value principle to make arguments about equity; on the other hand, societal advocates are recognizing (however imperfectly) that there is a distribution of possible risk outcomes, and that, from the individual point of view, the paradigm gives non-socially-acceptable results.

Now, I would admit that eliminating classifications and regrouping risks may lead to higher variances, possible funding problems, plan terminations, and other systems problems which neither party wishes to happen. But, notice that the analytic argumentation was never extended to this level -- the modelling, analysis, and argumentation was not developed to examine rationally all of the possible product policy changes under discussion, but instead, each community held fast to its own narrow world-view.

As I said earlier, model-building must be primarily a useful activity. When we find that a paradigm no longer serves our needs, then we must modify it to suit, or we will find that its function has been bypassed by other forces in business and society. It is
important to keep the communication channels open to our public, however painful it may feel to modify or even abandon our traditional paradigms.
THE EVOLUTIONARY FUTURE OF INSURANCE MODELLING

In summary, we have seen that the current state-of-the-world in general insurance modelling is complex, characterized on the one hand by vigorous activity and growth, and on the other hand by uneven stages of development, a certain tendency towards puzzle-solving, and examples of communication breakdowns. Does this mean that a modelling crisis, and a Kuhnsian revolution are at hand?

For a variety of reasons, I believe that future insurance modelling will be evolutionary, not revolutionary. One very important reason is reflected in the wide range of communications offered at the ICA's, at ASTIN Colloquia, and at your own national meetings; thus, a variety of novel methods and models, often transposed from other fields, continues to be presented and examined on their own merits, rather than subject to a tradition-oriented screening process. This receptiveness to new ideas is critical to the healthy evolution of a field, and it is delightful to see that it is often the senior statesmen of insurance who are actively trying out and promoting new ideas.

A community must also invest a portion of its own resources in the future, which is why continuing research activity is important. Here there are some "straws in the wind", such as the formation of the Geneva Association to study economics of insurance, and the new interest of American societies in sponsoring research projects. More research support is needed from industry, in my opinion.

New ideas are not useful unless communicated to our own
community and to other scientific disciplines; and, here also, there are good signs of growth, such as the strengthening and increased dissemination of national journals, and the recent decision of Mathematical Reviews to abstract interesting papers from the ASTIN Bulletin and the Swiss Actuarial Association Bulletin, as well as continuing with the Scandinavian Actuarial Journal. In America, I would hope to see ARCH grow into a national research journal which could transcend the traditional actuarial boundaries, and encourage contributions from other scientists interested in insurance modelling. Internationally, I believe we might re-interpret ASTIN to mean simply Actuarial Studies in Insurance, and to develop the membership, the symposia, and the Bulletin to include all those in our community and from other disciplines who are interested in modelling and research.

And finally, there must be continuing evolution of the educational process, for the student of today is the actuary of tomorrow, and must be trained in the concepts and methods which will be useful in the future. As indicated earlier, I perceive a serious mismatch between the abilities of today's graduate and the demands placed upon him or her by current actuarial examinations and professional assignments. The number of textbooks published since 1969 [S6, B7, B37, L9, G13] portends well, and I understand that various actuarial societies have additional basic texts under development; the national reports on actuarial training presented to this Congress also reveal some interesting and innovative steps. As an educator, I urge you to continue to devote attention and resources to the formation of young people.

As for yourselves, I urge you all to continue to be receptive
of and tolerant towards new methods, models, and paradigms, analyzing and testing them, not through reaction, but in terms of their potential utility to the actuarial community and the insurance enterprise. Change is necessary; as Tennyson says so beautifully:

"The old order changeth, yielding place to the new,
And God fulfils Himself in many ways,
Lest one good custom should corrupt the world."

The evolution of the '80's will, I believe, make it an exciting and challenging decade for insurance modelling, and I look forward to participating in it with you.

Thank you for your kind attention.
BIBLIOGRAPHY

I. The following references are from: Transactions, 21st International Congress of Actuaries, Zurich & Lausanne, 1980:

Volume 1

Volume 2

II. The following references are from: Transactions, 20th International Congress of Actuaries, Tokyo, 1976:

Volume 2

E. Straub, "What is an Adequate Dividing Line Between Normal Claims and Large Claims?" 753-762.

Volume 4

III. The following general references are organized alphabetically, using the following abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>ASTIN Bulletin</td>
</tr>
<tr>
<td>MVsV</td>
<td>Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker</td>
</tr>
<tr>
<td>PCAS</td>
<td>Proceedings of the Casualty Actuarial Society</td>
</tr>
<tr>
<td>SAJ</td>
<td>Scandinavian Actuarial Journal (formerly Skandinavisk Aktuarietidskrift)</td>
</tr>
<tr>
<td>TSA</td>
<td>Transactions of the Society of Actuaries</td>
</tr>
</tbody>
</table>

Methods of Calculating Ruin Probabilities, supplement to SAJ (1977):

[H1] C. A. Hachemeister, "Credibility for Bayesian Models with Appreciation to Trend," in [K3].

[H12] "Introduction and Historical Overview of Credibility," in [K3].

[ZZ3] "Risk Classification (23-32); Effect on Plan Design (33-75); Classification Areas (77-98); Classification Models (115-132)," Record - Society of Actuaries, 4 (1978).