A BIBLIOGRAPHY ON NON-GAUSSIAN SIGNAL PROCESSING: 1971-1980 (U)

AUG 80 W W CHEN

SMU-EE-TR-80-8

UNCLASSIFIED

N00014-79-C-0494
A BIBLIOGRAPHY ON
NON-GAUSSIAN SIGNAL PROCESSING: 1971-1980

Principal Investigator: Dr. C. H. Chen

*The support of the Statistics and Probability Program of the Office of Naval Research is gratefully acknowledged, so is the assistance of DDC Boston located at AFGL, Bedford, MA.
I. INTRODUCTION

As described in a recent report, "Study of a Class of Non-Gaussian Signal Processing Problems" by C. H. Chen, non-Gaussian signal processing is an area of both theoretical and practical importance. Some appropriate research programs in non-Gaussian signal processing, as suggested in ONR SRO booklet, may be:

1. To analyze existing algorithms for "worst case" situations in the presence of intentional man-made noise. Nonparametric and robust approaches should be explored to devise algorithms which perform well no matter what characteristics the noise source may have.

2. To investigate techniques for weak signal extraction in the presence of strong signals; as a special case, to explore potential techniques for detecting spread-spectrum signals including the analysis of changes in noise statistics caused by pseudo-noise signals.

3. To enlarge the basic mathematical and statistical theory of non-Gaussian stochastic processes applicable to both electromagnetic and underwater sound environments.

4. To study non-Gaussian models appropriate for reverberation or reverberation-like noise found in shallow water environments.

5. To examine the extent of non-Gaussian sources of impulsive noise interference in underwater acoustic signal processing problems of Navy interest.
6. To overcome related shortcomings in existing theory including non-white interference, non-stationarity of channels and interferences, multipath, dispersion, doppler effects, and problems caused by sensor and array flaws.

This Bibliography is prepared according to the above outline of problem areas. Only the last ten years' publications are selected. It is not possible to list all relevant publications even for the ten year period. However, at least some representative literatures are included in each topic. All publications listed are unclassified. Each reference is listed only once in the report. References are arranged in the first author's alphabetical order.

II. BIBLIOGRAPHY ON NONPARAMETRIC/ROBUST APPROACHES

NOTE: The above list does not include the references on nonparametric probability density estimation, which are listed in pattern recognition textbooks.

III. BIBLIOGRAPHY ON LINEAR AND NONLINEAR ADAPTIVE FILTERING WITH APPLICATION TO WEAK SIGNAL EXTRACTION

IV. BIBLIOGRAPHY ON CHANNEL MODELING, SIGNAL CHARACTERISTICS, AND ARRAY PROCESSING

9. Crepeau, P.J., "Topics in Naval Telecommunications Media Analysis", Naval Research Lab NRL Report 8080, December 1976; available through NTIS.

V. BIBLIOGRAPHY ON MAXIMUM ENTROPY AND RELATED SPECTRAL ANALYSIS METHODS FOR PROCESSING TRANSIENT SIGNALS

VI. BIBLIOGRAPHY ON ELECTRONIC WARFARE

Bibliography on Non-Gaussian Signal Processing: 1971-1980.

Author(s):

W.W. Chen

Performing Organization Name and Address:

Electrical Engineering Department
Southeastern Massachusetts University
North Dartmouth, MA 02747

Controlling Office Name and Address:

Statistics and Probability Program
Office of Naval Research, Code 436
Arlington, VA 22217

Report Date:

August 20, 1980

Number of Pages:

13

Security Class. (of this report):

UNCLASSIFIED

Distribution Statement (of this Report):

Approved for public release, distribution unlimited

Supplementary Notes:

- Non-Gaussian Signal Processing
- Nonparametric/robust approaches
- Adaptive Detection; Channel Modelling, Signal Characteristics, Array Processing; Maximum Entropy Spectral Analysis

Abstract:

This report contains approximately 125 references on non-Gaussian signal processing, which are divided among the topics: nonparametric/robust approaches, adaptive detection, channel modelling/array processing, maximum entropy spectral analysis, and electronic warfare.