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INTRODUCTION 

In guns with a sliding block breech mechanism, breech ring life is 

typically limited by failures originating in the rear fillet near the block/ 

ring contact region.  There have been a considerable number of photoelastic 

1-3 studies made on weapon breeches of this type.    The observations indicate 

that high tensile stress produced by stress concentration at the fillet was 

responsible for the failure.  Sometimes failure can be prevented by changing 

3 
the geometry,  adding more weight and/or using higher strength materials. 

It is not always possible to increase the size or weight because of system 

considerations.  Autofrettage has proved to be an efficient process in the 

4 
design of gun barrels.  The elastic pressure capacity and the fatigue life 

can be increased. The technique is based on the production of beneficial 

stresses to counteract the high operating stresses induced by firing.  This 

paper describes an exploratory study of the autofrettage of a breech ring. 

The residual stresses in an overloaded breech ring will be determined exper- 

imentally and numerically. 

T. F. Maclaughlin, "Photoelastic Stress Analysis of Conventional and Serrated 
Slide Block Breech Designs," Watervliet Arsenal Technical Report WVT-6830, 
August 1968. 

2G. P. O'Hara, "Photoelastic Stress Analysis of a High Pressure Breech," 
Watervliet Arsenal Technical Report WVT-7057, December 1970. 

3Y. F. Cheng, "On Maximum Fillet Stresses in Breech Ring," Watervliet Arsenal 
Technical Report WVT-7255, October 1972. 

T. E. Davidson, A. N. Reiner, and D. P. Kendall, "A New Approach to the 
Autofrettage of High Strength Steel Cylinders," Experimental Mechanics, 
Vol. 2, No. 2, pp. 33-40, 1962. 



The experimental approach is based on the photoplasticity method ' and 

a two-dimensional model for a sliding breech mechanism was designed. The 

breech ring is made of polycarbonate resin which has been calibrated optically 

and mechanically. The numerical approach is based on the finite-element 

method and a computer program for two-dimensional elastic-plastic problems 

is developed.  An incremental loading procedure is used to determine the 

stresses in an overloaded breech ring.  The location and magnitude of the 

maximum tensile stress as well as the residual stress after complete unload- 

ing are determined. The comparison between numerical and experimental results 

is satisfactory. 

MATERIAL CALIBRATION 

The breech ring is made of polycarbonate resin which was first suggested 
Q 

in 1962 for use as a photoplastic material.  It behaves as a ductile material 

and has good transparency under both elastic and plastic states. It has a 

Poisson's ratio of 0.38 in the elastic state and a limiting value of O.f in 

M. M. Froct and R. A. Thomson, "Studies in Photoplasticity," Proceedings 
Third U.S. National Congress Applied Mechanics, pp. 533-540, 1958. 

6M. M. Froct and Y. F. Cheng, "An Experimental Study of the Laws of Doutle 
Refraction in the Plastic State in Cellulose Nitrate - Foundations of Three- 
Dimensional Photoplasticity," International Symposium of Photoalasticity, 
pp. 195-216, 1961. 

Y. Yamada, N. Yoshimura, and T. Sakurai, "Plastic Stress-Strain Matrix and 
Its Application for the Solution of Elastic-Plastic Problems by the Finite 
Element Method," International Journal of Mechanical Science, Vol. 10, 
pp. 343-354, 1968. 

8K. Ito, "New Model Materials for Photoalasticity and Photoplasticity," 
Experimental Mechanics, Vol. 2, No. 12, pp. 373-376, December 1962. 



9 
the plastic state.  It shows both optical and mechanical creeps (birefringence 

9 
and strain) at stresses above 4000 psi.  It follows von Mises yield criterion 

with negligible error.   The material chosen for this investigation was 

manufactured by the General Electric Company and marketed under the trade 

name LEXAN. 

A sheet of LEXAN 0.12 inch thickness was annealed at 300oF.  Tensile 

calibration specimens were machined. Calibration tests were carried out at 

a temperature of 73° ± 30F and a relative humidity of 35% ± 5%.  (Photoplastic 

experiments are both temperature and relative humidity sensitive.)  Tensile 

load was applied by means of dead weights.  The gage length was 1.5 inches. 

A traveling telemicroscope was used to read the gage length under load. 

The strain was then calculated. Birefringence was determined by means of 

Senarmont's principle of compensation with a collimated monochromatic light 
o 

source (5461 A). During the calibration, Luder's lines have been observed 

confirming that the material follows the von Mises yield criterion. 

Figures 1 and 2 show the fringe versus time and strain versus time 

curves at constant stress, respectively. It can be seen that the material 

creeps both optically and mechanically at a stress of above 4000 psi, 

confirming the previous findings. It can also be seen that the creep 

9G. A. Gurtman, W. C. Jenkins and T. K. Tung, "Characterization of a 
Birefringent Material for Use in Photoelasticity," Douglas Report SM-47796, 
Missile and Space System Division, Douglas Aircraft Company, January 1965. 

10J. K. Whitfield and C. W. Smith, "Characterization Studies of a Potential 
Photoelastoplastic Material," Experimental Mechanics, Vol. 12, No. 2, 
pp. 67-72, February 1972. 



stabilizes after a time interval of 240 minutes.  Consequently, model tests 

were made at the same temperature and relative humidity as were the calibra- 

tion.  Also, all data was taken at 240 minutes after loading. 

The uniaxial stress-fringe and stress-strain curves for 240 minutes after 

loading were constructed from Figures 1 and 2 and shown in Figures 3 and 4. 

These curves show that this material has an elastic fringe value of 36 psi 

per inch, elastic modulus of 3.25 x 105 psi, and a proportional limit of 

approximately 6200 psi. The curved portion of the stress-strain (cr-e) curve 

as shown in Figure 4 can also be described by the modified Ramberg-Osgood 

equation in the following form, 

Ee/aB = a/aB + (3/7)(a/aB)
n for cc >_ a >^ aA (1) 

and the values of five parameters are 

E = 325 ksi, n = 11.5, aA = 6.2 ksi, aB = 8.7 ksi, ac = 9.576 ksi (2) 

where n is a parameter, a^ is the secant yield strength equal to the ordinate 

of the intersection with the stress-strain curve of a line through the origin 

having a slope equal to 0.7E, and a is the flow stress at which the slope 

of the stress-strain curve is zero. 

H-W. Ramberg and W. R. Osgood, "Description of Stress-Strain Curves by 
Three Parameters," National Advisory Committee for Aeronautics, Technical 
Note No. 902, 1943. 



EXPERIMENTAL APPROACH 

Photoplastic Model 

The experimental approach used is the photoplastic method which is based 

on the non-linear stress-optical law.5,6 In particular, the maximum fillet 

stress is to be determined for an elastic load as well as an elastoplastic 

load. 

A full scale, two-dimensional model of the meridian section of a breech 

ring was made of 0.12 inch thick LEXAN plate, as shown in Figure 5. The 

block was made of aluminum.  In order to minimize any effect of material 

nonhomogeneity, the ring was cut closely to the calibration specimens and 

its line of loading was parallel with that of the calibration specimens. 

The top of the ring was fixed. The load was applied through a pin at the 

top of the block by means of dead weights.  Guide plates were added to 

prevent buckling.  Initially the block was in full contact with the ring. 

As load increased, the contact region changed and a gap was developed in 

the central portion. The width of central gap under the maximum test load 

of 1144 pounds was observed to be about five inches. 

5 M. M. Froct and R. A. Thomson, "Studies in Photoplasticity," Proceedings 
Third U.S. National Congress Applied Mechanics, pp. 533-540. 1958. 

M. M. Froct and Y. F. Cheng, "An Experimental Study of the Laws of Double 
Refraction in the Plastic State in Cellulose Nitrate - Foundations of Three- 
Dimensional Photoplasticity," International Symposium of Photoelasticity, 
pp. 195-216, 1961. 



Maximum Fillet Stress 

In order to find the maximum fillet stress at elastic state, the fringe 

order at the fillet was closely watched during the loading.  The loads 

corresponding to the first four fringes were recorded as 23, 51, 78, 104 

pounds, respectively. This incremental load required to raise one fringe 

order was found and averaged to give a value of 27 pounds tension per fringe, 

which also corresponds to a fillet stress of 300 psl per 27 pounds of load. 

After the elastic stress was determined, the model was loaded to 1144 pounds 

and held for an interval of 240 minutes.  During this interval, the maximum 

fringe order was recorded intermittently. At the end of 240 minutes, the 

maximum fringe at the fillet had an order of 43 and the maximum fillet stress 

was found to be 9300 psl. Making the usual assumption that unloading is an 

elastic process, we can calculate the residual stress after removing the full 

load of 1144 pounds.  The result is 9300 - (1144/27) x 300 = - 3400 psi. 

NUMERICAL APPROACH 

Method and Program 

The numerical approach used is the finite element method based on the 

incremental stress-strain matrix.  Following the procedure outlined in ref- 

erence 7, we have developed a finite-element computer program for solving 

two-dimensional elastic-plastic problems.  The axisymmetric case was used to 

Y. Yamada, N. Yoshimura, and T. Sakurai, "Plastic Stress-Strain Matrix and 
Its Application for the Solution of Elastic-Plastic Problems by the Finite 
Element Method," International Journal of Mechanical Science, Vol. 10, 
pp. 343-354, 1968. 



12 analyze gun tube problems  and the plane-stress case is used in the present 

investigation. The formulation is based on the linear displacement function 

in a triangular element.  Four triangular elements are used to construct a 

quadrilateral element. The material behavior is characterized by the von 

Mises yield criterion, Prandtl-Reuss flow equations and isotropic hardening 

rule.  A piecewise linear representation for the effective stress-strain 

curve is used.  The program is implemented on IBM 360 model 44.  The overlay 

feature is utilized for reducing the core storage requirement. The load- 

increments can be prescribed or determined by scaling to cause at least one 

more element to become yielded. A tape may be used to store the final results 

for output plotting and also for restarting a program from a point of comple- 

tion of a given loading sequence. 

Model and Loading 

A finite-element representation for one half of the breech ring is shown 

in Figure 6. The other half is not needed because of symmetry. There are 

224 grid points and 189 quadrilateral elements in this model.  The grids 1 to 

8 are constrained in x-direction only while grids 217 to 224 are held fixed. 

The top portion of the breech ring is omitted because this is believed to 

have little effect on the maximum stress information near the lower fillet. 

In fact this belief has been confirmed by obtaining the elastic solution for 

another finite element model with 70 additional quadrilateral elements in the 

12P. C. T. Chen, "Elastic-Plastic Solution of a Two-Dimensional Tube Problem 
by the Finite Element Method," Transactions of Nineteenth Conference of Army 
Mathematicians, ARC Report 73-3, pp. 763-784, 1973. 



top portion.  The difference between these two models for the maximum tensile 

stress is only 1.3 percent.  The aluminum block is regarded as rigid and the 

load is transmitted to the ring through contact.  Initially the block is in 

full contact with the ring. As the load increases, a gap develops in the 

central portion.  The width of the central gap under the full test load was 

observed experimentally to be about five inches.  Our elastic-plastic finite- 

element program in its present form cannot be used to determine the width of 

contact and the force distribution as functions of loading.  Guided by the 

experimental information on the width of the central gap, we have chosen four 

contact conditions in this numerical investigation. The points of contact 

are at nodes (33, 41, 49, 57) for case 1, at nodes (41, 49, 57) for case 2, 

at nodes (49, 57, 65) for case 3 and at nodes (57, 65) for case 4.  The 

width of contact and the force distribution in each case are assumed to remain 

unchanged during loading.  The force distribution may be uniform or non- 

uniform and only the total force (2F) is allowed tc increase. Uniform force 

distribution within the contact region is assumed in this study.  Initially 

we apply a small force to obtain elastic solution and the total force (2F*) 

required to cause incipient plastic deformation is calculated by using Mises 

yield criterion.  Then we apply the additional force in increments until the 

maximum test load is reached. The load increments we chose are non-uniform 

because our experience indicates that smaller increments should be used as 

plastic deformation becomes bigger.  Our choice for the present investigation 

is to reduce the size of increments by one half in every ten steps.  It is 



important to choose a proper set of increments in order to obtain good results 

at reasonable cost.  To reach the maximum test load of 2F = 1144 pounds, we 

used 11 increments for the four contact conditions and 22 increments for the 

second and third cases. The difference between 11 and 22 incremental loadings 

for the maximum tensile stress is found to be within 1 percent.  The restart 

feature of the program has been used for the second contact condition to 

increase the total force from 1144 pounds to 1300 pounds in seven additional 

steps. The increments are again non-uniform. 

Results and Discussions 

The numerical results of the stresses in all elements were obtained for 

the overloaded breech ring under different contact conditions. Some of them 

are presented below in Figures 7-12. The major principal stresses in ele- 

ments along the contact region and fillet are shown in Figures 7-10, for the 

four contact conditions.  In each of these figures, we presented two sets of 

data corresponding to the load levels at the initial yielding (F*) and at 

the maximum test load (F - 572 pounds). The incipient plastic deformation 

first occurs in element 99 for the first two cases and in element 50 for the 

last two cases. The values of load level for the four cases are F* = 312.8, 

321.9, 221.7, 169.2 pounds. The initial yielding is tensile in element 99 

and compressive in element 50.  It is interesting to find out that the 

location of the maximum tensile stress is in element 99 for all contact 

conditions and this location remains unchanged as the total force increases. 

Since this location is of sufficient distance away from the contact regions, 



it seems to suggest that Saint Venant's principle can be applied to this 

problem in the elastic as well as plastic range of loading. The values of 

the maximum tensile stress based on the four contact conditions are 2029, 

1972, 1939, 1936 psi at F = 100 pounds and 9532, 9361, 9174, 9119 psi at 

F = 572 pounds. It should be noted that the stresses in the finite element 

program were calculated at the centroid of each element but only one principal 

stress at the boundary was measured. The values of the maximum tensile stress 

at the fillet based on experimental approach are 2222 psi at F = 100 pounds 

and 9300 psi at F = 572 pounds. For the purpose of comparison, the boundary 

stress is determined by extrapolation using the calculated results for 

those elements along the radial direction through element 99.  This is 

illustrated in Figure 11 for the second case of contact condition.  Similar 

figures for the other three cases are not shown.  Three curves are plotted 

in Figure 11 and they represent the major principal stresses for three load 

levels at the initial yielding, maximum test load and complete unloading 

after reaching the maximum load.  The residual stresses after complete 

unloading are determined by assuming that unloading process is purely elastic. 

Our numerical results reveal no reverse yielding. In extrapolating the 

boundary stress, we shall remember that the maximum tensile stress shall not 

exceed the flow stress of 9576 psi. As seen in Figure 11, a comparison 

between the numerical and the experimental results for the maximum tensile 

stress indicates that a satisfactory agreement has been reached.  In Figure 

12, two principal stresses as well as the residual stresses in element 99 are 

shown as functions of loading. Only the second case of contact conditions is 

10 



presented here for illustration. The residual stress is determined by assum- 

ing a purely elastic unloading resulting from various stages of loading. The 

minor principal stress (a2) is found to be a nearly linear function of loading 

and its residual value is very small. The value of the principal stress 

angle for all contact conditions and for all load levels is found to lie 

within -26° to -27° with respect to the x-axis. As can be seen in Figure 12, 

the major principal (0,) and its residual value increase in magnitude as the 

total contact force increases but they are of opposite sign. Therefore as a 

result of overloading, favorable residual stress can be produced. 

CONCLUSION 

A photoelastoplastic investigation and a finite-element stress analysis 

have been conducted for an overloaded breech ring made of polycarbonate 

material. The location and magnitude for the maximum tensile stress have 

been determined for loading in the elastic as well as elastoplastic range. 

The favorable residual stress after unloading from various stages of loading 

has been calculated. A satisfactory agreement has been reached between the 

experimental and numerical results. 

11 
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