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ABSTRACT

A
We report the experimental properties of a number of random
superconducting-normal metal composites. Theoretical interpretation is

also presented, with emphasis on the effects of geometrical randomness.

r7
The electrical properties of in situ multifilamentary Cu-V3Ga

wires are discussed, with emphasis on critical current and field
properties which are relevant to applications. We found that these
wires had upper critical fields as high as 22.47 at 4.2K with a
transition temperature of 15.5K. Their overa]] critical current
density W—éﬁ%ﬂﬂg‘f)%parm favorably with
commercial wires.

The results of electrical measurements on in situ Cu alloy-Nb
composites are reported which elucidate the roles of percolation and
the proximity effect in these materials. Qur data show that the
proximity effect 1is very important in clean, Tow superconducting
concentration samples, with geometrical percolation being more
important as the matrix becomes dirtier. In addition, we discuss
models for the superconducting to normal transition in these materials
which include the effects of randomness and thermal fluctuations.

A two-dimensional thin film system based on Cu-Pb is discussed and
shown to be qualitatively similar to the three-dimensional in situ
composites. The critical current of these films is proportional to
(TC-T)1'8, a\kgsult which is not well understood theoretically.

Finally, \he report calculations on square random resistor

lattices. Large‘1attice numerical simulations, effective medium theory

and a renormalization group method are used to study the bulk
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conductance of anisotropic networks‘ as a function of concentration.
The last technique is used to provide highly accurate estimates of the
percolation transport exponents t and v. In two dimensions, our
calculations indicate that they equal the coherence length exponent V
to within a few percent. We have also calculated VU by the same
technique, obtaining a result which supports the notion of site-bond

universality.
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CHAPTER ONE: INTRODUCTION

The problem of the resistivity of metallic mixtures has attracted
scattered attention for more than a century. As early as 1860,
resistivity measurements were made on a wide variety of binary alloys
(Matthiessen 1860). On the theoretical side, Maxwell (1892) developed
a simple theory for the effective resistivity of a mixture.

The Tliterature of the next fifty years was not extensive.
Landauer (1952) reviewed the experimental and theoretical literature up
to 1952, comparing the existing theories and deriving an expression
(originally due to Bruggeman (1935)) for the effective resistivity by
assuming that each crystallite acts as if it were surrounded by a
homogeneous medium whose properties are those of the mixture. A recent
comprehensive review of electrical conduction in inhomogeneous media
has been written by Landauer (1978).

An extensive early study of superconductivity in alloys was done
by Allen (1933). Many of his results anticipate later work, but he was
hampered (as were early researchers working on normal metal mixtures)
by inadequate theoretical understanding.

Three theoretical developments have encouraged the wide current
interest 1in inhomogeneous media. First, the electronic properties of
substitutional alloys received considerable theoretical attention.
This led to interest in the classical mixture problem, and to the
application of alloy theory techniques to the classical problem
(Kirkpatrick 1973, Stroud 1974). The recognition that random resistor
lattices were a good model for inhomogeneous media put the classical

problem into a more tractable form (Kirkpatrick 1973). Finally, the
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application of modern phase transition theory to the classical resistor
lattice (Stinchcombe and Watson 1976) and quantum mechanical Josephson
junction array (Giovannini and Weiss 1978) provided deeper
understanding of experimental phenomena.

The work reviewed in the following chapters covers a number of
areas 1in the general field of inhomogeneous superconductors. We first
discuss our work on practical properties of in situ Cu-V3Ga. This
material is a random mixture of normal Cu and superconducting V3Ga.
Qur measurements indicated that the material is potentially useful. We

then review our work on in situ composites which helped to clarify

their physics, emphasizing the roles of various mechanisms that
contribute to their superconductivity. In response to the considerable
current interest in phase transitions in lower dimensions, we have
studied a two-dimensional thin film composite system and report our
initial results here. Finally, we review our theoretical work on
random resistor lattices. This work elucidated the effects of
conductance anisotropy, introduced the idea of non-ohmic percolating
networks, and led to greatly improved estimates of two-dimensional

transport critical exponents in the percolation problem.
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CHAPTER TWO: HIGH FIELD V3aGA IN SITU COMPOSITES

The ability to carry very large, essentially lossless currents in
high magnetic fields makes type [l superconductors attractive for
applications. We begin this chapter with a brief discussion of the
practical shortcomings of type Il superconductors and how standard

composite wires overcome these problems. The in situ technique, an

alternative approach to composites, is discussed, and some of the
results in the literature are summarized. We outline the process
developed at Harvard for producing in situ composites, and then discuss
the superconducting properties of a specific system, Cu-V3Ga. Finally,
we mention some aging properties of CuNi-Nb composites which may have

some practical implications.

2.1 Standard Composite Wire

The development of practical high-field superconducting wires did
not immediately follow the discovery of high HCZ compounds. As
discussed in chapter 5 of Tinkham (1975), the short electronic mean
free paths of type [I superconductors place severe design constraints
on practical wires. A fluctuation into the normal state, with its
resulting dissipation, will grow unless the heat generated can be
carried away from the superconductor. In order to increase heat flow
away from the wire, practical wires are multifilamentary (to increase
the surface to volume ratio) and clad in copper. Filaments less tnan

100 ym in diameter are generally small enough to ensure stability.

Commercial composite superconductors achieve this filament size by
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starting with large billets of copper into which a number of holes have
been drilled. (Alternatively, the Cu can be extruded with holes.) A
ductile superconducting rod is placed in each hole, and the material is
extruded, swaged and drawn until the desired diameter is reached.
After a certain amount of reduction, pieces can be bundled to increase
the number of filaments in a cross section, and the wire may be
annealed to relieve work hardening. When the final wire size is
reached, other elements are often plated on and diffused into the
composite. For example, if the original rods were Nb (which is
ductile), Sn can be added and reacted to form Nb3Sn. Nb3Sn is a better
superconductor than Nb but is not ductile.

This process works well, although it does have some drawbacks.
Machine-shop-size rods of superconductor must be reduced to less than
100 um, and this takes a considerable number of steps. In addition,
the number of filaments in a wire is Timited by how much initial
stacking and bundling can be done economically, so that commercial

wires often have from a few hundred to a few thousand filaments.

An alternative way to make composites is the in situ techrnique.
Metals which are immiscible in the solid state, such as copper and
niobium, are meited together and cooled at a controlled rate. The
superconductor precipitates out, giving small superconducting

inclusions in a normal metal matrix (see figure 2.1). The material is

then drawn, elongating the inclusions into filaments (see figure 2.2).




E Figure 2.1 Nb in a Cu-Sn matrix, as cast.
From Harbison 1977.
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This technique was first used to make superconducting wire by Tsuei
(Tsuei 1973, 1974, Tsuei and Newkirk 1974).

There are a number of differences between in situ and
conventionally produced composites. The filaments in the former are
randomly placed and possibly discontinuous. Some of the consequences
of this will be discussed in the next chapter. The in situ approach
has the advantage of starting with smaller superconducting inclusions
so that less mechanical reduction 1is needed to reach a given final
size. In addition, the smaller initial size makes it possible to have
104 or more filaments in a cross section without having to bundle the
wire.

It remains to be seen whether the 1in situ approach will prove

commercially competitive. Some of the experimental results to date are

reviewed below.

A. Some Previous Work on In Situ Composites

Much of the practical effort in superconducting materials has been

to produce wires with high critical temperature, current and field. A

number of groups have produced NbySn in Cu  in situ composites using
similar techniques. (Bevk et al. 1980, Fihey et al. 1979, Finnemore

t al. 1979).

Figure 2.3 shows the critical current density as a function of
field for a number of Cu-Nb,Sn in situ composites prepared at Harvard

g (Bevk et al. 1980). These composites are approximately 23% NbaSn by

volume, and have critical current densities comparable to conventisnal
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composites. These results are typical of those obtained by other

groups. AC loss measurements are encouraging, although improvement
will be needed before Tsuei wire can compete with conventional
composites in this area (Bevk et al. 1980). The mechanical strength

of in situ composites is very high (Karasek and Bevk 1979, Bevk and

Harbison 1978), which is very important in high field and rotating
machinary applications.

Initial attempts at producing in situ VaGa, which should have a
higher critical field, were not as successful. Chen and Tsuei
(1976) produced a number of compositions by combining all of the
constituents in the initial melt, deforming the resulting ingots into
wires and tapes, and heat treating. They were unable to obtain a
transition temperature abave 13 , which is 2 -3K lower than the bulk
value (Das et al. 1977). In addition, their Je values were quite low
(see figure 2.4). There are at least two factors that contribute to
these effects. Some off-stoichiometric V3Ga probably forms during the
initial melt, since the superconducting transition begins as high as 9
for some of the unannealed samples. This is significantly higher than
the 5.3K value of Te for bulk V (Roberts 1969). The early formation
of a brittle compound could lead to breaking of the filaments during
reduction, which would 1lower the critical current density. The
decrease in T. is more difficult to explain. All of the Ga will not
react with Va, but in these samples there was as much as four times the
amount of Ga necessary to form stoichiometric V3Ga , and X-ray analysis

indicated that the A-15 structure was present. It is possible that

their annealing temperatures, which varied from 630 to 850 , were too
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high. This can destroy the long-range order of the V chains in V3Ga,
causing Ga and V atoms to interchange on the lattice. Experiments anc
theory indicate that this lowers Te (Dew-Hughes 1975, Labbé and Friedel
1966). In the next section we describe our more recent work on Cu-V5Ga

which has been more successful.

B. Preparation of In Situ V4Ga

All of the composites discussed in the remainder of this chapter
and in the next chapter were produced by radio frequency levitation
melting. This method was first used to make in situ superconducting
composites by Harbison and Bevk (1977).

Cu and V were melted together in an RF coil which provided the
energy both to melt the materials and Tevitate the sample. Levitation
allows very high temperatures to be reached, avoids crucible
contamination, and mixes the components through convection. Sampies
were melted a number of times this way in an argon atmosphere to insure
good mixing and dropped into a water cooled copper mold after each
melting. The samples were subsequently placed in a slotted water
cooled vertical boat and RF melted, with the RF also keeping the molten
metal away from the sides. When the RF power was lowered, the molten
samples spread onto the walls of the boat. This provided more uniform
cooling than was possible by dropping into a mold. Samples were next
swaged and drawn down to the desired size, and Ga was vapor deposited
onto them. The Ga was reacted in a two-step process by annealing at

450°C for five days and at 590°C for one day. These low reaction
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temperatures were adequate at least partly because of the very fine

ribbon-Tike structure of the V filaments. ODiffusion times scale as the
0

shortest dimension squared, and these filaments were typically 1000A

o
to 2000A thick by 1 um to 2 um wide.

C. Superconducting Properties of In Situ V3Ga

We have studied two series of V;Ga samples (Bevk et al. 1979%,b).
Both started with 20 volume percent V in a Cu matrix. The first set
was coated with 12.4 weight percent Ga, about twice as much as was
necessary to transform all of the V into V3Ga. The second set was
coated with stightly less Ga than was needed to form stoichiometric
V3Ga.

The superconducting transition temperature TC was measured for one
sample from each set. Tc was measured resistively using the standard
four-probe technique. Both of the samples reached one-haif of their
normal state resistance at 15.5 K in zero field. The high Ga
concentration sample had a narrower transition, going from one-quarter
to three-guarters of its normal state resistance in C.13 K, compared to
0.3 K for the Tow Ga sample. The high To and narrow transitions
indicate that stoichiometric V,Ga can be formed in situ at fairly low
annealing temperatures.

The critical current density was measured as a function of field
at 4.2K . The critical current was taken to be that current which

produced a 1 uV drop across 5 mm of wire. Critical current density as

a function of field is plotted in figure 2.4, along with the values

»
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obtained by Chen and Tsuei (1976).

The upper critical field was obtained in two ways. One way was to
extrapolate the data in figure 2.4 to Jc=0. The other was to apply a
small measuring current (about lamp/cmz) and measure voltage as a
function of applied field. Both methods gave essentially the same
answer. The high Ga content sample had Heo= 22.4:0.1 T, a very good
value. The lower Ga content sample had HC2=18.3t0.1 T, which indicates
incomplete formation of V3Ga. This is consistent with earlier data on
conventional composites (Yoshida et al. 1975) which indicated that
significant amounts of Ga remain in the Cu matrix even after heat
treatment.

The properties of our V3Ga are significantly better than those of
the material produced by Chen and Tsuei (1976). We attribute the high
Jc to the relatively low annealing temperature, which causes less
recrystaliztion and thus allows better pinning. The high T. and Hqp
were also the result of the low annealing temperature, which would
introduce a minimum of lattice disorder into the V chains.

We note that the properties of these materials have not been
opt imi zed. Improvement will probably result from varying

concentrations and heat treatment, and by adding third elements.

D. Aging

Composite wires intended for applications in time-varying fields

have requirements in addition to those mentioned in the beginning of

this chapter. For example, losses due to eddy currents induced in the
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normal metal matrix by the alternating field must be minimized (Tinkham
1975, chapter 5). One approach is to decrease the induced currents by
increasing the matrix resistivity. This can be done by adding a third
element such as Ni.

Some of the Cu-Nb samples which will be discussed in the next
chapter had 3 atomic percent Ni added to the matrix. We found that
these samples were superconducting when measured within months of being
made, but that samples that were re-measured two years later were not
superconducting. One sample without Ni did ‘not  lose its
superconducting properties in the same time. This difference could be
the result of Ni diffusing into the Nb, although it 1is difficult to
understand such effects occuring at room temperature, even with the
short diffusion distances necessary because of the fine filament sizes.
Since Ni is an excellent material for increasing the resistivity of Cu,

this effect clearly deserves further study.




CHAPTER THREE: ELECTRICAL CONDUCTION IN IN SITU COMPOSITES

In the last chapter, we discussed high current and high field

properties of some in situ composites. It was noted that these

materials can carry large supercurrents which are comparable to those
obtained in conventional continuous-filament composites. This is
interesting, since the filaments in in situ composites are random and
possibly discontinuous.

Three explanations have been given for the large supercurrents of
these materials. One is that the filaments percolate, that is, that
they form a continuous network through random contacts (Davidson and
Tinkham 1976). A second explanation is that the proximity effect
carries a supercurrent between filaments which do not actually touch
(Tsuei and Newkirk 1973). Finally, it has been shown that highly
reduced wire can have a very low resistance even when the filaments do
not touch and the matrix is fully normal (Davidson et al. 1975,
Davidson and Tinkham 1976).

These explanations are not mutually exclusive, of course. In this
chapter, we will outline earlier work which compared the different
explanations, and review our own work on the subject (Lobb et al.
1978). We will then present a heuristic model of the superconducting
to normal transition which is based on percolation theory (Tinkham
1977, Lobb et al. 1978), and discuss a more rigorous theory which is

isomorphic to the ferromagnetic XY model (Giovannini and Weiss 1978,

Patton et al. 1980, Imry 1980).
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3.1 Early Experiments and Interpretations

Tsuei and Newkirk (1973) investigated samples of C“l-bex with x
varying between 0.005 and 0.05. Their specimens were cast and then

rolled down to 3/4 of their initial cross sectional area. They

. explored the - superconducting transition resistively and inductively,

using the latter technique to estimate the volume fraction of the
samples from which the flux was excluded. They found that this
effective superconducting volume fraction was up to an order of
magnitude larger than the Nb volume fraction. In addition, many of the
samples had a resistivity of less than 10'11 ohm-cm at 2K, in spite of
the lack of metallographic evidence for continuous MNb paths. These two
facts led Tsuei and Newkirk to suggest proximity effect coupling as the
important conduction mechanism in these low Nb concentration materials.

Higher concentration materials were later studied, usually with
greater elongation and with Sn present to form Nb3Sn. Two important
plots are shown in figures 3.1 and 3.2. These data were taken with a
SQUID voltmeter which allowed subpicovolt signals to be detected
(Davidson and Tinkham 1976).

Figure 3.1 shows a sample with roughly 8 volume percent Nb3Sn.
The wire was drawn until its cross sectional area had been reduced by a
factor of 200. As the figure shows, there is a four order of magnitude
drop in the resistance between 16K and 17K. The resistance then levels
of f, staying roughly constant between 7K and 16K. Finally, below 7K, a
second transition occurs, and the resistance drops below the range of

the voltmeter.
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The data plotted in figure 3.2 are for a 15 volume percent sample

with a cross sectional area reduction of 300. These curves have no
pronounced resistance plateau. This sample appears to be completely
superconducting at fairly high temperatures.

These results inspired a number of important ideas. First, it was
shown that non-connected superconducting filaments in a fully normal

matrix should lead to an effective resistivity Peff given by

Deff&p/f/\s (3.1)

where p is the resistivity of the matrix, f dis the superconducting
volume fraction, and A is the cross sectional area reduction (Davidson
et al. 1975). This formula explains the level of the plateau in
figure 3.1, and agrees reasonably well with data obtained over a wide
range of reductions (Davidson et al. 1975, Callaghan and Toth 1975,
Roberge et al. 1978).

The behavior of the sample of figure 3.2 was explained by noting
that if enough superconductor is present, the filaments will form a
continous network through random contacts (Davidson and Tinkham 1976).
Above the critical volume fraction fc at which this occurs samples are
expected to be resistanceless, while below fc, a resistance of the

order predicted by (3.1) should appear. We note that (3.1) can be
modified by multiplying the right hand side by (f-fc) to take this into

account (Tinkham 1977). Various theoretical values of fc exist,
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ranging from 0.15 for randomly packed hard spheres (Sher and Zallen
1970) to 0.25 for grains which have, on the average, similar shapes
(Kirkpatrick 1973) to 0.29 for randomly piaced overlapping spheres
(Shante and Kirkpatrick 1971} to /3 from the mean field theory.
These theoretical values are of the same order as the amount of Nb35n

in the second sample.

3.2 Reduced Cu(Ni,Zn)-Nb Samples

To help distinguish between the explanations offered in the last
section, we studied a number of samples with a variety of
concentrations of Nb (to test for percolation) and different amounts of
impurities (to vary the strength of the proximity effect). The samplcs
studied were Cu-Nb allaoys without Sn. {(We 1left out the Sn because
Cu-Nb-Sn alloys have more than two phases present since it is difficult
to get all of the Nb to form stoichiometric Nb3Sn.) All samples were
made by the process outlined in the previous chapter.

Measurements were made with SQUID voltmeters. Initially, the
SQUID voltmeter built by Davidson (1975) was wused, but it was
eventually replaced by a more reliable dinstrument using a cryostat

built around a SHE SQUID and electronics.

A. Cu-Nb Samples

The first series of samples studied consisted of Cu-Nb, with the

Nb occupying from 0.1 to 0.2 of the total volume (Lobb et al. 1978).




The cross sectional area reduction was 24 for all of these samples.
These samples all had a single transition, with no distinct plateau in
the R vs. T curves, in spite of current densities as high as 600 A/cm2
which were intended to suppress the proximity effect.

Resistance is plotted against temperature for an f=0.1 sample in
figure 3.3. We note that (3.1) predicts a plateau at about 6x10'6 ohm,
well within the sensitivity of the voltmeter. Thus, these samples are
either percolating, or else the proximity effect is very strong in
them.

At an NS interface, the pair amplitude decays in the normal metal

over a characteristic distance

€\ = Hvp/2nkgT = 1.91x20°% (m-k)/T (clean) (3.2a)
Fvog 172 2 12
€, ’(sﬁg—r) - 7.98x10'4(T) (m-K) (dirty) (3.2p)

where VE is the Fermi velocity, T is temperature and ¢ is the electron
mean free path (Deutscher and deGennes 1969). We have used the free
electron value for the Fermi velocity vF=1.57x106m/s for Cu here.

We estimated & for these samples using the experimentally
determined value (pz)‘1=15.4x106 ohm-m2 (Chambers 1952).

-7

Using 2=22.6x10"'m for the 10% sample of figure 3.3, we get a §N

-7

m from the clean formula (3.2a} and 1.44x10""m from the

of 2.39x10

. oy
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Figure 3.3 Resistive transition for a Cu-10
volume percent Nb sample.
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dirty formula (8.2b) at 8K. Since the filaments are typically 10'6m or
less in cross section in these samples, we see that a significant
volume of Cu will be influenced by the proximity effect. Defining an

effective volume fraction as

£+ = £(1+ §y/a) (1+ Syb) (1+ §y/c) (3.3)

where a, b, and ¢ are measured average values for the axes of the Nb
filaments and using the conservative dirty limit formula for SN' the
10% sample has f*=0.16. It was clearly desirable to shorten the mean

free path if we wished to see a plateau.

B. A CuZn-Nb Sample

To see the effect of shortening £, the 10% sample discussed in the
last section was sealed in an evacuated quartz tube. At the other end
of the tube was a small pellet of Zn. In was chosen because of its low
boiling point and solubility in Cu. The tube was placed in a 900°C
oven, which vaporized the Zn. The oven was turned down to 800°C and
H the sample was annealed at this temperature for five hours. At the end
of this time, the sample was weighed, indicating that all but 2J.8% of
the Zn (by mass) was in the wire.

Resistivity measurements indicated that ¢ had shortened from

2.6x10‘7m to 1.2x10'7m. Resistance vs., temperature curves showed a
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small plateau, as can be seen in figure 3.4.

These experiments showed the importance of proximity effect in
these composites. Clean Cu-Nb samples with f as low as 0.1 had no
plateau, while the addition of an impurity quenched the proximity

effect enough to cause a plateau.

C. CuNi-Nb Samples

Adding Zn to samples after they are produced has some drawbacks.
The heat treatment causes changes which are not desirable. For
example, figure 3.4 shows evidence for superconductivity above 12K,
indicating that phases other than pure Nb are present.

IZn could be added to the initial ingot, but its low boiling point
would cause much of it to evaporate during the high-temperature
processing. Another impurity was needed.

After checking phase diagrams (Hansen and Anderka 1958), we
decided to add Ni to the Cu matrix. Ni is soluble in Cu in all
concentrations, which is desirable to avoid having two different norma!
phases present. In addition, the solubilities of Ni in Nb and Nb in Nj
are small. Finally, Ni has a higher melting point than Cu, so material
loss was not a problenm,

We made samples with f ranging from 0.07 to 0.18, where the matrix
consisted of Cu with 3 atomic percent Ni added. A1 of the samples
were swaged until the cross sectional area was reduced by a factor of

16.

Typical resistance vs. temperature curves are shown in figure
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Figure 3.4 Resistive transition for the
sample shown in figure 3.3 after 7Zn
was added to the matrix to shorten the
mean free path.
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3.5. The sharp drop 1in resistance as the temperature is reduced
between 7K and 8K results from the Nb becoming superconducting. The
siower falloff in resistance with temperature, which begins at around
10'7Oan, is ¢tiributed to the gradual strengthening of the proximity
effect coupling between filaments until a current-dependent temperature
TCl is reached where R=0. This interpretation is supported by the
maximum magnitude of the resistance in the slow falloff region of the

curves, which is in reasonable agreement with that predicted for a

fully normmal matrix in (3.1). All of the CuNi matrix samples had the

characteristic two-part transition, indicating that the filaments
probably do not form a geometrically connected network in the range of
concentrations studied. We conclude from this that fc is greater than

0.18 1in these samples. We emphasize that samples with the same amount

of superconductor, but with different amounts of impurity in the

matrix, can have quite different electrical behavior.

s The smooth variation below the first sharp drop in resistance in
figure 3.5 dis 1interesting. We found that at higher currents, the
resistance went to zero as a power law, R=R0(T/TCl-1)”. The

; experimental points were fit using a least-squares procedure with

jj Tog(R) and 1og(T/Tc1-l) as the variables and y, Ro and Tey as  fitting

parameters. We obtained good agreement with a power law over two
orders of magnitude for the 7% sample for constant currents ranging

) from 50 to 142 amps/cm2 (see figure 3.6). For lower current densities,

for which the transition occurs at higher temperatures, Spurious

signals due to the transition of the soldered voltage lead connections

and thermal EMF's prevent quantitative interpretation of the data.
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Figure 3.5 Resistive transition for CuNi-7
volume percent Nb sample.
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Samples with 13% Nb showed more variation from one current to the next,
probably because of bad mixing or finite sample size effects, both of
which are aggravated by having more Nb. A single dirty sampie prepared
by hot extrusion from powders which contained 5% Nb and no Ni also gave
data in good agreement with a power law. Ffor the 5% and 7% samples,
fitted values of u ranged from 1.0 to 1.15 for the currents used, with

a mean of 1.06 and an rms deviation of 0.04.

D. Undrawn CuNi-Nb Samples

In order to remove any effects caused by the filament elongation,
we prepared a series of samples with Cu-3 atomic percent Ni matrices
where the volume fraction of Nb varied between 0.07 and 0.3. These
samples were not reduced, but were spark cut into wires which were
roughly 2.5cm by 0.1lcm by 0.lcm,

A serious problem hampered this work. Between f=0.1 and £=0.18,
samples did not mix well, as macroscopic clumps of Nb were present.
Some conclusions can be extracted from the remaining data, however.

The f=0.2 sample had a small plateau about 0.1K wide with Ro/RN of
order 5x10'3 and the f=0.3 sample had just a single transition. From
this we concluded that fc is between 0.2 and 0.3, and 1is probably
between 0.2 and 0.25, in these samples. This agrees with our results

on the reduced wire.




3.3 Theoretical Models for the Plateau Resistance

The transistion of a composite superconductor is drawn
schematically in figure 3.7. At Tc, the resistance drops from the
normal state value to Ro‘ The variation of resistance with temperature
becomes slower below Tc’ with resistance eventually dropping to zero at
TCl' We would like to understand how R, and TC1 depend on material
parameters, as well as how the resistance depends on temperature. We
note that some articles in the literature follow a different
convention, calling the upper transition temperature Tco and the lower

one Tc.

A. Percolation Near TC

Just below Tc, where the Nb inclusions have just become
superconducting, the coupling between filaments will be weak if the
normal metal coherence length is short. This 1is true because the

critical current I_ between two filaments approaches zero as T

c
approaches Tc and the coupling energy between filaments is proportional
to Ic (Tinkham 1975, chapter 6). In the case of a dirty matrix the
resistance near this temperature is thus essentially the resistance of
a classical mixture of two materials.

Percolation theory describes the bulk properties of classical
inhomogeneous media. We will discuss percolation at some length in
chapter 5. For now, a summary of results is all that is necessary.

A number of important ideas have emerged from considering large
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Figure 3.7 Schematic drawing of the two-part
resistive transition in a composite
sSuperconductor.
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two-component  lattices of resistors rp and (Straley 1977a,
Kirkpatrick 1973, 1979). If one of the resistances, rys occurs with
probability p, then there is a critical probability p. above which the
rl's form an infinite cluster. This P 1s different for different
lattices. Furthermore, when 1/r2=gz=0, for a small range above Pes the

; bulk conductance G varies as

6s(p-p.)* (pp,) (3.4)

where t seems to depend at most only weakly on everything but the
dimensionality of the lattice. Ffor a lattice consisting of shorts

(with probability p) and resistors, the bulk resistance varies as

ReC(p.-p)® (p<p.) (3.5)

For three dimensional systems, numerical simulations indicate that s is
between 0.6 and 0.8 and that t is between 1.5 and 1.7 (Straley 1977a).
In two dimensions, s=t=1.35:0.02 (Lobb and Frank 1979,1980).

In real materials, occupation probabilities p in (3.4) and (3.5)

are replaced by component volume fractions f. In general, the critical

volume fraction fc will depend on the system studied. The critical




. ERET e LS

RO Lo

33

exponents s and t are again expected tc depend only on the
dimensionality of the system. Aggregate films (Liang et al. 197€) and
cermets (Abeles et al. 1975) have been shown to give experimental
values for t in two and three dimensions which are comparable to the
values cited above.

The general shape of the R0 vs. f curve is concave downward for
the ijsotropic samples, indicating that s 1is less than one. This
qualitative result is in agreement with the percolation model. The
scatter due to sample inhomogeneity prevented us from obtaining any
quantitative estimate for the critical exponent s.

We can phenomenologically combine (3.1) and (3.5) to obtain

(Tinkham 1977)

Ry/Ry oc(fo-F)/FA% (3.6)

which we expect to hold for (fc-f) small and A large.

Equation (3.6) is qualitatively consistent with the data available
on Tsuei wire (Callaghan and Toth 1975, Davidson et al. 1975, Tinkham
1977, Lobb et al. 1978). Increasing A and f decreases RO/RN.
Unfortunately, quantitative comparison is difficult because of sample
inhomogeneities and sample-to~sample variations. The important
conclusion to be drawn from (3.6) 1is that RO approaches zero as f

approaches fc so0 that we expect a two-part transition only for f less
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than f.. The dependence of R, on f is indicated schematically in

figure 3.8.

B. A Percolative Model of the Temperature Dependence

When the superconducting phases of the filaments are strongly
coupled, the classical model of the last section may break down.
Nonetheless, it is instructive to ignore this problem to construct a
simpie theory of the temperature dependence of the resistance.

The results outlined earlier in this chapter showed the importance
of the proximity effect in these wires. The presence of Ni in the
matrix changed the electrical characteristics greatly. This suggests
that an effective volume fraction f* and not the nominal volume
fraction f is important. In the clean samples, f*(TC)>fC so that no
plateau appears. In the samples containing Ni, f*(Tc)<fc so that the
temperature must be lowered to TCl for an infinite superconducting
cluster to form. We would expect f* to depend on the normal metal
coherence length (3.2a,b), which varies smoothly with temperature.

Expanuing f*(T) around TCI’ we obtain (Tinkham 1977, Lobb et al. 1978)

(1) = £(Tcy) + (f*/ 3T)Tc1(T-TCl) * e (3.7)

Combining (3.6) and (3.7) gives (Tinkham 1977, Lobb et al. 1973)
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Figure 3.8 Plateau resistance near TC (see
figure 3.7) as a function of supeér-
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R(T)cC(T/TCl-l)S/A3 (for Toy<T<T) (3.8)

where R(T) is the temperature-dependent resistance of the composite.

This model predicts TCI through f*(TCl)=fC. Assuming fc is
between 0.1 and 0.3 and using (3.3) with parometers for the 7% Nb in
CuNi wire, Tc1 is of the order of a few degrees, 1in reasonable
agreement with the data in figure 3.5.

The model also predicts that the resistance should go to zero as
(T'TCI)u’ and that u=s. Experimentally, we found that u=1.06£0.04
(figure 3.6), which does not agree well with either the two-dimensional
(1.3520.02) or three-dimensional (0.6-0.8) values for s. It is
possible that this disagreement is the result of the anisotropy of the
samples, a point which we will discuss in chapter 5. Unfortunately,
the isotropic samples with f<fc which would have yielded an
experimental value of u were the ones which were badly mixed. Thus, it
was impossible to measure u for undrawn samples. More fundamentally,
the model used in this section is an oversimplification. We discuss a

more rigorous model in the next section.

C.The XY Model

Two superconductors separated by an insulator or a normal metal
have a coupling energy given by -(ﬁIC/Ze)c05A¢7, where Ic is the

critical current of the junction and Ap s the phase difference

between the superconductors. For an array of superconductors which are

e At FRUSISSSE




assumed to interact only with their nearest neighbors, we can add up

these energies to write a Hamiltonian

H = Ho-(ﬁ/Ze)ﬁfj)IciJCOS( Pi- H) (3.9)

where H, represents terms for the individual islands, and the sum is
due to the coupling energies.
This is seen to be equivalent to the standard model Hamiltonian

for magnetic systems

-
H=H- £ J:.5.°S. (3.10)

if the spins 32 are confined to a plane so that §i'§}=sisjcos( ¢i' ¢G).
Thus, an array of weakly coupled superconductors is isomorphic to a
ferromagnet whose spins have two components. This is the n=2 (where n
is the number of components) or XY model (Giovannini and Weiss 1978,
Patton et al. 1980, Imry 1980). The number of components in the XY
model falls between the more familiar I[sing (n=1) and Heisenberg (n=3}
models (Ma 1976).

We expect the phases to become coupled when kT is lower than the

coupling energy between grains. We thus estimate TCl by saying

t s g v o T s e
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kgTe = (ﬁ/ze):rc(r) (3.11)

where Ic(T) is the average intergrain critical current, 2z is the
coordination number, and we are ignoring factors of order unity.

To get a more explicit estimate for Tcl* we can calculate the
limiting form of (3.10) for an array of BCS superconductors connected

by tunnel junctions (Klapwijk 1980). In this case

I.(T) = (a(T)/R)tanh(a(T)/2kgT) (3.12)

where R is the resistance of a junction and A(T) is the energy gap

(Tinkham 1975, chapter 6). Combining (3.11) and (3.12) near TC, we

obtain

To/Ty ¥1+4Re?/3.7hz = 1+R/(2-15,2220hm) (3.13)

so that TC1 depends on the single junction resistance R and the




coordination number z.

Near TCl the resistance as calculated by the XY model varies as
(T-TCI)“. It has been suggested that p=(4-d)J , where the coherence
length exponent V=.670:0.006 in three dimensions (Ma 1976). This
implies that u=0.67 1in three dimensions, which agrees with the
percolation model of section 3.38 but does not agree with our
experimental value of 1.06.

In two dimensions, Vv is infinite (Kosterlitz 1974), which
suggests that u is infinite. This agrees with the result of Halperin
and Nelson (1979), who found that R went to zero exponentially as T
approaches TCl' This disagrees markedly with the percolation model
prediction, which says that u=1.35 (Lobb et al 1978). (Some two

dimensional samples will be discussed in the next chapter.)




CHAPTER FOUR: SUPERCONDUCTING COMPQSITE FILMS

In this chapter we report preliminary work on a thin film
composite system. The films are analogous to the materials discussed
in the last twe chapters in that they consist of superconducting
islands in a normal metal matrix. The difference is that these samples
are two-dimensional, that is, the films are only one island thick.

This work was motivated by the fact that many of the properties
(such as the critical behavior) of inhomogeneous superconductors depend
only weakly on parameters other than the dimensionality. In addition,
many interesting effects are expected to occur in systems with reduced

dimensionality (Halperin and Nelson 1979).

4.1 Discontinuous Normal Metal Films

When a metal is deposited on a substrate, there 1is generally a
measurable lag between the beginning of deposition and the onset of
electrical conduction. This effect occurs because metals tend to
diffuse on the substrate and bead up to minimize the surface energy.
In general, lower melting point materials have a higher conduction
onset thickness because they diffuse more readily. A general review of
electrical conduction in discontinuous films has been written by Morris
and Coutts (1977).

Liang et al. (1976) studied resistivity as a function of
thickness for Bi films deposited at room temperature. Their films were

deposited onto an evaporated, and therefore rough, S$i0 layer, which

would tend to discourage diffusion. They found a sharp five order of
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magnitude drop in the resistivity in a narrow range of thickness around

0
100A.

4.2 Composite Superconductor-Normal Metal Films

A. Pb-Cu Films

Qur original choice for a superconducting material was Pb. We
evaporated the Pb onto a room temperature glass substrate, and found
that the resistance dropped from more than 1080hm to around 103ohm
during additionél deposition of a mass equivalent to less than 10§
thickness. Our onset occured at thicknesses between 500: and 10002.
We attribute the difference between our Pb and Liang et al.'s Bi to the

substrate smoothness.

A number of films were made in which the Pb thickness spanned the
aggregation thickness. The Pb films were overcoated with Cu without
breaking vacuum. The resulting composite film was then removed from
the evaporator and wired into a cryostat.

Measurements of resistance vs. temperature for these samples
showed a depressed Tc and a broad transition. Transitions were
typically a degree or more wide with the films remaining fully normal
down to 4K. There was little evidence for the two-part transition seen
in Tsuei wire (see figure 3.5).

The reason for this broad transition became apparent when the
films were examined with a scanning electron microscope. The Pb

0
islands were typically less than 1000A in all dimensions, which is

R R e s




42

comparable to the coherence length in Pb. In this limit of small
islands, the electrons see an average electron-phonon coupling, so that
the distinctions between the two materials become blurred as far as the
superfluid is concerned (Deutscher and deGennes 1969). This is not a
problem in superconductor-insulator composites because the order
parameter in the superconductor 1is not depressed by an insulating
boundary. Although the 1limit of small particle sizes (the Cooper
limit) is interesting experimentally, it was not pursued because we
wished to consider weakly coupled islands of strong superconductor.

Further work in this area is warranted.

B. PbBi-CuAl Composite Films

We wished to make samples with weakly coupled dislands of strong
superconductor. This can be done by making the islands bigger (to
reduce intraisland fluctuations) or by making the matrix mean free path
shorter (to reduce the interisland phase coupling). In order to get
large islands, we must have the island size large compared to the

superconducting coherence length §(T). In the dirty limit,

§(1)=0.855( § 1)}/2/(1-1/7)1/2 (4.1)

where §o is the Pippard coherence length and ¢ the electron mean free

path (Tinkham 1975, chapter 4), Thus, we can shorten gﬁ) by shortening




2. To this end, we prepared Pb-3 weight percent Bi alloys to wuse as

the superconductor. We also increased the istand size directly by
tilting the substrate 60° from the standard normal incidence (Holland
1958). To decrease strong interisland phase coupling through the
proximity effect, we used Cu-4 weight percent Al for the the nomal
metal to decrease §N' as suggested by (3.2b).

The samples were prepared on 2.5 cm square sapphire substrates
vapor cleaned 1in ethanol followed by trichloroethylene. On a liquid
nitrogen temperature substrate, 10002 of Pb-30 weight percent Bi was
evaporated through a mask to form strips on opposite sides of the
sapphire to make high Tc leads (see figure 4.1). The sapphire was then
removed from the -evaporator, re-cleaned, and mounted on a rotatable
stage in the evaporator. MNext, PbBi (3%) was evaporated at a 60° angle
at 3X/sec until the film's resistance dropped below 108 ohm. At this
point, evaporation was stopped by moving a shutter and turning off the
heater current. After a minute or two, the film's resistance would be
of the order of 1000 ohm and fairly stable. The stage was rotated back
to normmal incidence and CuAl (4%) was evaporated at 3:/sec until the
desired thickness was reached.

Three samples were made following the above prescription. All of
them aqggregated within 152 of 765& (this is an average thickness,
assuming bulk density). Sample A had 15002 of CuAl deposited on top,
sample B had 7502 deposited on top, and sample C had 3902 deposited

on top. All samples were 1.7cm long and 2.5cm wide.

C. Morphology of PbBi-CuAl Films
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A scanning electron micrograph of sample C is shown in figure 4.2.
The morphology is typical of samples with this thickness of PbBi. The
twisted, highly-connected network is the result of partial aggregation
of the originally circular istands. This interpretation is supported
by the fact that thinner Pb films have islands that are more nearly

circular.

D. Electrical Properties of PbBi-CuAl Films

Samples were studied in a variable temperature cryostat by
measuring voltage as a function of temperature at constant currents. A
Keithly Nanovoltmeter was used to measure voltage. With care, noise
could be reduced to below 6GnV.

Resistance (V/1) vs. temperature is plotted in figure 4.3 for
sample A. At low currents there is a single transition in a narrow
temperature range. As the current is increased, a two-part transition
develops. Our monitoring of resistance while the PbBi was being
evaporated indicated that the PbBi was barely connected, that is fuf..
We would expect such a system to carry a small supercurrent as scon as
the islands become superconducting, and this was the case for all three
samples. When the current is increased, however, the interisland
critical currents are exceeded fairly quickly, since the islands are
only weakly connected.

Thus, the transition splits into two parts for higher currents.

As  temperature is lowered, the islands become superconducting,

Y
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decreasing the resistance sharply. When the temperature is lowerec
further, the superconducting phase coupling increases in strength
relative to kT until the composite resistance drops to zero.

The resistance of these samples is not a simple power of (T—TCI).
Qualitatively, the fitted exponent increases as the current is
decreased. This is not surprising, in light of the fact that the power
law dependence discussed in chapter 3 holds in the limit of small
current. Since we have a single sharp transition for these samples as
the current approaches zero, we cannot extract information about the
value of the exponent u.

We can study the critical current as a function of temperature in
these samples, however. IC was measured by increasing the temperature

at constant current until 60nV appeared across the sample. Fitting to

the form

8
I.=1,(1-T/T,) (4.2)

where Tc is the small current transition temperature, we found that
g=1.84#0.2 for these samples. A log-log plot of Ic against (TC-T) for
sample A is shown in figure 4.4. The straight line fit is quite good,

extending over three decades in IC.
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E. Discussion

Qualitively, the transition shown in figure 4.3 is similar to trat
of figure 3.5. The explanations for the two figures are the same. The
transition splits into two parts for high currents because high
currents destroy the phase coherence before they destroy the
superconductivity of the individual islands. We expect the temperature
variation of resistance to be more amenable to quantitative
interpretation in thinner films where f<fc. In this case, a
current-independent resistance will probably develop in the limit of
small current in the plateau (Patton et al. 1980).

The critical current behaviar is strikingly similar to the data of
Wolf et al. (1979) on a two-dimensional superconductor-insulator
composite. They found a 8 of 1.7:0.2, essentially the same as our
value.

Unfortunately, the theoretical prediction of the XY model is that

=0 (Halperin and Nelson 1979). It is possible that more sensitive
measurements would agree with this result. Even if the data is a
result of Tlimited voltage sensitivity, there is presumably sore
explanation of the simple temperature dependence.

It is possible that these results are due to finite size effects.
The requirement that the average size of fluctuations be less than the

sample size is that §Xy<<L where L is the sample size and §'xy is the

coherence length appropriate to the phase transition. This leads to
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-2

|T/71] >>(Tog(L/ &g (T)) (4.3)

where we have used Halperin and Nelson's (1979) expression for § d

xy "
SGL is the Ginzburg-Landau coherence length. If this requirement is
not met, theoretical predictions based on assuming an infinite sample
will not apply. €Even if we use the zero temperature value of the
Ginzburg-Landau coherence length, this implies that |T/Tcr1| >>0.01,
which may be outside the critical region. It is worth noting in this
connection that I varies as (1--T/Tc)2 in a single SNS Jjunction
(deGennes 1966, chapter 7). Our data may indicate some sort of locking
together of the different junctions in the sample.

Another possible explanation is that the Ic data represents a
crossover from three dimensions to two dimensicns. This may be true in
Wolf et al's (1979) films because they may be more than one grain
thick. Although our films are only one island thick, strong
interisland coupling could make the film effectively homogeneous. In
this case Ginzburg-Landau behavior (which predicts 8=3/2, (Tinkham
1975, chapter 4)) would occur.

Further work is clearly called for, especially on thinner (and
therefore more weakly coupled) films. Thinner films would also aflow

us to study resistance as a function of temperature in the 1limit of

zero current, which would allow a determination of the exponent u.




CHAPTER FIVE: PERCOLATION

Various aspects of percolation theory are discussed in this
chapter in order to understand the effects of anisotropy on percolative
conduction. We begin by outlining the connection between the random
classical continuum, a mode! for composite materials, and random
resistor networks, which are computationally more tractable.
Approximate methods of solution are discussed, and then applied to
anisotropic lattices in two dimensions. Finally, we apply one of the
approximation techniques, the renormalization group, to isotropic
two-dimensional lattices to obtain highly accurate estimates of
critical exponents. This is necessary since critical exponents are
often measured in real systems, while the uncertainties in earlier

calculations make comparison between theory and experiment difficult.

5.1 The Classical Continuum and its Lattice Model

A. The General Problem

The materials discussed in the experimental sections of this
thesis are properly described in quantum mechanical terms. C(lassical
models are useful, however, since they often provide general insight
and qualitatively correct results, and are easier to solve (Davidson et
al. 1975, Davidson and Tinkham 1976).

The general problem is to understand the bulk transport properties

of a two-component system where the components have isotropic

conductivities cr‘l) and cr(z) and occupy volume fractions f and 1-f.
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We assume that the grains of both materials have average sizes L; in
the X; direction, where these sizes are not necessarily equal in
different directions but are the same for both materials. Current

conservation requires that

§3%i(0'(?)-9—v<?)> = 0 (5.1)

-
r

where V(F) is the voltage at a point ¥ and O°(F) is isotropic. If we

make the change of variables

xj=x;Ly/L; (5.2a)
CACHER-AT (5.25)
VE(F )=V (F) (5.2¢)

the grains will be isotropic in the new coordinates, having an average

size Ly in all directions. Equation (5.1) becomes

_3_. 2~| oy _2_ Vo =




where Ly s the characteristic length in the x)-direction.

This is equivalent to the continuity equation for a geometrically
isotropic medium with anisotropic conductivity, where we identify
CT%(Fﬂ)=(L1/L1)26;%(F*). The problem of isotropically conductive
prolate spheroid grains (Davidson and Tinkham 1976) is seen to be
equivalent to the problem of spherical grains with
?‘=(0',(a/b)20',(a/b)2cf) where a and b are the semi-major and
semi-minor axes of the ellipsoids.

The differential equation ({(5.3) can be changed to a finite
difference equation on a cubic grid of size Ar’much smaller than the

grain size Ll’

L g; (V;-V,)=0 (5.4)
K JkY'3iTk

where gjkecoﬁ(?') in each direction and thé sum is over the nearest
neighbors of j on the grid.

Equation (5.4) is equivalent to Kirchoff's law for a cubic lattice
of conductances 95k This result was derived for isotropic networks by
Kirkpatrick(1973). We note that the gjk are different in each medium,
as are the g .

The resistors in this lattice are highly correlated by the
condition Ar<<L1. Wle can relax this constraint to simplify matters,

while still maintaining the essential randomness and anisotropy of the
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model, by removing correlations between the conductors. The problem
then becomes a cubic lattice with conducting bonds between nearest
neighbor vertices. These bonds have conductance ggl) with probability
p and 9(2) with probability l-p, and

i

oV /g{1=g(@)1g{D=(1 )7 (5.5)

B. The Percolation Problem

The problem outlined in the previous section is especially
interesting when the ratio of the two conductances becomes infinite.
This can be done by letting one conductance go to zero, giving a
metal-insulator mixture. Alternatively, one component can have
infinite conductivity. This is a classical model for a normal metal-
superconductor composite.

In these cases, connected clusters of the high-conductance
component become very important. It is not possible, for exarple, for
a metal-insulator composite to conduct at all until a cluster of
metallic links becomes infinite (for an infinite sample). The
geometrical properties of clusters, and the transport properties of the
two limiting problems, are studied in percolation theory, which has
been extensively reviewed (Shante and Kirkpatrick 1971, Kirkpatrick
1973, Straley 1977, Kirkpatrick 1979).

The probability at which a cluster first becomes infinite 1is the
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percolation threshold, Pce Near p., the mean cluster size § diverges

as a simple power law

§awtlp-pcl"> (5.6)

where ¢ is the size of a single bond.
If p denotes the probability that conducting links g are present
against an insulating background, the bulk conductance of a lattice of

size L>>¢ is given by

geca(L/2)?"%(p-p )" (5.7)

for a small region above Pee Similarly, if superconducting links are
present with probability p in a lattice of resistors r, the bulk

resistance varies as

Recr(L/2)29(p-p)S (5.8)

for a small region below Pee I {(5.7) and (5.8), d 1is the

dimensionality of the system. Although p. depends on the type of
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lattice studied (Shante and Kirkpatrick 1971), the critical exponents
v, t and s seem to depend mostly on the dimensionality of the system.
This is true because the structure of very 1large clusters 1is not
strongly dependent on the type of lattice.

The voltages and currents in any network must satisfy Kirchoff's
laws. The voltage drop around a loop must equal the applied EMF in the
loop, and the net current intoc a node must equal zero. Two networks
which satisfy the same set of equations, but with currents and voltages
interchanged, are duals of each other. The duality transformation
interchanges 1loops and nodes, resistances and conductances, and
currents and voltages. Since square lattices are self-dual, it can be
shown by duality that, for square lattices, the R vs. p and G vs. l-p
curves have the same shape, and thus that pc=1/2 and that s=t (Straley
1977, Bernasconi et al. 1977, Bernasconi 1978). Most of the remainder
of this chapter deals with two dimensional conductor-insulator
problems, following the convention of the literature. The duality
relationship ailows any results obtained in this way to be related to
the superconductor-conductor case by replacing conductances with
resistances in graphs and equations. We also restrict ourselves to two
dimensions, although many of the qualitative results are easily

extended to three dimensions.

5.2 General Methods of Solutjon

We will outline various approximate methods for finding the

conductance of random lattices in this section. For concreteness, we
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consider a square isotropic lattice, where a fraction p of the bonds

are conducting.

A, Effective Medium Theary

The effective medium theory (EMT) constructs a lattice from
conductances Ge such that the average effect of replacing a single bond
by a conductance g or 0 is zero (Kirkpatrick 1973). For a square
lattice, the results are

Gy=0 p<l/2 (5.9a)
Ge=g(2p-1) pr1/2 (5.9b)
Comparing this result to (5.7), we see that the EMT predicts that

P.=1/2 (correctly, if coincidentally) and that s=t=1.

B. Numerical Methods

A brute force approach to the problem is to generate large random
lattices on a computer and to solve the Kirchoff equation (5.4) at each
vertex. This is difficult to do for large lattices, so an iterative
scheme 1is wusually employed (Kirkpatrick 1973). An initial guess is

made for all of the voltages, then a computer is wused to relax the




L

59

inverted form of (5.4):

(n+1) . (n+1) (n)
Vi (T 94395 +TogyV5 )/ §g.ij (5.10)

i<i j>i

The superscripts refer to the iteration number and the sums use
the most recent available value for V;. Different weights can be given

to the terms to speed up convergence (Webman et al. 1975).

C. Renormalization Group

A powerful technique, the renormalization group, has recently been
borrowed from the theory of critical phenomenon and applied to the
percolation problem (Young and Stinchcombe 1975, Stinchcombe and Watson
1976). This technique allows one to calculate R and G as well as the
critical exponents and percolation threshold. Here we will discuss the
real space renormmalization procedure of Reynolds et al. (1978,1980)
and Bernasconi (1978).

Consider a diluted lattice of unit conductors with PFp..  The
lattice 1is divided into cells of size £'=bt (see figure 5.1). The
conductance of each cell in a given direction is calculated by imposing
equipotentials on the faces perpendicular to that direction., Each cell
is then replaced by its conductances in the two directions.

We have thus changed the lattice constant from & to bi, the

conductance distribution from

L
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P(1,p) = (1-p) &(g)*p S(g-1) (5.11)

to

P(2',p') = (1-p') §(g)+p'P(2',p",q) (5.12)

and p to p'. The quantity p' is determined by counting the fraction of
cells which conduct in a chosen direction. P(2',p',q) ié a sum of
weighted delta functions corresponding to the possible conductances g
of a cell of size be. The basic approximation is that the new lattice
is assumed to have the same bulk properties as the original lattice.
This decimation process is repeated, generating a sequence of

2y, ...b"2. Ultimately, the distribution of

lattices with spacing bg, b
conductances approaches a single delta function centered at 8, and p(")
approaches either 0 or 1. When p(") approaches 1, the original p is
assumed to have been greater than Pes when p(") approaches 0, p is
assumed to have been less than Pce Since a lattice with all links
equal to a has a conductance‘a in two dimensions, 8 is an approximation
for G in two dimensions.

This procedure is accurate insofar as lines a distance bt apart

have a constant potential difference between them. This is true for
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all b as p approaches 1 and for all p as b approaches infinity.
Bernasconi's (1978) isotropic latticz results indicate that this
procedure is a good approximation for all p with b equal to 2,
indicating that compensating errors probably occur.

A further computational simplification results when P(2',p',q) is
replaced by a single delta function at the mean of P(2',p',q9)
(Bernasconi 1978). This method is very accurate for isotropic lattices
if the geometric mean is used (Bernasconi 1978).

The procedure is slightly different at the percolation threshold.
At this point, p=p'=p"=...p(n). For the cells used here, this is true
at p=1/2 fbr all b, correctly predicting the value of p. for the square
lattice. Repeating the transformation at P eventually results in only
a change of scale in P(z("),p("),g). The relations (5.6) and (5.7)
apply in a lattice both before and after a re-scaling, that is, §==§‘

and G=G' (renormalizing does not change bulk properties). For n large,

!ﬂ(n)(p(n)_pc)-\) = a(mD)p(m)p g = (5.13a)

Gxg(n)(l’/z(n) )d'Z(p(n)-pc)t =
g(n+1)(L/£(n+1))d-Z(p(n"'l)-pc)t (5.13b)

Using b=g'/% and solving these equations for Vand t/0 gives




V= 1og(b)/1og(3p'/ap)p (5.13c)
c

t/9 = 1og(bd°29(")/g("+1))/1og(b) (5.13d)

where g(") is any conductance characterizing P(z("),pc,g) such as the

St &AL

mean conductance. We see that v comes out of the RG directly, and t/v

’ can be estimated by extrapolating a sequence to 1/n=0 (Bernasconi

1978).

T TP SRS

The renormalization group approach is thus seen to give estimates
of the critical parameters via (5.13), as well as giving bulk

g conductance as a function of p.

5.3 Anisotropic Networks

We will study anisotropic square resistor networks in this

section, using the techniques outlined in the previous section. A

solution for the perfect (p=l) anisotropic network is given, from which
an effective mediun theory is developed. (This work was done
independently of Bernasconi (1974).) We also present numerical
simulations and renormalization group calculations for this problem.
P ) The results of all three methads are discussed and compared, and they
are also compared to experiments on an anisotropic conductor-insulator

model system (Smith and Lobb 1979).
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A. Effective Medium Theory

Consider a wuniform square lattice of conductors, having
conductance G if they are parallel to the x-axis and AG if they are
paraliel to the y-axis. G and AG are the (as yet) unknown bulk

conductances as calculated by the EMT. If a current i_. is injected at

0
the origin, Kirchoff's law requires the voltage at a site (m,n) to

satisfy

G(V(m+1,n)+V(m-1,n)-2V(m,n))+
AG(V(m,n+1)+V(m,n=1)-2V(m,n)) = =i & & (5.14)

where Sm is the Kronecker delta function. We have solved this probiem
by Laplace transforms. The isotropic lattice has been discussed in van
der Pol and Bremmer (1950). We have generalized their approach to
include anisotropy in the conductances. The inversion integral can be

written in the form

T
V(m’")=(4“)-2_]ij.dsld52 cos(slm)cos(szn) -1 (5.15)
5 sin’(s, /2)+Asin?(s,/2)

where we have normalized so that the voltage at the origin is zero.

Equation (5.15) can be evaluated for (m,n)=(0,0), (0,1) and (1,0).




The results are

¥(0,0)=0 (5.16a)
V(1,0)=-(iy/x6)tan" (1/4)1/2 (5.160)
V(0,1)==(1,/7AG ) tan"2 (a)}/2 (5.16c)

These results reduce to the proper limits V(1,0)=V(0,1)= -10/4G
for A=l (the isotropic lattice) and V(1,0)=-1°/2G for A=0 (the
one-dimensional limit).

Equation (5.16b) says that the current flowing between (0,0) and
(0,1) s (io/w)'can'l(l//\)l/2 when i is injected at the origin. If we
had extracted i, at (0,1) instead, the same current would have flowed
between the two points.

If we superpose these two problems, the result is i, injected at

0
the origin and removed at (0,1), with (Zio/w)tan'l(llA)l/2 flowing
through the conductance G. Thus, the voltage between (0,0) and (0,1)
is (ZiO/wG)tan'l(l/A)l/z. The total conductance between the two points

is i, divided by this voltage. This conductance is a parallel

combination of the direct 1link, G, and the conductance of all other
paths, G;(see figure 5.2). Using the identity
tan'l(x)+tan‘1(1/x)=n/2, we obtain
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6, = 6tan 2 (A)1/2/tant (1/R)1/2 = g (a) . (5.172)

Similarly,

6} = actan 1 (1/8)/2/tan 1 (a)1/2 = pase(A) . (5.17b)

To construct an effective medium theory, we consider a conductor
9; replacing one of the G's in an otherwise uniform lattice (see figure
5.3). We require the average voltage drop across the gi‘s {which occur
with probability pi) to equal the voltage drop across a G in the

uniform lattice. Thus
T pi/(gy+Gy) = 1/(G+G)) . (5.18a)
i
The same argument in the y-direction gives

L p;/(ag;+6.) = 1/(AG+G! . 5.18b
L Py (ag;+6y) (RG+G, ) ( )

For the conductor-insulator case which we discuss here, (5.17) and
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(5.18) combine to give
(p+(p-1)/f(A))g = G (5.19a)
(p+(p-1)f(A))ag = AG (5.19b)

where conductors 9,79 and gy=ag are present with probability p, and the

lattice has bulk conductances G and AG in the x and y directions. When

a=A=1, these equations reduce to the familiar isotropic EMT of (5.9a)

and (5.9b) (Kirkpatrick 1973).
Combining (5.19a) and (5.19b) to eliminate G gives the following

equation for the dependence of A on o and p

tan"t (0)1/2/tan"1(1/0)1/2 =

fla-A)pr [(a-t) 20244 (1-9) 2] 1/2}/2(1_”“ (5.20)

A is thus implicitly determined for a given p and a and can be
substituted back into (5.19) to give G.

A number of interesting 1imits can be solved explicitly. When p
approaches 1, (5.19) imply that A approaches a. The slope of the G vs.

p curve at p=1 is thus given by
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! (96(a,p)/ dp)pey = (141/f(a))g (5.21)

a result similar to that obtained in the continuum EMT (Davidson and
Tinkham 1976).

The probability for which G=0 can also be obtained explicitly.
Equations (5.19) imply that G=0 and A=1 when p=1/2, independently of «.
This can also be seen by substituting p=1/2 into (5.20), which gives

A=1. This effective medium theory predicts that pc=1/2 regardless of
the "microscopic" anisotropy a, and that the bulk conductance becomes
jsotropic (A approaches 1) as p approaches 1/2. This is in contrast to
the continuum EMT, which gives the unphysical result that the critical
3 area fraction fc depends on the degree of anisotropy (Davidson and

Tinkham 1976).

The results of solving (5.19) numerically are shown in figure 5.4.
As expected, decreasing the y-direction conductance decreases G, making

the network look increasingly l-dimensional, that is G=0 unless p=l.

B. Numerical Simulations

We have done relaxation caiculations on random fifty by fifty site
arrays for a number of anisotropies. These arrays had equipotentials
imposed on the left and right, and periodic boundary conditions on the
top and bottom. Overrelaxation of (5.10) was used, as advocated by
Webman et al. (1975). Lattices were solved by removing a few

resistors, relaxing the voltages, and repeating the process until the
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Figure 5.4 EM Tconductance vs. concentration
for various values of the anisotropy «.
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desired value of p was reached. Close to the percolation threshold,
the "insulating" elements were started out with a conductivity equal to
that of the conducting elements. The network was solved in steps by
gradually decreasing the conductance of the "insulating" elements.
Convergence was slow near the percolation threshold, even using a
fairly large computer, a DEC-10. The results of these calculations are
compared to the EMT and RG in figures (5.5)-(5.7) for a=1,10, and O.1.

These results will be discussed in the next section.

C. Renormalization Group

Consider an infinite square lattice of lattice spacing &, where

the conductances between nearest neighbor sites are chosen at random,

such that
9, =1 with probability p
(5.22a)
9, =0 with probability 1-p
gy =g with probability p
(5.22b)
gy =0 with probability 1-p

The microscopic anisotropy a ranges between 0 and «=. The bond

probability p is taken to be the same in both directions, so that the

percolation threshold and coherence length are independent of a (Redner

!
4
?
i
_]_
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and Stanley 1979).

Following the scheme outlined in section 5.2C, we rescale by
partitioning the lattice into cells of size bg and replacing each cell
by a single conductance in each direction. In principle, this
transformation 1is repeatedly applied to the lattice, giving a sequence
of conductance distributions which eventually converges to a single
delta function for each direction (provided p#pc initially). These
delta functions are centered at conductances ‘a; and E}. These
conductances are only approximations to the lattice conductivity in the
two directions because b is finite. In practice, we use an
approximation to ?3 which replaces each intermediate distribution of
conductances by a simple double valued distribution. All of the
non-zero conductances in the distribution are replaced by a single
conductance which is the geometric mean of the non-zero conductances.

This process eventually converges to conductances which are labeled

Xapprox yapprox*

Data for a number of anisotropies are presented in figures 5.5,

5.6 and 5.7 using G for the b=3 transformation. (We compared

approx
é;pprox to 6 for a number of these points and concl.ded that they are
essentially equal for the range of anisotropies considered here.) The
data are plotted with the EMT and our numerical results.

For the isotropic case, it has been noted that the EMT, numerical
simulations and the renormalization transformations give essentially
the same results near p=1 (Bernasconi 1978). In the region where the

EMT breaks down, the b=2 transformation has been studied and agrees

well with numerical simulations (Bernasconi 1978).
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For a=17 (figure 5.6), the EMT and numerical simulations agree
well for p near 1. (The standard convergence problems and finite size
ef fects make comparison difficult for p near pc.) [t is seen that the

b=3 transformation underestimates the bulk conductance in this case.

When a=0.1 (figure 5.7), the EMT and numerical simulations agree
outside the critical region. The disagrement with the RG, however, is

quite pronounced (see figure 5.7). For this case, the RG overestimates

~ the bulk conductance.

These discrepencies are easy to understand. For the b=3
transformation, only 4 of the 13 conductors in an x-direction cell have
value ag, as compared to half of the conductors in the Tlattice itself
(see figure 5.1). Thus, any effects due to varying a will be
underestimated for a finite size cell transformation. For a=0.1,
p=0.9, we obtain G=0.576 from the EMT and G=0.56 from numerical
simulations, while the b=2 RG predicts G=0.73 and the b=3 RG predicts
G=0.69. Thus, the 1larger cell, which has a higher fraction of
conductors pointing in the y-direction, gives an answer closer to the
truth, although neither cell is very accurate.

It is tempting to try to find cells which deal with anisotropy
more accurately. One could use cells in which the top row of
conductors is not cut off, but this only increases the number of
vertical conductors to 6 out of 18 {from 4 out of 13) for a b=3 cell.
This also sacrifices the self dual symmetry of the cells, so that the
wrong value of Pc is predicted. Qther procedures, such as weighting
the vertical conductors more heavily in the average, could probably be

made to work, but suffer from being arbitrary.
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In spite of the inaccuracies described above, the RG is a useful
tool for studying the critical region. The method gives answers which
are at least qualitatively reasonable, if not quantitively correct, and
A;f it is quite simple computationally. This last advantage is critical
close to the percolation threshold, where the EMT breaks down, and
numerical methods encounter serious difficulties as convergence slows
down and sample to sample variations become large. Thus, the RG is the
only choice presently available arbitrarily close to the percolation
threshold. Hopefully, information obtained by it will be at 1least
qualitatively correct.

For 0<a<=», it has been rigorously shown that, in the 1limit as p
approaches p., the same critical exponent t characterizes systems which

differ only in their anisotropy (Halperin 1979, Smith and Lobb 1979).

g This is true because the bulk conductance as a function of p is bounded
above and below by the conductance of isotropic lattices where the
non-zero conductances are either all 1 or all a (see figure 5.8).
There is also some evidence for the stronger conjecture that the

lattice conductance becomes isotropic as p approaches Pe (Shklovskii

1978). The renormalization group agrees with both of these results,
predicting A approaches 1 as p approaches Pce This is true because the
sequence a(l), u(Z), cees a(") is found to approach 1 for a not equal
to zero at p=pc=1/2.

There are, however, significant differences between anisotropic
and isotropic lattices, even near Pe- Figure 5.9 shows an effective
critical exponent t(p), defined as dlog(G )/ d10g(p-p.)

approx:
(Bernasconi 1978). As p approaches Pcs this approaches t, as can te

dadorves.
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seen from (5.9). This quantity converges to t much faster as p
approaches Pc for the isotropic lattice than for highly anisotropic
ones. Thus, if we operationally define the critical region as the
range of p over which @(p) is within a given percentage of t, the
critical region shrinks as a result of anisotropy. Experimentally,
this means that one needs to be closer to Pc to extract a good value of
t from data on a highly anisotropic system than from data on an
isotropic system.

We can use figure 5.8 to obtain a bound on the uncertainty in t.
Since the conductance is bounded above and below, its logarithmic

(01/2)

A
derivative t(p) can vary from t by roughly 1log /1og(p-pc). In

fact, the data in figure 5.9 is well approximated by

?(p)=1.29+0.4log(al/2)/log(p-pc) for «=0.1 and 10. For 'z(p) to be

within 0.01 of t, this says that (p-p_)<a2® (+ for o<1, - for @1),

which is a very stringent requirement.

0. Other Renormalization Schemes

A number of different lattice renormalization schemes have been
used. Most of them differ from the one used here in that they
calculate the conductance between two points in a lattice (Stinchcombe
and Watson 1976) (see figure 5.10). Cells with equipotential
boundaries, such as we use here, correctly predict that A=a at p=1. In
contrast, the cell in figure 5.10 predicts a' = a{a+3)/Batl) after one

jteration at p=1, which incorrectly impliies that A=a only for a=0,1, or

» when p=1.
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E. Comparison with Experiments

If we apply the qualitative result summed up in figure 5.9 for a

: . ~
continuum superconductor-normal composite, we would expect s, the

measured value of s, to be larger than the isotropic value when the i
superconducting filaments are elongated. This agrees qualitatively :
with the results reported in chapter three (Lobb et al. 1978).
Quantitative comparison 1is not possible, since we cannot convert from
temperature to probability with any accuracy.

A system to which our model calculations apply more directly has
recently been reported (Smith and Lobb 1979). The conductivities of

percolative networks produced photolithographically from laser speckle

patterns were measured. These results are shown in fiqure 5.11 for
various aspect ratios of metal islands. The results of numerical
simulations on a fifty by fifty site lattice for the corresponding a's
are shown in the inset. The qualitative agreement is striking,
demonstrating that the model outlined in section 5.1A is quite good.
The experimenta: data is consistent with figure 5.9, in that the

measured exponent depends on anisotropy if the critical region is

assumed to be the same for all anisotropies. Fitting the speckle
pattern data to 15% above the percolation threshold yields t= 0.85,
1.75, and 2.3 for a=25, 0.16 and 0.0016. Using t=1.3 and
?(p)=t+0.4log(a1/2)/109(f-fc) as implied by the lattice model gives
N

t(p)=0.95, 1.48 and 1.27. The agreement is quite good considering the

{ approximations made.
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Rere.

Figure 5.11 Normalized conductance vs. area fraction for anisotropic
metal islands on an insulating substrate. The solid lines are to !
guide the eye. Inset contains numerical simulations on 50 by 50
site lattices with the cooresponding anisotropies. The aspect

172

ratio of the islands Ly/Ly is equal to a™’", as can be seen from

(5.5). We note that the metal islands have an f. of about 0.4,

while the lattices have a Pe of 0.5.
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The isotropic speckle pattern samples have roughly 450,000 units
which are either conducting or non-conducting. This is much larger
than any percolative system previously studied. We obtained t>1.3 for
the isotropic samples, a result in good agreement with our calculations
in the next section, but in poor agreement with earlier numerical

results (Kirkpatrick 1973, Straley 1977).

5.4 Large Cell Renormalization Group Calculations of Critical Exponents

In the remaining sections of this chapter, we calculate the
exponents V, s, and t (see (5.6) through (5.8)), and also calculate
the critical exponent v which characterizes the critical current
behavior near the percolation threshold (Lobb and Frank 1979, 1980,
Lobb and Karasek 1980).

The cluster size exponent J is known to within a few percent in
two dimensions (Reynolds et al. 1978, 1980). We use the large cell
approach first employed by Reynolds et al. (1978) on the site-diluted
lattice to calculate ¥V for the bond-diluted lattice. Our results
agree with the results of Reynolds et al. (1978), supporting the
notion of universality.

Earlier estimates for transport exponents s,t,and v vary widely,
falling in the range 1 (de Gennes 1976) to 1.43 (Fisch and Harris
1978). By studying lattice rescalings for various b's, we obtain more

reliable estimates, concluding that the transport exponents equal V

(*1.35) to within a few percent in two dimensions.




A. The Critical Exponent ¥

In this section we apply a large cell renormalization group scheme

to the bond percolation problem on a square lattice. This method was

recently developed and applied to site percolation in two dimensions,
where it yielded highly accurate results (Reynolds et al. 1978,1980).
Generalizing the b=2 cell proposed by Reynolds et al. (1977) for bond
percolation, we find the convergence in the bond problem to be much
faster than in the site problem.

When a fraction of bonds p are present in an infinite lattice, we
expect the mean cluster size to vary as(p-pc)’o , as in (5.6), where Pe
=1/2 for the square lattice (Sykes and Essam 1964). If R(b,p) 1is the
probability that a finite Tattice with b bonds on a side is connected,

Reynolds et al. (1978) have argued that

Tog(a(b)) = (1/9 )log(b)+constant (5.23)

where A(b)= ?R(b,p)/9p| p* is defined by R(b,p*)=p* and R(b,p) is

*>
the probability of get:ing across the cell from left to right.
Equation (5.23) is asymptotically true for large b. We note that,
except for the additive constant, (5.23) is identical to (5.13a). The
inclusion of the constant is suggested by arguments that (5.13a) should

apply only for large b (Reynolds et al. 1978, 1980).

A cell of the type used here is shown in figure 5.1. It can be
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shown by duality that p*=1/2 independently of b for this type of cell
(Bernasconi 1978). Thus, equation (5.23) and calculations on finite
cells can be used to estimate V.

R(b,p) has been calculated analytically and differentiated to give

ctm D ot e A ——.- 23 AN, P

A(b) for b=2,3 (Reynolds et al. 1977, Bernasconi 1978). We have
computed A(b) for b up to 95 using Monte Carlo methods, as follows.
i The probability that a lattice of size b is connected is given

by

R(b,p) = £ p" (1-p)" (5.24)
1

vhere the sum is over all connected configurations and ny and my are

i
the number of bonds present and absent, respectively, in the ith

configuration. Differentiating this with respect to p, we obtain

3R/ 3p = p" (1-p)™ (ny/p - my/(1-p)) . (5.25)

At p=1/2, this becomes

A(b) = (1/2") I 2(ngem;) (5.25b)

e e ———
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where N=ni+m1. 1f 2M Monte Carlo realizations are studied, M will be
connected (within statistical uncertainties) at p=p*, so that (5.25b)

is approximated by
M
A(b) = (1/M)_£1(n,--m,-) (5.26)
i=

where the sum is over the connected configurations.

The calculations were done on a DEC LSI-11/2, a small computer
with 32k of core. Lattices were generated and studied using the
cluster multi-labeling technique of Hoshen and Kopleman (1976),
modified to fit the limited memory of our machine. Since we were
concerned only with whether a given realization was connected, it was
possible to re-number the clusters after a column was completed,
dropping those clusters which had died out. Thus, the program requires
only two arrays of size 2b and one of size b to be stored. Since
p*=1/2 is known exactiy for these cells, it was not necessary to
determine it numerically, which resulted in a further saving of
computer time.

We can gain some understanding of when b is large enough for

(5.23) to be valid by examining "one-shot" estimates of V ,

——— e N,
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J(b) = log(b)/10g(r(b)) . (5.27)
1-shot

These numbers approach each other for b sufficiently large. Table 5.1

shows these estimates, the number of realizations considered, and the

statistical uncertainty in each case. (The uncertainty represents one
standard deviation from the mean of A(b).) These data demonstrate the
quick convergence of the method. Within the statistical errors given,
the values obtained are indistinguishable from one another for b)4.

This implies that (5.23) is valid even for small b in this problem, and
that the additive constant in (5.23) is small. We believe that this
rapid convergence is a result of the self-dual symmetry property of
these cells, which they share with the lattice itself. For example,
Reynolds et al. (1978) obtain D(b) =1.47 for the site problem

1-shot
when b=5, although their answers extrapolate to Tower values.

We can improve on the one-shot approach by fitting all of the data
to equation (5.23). As can be seen from the log(A(b)) vs. log(b) plot
of figure 5.12, the deviation from the expected straight line is small,

even for small b. The fit yields

V= 1.3430.017 . (5.28)

Equation (5.23) 1is only true asymptotically. Therefore, in

addition to statistical uncertainty, the quoted error spans values
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10
15
20
30
50
70
95

Table 5.1 "One-shot" values of VU tor different length rescalings b.
The uncertainty represents one RMS deviation from the mean, and N

is the total number of configurations studied for each value of

b.

l-shot

1.428
1.380
1.383
1.352
1.354
1.358
1.354
1.343
1.323
1.370
1.366
1.341
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0.013
0.011
0.015
0.011
0.019
0.013
0.017
0.039
0.028
0.012

all

all

160,000

175,000
82,000
43,000
42,000
76,000
60,000
23,000
34,000
81,000
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obtained by including or excluding some of the smaller points in the
fit. This value for V is slightly smaller than, but in good agreement
with, the site percolation result V=1.354:0.015 (Reynolds et al.
1980). It is also in fair agreement with the value Vv=1.365+0.015
obtained by Kirkpatrick (1979) wusing large cells which were not

self-dual.

B.The Critical Exponents s, t, and v

In this section, we use finite size scaling arguments to find how
transport properties scale with sample size near the percolation
threshold. We then estimate the critical exponents t and v for the
bulk conductance and critical supercurrent density in a percolating
square lattice.

Consider a square lattice of size L, with lattice spacing 2.
Links are present with probability p. For calculating conductance
properties, these 1links are taken to have unit resistance. To
calculate critical current properties, the links are assigned a unit
critical supercurrent.

The average conductance, <G>, of a finite lattice is

<G> = f(€,1/b) (5.29)

th

where €.=p-pC and average means any power-1ike mean, such as the n
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root of the nth power. We assume that f is a homogenous function of

its variables (Straley 1977b)

f(€,1/b) = f(8™%¢ ,87Y/b) . (5.30)

(Phenomenologically, this assumption can be justified as follows. As a
critical point is approached by varying a given parameter (such as
p-pc), measured properties (such as <G>) often vary as a power of the
parameter. As different parameters are varied, different power laws
are observed. A homogeneous function approaches the origin with
different powers along different axes. It is thus reasonable to
represent <G> as a homogeneous function of PP and 1/b, since critical
behavior is expected for infinite samples as p approaches pc‘)

We wish to determine x and y. Letting gs'x=1 and taking b to

infinity, we obtain

6> = g1/%(1,0)00+ & (g™ %b)) . (5.31)

By letting b=e and comparing this to (5.7), we see that 1/x=t.

]
Since §°C £ is the only important length in this problem, we also

identify y/x=V. Thus ve see that
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Ry

¥ G = g(1,001+O(E /L)) (5.32)

for large b and small £ .
Similarly, for g~Y/b=1 and €& approaching 0,

@ = bt fo,1)(1+ P g)) (5.33)

so that the average conductance at g =0 varies as b=t for large b.

i To summarize,

G+ (p-pc)t (infinite sample) (5.34a)

G ~ b'tlo (when p=p*) (5.34b)

Similarly, the critical current density varies as

Jg (p-pc)v (infinite sample) (5.35a)

which defines v, and

-

o 4L TEBR 5o AN ary,
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W+ b7V (when p=p*) (5.35b)

We can re-write (5.34b) and (5.35b) as

log(1/<G>) = (t/¥ )log(b)+constant (5.36a)

Tog(1/<d.>) = (v/V )1og(b)+constant (5.36b)

We can thus calculate the infinite sample exponents t and v by
looking at the average behavior of large samples. We note the
similarity between (5.36a) and (5.13b). As in the last section, we
have gained an additive constant.

For b=2,3, we calculated arithmetic, geunetric and harmonic means
exactly, by going through all of the possible configurations. For
larger cells, realizations were generated randomly and studied with the .
aid of a program designed to calculate the conductance of larger
lattices exactly. To calculate the conductance of a given realization,
this program removed dangling ends, reduced simple series and simple

parallel combinations, and used the Y-a transformation (see figure

5.13a) until the cell was reduced to a single conductance. In the
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largest cells considered, where b=14, the program failed to reduce only

0.5% of the 30,000 cases studied. This introduces a small known
uncertainty into che estimate of <G> (Lobb and Frank 1979).

To calculate the critical current of a cell, we proceed in the
same way, employing a rather simplified model. We assume that the
critical current of a parallel arrangement is the sum of the individual
critical currents, that the weakest link gives the critical current of
a series arrangment, and hence Y-A transformations can be made as in
figure 5.13b. Using this model, we have studied up to b=20, where only
28 out of 40,000 cases failed to reduce. In all cases, we calculated
arithmetic, geometric and harmonic means of conductance and critical
current density, as well as standard deviations, which give
distribution widths.

Figures 5.14 and 5.15 are log-log plots of 1/<G> and /<> vs.
b, for various means. As (5.34b) and (5.35b) predict, the points on
each graph fall onto straight parallel 1lines. The slopes of these

lines imply that

t/d = 0.99620.01 (5.37a)

v/v = 0.990£0.005 (5.37b)

The error bars include statistical uncertainties, as well as

subjective estimates of error due to the differences between various
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means and the effects of including or not including data for small b in
the fit. We believe that these results are consistent with the
hypothesis t=v= v (Shkiovskii 1978), as larger cells of this type tend
to give higher estimates of t/V (Bernasconi 1978, Lobb and Frank 1979)
and v/O. Using the value V=1.35610.015 (Reynolds et al. 1978), we
obtain t=1.35:0.02 and v=1.343:0.016.

These results are applicable to different problems through the use
of duality relations (Straley, 1977a). The dual of (5.34a) implies
that s=1.35 in two dimensions. Similarly, the dielectric breakdown
voltage of a metal-dielectric composite, which is dual to the critica]
current problem considered here, should also vary as (D-Pc)1'35.

Alternate approaches to these problems have suggested that either
t=v= U (Shklovskii 1978) or that t=v=1 (de Gennes 1976, Huse and Guyer
1979). Our data are difficult to reconcile with the latter
predictions, which imply that the slope of figures 5.14 and 5.15 should
be 1/ =0.74 instead of 1. Numerical simulations which seem to suggest
t=1.1 (Straley 1977, Kirkpatrick 1973, 1979) have depended on varying p
while keeping L fixed at a large value, as suggested by (5.34a). This
method has the disadvantage of requiring increasingly larger lattices
as p approaches Pc to keep fluctuations and the first order tem in
(5.32) small. As demonstrated by table 5.1 , our method converges to a
good value for V for fairly small b. This suggests that our results
for t and v are trustworthy, even though we used cells only up to b=20.

As mentioned earlier in this chapter, the largest experimental

system studied to date (Smith and Lobb 1979) gives t<1.3, in reasonable

agreement with our calculation. In addition, Deutscher and Rappaport
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a (1979) have measured v for Pb-Ge films, obtaining v=1.3:¢0.1. This
answer is in better agreement with our result than with the prediction
L v=] (Huse and Guyer 1979).
i
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CHAPTER SIX: SUMMARY AND CONCLUSIONS

In the preceding chapters, we have discussed a number of different
research projects on the physics of inhomogeneous superconductors.
These studies have ranged from measurements of the practical properties
of superconducting in situ composite wires to theoretical work on
random resistor lattices. In this final chapter we will review our
results for each of the projects in turn and make suggestions for
further work in each area.

Our work on Cu-ViGa in situ composites led to significant
improvements in their properties. We were able to produce samples with
TC-IS.SK and Hp,222.47 (at 4.2K) comparable to bulk ViGa. Our critical
current densities were also quite high, being 2x105A/cm2 at 4T and
10%A/cn? at 18T at 4.2K.

The in situ technique has not been optimized for V;Ga. Variation
of such parameters as annealing time and temperature, degree of
reduction, and superconducting volume fraction should lead to further
improvement. It would also be useful to add fourth elements to in situ
composites, as additional elements sometimes raise the Tc of A-15
compounds.

In addition to being potentially useful, in situ composites are
interesting in their own right. By observing the superconducting
transition in a number of samples in which both the concentration of
superconductor and the electron mean free path in the normal metal were
varied, we helped to settle the early controversy over the conduction
mechanism in these materials. Geometrical percolation and the

proximity effect are both necessary to understand the superconductivity
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of these composites. In general, the proximity effect is more
important in lower concentration samples with clean matrices, with
geometrical percolation being important when the proximity effect is
weak .

Our simple model for the temperature dependence of the
superconducting to normal transition, while being incorrect in detail,
did correctly recognize that a phase transition occurs as the proximity
effect reduces the overall resistance of a sample to zero.
Quantitative comparison of our data to more rigorous models for the

transition has been difficult because of the geometrical anisotropy of

the samples. Work on isotropic composites with simpler phase diagrams
such as Ge-Pb and Cu-Pb should lead to improved understanding while
making quantitive comparison with theory possible.

Theoretical models for the phase transition predict a number of

interesting effects in two-dimensional samples. This led us to prepare
thin films consisting of PbBi islands coated with a thin layer of CuAl.
Qur measurements on systems with the PbBi near the percolation
threshold have shown behavior qualitively similar to three dimensional
samples.
’ Future work should exploit the fact that the interisland
superconducting phase coupling can be varied by changing the thickness
of the PbBi and CuAl layers. It 1is also possible to make regular
arrays of weakly coupled superconductors in two dimensions.
Comparisons between regular arrays and naturally occuring random
systems should prove interesting, and shouid help to sort out the

effects of geometric¢al randomness.
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The behavior of classical mixtures of conductors, and the very

weakly coupled limit of superconductor-normal composites, is explained
by percolation theory. We did numerical simulations and
renormalization group calculations on square random resistor lattices
to study the effects of conductance anisotropy. This work was

suggested by the geometrical anisotropy of in situ composite wires

which can be shown to be equivalent to conductance anisotropy in a
geometrically i;otropic system. We found that although the
renormalization group underestimated the effects of anisotropy, it was
qualitatively correct, and yielded information about the critical
region behavior which is presently unobtainable by other means.

Looking at isotropic lattices, we calculated the coherence length
exponent V for the bond problem by a large-cell renormalization group
technique which had previously been applied to the site problem. Our
result supported the notion of site-bond universality. By extending
this method, we calculated the conductance exponent t and found it to
be essentially equal to V. This calculation represented a significant
improvement over earlier estimates. We also developed a simple model
for percolative superconducting mixtures and showed that the c¢ritical
current density exponent v is also essentially equal to Vv in two
dimensions.

Our methods can be applied to a number of additional problems.
More detailed knowledge of the conductance distribution as a function
of lattice size could be used to check the scaling hypothesis. In
addition, non-ohmic circuit elements (the simple critical current

element being one example) can be studied. Finally, all of our

e
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techniques can be applied in three dimensions, where they could
presumably improve the accuracy with which critical exponents and the

3 percolation threshold are known.
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