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ABSTRACT

We report the experimental properties of a number of random

superconducting-normal metal composites. Theoretical interpretation is

also presented, with emphasis on the effects of geometrical randomness.

The electrical properties of in situ multifilamentary Cu-V3Ga

wires are discussed, with emphasis on critical current and field

properties which are relevant to applications. We found that these

wires had upper critical fields as high as 22.4T at 4.2K with a

transition temperature of 15.5K. Their overall critical current

density 'O4 /-aV1ST)compared favorably with

commercial wires.

The results of electrical measurements on in situ Cu alloy-Nb

composites are reported which elucidate the roles of percolation and

the proximity effect in these materials. Our data show that the

proximity effect is very important in clean, low superconducting

concentration samples, with geometrical percolation being more

important as the matrix becomes dirtier. In addition, we discuss

models for the superconducting to normal transition in these materials

which include the effects of randomness and thermal fluctuations.

A two-dimensional thin film system based on Cu-Pb is discussed and

shown to be qualitatively similar to the three-dimensional in situ

composites. The critical current of these films is proportional to

(Tc-T)I'8, a esult which is not well understood theoretically.

Finally, 'we report calculations on square random resistor

lattices. Large 'lattice numerical simulations, effective medium theory

and a renormalization group method are used to study the bulk
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conductance of anisotropic networks as a function of concentration.

The last technique is used to provide highly accurate estimates of the

percolation transport exponents t and v. In two dimensions, our

calculations indicate that they equal the coherence length exponent

to within a few percent. We have also calculated %) by the same

technique, obtaining a result which supports the notion of site-bond

universality.
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CHAPTER ONE: INTRODUCTION

The problem of the resistivity of metallic mixtures has attracted

scattered attention for more than a century. As early as 1860,

resistivity measurements were made on a wide variety of binary alloys

(Matthiessen 1860). On the theoretical side, Maxwell (1892) developed

a simple theory for the effective resistivity of a mixture.

The literature of the next fifty years was not extensive.

Landauer (1952) reviewed the experimental and theoretical literature up

to 1952, comparing the existing theories and deriving an expression

(originally due to Bruggeman (1935)) for the effective resistivity by

assuming that each crystallite acts as if it were surrounded by a

homogeneous medium whose properties are those of the mixture. A recent

comprehensive review of electrical conduction in inhomogeneous media

has been written by Landauer (1978).

An extensive early study of superconductivity in alloys was done

by Allen (1933). Many of his results anticipate later work, but he was

hampered (as were early researchers working on normal metal mixtures)

by inadequate theoretical understanding.

Three theoretical developments have encouraged the wide current

interest in inhomogeneous media. First, the electronic properties of

substitutional alloys received considerable theoretical attention.

This led to interest in the classical mixture problem, and to the

application of alloy theory techniques to the classical problem

(Kirkpatrick 1973, Stroud 1974). The recognition that random resistor

lattices were a good model for inhomogeneous media put the classical

problem into a more tractable form (Kirkpatrick 1973). Finally, the
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application of modern phase transition theory to the classical resistor

lattice (Stinchcombe and Watson 1976) and quantum mechanical Josephson

junction array (Giovannini and Weiss 1978) provided deeper

understanding of experimental phenomena.

The work reviewed in the following chapters covers a number of

areas in the general field of inhomogeneous superconductors. We first

discuss our work on practical properties of in situ Cu-V 3Ga. This

material is a random mixture of normal Cu and superconducting V3Ga.

Our measurements indicated that the material is potentially useful. We

then review our work on in situ composites which helped to clarify

their physics, emphasizing the roles of various mechanisms that

contribute to their superconductivity. In response to the considerable

current interest in phase transitions in lower dimensions, we have

studied a two-dimensional thin film composite system and report our

initial results here. Finally, we review our theoretical work on

random resistor lattices. This work elucidated the effects of

conductance anisotropy, introduced the idea of non-ohmic percolating

networks, and led to greatly improved estimates of two-dimensional

transport critical exponents in the percolation problem.

. . . . . . . . . . . . . . . ..*, ... .



CHAPTER TWO: HIGH FIELD V3GA IN SITU COMPOSITES

The ability to carry very large, essentially lossless currents in

high magnetic fields makes type II superconductors attractive for

applications. We begin this chapter with a brief discussion of the

practical shortcomings of type II superconductors and how standard

composite wires overcome these problems. The in situ technique, an

alternative approach to composites, is discussed, and some of the

results in the literature are summarized. We outline the process

developed at Harvard for producing in situ composites, and then discuss

the superconducting properties of a specific system, Cu-V 3 Ga. Finally,

we mention some aging properties of CuNi-Nb composites which may have

some practical implications.

2.1 Standard Composite Wire

The development of practical high-field superconducting wires did

not immediately follow the discovery of high HC2 compounds. As

discussed in chapter 5 of Tinkham (1975), the short electronic mean

free paths of type II superconductors place severe design constraints

on practical wires. A fluctuation into the normal state, with its

resulting dissipation, will grow unless the heat generated can be

carried away from the superconductor. In order to increase heat flow

away from the wire, practical wires are multifilamentary (to increase

the surface to volume ratio) and clad in copper. Filaments less tnan

100 um in diameter are generally small enough to ensure stability.

Commercial composite superconductors achieve this filament size by
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starting with large billets of copper into which a number of holes have

been drilled. (Alternatively, the Cu can be extruded with holes.) A

ductile superconducting rod is placed in each hole, and the material is

extruded, swaged and drawn until the desired diameter is reached.

After a certain amount of reduction, pieces can be bundled to increase

the number of filaments in a cross section, and the wire may be

annealed to relieve work hardening. When the final wire size is

reached, other elements are often plated on and diffused into the

composite. For example, if the original rods were Nb (which is

ductile), Sn can be added and reacted to form Nb3 Sn. Nb3 Sn is a better

superconductor than Nb but is not ductile.

This process works well, although it does have some drawbacks.

Machine-shop-size rods of superconductor must be reduced to less than

100 um, and this takes a considerable number of steps. In addition,

the number of filaments in a wire is limited by how much initial

stacking and bundling can be done economically, so that commercial

wires often have from a few hundred to a few thousand filaments.

2.2 Tsuei Wire

An alternative way to make composites is the in situ technique.

Metals which are immiscible in the solid state, such as copper and

niobium, are melted together and cooled at a controlled rate. The

superconductor precipitates out, giving small superconducting

inclusions in a normal metal matrix (see figure 2.1). The material is

then drawn, elongating the inclusions into filaments (see figure 2.2).

4 - -I
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This technique was first used to make superconducting wire by Tsuei

(Tsuei 1973, 1974, Tsuei and Newkirk 1974).

There are a number of differences between in situ and

conventionally produced composites. The filaments in the former are

randomly placed and possibly discontinuous. Some of the consequences

of this will be discussed in the next chapter. The in situ approach

has the advantage of starting with smaller superconducting inclusions

so that less mechanical reduction is needed to reach a given final

size. In addition, the smaller initial size makes it possible to have

104 or more filaments in a cross section without having to bundle the

wire.

It remains to be seen whether the in situ approach will prove

commercially competitive. Some of the experimental results to date are

reviewed below.

A. Some Previous Work on In Situ Composites

Much of the practical effort in superconducting materials has been

to produce wires with high critical temperature, current and field. A

number of groups have produced Nb3Sn in Cu in situ composites using

similar techniques. (Bevk et al. 1980, Fihey et al. 1979, Finnemore

et al.. 1979).

Figure 2.3 shows the critical current density as a function of

field for a number of Cu-Nb 3Sn in situ composites prepared at Harvard

(Bevk et al. 1980). These composites are approximately 23% 4b3Sn by

volume, and have critical current densities comparable to conventional

h b_____ I
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composites. These results are typical of those obtained by other

groups. AC loss measurements are encouraging, although improvement

will be needed before Tsuei wire can compete with conventional

composites in this area (Bevk et al. 1980). The mechanical strength

of in situ composites is very high (Karasek and Bevk 1979, Bevk and

Harbison 1978), which is very important in high field and rotating

machinary applications.

Initial attempts at producing in situ V3Ga, which should have a

higher critical field, were not as successful. Chen and Tsuei

(1976) produced a number of compositions by combining all of the

constituents in the initial melt, deforming the resulting ingots into

wires and tapes, and heat treating. They were unable to obtain a

transition temperature above 13 , which is 2 -3K lower than the bulk

value (Das et al. 1977). In addition, their Jc values were quite low

(see figure 2.4). There are at least two factors that contribute to

these effects. Some off-stoichiometric V3 Ga probably forms during the

initial melt, since the superconducting transition begins as high as 9

for some of the unannealed samples. This is significantly higher than

the 5.3K value of Tc for bulk V (Roberts 1969). The early formation

of a brittle compound could lead to breaking of the filaments during

reduction, which would lower the critical current density. The

decrease in Tc is more difficult to explain. All of the Ga will not

react with Va, but in these samples there was as much as four times the

amount of Ga necessary to form stoichiometric V3Ga , and X-ray analysis

indicated that the A-15 structure was present. It is possible that

their annealing temperatures, which varied from 600 to 850 , were too

......... .........
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high. This can destroy the long-range order of the V chains in V3Ga,

causing Ga and V atoms to interchange on the lattice. Experiments and

theory indicate that this lowers Tc (Dew-Hughes 1975, Labb' and Friedel

1966). In the next section we describe our more recent work on Cu-V 3Ga

which has been more successful.

B. Preparation of In Situ V3Ga

All of the composites discussed in the remainder of this chapter

and in the next chapter were produced by radio frequency levitation

melting. This method was first used to make in situ superconducting

composites by Harbison and Bevk (1977).

Cu and V were melted together in an RF coil which provided the

energy both to melt the materials and levitate the sample. Levitation

allows very high temperatures to be reached, avoids crucible

contamination, and mixes the components through convection. Samples

were melted a number of times this way in an argon atmosphere to insure

good mixing and dropped into a water cooled copper mold after each

melting. The samples were subsequently placed in a slotted water

cooled vertical boat and RF melted, with the RF also keeping the molten

metal away from the sides. When the RF power was lowered, the molten

samples spread onto the walls of the boat. This provided more uniform

cooling than was possible by dropping into a mold. Samples were next

swaged and drawn down to the desired size, and Ga was vapor deposited

onto them. The Ga was reacted in a two-step process by annealing at

4500C for five days and at 5900C for one day. These low reaction
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temperatures were adequate at least partly because of the very fine

ribbon-like structure of the V filaments. Diffusion times scale as the
0

shortest dimension squared, and these filaments were typically 1000A
0

to 2000A thick by I um to 2 um wide.

C. Superconducting Properties of In Situ V3Ga

We have studied two series of V3Ga samples (Bevk et al. 1979a,b).

Both started with 20 volume percent V in a Cu matrix. The first set

was coated with 12.4 weight percent Ga, about twice as much as was

necessary to transform all of the V into V3Ga. The second set was

coated with slightly less Ga than was needed to form stoichiometric

V3Ga.

The superconducting transition temperature Tc was measured for one

sample from each set. Tc was measured resistively using the standard

four-probe technique. Both of the samples reached one-half of their

normal state resistance at 15.5 K in zero field. The high Ga

concentration sample had a narrower transition, going from one-quarter

to three-quarters of its normal state resistance in 0.13 K, compared to

0.3jK for the low Ga sample. The high Tc and narrow transitions

indicate that stoichiometric V3Ga can be formed in situ at fairly low

annealing temperatures.

The critical current density was measured as a function of field

at 4.2 K . The critical current was taken to be that current which

produced a I uV drop across 5 mm of wire. Critical current density as

a function of field is plotted in figure 2.4, along with the values

L~~~ - L
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obtained by Chen and Tsuei (1976).

The upper critical field was obtained in two ways. One way was to

extrapolate the data in figure 2.4 to Jc=O. The other was to apply a

small measuring current (about lamp/cm2 ) and measure voltage as a

function of applied field. Both methods gave essentially the same

answer. The high Ga content sample had HC2= 22.4±0.1 T, a very good

value. The lower Ga content sample had HC22-1
8 .3±0.1 T, which indicates

incomplete formation of V3Ga. This is consistent with earlier data on

conventional composites (Yoshida et al. 1975) which indicated that

significant amounts of Ga remain in the Cu matrix even after heat

treatment.

The properties of our V3 Ga are significantly better than those of

the material produced by Chen and Tsuei (1976). We attribute the high

Jc to the relatively low annealing temperature, which causes less

recrystaliztion and thus allows better pinning. The high Tc and HC2

were also the result of the low annealing temperature, which would

introduce a minimum of lattice disorder into the V chains.

We note that the properties of these materials have not been

optimized. Improvement will probably result from varying

concentrations and heat treatment, and by adding third elements.

D. Aging

Composite wires intended for applications in time-varying fields

have requirements in addition to those mentioned in the beginning of

this chapter. For example, losses due to eddy currents induced in the

- • . . .- " " •-". " ' " " .. . .. • . _ m '- ' " ( , - .m
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normal metal matrix by the alternating field must be minimized (Tinkha-

1975, chapter 5). One approach is to decrease the induced currents by

increasing the matrix resistivity. This can be done by adding a third

element such as Ni.

Some of the Cu-N4b samples which will be discussed in the next

chapter had 3 atomic percent Ni added to the matrix. We found that

these samples were superconducting when measured within months of being

made, but that samples that were re-measured two years later were not

superconducting. One sample without Ni did not lose its

superconducting properties in the same time. This difference could be

the result of Ni diffusing into the Nb, although it is difficult to

understand such effects occuring at room temperature, even with the

short diffusion distances necessary because of the fine filament sizes.

Since Ni is an excellent material for increasing the resistivity of Cu,

this effect clearly deserves urther study.
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CHAPTER THREE: ELECTRICAL CONDUCTION IN IN SITU COMPOSITES

In the last chapter, we discussed high current and high field

properties of some in situ composites. It was noted that these

materials can carry large supercurrents which are comparable to those

obtained in conventional continuous-filament composites. This is

interesting, since the filaments in in situ composites are random and

possibly discontinuous.

Three explanations have been given for the large supercurrents of

these materials. One is that the filaments percolate, that is, that

they form a continuous network through random contacts (Davidson and

Tinkham 1976). A second explanation is that the proximity effect

carries a supercurrent between filaments which do not actually touch

(Tsuei and Newkirk 1973). Finally, it has been shown that highly

reduced wire can have a very low resistance even when the filaments do

not touch and the matrix is fully normal (Davidson et al. 1975,

Davidson and Tinkham 1976).

These explanations are not mutually exclusive, of course. In this

chapter, we will outline earlier work which compared the different

explanations, and review our own work on the subject (Lobb et al.

1978). We will then present a heuristic model of the superconducting

to normal transition which is based on percolation theory (Tinkham

1977, Lobb et al. 1978), and discuss a more rigorous theory which is

isomorphic to the ferromagnetic XY model (Giovannini and Weiss 1978,

Patton et al. 1980, Imry 1980).

- -!
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3.1 Early Experiments and Interpretations

Tsuei and Newkirk (1973) investigated samples of Cu1 xNb x with x

varying between 0.005 and 0.05. Their specimens were cast and then

rolled down to 3/4 of their initial cross sectional area. They

explored the superconducting transition resistively and inductively,

using the latter technique to estimate the volume fraction of the

samples from which the flux was excluded. They found that this

effective superconducting volume fraction was up to an order of

magnitude larger than the Nb volume fraction. In addition, many of the

samples had a resistivity of less than 10-11 ohm-cm at 2K, in spite of

the lack of metallographic evidence for continuous Nb paths. These two

facts led Tsuei and Newkirk to suggest proximity effect coupling as the

important conduction mechanism in these low Nb concentration materials.

Higher concentration materials were later studied, usually with

greater elongation and with Sn present to form Nb3Sn. Two important

plots are shown in figures 3.1 and 3.2. These data were taken with a

SQUID voltmeter which allowed subpicovolt signals to be,detected

(Davidson and Tinkham 1976).

Figure 3.1 shows a sample with roughly 8 volume percent Nb3Sn.

The wire was drawn until its cross sectional area had been reduced by a

factor of 200. As the figure shows, there is a four order of magnitude

drop in the resistance between 16K and 17K. The resistance then levels

off, staying roughly constant between 7K and 16K. Finally, below 7K, a

second transition occurs, and the resistance drops below the range of

the voltmeter.
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The data plotted in figure 3.2 are for a 15 volume percent sample

with a cross sectional area reduction of 300. These curves have no

pronounced resistance plateau. This sample appears to be completely

superconducting at fairly high temperatures.

These results inspired a number of important ideas. First, it was

shown that non-connected superconducting filaments in a fully normal

matrix should lead to an effective resistivity peff given by

Peff"p/fA3  (3.1)

where p is the resistivity of the matrix, f is the superconducting

volume fraction, and A is the cross sectional area reduction (Davidson

et al. 1975). This formula explains the level of the plateau in

figure 3.1, and agrees reasonably well with data obtained over a wide

range of reductions (Davidson et al. 1975, Callaghan and Toth 1975,

Roberge et al. 1978).

The behavior of the sample of figure 3.2 was explained by noting

that if enough superconductor is present, the filaments will form a

continous network through random contacts (Davidson and Tinkham 1976).

Above the critical volume fraction fc at which this occurs samples are

expected to be resistanceless, while below f., a resistance of the

order predicted by (3.1) should appear. We note that (3.1) can be

modified by multiplying the right hand side by (f-fc) to take this into

account (Tinkham 1977). Various theoretical values of fc exist,

4- -.. _"-_ r
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ranging from 0.15 for randomly packed hard spheres (Sher and Zallen

1970) to 0.25 for grains which have, on the average, similar shapes

(Kirkpatrick 1973) to 0.29 for randomly placed overlapping spheres

(Shante and Kirkpatrick 1971) to 1/3 from the mean field theory.

These theoretical values are of the same order as the amount of Nb3Sn

in the second sample.

3.2 Reduced Cu(NiZn)-Nb Samples

To help distinguish between the explanations offered in the last

section, we studied a number of samples with a variety of

concentrations of Nb (to test for percolation) and different amounts of

impurities (to vary the strength of the proximity effect). The samples

studied were Cu-Nb alloys without Sn. (We left out the Sn because

Cu-Nb-Sn alloys have more than two phases present since it is difficult

to get all of the Nb to form stoichiometric Nb3 Sn.) All samples were

made by the process outlined in the previous chapter.

Measurements were made with SQUID voltmeters. Initially, the

SQUID voltmeter built by DaviJson (1975) was used, but it was

eventually replaced by a more reliable instrument using a cryostat

built around a SHE SQUID and electronics.

A. Cu-Nb Samples

The first series of samples studied consisted of Cu-Nb, with the

Nb occupying from 0.1 to 0.2 of the total volume (Lobb et al. 1978).

4- . ___ ___ __ _ ___ ___ ____ ___ ___ ____ __ ___ _ A
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The cross sectional area reduction was 24 for all of these samples.

These samples all had a single transition, with no distinct plateau in

the R vs. T curves, in spite of current densities as high as 600 A/cm 2

which were intended to suppress the proximity effect.

Resistance is plotted against temperature for an f=O.1 sample in

figure 3.3. We note that (3.1) predicts a plateau at about 6x10 "6 ohm,

well within the sensitivity of the voltmeter. Thus, these samples are

either percolating, or else the proximity effect is very strong in

them.

At an NS interface, the pair amplitude decays in the normal metal

over a characteristic distance

N= AvF/2wkBT-- 1"91x0 6 (m-K)/T (clean) (3.2a)

{ '*VFL 11/2 1/2
N 6i-'kT =7.98xI0-4(l) (m-K)1/2  (dirty) (3.2b)

where vF is the Fermi velocity, T is temperature and x is the electron

mean free path (Deutscher and deGennes 1969). We have used the free

electron value for the Fermi velocity vF-1.5 7x06m/s for Cu here.

We estimated x for these samples using the experimentally

determined value (pI)F 1.15.4x10 6 ohm-m 2 (Chambers 1952).

Using t-2.6x10 7m for the 10% sample of figure 3.3, we get a IN

of 2.39x10" 7m from the clean formula (3.2a) and 1.44x10 7m from the

--4----. ... . .. . ...- il i i'.. .. . ..
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dirty formula (8.2b) at 8K. Since the filaments are typically 10"6m or

less in cross section in these samples, we see that a significant

volume of Cu will be influenced by the proximity effect. Defining an

effective volume fraction as

f* f(1+ FN/a)(1+ 9N/b)(1+ fN/c) (3.3)

where a, b, and c are measured average values for the axes of the Nb

filaments and using the conservative dirty limit formula for IN, the

10% sample has f*=0.16. It was clearly desirable to shorten the mean

free path if we wished to see a plateau.

B. A CuZn-Nb Sample

To see the effect of shortening t, the 10% sample discussed in the

last section was sealed in an evacuated quartz tube. At the other end

of the tube was a small pellet of Zn. Zn was chosen because of its low

boiling point and solubility in Cu. The tube was placed in a 9000C

oven, which vaporized the Zn. The oven was turned down to 8000C and

the sample was annealed at this temperature for five hours. At the end

of this time, the sample was weighed, indicating that all but 3.8% of

the Zn (by mass) was in the wire.

Resistivity measurements indicated that x had shortened from

2.6x10- 7m to 1.2xlO 7m. Resistance vs. temperature curves showed a
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small plateau, as can be seen in figure 3.4.

These experiments showed the importance of proximity effect in

these composites. Clean Cu-Nb samples with f as low as 0.1 had no

plateau, while the addition of an impurity quenched the proximity

effect enough to cause a plateau.

C. CuNi-Nb Samples

Adding Zn to samples after they are produced has some drawbacks.

The heat treatment causes changes which are not desirable. For

example, figure 3.4 shows evidence for superconductivity above 12K,

indicating that phases other than pure Nb are present.

Zn could be added to the initial ingot, but its low boiling point

would cause much of it to evaporate during the high-temperature

processing. Another impurity was needed.

After checking phase diagrams (Hansen and Anderka 1958), we

decided to add Ni to the Cu matrix. Ni is soluble in Cu in all

concentrations, which is desirable to avoid having two different normal

phases present. In addition, the solubilities of Ni in Nb and Nb in Ni

are small. Finally, Ni has a higher melting point than Cu, so material

loss was not a problem.

We made samples with f ranging from 0.07 to 0.18, where the matrix

consisted of Cu with 3 atomic percent Ni added. All of the samples

were swaged until the cross sectional area was reduced by a factor of

16.

Typical resistance vs. temperature curves are shown in figure
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3.5. The sharp drop in resistance as the temperature is reduced

between 7K and 8K results from the Nb becoming superconducting. The

slower falloff in resistance with temperature, which begins at around

10 7o) ms, is &tributed to the gradual strengthening of the proximity

effect coupling between filaments until a current-dependent temperature

TC1 is reached where R=O. This interpretation is supported by the

maximum magnitude of the resistance in the slow falloff region of the

curves, which is in reasonable agreement with that predicted for a

fully normal matrix in (3.1). All of the CuNi matrix samples had the

characteristic two-part transition, indicating that the filaments

probably do not form a geometrically connected network in the range of

concentrations studied. We conclude from this that fc is greater than

0.18 in these samples. We emphasize that samples with the same amount

of superconductor, but with different amounts of impurity in the

matrix, can have quite different electrical behavior.

The smooth variation below the first sharp drop in resistance in

figure 3.5 is interesting. We found that at higher currents, the

resistance went to zero as a power law, R=R0 (T/TcI-1)". The

experimental points were fit using a least-squates procedure with

log(R) and log(T/Tcl-1) as the variables and u, Ro and TC1 as fitting

parameters. We obtained good agreement with a power law over two

orders of magnitude for the 7% sample for constant currents ranging

from 50 to 142 amps/cm 2 (see figure 3.6). For lower current densities,

for which the transition occurs at higher temperatures, spurious

signals due to the transition of the soldered voltage lead connections

and thermal EMF's prevent quantitative interpretation of the data.
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Samples with 13% Nb showed more variation from one current to the next,

probably because of bad mixing or finite sample size effects, both of

which are aggravated by having more Nb. A single dirty sample prepared

by hot extrusion from powders which contained 5% Nb and no Ni also gave

data in good agreement with a power law. For the 5% and 7% samples,

fitted values of M ranged from 1.0 to 1.15 for the currents used, with

a mean of 1.06 and an rms deviation of 0.04.

D. Undrawn CuNi-Nb Samples

In order to remove any effects caused by the filament elongation,

we prepared a series of samples with Cu-3 atomic percent Ni matrices

where the volume fraction of Nb varied between 0.07 and 0.3. These

samples were not reduced, but were spark cut into wires which were

roughly 2.5cm by 0.1cm by 0.1cm.

A serious problem hampered this work. Between f-0.1 and f=0.18,

samples did not mix well, as macroscopic clumps of Nb were present.

Some conclusions can be extracted from the remaining data, however.

The f-0.2 sample had a small plateau about 0.1K wide with Ro/RN of

order 5x10 "3 and the f-0.3 sample had just a single transition. From

this we concluded that fc is between 0.2 and 0.3, and is probably

between 0.2 and 0.25, in these samples. This agrees with our results

on the reduced wire.
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3.3 Theoretical Models for the Plateau Resistance

The transistion of a composite superconductor is drawn

schematically in figure 3.7. At Tc, the resistance drops from the

normal state value to Ro . The variation of resistance with temperature

becomes slower below Tc, with resistance eventually dropping to zero at

TCi. We would like to understand how Ro and TC1 depend on material

parameters, as well as how the resistance depends on temperature. We

note that some articles in the literature follow a different

convention, calling the upper transition temperature Tco and the lower

one Tc.

A. Percolation Near Tc

Just below Tc, where the Nb inclusions have just become

superconducting, the coupling between filaments will be weak if the

normal metal coherence length is short. This is true because the

critical current Ic between two filaments approaches zero as T

approaches Tc and the coupling energy between filaments is proportional

to Ic (Tinkham 1975, chapter 6). In the case of a dirty matrix the

resistance near this temperature is thus essentially the resistance of

a classical mixture of two materials.

Percolation theory describes the bulk properties of classical

inhomogeneous media. We will discuss percolation at some length in

chapter 5. For now, a summary of results is all that is necessary.

A number of important ideas have emerged from considering large

'0- 0 W

7--.. ..................
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two-component lattices of resistors r, and r2  (Straley 1977a,

Kirkpatrick 1973, 1979). If one of the resistances, rl, occurs with

probability p, then there is a critical probability pc above which the

r1's form an infinite cluster. This pc is different for different

lattices. Furthermore, when 1/r2=g2=0, for a small range above Pc' the

bulk conductance G varies as

GcC(p-pC) t (P>Pc) (3.4)

where t seems to depend at most only weakly on everything but the

dimensionality of the lattice. For a lattice consisting of shorts

(with probability p) and resistors, the bulk resistance varies as

RC(P c-p)S (P<Pc) (3.5)

For three dimensional systems, numerical simulations indicate that s is

between 0.6 and 0.8 and that t is between 1.5 and 1.7 (Straley 1977a).

In two dimensions, s-t=1.35±0.02 (Lobb and Frank 1979,1980).

In real materials, occupation probabilities p in (3.4) and (3.5)

are replaced by component volume fractions f. In general, the critical

volume fraction fc will depend on the system studied. The critical
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exponents s and t are again expected to depend only on the

dimensionality of the system. Aggregate films (Liang et al. 1976) and

cermets (Abeles et al. 1975) have been shown to give experimental

values for t in two and three dimensions which are comparable to the

values cited above.

The general shape of the R vs. f curve is concave downward for

the isotropic samples, indicating that s is less than one. This

qualitative result is in agreement with the percolation model. The

scatter due to sample inhomogeneity prevented us from obtaining any

quantitative estimate for the critical exponent s.

We can phenomenologically combine (3.1) and (3.5) to obtain

(Tinkham 1977)

Ro/RN O(fc-f)S/fA3  (3.6)

which we expect to hold for (fc-f) small and A large.

Equation (3.6) is qualitatively consistent with the data available

on Tsuei wire (Callaghan and Toth 1975, Davidson et al. 1975, Tinkham

1977, Lobb et al. 1978). Increasing A and f decreases Ro/RN.

Unfortunately, quantitative comparison is difficult because of sample

inhomogeneities and sample-to-sample variations. The important

conclusion to be drawn from (3.6) is that R0 approaches zero as f

approaches fc so that we expect a two-part transition only for f less
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than fc" The dependence of Ro on f is indicated schematically in

figure 3.8.

B. A Percolative Model of the Temperature Dependence

When the superconducting phases of the filaments are strongly

coupled, the classical model of the last section may break down.

Nonetheless, it is instructive to ignore this problem to construct a

simple theory of the temperature dependence of the resistance.

The results outlined earlier in this chapter showed the importance

of the proximity effect in these wires. The presence of Ni in the

matrix changed the electrical characteristics greatly. This suggests

that an effective volume fraction f* and not the nominal volume

fraction f is important. In the clean samples, f*(Tc)>fc so that no

plateau appears. In the samples containing Ni, f*(Tc)<fc so that the

temperature must be lowered to TC1 for an infinite superconducting

cluster to form. We would expect f* to depend on the normal metal

coherence length (3.2a,b), which varies smoothly with temperature.

Expanuing f*(T) around TC1, we obtain (Tinkham 1977, Lobb et al. 1978)

f*(T) - f*(Tc,) + ( 2f*/ T)T c(T-TcI) + ... (3.7)

Combining (3.6) and (3.7) gives (Tinkham 1977, Lobb et al. 1973)
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R(T)cC(T/TcI-I)S/A 3  (for TcI<T<Tc) (3.8)

where R(T) is the temperature-dependent resistance of the composite.

This model predicts T C through f*(Tci)=fc. Assuming fc is

between 0.1 and 0.3 and using (3.3) with par.!meters for the 7% Nb in

CuNi wire, TC1 is of the order of a few degrees, in reasonable

agreement with the data in figure 3.5.

The model also predicts that the resistance should go to zero as

(T-TcI)', and that u=s. Experimentally, we found that u=1.0 6±O.0 4

(figure 3.6), which does not agree well with either the two-dimensional

(1.35±0.02) or three-dimensional (0.6-0.8) values for s. It is

possible that this disagreement is the result of the anisotropy of the

samples, a point which we will discuss in chapter 5. Unfortunately,

the isotropic samples with ffc which would have yielded an

experimental value of u were the ones which were badly mixed. Thus, it

was impossible to measure u for undrawn samples. More fundamentally,

the model used in this section is an oversimplification. We discuss a

more rigorous model in the next section.

C.The XY Model

Two superconductors separated by an insulator or a normal metal

have a coupling energy given by -(fIc/2e)cosagP, where Ic is the

critical current of the junction and ap is the phase difference

between the superconductors. For an array of superconductors which are



37

assumed to interact only with their nearest neighbors, we can add up

these energies to write a Hamiltonian

H =H 0-Q/2e) 0 Iccos( Pi- j) (3.9)H°'(/2e<i,j> i3

where H0 represents terms for the individual islands, and the sum is

due to the coupling energies.

This is seen to be equivalent to the standard model Hamiltonian

for magnetic systems

H = H° i , a (3.10)

if the spins Ii are confined to a plane so that Si.Sj -=S iScos( f i- 9j).

Thus, an jrray of weakly coupled superconductors is isomorphic to a

ferromagnet whose spins have two components. This is the n=2 (where n

is the number of components) or XY model (Giovannini and Weiss 1978,

Patton et al. 1980, Imry 1980). The number of components in the XY

model falls between the more familiar Ising (n-1) and Heisenberg (n=3)

models (Ma 1976).

We expect the phases to become coupled when kT is lower than the

coupling energy between grains. We thus estimate TI by saying

4- -_____ _____
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kBTc =(5/2e)zl (T) (3.11)

whiere I c(T) is the average intergrain critical current, z is the

coordination number, and we are ignoring factors of order unity.

To get a more explicit estimate for TC1, we can calculate the

lim~iting formi of (3.10) for an array of BCS superconductors connected

by tunnel junctions (Klapwijk 1980). In this case

Ic(T) = (7r&(T)/R)tanh(A(T)/2kBT) (3.12)

where R is the resistance of a junction and A(T) is the energy gap

(Tinkham 1975, chapter 6). Combining (3.11) and (3.12) near TC9 we

obtain

Trc/rC 1 !'1+Re2I3.7#Az =1.R/(z.15,222ohm) (3.13)

so that TC1 depends on the single junction resistance R and the
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coordination number z.

Near TCI the resistance as calculated by the XY model varies as

(T-TcI)". It has been suggested that u=(4-d)O , where the coherence

length exponent )=.670±O.006 in three dimensions (Ma 1976). This

implies that p=0.67 in three dimensions, which agrees with the

percolation model of section 3.38 but does not agree with our

experimental value of 1.06.

In two dimensions, -) is infinite (Kosterlitz 1974), which

suggests that u is infinite. This agrees with the result of Halperin

and Nelson (1979), who found that R went to zero exponentially as T

approaches T C. This disagrees markedly with the percolation model

prediction, which says that p=1.35 (Lobb et al 1978'. (Some tw.,o

dimensional samples will be discussed in the next chapter.)

4 _ . . .. . , ,



CHAPTER FOUR: SUPERCONDUCTING COMPOSITE FILMS

In this chapter we report preliminary work on a thin film

composite system. The films are analogous to the materials discussed

in the last two chapters in that they consist of superconducting

islands in a normal metal matrix. The difference is that these samples

are two-dimensional, that is, the films are only one island thick.

This work was motivated by the fact that many of the properties

(such as the critical behavior) of inhomogeneous superconductors depend

only weakly on parameters other than the dimensionality. In addition,

many interesting effects are expected to occur in systems with reduced

dimensionality (Halperin and Nelson 1979).

4.1 Discontinuous Normal Metal Films

When a metal is deposited on a substrate, there is generally a

measurable lag between the beginning of deposition and the onset of

electrical conduction. This effect occurs because metals tend to

diffuse on the substrate and bead up to minimize the surface energy.

In general, lower melting point materials have a higher conduction

onset thickness because they diffuse more readily. A general review of

electrical conduction in discontinuous films has been written by Morris

and Coutts (1977).

Liang et al. (1976) studied resistivity as a function of

thickness for Bi films deposited at room temperature. Their films were

deposited onto an evaporated, and therefore rough, SiO layer, which

would tend to discourage diffusion. They found a sharp five order of
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magnitude drop in the resistivity in a narrow range of thickness around
0

100A.

4.2 Composite Superconductor-Normal Metal Films

A. Pb-Cu Films

Our original choice for a superconducting material was Pb. We

evaporated the Pb onto a room temperature glass substrate, and found

that the resistance dropped from more than 108ohm to around 103ohm
0

during additional deposition of a mass equivalent to less than 1OA
0 0

thickness. Our onset occured at thicknesses between 500A and 100OA.

We attribute the difference between our Pb and Liang et al.'s Bi to the

substrate smoothness.

A number of films were made in which the Pb thickness spanned the

aggregation thickness. The Pb films were overcoated with Cu without

breaking vacuum. The resulting composite film was then removed from

the evaporator and wired into a cryostat.

Measurements of resistance vs. temperature for these samples

showed a depressed Tc and a broad transition. Transitions were

typically a degree or more wide with the films remaining fully normal

down to 4K. There was little evidence for the two-part transition seen

in Tsuei wire (see figure 3.5).

The reason for this broad transition became apparent when the

films were examined with a scanning electron microscope. The Pb
0

islands were typically less than 1O00A in all dimensions, which is
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comparable to the coherence length in Pb. In this limit of smill

islands, the electrons see an average electron-phonon coupling, so that

the distinctions between the two materials become blurred as far as the

superfluid is concerned (Deutscher and deGennes 1969). This is not a

problem in superconductor-insulator composites because the order

parameter in the superconductor is not depressed by an insulating

boundary. Although the limit of small particle sizes (the Cooper

limit) is interesting experimentally, it was not pursued because we

wished to consider weakly coupled islands of strong superconductor.

Further work in this area is warranted.

B. PbBi-CuAl Composite Films

We wished to make samples with weakly coupled islands of strong

superconductor. This can be done by making the islands bigger (to

reduce intraisland fluctuations) or by making the matrix mean free path

shorter (to reduce the interisland phase coupling). In order to get

large islands, we must have the island size large compared to the

superconducting coherence length §(T). In the dirty limit,

J(T)=0.855( o)'/2/(1-T/Tc)1/2 (4.1)

where 1o is the Pippard coherence length and Z the electron mean f-ee

path (Tinkham 1975, chapter 4). Thus, we can shorten J(T) by shortening
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Z. To this end, we prepared Pb-3 weight percent Bi alloys to use as

the superconductor. We also increased the island size directly by

tilting the substrate 600 from the standard normal incidence (Holland

1958). To decrease strong interisland phase coupling through the

proximity effect, we used Cu-4 weight percent Al for the the normal

metal to decrease 9 N, as suggested by (3.2b).

The samples were prepared on 2.5 cm square sapphire substrates

vapor cleaned in ethanol followed by trichloroethylene. On a liquid
0

nitrogen temperature substrate, 1O00A of Pb-30 weight percent Bi was

evaporated through a mask to form strips on opposite sides of the

sapphire to make high Tc leads (see figure 4.1). The sapphire was then

removed from the evaporator, re-cleaned, and mounted on a rotatable

stage in the evaporator. Next, PbBi (3%) was evaporated at a 600 angle0

at 3A/sec until the film's resistance dropped below 108 ohm. At this

point, evaporation was stopped by moving a shutter and turning off the

heater current. After a minute or two, the film's resistance would be

of the order of 1000 ohm and fairly stable. The stage was rotated back
0

to normal incidence and CuAl (4%) was evaporated at 3A/sec until the

desired thickness was reached.

Three samples were made following the above prescription. All of
0 0

them aggregated within 15A of 765A (this is an average thickness,
0

assuming bulk density). Sample A had 1SOOA of CuAl deposited on top,
0 0

sample B had 750A deposited on top, and sample C had 390A deposited

on top. All samples were 1.7cm long and 2.5cm wide.

C. Morphology of PbBi-CuAl Films
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Figure 4.1 Diagram of the sample geometry.
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A scanning electron micrograph of sample C is shown in figure 4.2.

The morphology is typical of samples with this thickness of PbBi. The

twisted, highly-connected network is the result of partial aggregation

of the originally circular islands. This interpretation is supported

by the fact that thinner Pb films have islands that are more nearly

ci rcul a r.

D. Electrical Properties of PbBi-CuAl Films

Samples were studied in a variable temperature cryostat by

measuring voltage as a function of temperature at constant currents. A

Keithly Nanovoltmeter was used to measure voltage. With care, noise

could be reduced to below 60nV.

Resistance (V/I) vs. temperature is plotted in figure 4.3 for

sample A. At low currents there is a single transition in a narrow

temperature range. As the current is increased, a two-part transition

develops. Our monitoring of resistance while the PbBi was being

evaporated indicated that the PbBi was barely connected, that is f-fc

We would expect such a system to carry a small supercurrent as soon as

the islands become superconducting, and this was the case for all three

samples. When the current is increased, however, the interisland

critical currents are exceeded fairly quickly, since the islands are

only weakly connected.

Thus, the transition splits into two parts for higher currents.

As temperature is lowered, the islands become superconducting,

i.. .. .. . ' .. . !'j "- . .
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decreasing the resistance sharply. When the temperature is lowered

further, the superconducting phase coupling increases in strength

relative to kT until the composite resistance drops to zero.

The resistance of these samples is not a simple power of (T-TcI).

Qualitatively, the fitted exponent increases as the current is

decreased. This is not surprising, in light of the fact that the power

law dependence discussed in chapter 3 holds in the limit of small

current. Since we have a single sharp transition for these samples as

the current approaches zero, we cannot extract information about the

value of the exponent u.

We can study the critical current as a function of temperature in

these samples, however. Ic was measured by increasing the temperature

at constant current until 60nV appeared across the sample. Fitting to

the form

Ic=Io(1-T/Tc)s (4.2)

where Tc is the small current transition temperature, we found that

a-1.8±0.2 for these samples. A log-log plot of Ic against (Tc-T) for

sample A is shown in figure 4.4. The straight line fit is quite good,

extending over three decades in Ic
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E. Discussion

Qualitively, the transition shown in figure 4.3 is similar to that

of figure 3.5. The explanations for the two figures are the same. The

transition splits into two parts for high currents because high

currents destroy the phase coherence before they destroy the

superconductivity of the individual islands. We expect the temperature

variation of resistance to be more amenable to quantitative

interpretation in thinner films where f<fc" In this case, a

current-independent resistance will probably develop in the limit of

small current in the plateau (Patton et al. 1980).

The critical current behavior is strikingly similar to the data of

Wolf et al. (1979) on a two-dimensional superconductor-insulator

composite. They found a a of 1.7±0.2, essentially the same as our

value.

Unfortunately, the theoretical prediction of the XY model is that

IcZO (Halperin and Nelson 1979). It is possible that more sensitive

measurements would agree with this result. Even if the data is a

result of limited voltage sensitivity, there is presumably some

explanation of the simple temperature dependence.

It is possible that these results are due to finite size effects.

The requirement that the average size of fluctuations be less than the

samle size is that I <<L where L is the sample size and 9xy is the

coherence length appropriate to the phase transition. This leads to

P ~xy«L

,.- - - -,'__I__l____llll____I
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IT/Tc rI >>(Iog(L/ IGL(T))) -  (4.3)

where we have used Halperin and Nelson's (1979) expression for ixy and

SGL is the Ginzburg-Landau coherence length. If this requirement is

not met, theoretical predictions based on assuming an infinite sample

will not apply. Even if we use the zero temperature value of the

Ginzburg-Landau coherence length, this implies that IT/Tcr1l >>0.01,

which may be outside the critical region. It is worth noting in this

2
connection that Ic varies as (1-T/Tc) in a single SNS junction

(deGennes 1966, chapter 7). Our data may indicate some sort of locking

together of the different junctions in the sample.

Another possible explanation is that the Ic data represents a

crossover from three dimensions to two dimensions. This may be true in

Wolf et al's (1979) films because they may be more than one grain

thick. Although our films are only one island thick, strong

interisland coupling could make the film effectively homogeneous. In

this case Ginzburg-Landau behavior (which predicts B=3/2, (Tinkham

1975, chapter 4)) would occur.

Further work is clearly called for, especially on thinner (and

therefore more weakly coupled) films. Thinner films would also allow

us to study resistance as a function of temperature in the limit of

zero current, which would allow a determination of the exponent u.

A ALj6-J i kA



CHAPTER FIVE: PERCOLATION

Various aspects of percolation theory are discussed in this

chapter in order to understand the effects of anisotropy on percolative

conduction. We begin by outlining the connection between the random

classical continuum, a model for composite materials, and random

resistor networks, which are computational ly more tractable.

Approximate methods of solution are discussed, and then applied to

anisotropic lattices in two dimensions. Finally, we apply one of the

approximation techniques, the renormalization group, to isotropic

two-dimensional lattices to obtain highly accurate estimates of

critical exponents. This is necessary since critical exponents are

often measured in real systems, while the uncertainties in earlier

calculations make comparison between theory and experiment difficult.

5.1 The Classical Continuum and its Lattice Model

A. The General Problem

The materials discussed in the experimental sections of this

thesis are properly described in quantum mechanical terms. Classical

models are useful, however, since they often provide general insight

and qualitatively correct results, and are easier to solve (Davidson et

al. 1975, Davidson and Tinkham 1976).

The general problem is to understand the bulk transport properties

of a two-component system where the components have isotropic

conductivities () and C,(2) and occupy volume fractions f and 1-f.

.. .-
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We assume that the grains of both materials have average sizes L in

the xi direction, where these sizes are not necessarily equal in

different directions but are the same for both materials. Current

conservation requires that

i a.

where V(r) is the voltage at a pointr and 0( ) is isotropic. If we

make the change of variables

xi=xiL l /Li  (5.2a)

0 ( ( ) (5.2b)

V.(' ,)=VC() (5.2c)

the grains will be isotropic in the new coordinates, having an average

size LI in all directions. Equation (5.1) becomes

2 - - -A
-((L/L-) d'1(r )-V'(r')) 0 (5.3)
Ti
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where L1 is the characteristic length in the xl-direction.

This is equivalent to the continuity equation for a geometrically

isotropic medium with anisotropic conductivity, where we identify

(r')=(L1/Li)2i(r'). The problem of isotropically conductive

prolate spheroid grains (Davidson and Tinkham 1976) is seen to be

equivalent to the problem of spherical grains with

a- , (a/b) 2 ,(a/b )20 " ) where a and b are the semi-major and

semi-minor axes of the ellipsoids.

The differential equation (5.3) can be changed to a finite

difference equation on a cubic grid of size ar'much smaller than the

grain size LI,

r gjk (Vj-VkO (5.4)

where gjko(e( ') in each direction and the sum is over the nearest

neighbors of j on the grid.

Equation (5.4) is equivalent to Kirchoff's law for a cubic lattice

of conductances gjk" This result was derived for isotropic networks by

Kirkpatrick(1973). We note that the gj, are different in each medium,

as are the v;.

The resistors in this lattice are highly correlated by the

condition Ar<<L I . We can relax this constraint to simplify matters,

while still maintaining the essential randomness and anisotropy of the
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model, by removing correlations between the conductors. The problen

then becomes a cubic lattice with conducting bonds between nearest

neighbor vertices. These bonds have conductance g with probability

p and g 2 ) with probability 1-p, and

B. The Percolation Problem

The problem outlined in the previous section is especially

interesting when the ratio of the two conductances becomes infinite.

This can be done by letting one conductance go to zero, giving a

metal-insulator mixture. Alternatively, one component can have

infinite conductivity. This is a classical model for a normal metal-

superconductor composite.

In these cases, connected clusters of the high-conductance

component become very important. It is not possible, for exarple, for

a metal-insulator composite to conduct at all until a cluster of

metallic links becomes infinite (for an infinite sample). The

geometrical properties of clusters, and the transport properties of the

two limiting problems, are studied in percolation theory, which has

been extensively reviewed (Shante and Kirkpatrick 1971, Kirkpatrick

1973, Straley 1977, Kirkpatrick 1979).

The probability at which a cluster first becomes infinite is the

- - - -- - - - -
I .. . . . . . -
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percolation threshold, Pc" Near Pc, the mean cluster size i diverges

as a simple power law

a octIp-pc -  (5.6)

where i is the size of a single bond.

If p denotes the probability that conducting links g are present

against an insulating background, the bulk conductance of a lattice of

size L>>L is given by

G a g(L/t) d'Z(P-p c)t (5.7)

for a small region above Pc. Similarly, if superconducting links are

present with probability p in a lattice of resistors r, the bulk

resistance varies as

Rccr(L/L) 2 "d(pc-p)S (5.8)

for a small region below PC. In (5.7) and (5.8), d is the

dimensionality of the system. Although Pc depends on the type of

iliu
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lattice studied (Shante and Kirkpatrick 1971), the critical exponents

0, t and s seem to depend mostly on the dimensionality of the system.

This is true because the structure of very large clusters is not

strongly dependent on the type of lattice.

The voltages and currents in any network must satisfy Kirchoff's

laws. The voltage drop around a loop must equal the applied EMF in the

loop, and the net current into a node must equal zero. Two networks

which satisfy the same set of equations, but with currents and voltages

interchanged, are duals of each other. The duality transformation

interchanges loops and nodes, resistances and conductances, and

currents and voltages. Since square lattices are self-dual, it can be

shown by duality that, for square lattices, the R vs. p and G vs. 1-p

curves have the same shape, and thus that Pc=i/ 2 and that s=t (Straley

1977, Bernasconi et al. 1977, Bernasconi 1978). Most of the remainder

of this chapter deals with two dimensional conductor-insulator

problems, following the convention of the literature. The duality

relationship ailows any results obtained in this way to be related to

the superconductor-conductor case by replacing conductances with

resistances in graphs and equations. We also restrict ourselves to two

dimensions, although many of the qualitative results are easily

extended to three dimensions.

5.2 General Methods of Solution

We will outline various approximate methods for finding the

conductance of random lattices in this section. For concreteness, we

7_ _ _ _ _ _--_
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consider a square isotropic lattice, where a fraction p of the bonds

are conducting.

A. Effective Medium Theory

The effective medium theory (EMT) constructs a lattice from

conductances Ge such that the average effect of replacing a single bond

by a conductance g or 0 is zero (Kirkpatrick 1973). For a square

lattice, the results are

Ge=O p<1/2 (5.9a)

G e=g(2p-l) p>1/2 (5.9b)

Comparing this result to (5.7), we see that the EMT predicts that

Pc=1 /2 (correctly, if coincidentally) and that szt=1.

B. Numerical Methods

A brute force approach to the problem is to generate large random

lattices on a computer and to solve the Kirchoff equation (5.4) at each

vertex. This is difficult to do for large lattices, so an iterative

scheme is usually employed (Kirkpatrick 1973). An initial guess is

made for all of the voltages, then a computer is used to relax the
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inverted form of (5.4):

Vfn+l) = ( g vnl) + Z gijv(n))/ gij (5.10)

The superscripts refer to the iteration number and the sums use

the most recent available value for Vi . Different weights can be given

to the terms to speed up convergence (Webman et al. 1975).

C. Renormalization Group

A powerful technique, the renormalization group, has recently been

borrowed from the theory of critical phenomenon and applied to the

percolation problem (Young and Stinchcombe 1975, Stinchcombe and Watson

1976). This technique allows one to calculate R and G as well as the

critical exponents and percolation threshold. Here we will discuss the

real space renormalization procedure of Reynolds et al. (1978,1980)

and Bernasconi (1978).

Consider a diluted lattice of unit conductors with p#Pc" The

lattice is divided into cells of size '=bI (see figure 5.1). The

conductance of each cell in a given direction is calculated by imposing

equipotentials on the faces perpendicular to that direction. Each cell

is then replaced by its conductances in the two directions.

We have thus changed the lattice constant from L to bi, the

conductance distribution from
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(i

P(Ip) = (1-p) 8(g)+p 8(g-1) (5.11)

to

P(',p') = (1-p') S(g)+p'P(s',p',g) (5.12)

and p to p'. The quantity p' is determined by counting the fraction of

cells which conduct in a chosen direction. P(t',p',g) is a sum of

weighted delta functions corresponding to the possible conductances g

of a cell of size bi. The basic approximation is that the new lattice

is assumed to have the same bulk properties as the original lattice.

This decimation process is repeated, generating a sequence of

lattices with spacing bL, b2x, ...bnX. Ultimately, the distribution of

(n)conductances approaches a single delta function centered at G, and p

approaches either 0 or 1. When p(n) approaches 1, the original p is

assumed to have been greater than pc; when p(n) approaches 0, p is

assumed to have been less than pc. Since a lattice with all links

equal to G has a conductance G in two dimensions, G is an approximation

for G in two dimensions.

This procedure is accurate insofar as lines a distance bt apart

have a constant potential difference between them. This is true for

4-- ____

. ,. . .-
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all b as p approaches I and for all p as b approaches infinity.

Bernasconi's (1978) isotropic lattice results indicate that this

procedure is a good approximation for all p with b equal to 2,

indicating that compensating errors probably occur.

A further computational simplification results when P(L',p',g) is

replaced by a single delta function at the mean of P(t',p',g)

(Bernasconi 1978). This method is very accurate for isotropic lattices

if the geometric mean is used (Bernasconi 1978).

The procedure is slightly different at the percolation threshold.

At this point, p=p'=p',=. (n). For the cells used here, this is true

at p=1/2 for all b, correctly predicting the value of Pc for the square

lattice. Repeating the transformation at Pc eventually results in only

a change of scale in P(t(n),p(n),g). The relations (5.6) and (5.7)

apply in a lattice both before and after a re-scaling, that is, J"

and G=G' (renormalizing does not change bulk properties). For n large,

Gn(n)(Ln)-d p t £(n+l)(p(n+l)-Pc) (5.13a)

Go~g (n) (L/ l(n))d-2(p(n)pc)t

g (n 1) (L/ (n+l))d-2(p(n+l_ C) t(51b

Using but'/t and solving these equations for band t/O gives
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I) 0og(b)/llog( 3P'/ ap) PC(5.13c)

t/A) = log(bd-2g( n )/g( n+l) )/log(b) (5.13d)

where g(n) is any conductance characterizing P(X(n),pC,g) such as the

mean conductance. We see that ) comes out of the RG directly, and t/O

can be estimated by extrapolating a sequence to 1/n-0 (Bernasconi

1978).

The renormalization group approach is thus seen to give estimates

of the critical parameters via (5.13), as well as giving bulk

conductance as a function of p.

5.3 Anisotropic Networks

We will study anisotropic square resistor networks in this

section, using the techniques outlined in the previous section. A

solution for the perfect (p-l) anisotropic network is given, from which

an effective mediL.n theory is developed. (This work was done

independently of Bernasconi (1974).) We also present numerical

simulations and renormalization group calculations for this problem.

The results of all three methods are discussed and compared, and they

are also compared to experiments on an anisotropic conductor-insulator

model system (Smith and Lobb 1979).
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A. Effective Medium Theory

Consider a uniform square lattice of conductors, having

conductance G if they are parallel to the x-axis and AG if they are

parallel to the y-axis. G and AG are the (as yet) unknown bulk

conductances as calculated by the EMT. If a current i0 is injected at

the origin, Kirchoff's law requires the voltage at a site (m,n) to

satisfy

G(V(m+l ,n)+V(m-1 ,n)-2V(m,n))+

AG(V(m,n+1)+V(m,n-1)-2V(m,n)) = 0 8 m 6n (5.14)

where 6m is the Kronecker delta function. We have solved this problem

by Laplace transforms. The isotropic lattice has been discussed in van

der Pol and Bremnmer (1950). We have generalized their approach to

include anisotropy in the conductances. The inversion integral can be

written in the form

V(mn)=(4r)-2 Jf dIds 2 cos(slm)cos(s2n) - (5.15)

oo sin 2 (sl/2)+Asin 2 (s2/2)

where we have normalized so that the voltage at the origin is zero.

Equation (5.15) can be evaluated for (m,n)=(O,O), (0,1) and (1,0).

-4-
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!! The results are

V(,0)=0 (5.16a)

V(I ,O)=-(i 0o/wG)t an'l (1/A)1/ 2  (5.16b)

V(0,1)=-(i 0/AG)tan-' (A)1/2  (5.16c)

These results reduce to the proper limits V(1,0)=V(0,1)= -i 0/4G

for A=1 (the isotropic lattice) and V(1,0)=-i0 /2G for A=O (the

one-dimensional limit).

Equation (5.16b) says that the current flowing between (0,0) and

(0,1) is (i0/r)tan'1 (I/A)1/2 when i0 is injected at the origin. If we

had extracted i0 at (0,1) instead, the same current would have flowed

between the two points.

If we superpose these two problems, the result is i0  injected at

the origin and removed at (0,1), with (2i0/w)tan'
1 (i/A)1 / 2 flowing

through the conductance G. Thus, the voltage between (0,0) and (0,1)

is (2i0/G)tan 
1 (1/A)1 /2. The total conductance between the two points

is i0 divided by this voltage. This conductance is a parallel

combination of the direct link, G, and the conductance of all other

paths, Gx(see figure 5.2). Using the identity

tan'1 (x)+tan'1(1/x)=w/2, we obtain
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Gx  Gtan'1 (A)11 2/tan-l(i/A)11 2  Gf(A) • (5.17a)

Similarly,

G; = AGtan'l(1/A)I/ 2 /tan-l(A)I /2  AG/f(A) . (5.17b)

To construct an effective medium theory, we consider a conductor

gi replacing one of the G's in an otherwise uniform lattice (see figure

5.3). We require the average voltage drop across the gi's (which occur

with probability pi) to equal the voltage drop across a G in the

uniform lattice. Thus

Z pi/(gi+Gx ) = I/(G Gx )  (5.18a)
1

The same argument in the y-direction gives

1. pi/(agi+G ) = 1I/(AG+Gy) • (5.18b)

For the conductor-insulator case which we discuss here, (5.17) and

. .- -
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(5.18) combine to give

(p+(p-l)/f(A))g = G (5.19a)

(p+(p-l)f(A))cg = AG (5.19b)

where conductors gx=g and gy=ag are present with probability p, and the

lattice has bulk conductances G and AG in the x and y directions. When

a:A=I, these equations reduce to the familiar isotropic EMT of (5.9a)

and (5.9b) (Kirkpatrick 1973).

Combining (5.19a) and (5.19b) to eliminate G gives the following

equation for the dependence of A on : and p

tan-1 (A)1/
2/tan-l(1/A)

1/2 =

a- A) p+ [( aA)Z pZ+4(1p)2a ll2 l2(1-p)a (5.20)

A is thus implicitly determined for a given p and a and can be

substituted back into (5.19) to give G.

A number of interesting limits can be solved explicitly. When p

approaches 1, (5.19) imply that A approaches a. The slope of the G vs.

p curve at p=1 is thus given by

4--................................___ ~ .
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2G(a,p)/ p)pl = (1+1/f(a))g (5.21)

a result similar to that obtained in the continuum EMT (Davidson and

Tinkham 1976).

The probability for which G=O can also be obtained explicitly.

Equations (5.19) imply that G=O and A=I when p=1/2, independently of .

This can also be seen by substituting p=1/2 into (5.20), which gives

A=I. This effective medium theory predicts that pc=I/ 2 regardless of

the "microscopic" anisotropy a, and that the bulk conductance becomes

isotropic (A approaches 1) as p approaches 1/2. This is in contrast to

the continuum EMT, which gives the unphysical result that the critical

area fraction fc depends on the degree of anisotropy (Davidson and

Tinkham 1976).

The results of solving (5.19) numerically are shown in figure 5.4.

As expected, decreasing the y-direction conductance decreases G, making

the network look increasingly 1-dimensional, that is G=O unless p=1.

B. Numerical Simulations

We have done relaxation calculations on random fifty by fifty site

arrays for a number of anisotropies. These arrays had equipotentials

imposed on the left and right, and periodic boundary conditions on the

top and bottom. Overrelaxation of (5.10) was used, as advocated by

Webman et al. (1975). Lattices were solved by removing a few

resistors, relaxing the voltages, and repeating the process until the

I -.- - _ -. _- - - - --. .
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desired value of p was reached. Close to the percolation threshold,

the "insulating" elements were started out with a conductivity equal to

that of the conducting elements. The network was solved in steps by

gradually decreasing the conductance of the "insulating" elements.

Convergence was slow near the percolation threshold, even using a

fairly large computer, a DEC-10. The results of these calculations are

compared to the EMT and RG in figures (5.5)-(5.7) for i=1,10, and 0.1.

These results will be discussed in the next section.

C. Renornalization Group

Consider an infinite square lattice of lattice spacing L, where

the conductances between nearest neighbor sites are chosen at random,

such that

gx = 1 with probability p(5.22a)

gx 0 with probability 1-p

gy = with probability p

gy X 0 with probability 1-p

The micros:opic anisotropy a ranges between 0 and -. The bond

probability p is taken to be the same in both directions, so that the

percolation threshold and coherence length are independent of (Redner
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and Stanley 1979).

Following the scheme outlined in section 5.2C, we rescale by

partitioning the lattice into cells of size bi and replacing each cell

by a single conductance in each direction. In principle, this

transformation is repeatedly applied to the lattice, giving a sequence

of conductance distributions which eventually converges to a single

delta function for each direction (provided P#P initially). These
c

delta functions are centered at conductances Gx and Gy. These

conductances are only approximations to the lattice conductivity in the

two directions because b is finite. In practice, we use an

approximation to G which replaces each intermediate distribution of

conductances by a simple double valued distribution. All of the

non-zero conductances in the distribution are replaced by a single

conductance which is the geometric mean of the non-zero conductances.

This process eventually converges to conductances which are labeled

Gxapprox and Gyapprox"

Data for a number of anisotropies are presented in figures 5.5,

5.6 and 5.7 using Gapprox for the b=3 transformation. (We compared
A

Gapprox to G for a number of these points and concl.ded that they are

essentially equal for the range of anisotropies considered here.) The

data are plotted with the EMT and our numerical results.

For the isotropic case, it has been noted that the EMT, numerical

simulations and the renormalization transformations give essentially

the same results near p=1 (Bernasconi 1978). In the region where the

EMT breaks down, the b=2 transformation has been studied and agrees

well with numerical simulations (Bernasconi 1978).

j i

S.. . .. . .... . .. . . , .. -
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For cxzi) (figure 5.6), the EMT and numerical simulations agree

well for p near 1. (The standard convergence problems and finite size

effects make comparison difficult for p near pc.) It is seen that the

b=3 transformation underestimates the bulk conductance in this case.

When a-O.1 (figure 5.7), the EMT and numerical simulations agree

outside the critical region. The disagrement with the RG, however, is

quite pronounced (see figure 5.7). For this case, the RG overestimates

the bulk conductance.

These discrepencies are easy to understand. For the b=3

transformation, only 4 of the 13 conductors in an x-direction cell have

value ag, as compared to half of the conductors in the lattice itself

(see figure 5.1). Thus, any effects due to varying a will be

underestimated for a finite size cell transformation. For a=O.1,

p=O.9, we obtain G=0.576 from the EMT and G20.56 from numerical

simulations, while the b=2 RG predicts G=0.73 and the b=3 RG predicts

G=0.69. Thus, the larger cell, which has a higher fraction of

conductors pointing in the y-direction, gives an answer closer to the

truth, although neither cell is very accurate.

It is tempting to try to find cells which deal with anisotropy

more accurately. One could use cells in which the top row of

conductors is not cut off, but this only increases the number of

vertical conductors to 6 out of 18 (from 4 out of 13) for a b=3 cell.

This also sacrifices the self dual symmetry of the cells, so that the

wrong value of pc is predicted. Other procedures, such as weighting

the vertical conductors more heavily in the average, could probably be

made to work, but suffer from being arbitrary.

4 -_ _ _ __-
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In spite of the inaccuracies described above, the RG is a useful

tool for studying the critical region. The method gives answers which

are at least qualitatively reasonable, if not quantitively correct, and

it is quite simple computationally. This last advantage is critical

close to the percolation threshold, where the ET breaks down, and

numerical methods encounter serious difficulties as convergence slows

down and sample to sample variations become large. Thus, the RG is the

only choice presently available arbitrarily close to the percolation

threshold. Hopefully, information obtained by it will be at least

qualitatively correct.

For O<a<-, it has been rigorously shown that, in the limit as p

approaches pc' the same critical exponent t characterizes systems which

differ only in their anisotropy (Halperin 1979, Smith and Lobb 1979).

This is true because the bulk conductance as a function of p is bounded

above and below by the conductance of isotropic lattices where the

non-zero conductances are either all 1 or all a (see figure 5.8).

There is also some evidence for the stronger conjecture that the

lattice conductance becomes isotropic as p approaches pc (Shklovskii

1978). The renormalization group agrees with both of these results,

predicting A approaches 1 as p approaches pc. This is true because the

sequence a(I), (2), ..., (n) is found to approach I for a not equal

to zero at p=pc=l/2.

There are, however, significant differences between anisotropic

and isotropic lattices, even near pc" Figure 5.9 shows an effective

critical exponent 1(p), defined as alog(Gapprox)/ log(p-pc)

(Bernasconi 1978). As p approaches pc' this approaches t, as can te

-
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seen from (5.9). This quantity converges to t much faster as p

approaches pc for the isotropic lattice than for highly anisotropic

ones. Thus, if we operationally define the critical region as the
A

range of p over which t(p) is within a given percentage of t, the

critical region shrinks as a result of anisotropy. Experimentally,

this means that one needs to be closer to Pc to extract a good value of

t from data on a highly anisotropic system than from data on an

isotropic system.

We can use figure 5.8 to obtain a bound on the uncertainty in t.

Since the conductance is bounded above and below, its logarithmic
A

derivative t(p) can vary from t by roughly log(al/2 )/log(p-pc). In

fact, the data in figure 5.9 is well approximated by

t(p)=1.29+O.4log(I/2)/log(P-Pc ) for a=O.1 and 10. For t(p) to be

within 0.01 of t, this says that (p-p c)< ± 20 (+ for a<1, - for a>I),

which is a very stringent requirement.

D. Other Renormalization Schemes

A number of different lattice renormalization schemes have been

used. Most of them differ from the one used here in that they

calculate the conductance between two points in a lattice (Stinchcombe

and Watson 1976) (see figure 5.10). Cells with equipotential

boundaries, such as we use here, correctly predict that A=a at p-1. In

contrast, the cell in figure 5.10 predicts ' = a(a+3)/ a+1) after one

iteration at p=1, which incorrectly implies that A= only for a=0,1, or

- when p-1.
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E. Comparison with Experiments

If we apply the qualitative result summed up in figure 5.9 for a

continuum superconductor-normal composite, we would expect s, the

measured value of s, to be larger than the isotropic value when the

superconducting filaments are elongated. This agrees qualitatively

with the results reported in chapter three (Lobb et al. 1978).

Quantitative comparison is not possible, since we cannot convert from

temperature to probability with any accuracy.

A system to which our model calculations apply more directly has

recently been reported (Smith and Lobb 1979). The conductivities of

percolative networks produced photolithographically from laser speckle

patterns were measured. These results are shown in figUre 5.11 for

various aspect ratios of metal islands. The results of numerical

simulations on a fifty by fifty site lattice for the corresponding a's

are shown in the inset. The qualitative agreement is striking,

demonstrating that the model outlined in section 5.1A is quite good.

The experimenta; data is consistent with figure 5.9, in that the

measured exponent depends on anisotropy if the critical region is

assumed to be the same for all anisotropies. Fitting the speckle

pattern data to 15% above the percolation threshold yields t- 0.85,

1.75, and 2.3 for a-25, 0.16 and 0.0016. Using t=1.3 and

t(p)=t+O.4log(g(f-fc) as implied by the lattice model gives

t(p)=0.95, I.A8 and 1.97. The agreement is quite good considering the

approximations made.

__ _ _ _ _ __- __ I
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*

Figure 5.11 Nomralized conductance vs. area fraction for anisotropic

metal islands on an insulating substrate. The solid lines are to

guide the eye. Inset contains numerical simulations on 50 by 50

site lattices with the cooresponding anisotropies. The aspect

ratio of the islands Lx/Ly is equal to M/, as can be seen fron

(5.5). We note that the metal islands have an fc of about 0.4,

while the lattices have a pc of 0.5.

4 - -- ....
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The isotropic speckle pattern samples have roughly 450,000 units

which are either conducting or non-conducting. This is much larger

than any percolative system previously studied. We obtained t 1.3 for

the isotropic samples, a result in good agreement with our calculations

in the next section, but in poor agreement with earlier numerical

results (Kirkpatrick 1973, Straley 1977).

5.4 Large Cell Renormalization Group Calculations of Critical Exponents

In the remaining sections of this chapter, we calculate the

exponents , s, and t (see (5.6) through (5.8)), and also calculate

the critical exponent v which characterizes the critical current

behavior near the percolation threshold (Lobb and Frank 1979, 1980,

Lobb and Karasek 1980).

The cluster size exponent N is known to within a few percent in

two dimensions (Reynolds et al. 1978, 1980). We use the large cell

approach first employed by Reynolds et al. (1978) on the site-diluted

lattice to calculate 0 for the bond-diluted lattice. Our results

agree with the results of Reynolds et al. (1978), supporting the

notion of universality.

Earlier estimates for transport exponents s,t,and v vary widely,

falling in the range 1 (de Gennes 1976) to 1.43 (Fisch and Harris

1978). By studying lattice rescalings for various b's, we obtain more

reliable estimates, concluding that the transport exponents equal

(1.35) to within a few percent in two dimensions.

.. .. ..
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A. The Critical Exponent .

In this section we apply a large cell renormalization group scheme

to the bond percolation problem on a square lattice. This method was

recently developed and applied to site percolation in two dimensions,

where it yielded highly accurate results (Reynolds et al. 1978,1980).

Generalizing the b=2 cell proposed by Reynolds et al. (1977) for bond

percolation, we find the convergence in the bond problem to be much

faster than in the site problem.

When a fraction of bonds p are present in an infinite lattice, we

expect the mean cluster size to vary as(p-pc )  
, as in (5.6), where pc

-1/2 for the square lattice (Sykes and Essam 1964). If R(b,p) is the

probability that a finite lattice with b bonds on a side is connected,

Reynolds et al. (1978) have argued that

log(X(b)) = (1/,) )log(b)+constant (5.23)

where X(b)= 'dR(b,p)/ Plp*, p* is defined by R(b,p*)-p* and R(b,p) is

the probability of getting across the cell from left to right.

Equation (5.23) is asymptotically true for large b. We note that,

except for the additive constant, (5.23) is identical to (5.13a). The

inclusion of the constant is suggested by arguments that (5.13a) should

apply only for large b (Reynolds et al. 1978, 1980).

A cell of the type used here is shown in figure 5.1. It can be

--.... . . . . - . _
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shown by duality that p*=1/2 independently of b for this type of cell

(Bernasconi 1978). Thus, equation (5.23) and calculations on finite

cells can be used to estimate 0.

R(b,p) has been calculated analytically and differentiated to give

x(b) for b=2,3 (Reynolds et al. 1977, Bernasconi 1978). We have

computed A(b) for b up to 95 using Monte Carlo methods, as follows.

The probability that a lattice of size b is connected is given

by

R(b,p) = z pn (1.p)m (5.24)
i

where the sum is over all connected configurations and ni and mi are

the number of bonds present and absent, respectively, in the ith

configuration. Differentiating this with respect to p, we obtain

BR/ap - Z pni(..p)mi(ni/p - mi/(1-p)) • (5.25a)
i

At p-1/2, this becomes

x(b) (1/2 N) E 2(ni-mi) (5.25b)

II



89

where N=ni+m i. If 2M Monte Carlo realizations are studied, M will be

connected (within statistical uncertainties) at p=p*, so that (5.25b)

is approximated by

M
A(b) - (I/M) E (ni-mi) (5.26)

i-1

where the sum is over the connected configurations.

The calculations were done on a DEC LSI-11/2, a small computer

with 32k of core. Lattices were generated and studied using the

cluster multi-labeling technique of Hoshen and Kopleman (1976),

modified to fit the limited memory of our machine. Since we were

concerned only with whether a given realization was connected, it was

possible to re-number the clusters after a column was completed,

dropping those clusters which had died out. Thus, the program requires

only two arrays of size 2b and one of size b to be stored. Since

p*-i/2 is known exactly for these cells, it was not necessary to

determine it numerically, which resulted in a further saving of

computer time.

We can gain some understanding of when b is large enough for

(5.23) to be valid by examining "one-shot" estimates of " ,

~ ~A
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O(b) log(b)/log(X(b)) . (5.27)
1-shot

These numbers approach each other for b sufficiently large. Table 5.1

shows these estimates, the number of realizations considered, and the

statistical uncertainty in each case. (The uncertainty represents one

standard deviation from the mean of x(b).) These data demonstrate the

quick convergence of the method. Within the statistical errors given,

the values obtained are indistinguishable from one another for b>4.

This implies that (5.23) is valid even for small b in this problem, and

that the additive constant in (5.23) is small. We believe that this

rapid convergence is a result of the self-dual symmetry property of

these cells, which they share with the lattice itself. For example,

Reynolds et al. (1978) obtain )(b) =1.47 for the site problem
I-shot

when b=5, although their answers extrapolate to lower values.

We can improve on the one-shot approach by fitting all of the data

to equation (5.23). As can be seen from the log(x(b)) vs. log(b) plot

of figure 5.12, the deviation from the expected straight line is small,

even for small b. The fit yields

= 1.343t0.017 . (5.28)

Equation (5.23) is only true asymptotically. Therefore, in

addition to statistical uncertainty, the quoted error spans values

_A-
*~~A -.- A- .
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b ~ 1-shot --s hot N

2 1.428 0 all

3 1.380 0 all

4 1.353 0.013 160,000

5 1.352 0.011 175,000

6 1.354 0.015 82,000

10 1.358 0.011 43,000

15 1.354 0.019 42,000

20 1.343 0.013 76,000

30 1.323 0.017 60,000

50 1.370 0.039 23,000

70 1.366 0.028 34,000

95 1.341 0.012 81,000

Table 5.1 "One-shot" values of 0 for different length rescalings b.

The uncertainty represents one RMS deviation from the mean, and N

is the total number of configurations studied for each value of

b.
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obtained by including or excluding some of the smaller points in the

fit. This value for ID is slightly smaller than, but in good agreement

with, the site percolation result N)=1.354±0.015 (Reynolds et al.

1980). It is also in fair agreement with the value ")=1.365±0.015

obtained by Kirkpatrick (1979) using large cells which were not

self-dual.

B.The Critical Exponents s, t, and v

In this section, we use finite size scaling arguments to find how

transport properties scale with sample size near the percolation

threshold. We then estimate the critical exponents t and v for the

bulk conductance and critical supercurrent density in a percolating

square lattice.

Consider a square lattice of size L, with lattice spacing x.

Links are present with probability p. For calculating conductance

properties, these links are taken to have unit resistance. To

calculate critical current properties, the links are assigned a unit

critical supercurrent.

The average conductance, <G>, of a finite lattice is

<G> = f( 6 ,1/b) (5.29)

where 6 =P'Pc and average means any power-like mean, such as the nth
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root of the nth power. We assume that f is a homogenous function of

its variables (Straley 1977b)

f(E ,I/b) = af("xE ,Y/b) (5.30)

(Phenomenologically, this assumption can be justified as follows. As a

critical point is approached by varying a given parameter (such as

p-pc ), measured properties (such as <G>) often vary as a power of the

parameter. As different parameters are varied, different power laws

are observed. A homogeneous function approaches the origin with

different powers along different axes. It is thus reasonable to

represent <G> as a homogeneous function of P-Pc and 1/b, since critical

behavior is expected for infinite samples as p approaches pc. )

We wish to determine x and y. Letting f s"x=l and taking b to

infinity, we obtain

<G> - f 1/xf (1,0) %1+ (E'Y/x/b)) (5.31)

By letting b=- and comparing this to (5.7), we see that 1/x=t.-O
Since fc E is the only important length in this problem, we also

identify y/x= . Thus we see that
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<G zEtf(10)(1+6(5/L)) (5.32)

for large b and small

Similarly, for O8Y/b-1 and E approaching 0,

<>= b-t/' f(0,1)(1+ (b"'/%)) (5.33)

so that the average conductance at E=0 varies as b-t/,j for large b.

To summarize,

G -. (p-pc) t (infinite sample) (5.34a)

<G> '% b-t/' (when p-p*) (5.34b)

Similarly, the critical current density varies as

c (p-pc)v (infinite sample) (5.35a)

which defines v, and
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<jc > % b-v/) (when p-p*) (5.35b)

We can re-write (5.34b) and (5.35b) as

log(I/<G>) = (t/,) )log(b)+constant (5.36a)

log(I/<Jc>) = (v/-))log(b)+constant (5.36b)

We can thus calculate the infinite sample exponents t and v by

looking at the average behavior of large samples. We note the

similarity between (5.36a) and (5.13b). As in the last section, we

have gained an additive constant.

For b=2,3, we calculated arithmetic, gec,,netric and harmonic means

exactly, by going through all of the possible configurations. For

larger cells, realizations were generated randomly and studied with the

aid of a program designed to calculate the conductance of larger

lattices exactly. To calculate the conductance of a given realization,

this program removed dangling ends, reduced simple series and simple

parallel combinations, and used the Y-a transformation (see figure

5.13a) until the cell was reduced to a single conductance. In the

4 -- ___________________
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largest cells considered, where b=14, the program failed to reduce only

0.5% of the 30,000 cases studied. This introduces a small known

uncertainty into he estimate of <G> (Lobb and Frank 1979).

To calculate the critical current of a cell, tie proceed in the

* same way, employing a rather simplified model. We assume that the

critical current of a parallel arrangement is the sum of the individual

critical currents, that the weakest link gives the critical current of

a series arrangment, and hence Y-a&transformations can be made as in

figure 5.13b. Using this model, we have studied up to b=20, where only

28 out of 40,000 cases failed to reduce. In all cases, we calculated

arithmetic, geometric and harmonic means of conductance and critical

current density, as well as standard deviations, which give

distribution widths.

Figures 5.14 and 5.15 are log-log plots of 1/<G> and l/<Jc> vs.

b, for various means. As (5.34b) and (5.35b) predict, the points on

each graph fall onto straight parallel lines. The slopes of these

lines imply that

t/,3 = 0.996±0.01 (5.37a)

V/ - 0.990±0.005 (5.37b)

The error bars include statistical uncertainties, as well as

subjective estimates of error due to the differences between various

4- -'
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means and the effects of including or not including data for small b in

the fit. We believe that these results are consistent with the

hypothesis t-v= 0 (Shklovskii 1978), as larger cells of this type tend

to give higher estimates of t/O (Bernasconi 1978, Lobb and Frank 1979)

and v/%. Using the value 0-1.356±0.015 (Reynolds et al. 1978), we

obtain t=1.35±0.02 and v-1.343±0.016.

These results are applicable to different problems through the use

of duality relations (Straley, 1977a). The dual of (5.34a) implies

that s=1.35 in two dimensions. Similarly, the dielectric breakdown

voltage of a metal-dielectric composite, which is dual to the critical

current problem considered here, should also vary as (p-pc)I*35

Alternate approaches to these problems have suggested that either

t-v=a) (Shklovskii 1978) or that t-v=1 (de Gennes 1976, Muse and Guyer

1979). Our data are difficult to reconcile with the latter

predictions, which imply that the slope of figures 5.14 and 5.15 should

be 1A) -0.74 instead of 1. Numerical simulations which seem to suggest

t-1.1 (Straley 1977, Kirkpatrick 1973, 1979) have depended on varying p

while keeping L fixed at a large value, as suggested by (5.34a). This

method has the disadvantage of requiring increasingly larger lattices

as p approaches pc to keep fluctuations and the first order term in

(5.32) small. As demonstrated by table 5.1 , our method converges to a

good value for %) for fairly small b. This suggests that our results

for t and v are trustworthy, even though we used cells only up to b-20.

As mentioned earlier in this chapter, the largest experimental

system studied to date (Smith and Lobb 1979) gives t21.3, in reasonable

agreement with our calculation. In addition, Deutscher and Rappaport

wl~l L
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(1979) have measured v for Pb-Ge films, obtaining v=1.3±0.1. This

[ answer is in better agreement with our result than with the prediction

v-1 (Huse and Guyer 1979).



CHAPTER SIX: SUMMARY AND CONCLUSIONS

In the preceding chapters, we have discussed a number of different

research projects on the physics of inhomogeneous superconductors.

These studies have ranged from measurements of the practical properties

of superconducting in situ composite wires to theoretical work on

random resistor lattices. In this final chapter we will review our

results for each of the projects in turn and make suggestions for

further work in each area.

Our work on Cu-V 3Ga in situ composites led to significant

improvements in their properties. We were able to produce samples with

Tc-15.5K and HC2=22.4T (at 4.2K) comparable to bulk V3Ga. Our critical

current densities were also quite high, being 2x1O5 A/cm2 at 4T and

l04A/cm2 at 18T at 4.2K.

The in situ technique has not been optimized for V3Ga. Variation

of such parameters as annealing time and temperature, degree of

reduction, and superconducting volume fraction should lead to further

improvement. It would also be useful to add fourth elements to in situ

composites, as additional elements sometimes raise the Tc of A-15

compounds.

In addition to being potentially useful, in situ composites are

interesting in their own right. By observing the superconducting

transition in a number of samples in which both the concentration of

superconductor and the electron mean free path in the normal metal were

varied, we helped to settle the early controversy over the conduction

mechanism in these materials. Geometrical percolation and the

proximity effect are both necessary to understand the superconductivity

. L
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of these composites. In general, the proximity effect is more

important in lower concentration samples with clean matrices, with

geometrical percolation being important when the proximity effect is

weak.

Our simple model for the temperature dependence of the

superconducting to normal transition, while being incorrect in detail,

did correctly recognize that a phase transition occurs as the proximity

effect reduces the overall resistance of a sample to zero.

Quantitative comparison of our data to more rigorous models for the

transition has been difficult because of the geometrical anisotropy of

the samples. Work on isotropic composites with simpler phase diagrams

such as Ge-Pb and Cu-Pb should lead to improved understanding while

making quantitive comparison with theory possible.

Theoretical models for the phase transition predict a number of

interesting effects in two-dimensional samples. This led us to prepare

thin films consisting of PbBi islands coated with a thin layer of CuAl.

Our measurements on systems with the PbBi near the percolation

threshold have shown behavior qualitively similar to three dimensional

samples.

Future work should exploit the fact that the interisland

superconducting phase coupling can be varied by changing the thickness

of the PbBi and CuAl layers. It is also possible to make regular

arrays of weakly coupled superconductors in two dimensions.

Comparisons between regular arrays and naturally occuring random

systems should prove interesting, and should help to sort out the

effects of geometrical randomness.

-i..I ___________
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The behavior of classical mixtures of conductors, and the very

weakly coupled limit of superconductor-normal composites, is explained

by percolation theory. We did numerical simulations and

renormalization group calculations on square random resistor lattices

to study the effects of conductance anisotropy. This work was

suggested by the geometrical anisotropy of in situ composite wires

which can be shown to be equivalent to conductance anisotropy in a

geometrically isotropic system. We found that although the

renormalization group underestimated the effects of anisotropy, it was

qualitatively correct, and yielded information about the critical

region behavior which is presently unobtainable by other means.

Looking at isotropic lattices, we calculated the coherence length

exponent for the bond problem by a large-cell renormalization group

technique which had previously been applied to the site problem. Our

result supported the notion of site-bond universality. By extending

this method, we calculated the conductance exponent t and found it to

be essentially equal to . This calculation represented a significant

improvement over earlier estimates. We also developed a simple model

for percolative superconducting mixtures and showed that the critical

current density exponent v is also essentially equal to 0 in two

dimensions.

Our methods can be applied to a number of additional problems.

More detailed knowledge of the conductance distribution as a function

of lattice size could be used to check the scaling hypothesis. In

addition, non-ohmic circuit elements (the simple critical current

element being one example) can be studied. Finally, all of our
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techniques can be applied in three dimensions, where they could

presumably improve the accuracy with which critical exponents and the

percolation threshold are known.

.1

S. . -
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