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ABSTRACT

Likelihood ratio tests concerning the parameters of two
multinomial populations are discussed. A stochastic ordering
restriction is considered as a one sided alternative to
equality. The one and two sample tests for eqﬁality versus
stochastic ordering and stochastic ordering versus all
alternatives are derived and their large sample distributions
are obtained. The large sample distributions are mixtures of
chi-squared distributions. The tests developed provide
discrete analogues for the one sided Mann-Whitney-Wilcoxin

and Kolmogorov-Smirnov tests.
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l. INTRODUCTION. Tests for the equality of two populations

against a stochastically ordered alternative are among the
more widely used nonparametric procedures. They include the
one sided Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov tests.
We consider analogous one and two sample likelihood ratio
procedures under the assumption that the underlying populations
are discrete. It is well known that one sided procedures are
more powerful then their two sided counterparts. Thus these
procedures are recommended over the standard chi-squared tests
provided, of course, that the underlying assumptions are valid.

We denote the two collections of multinomial parameters
by p = (pl,pz,...,pk) and q = (q,:9,,-.+,q,) and we as;ume
that both p and g are in A = {(xl,xz,...,xk): x; > O,Xi=l x, = 1}.
Consider the hypothesis that the g distribution is stochastically
larger than the p distribution. Specifically,

i i k k y
(1.1) Hy: 2‘ pjiz' ay’ i=1,2,...,k-1,2__ pj=2. aj- '~
j=1 j=1 i=1 =1

If (1.1) holds we say that p majorizes q and denote this
symbolically by p >> q. The three hypotheses to be considered
here are Hy: p = q, H, and H, = ~ H, (not Hl) and we shall

consider both one and two sample tests.

Chacko (1966) studied a likelihood ratio statistic for

testing the null hypothesis that p = q, = x"1(1,1,...,1) against
the alternative that p; > p, > ... > py (and, of course, p $ qq) -
The hypothesis p >> x"1(1,1,...,1) is implied by the hypothesis

Py, 2 Py 2 eee 2 Py but not conversely, so that the test

discussed here for testing p = P against the alternative
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P >> P has a less restrictive alternative than that considered
by Chacko. It is interesting to note that the statistic,
derived in Section 3, for testing p = q, versus p >> qy has a
chi-bar-squared distribution as did Chacko's test statistic.
Robertson (1978) generalized Chacko's work by considering the
test of p = q (arbitrary q) against an arbitrary order restric-
tion on p. He also considered the problem of testing an order
restriction on p as a null hypothesis.

In Section 2, the one and two sample maximum likelihood
estimates of the multinomial parameters subject to the restric-
tions in Hl are derived. The distribution theory for the one
sample tests of Ho versus Hl - Ho and Hl versus H2 is given

in Section 3 and Section 4 contains the corresponding two

sample theory.

2. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATES. In order to

develop the desired likelihood ratio tests we must first obtain
the maximum likelihood estimates under the restriction p >> g.
The approach uses the theory given in Section 5 of Barlow and
Brunk (1972) which requires the following notation. For any
collection of positive weights, w = (wl,wz,...,wk), let (x,y)w
k =Zk

be the inner product on R defined by (x,y)w AL

let ||°||w denote the induced norm (ie. ||x|L§ - Yf xi w);
and for any subset A of Rk let Ew(xlA) denote the pr;;iction
(ie. closest point under ||°||w) of x onto A provided it exists
and is unique (cf. Brunk (1965)).

We first consider the one sample problem. Assume q is

known; assume a random sample of size m from the population
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associated with Q and let § = (§1,§2,...,§k) be the

vector of relative frequencies (ie. m; has a multinomial
distribution with parameters m and p). Let C= {xeR :x; > X2 ... >x}
and note that C is a closed convex cone in Rk,so that by Brunk

(1965), E_(+|C) is well defined.

Theorem 2.1 If p; > 0; i=1,2,...,k, then the maximum likeli-

hood estimate of p subject to Hy is given by
(2.1) p = pﬂi;(q/plc) p

where, for x,yeRk, xy denotes the vector (xlyl,xzyz,...,xkyk)
and x/y = (%)/¥1+%X/Yoreecs X /¥y ) -

Before the proof of Theorem 2.1 is given, we describe the
lower sets algorithm (LSA) for computing Ew(xlc). For A a

nonempty subset of {1,2,...,k}, set

M@A) = Fiep WiXi/Lien ¥;

Set i, = 0 and choose i1 the largest positive integer i which

0
maximizes M({io+1,...,i}). Next choose i2 the largest integer
i greater than il' which maximizes M({il+1,...,i}). Continuing
this process, we obtain 0 = i0 < il < vee < il = k and the
projection
E,(x[C); = M({ij_1+1,...,ij}) for ie{ij_1+1,...,ij} and
j=1,2,...,L.
The sets {ij_1+1,...,ij} are called the level sets.
Proof. The m.l.e., P = (Py/Pys---+P)), SOlVes the

following optimization problem:

k ~
minimize: - } mp; ln p, subject to p >> gq.
i=]

j

E

1
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Set s = (pl/pl'pZ/pZ"'°'pk/pk)' w = m(pllpzl'°"pk)l

g = m (ql/Plqu/Pzp...,qk/Pk), and ¢(Y) = =1ln Y. Then

; s = (pl/pl'pZ/PZ"'°'pk/pk) solves

ﬁ k i

; (2.2)minimize: J w. ¢(s.) subject to | w.(g.~s.) < 0;
! i=2 * 1 j=1 3 73 3 -

; k

i l <i <k and . .~S.) = 0,

; < 2j=1 wJ(gJ sJ) 0

The Fenchel dual, Cw*, of C is

wk

¢ = {u; (u,v). < 0 for each veC}
i Y- x
= {u; u.w, < 0; 1 <i<k W, = 0},
zj=1 JJ - =t ! Zj=1 quJ }

Thus (2.2) becomes

(cf. Barlow et al. (1972) pp. 49).

k
minimize: } w; ¢(s;) subject to g-secw*
i=1

and by Theorem 3.4 of Barlow and Brunk the solution to (2.2)

unique and is the projection of g onto the cone C. Thus

~

P = mp E_(a/mp|C) = p Ej(a/p|C).

Theorem 2.2. As m*>, p converges almost surely to p provided

p>> q.
Proof. By the strong law of large numbers, p*p a.s. as

m+=, Moreover, Ew(x|C) is continuous in both w and x so that

§—+pEp(q/p|C) a.s. Using the LSA to compute Ep(Q/PIC), one sees

that since p >> q, M({1,...,i}) < 1 with equality for i = k.

Hence, Ep(q/p)IC) = e, where ey is the k-dimensional vector of

ones and so p Ep(q/p)|C) = p.

In the two sample problem let g denote the vector of

relative frequencies of a sample of size n from the q population
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and assume that p and q are independent. Let B

Xy 2 Xy 2 eee 2 Xy Xy S X0 < eee <%0} N = mén and

6 = (p,q).

Theorem 2.3. If P;.9; >0; i=1,2,...,k then the maximum

likelihood estimate of 6 subject to Hl is given by
(2.3) (P,q) =8 =wE_(h]|B)

where w = (mpl,mpz,...,mpk,nql,nqz,...,nqk) and

- q.
e B i =1,2,000k
Pi
h, =
* )
Nl B Ak - ke, k.
95 -k

Proof. Our maximum likelihood estimation problem is the
same as the one described by (5.5), (5.6) and (5.7) in Barlow
and Brunk (1972) and they have shown that the solution also
satisfies

i i ~ ~
) p. > [ (mpj+nqj)/N > Z. q.

j=1 J j=1
for i = 1,2,...,k~1 with equality for i = k. Letting
t = (pl/mpl,pz/mpz,...,pk/mpk,ql/nql,...,qk/nqk) these restrictions

are equivalent to

i k+i
2. . t--h- > 0 nd W, h--t- > 0: i = 1 2 oo k-l
(2.4) Zj=l wJ ( j J) > a Zj=k+1 j ( j J) > 'Ly '
k 2k
a . (t;-h.) = 0 = w, (h.~t.).
an zj=1 wy (ty-hy) 2j=k+1 j (hy=ty)

*
From Barlow and Brunk (1972), (2.4) is equivalent to h-tenw .

Hence, with ¢ as before E==(El/mpl.iz/mpz.....Bk/mpk.al/nql.....&k/an

P

solves:




2k
minimize } w; $(t;) subject to h-teB"".
i=1

Appealing to Theorem 3.4 of Barlow and Brunk (1972) again, we
have that (p,q) = w Ew(hIB), which is the desired conclusion.

Since membership in K imposes no restrictions between the
first k coordinates and the last k coordinates of a point,
(EC-|B)y,E(+|B)3,...,E(+|B)}) and (E(+|B)} ,/,---,E([B),, ) can
be computed independently. It follows that

_ ~ ~ A+ ~
(2.5) P=pE; Eﬁléﬁalc] and
. Np

where C' denote the cone {x: x; < x, < ... < x.}.

Theorem 2.4. If p >> q, then P[llmm'n»w

Proof. Since Ew(g+ek|C) = Ew(9|C) + e, it follows from

(p,q) = (p,9)] = 1.

(2.5) that

A A A A
A

(2.6) B-p = (/M p E5(LR|c) and §-q = -m/m) q E5ER(0).
P q

By the strong law of large numbers P[limm'n*m (p,q) = (P,9)] = 1.
Since (n/N); and (m/N)g are bounded and Ew(xlc) is continuous in

x and w, we need only show that

a-p = qa-p =
E, (35 |c) Eql35 lc) = o,

or equivalently,
q = - (-BlC) = e, .
Ep(plc) q( q| ) K

In the proof of Theorem 2.2, it was shown that p >> q implies that

Ep(q/p|C) = e, and the proof of Eq(-p/qIC) = -e, is similar.
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It is interesting to observe that (p,q) is strongly
consistent for (p,q) for any sequence of sample sizes (m,n)

provided m and n simultaneously approach «.

i 3. TESTS WITH A KNOWN STANDARD: ONE SAMPLE TESTS. In this

i and the next section we use ) generically to denote the
likelihood ratio. Suppose q is known and that we have a random
sample of size m from the p-population and consider testing

Hy: pk= q against H; - Ho where Hy: p >> q. Let 801 ==21n ]} =
-2m Z' pi(ln qi-ln pi). Since Ho is a boundary point of Hl

i=1
the usual limiting chi-squared results for -2 1ln A do not apply.

However the next result shows that the limit distribution is a
mixture of chi-squared distributions. Before stating the result
we define the mixing proportions. Let w = (wl,wz,...,wk) be
positive weights and let wl'wz""'wk be independent normal
variables with zero means and variances wIl,w;l,...,w;1

respectively. We denote the probability that Ew(WIC) has exactly

£ distinct values (level sets) by Pw(t,k).

Theorem 3.1. If HO is true then for any real number t
k 2
lim  P[Sy, > t] = 2£=1 P LKIPIX_p > ]
where xg is a chi-squared variable with v degrees freedom (xgEO).
Proof. Writing a second order Taylor's expansion for 1ln q;

and 1ln §i about the point Py 801 can be expressed as follows: A

k ~

P83 (R(B;-py))

(3.1) S5, =1 _ py o (/mlpy-g N - ]

i=1 i=]

where a, is between p;, and q; and B; is between Bi and p,.
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Let Ul'UZ""'Uk be independent normal variables which are

1l 1

centered at their expectations and have variances le,p; ,...,p; ’

respectively. Then the random vector vm(p-p) converges in
flstr;butlon to (pl(Ul-U), pz(Uz-U),...,pk(Uk—U)) where
Uu=7

i=1

Theorem 4.4 of Billingsley (1968), we have that

piUi(Cf‘ Robertson (1978)). Hence, appealing to

s S b bt S

(/E(P-P) lpli;la‘l B) 2 (pl (Ul'u) soee lpk (Uk'u) 'plplp'p)

provided H, is true. Thus, under HO' 801converges in distribution

to
k ~ 5 k ~ 2
3.2 . (U.-U - . [E_(U -U|C) ., .
@2 1 agw? -] g e -ulo))
Now, noting that Eq(uek-UIC) = Uek-rEq(-UIC), squaring the

binomials in (3.2), combining terms and using Theorem 7.8 of

Barlow et al. (1972% (3.2) can be rewritten as

Zk | 2
q;[E_(W|C) . -w;]
j=1 19 i"i
where wi = -Ui; i=1,2,...,k. Corollary 2.6 of Robertson

and Wegman (1978) gives the desired conclusion.

I£q) =g, = ... =q = k™! then the P(L,k) can be deter-
mined recursively from Corollary B on p. 145 of Barlow et al.
(1972). Their Appendix A5 gives the P({,k) for k < 12 in this

case. However, if the q; are not all equal the P(£,k) are much

more difficult to compute. Egquation (3.23) of Barlow et al.
(1972) is a recursive relation from which one can obtain the

P(L,k) provided P(j,j) is known for j < k. Barlow et al. (1972)

contains closed form expressions for P(j,j) with j < 4 and the




tables in Abrahamson (1964) can be used to compute P(5,5).
Robertson and Wright (1980) have obtained bounds for certain

chi-bar-squared distributions. Their results show that
. 2 2
(3.3) lim . PISy, > t] < (Plxy.q 2t + Plxp., > t1)/2

and of course, one could obtain a conservative test using the
upper bound in (3.3).
Next, we consider the (one sample) likelihbod ratio test
of H, versus H,. The test statistic is
k N ~
Sy =-21n 2 =-2m | p; [1n Bi—ln p;l.
i=1
Let Pp(E) denote the probability of the event E computed under
the assumption that p is the population vector of probabilities.

Theorem 3.2. For any p satisfying H, (ie. p >> q) and for all t

LM PplSyp 2 t) < limp pq[s12 > t]
and
k

. _ 2
limp ., PglSyp 2 €1 = ) . PgLKIPIXG ) > t).

Proof. Writing a second order Taylor's expansion for
In Ei about the point p; we see that S12 can be written
3.4 Zk P Y:2(/m(B,-p.))?2
(3.4) i=1 Py ¥y PPy
where Yi is between Ei and Py Now we want to obtain the
limiting distribution of (3.4) under Hl and to show that this
limit is stochastically largest for p = q. Let p >> q and let
0= g <Ny < sia <Ny = k with P; Y.t Py = q +o.otqy for

i = nl'”Z""'nA and pl +o-n+ pi > ql +ooo+ qi for i * ﬂlrnzo---onA-
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By the strong law of large numbers, for almost all w (in the

underlying probability space) there is an mo(w) and an € > 0 for

which (qn 41 FHeoot q.)/(pn s Feoot p.) < 1 - € for each

j=0,...,A-1 and i > ny with i # Nj4p7e+-sNy and

(g +...+ qQ, )/(p +...+ p ) >1 - ¢ for each 0 < j < £ <k
nytl ng " TNy g

provided m > m,(w). So in using the LSA to compute Ea (q/p ekIC)

for such an w and m, we see that the level sets are of the form

{nj+1,...,n£} with 0 < j < £ < k. Consider the closed, convex cone

D={veC: v, = ... =v_ , Vv = ohee V. ...,V = ... =v_ }.
1 ny n,+l n, "A-1+1 Na
1f Ew(ng) denotes the projection of g onto D with respect to the

distance associated with (°,')w, then for such w and m
(3.5) Ea(q/p-ekIC) = Es(q/p'eklb)

since EA(q/;-eklc)eD. One way to compute E (glD) is to first
obtain g* which is constant on {nJ+1,...,nJ+l} by setting

z J+n3+l ng/z‘e-nj+l Wo for i = n3+1,...,nJ 1 and
j =0,1,...,A-1, and then to apply the LSA to g* with weights
Wyreoo Wy, If g = q/;’;-ek and £ = p/;-ek, then g* = £* and hence
Eﬁ(q/;-ele) = Ea((P';)/ng). Clearly, (/ﬁ(;—p),;,y) converges
in distribution to (pl(Ul—a). pz(Uz-a),...,pk(Uk-a),p,p) with
Ul""'uk and 6 defined as before. Using (2.1), we see that (3.4)

converges in distribution to

k

k ~ ~
2 2
(3.6) } p; (E_(Ue -U|D). )" =} p;: (E_(W|D), - W)
j=1 1 P k i j=1 1 P i
~ k
where and W, = -U, for i = 1,2,...,k and W = ) P; W,. Since
i=1

E, (W|D) is constant on {nJ+1,...,n } for § = 0,1,...,A-1, (3.6)
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k ~
can be written as ) qi(E (WID)i - W)z. To compute Ep(WID)
i-l

. e o
we first obtain W} Zl-n +1 plwl/zl—n 41 Pp for i ; nJ+1,...,nJ 1
and j = 0,1,...,A-1, Now, if T, = /p;/q; W, T =) q;T; and
Ny, i=]
J+
zl-n +1 qLTt‘/2£= +1 9, then (wl'.ﬂ.' W) has the same
dlstrlbutlon as (T§,...,T§). Since W = Zi=1 p; Wt = z q, W}

=1
and EP(WID) = EP(W*ID) = Eq(w*ID), (3.6) is equal in dlstribution

k >\ 2
E to Zi=1 qi(Eq(TlD)i - T)°. However,
! k ~ 5 k 2 k ~ 5
zi=1 q; (T,-T)° = Zi=1 qi(Ti-Eq(TlD)i) + zi=1 qi(Eq(TlD)i - T)
The first term on the right hand side of the previous equation
is ||T-Eq(T|D)||§ which is smallest when D is largest, that is
D = C, which occurs if p = gq. So the first conclusion of the
Theoren. is established and it follows that p = q is the
asymptotically least favorable distribution in Hl, in the sense
that the probability of a type I error for the asymptotic test is
largest if p = gq. The second conclusion is a consequence of a

result due to Bartholomew (cf. Theorem 3.1 of Barlow et al. (1972)) ;i

and the proof is completed.

As we have noted earlier, the computation of the P(£,k) may
be tedious and so we apply the hounds for chi-bar-squared

distributions given in Robertson and Wright (1980) to obtain

(3.7) sup, ., lim, P IS, > t] < z (h-pa7kl

2
peH, m =1 P[xl-l 2 t].

Of course, the upper bound in (3.7) can be used to determine a

conservative asymptotic test.

If q is known one might want to test Hy: p = q versus
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Hi: g >> p. However, if we define

P' = (pklpk_ll""pl) and q. = (qk'qk_ll-'-rql)

then p' >> g' is equivalent to q >> p. So the tests developed

in this section can be used to test HO: P = g versus Hi: q>>p

and Hi versus H2 with g known.

4. TWO SAMPLE TESTS. In this section we suppose that p and g

are the relative frequencies of successes corresponding to

independent random samples of size m and n from the p and q

populations respectively. We first consider the likelihood

ratio test of H, versus Hl - Hy where Hy: p >> q. The test

statistic, -2 1n ), can be expressed as
k

- - 0
(4.1) T,y =2m } p;[ln p,-1n p;] + 2n }
0l j=1 1 i i j=1

A _ 0
qi[ln q;-1n qil

where pg = qg = (mpi+ nqi)/N; i=1,2,...,k and 5 and q are

given by Theorem 2.3.

Theorem 4.1. If p = q, then for each real t

k
i 2
limy hae PITgy 2 €] = ) ) Pp(L'k)P[xk-t > tl.
Furthermore,
s 2 2
8UP, . g llmm'n+w P[T01 > t] (Plxy_q > t] + P[xk-z > t1)/2.

Proof. Writing a second order Taylor's expansion for
- ~ - o ~
in P; and 1ln pg about Py and for 1ln 9y and 1ln q; about g;, we

see that T01 can be written as the sum of
k -~ -~ k ~ - - ~
I oyt (apy-py ) - I By vi2ome-py)?

and

ko~ 2 0.2 112 o T & o2 (/G a2
(4.3) 21 L q; 0  (/nlgg~q;))" - 21 1 q; o,  (¥n(g;-q;))",
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where 6, (v.) is between pg and ;i (Ei and ;i) and p, (0;) is
between qg and ai (Ei and ai). Let V = (V;,V,,...,V;) with the
Vi independent normal variables which have zero means and
variances q;l,qgl,...,qil, respectively, and suppose that V is
independent of the U defined in the previous section. If we

k

set V=) qivi’ then as m and n simultaneously approach «

i=1

(A(p-p), VA(a-a)) ¥ (o) (U1-0) ... By (U,~0), @) (V3=V), .. qy (V-V)) .

Furthermore, since Ei and P; (ai and qi) are strongly consistent
for P; (qi) provided p >> g, it follows that, with probability one,
e= (elpo-o'e ) '*p' \)-'-‘ (Vl,...,vk) -’p’ p= (pll"'lpk) *qand
o = (ol,...,ok) + dg.
Let p = q and m,n+~ so that m/N +~ ae{0,1]. Since (4.2)
and (4.3) are continuous functions of (v/m(p-p), vn(g-q),p,q9,6,v,0,0),
we may apply the weak convergence results mentioned earlier to
show that (4.2) converges in distribution to the product of (l-a)
and
k ~ ~ 2 ~ ~ 2
(4.4) 7} p.{[/a(vi-V)-/T-a' (U;-U)1°-[E (/E(V-Vek)-/T'-a'(U—Uek)|c).] }
j=1 1+ i P i
and (4.3) converges in distribution to the product of a and (4.4).
Hence, T01 converges to (4.4), which can be written as
k -~ -~ -~ A
) p; { [ (vav,-/TI-au,)+(/I-au-/av)) 2. (E, (v/av-/1-av|c) ; +(/1-au-v/av)] 4.
i=1
Squaring the binomials in the above expression and applying

Theorem 7.8 of Barlow et al. (1972), this expression can be writtenas
!

4.5 * w? - (e_(W|c) )2} = ik W,~E_(W|c) ;) ? f
(4.5)) _, Pi¥ pWIC) 41 P3P i |

TIN50 v gve QAP NIW YT ey Fohn IO mpmte e -
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where W, = ﬁ;vi-/l-a U, ~ N(0O,p; ) and Wy Wy,... W are

independent. Since the limit (expression (4.5)) does not depend
on a, T°1 converges in distribution to (4.5) for any sequence of
m and n's which both approach infinity (cf. Theorem 2.3 of
Billingsley (1968)). As we have seen earlier (4.5) has the
chi-bar-squared distribution stated in the first conclusion of
the theorem. The second conclusion follows from the results
given in Robertson and Wright (1980).

In this two sample situation the vector p is not specified
by HO' One could use p° = (pg,...,pg) as an estimate of the

unknown p and compute the P(£,k) based on this estimate. The

use of the resulting chi-bar-squared distribution would provide

an approximate large sample test. Or, if one wanted an asymptotic

test with size a, the test could be based on the second conclusion

of Theorem 4.1, that is the critical value, C, could be chosen

to satisfy Plx,_, > C] + P[Xi_z > C] = 2a.

Next, consider a likelihood ratio test of Hl versus Hz = .H
The test statistic, le = -2 1ln A, can be written as
k k

p;[1n Ei-ln p;] -2n ) qq [1n &i-ln q;]l.

(4.6) Ty, = -2m J
12 i=1 i=1

Theorem 4.2. If Pp q(E) denotes the probability of the event E
?
computed under the assumption that p and q are the values of the

parameters, then for each real t

SUP, 55 g 1My nie Pp,qlT12 2 81 = 8UP, o g Yimy 1o Pp glTy2 2

and

k
k-1
8UP, . ¢ limy ew PITy 2 t] = 2£=1(1_1)2

1.

t]

—
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Proof. Writing a second order expansion for 1ln Ei (In q,)

about the point Pi (qi),(4.6) becomes

i=

ARG
(4.7) P: T.
i=1 *

where ti(¢i) is between P; and P; (qi and qi)' Expressing

P;-P; and &i-qi in terms of projections, we see that (4.7) becomes

k - _ A-A
4.8) /M § pd 1 2(/mn/m ey (LR0) )3
i=1 P 1

k ~ p A A
+ m/m I a} 72 v/marm By (TR0 )2,
i=] q

Let p >> q, let ng = 0 and suppose that Ny <Ny <€ ... <My are
those integers ie{1,2,...,k} for p;, +...+ P; = q; +...+ q;. By
the strong law of large numbers, for almost all w (in the
underlying probability space) there is an € > 0, an mo(w) and

an no(m) for which (anj+l +o..t+ ai)/(;nj+l +o0ot ;i) <1 - ¢ for
each j = 0,...,A-1 and i > ny with i # Ny417ec°oMa and

(&n 41 Feoot &nz)/(;njﬂ +...+ ;"1) >1 -¢€ for each 0 < j < £ <A
provided m > mo(w) and n > no(w). An argument like that given in

the one sample problem to establish (3.5) shows that

s (A2Rjc) = B3 (%R D) ana E5(ETR(0) = £; (LB|D).

If one considers the algorithm for computing Ew(gID) discussed

in the last section, then it is clear that

g~(LB|p) = £~ (122D =(R=P) |p) ana Ex(R|p) = B ({9"V (PP )p,).
P 3 P P 9 q d q

Hence, if m,n+» with m/N + ac{0,1], then (4.8) converges to
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-pll-a(U-aek)

k

4.9 1- .
(4.9) (1l-a) Zi=1 pIIEp( - > -
q/i(v-Vek)-p/TZS(u-U)

k
: Zisl 93 [Eg ¢ q D)4

2
ln)i]

2

S e o~ 4

where U,V,U and V are defined as brfore. Again it is clear that

Ep(f/pID) = Eq(f/qID) for any f defined on {1,2,...,k} and since

C A ks v s B

Ew(-lD) is constant on {"j+l""'“j+1} for j = 0,...,A-1, (4.9)

can be written as

(4.10) k q/E(V-Vek)-p/I-a(U-aek) 2
- 3 E s -
2i=1 % (B q D))
-~ k
Let T, = v’pi7qi u, for i =1,2,...,k and T = zi=1 q;T;. For

i = nj+1’-.-,nj+l and j = 0,...’A-1’ let

N5+1 541
Zz-n +1 pLUL/££=nj+1 Py

nN. n.
= i+l j+1
L Z£=nj+1 qlTl/Z£=nj+1 Q-

D

Clearly (vl,...,vk,Ui,..-,U]*() = (Vl'--o,vk'Ti,‘oo'Ti) and

]+l -y - — o
zz—n +1 (ql'/;(vz \'A) szI a(Uz U))

k
/a Zl—nj+1 9V -v) - /I3 zl—n +1 qL(UZ'Zi=1 a;0§)

: ad k
"j+1 -v) - /I-a -
/a z1.=n.+1 A (Vp-V) a Zc=nj+1 QPTEl _ 9T

= ZL_;1+1 q, [/a(v,~v) - /I=a(T,~m].
3

Hence, if we define W, = /a ] - /I-a T, and W= Z q;W;, then
i=]
Wi ~ N(O,qil) and wl""'wk are independent. If we consider the

computational algorithm for Ew(glb) discussed earlier, then we

see that (4.10) has the same distribution as

T T T I T
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k ~ 2
(4.11) Zi=l qi[Eq(WID)i - Wl“,
Since (4.11) does not depend on a, T,, converges in distribution
to (4.11) for any sequence of m and n's which simultaneously

approach », As before, (4.11) is made stochastically largest

o e bt o v e

by setting D = C or p = q. So the first conclusion of the

Theorem is established. 1In this case, that is p=q or D = C,

(4.11) has a chi-bar-squared distribution with tail probabilities 3
Zk Pp(L,k)P[xi_l > t] for all real t. The second conclusion |
oﬁaihe Theorem follows from Theorem 1 and Remark 2 of Robertson

and Wright (1980).

5. SUMMARY., We outline below the procedures that have been

developed here for testing Hy: P = q vs. Hl - Ho where le P >>q
and H, vs. H2 = ~H1.
I. One sample tests: known standard. (p is the relative
frequency estimate of p based on a sample of size m and q is
known) .

A. M.l.e. of p subject to p >> q: p = ; Eﬁ(q/QIC) where

Ea(-lC) can be computed by the LSA or

A

B B A

Jj=a

B. Test of Ho vs. Hl - Ho. )
(1) Test statistic: Sy, = -2 1n A =2m } N P; (1n p;-1n qj;
(2) Null distribution:

; k
3 lim P(Sy, > t] = le

2
. Py (LXIPIXg_, > t).
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C. Test of Hl vs. Hz «
(1) Test statistic: S;, = =2 1ln ) = 2m Zi=1 p;[1n p;~1n p,]

(2) Null distribution.
k

SUP, 55 g lim . P[S;, 2 t] = ZL Pq(L,k)P[xi_lit]

=1

II. Two sample tests(; and & are independent relative frequency
estimates of p and q based on samples of size m and n respectively)
A. M.l.e. of p and q subject to p >> q: p = (;IN)Ea((m;+n&)/;|C)
and §==-(&/N) Ea(-(m;+na)/alc) with the projections computed
by the LSA or
B

pi = (pi/N) minliaii maxiieik ija (mPJ+an)/zj=a pi.
- A N B - - B a

B. Test of Ho vSs. Hl - Ho

(1) Test statistic: T01 = =2 1ln A =

k k -~
- = 0 = 0 . !
2m Zi=1 p;[1n p;-1n pJ] + 2n zi=1 q [1n gq;-1n q;] with :

pd = a) = (mp +nq,)/N. i

(2) Null distribution

. _ 2 2
sup, _ 4 llmm’n*wP[T°1 2t) = (Plxy_y 2 t] + Plxe_y 2 t1)/2

C. Test of H1 vs. H2

(1) Test statistic: le = -2 1ln A =

k A ~ k A A -
2m §  p;[ln p;~1n p;] + 2n ) q, [1n q;-1n q;]

i=1 i=1
(2) Null distribution:

sup ('2,'_’1‘)2'k+1 P[x%_1 > t].

k
Limy o PITyp 2 61 = I

p>>q 1
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