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ABSTRACT

Likelihood ratio tests concerning the parameters of two

multinomial populations are discussed. A stochastic ordering

restriction is considered as a one sided alternative to

equality. The one and two sample tests for equality versus

stochastic ordering and stochastic ordering versus all

alternatives are derived and their large sample distributions

are obtained. The large sample distributions are mixtures of

chi-squared distributions. The tests developed provide

discrete analogues for the one sided Mann-Whitney-Wilcoxin

and Kolmogorov-Smirnov tests.
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1. INTRODUCTION. Tests for the equality of two populations

against a stochastically ordered alternative are among the

more widely used nonparametric procedures. They include the

one sided Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov tests.

We consider analogous one and two sample likelihood ratio

procedures under the assumption that the underlying populations

are discrete. It is well known that one sided procedures are

more powerful then their two sided counterparts. Thus these

procedures are recommended over the standard chi-squared tests

provided, of course, that the underlying assumptions are valid.

We denote the two collections of multinomial parameters

by p - (plFP 2 ,...pk) and q = (qltq2,...,qk) and we assume
k

that both p and q are in A = {(xl,x 2 ,...,xk): xi > ,i=l x 1

Consider the hypothesis that the q distribution is stochastically

larger than the p distribution. Specifically,

i i k k(11 H1 _ p q.; i = l,2,...,k-l,X P = X q.-
(.)j=l j=l j=l j=l j

If (1.1) holds we say that p majorizes q and denote this

symbolically by p >> q. The three hypotheses to be considered

here are H0 : p = q, H1 and R2 = - H1 (not H1 ) and we shall

consider both one and two sample tests.

Chacko (1966) studied a likelihood ratio statistic for

testing the null hypothesis that p = q0 = k-1(l'1,''''1) against

the alternative that p1 1 P2 P "'" > Pk (and, of course, p + q0).

The hypothesis p >> k-1(l,l,...,l) is implied by the hypothesis

P1 1 P2 Pk' but not conversely, so that the test

discussed here for testing p = q0 against the alternative
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p >> qo has a less restrictive alternative than that considered

by Chacko. It is interesting to note that the statistic,

derived in Section 3, for testing p = q0 versus p >> q0 has a

chi-bar-squared distribution as did Chacko's test statistic.

Robertson (1978) generalized Chacko's work by considering the

test of p = q (arbitrary q) against an arbitrary order restric-

tion on p. He also considered the problem of testing an order

restriction on p as a null hypothesis.

In Section 2, the one and two sample maximum likelihood

estimates of the multinomial parameters subject to the restric-

tions in H1 are derived. The distribution theory for the one

sample tests of H0 versus H1 - H0 and H1 versus H2 is given

in Section 3 and Section 4 contains the corresponding two

sample theory.

2. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATES. In order to

develop the desired likelihood ratio tests we must first obtain

the maximum likelihood estimates under the restriction p >> q.

The approach uses the theory given in Section 5 of Barlow and

Brunk (1972) which requires the following notation. For arty

collection of positive weights, w = (wl,w 2,...,wk), let (x,y)w

be the inner product on Rk defined by (x,y)w  = lk xiyiw1 ;
w i=1

let 11-1w denote the induced norm (ie. I1XIi. w = X x 2 w .);

and for any subset A of Rk let Ew(XiA) denote the projection

(ie, closest point under l-1i w ) of x onto A provided it exists

and is unique (cf. Brunk (1965)).

We first consider the one sample problem. Assume q is

known; assume a random sample of size m from the population



5

associated with p and let p = .. 2' k) be the

vector of relative frequencies (ie. mp has a multinomial

distribution with parameters m and p). Let C = {xcRk: xI > x2  Xk>

and note that C is a closed convex cone in R , so that by Brunk

(1965), Ew(.IC) is well defined.

Theorem 2.1 If pi > 0; i 1,2,...,k, then the maximum likeli-

hood estimate of p subject to H1 is given by

(2.1) p - pE^(q/pIC),

p

where, for x,yeRk, xy denotes the vector (XlYl,X2Y2,...,xkYk)

and x/y = (xl/yl,x2/y2,...,xk/yk).

Before the proof of Theorem 2.1 is given, we describe the

lower sets algorithm (LSA) for computing Ew (xC). For A a

nonempty subset of {1,2,...,k), set

M(A) = licA wixi/liA wi-

Set i0 = 0 and choose iI the largest positive integer i which

maximizes M({i 0+l,...,il). Next choose i2 the largest integer

i greater than i1 , which maximizes M({il+l,...,i)). Continuing

this process, we obtain 0 - i0 < i1 < ... < if = k and the

projection

Ew(xJC)i = M({ii) i{i +l,...,i.1 and

~j = 1,2,...,L.

The sets {i j-+l,...,ij } are called the level sets.

Proof. The m.l.e., p = , solves the

following optimization problem:

k ^
minimize: - mPi In pi subject to p >> q.



6

Set s m (P/lP/2 .. FkP) w = (lP .. PO
-l A A A

g =M (ql/plpq 2 /P2 1 ... Fqk/Pk), and 0(y) =-in y. Then

-i / A A 
A

PS = m "ikpk solves

ki
(2.2)minimize: w. O(si) subject to w.(g.-s) < 0

k j=1 II
I < i < k and w.(g.-s.) = 0.

j=1 I I I

The Fenchel dual, CW , of C is

C = fu; (u,v) :S 0 for each vECl
i k

= fu; u.w. < 0; 1 < i < k, u-w. 01.

(cf. Barlow et al. (1972) pp. 49). Thus (2.2) becomes

minimize: w. *(s.) subject to g-scC W

and by Theorem 3.4 of Barlow and Brunk the solution to (2.2) is

unique and is the projection of g onto the cone C. Thus

p=mp Ew(g/m;,C) = P EA(q/plC).

Theorem 2.2. As m--~, p converges almost surely to p provided

p >> q.

Proof. By the strong law of large numbers, p-p a.s. as

M-110. Moreover, EW(x IC) is continuous in both w and x so that

p-+.pE p(q/pIC) a.s. Using the LSA to compute E p (q/pIC), one sees

that since p >> q, M((l,....,il) < 1 with equality for i - k.

Hence, E p(q/p)IC -= where ekis the k-dimensional vector of

ones and so p E P(q/p)IC) - p.

In the two sample problem let q denote the vector of

relative frequencies of a sample of size n from the q population



7

A A2k

and assume that p and q are independent. Let B = {xER ;

X _ > x k , Xk+l _< Xk+2 < .. <X2k; N = m+n and

0 = (p,q).
A A

Theorem 2.3. If pi,qi > 0; i = 1,2,...,k then the maximum

likelihood estimate of 0 subject to H1 is given by

(2.3) ( = 6 = w Ew(hIB)

A A A A A A

where w = (mPlmP2 ,... ,mPkfnql nq2 ,... ,nqk) and

N-1 += ; i = l,2,...,k

h Pihi  i

N-1 + m Pi-k ; i = k+l,...,2k.
nN qi-

Proof. Our maximum likelihood estimation problem is the

same as the one described by (5.5), (5.6) and (5.7) in Barlow

and Brunk (1972) and they have shown that the solution also

satisfies
i i i

j- (mpj+nq.)/N > qJ

j ~ j=l 3 j=l

for i = 1,2,...,k-1 with equality for i = k. Letting

t = (Pl/mPlP 2/mP21 .. ^P/mPk ql/nql,-- ,qk /nqk) these restrictions

are equivalent to

i k+i
(2.4) j w. (t.-h. ) > 0 and J wj (hj-t.) > 0; i = 1,2,...,k-1(24)1__ j (t-h)_ 0an j=k+l -

k 2k
and Ij=l wj (tj-hj) = 0 =jk+l w. (hj-tj).

From Barlow and Brunk (1972), (2.4) is equivalent to h-tcB*.

Hence, with * as before (Pl/mP1, 2 /mP2 I ..'V k/mPk'ql/nq .... k/nc

solves:
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2k W
minimize i~ w. *(t.) subject to -e

Appealing to Theorem 3.4 of Barlow and Brunk (1972) again, we

have that (P,q) = w E (hIB), which is the desired conclusion.

Since membership in K imposes no restrictions between the

first k coordinates and the last k coordinates of a point,

(E(* IB)11E(*IB)20 ...,FE(. IB)k ) and (E(* IB) k+l, ... #E(- IB)2k) can

be computed independently. It follows that

- A Imp~.n.t
(2.5) p =p E~ ̂  [ ^A^ C] and

q q E- pn 1 q E- [m+nq 1]

where C' denote the cone {x: x < x < ... < xk

Theorem 2.4. If p >> q, then p[limm~-o q pq] 1

Proof. Since Ew (g+e kIC) = Ew(gIC) + ek, it follows from

(2.5) that

A AA A

(2.6) p-p = (n/N) p E-(2.-RIC) and q--q = -(in/N) q EA-(9S^RIC).
p pq

By the strong law of large numbers P~limn-- (p 'q) = (p,q)J 1

Since (n/N)p and (m/N)q are bounded and E w(xIC) is continuous in

x and w, we need only show that

E (-q:IC) =E (SL- 2 1C) =0,p p q q
or equivalently,

E (1IC) =-E (-E-IC) =ek

p p q q k

in the proof of Theorem 2.2, it was shown that p >> q implies that

E p (q/pIC) - ek and the proof of Eq (-p/qlC) - -e k is similar.
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It is interesting to observe that (p,q) is strongly

consistent for (p,q) for any sequence of sample sizes (m,n)

provided m and n simultaneously approach =.

3. TESTS WITH A KNOWN STANDARD: ONE SAMPLE TESTS. In this

and the next section we use X generically to denote the

likelihood ratio. Suppose q is known and that we have a random

sample of size m from the p-population and consider testing

H0 : p = q against H1 - H0 where H0: p >> q. Let S01 2 In X
k 1^wee 1 pq. Lt -lA

-2m i Pi(ln qi-ln pi ). Since H0 is a boundary point of H1

the usual limiting chi-squared results for -? In X do not apply.

However the next result shows that the limit distribution is a

mixture of chi-squared distributions. Before stating the result

we define the mixing proportions. Let w = (wlw 2,...,wk) be

positive weights and let WIW 2 1...Wk be independent normal

variables with zero means and variances w1 ,w2 1...#wk

respectively. We denote the probability that Ew(WIC) has exactly

t distinct values (level sets) by P w (L,k).

Theorem 3.1. If H0 is true then for any real number t

k2

2 2
limm-.. P [S0 t]= = P (t,k)P[(X2_ > t]

where X is a chi-squared variable with v degrees freedom (X2=0).

Proof. Writing a second order Taylor's expansion for In qi
and In P. about the point pi, Sol can be expressed as follows:

k -2 2 k _ 2 A 2
(3.1) Sol =i (I i (rj(pi-q)) Pi- (rm(pi-pi))

A Awhere czi is between Piand qiand €iis between Piand
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Let UIU 2,...,FUk be independent normal variables which are

centered at their expectations and have variances p 1 -p2 1I**Tk '

respectively. Then the random vector Ai(p-p) converges in

distribution to (p1 (U1-U), P2 (U2-U),V.. ,Pk (Uk-U)) where
- k
U = X piUi(cf. Robertson (1978)). Hence, appealing toi=l1 1

Theorem 4.4 of Billingsley (1968), we have that

(Aim(p-p),p,p,aI$) R (Pl(UlU)f''.Pk(Uk-U)'P#PPP)

provided H0 is true. Thus, under H0 , S01converges in distribution

to

k 2 k 2
(3.2) 1i= qi(Ui-U) i-l qi[E q(Ue k - U IC ) i

2 .

Now, noting that E (Ue- UIC) = Ue +E (-UIC), squaring the
q k k q

binomials in (3.2), combining terms and using Theorem 7.8 of

Barlow et al. (1972), (3.2) can be rewritten as

E qi[E (WIC)i-Wi1 2

i=l1

where Wi = -Ui; i = 1,2,...,k. Corollary 2.6 of Robertson

and Wegman (1978) gives the desired conclusion.

If q, = q2 = "'" = qk = k - 1 then the P(L,k) can be deter-

mined recursively from Corollary B on p. 145 of Barlow et al.

(1972). Their Appendix A5 gives the P(t,k) for k < 12 in this

case. However, if the qi are not all equal the P(L,k) are much

more difficult to compute. Equation (3.23) of Barlow et al.

(1972) is a recursive relation from which one can obtain the

P(L,k) provided P(J,J) is known for j < k. Barlow et al. (1972)

contains closed form expressions for P(J,J) with j < 4 and the
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tables in Abrahamson (1964) can be used to compute P(5,5).

Robertson and Wright (1980) have obtained bounds for certain

chi-bar-squared distributions. Their results show that

(3.3) limm . P[So, 2_ t] < (P 2 2mkl 1 -t P[Pk_2 >_ t])/2

and of course, one could obtain a conservative test using the

upper bound in (3.3).

Next, we consider the (one sample) likelihood ratio test

of H1 versus H2. The test statistic is

k
S1 2 = -2 in X = -2m I Pifln pi-ln pi].i=l1 1

Let P p(E) denote the probability of the event E computed underpI
the assumption that p is the population vector of probabilities.

Theorem 3.2. For any p satisfying H1 (ie. p >> q) and for all t

1imm- PIS12 > t] < limm4." Pq[S12 L t]

and
k2

limm+0 Pq (S1 2 >_ ti = Pq (L,k)P[xt_ 1i > t].

Proof. Writing a second order Taylor's expansion for
A

ln pi about the point pi we see that S12 can be writteni1
k ^ -2 A 2(3.4) [ilPi i (m(Pi-Pi))

where yi is between pi and pi. Now we want to obtain the

limiting distribution of (3.4) under H1 and to show that this

limit is stochastically largest for p - q. Let p >> q and let

0 = no < nl <  0"" < n A = k with p, + ". + pi = ql +...+ qi for

i -i nln2, ...,OnA and pl +...+ pi > q, +...+ qi for i + nlrn2,...n A .
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By the strong law of large numbers, for almost all w (in the

underlying probability space) there is an m0(wM and an e > 0 for

which (q +1+. .. + q.)/(Pni+ +...+ pi) < 1 - e for each

0 ,...,A-1 and i > T with i + n j+lF ... "A and
A A

(q Tj ... + q n )/(pnl +...+ pn ) > 1 - c for each 0 < j < t < k

provided m > m~ (w). So in using the LSA to compute E^ (q/p-.ekC

for such an w and m, we see that the level sets are of the form

with 0 < j < t < k. Consider the closed, convex cone

D = {v£C: V 1  = ... = V i, V ni 1  = ... + ri n2 . .IVn - +l*=*.. = v n

If Ew(gID) denotes the projection of g onto D with respect to the

distance associated with (-,-) , then for such w and m

(3.5) E p(q/p-e kIC) = E p(g/p-ek D

since E A(q/p-e c)D. one way to compute Ew(gJD) is to first
p k w)

obtain g* which is constant on {nlj+l,,.. ,lj, by setting

-i fli+l +1wt~t /Xj+1 1 wt for i = T1 .+l,..,ll and

j 0 ,l,...,A-1, and then to apply the LSA to g* with weights

wl1,....,wk. If g = qpek adf= p/p- ek' then g* =f* and hence

E-(q/p-e ID) =EA((p-p)/pID). Clearly, (Aii-(p-p),p,y) converges

in distribution to (p1(U1-U), P2 (U2-U),...,Pk(Uk-U),p'P) with

Ul,...Uk and U defined as before. Using (2.1), we see that (3.4)

converges in distribution to

k -2 k2
(3.6) p. (E p ekUD )pi (E p (WD -W

- k
where and W. -U.i for i 1 ,2,...,k and W - =l p. W..* Since

E p(WID) is constant on (n.+l,... ,fl I~l for J = 0,1,...,A-1, (3.6)
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k
can be written as qi(E p(WID)i -W) To compute E (WID)

i=l P

we first obtain W# "j+l .for i = +
I L=nj+l PiLI£/Yt=n_+l P1  k fr i J+l

and j = 0,1,...,A-1. Now, if Ti = Ii Wi, T qiTi and

+I nj+l
T= =nj+ 1 qtT/,t=rj+1 q., then (W*''.'W*) has the same

1j - 1kk k
distribution as (T*,...,T*). Since W = Xi=l piWt = I qiW#

i=1 1

and Ep(WID) = E p(W*ID) = E q(W*ID), (3.6) is equal in distribution
k q

to Ik qi(E_(TID) i - T)2. However,

k - k k 2
i=l qi(Ti-T)2 = Ii= l qi(Ti-Eq (TID) i) + I  qi(E q(TID)i - T)

The first term on the right hand side of the previous equation

is IIT-E (TID) 112 which is smallest when D is largest, that is
q q

D = C, which occurs if p = q. So the first conclusion of the

Theore. is established and it follows that p = q is the

asymptotically least favorable distribution in HI, in the sense

that the probability of a type I error for the asymptotic test is

largest if p = q. The second conclusion is a consequence of a

result due to Bartholomew (cf. Theorem 3.1 of Barlow et al. (1972))

and the proof is completed.

As we have noted earlier, the computation of the P(L,k) may

be tedious and so we apply the bounds for chi-bar-squared

distributions given in Robertson and Wright (1980) to obtain

(3.7) sup H im P [Sl > t] < k (l) 2 *~ 2r ]

1C m-- p 1=1 P- I -
1> tj.

Of course, the upper bound in (3.7) can be used to determine a

conservative asymptotic test.

If q is known one might want to test H0 : p = q versus
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Hj: q >> p. However, if we define

P'= (pkPk-l,..,pl) and q' = (qk,qk-l,..,ql)

then p' >> q, is equivalent to q >> p. So the tests developed

in this section can be used to test H0 : p = q versus Hj: q >> p

and Hi versus H2 with q known.

4. TWO SAMPLE TESTS. In this section we suppose that p and q

are the relative frequencies of successes corresponding to

independent random samples of size m and n from the p and q

populations respectively. We first consider the likelihood

ratio test of H0 versus H1 - H0 where H1 : p >> q. The test

statistic, -2 In X, can be expressed as

(4.1) T01 = 2m k [in in + 2n k qi[ n q0in q0
i= 11 i=l 1 1

0 0 A A

where pi = qi = (mpi+ nqi)/N; i - 1,2,...,k and p and q are

given by Theorem 2.3.

Theorem 4.1. If p = q, then for each real t

k 2
limm,n- P[T0 > ti = I P (tk)Pxk- > t].

Furthermore,

sup P 0 t] (P[k 2_ t 2  > tl)/2.Sp = q i"mm,n - k[0 1_ t]=( X- - t] + P[Xk_ 2 _

Proof. Writing a second order Taylor's expansion for

in pi and In p. about p. and for In qi and In q0 about qi, we1n Pi 1iaboutbqut we
see that T01 can be written as the sum ofk 0^k A

(4.2) i P 1 i(r&(pPi)) i Pi " (r(k- i))

and

kc _2- 0 A 2  k A 2 2
(4.3) 1 i piJ*(Vjj(q iq)) q1, a i,n qp ,

i- -1 ioi (il)
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where 0 i(V ) is between pi and p1 (p and p)and pia)is
A A

between q9and q~ (j. and q.). Let V = V, 2 .. V)with the

V.i independent normal variables which have zero means and

variances q1 1 ,g2 1 1 . Jk1 respectively, and suppose that V is

independent of the U defined in the previous section. If we
- k

set V = q.V., then as m and n simultaneously approach

(/vS(p-p), /ii-(q-q)) 2(pl(Ul-U,.,kU-Uq( 1 VD..~(~V)

A

Furthermore, since pi and pi (q and qi) are strongly consistent

for pi (q.) provided p >> q,it follows thatwith probability one,

e = (()l1 ...'8k) P' v = (vl,...,vk) -" P = P ('**'k) - q and

a= (a 1... Oak ) 4q.

Let p = q and m,n-- so that rn/N -* aeUO,lJ. Since (4.2)

and (4.3) are continuous functions of (Aii(p-p), /i(q-q),p,q,8,v,p,a),

we may apply the weak convergence results mentioned earlier to

show that (4.2) converges in distribution to the product of (1-a)

and

k 2 p2-e)~Iiu 4 e)c~

and (4.3) converges in distribution to the product of a and (4.4).

Hence, T 01 converges to (4.4), which can be written as

k __2_-

Squaring the binomials in the above expression and applying

Theorem 7.8 of Barlow et al. (1972), this expression can be writtenan,

i45 - i {Wi Ep WC) Pi(W f.E p(WIC)i)
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where W. = /aVi- 4-a U. ~ N(0,pi ) and WIW 2 , ...,k are

independent. Since the limit (expression (4.5))does not depend

on a, T01 converges in distribution to (4.5) for any sequence of

m and n's which both approach infinity (cf. Theorem 2.3 of

Billingsley (1968)). As we have seen earlier (4.5) has the

chi-bar-squared distribution stated in the first conclusion of

the theorem. The second conclusion follows from the results

given in Robertson and Wright (1980).

In this two sample situation the vector p is not specified

by H0. One could use p = (p ,... ) as an estimate of the

unknown p and compute the P(L,k) based on this estimate. The

use of the resulting chi-bar-squared distribution would provide

an approximate large sample test. Or, if one wanted an asymptotic

test with size a, the test could be based on the second conclusion

of Theorem 4.1, that is the critical value, C, could be chosen

to satisfy P[Xkl > C] + P[Xk_2 > C] = 2a.

Next, consider a likelihood ratio test of H versus H2 = -HI.

The test statistic, T1 2 = -2 ln X, can be written as

k ^ ^ k ^
(4.6) T12 = -2m i Pi[ln pi-ln pil -2n qi[ln ji-ln qi].i=l11 i=l11 1

Theorem 4.2. If P p,q(E) denotes the probability of the event E

computed under the assumption that p and q are the values of the

parameters, then for each real t

supp >> q limM,no- Pp,q[T12 > t] = sup = q imm,n - p,q[Tl2 > t]

and

sup PT ti k (k1) 2 k+l P[x 2_ > t].up~ q "m,n-o- 12 1t1
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Proof. Writing a second order expansion for in ii (in ji)
A A

about the point P. (q.), (4.6) becomes

k _2 - - A 2 k A -2 -A 2

AA

where Ti (0i) isbtenp and pi (q. and q.). Expressing

p- and qiq in terms of projections, we see that (4.7) becomes

(.) (n/N) k . T. 2 Ai~I ~3J))
k 3 12 p qF ;I~)

+ ~ ~ ~ ' (rn/E I C)(ii~I EAC2.

i~l q

Let p >> q, let n 0 = 0 and suppose that n 1 < n2< . < nare

those integers ic{l,2,...,kl for p1 +...+ pi = q,+...+ qi. By

the strong law of large numbers, for almost all wi (in the

underlying probability space) there is an c > 0, an m 0(M and

an n 0(w) for which (q T~ 1+...+ q.)/(n +...+ pi) <1 - e for

each j = 0,...,A-1 and i > njwith i + Tj+l'***'TA and
AAAA

(q j+ +...+ q Tl)/(pnl +1 . + p n.) > I - e for each 0 < j < t < A

provided m > m0(wM and n > n 0(w). An argument like that given in

the one sample problem to establish (3.5) shows that

AAA A A A A

EA@a72 1C) = EA(27-ID) and E-(23 2IC) = E-(2=RID).

If one considers the algorithm for computing E w(gJD) discussed

in the last section, then it is clear that

A A A A AAA A

EA(-q=E2ID) = EA((q-q)-(J2P)fD) and EA(-SZRJD) = EA((S-2)( P)jD).

p p q q

Hence, if m~-), with rn/N - ac[0,lJ, then (4.8) converges to
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(4.9) (1-a) k PiEp(kk ID)i]2 +
i-l - p 1k qa (V-Ve k ) -p /q-a (U-U) 2

a qi (Eq( q ID) i2

where U,V,U and V are defined as before. Again it is clear that

Ep(f/pID) = E q(f/qlD) for any f defined on {l,2,...,k} and since

Ew(.ID) is constant on {n 1+l.. j+l} for j = 0,...,A-1, (4.9)

can be written as

k q (V-Ve k )--a(U-Uek) 2
(4.10) qi[Eq( q ID) il

~ k
Let Ti = rp-iq Ui for i = 1,2,...,k and T = VqT. For

i=l1 1

i = nj+l,-...,j+ 1 and j = 0,...,A-1, let

U * = nj+ l",/ n. +
1 t =nj+ PtUt/Yt=nj+l Pt

and
n 1j+l _ nj+lTl = Ln+1 qt.z./j=n +1 qt.

1. t=n.+ un qi

Clearly (V1  Vk U k D (V1  VT*,...T*) and

[=nj+l (qr(V,-V) - pt/1-lUz-U))

r j+l n.- k
= I =n q (v -V) - V~a1 +1 1 q(Ul-l qi~t

-R a nj +  q ( L n + +1it(H l qiTt)
t j 1 t C - k1 - t!~

= n j+l q(a--(V -V) - /-i(T t-T).

- k
Hence, if we define W /a V. - /1i T. and W = qiWi, then

1 1 i-l1
Wi ~ N(0,qi ) and W1 l ... W are independent. If we consider the

computational algorithm for Ew(gID) discussed earlier, then we

see that (4.10) has the same distribution as
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k
(4.11) X qi[Eq (W D) i  ]2

Since (4.11) does not depend on a, T12 converges in distribution

to (4.11) for any sequence of m and n's which simultaneously

approach ®. As before, (4.11) is made stochastically largest

by setting D = C or p = q. So the first conclusion of the

Theorem is established. In this case, that is p = q or D = C,

(4.11) has a chi-bar-squared distribution with tail probabilities
k 2
t-.1 PP (tk)P[xl-I > t] for all real t. The second conclusion

of the Theorem follows from Theorem 1 and Remark 2 of Robertson

and Wright (1980).

5. SUMMARY. We outline below the procedures that have been

developed here for testing H0: p = q vs. H1 - H0 where H1 : p >> q

and H1 vs. H2 = -H V

I. One sample tests: known standard. (p is the relative

frequency estimate of p based on a sample of size m and q is

known).

A. M.l.e. of p subject to p >> q: p = p E-(q/pIC) where
p

E-(-IC) can be computed by the LSA or
p

A B B ^

pi= pi minl<a<i maxi<B<k . qi/J pj;i = 1,2,...,k.
3=aj

B. Test of H0 vs. H1 - H0.

(1) Test statistic: S01 = -2 ln X = 2m I Pi(ln Pi-ln qj

(2) Null distribution:

limm.>'1 =fO it P (L,k)PI 2_>tq k It
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C. Test of H 1 vs. H H2

(1) Test statistic: S 12 -2 in X~ 2m pi [in pi-ln i

(2) Null distribution.

sup~ limm.o P[S1  P (t k 2 >llt
p >> q 12 1 i qit

II. Two sample tests (p and q are independent relative frequency

estimates of p and q based on samples of size m and n respectively)

A. M.l.e. of p and q subject to p >> q: p=(p[N)EA((mp+nq)/pIC)p

and q- -(q/N) Ei(-(mp+nq)/qlC) with the projections computed

by the LSA or

p. = (p./N) mmn~~ max iOk1 mjnj/ i

1i =qiN al<ct<i mni<B<k I (mp i+nq.)/l j
_ -- j=cta j=a

B. Test of H 0vs. H 1- H0

(1) Test statistic: T0  = -2 In X

k 0 k 0
2m i~ pi[ln pi-in piJ + 2n qi[ln q.-ln qJwith

0 q 1 = (mpi+nqi)/N.

(2) Null distribution

up~ = q limm,n.-PTJ k. t=(PX 1 - t] + P(Xk..2 > t")/

C. Test of H1vs. H2

(1) Test statistic: T 1 2 = 2 in X

k A A k AA

2m i~ p.[ln p.-ln p.] + 2n I - qi[ln qi-ln i.i

(2) Null distribution:

su PT 1 k tl )2 .- k+l PX2 )
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