MICROCODE VERIFICATION PROJECT

University of Southern California

Stephen D. Crocker
Leo Marcus
Dono van-Mierop
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-42 has been reviewed and is approved for publication.

APPROVED: Donald F. Roberts
DONALD F. ROBERTS
Project Engineer

APPROVED: Wendall C. Bauman
WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: John P. Huss
JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
The goal of the microcode verification project at ISI is the development of both theory and tools for verification of microcode. Within the scope of this project, a formalism for representing state transitions in a computationally tractable way has been invented, and a proof system based on this formalism has been designed and implemented. The representations of state transitions are called "state deltas."
The basic proof system has been specialized for proofs about machine language and microcode by the addition of simplification rules for bitstring arithmetic, and by the addition of a translator from the ISPS machine description language to state deltas.

Some experimentation with the system has been driven by a preliminary attempt to verify parts of the microcode of the Fault-Tolerant Spaceborne Computer (FTSC). The primary success to date has been the verification of the basic algorithm used for computing floating point square root.
Table of Contents

1. OVERVIEW
2. LANGUAGE AND THEORY
 - 2.1 ISPS
 - 2.2 STATE DELTAS
 - 2.3 SIMULATION
 - 2.4 TRANSLATION OF ISPS INTO SDS
 - 2.5 THE SYSTEM -- OVERVIEW
3. EXPERIENCE AND EXAMPLES
 - 3.1 THE TOY MACHINE
 - 3.2 THE FTSC
4. CONCLUSIONS

REFERENCES

A THE SYSTEM
 - A.1 PREPARING AND RUNNING A PROOF
 - A.1.1 Exec Mode
 - A.1.2 BatchMode
 - A.2 BASIC PROOFSTEPS
 - A.2.1 Beginning and Ending a Proof
 - A.2.2 Registering Places
 - A.2.3 Advancing the Computation
 - A.2.4 Case Analysis and Loops
 - A.2.5 Mapping Between Levels
 - A.2.6 Static Reasoning
 - A.3 HIGH LEVEL PROOFSTEPS
 - A.4 STATE DELTA EXPRESSION LANGUAGE
 - A.5 THE SIMPLIFIER

B FTSC HOST
C FTSC TARGET
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>ISPS description of the TARGET machine</td>
<td>25</td>
</tr>
<tr>
<td>3-2</td>
<td>The SD description of the TARGET</td>
<td>25</td>
</tr>
<tr>
<td>3-3</td>
<td>Schematic of the TOY Host</td>
<td>29</td>
</tr>
<tr>
<td>3-4</td>
<td>ISPS description of the HOST</td>
<td>29</td>
</tr>
<tr>
<td>3-5</td>
<td>The specification of the Microcode</td>
<td>29</td>
</tr>
<tr>
<td>3-6</td>
<td>Mapping between TARGET and HOST</td>
<td>35</td>
</tr>
<tr>
<td>3-7</td>
<td>Two of the MAPPING records</td>
<td>35</td>
</tr>
<tr>
<td>3-8</td>
<td>Outline of the command batch</td>
<td>38</td>
</tr>
<tr>
<td>3-9</td>
<td>ISPS description of the square root algorithm</td>
<td>43</td>
</tr>
</tbody>
</table>
EVALUATION

One goal of Software Engineering Tools and Methods, a subthrust of TPO-5 Software Cost Reduction, is the development of automated tools for use in the production, testing, and maintenance of Air Force software. This effort was undertaken in response to that goal.

The objective of the effort was to develop a prototype software system for formally verifying microcode. The use of microcode (firmware) to implement computer instruction sets, rather than hard wiring, is a recent development in computer technology. Hardware diagnostics do not fulfill testing requirements for these computers.

Formal proof-of-correctness techniques, previously developed, were applied to develop a system for "proving" microcode correctness. These techniques were developed for software written in high order languages. This effort is significant in that it is the first application of the techniques on assembly or micro level software.

Development of the system was guided by problems encountered in attempting to verify the microcoded instruction set of the SAMSO Fault Tolerant Space Computer (FTSC). This provided a practical problem to demonstrate the usefulness of the system. Verification of the complete FTSC instruction set will be completed in a follow-on effort sponsored by SAMSO.

DONALD F. ROBERTS
Project Engineer
1. OVERVIEW

The goal of the microcode verification project at ISI is to develop both the theory and the tools for verification of microcode. While some prior work has been done in this area, notably [Patterson 77, Birman & Joyner 76], the field was (and is) far from closed. Problems exist at every level, from fundamental questions of theory through questions of strategies of system design to problems of integration with other software engineering tools and education of users. Our strategy has been to concentrate on developing a working system, letting the theoretical issues emerge—sometimes painfully—amid system development. We have tried to delay overall consideration of the human engineering questions, but have been forced to consider some of these when it became too difficult to use our own system without improving the interface.

To establish a focus for the project and provide a source of examples, we selected a particular computer, the Fault-Tolerant Spaceborne Computer (FTSC), under development by Raytheon for the Space and Missile Systems Organization (SAMSO) of the Air Force. The FTSC has a number of unusual features related to its design goal for a five-year maintenance-free survival in space. These features appear primarily at the hardware level and in the operating system, however, not in the architecture seen or implemented by the microcode. At the machine language level, the programmer sees a 32-bit machine with 64K of memory, 8 general purpose registers and the usual types of instructions. At the microcode level, the machine is horizontally microprogrammed with 78-bit instructions decoded into 37 different fields. (As of this writing, the machine has been redesigned to have a shorter microinstruction. We have not taken these changes into account in the present work, but will focus on the new design in the next effort.) Documentation of the FTSC is given in [Raytheon Corp 70].

One of the criteria in the selection of the FTSC is that it is a real machine developed outside our control. We believe that it is possible to verify code for nearly arbitrary machines, irrespective of the techniques used to develop the code. This view differs somewhat from those of other verification researchers, notably [London 77]. To be fair, it is quite clear that much of the labor in the verification task can be reduced if verification and code development are carried out together and if the strategies,
practices, and tools used to develop the code are also geared toward verification. But we view this as a secondary concern and not fundamental to the verification task. Below, we will mention where the savings in labor would occur.

We view a microprogram verification system in the following terms. A user prepares formal descriptions of the host machine and the target instruction set. He also obtains a copy of the microcode that runs on the host machine and allegedly implements the target instruction set. He then prepares a proof that the microcode does indeed behave as desired, and submits all four of these files--host description, microcode, target description, proof--to the verification system, which then examines the target description to determine all aspects of its behavior needing implementation. For each sequence of events that must be implemented, the system symbolically executes the microcode according to the rules of the host machine and demonstrates that the required sequence of events does take place.

No system can be quite smart enough to carry out all possible demonstrations completely automatically, so some help may be needed. Some systems operate on the principle that the system should try very hard to succeed on its own and then ask for help after it has tried all possible heuristics. While this approach seems attractive, it has a fundamental drawback. When the system asks the user for help, the user is generally unaware of what the system already has tried to do, what level of detail is needed, or even what problem the system is working on. The underlying difficulty is that the user must have some idea of how the system is constructed and understand how to drive the system. At the same time, we note that the system is really trying to formally document the rationale for each instruction in the microprogram. However, this is just what the programmer had to do himself when he wrote the program. Combining these two observations, we have taken the view that the verification system should be driven by the user, not the other way around. The user should have a complete understanding of what the verification system will and will not do, and the user should drive the verification system toward believing the correctness of the code. In this view, interaction between the system and the user takes the form of a prepared proof, and it becomes meaningful to ask what is the proper language for writing proofs. Wegbreit's
paper [Wegbreit 77] explores this area elegantly for well-structured algorithmic languages. For microcode generated with minimal assembly language tools, different engineering is required, but the basic idea is the same. At the present time, our "proof language" is nothing more than a set of commands to the proofchecker. However, as we gain experience with the system, it becomes clear how to structure these commands into phrases; thus the development of a proof language begins. At the same time, it is worthwhile to ask whether the production of both the microcode and the proof of its correctness can share any tools. The answer must be "yes," but we have not yet considered any specific implementation.

Although we wish our system to be as general and as useful as possible, our present design horizon embodies the following limitations:

- The purpose of the microcode must be to implement the instruction set of a computer. This restriction is intended to limit the difficulty of specifying the intended behavior of the microcode. With this restriction, we rule out microcode that is just arbitrary lower level code to implement, say, operating systems, signal processing algorithms, device controllers, etc. This restriction is not really fundamental to our work and, as we shall see, does not quite guarantee that we shall always have a straightforward way to specify the intended behavior of the machine.

- Since we do not yet have sufficient tools to represent or reason about concurrency or time-dependent behavior, we demand that our microcode be written for a sequential machine and that it implement the instruction set of a sequential machine.

- We intend that the result of this research be a demonstrable system with the real possibility that someone other than ourselves should be able to formulate a task and carry it out. We do not intend, however, that the system be efficient, completely robust, smoothly human-engineered, or thoroughly documented. Users of the system should understand the state of development. Their success rate will be higher if they communicate with us before and during any experimentation.

In addition to the caveats above, the system we are building is not yet ready for release.

Carrying out a complete proof may be fairly tedious. Preparation of the formal
descriptions often appears to be a straightforward task of encoding the information in the manuals that accompany the machine, but we have noticed that many important details are often omitted from such documents, and others are misdocumented. Programmers developing the microcode come to understand these details and use their knowledge to write or debug their code. If the person writing the formal description is not similarly steeped in the culture of the machine under consideration, a similar learning period will be required.

Writing the proof may be tedious, for three reasons. First, a complete understanding of the code is necessary. The programmer understands the code; the person responsible for verification may not. A period of study may be necessary before any of the proof can be written. Of course, if the programmer were also responsible for preparation of the proof, then the verification would proceed all the faster. Unfortunately, with verification still in the research phase, programmers who build "real" programs are far too busy to spend the extra time required for verification. Also, since verification requires some special knowledge, production programmers may not be skilled in the art of preparing formal descriptions and proofs.

The second difficulty is that the code may be relatively complicated to verify. At the beginning we insisted that it should be possible to verify code even if it were written without knowledge that it would be subjected to verification. (We're assuming, of course, that the code does indeed work!) However, it is equally clear that there are many strategies for writing code and that some of them may be equally good from the programmer's point of view but require very different levels of effort in verification.

The third difficulty is that proofs may be tediously long. We have said that the user must drive the verification system with a proof and that the verification system must proceed so as to give the user a clear idea of what the system is doing. However, a trivial way to build such a system is to make it extremely simple, with the result that proofs will be extremely long and require the user to spend a long time preparing them. In the extreme, this is not permissible; it is necessary to build the system with enough knowledge so the "straightforward" deductions are carried out automatically. There is no possibility that any system can know a "maximum" of knowledge, for there will always
bo problems that can be proven with a system, but not proven automatically. At the
same time, there is no limit to making a system smarter; we can always go beyond the
previous limits and build a next system that understands more than the last. Clear
measures of the smartness of one system compared to another do not yet exist, but it is
a question that is likely to gain attention as various verification systems are used for
larger and larger problems.

As we said earlier, we have restricted our interest to microcode that implements the
instruction set of some computer. The intention of this limitation is to make it easy to
specify the intended behavior. Unfortunately, this restriction does not quite work. In the
description of the host architecture, we have no difficulty in formalizing all aspects of
concern, excepting, of course, timing and concurrency. We view the host machine as
operating on bitstrings of finite length. The operators for bitstrings are concatenation
and selection, logical operations, e.g., AND, OR and NOT, and the simple integer arithmetic
operations. At the target level, however, we have not been so fortunate. Bitstrings
remain the dominant datatype, and all of the bitstring operators are still required, but
new operations exist that are not simply characterized by short descriptions. Floating
point arithmetic is the most obvious and extensive area, but some machines have other
instructions whose behavior is quite difficult to characterize in terms of bitstrings. Edit
and format instructions provide many examples, as do instructions that find the
lowest-order or higher-order 1 bit.

The FTSC computer is blessed with the usual complement of floating point instructions;
indeed, it even has a floating point square root instruction. On the grounds that avoiding
these instructions would trivialize the effort and leave us an undetermined distance from
realizing a system capable of verifying real microprograms for real machines, we decided
to tackle the floating point arithmetic head on.

We divided the specification of the target machine into two levels. The first is written in
the same terms as the host machine description. It is restricted to simple bitstring
operators. At this level, the simple target machine instructions, e.g., load, store, integer
add, jump, etc., are stated as succinctly as they will ever be stated and no further work
is required. The floating point instructions, however, look like short but complicated
algorithms that provide an explicit view of how the words are divided into a mantissa and exponent, how normalization takes place, etc.

For these instructions, we provide a higher level of specification that shows that the result of that algorithmic specification has certain properties. This higher level of specification requires the introduction of the reals, and the properties are stated in terms of the interpretation of the floating point bitstrings as real numbers. For example, the desired property of the square root instruction is that it computes the largest floating point number whose square is not larger than the original number. (The notion of "largest floating point number" requires even a little more; the granularity of the floating point numbers is also an issue.)

In the work to date, we have written a complete specification of the FTSC at both the host and algorithmic target level, but we have not defined the properties required of the floating point instructions except for the square root instruction. We have focused on the square root instruction simply because it seemed to expose all of the issues likely to come up in any other instruction.

The basic plan for verifying the correctness of the microcode thus has two parts. One part is to verify that the microcode running on the host machine implements the algorithmic target level. The second part is to verify that the algorithmic target level has the additional properties desired.

At the present time, we have completed the proof that the algorithmic target description of the square root instruction has the desired property. We have not yet proven similar properties for other instructions, nor have we proven the correspondence between the host machine and the target instruction set, for the FTSC. We have, however, created a simple, fictitious machine and carried out a complete proof of the correctness of its microcode. This small machine is called the TOY machine. Both of these proofs are documented in chapter four.

Completion of proofs is one measure of progress, but there is much that precedes the ability to carry out proofs. A sound theoretical basis must exist or be developed and a functioning proof system must be developed. These activities have consumed the
majority of our time and resources.

In chapter two, we discuss the theoretical basis for our proof system and introduce the language we use for expressing the behavior of machines and the properties of programs. In chapter three, we outline the structure of the proof system and give details for selected components.

This work is still in progress. The details of language, structure and capabilities are all evolving.
2. LANGUAGE AND THEORY

In this chapter we discuss the formal basis of and the language we have chosen for both encoding our descriptions of machines and reasoning about the course of computations. Internally, our notation is chosen for its precision and ease of processing, qualities that contrast with the desire for compactness and richness in the languages read and written by humans. Both levels exist, and there must be translation between them. As often happens, subtle and important issues emerge in the translation. At IBM, the difficulties of using two levels of language have been avoided by designing a special-purpose language that is both computationally tractable and not too unwieldy for humans. That language is documented in [Joyner et al. 78].

2.1 ISPS

To represent the host and target machines, we have chosen to use the ISPS language. ISPS, a derivative of Bell and Newell's ISP language [Bell and Newell 71], is now in modest use by a number of organizations. Documentation of the current version is given in [D'Ambrogio et al. 77]; the examples in chapter four are written in ISPS.

Descriptions of machines have been written in ISPS for a number of different purposes, including simulation, architecture evaluation, documentation, computer-aided design, and (in variants of ISPS) automatic generation of code generators and assemblers. This variety of activity associated with the language is useful in two ways. On the one hand, the use by large numbers of people improves the possibility that a standard will emerge, that documentation of computers will be more accurate and more complete, and that the task of preparing formal descriptions of the host and target levels of a microprogrammed machine will be carried out by the machine designers instead of by the verification group.

On the other hand, the wide variety of applications using ISPS, each with its own software to process ISPS descriptions, has tended to expose the lack of a precise semantics for the language. As an experiment to gain some leverage on the semantics of ISPS, Pete Alvin developed a denotational semantic definition of AMDL, an abstract syntax version of ISPS in use at ISI [Alfvén 79].
As we mentioned in the overview, while it may look simple to encode the details of a machine's instruction set in ISPS, it may be tedious in actuality. In the case of the FTSC, a machine under development and redesign, a number of small but important details were either undocumented or misdocumented. We developed simulation tools to execute the descriptions we wrote and used the simulations to execute the diagnostics for the machine at both the host and target levels. In essence, this amounted to a "verification by testing" approach; since the microcode itself was used in some of these tests, it is reasonable to ask if we perturbed the description of the machine in order to make the code work. Stated another way, how do we know that the description of the host machine is an accurate representation of how the hardware really works, and how do we know that the description of the target machine is an accurate representation of how the target machine is supposed to work? There can be no completely satisfactory answers to these questions. The descriptions at both levels must be accepted; they cannot be checked in any rigorous sense within the confines of the microcode verification paradigm. If there exists another description at a higher or lower level, then the corresponding descriptions may be checked against it. However, this merely pushes the problem off one level, and there is no ultimate exemption from a requirement to accept the bottom level description as the way the machine actually works and the top level description as the way the system is supposed to work.

Complete assurance having been denied us, we can ask what lesser assurance is available. By using a language understood by a number of people (in particular by the designers of the machine, the microprogrammers of the machine, and the programmers at the assembly language level) we can have some hope that they all share the same understanding of the machine if they were to depend upon the same descriptions as their reference. This is not yet the case for any machine with any description system, but we see no reason why it could not be. In the course of writing the formal descriptions, the "outsider" may find himself in a question and answer dialogue with the machine designers, in order to clarify the informal descriptions. See the appendices for an example of our dialogue with the designers of the FTSC.

To complete our discussion of ISPS, we again mention that ISPS does not provide
primitives for representing floating point operations; we have had to code them in ISPS as small algorithms. Since the lack of standard notions and designs of floating point arithmetic is a common problem, the choice of another language would not have improved matters.

2.2 STATE DELTAS

In order to build a proof system, a formal basis for reasoning about machines is required. Ordinary first-order predicate calculus is often used as a foundation, but it provides no machinery for reasoning about time or situations that change with time.

There are many possible solutions. Ours has been the development of an extension to the first-order predicate calculus by the addition of sentences called state deltas. State deltas were first introduced in [Crocker 77]. For a more formal treatment see [Marcus 79]. To motivate the development of state deltas, we give the observations and decisions that support our formulation.

- It is simple to think in theoretical terms that a computer can be characterized by a transition function that maps state vectors into state vectors. Given an initial state vector and a statement of the transition function, ordinary mathematical tools will provide the machinery for reasoning about successive states of the machine. However, direct use of this approach becomes unwieldy for even the simplest example.

- One of the first difficulties is the description of the state vector. It is quite inconvenient to think of the state vector as a single domain. For all real machines, the state vector is a messy patchwork of various domains. Each of the storage locations in the machine is a piece of the state vector. The primary memory is perhaps the most regular component, but there are many other components. Also, it may be desirable to subdivide the memory into smaller pieces. To deal with this, we use the usual programming practice of assigning names to different places. A place is essentially a component of the state vector. Given the list of places that comprise the state vector, we will not actually need to symbolize the state vector as a single object. We will not even need to know exactly how the components comprise the state vector, e.g., it is not necessary to know if the state vector is represented as a tuple or whether the program counter is, say, the first or second element of that tuple.

- The precise granularity of time is not really of interest. We do not care
whether a particular computation takes one or two time steps. Instead, we
care that certain states follow one another eventually. Accordingly, we
avoid describing individual transitions and describe the effect of multiple
transitions instead. The result is quite similar to Manna and Waldinger's
intermittent assertion idea [Manna & Waldinger 78], which is derived from
Burstable paper [Burstall 74]. We make use of a precondition and a
postcondition, and our state delta encodes the idea that

if the precondition holds at some point in time,

then there will be a later time at which the postcondition holds.

While it might be possible to state the behavior of a machine in a single
sentence, it would be quite unwieldy. We make use of a collection of state
deltas to specify the behavior of a machine. Each state delta defines the
behavior of the machine in only particular circumstances. Of course, it is
not necessary to cover all possible circumstances; it is perfectly
reasonable to leave the behavior of the machine undefined in some cases.

Most of the components of the state vector are unchanged at each step.
Any straightforward description of the transition function would be
dominated by simple statements of equality between large sections of the
old and new states. To reduce this burden, our formalism encodes the
assumption that all of the state remains unchanged except for a list of
places in the state vector explicitly named. Accordingly, a state delta has
a modification list. The semantics of a state delta includes

if the precondition holds at some point in time,

then there will come a time at which the new state is the same
as the present state except possibly for the values in the
places listed in the modification list, and

at that time the postcondition will also hold.

Even with the implicit assumption that most of the state remains unchanged
from one state to another, it may be necessary to include many details in
the precondition. Quite often the precondition includes the requirement
that much of the present state is identical to a particular prior state. This
introduces a third time into the formalism. We have encoded this condition
with another list of places, called the environment list. The semantics of
state delta are now stated as

if the contents of the places listed in the environment list are
the same at some time t_1 as they were at an earlier time t_0, and
if the precondition is true at time t_1,

then there will be a later time t_2 in which the new state is the
same as the state at time t_1 everywhere except possibly at the
places listed in the modification list, and

the postcondition will also hold.

To simplify our bookkeeping about times and states, we organize all of our
thoughts in terms of a current time. In the formulation above, we anchor t_0
to the current time. We can restate the formulation as

if at some future time t_1 all of the values in the places listed in
the environment list are the same as they are now, and

if the precondition holds at that time,

then there will come a time t_2 whose values are the same as at
time t_1 everywhere except possibly in the places list in the
modification list, and

the postcondition will hold.

While this formulation is quite close to what we need to support efficient
reasoning about places and states, the requirements imposed by the
modification and environment lists are more difficult than they look. As
stated, it is permitted that the values inside the environment list and
outside the modification may change in the interim, as long as they are
restored at the end of the interval. We have found it more useful to
tighten this requirement so that the values that must be the same at the
ends of the time intervals are in fact never changed during the intervals.
It turns out that tightening the restriction of the environment and
modification lists does not remove any essential power. On the contrary,
this new version allows the restricted use of the modal operator "during" to
form sentences which are not expressible using only pre- and
postconditions. Our formulation is now

if the values listed in the environment list remain unchanged from
now until some future time, and

if the precondition also holds at that time,

then at the end of some succeeding time interval during which at
most only the values listed in the modification list will have
changed, and
the postcondition will hold.

Note that there is no requirement that values that are unchanged from now until the precondition becomes true remain unchanged when the postcondition becomes true. In other words, it is possible that the same place may be listed in both the environment and modification lists. Later, we will see the use and effect of such an intersection.

The syntactical form of a state delta is

\[\text{ISO} \quad (\text{pre}: P) \]
\[(\text{mod}: M) \]
\[(\text{env}: E) \]
\[(\text{post}: Q)) \]

where \(P \) and \(Q \) are usually first order sentences in some language, but may in fact be state deltas themselves, and \(M \) is a list of places, as is \(E \). See Chapter 4 for additional examples of state deltas.

Note that the logical implication \(P \) implies \(Q \) (in a given state) is equivalent to the state delta

\[\text{ISO} \quad (\text{pre}: P) \]
\[(\text{mod}: \) \]
\[(\text{env}: \text{OMEGA}) \]
\[(\text{post}: Q)\]

being true in that state, where \(\text{OMEGA} \) is a list of all places, or equivalently a single state "containing" all others.

Also note that one state delta may be derived from two others by a kind of case analysis.

If

\[\text{ISO} \quad (\text{pre}: P \text{ AND } P') \]
\[(\text{mod}: M) \]
\[(\text{env}: E) \]
\[(\text{post}: Q)\]

and

\[\text{ISO} \quad (\text{pre}: P \text{ AND } \text{NOT } P') \]
\[(\text{mod}: M) \]
\[(\text{env}: E) \]
\[(\text{post}: Q)\]
hold in a certain state, then

(SD)
 (pre: P)
 (mod: M)
 (env: E)
 (post: Q))

holds in that state.

An important tool is the "dot" operator .R, which when applied to a place R (for "Register") represents the value or contents of that place. Thus a state change entails a redefinition of dot, not a reinterpretation of the place itself.

When dot is used in a state delta it always refers to the contents at the time of the precondition. In order to reference the contents of a place at the time of the postcondition, the symbol # is used. For example,

(SD)
 (pre: .R GTR 0)
 (mod: R)
 (env:)
 (post: #R=R-1))

means that if the value of R is greater than 0, then at some later time the new value will be one less (and nothing changed along the way except for R).

Here is an example of deriving one state delta from another by a form of induction:

Assume the contents of places are nonnegative integers. If

(SD)
 (pre: P(R) AND .R GTR 0)
 (mod: M)
 (env: E)
 (post: P(#R) AND .R GTR #R))

holds in a certain state, and in addition if M and E represent disjoint sets of places, then

(SD)
 (pre: P(R) AND .R GTR 0)
 (mod: M)
 (env: E)
 (post: P(0))

holds in that state.

It is obvious how an input-output specification can be stated using state deltas. In the next sections we shall explain how a simulation relation between two programs can be proved using state deltas.
For now let us point out how a set of state deltas can be viewed as a program. Assume that we are given a set of state deltas, ordered in some way, and an "initial" state. The first state delta (according to the above ordering) whose precondition is true in the current state may be "applied", thus transforming the state into that specified by the postcondition (and the modification list). Actually the term "state" should perhaps be replaced by "set of states" since we do not demand that the postcondition completely determine the state; for example, the actual values of some places may not be determined, but rather some properties of these values are known. The components (sentences) of the old state which were dependent on, or "supported by", places in the modification list are removed from the state, and the list of sentences in the postcondition are added to the remaining sentences.

Now the process is repeated in the new state. This process is called symbolic execution.

It is also possible to view a somewhat arbitrary program as a set of state deltas, or to translate a program into state deltas, as is discussed in Section 2.4.

2.3 SIMULATION

As stated in the overview, the process of microcode verification can be divided into two parts: the first showing that the Host Machine implements the Target Machine, the second showing that the Target Machine satisfies the Top Level Specification. We shall now discuss the first of these parts.

Let us think on the level of abstraction where both the host and microcode and the target may be considered as programs A_1, A_2. Intuitively, A_1 simulates A_2 if A_1 can "do" anything A_2 can; that is, the state changes due to A_2 are reflected in the state changes that A_1 causes. The state changes for A_1 and A_2 separately are computed using the symbolic execution of the previous section. To prove that A_1 (symbolically) simulates A_2 we need to establish a correspondence between the states of A_1 and those of A_2 such that given two corresponding states, S_2 (for A_2) and S_1 (for A_1), if S_2' is the next state after S_2 arrived at by executing A_2, then the (a) state S_1' corresponding to S_2' can be arrived at by executing A_1 from S_1 (though S_1' need not be the very next state after S_1).
In the system implementation, a state is specified (as in the precondition or postcondition of a state delta) by a list of first order sentences and SDs, and the correspondence between states is specified by a function called MAPPING. Again, recall that "state" as used here is not necessarily a complete description. Thus MAPPING is actually a correspondence between sets of complete states.

2.4 TRANSLATION OF ISPS INTO SDS

ISPS is a relatively well known language suitable for machine descriptions. We will see that SD notation is suitable for representing intermediate proof steps, performing symbolic execution, and utilizing the efficiency of the modification list. In order to retain the advantage of ISPS as an input language and SDs as an internal notation, we need to translate ISPS descriptions into SDs.

If we invent a place to represent the internal control state of a machine and we assign a symbolic value to the control place for each statement in an ISPS program, the program could be represented with a set of SDs, where each SD represents a possible state change. References to control states could be made by including predicates of the form .PC=label in the precondition and postcondition (PC represents the internal control state "program counter"; "label" represents the control value). Representing all the state changes with SDs has two drawbacks: the thread of control that is implicit in the ISPS representation is lost and is encoded explicitly into the precondition and postcondition; the SD notation is different from the familiar ISPS (and somewhat more complicated).

Nested State Deltas

The scheme we are using is motivated by the need to model the control mechanism inside a machine. In an earlier formulation, we modelled the control mechanism as a single variable that took on explicit values. Each precondition and postcondition mentioned the value, e.g., .MicroPC=A312, and this control place was also mentioned in the modification list of every SD. It did not, of course, occur in the environment list. Since the names of the control state values were completely artificial and the explicit appearance in the pre- and postconditions of these equations was very cumbersome, we revised the
formulation to an entirely equivalent scheme that simply made implicit use of the value of control place. The only property of the control place we cared about is that it made some precondition true. By embedding the next SD in the postcondition of the current SD, the next SD is automatically made valid when the current SD is applied ("executed"). Of course, its validity disappears when the control place is changed, so it is necessary that the name of the control place appear in the environment list of the new SD. This is what gives rise to the appearance of the same control place in both the environment and modification lists. Of course, there are some SDs that will not have the control place in the environment list. The tops of loops need to be around forever, and we must resort to using names for the values of the control place at those points. SDs that exit from blocks will not generally have SDs in their postconditions; instead they will set relevant values of the control place.

Instead of describing a program by a set of SDs (one for each possible state change) we could describe it with one SD that represents the first state change and has a nested SD that represents the rest of the program in its postcondition. During symbolic execution, the process of applying an SD is repeated. The following happens for each SD application: the appropriate state change is made; the nested SD that represents the rest of the program is added to the current state; and the SD just applied is removed from the current state if it is supported by the (modified) control place.

The TR Notation

The use of the TR notation is a further compression of the translation from ISPS to SDs. We noticed that it was unnecessary to translate an ISPS description entirely into SDs and then work with the SDs. Instead, we embedded the translation process in the operation of the proof system and carried out just one step of the translation at a time. In essence, we now encode the value of the control place as a formula that tells what to do next. That formula is basically ISPS code, with embellishments to tell us where we are in the code and to keep track of the environment established by ISPS scope rules.

To improve the cumbersome notation of nested SDs to represent the tail of a program, we defined a function called TR that maps an ISPS description into an SD or a set of SDs. We distinguish between ISPS descriptions whose first statement is an assignment
statement and those who start with a control change (conditional or unconditional). In case of an assignment, the TR maps an ISPS program into an SD whose precondition is empty; the modlist includes a control place (MicroPC) and the name of the register that is being assigned to; the envlist includes only MicroPC; the postcondition includes the effect of the assignment and a TR whose parameter is the tail of the ISPS program. In case of a control change, the TR maps an ISPS program into a set of SDs. For each SD, the precondition includes the condition that leads to the control change, the modlist and envlist include MicroPC, and the postcondition includes a TR with the corresponding rest of the ISPS program. The symbolic execution using TRs is very similar to nested SDs, except that the rest of the program is represented as a TR applied to an ISPS description.

Marking ISPS Programs

The set of SDs that represents an ISPS program is not unique. We saw that it ranges from an SD for each ISPS statement to a single SD for the whole program. It depends on the "granularity" that the ISPS description is intended to be broken into. This granularity is specified by special markings of the ISPS description: Every SD that is part of the description of a marked ISPS program must cover a path of execution between two markings.

A control state of an ISPS description is a label or a procedure-entry (that specifies the "rest of the program"). A marking is a special kind of control state. The minimum set of markings needed to specify simulation are the entries and exits of all the procedures. Markings could be added in order to allow more SDs (i.e., a finer granularity). They should be added to break all the loops, for simplicity. Marking should also be added in order to avoid covering the same execution path by more than one SD, for efficiency.

The Translation Process

A marking \(M_j \) is a "successor" of \(M_i \) if \(M_i \) belongs to the set of markings that can be reached by symbolic execution from \(M_j \) without visiting any other marking. The translation algorithm generates one SD for each path of execution between two succeeding markings that are reachable from the initial one. The number of SDs generated is determined by the granularity (i.e., the number of markings). When showing simulation, we
will usually use a very fine granularity for the lower level machine (the Host) and a coarser one for the Target. The TR function is used for performing the symbolic execution.

For simplicity we will refer in this paragraph to the translation of the target machine. The control place for the target machine is MacroPC.

The following information is accumulated during the symbolic execution for generating each SD: all the "path conditions" that have to be true in order to reach a successor; the list of places that are modified during execution; the new symbolic state. The new SD covers the path of execution between a marking and its successor, and includes the following: in the precondition the accumulated path condition and .MacroPC="initial label"; in the modify the accumulated modified places and MacroPC; the envlist is empty; in the postcondition the accumulated symbolic state and .MacroPC=label. A concrete example of translation of an ISPS program is shown in a subsequent chapter.
2.5 THE SYSTEM -- OVERVIEW

The system is described in detail in Appendix A. Here we just describe enough to serve as background for the next chapter. For any additional information, see Appendix A.

The MICROVII system consists of the following components: User Interface, ISPS Translator (described in the previous section), Kernel, Data Base, Place System, and Simplifier. The User Interface, with the help of the ISPS Translator, converts the user's input to a sequence of basic proofsteps. The Kernel processes the proofsteps with the help of the Data Base, Place System, and Simplifier. The Data Base keeps track of the current state, the Place System keeps interdependencies among places, and the Simplifier simplifies expressions in the current state.

The Data Base contains facts which may change as the state changes through symbolic execution, say. Thus it contains facts relating to the contents of places (these facts do not necessarily uniquely determine those contents, e.g., contents of A greater than 0), or relating to some arithmetical variables like induction variables.

The Place System holds "permanent" facts about places, for example which places are subplaces of other places. This is the "Covering" relationship:

(Covering A ((B1 L1) ... (Bn Ln)))

means A is a place with disjoint subplaces B1 of length L1, ..., Bn of length Ln.

The MICROVII system as a whole can be thought of as performing deductions involving dynamic statements (state deltas). The Simplifier is the component performing static deductions. Thus the simplifier contains procedures for simplifying expressions in a given state. If the expression is a sentence (e.g., predicate), and the simplified result is T, then that sentence is true in the given state.
3. EXPERIENCE AND EXAMPLES

The bulk of our work has used examples taken from the FTSC. As we outlined in the overview, we have divided the FTSC target description into two levels. One level provides an algorithmic description for the instructions. For the simple instructions, e.g., load, store, and integer arithmetic instructions, this level of description is easy to read and requires no further refinement. However, for the floating point instructions, an algorithmic description of the effect of an instruction is nearly opaque and is useful only to a specialist who needs to track down the detailed results for particular cases. For these instructions, we need to prove that the results guaranteed by the algorithmic description may be understood in terms of some simply stated properties. The square root instruction is the most interesting example in this area, and we have focused most of our attention on proving just the simple property that the effect of the square root instruction as described by the algorithmic description does indeed compute the largest floating point number whose square is not greater than the original number. We felt this example would expose the hardest issues first and provide some chance that the rest of the proof would be comparatively easy. We have not yet determined whether this strategy will be successful.

At the same time, we have been concerned that the mechanics of carrying out a complete proof should be well understood. Accordingly, we have hedged our bets a bit and constructed a very small fictitious example of a microcoded machine, written the microcode to implement a simple instruction set for that machine, and prepared a complete proof. We call the machine the "TOY" machine.

This chapter details the proofs for both of these examples. To give the flavor of a complete proof, we present the TOY machine first.

3.1 THE TOY MACHINE

The TOY machine is a simple microprogrammed machine. We have provided a formal description of its target instruction set and of its host architecture. We have written the microcode for the host level that implements the target instruction set, and we have specified the states in the host and target levels that correspond to each other. Finally,
we have written a set of commands for the proofchecker to guide it toward proving that
when the microcode runs on the host machine, it correctly implements the target
instruction set. For a problem this simple, the commands to the proofchecker are entirely
devoted to setting up the proof. The actual details are carried out completely
automatically.

The TARGET Machine

In order to keep this experiment simple, but still deal with a realistic machine, we
designed the TARGET machine according to the following requirements:

- 4K-word 16-bit memory
- a 12-bit program counter, a 16-bit accumulator, and a 16-bit instruct
 register
- infinite indirect addressing
- six possible operations: add, subtract, store, load, skip or negative, jump.

We decided on the following word format:

```
 15 . 13 12 11
  ^^^^^^^^^^^^^
 |   |    |    |
 | OPCODE | IND | EA |
  ^^^^^^^^^
```

TOY starts operating by fetching the instruction from location 1 in memory. It proceeds
by repeating the cycle of execution and fetching.

Fetching is performed as follows: the machine loads the instruction register from the
memory location that the program counter points to; while the indirect bit is set, the 13
least significant bits of the instruction register are overwritten by the contents of the
memory location that the effective address (EA) points to; then the program counter is
incremented.

The execution performs one of the following operations according to the 3-bit opcode:
add \textit{MEM}[EA] to the accumulator; subtract \textit{MEM}[EA] from the accumulator; load the accumulator with \textit{MEM}[EA]; store the contents of the accumulator in \textit{MEM}[EA]; skip the next operation if the most significant bit of the accumulator is one (negative accumulate); jump to EA.

The precise ISPS description of the TARGET machine was written according to the English description and is shown in Figure 3-1. The ISPS program is divided into the following declarations: the memory; the registers; the fetching algorithm; the execution algorithm; the main cycle.

The markings we selected in the TARGET machine are the labels \texttt{MAIN}, \texttt{XFETCH}, \texttt{FLOOP}, and \texttt{EXEC}. The paths that the algorithm found were one from \texttt{MAIN} to \texttt{FETCH}, one from \texttt{FETCH} to \texttt{FLOOP}, one from \texttt{FLOOP} to \texttt{FLOOP}, one from \texttt{FLOOP} to \texttt{EXEC}, nine from \texttt{EXEC} to \texttt{FETCH}.

\texttt{MacroPC} is a dummy place that holds the control state (the label) and \texttt{TinvReg} covers the internal registers. The complete set of SDs that the ISPS to SD algorithm found is shown in Figure 3-2. Let us look closer, for example, at the third SD: it describes the path from \texttt{FLOOP} to \texttt{EXEC} which is denoted by \texttt{.MacroPC=FLOOP} in the \texttt{pre}; and \texttt{#MacroPC=EXEC} in the \texttt{post}. The \texttt{pre} also includes \texttt{.IR(12)>0}, which is the precondition for taking this particular path. The \texttt{post} includes also the new value of PC, \texttt{.PC+1}.

The HOST Machine and the Microcode

The HOST machine is the actual hardware that implements the TOY machine. Because the goal of this experiment is microprogram verification, we chose a microprogrammed HOST. The HOST machine was somewhat tailored to the TARGET, for simplicity, but still much generality and extendability were maintained. The description of the HOST machine explicates all the details of registers, combination circuits, and data paths.

We decided to keep the microprogram in a 64-word 21-bit ROM. ROM words contain 21-bit microinstructions with the following format:
TARGET := BEGIN

** Memory **
MEM(0:4k)<15:0>

** Registers **
PC<11:0>, ! program counter
ACC<15:0>, ! accumulator
IR<15:0>, ! instruction register
OPCODE<2:0> := IR<15:13>, ! operation code
EA<11:0> := IR<11:0> ! effective address

** Instruction.Fetching **
XFETCH := BEGIN
IR := MEM(PC) NEXT
FLOOP1 := REPEAT
 FLOOP := DECODE IR<12> =>
 BEGIN
 0 := LEAVE FLOOP1,
 1 := IR<12:0> + MEM[EA]
 END
 NEXT PC := PC + 1
END

** Instruction.Execution **
EXEC := BEGIN
DECODE OPCODE =>
 BEGIN
 0\ADD := ACC + ACC + MEM[EA],
 1\SUB := ACC + ACC - MEM[EA],
 2\STR := MEM[EA] + ACC,
 3\LOAD := ACC + MEM[EA],
 4\SKPN := IF ACC<15> => PC + PC + 1,
 5\JMP := PC + EA,
 6 := NO.OP ()
 7 := NO.OP ()
 END
END

** Execution.Cycle **
CYCLE(MAIN) := BEGIN
PC=1 NEXT ! program counter init
REPEAT
 BEGIN
 XFETCH() NEXT ! call fetch algorithm
 EXEC() ! call execution algorithm
 END
END

Figure 3-1: ISPS description of the TARGET machine
((SO (pre: (.MacroPC)=MAIN)
 (mod: TinvReg MacroPC 0)
 (env:)
 (post: #MacroPC=XFETCH #PC=1(12)))
(SO (pre: (.MacroPC)=XFETCH)
 (mod: TinvReg MacroPC IR)
 (env:)
 (post: #MacroPC=FLOOP #IR=(DOT (WORDS MEM .PC .PC)
 #MacroPC=EXEC #PC=(BITLEVEL .PC 1(12)))
(SO (pre: (.MacroPC)=FLOOP
 (NZEROP (USEQL (DOT (BITS IR 12)))
 0))
 (mod: TinvReg MacroPC PC)
 (env:)
 (post: #MacroPC=EXEC #PC=(BITLEVEL .PC 1(12)))
(SO (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
 0))
 (mod: TinvReg MacroPC ACC)
 (env:)
 (post: #MacroPC=XFETCH #ACC=(BITLEVEL .ACC
 (DOT (WORDS MEM (USSUB .IR 11 0)
 (USSUB .IR 11 0)
(SO (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
 2))
 (mod: TinvReg MacroPC MEM (DOT (BITS IR (PAIR 11 8)
 (env:)
 (post: #MacroPC=XFETCH #MEM=DOT (WORDS MEM
 (USSUB .IR 11 0)
 (USSUB .IR 11 0))=.(ACC))
(SO (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
 3))
 (mod: TinvReg MacroPC ACC)
 (env:)
 (post: #MacroPC=XFETCH #ACC=(DOT (WORDS MEM
 (USSUB .IR 11 0)
 (USSUB .IR 11 0))

Figure 3-2: The SD description of the TARGET
(SD (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13))))
 4))
 (NZEROP (DOT (BITS ACC 15))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=XFETCH #PC=(BITPLUS .PC 1(12))))
(SD (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13))))
 4))
 ~(NZEROP (DOT (BITS ACC 15))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=XFETCH))
(SD (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13))))
 5))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=XFETCH #PC=(USSUB .IR 11 0)))
(SD (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13))))
 6))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=XFETCH))
(SD (pre: (.MacroPC)=EXEC
 (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13))))
 7))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=XFETCH))
(SD (pre: (.MacroPC)=FLOOP
 (NZEROP (USEQL (DOT (BITS IR 12))))
 1))
 (mod: TlnvReg MacroPC IR)
 (env:)
 (post: #MacroPC=FLOOP #IR=(USCONC
 (USSUB .IR 15 13)
 (USSUB (DOT (WORDS MEM (USSUB .IR 11 0))
 (USSUB .IR 11 0)))
 12 0))

Figure 2. (continued)
The HOST machine (see schematic in Figure 3-3) includes the following: two memories, STORE, and ROM; registers R1, R2, R3, MAD, MPC (microprogram counter) and MI (microinstruction register); combinational circuits ALU, MD, and MUX; data paths; the scanner. R1 holds the value from the ALU that receives its value either from STORE or from R1; R2 holds the value from R3 or increments its old value; R3 holds the value from MD that receives its value from STORE or R3; MAD holds the value from MUX that receives its value either from R2 or R3.

The HOST repeats the cycle of loading the microinstruction register from the location in ROM that the microprogram counter points to; incrementing the microprogram counter; and scanning the microinstruction and decoding a field at a time. The scanner sends signals that establish data paths and latch values into registers. It also receives values from registers.

The precise ISPS description of the HOST machine is shown in Figure 3-4, and the description of the ROM in Figure 3-5. The description of the HOST includes the following declarations: the memories; the registers; the combinational logic; and the execution cycle that fetches and scans the IR. The microprogram is specified as a set of assignments to ROM. The comment in each assignment shows the microinstruction in a mnemonic form: The nonzero fields of each microinstruction are separated by @. The mnemonics correspond to the ones in the DECODE statements in Figure 3-4. For example, MUXR3@LADONINDQ10 means that MUX = 3, ALU = 0, MD = 0, LATCH = 6, MPC = 2 and MNEXT = 10.

The first phase of the proof converts the ISPS description of the HOST into a single SD whose post: field includes the complete representation of the HOST. This SD is used in
Figure 3-3: Schematic of the TOY Host
HOST := BEGIN

** Memory **
ROM(<8:63>)<20:0>,
STORE(<8:4k>)<15:0>

** Registers **
MPC<5:0>,
MI<20:0>,
MNEXT<5:0> := MI<5:0>,
R1<15:0>,
R2<11:0>,
R3<15:0>,
MAD<11:0>

** Combinational Circuits **
ALU<15:0>,
MUX<11:0>,
MD<15:0>

** Execution Cycle **

CYCLE(MAIN) := BEGIN
REPEAT
BEGIN
MI := ROM(MPC) NEXT
MPC := MPC + 1
NEXT
DECODE MI<19:18> =>
BEGIN
0 := NO.OP (),
1 := NO.OP (),
2
MUXR2 := MUX + R2<11:0>,
3
MUXR3 := MUX + R3<11:0>
END NEXT

DECODE MI<16:15> =>
BEGIN
0 := NO.OP (),
1
aluadd := ALU + R1 + STORE[MAD],
2
aludop := ALU + STORE[MAD],
3
aluadd := ALU + R1 + STORE[MAD]
END NEXT

DECODE MI<13:12> =>
BEGIN
0 := NO.OP (),
1 := NO.OP (),
2
all := MD + STORE[MAD],
3
add := MD + R3<15:13> STORE[MAD]<12:0>
END NEXT

Figure 3-4: ISPS description of the HOST

81
DECIDE M1<11:9> =
BEGIN
0 := NO.OP (),
1\LR1 := R1 < ALU,
2\LR2 := R2 < R3<11:0>,
3\LR3 := R3 < MD,
4\INCR2 := R2 < R2 + 1,
5\WRITE := STORE (MAD) < R1,
6\LMAD := MAD < MUX,
7\INIT := R2 < 1
END NEXT

DECIDE M1<8:6> =
BEGIN
0 := NO.OP (),
1\ONPOS := IF NOT R1<15> < MPC + MNEXT,
2\ONIND := IF R3<12> < MPC + MNEXT,
3 := NO.OP (),
4\NXT := MPC < MNEXT,
5 := NO.OP (),
6 := NO.OP (),
7\ONOP := MPC < R3<15:13>
END
END

Figure 4. (continued)
ROM :=
BEGIN

** Memory **
ROM(0:63) <28:8>

** Execution Cycle **
CYCLE MAINI :=
BEGIN
ROM[0] := \#0201410 ; ! ALUADD\textsubscript{e}LR1\textsubscript{e}NXT\textsubscript{e}8
ROM[1] := \#0301410 ; ! ALUSUB\textsubscript{e}LR1\textsubscript{e}NXT\textsubscript{e}8
ROM[2] := \#0005410 ; ! WRITE\textsubscript{e}NXT\textsubscript{e}8
ROM[3] := \#0101410 ; ! ALUOP\textsubscript{e}LR1\textsubscript{e}NXT\textsubscript{e}8
ROM[4] := \#0008416 ; ! NXT\textsubscript{e}14
ROM[5] := \#0002410 ; ! LR2\textsubscript{e}NXT\textsubscript{e}8
ROM[6] := \#0008410 ; ! NXT\textsubscript{e}8
ROM[7] := \#0000410 ; ! NXT\textsubscript{e}8
ROM[8] := \#2006000 ; ! FETCH: MUXR2\textsubscript{e}LMAD
ROM[9] := \#0023413 ; ! ALL\textsubscript{e}LR3\textsubscript{e}NXT\textsubscript{e}11
ROM[10] := \#0033000 ; ! ADD\textsubscript{e}LR3
ROM[11] := \#3006212 ; ! FLOOP: MUXR3\textsubscript{e}LMAD\textsubscript{e}ONINS\textsubscript{e}10
ROM[12] := \#0004000 ; ! EXEC: INCR2
ROM[13] := \#0008700 ; ! ONOP\textsubscript{e}8
ROM[14] := \#0008110 ; ! ONPOS\textsubscript{e}8
ROM[15] := \#0004410 ; ! INCR2\textsubscript{e}NXT\textsubscript{e}8
ROM[16] := \#0007410 ; ! INIT\textsubscript{e}NXT\textsubscript{e}8

NEXT EXEC := NO.OP ()
END
END

Figure 3-6: The specification of the Microcode
the next section as the specification of the control state of the HOST in the mapping. The ISPS description of the microcode is converted to SD notation too.

The current implementation requires that the ISPS description of the HOST consist of a single cycle, for reasons of simplicity. The HOST will indeed usually be a single cycle because it represents hardware. Minor implementation changes will accommodate arbitrary ISPS descriptions of the HOST.

The next section introduces the mapping and the following section explains how the symbolic simulation of the TARGET by the microprogrammed HOST machine is set up and performed.

Relating the TARGET and the HOST

In order to show that one machine simulates another, a relation between the two must be established. The relation addresses control issues and data issues. The control part of the relation specifies all the pairs of control states (in the TARGET and HOST, respectively) that have the following properties: whenever a control state is reached in one machine then the corresponding one is reached in the other machine. Two obvious pairs are the pair of initial states and the pair of final states. A necessary condition for simulation (of terminating machines) is that corresponding initial states always lead to corresponding final states. The data part of the relation specifies the pairs of carriers that should have the same contents whenever a pair of control states is reached. This data relation is called a covering.

The control states in the TARGET machine to be mapped from or to were selected as the set of all the markings. For the particular TOY machine example the following markings were selected: the initial state is MAIN; the top of the main cycle is XFETCH; the infinite fetch loop is broken at FLOOP; the fetch algorithm is separated from the execution algorithm at all the control states in the TARGET map to or from a state described by the top of cycle of the HOST and an additional predicate (usually the value of the microprogram counter).

The top of Figure 3-8 shows a set of control relations; the first element of each is a marking (represented by an ISPS label) in the TARGET and the rest is a predicate that
together with the code of the HOST makes up its control state. The bottom of Figure 3-6 shows the coverings that specify the relation between registers (or memories) in the TARGET to registers (or memories) in the HOST.

During the first phase of the proof, a set of internal MAPPING records is generated from the concise representation of Figure 3-6. Figure 3-7 shows two out of the eight mappings. A MAPPING record has three fields: from:, that specifies the control state of either the TARGET or the HOST; to:, that specifies the corresponding control state of the other machine; and map:, that specifies the covering. The notion of MAPPING records is built into the SD proofchecker and is used in the second phase.

We have described the TARGET, the HOST+microcode, and the relation between them in three forms: English, formal, and a form that can be processed by the SD proofchecker. The first phase of the proof generated the batch of SD commands from the formal descriptions.

Symbolic Simulation

The previous sections presented the TARGET machine, the HOST machine with its microprogram, and the mapping between the machines. This section shows how the proof of simulation of the TARGET by the HOST with respect to the mapping was performed using the SD command batch. The simulation is performed within the state delta symbolic execution framework, thus it is called symbolic simulation.

The SD proof system operates by maintaining a "current state" of the execution, which can be manipulated by opening or closing proofs, or by applying SDs or mappings. A SD is a notation for specifying a segment of execution, either as the "goal" or for changing the current state. A SD has 4 fields: pre, mod, env, and post. When a SD is used to Open a proof, then the pre is added to the current state and the post becomes the goal; when it is being "applied", then the pre must be true in the current state, and the effect of the SD is removing from the current state everything that depends on mod and adding post. A MAPPING has three fields: from, to, and map. When a mapping is "applied", its from must be true in the current state, and the effect of the mapping is adding to and map to the current state.
((MAIN (MPC)=16)
(XFETCH (MPC)=8)
(FLOOP (MPC)=11)
(EXEC (MPC)=13 (MAD)=(USUB .R3 11 0)))

((Covering MEM <<STORE 16 16>>)
(Covering PC <<R2 12>>)
(Covering ACC <<RI 16>>)
(Covering IR <<R3 16>>)
(Covering MacroPC <<MicroPC 2> <MPC 6>>)
(Covering HinvReg <<HI 21> <MAD 12> <ALU 16> <MUX 12> <MO 16>>)
(Covering TinvReg <<HinvReg 22>>))

Figure 3-6: Mapping between TARGET and HOST
(MAPPING (from: (.MPC) = 11
 (SD (pre:)
 (mod: MicroPC MI)
 (env: MicroPC)
 (post: #MI = (DOT (WORDS ROM .MPC)))
 (TR ((SEQ (USSET MPC $)
 (DECODE $ $ $ $ $ $ $ $ $)
 (DECODE $ $ $ $ $ $ $ $ $ $ $ $ $ $ $))
 (REPEAT $)
 (ProcMark HOST)
 (map: (.MEM) = (.STORE)
 (.PC) = (.R2)
 (.ACC) = (.R1)
 (.IR) = (.R3))
 (to: (.MacroPC) = FLOOP)
 (map: (.MEM) = (.STORE)
 (.PC) = (.R2)
 (.ACC) = (.R1)
 (.IR) = (.R3))
 (MAPPING (from: (.MacroPC) = EXEC)
 (to: (.MPC) = 13 (.MAD) = (USSUB .R3 11 0)
 (SD (pre:)
 (mod: MicroPC MI)
 (env: MicroPC)
 (post: #MI = (DOT (WORDS ROM .MPC)))
 (TR ((SEQ (USSET MPC $)
 (DECODE $ $ $ $ $ $ $ $ $)
 (DECODE $ $ $ $ $ $ $ $ $ $ $ $ $ $))
 (REPEAT $)
 (ProcMark HOST)
 (map: (.STORE) = (.MEM)
 (.R2) = (.PC)
 (.R1) = (.ACC)
 (.R3) = (.IR)))

Figure 3-7: Two of the MAPPING records
Figure 3-8 shows an outline of the batch of commands that drives the proof in the second phase. The first Open and NewDecomposition declare the memories and registers in the HOST machine. The pre: of the second Open includes the microcode and the mapping between the TARGET and the HOST. The post: of the same command includes the set of SDs that describes the TARGET machine. Executing this command adds the microcode and mapping to the current state and makes the TARGET the "goal". A sequence of seven NewComposition commands declares the memories and registers in the TARGET machine and their relation to the places in the HOST. The command SymSimulate performs the symbolic simulation according to a heuristic that we have developed.

The SymSimulate command executes a heuristic that drives the symbolic simulation. For each SD in the "goal" do the following: open the SD; apply a mapping from the TARGET to the HOST; symbolically execute (i.e., keep applying SDs) until the state can be mapped back to the TARGET; apply the mapping to the TARGET; close the SD. Finally close the whole "goal".

The combined effect of the two phases of the proof is the generation of a set of SDs from the TARGET using symbolic execution of the TARGET and proving these SDs by using symbolic execution of the HOST and microcode. The rest of the effort is setting up the right relations among the registers and memories and between the HOST and TARGET to assure integrity of the proof. Note that the only input needed is the ISPS description of the TARGET, HOST, and ROM and the concise representation of the mapping between the machines. The rest is done automatically.

3.2 THE FTSC

The FTSC was chosen as the real example on which to try out the microcode verification system because it is a general-purpose computer with enough features to thoroughly test the system; in addition, it is still in the development stage, so that successful verification or discovery of bugs would influence the final version.

Some of the characteristics of the FTSC (as of May 1979) are:
(Open (vars: MicroPC EXP 16 MUX ALU MAD R3 R2 R1 MI MPC STORE ROM UNDEFINED
CLKLOC& LABLOC& ASSLOC& ARRLOC&)
(SO (ret (Covering OHEGA
<<MicroPC 1> <EXP 440> <MD 16> <MUX 12>
<ALU 16> <MAD 12> <R3 16> <R2 12> <R1 16>
<M 21> <MPC 6> <STORE 16 100010>
<ROM 21 10010> <UNDEFINED 440> <CLKLOC& 440>
<LABLOC& 440> <ASSLOC& 440> <ARRLOC& 440>>))
(env: OHEGA)
(post: (clkloc& labloc& assloc& arrloc&)))

III Specification of microcode III

(MAPPNG (from: (.MacroPC)=MAIN)
to: (.MPC)=16
(SO (pre:)
(mod: MicroPC M1)
(env: MicroPC)
(post: #M=(DOT (WORDS ROM .MPC))
(TRY ((SEQ (USSET MPC $)
(DECODE $ $ $ $ $))
(DECODE $ $ $ $ $))
(DECODE $ $ $ $ $))
(REPEAT $)
(ProcMark HOST)

(map: (.STORE)=(.MEM)
(.R2)=(.PC)
(.R1)=(.ACC)
(.R3)=(.IR)))

.... III All mappings III)

Figure 3-8: Outline of the command batch
(mod;)
(env;)
(post; (SD (pre: (.MacroPC)=MAIN)
 (mod: TInvReg MacroPC PC)
 (env;)
 (post: #MacroPC=XFETCH #PC=1(12)))

.... ((State Delta representation of TARGET))

([NonComposition (Covering MEM <<STORE 16 16>>))
([NonComposition (Covering PC <<R2 12>>))
([NonComposition (Covering ACC <<R1 16>>))
([NonComposition (Covering IR <<R3 16>>))
([NonComposition (Covering MacroPC <<MicroPC 2> <MPC 6>>))
([NonComposition (Covering HInvReg
 <<H1 21> <MAD 12> <ALU 16> <MUX 12> <MD 16>>))
([NonComposition (Covering TInvReg <<HInvReg 22>>))
([SymSimulate;))

Figure 8. (continued)
- 112 instructions, including integer, floating point, and vector operations

- Data formats: fixed point (32-bit, two's complement integer) and floating point (24-bit, two's complement mantissa; 8-bit, two's complement exponent)

- 9 address modes

- 8 general-purpose registers (that serve as accumulators, index registers, or address pointers) and 8 working registers

- 10 interrupt levels

- 61K of addressable program memory

The first step in the verification process is writing the formal host and target machine descriptions in ISPS. Ideally, the designer of the machine would write the formal description along with the informal description ("user's manual"). In lieu of this, the writer of the formal descriptions must submit them to the designer for "description verification" (that this is really the machine informally described in the manual) before proceeding with the proof. In addition, the writer of the formal descriptions may discover "bugs" (inconsistencies or incompleteness) in the user manual. As a formal description is being written, its writer will probably be in need of information which was either omitted from the machine user manual or presented there in an ambiguous or contradictory way.

Our experience yielded approximately 120 questions on the documentation, accumulated over a period of about six months. Approximately 80 answers were finally obtained from various persons who had "inside" information about the construction of the FTSC. Typical difficulties are missing information, multiple names for the same value, e.g., AMODE and AM, and inconsistencies between written and diagrammed specifications.

As explained earlier, we consider the total problem of microcode verification as consisting of two parts: the proof that the host machine with its microcode implements the target machine (as described in a language containing only those operations available to the host) and the proof that the target machine, instruction by instruction, satisfies some higher level specification. For example, the target machine description of
the integer multiply and divide instructions, and all floating point instructions, would most likely consist of an algorithm using the host machines operations of shifting, testing, adding, XORing, etc. The higher level specification would be that these instructions do in fact find the product, quotient, etc. to a given precision. The instruction definitions given in the user manual, which are largely English, are most likely those instructions needing this second level of proof.

All of our work to date on the verification of the FTSC has been concerned with the step from the target to the higher specification. This seemed a wise choice, since we knew that at the start of our project the FTSC host machine design was not finalized, although the target machine would remain more or less the same. In addition, many aspects of the system had to be developed before a truly large example could be attacked.

The particular instruction chosen was square root. Square root was chosen because of the relative compactness of its algorithmic description in the target machine, and the wide difference between the algorithm and its higher specification. Although the second-level verification has nothing to do with the microcode or the host machine, one characteristic making it less than general program verification is that the data types used in the target and higher level descriptions are usually restricted to be bitstrings and integers in the target, and values of bitstrings and reals in the higher level. Thus we used the square root instruction as a testing ground for developing the automatic simplification of expressions in these data types.

The status of our work on the square root algorithm is that the simplifier is able to handle automatically all the derivations needed to complete the proof of correctness. Smoothing the user interface and gracefully setting up the induction needed for the loop remain to be done.

It is hoped that many of the special simplification rules adopted in proving the square root will also be useful in the other proofs of higher level correctness.

Square Root Proof

In this section we give the ISPS version of the algorithm that constitutes the FTSC target machine description of the floating point square root instruction (SRTF). See
Figure 3-0. This description of the algorithm was written on the basis of the microcode flowchart, which is derived directly from the host description and the microcode. Then we show the derivations the simplifier is able to accomplish automatically in proving that SRTF finds the square root to within a certain accuracy.

Let us "talk through" the algorithm now: The first line decides if the input is to be from register GPXRA or register MD. If the input is negative, the algorithm is terminated with overflow flag set. If the input is 0, the algorithm is terminated with output register GPXRB set to the floating representation of 0. From here on the algorithm splits into two parts: the calculation of the new exponent and the calculation of the new mantissa. The exponent calculation splits depending on whether it is even or odd. If the old value is even, the new exponent is half the old value. If the old value is odd, it is made even by adding 1 and shifting the mantissa accordingly (in the even case the mantissa is shifted two bits; in the odd case, only one bit). Now the new value is half the old value (with a check for exponent overflow thrown in). The mantissa is now calculated by a variation of the longhand high school square root algorithm. The mantissa is shifted two bits at a time through the loop 23 times. The loop has two branches according to the sign of the "remainder," the register SUM.

The theorem which expresses the correctness of SRTF is

Theorem: If \(FL(INPUT) \geq 0 \), then SRTF terminates with \(FL(OUTPUT) \leq FL(OUTPUT)' \leq \sqrt{2} \times FL(OUTPUT) \).

If \(FL(INPUT) < 0 \), then SRTF terminates with OVFF=1.

Explanation of notation: \(FL(R) \) is the value of the bitstring \(R \) as a floating point number in the FTSC format: 24 leftmost bits coding two's complement fractional mantissa and rightmost 8 bits coding two's complement exponent. INPUT is either the register GPXRA or MD, depending on AMODE. OUTPUT is the register GPXRB. \(FL'(R) \) is floating successor to \(FL(R) \), i.e.,

\[
FL'(R) = (TCVAL(R<31:8>>1) + 1 - 2^{TCVAL(R<7:0>) - 23}.
\]

Letting \(MAN(R) = 2^{23} \times EXP(R) = TCVAL(R<7:0>) \), it is sufficient to prove

43
Figure 3-9: ISPS description of the square root algorithm
(i) If EXP(INPUT) = 0 is even and MAN(INPUT) * 2^45 = ARG, then SRTF terminates with
2 * EXP(OUTPUT) = e and (MAN(OUTPUT) * 2^23)^2 ≤ ARG ≤ (MAN(OUTPUT) * 2^23 + 1)^2, and

(ii) If EXP(INPUT) = 0 is odd and MAN(INPUT) * 2^45 = ARG, then SRTF terminates with
2 * EXP(OUTPUT) = e + 1 and (MAN(OUTPUT) * 2^23)^2 ≤ ARG ≤ (MAN(OUTPUT) * 2^23 + 1)^2.

So the proof is carried out by

1) symbolically executing through the end of the exponent calculation for
 even and odd input exponent, and proving the relevant parts of (i) and (ii)
 at that point (note that OUTPUT is assigned the contents of working
 register W1 at the end of SRTF);

2) at that point, for even input exponent,
 MAN(INPUT) * 2^45 = USVAL(GPXRB<1:0>@WO(31:10)) * 2^22 = ARG,
 and for odd exponent,
 MAN(INPUT) * 2^45 = ARG.

Thus to complete both (i) and (ii) it remains to show that

CLAIM: TCVAL(OUTPUT<31:8>)^2 ≤ ARG ≤ TCVAL(OUTPUT<31:8>+1)^2.

Here is where we use induction to prove loop invariants that lead to a proof of the
CLAIM. Let R_i denote the contents of R after i times through the loop, that is, the last
contents before COUNTER changes from i to i+1.

The CLAIM is proved from

SUBCLAIM: For 1 ≤ i ≤ 23, USVAL(W1<30:8>)^2 ≤ int(ARG * 2^2144) ≤ (USVAL(W1<30:8>+1)^2.

(The actual calculation with the integer part function int is done by noting that if
X = USVAL(R), then int(X * 2^x) = USVAL(R SR0 k).)

The CLAIM is proved from the SUBCLAIM by taking i=23. The SUBCLAIM is implied by the
first three of the following loop invariants for 1 ≤ i ≤ 22. ((H1) is shown here for the case
of even exponent only).
(H1) \((2 \cdot \text{USVAL}(W_1, 30:8) + 1)^2 + \text{TCVAL} \text{(SUM)} = \text{USVAL}(a, 8:0(23) \text{ SRO 44-2i})\)

(H2) \(\text{TCVAL} \text{(SUM)} \leq 4 \cdot \text{USVAL}(W_1, 30:8) + 2\)

(H3) \(-\text{TCVAL} \text{(SUM)} \leq 4 \cdot \text{USVAL}(W_1, 30:8) + 1\)

(H4) \(W_0 = \text{US}(a, 28:8) \odot 0(11) \text{ SLO 2i}\)

(H5) \(W_1, 31:i+8 = \text{US} 0(24-i)\)

(H6) \(W_2, 31:i+2 = \text{US} 0(30-i)\)

(H7) \(\text{SUM}, 29:0 = \text{US} \text{ GPXR}, 31:2\)

(H8) \(\text{SUM} = \text{TC} \text{ GPXR}, 31:2\)

(H9) \(\text{GPXR}, 1:0 = \text{US} W_0, 31:30\)

Thus we prove that if (H1)-(H9) are true for \(1 \leq i \leq 21\), then they are true for \(i+1\).

Additional induction hypotheses ((H4)-(H9)) were found to facilitate the proof of (H1)-(H3)). Then we prove that if the SUBCLAIM is true for \(1 \leq i \leq 22\), then it is true for \(i+1\).

The simplifier automatically carries out these deductions.

The following is the batch containing the proof of the square root algorithm as it is read into MICROVER in form to be automatically checked.\(^1\)

(BATCHSORT

[(InitProof SORTM)
 (InstantiateContents GPXR a)
 (Prove
 [SD (pre: (.AMODE)=0 (TCGEQ (USUB a 31 8) 0)
 (TCNEQ (USUB a 31 8) 0)
 (USEQL (USUB a 0 0) 0)]

\(^1\)Actually, in the present form of the system the INVARIANT and LABEL must be given in expanded form at every occurrence.
(SD (pre: (NZEROP (USEQ L .AMODE 0)))
 (mod: MicroPC)
 (env: MicroPC)
 (post: @Program)))
(mod: OMEGA)
(env: GPXRA)
(post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB) 2)
 (EXPVAL a))))
[NZEROP (REALLEQ (POWER (PRODUCT (MANVAL #GPXRB) (POWER 2 23)) 2)
 (PRODUCT (MANVAL a) (POWER 2 560))
 (NZEROP (REALLEQ (PRODUCT (MANVAL a) (POWER 2 560))
 (POWER (REALPLUS (PRODUCT (MANVAL #GPXRB) (POWER 2 23)) 1)
 2])
 (((ProposeMode (.COUNTER)=1)
 [Prove by Cases [SD (pre:)
 (mod: OMEGA)
 (env: OMEGA)
 (post: #COUNTER=#Invariant)
 (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label]
 (((USSUB .SUM 31 31)=1
 [((ProposeMode ((.COUNTER)=1
 and (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label]
 (Close)))]
 (((USSUB .SUM 31 31)=0
 [((ProposeMode ((.COUNTER)=1
 and (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
(post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)

(Close)
ApplySD (SD (pre: ((USSUB .SUM 31 31)=1 or (USSUB .SUM 31 31)=0))
(mod: OMEGA)
(env: OMEGA)
(post: (T or T)
 #COUNTER=1 @Invariant
 (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)
)(Prove [SD (pre:)
 (mod:)
 (env: OMEGA)
 (post: (.COUNTER)=1 @Invariant
 (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)])

((ProposeMode)))
[ProvebyCases [SD (pre: (NZEROP (REALLEQ 1 .COUNTER))
 (NZEROP (REALLEQ .COUNTER 21))@Invariant
 (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label))]
 (mod: OMEGA)
 (env:)
 (post: #COUNTER=(REALPLUS .COUNTER 1)@Invariant
 (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label])

(((USSUB .SUM 31 31)=1 and (USSUB .GPXR 31 31)=1)
 (ProposeMode))
(((USSUB .SUM 31 31)=0 and (USSUB .GPXR 31 31)=0)
 (ProposeMode]
(Prove [SD (pre: (NZEROP (REALLEQ 1 .COUNTER))

48
(NZEROP (REALLEQ .COUNTER 21))@Invariant
(SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)))

(mod: OMEGA)
(env:)
(post: #COUNTER=(REALPLUS .COUNTER 1))@Invariant
(SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label])

(ApplySD (SD (pre: ((USSUB .SUM 31 31)=1
 and (USSUB .GPXR 31 31)=1
 or (USSUB .SUM 31 31)=0
 and (USSUB .GPXR 31 31)=0)
 (NZEROP (REALLEQ 1 .COUNTER))
 (NZEROP (REALLEQ .COUNTER 21)))@Invariant
(SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)))

(mod: OMEGA)
(env:)
(post: (T or T)
 #COUNTER=(REALPLUS .COUNTER 1))@Invariant
(SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label])

(Close))
(PerformInduction (SD $)
 (SD (&)
 $))
(ProposeMode (SD (pre:)
 (mod: MicroPC COUNTER)
 (env: MicroPC)
 (post: #COUNTER=(USSUB (TCPLUS .COUNTER 1) 31 0)@Label)))

49
(InstantiateContents W1 w1)

[ProvebyCases
 [SD (pre:)
 (mod: OMEGA)
 (env: OMEGA)
 (post: (NZEROP (REALEQUAL (PRODUCT (EXPVAL #GPXRB)
 2)
 (EXPVAL a))))

 [NZEROP (REALLEQ (POWER (PRODUCT (MANVAL #GPXRB)
 (POWER 2 23))
 2)
 (PRODUCT (MANVAL a)
 (POWER 2 560))
 (NZEROP (REALLEQ (PRODUCT (MANVAL a)
 (POWER 2 560))
 (POWER (REALPLUS (PRODUCT (MANVAL #GPXRB)
 (POWER 2 23))
 1))

 [(((USEQL (USSUB .SUM 31 31)
 0)
 ((ProposeMode))))
 ((USEQL (USSUB .SUM 31 31)
 1))
 ((ProposeMode]
 (ProposeMode)
 (BATCHSORT)
4. CONCLUSIONS

PLANNED EXTENSIONS

The basic theoretical work for proofs of correctness of sequential microcode is reasonably complete, and a preliminary system for carrying out proofs has been built and exercised. Within the scope of the present work, the following extensions are planned.

Proof Language

The system is divided into a user interface and a rigorous proofchecker. In the present implementation, the user interface knows too little about the direction of the proof. In a proof by cases, for example, the separate cases are presented to the proofchecker, then combined. It is possible to declare the intended result in a superior proof, but no use is made of this information in either the user interface or the kernel.

We now see that the user interface can interpret a simple goal-oriented language. For a proof by cases, the user would specify what lemma is to be proven and would specify that the form of the proof is to be by cases with a given predicate. Room for specifying the details of each subproof would also exist, but the packaging of the separate proofs would be carried out by the proofchecker. In the present system, a proof by cases now looks like the following:

(Open P)
(Open P and C)
 <details of the proof of the first case>
(Close P and C)
(Open P and not C)
 <details of the proof of the second case>
(Close P and not C)
(CombineCases)
(Close P)

In many instances, the proof of each case may be carried out automatically. In the present system, a ProposeMode statement is required. We can eliminate the "obvious" proofs if we use null lists where proof details are permitted. Combined with the automatic setup and packaging of compound proofs, the proof above might become the following:
(Prove P (Cases C <room for details of positive subcase>
 <room for details of negative subcase>))

Similar savings would result in proofs by induction. Some of the savings are not apparent
from proof sketches like the ones above. The lemmas are often quite lengthy. Even with
the lemma suppressed from the Close command, the current system requires three
copies of the main lemma, one for the statement of the lemma in the main proof, and two
more for the subcase proofs. The compressed form requires only one appearance of the
lemma. In addition, the compressed form is much more readable and, we hope, more
writable.

Editing

The present system permits only limited editing of the proof. Using the structured proofs
illustrated above, it should be possible to edit a proof quite freely and have the proof
restarted from the last point it was changed.

Efficiency

The present system is fairly slow. With a little experimentation, it has become clear that
a lot of time is expended in the simplifier. The simplifier has evolved through an
accrual process, and is due for a complete redesign. We have also studied Derek
Oppen's work (see, for example, [Nelson and Oppen 78]), and it appears reasonable to
use his simplifier for parts of the system. His simplifier is carefully crafted and should be
much faster.

FUTURE CONSIDERATIONS

A number of ideas for logical next steps have emerged, though these are beyond the
scope of the present effort.

Floating Point Arithmetic Specification

It is obvious that we must allow other floating point formats than that of the FTSC. The
parameters needed to specify the format should be variables which can be set by the
user to fit his particular application. In addition, floating point arithmetic needs to be
categorized precisely. Notation to describe the intended precision of the results and
relationship between floating point operations and the corresponding abstract operations
on the reals would materially reduce the size of the target machine description and remove the need for proving a separate set of constraints.

Some of the initial work has been done by Brown and others [Brown 77, Brown 78, Wijngaarden 64, Kahan 77a, Kahan 77b].

Timing

Performance characteristics play a large part in the design of host machines and in the design of the microcode. However, to date no work has been done to characterize the running time of microcode. Proofs of running time limits should be reasonably straightforward, but work is needed on the specifications.

Concurrency

Essentially no work has been done on correctness proofs of truly concurrent microcode. The present work requires a sequentialized model of the host and target machines. Extensions to the basic theory will be required to model concurrency.
REFERENCES

[Marcus 79] Leo Marcus, State Deltas that Remember: a System of Describing State Changes, 1979. (Submitted for publication.)

Appendix A
THE SYSTEM

This appendix describes the operation of the proofchecker, the state delta expression language, and the simplifier.

A.1 PREPARING AND RUNNING A PROOF

The MICROVER system is a LISP program that is loaded from TOPS20 exec by typing <AMDSYS>MICROVER.EXE². The program is started by the LISP function StartExec, and can be restarted by the function ContinueExec. Both functions put the system in exec mode, which provides a set of commands to prepare and run proofs.

The proof checker is driven by a sequence of proofsteps. Each proofstep is submitted one at a time to the kernel, which checks its applicability and updates the state of the proof according to the specific proofstep. Although the user is responsible for preparing the proofsteps, the MICROVER system provides various aids for preparing and submitting them. The most important aid is the the batch. The batch consists of a sequence of proofsteps that is submitted by MICROVER under user supervision.

A.1.1 Exec Mode

Exec mode provides several ways to prepare and submit proofsteps, as well as some miscellaneous tasks.

The following commands are used to prepare and submit proofs:

UserMode This command puts the system in a mode that provides the user with convenient facilities to prepare individual proofsteps. In particular, it completes key-words, prompts with parameter names, etc. The proofsteps are prepared one at a time, and submitted immediately.

SaveTranscript This command accumulates the successful proofsteps from the last session into a batch. The batch (in the form of a LISP function) can be stored away, submitted again, or otherwise manipulated.

²The system is currently available on the IBIE machine, accessible over the ARPANET.
BatchMode

This command controls the submitting of a batch. See below for more details.

FixLast

Let the user edit and resubmit the proofstep that was last submitted. The full power of the INTERLISP editor is available. It is a convenient way to recover from an error.

GenBATCH

GenBATCH prepares a batch of proofsteps according to the ISPS descriptions of the target-machine, host-machine, ROM, and mapping. This command is used for symbolic simulation.

Three TOPS20 files and two LISP variables must exist before executing GenBATCH: The description of the target, host and ROM should reside in the files TARG.ISP, HOST.ISP and ROM.ISP, respectively. The mapping should reside in the LISP variables MAPPING$LIST and COVERING$LIST.

The result of GenBATCH is a list of proofsteps for submission in batch mode. The user is queried as to where to store the list.

The following miscellaneous commands are provided by exec mode:

ResetProof

Clears the whole proof, ready to begin a new session.

SetSwitch

Sets, resets, or checks the value of a trace switch.

DisplaySWLIST

Displays the value of all the trace switches.

DisplayState

Displays the current state of the proof.

DisplayLast

Displays the last proofstep that was submitted.

Quit

Returns the system to the LISP level.

A.1.2 BatchMode

Batchmode initializes and controls the submitting of a batch that exists as a TOPS20 file. This batch could be generated off line using an editor, by the SaveTranscript command, or by the GenBATCH command (see next section). It provides the following batch commands:

OpenBatch

Reads the batch from a file and initializes the batch-pointer to the first proofstep in the file.
DisplayNext Displays the proofstep to which the batch pointer is pointing.
PerformNext Submits the proofstep to which the batch-pointer is pointing and advances it.
DoIt Performs a fixed number of proofsteps from the batch file. The user is asked for the number.
WholeBatch Displays the complete list of proofsteps in the batch file last read by OpenBatch.
Quit Returns to the exec mode.

A.2 BASIC PROOFSTEPS
The basic "proof action" that MICROVER uses is setting goal to sd:post, and advancing the current state until the goal becomes true. Using combinations of this proof action for the right state deltas can accomplish symbolic execution, symbolic simulation, proofs by cases, or proofs by induction.

MICROVER provides a data base to hold the current state and a kernel that processes a sequence of basic proofsteps. Before carrying out a proofstep, MICROVER checks that all of the requirements are satisfied. If they are not, an error message is printed and the proofstop is aborted with no change to the data base. The following basic proofsteps are available in the system:

A.2.1 Beginning and Ending a Proof
(Open vars-list sd) meaning: Initiates proof of sd.

arguments: sd is a state delta and vars-list is a list of places or variables.

requirements: The places in sd:mod and sd:env must be registered (see below).

effects: Creates a current state consisting of sd:pre and those

3 In case of failure, the exec command DisplayLast and FixLast still points to the failed proofstep (and can be used for recovery)
predicates from the previous state whose support is contained in
\texttt{sd:env}; creates a new goal of \texttt{sd:post}; the prior state of the
database and the place graph are restored when the proof is
complete, except that the proven state delta is added to the prior
state. (See Close, below).

\textbf{(Close)}

meaning: Terminates the proof of the most recently Opened state
delta (goal) assuming the postcondition of goal is true in the
current state.

arguments: none

requirements: \texttt{sd:post} simplifies to true.

effects: Restores the proof system to its state prior to the most
recent Open, with the addition of the proven state delta.

\subsection*{A.2.2 Registering Places}

\textbf{(NowDecomposition covering)}

meaning: Registers new subplaces.

arguments: Covering is of the form (Covering place ((subplace
length) ... (subplace length))).

requirements: Mother place must be registered; daughter places
must not be registered.

effects: The place graph is extended with new covering
relationship.

\textbf{(NowComposition)}

meaning: Registers new superplaces.

arguments: Covering as above.

requirements: Mother place must not be registered; daughter
places must be registered and disjoint.

effects: The place graph is extended with new covering
relationship.
A.2.3 Advancing the Computation

(ApplySD sd)

meaning: Advance the execution by applying sd.

arguments: sd is a state delta.

requirements: sd:pre must simplify to true in the current state, and sd:mod must be contained in the modification list for the most recently Opened state delta.

effects: Deletes from the current state all predicates supported by places in sd:mod, and adds sd:post.

A.2.4 Case Analysis and Loops

(CombineCases sd-list)

meaning: Combines the state deltas in sd-list into one state delta.

arguments: sd-list is a list of state deltas (sd_1 ... sd_n) where sd_i is of the form

(SD (pre: case_i
 pred)
 (mod: MOD_i)
 (env: ENV_i)
 (post: POST_i)).

requirements: All ad_i must be true in the current state.

effects: Adds the following state delta to the current state:

(SD (pre: (OR case_1 ... case_n)
 pred)
 (mod: MOD_1 U ... U MOD_n)
 (env: ENV_1 U ... U ENV_n)
 (post: (OR POST_1 ... POST_n))

(PerformInduction loop-sd base-sd)

meaning: Derives a state delta representing the state transformation from the start of a loop to its termination (the number of times through the loop being known in advance).

arguments: base-sd is a state delta representing the state transformation for the first time through the loop, and loop-sd is the state delta representing the state transformation once through the loop, starting after an arbitrary number of iterations. In the following from and to are numbers, indvar is a bitstring term, claim
Is what is to be proved (written as a list (or conjunction) of predicates in the state delta expression language), and program is a state delta encoding the execution of the loop.

base-sd must be of the form:

\[
\text{(SD} \begin{cases}
\text{(pre:)} \\
\text{(mod:)} \\
\text{(env: OMEGA)} \\
\text{(post: indvar=from claim(from/to) program)}
\end{cases}
\]

loop-sd must be of the form:

\[
\text{(SD} \begin{cases}
\text{(pre: from ≤ indver indver ≤ to claim program)} \\
\text{(mod: [no restriction])} \\
\text{(env:)} \\
\text{(post: indvar(#/,) = indvar + 1 claim(#/., to/indvar) program)}
\end{cases}
\]

requirements: base-sd and loop-sd must be in the current state.

effects: If base-sd and loop-sd are in the current state, PerformInduction adds the following state delta to the current state:

\[
\text{(SD} \begin{cases}
\text{(pre: program)} \\
\text{(mod: loop-sd:mod)} \\
\text{(env: OMEGA)} \\
\text{(post: indvar(#/,) = to claim(#/., to/indvar) program)}
\end{cases}
\]

A.2.5 Mapping Between Levels

(ApplyMapping) meaning: Searches the current state for an "applicable" mapping and "applies" it.

arguments: none

requirements: There must be an applicable mapping.

effects: Finds a mapping with mapping:from true in the current state, and adds mapping:to and mapping:map to the current state.
A.2.6 Static Reasoning

(InstantiateContents place var)
meaning: Instantiates the contents of place to be var.

arguments: Place is already registered and var is new; both are atoms.

requirements: Place must be registered, var must be new, and both must be atoms.

effects: Substitutes var for (.place) everywhere in the current state, and adds the predicate (.place)=var.

(Derive exp)
meaning: Inserts exp into the current state.

arguments: Typically exp is a predicate.

requirements: none

effects: Allows direct user alteration of the current state; thus would not be used in a completely system-checked proof.

A.3 HIGH LEVEL PROOFSTEPS

Our experience with detailed proofs has shown that there are patterns of proofstep sequences that can be lumped together to a single (more abstract) proofstep. High level proofsteps are generally only necessary for setting up a proof, for symbolic execution of straight line code, for execution of alternation, for execution of iteration, and for performing symbolic simulation.

The set of high level proofsteps forms a language that is compact and structured. Using this language makes it easier to read or write proofs.

(Prove sd proof)
meaning: Proves sd by proof.

arguments: sd is a state delta and proof is a list of proofsteps.

requirements: Those of Open.

effects: Performs (Open NIL sd) and then sequentially processes the elements of proof.
meaning: Symbolically executes from the current state until breakpoint is reached or until a (Close) can be performed.

arguments: breakpoint is a predicate.

requirements: none

effects: Checks to see if Breakpoint is true in the current state; if yes, halts; if not, checks to see if (Close) is possible; if yes, (Close) is performed; if not, checks to see if there is an applicable state delta sd; if yes, performs (ApplySD sd); if not, halts with the message "Proofchecker has nothing to propose".

(ProvobyCases sd case-proof-list)

meaning: Proves (a state delta equivalent to) sd, by using the case analysis specified in case-proof-list.

arguments: sd is a state delta, and case-proof-list is a list of the form

\[
((\text{case}_1 \ \text{proof}_1) \ldots (\text{case}_n \ \text{proof}_n))
\]

where \(t\) cases are predicates specifying the different cases and the proofs are lists of proofsteps which prove sd in case \(\text{case}_i\) is true.

requirements: Those of (CombineCases).

effects: Sequentially treats the elements of case-proof-list by adding pred to sd:pre and then sequentially processing proof. After the last element of case-proof-list is processed, (CombineCases (sd_1 ... sd_n)) is performed where sd_i is sd with case_i added to its precondition.

(SymSimulate)

meaning: Proves a series of simulation relationships.

arguments: none

requirements: none

effects: Assumes that the goal is a list of state deltas to be proved (sd ...). For each sd in the goal performs the following sequence of proofsteps: (Open NIL sd), (ApplyMapping), (ProposeMode b), (ApplyMapping), (Close). The breakpoint b in ProposeMode is mapping:from of the mapping for which mapping:to is true in sd:post.
(InitProof program) meaning: Initializes the system in order to prove something (to be specified in a later (Prove) proofstep) about program.

arguments: program.isp is a file containing an ISPS program.

requirements: program must be a valid ISPS program.

effects: Translates program into the internal state delta representation, and initializes the placesystem using the information on the declared places in program.

A.4 STATE DELTA EXPRESSION LANGUAGE

In this section we describe the function symbols used in the state delta language. This language is intended to accommodate all the needs of the whole system, from translating a machine-description program in ISPS, to writing down the high level specification, to writing down the proof. Thus we deal with placenames (program identifiers), bitstrings, arrays, and several varieties of numbers.

DATA DOMAINS

P Places (in a machine; or in general any set of "names")

B Bitstrings

N Natural Numbers

Z Integers

Q Rationals

A Arrays (considered as a superset of B)

{T,NIL} Truth values

In the following we give the definitions of the function symbols. The constant bitstrings are value-length pairs written m(n) where m<2^n. Note that there is only one legal bitstring of length 0, that of value 0. The symbols =,*,-,*, and ≤ are logical equality, and arithmetical symbols. Additional "support functions" are mod, int(x)=integral part of x,
maxlh(a,b) = max((LH a), (LH b)), and tctous(i,n) (2's complement to unsigned), which takes \(kZ \) and \(mN \) such that \(-2^{n-1}|\leq 2^{n-1}\) and returns that non-negative number which is the unsigned value of the bitstring of length \(n \) representing \(i \) in 2's complement. Thus, tctous(i,n)=if \(i \geq 0 \) then \(i \) else \(2^n+i \). So, tctous(-3,4)=13, tctous(-4,3)=4, and tctous(-3,2) is undefined. Notice that in all the uses of tctous below, the arguments satisfy the conditions for the definition. "Exp=if \(p \) then \(x \) else \(y \)" is a short form of writing a definition of \(\text{Exp} \) by cases: If \(p \) is true, then \(\text{Exp}=x \); if \(p \) is false, then \(\text{Exp}=y \). The union of two sets is denoted by \(\cup \); thus, for example, in the specification of \(\text{LH} \), \(\text{LH}:\text{PUAUN} \rightarrow \text{N} \) means that \(\text{LH} \) is a function taking either a place, array (and hence bitstring), or number, and returning a number.

(DOT p) .p Contents of \(p \)

\(\neg \text{DOT}:P \rightarrow A \)

DOT is an arbitrary function subject to the restrictions that \((\text{LH p})=(\text{LH .p})\)
and \((\text{HT p})=(\text{HT .p})\).

(LH x) Length of \(x \)

\(\text{LH}:\text{PUAUN} \rightarrow \text{N} \)

The length of a place is an arbitrary natural number.
The length of an array is the same as the length of all its rows.
The length of a bitstring \(b \) is a natural number \(j \) such that \(i<2^j \),
where \(i=(\text{USVAL} \ b) \).
The length of a natural number is one more than the number of binary digits needed to represent it.

(HT x) Height of \(x \)

\(\text{HT}:\text{PUAUN} \rightarrow \text{N} \)

The height of a place is any natural number.
The height of an array is the number of its rows.
The height of a bitstring or natural number is 1.

(USVAL b) Unsigned value of bitstring \(b \)

\(\text{USVAL}:B \rightarrow \text{N} \)

The case by case definition is given below.
Note that Places do not have USVAL's; however Numbers, considered as bitstrings, do.
(TCVAL b) Two's complement value of b

TCVAL:B-->Z
(TCVAL b)=if (USVAL b)<2^{(LH b)-1} then (USVAL b) else (USVAL b)-2^{(LH b)}

(VarBS i j) Bitstring of USVAL i (almost) and LH j

VarBS:NNN-->B
(USVAL (VarBS i j))=i mod 2^j
(LH (VarBS i j))=j

(BSEOL a b) Equality between bitstrings

BSEOL:BBB-->B
(BSEOL a b)=if (USVAL a)=(USVAL b) and (LH a)=(LH b) then 1(1) else 0(0)

(USCONC a b) Concatenation of a and b

USCONC:BBB-->B
(USCONC a b)=(VarBS [(USVAL a)*2^{(LH b)}+(USVAL b)] (LH a)+(LH b))

(USSUB a m n) Substring of b from bit m down to n

USSUB:BNNN-->B
(USSUB a m n)= if m>(LH a) then (USSUB a (LH a)-1 n)
 elseif m<n then 0(0)
 else (VarBS int(((USVAL a) mod 2^{m+1})*2^{-n}) m-n+1).

(USSUB a m) m-th bit of a

(USSUB a m)=(USSUB a m m)

(BITS p (PAIR m n)) Subplace of p from bit m down to n

BITS:PXNN-->P
(DOT (BITS p (PAIR m n))=(USSUB (DOT p) m n)

(BITS p m) Alternative form for (BITS p (PAIR m m))

(DOT (BITS p m)=(USSUB (DOT p) m)

(BITPLUS a b) Same length bit addition

BITPLUS:BBB-->B
(BITPLUS a b)=(VarBS [(USVAL a)+(USVAL b) mod 2^{maxlh(a,b)}] maxlh(a,b))
BITPLUS (essentially) zero-extends a and b to be the same length, adds them, and drops the carry, if any.
BITPLUS can be used to uniformly define USPLUS and TCPLUS.
(USPLUS a b) Unsigned addition

USPLUS:BXB-->B
(USPLUS a b)= (VarBS (USVAL a)+(USVAL b) maxlh(a,b)+1)

or:
(USPLUS a b)= (BITPLUS (USCONC (VarBS 0 maxlh(a,b)+1-(LH a)) a)
(USCONC (VarBS 0 maxlh(a,b)+1-(LH b)) b))

(TCPLUS a b) Two's complement addition

TCPLUS:BXB-->B
(TCPLUS a b) is that bitstring of length maxlh(a,b)+1 whose TCVAL is
(TCVAL a)+(TCVAL b). There are several possible ways to describe that
in terms of VarBS.

(TCPLUS a b)=
(VarBS tctous((TCVAL a)+(TCVAL b),maxlh(a,b)+1) maxlh(a,b)+1)).

Or in terms of BITPLUS:
(TCPLUS a b)= (BITPLUS (USCONC 0(1) (SE a maxlh(a,b)))
(USCONC 0(1) (SE b maxlh(a,b)))),
where SE is defined below.

(USDIFERENCE a b) Unsigned difference

USDIFFERENCE:BXB-->B
(USDIFFERENCE a b)=
(VarBS tctous((USVAL a)-(USVAL b),maxlh(a,b)+1) maxlh(a,b)+1)

(TCDIFFERENCE a b) Two's complement difference

TCDIFFERENCE:BXB-->B
(TCDIFFERENCE a b)=
(VarBS tctous((TCVAL a)-(TCVAL b),maxlh(a,b)+1) maxlh(a,b)+1)

(USTIMES a b) Unsigned multiplication

USTIMES:BXB-->B
(USTIMES a b)= (VarBS (USVAL a)•(USVAL b) (LH a)+(LH b))

(TCTIMES a b) Two's complement multiplication

TCTIMES:BXB-->B
(TCTIMES a b)=
(VarBS tctous((TCVAL a)•(TCVAL b),(LH a)+(LH b)) (LH a)+(LH b)))

(USEQL a b) Unsigned equality
USEOL:BXB--->B
(USEOL a b)= if (USVAL a)=USVAL b) then 1(1) else 0(1)

(TCEQL a b) Two's complement equality
TCEQL:BXB--->B
(TCEQL a b)= if (TCVAL a)=(TCVAL b) then 1(1) else 0(1)

(USNEQ a b) Unsigned inequality
USNEQ:BXB--->B
(USNEQ a b)= if (USVAL a)=(USVAL b) then 0(1) else 1(1)

and similarly for the other bit relations: TCNEQ, USLSS, TCLKS, USLEQ, TCLEQ, USGTR, TCGTR, USGEQ, TCGEQ

(BITMINUS a) Same length two's complement negation
BITMINUS:B--->B
(BITMINUS a)=(VarBS (2(LH a) -(USVAL a) mod 2(LH a)) (LH a))

(USMINUS a) Unsigned negation
USMINUS:B--->B
(USMINUS a)=(VarBS tctous(-(USVAL a), (LH a)+1) (LH a)+1)

(TMINUS a) Two's complement negation
TMINUS:B--->B
(TMINUS a)=(VarBS tctous(-(TCVAL a), (LH a)+1) (LH a)+1)

(SE a m) Sign extend a to length m
SE:BXXN--->B
(SE n m) has the sign TCVAL as a (if m2(LH a)). Thus:
(SE a m)= if m<(LH a) then (USSUB a m-1 0)
else (VarBS tctous((TCVAL a), m) m).

(USSLO a m) Shift left m bits shifting in 0
USSLO:BXZ--->B
(USSLO a m)= if m<0 then (USSRO a -m)
else (USCONC (USSUB a (LH a)-1-m 0) (USSUB (VarBS 0 (LH a)) m-1 0)).
This last clause can also be written as:
(VarBS (USVAL a)*2^m mod 2(LH a) m)
(USSL1 a m) Shift left m bits shifting in 1

USSL1:BXZ-->B
(USSL1 a m)= if m>0 then (USSR1 a -m)
else (USCONC USSUB a (LH a)-1-m 0)
(USSUB (VarBS 2(LH a)-1 (LH a)) m-1 0)

(USSLR a m) Shift left rotate

USSLR:BXZ-->B
(USSLR a m)= if m>0 then (USSRR a -m) else
(USCONC (USSUB a (LH a)-m-1 0) (USSUB a (LH a)-m))

(USSLD a m) Shift left duplicate right bit

USSLD:BXZ-->B
(USSLD a m)= if (USVAL (USSUB a 0 0))=1 then (USSL1 a m)
else (USSL0 a m)

(USSRO a m) Shift right m shifting in 0

USSRO:BXZ-->B
(USSRO a m)= if m>0 then (USSLO a -m)
else (USCONC (USSUB (VarBS 0 (LH a)) m-1 0) (USSUB a (LH a)-1 m))

(USSR1 a m) Shift right m shifting in 1

USSR1:BXZ-->B
(USSR1 a m)= if m>0 then (USSL1 a -m)
else (USCONC (USSUB (VarBS 2(LH a)-1 (LH a)) m-1 0)
(USSUB a (LH a)-1 m))

(USSRR a m) Shift right rotate

USSRR:BXZ-->B
(USSRR a m)= if m>0 then (USSLR a -m)
else (USCONC (USSUB a (LH a)-1 m) (USSUB a m-1 0))

(USSRD a m) Shift right duplicate left bit

USSRD:BXZ-->B
(USSRD a m)= if (USVAL (USSUB a (LH a)-1 (LH a)-1))=1 then (USSR1 a m)
else (USSRO a m)

Note that all of the results of the shifts have length (LH a)

(USNOT a) Bitstring-logical NOT
USNOT: B → B

(USOR a b) Bitstring-logical OR

USOR: BXB → B
Zero-extends to maximum length and ORs

(USAND a b) Bitstring-logical AND
(USEQV a b) Bitstring-logical equivalence
(USXOR a b) Bitstring-logical exclusive OR

Similarly

(EXPVAL a) TCVAL of right 8 bits

EXPVAL: B → Z
(EXPVAL a) = (TCVAL (USSUB a 7 0))

(MANVAL a) Fractional value of left 24 bits

MANVAL: B → Q
(MANVAL a) = (TCVAL (USSUB a 31 8)) * 2^{-23}

(FLVAL a) Value of a as a floating number

FLVAL: B → Q
(FLVAL a) = (MANVAL a) * 2^{(EXPVAL a)}

(NZEROP a) Not zero predicate

NZEROP: B → (T, NIL)
(NZEROP a) = if (USVAL a) = 0 then NIL else T

(POWER q i) Integer exponentiation of rationals

POWER: QXZ → Q

(REALMINUS q) Unary arithmetic negation

REALMINUS: Q → Q

(PRODUCT q r) Multiplication
(REALPLUS q r) Addition
(REALDIFFERENCE q r) Subtraction
(REALQUOTIENT q r) Division

All these from QXQ → Q
(REALEQUAL q r) (Provable) equality between arithmetic terms

REALEQUAL:QXQ-->B
(REALEQUAL q r)=if q=r then 1(1) else 0(1)

(REALLEQ q r) (Provable) less than or equality

REALLEQ:QXQ-->B
(REALLEQ q r)= if q≤r then 1(1) else 0(1)

Now we describe the terms dealing with arrays. Two arrays are the same iff they have the same height and the same sequence of words. Thus: We have no function analogous to USVAL for arrays, although it is an easy matter to uniquely assign a number to an array on the basis of the USVALs of its words. We number the rows of an array from top to bottom, starting with 0. We have learned to view as natural the apparent discrepancy between the top-down ordering of rows in an array and the right-left ordering of bits in a bitstring.

(WORDS a m n) The rows of a from m down to n

WORDS:AXNXN-->A
(HT (WORDS a m n))=if n≥(HT a) then (HT (WORDS a m (HT a)-1))
elseif m>n then 0
else n-m+1

(WORDS a m) m-th word of a

(WORDS a n)=:WORDS a n n)

(SUBARRAY a i j) The columns of a from i to j

SUBARRAY:AXNXN-->A
(HT (SUBARRAY a i j))=(HT a)
(WORDS (SUBARRAY a i j) m m)=(USSUB (WORDS a m m) i j)

(RANGE a) The concatenation of the rows of a
RANGE: A→B
(RANGE a) = (USCONC (WORDS a 0 0)...(WORDS a (HT a)-1 (HT a)-1))
It is convenient to define (RANGE x y) for two bits of the explicit form
x = (USSUB (WORDS a jx jx) ix ix) and y = (USSUB (WORDS a jy jy) ly ly)
or in the degenerate case where a is of length 1,
x = (WORDS a jx jx) and y = (WORDS a jy jy). Its value is the word
consisting of all bits from x to and including y inside a.

(ARRAYNGE h b) Forms b into an array of height h.

ARRAYNGE : NXB→A
Defined only for b such that h|(LH b)
(HT (ARRAYNGE h b)) = h
(WORDS (ARRAYNGE h b) i i) = if i|h then
(USSUB b (LH b)-1-i*(LH b)/h)
else 0(0)

(ARRAYCONC h a b) Forms a and b into an array of height h

ARRAYCONC : NXAXA→A
Defined only for h,a,b such that h| divides the areas of a and b.
(HT (ARRAYCONC h a b)) = h
(WORDS (ARRAYCONC h a b) i i) = if i|h then
(USCONC (WORDS (ARRAYNGE h (RANGE (USSUB (WORDS a 0 0) (LH a)-1)
(USSUB (WORDS a (HT a)-1 (HT a)-1) 0 0))) i i)
(WORDS (ARRAYNGE h (RANGE (USSUB (WORDS b 0 0) (LH b)-1)
(USSUB (WORDS b (HT b)-1 (HT b)-1) 0 0))) i i))
else 0(0)

A.5 THE SIMPLIFIER

SIMPLIFIER STRUCTURE

In this section we describe the structure of the simplifier and give a brief description of
the purpose of each of its files. Entry to the simplifier is through the function SIMPEVAL.
SIMPEVAL(X) returns a term equivalent to X if X is a term (legal expression) in the
simplifier's language. The simplification is processed recursively; that is, if X is not
atomic, then the arguments of X are first passed to SIMPEVAL, and likewise for their
arguments. If no simplification or evaluation is possible (by the system) then the original
argument is returned.
SIMPLIFY

SIMPLIFY consists of two levels. At the top level, the function SIMPEVAL is the entry point to the simplifier. An expression to be simplified is sent to the appropriate second level routine by SIMPEVAL after its arguments have been recursively simplified by the same process. This appropriate routine is chosen on a one-to-one basis depending on the principal function symbol of the expression.

The second level routines consist of three parts: if the simplified arguments are not symbolic, the expression is evaluated and the value returned;² if not, then the expression is passed to one of the files listed below for further processing; if this does not result in further simplification, the original expression with simplified arguments is returned.

If the expression is of type real numbers or integers, or relations on them, and the simplified arguments are constant numbers, then the evaluation is done by LISP functions. If the arguments are symbolic, then the computation calls a routine in REALSIMP.

If the expression is of type bitstring and the arguments are constant bitstrings, then the evaluation is done by functions in MDTE. If the arguments are symbolic then the computation calls a routine in ISPSSIMP.

If the expression is of type value of bitstring, and the arguments are constant bitstrings, then the evaluation is done in SIMPLIFY by LISP functions and perhaps other second level functions. If the arguments are symbolic, the computation calls a routine in VALUESIMP.

If the expression is of type arrays then ARAYSIMP is called.

If the expression is of type propositional calculus, and the arguments are not logical constants (T or NIL), then LOGSIMP is called.

²This convention is not strictly observed; some functions at this level do simplification on symbolic expressions and/or examine the data base.
Each of these files may call SIMPLIFY, each other, or OTHERBITSIMP and AUXILIARYSIMP. In addition, they all search the data base for current facts which may imply some simplification that is not generally true.

REALSIMP

This file contains the main routines for simplification of algebraic expressions over the domain of the real numbers. The relations and functions recognized, along with their internal syntax, are addition (REALPLUS), subtraction (REALDIFFERENCE), multiplication (PRODUCT), division (REALQUOTIENT), exponentiation (POWER), unary negation (REALMINUS), equality (REALEDUAL), strict order (REALLESS), and weak order (REALLEQ).

In addition, the maximum and/or minimum bound on a real variable is found where possible by searching the data base for the entries of the form (REALLEQ var n) or (REALLEQ n var) where n is a numerical constant. The internal syntax for these minimum and maximum values is REALMIN and REALMAX.

ISPSSIMP

ISPSSIMP is the file simplifying bitstring expressions (more or less those of ISPS). An important point is that we allow bitstring variables to have variable lengths (including zero) as well as variable contents. A constructor expression (formed of concatenation, substring selection, and shifts) is reduced to a standard form as a concatenation of substrings, where two adjacent substrings may not be combined any further. This standard expression is almost canonical; that is, two equivalent bitstrings reduce to the same standard expression except in certain cases involving registers whose variable length may include zero.

Two's complement or unsigned plus and difference are replaced by an equivalent addition or subtraction between two bitstrings of equal length and sent to OTHERBITSIMP for processing. In the case of bitstring multiplication, some simplification is accomplished if one of the arguments is a bitstring with known value.

If the expression is an equality between bitstrings, then simplification is accomplished in many cases, either completely (i.e., to the bitstrings 1 or 0 representing T and F) or partially. There is also some use made of REALSIMP and VALUEISMP, for example, in the
equivalence between unsigned equality of bitstrings and real equality between their unsigned values.

OTHERBITSIMP

OTHERBITSIMP contains routines for use in simplifying bitstring expressions, and is in principle subordinate to ISPSSIMP. Included are routines for simplifying the non-carry bitstring addition BITPLUS, sign-extension, substrings of concatenations, squashing together two adjacent substrings in a concatenation, and replacing a substring of the form A<ih(a)-1:0> by A.

VALUESIMP

The two main expressions simplified in VALUESIMP are USVAL(A) and TCVAL(A), the unsigned and two's complement value of the bitstring A. In addition FLVAL(A), EXPVAL(A), and MANVAL(A) are expressions representing the value of A as a floating number (of customized 24-bit mantissa and 8-bit exponent), the two's complement value of the exponent of A, and the two's complement value of the mantissa of A, respectively.

Typical steps in a recursive simplification are changing a TCVAL into a USVAL where possible (and sending the result back to SIMPEVAL), changing TCVAL(A) into TCVAL(B) where B is simpler than A, returning an integer instead of TCVAL or USVAL, or "pushing TCVAL in" and rotating an expression of the form TCVAL(A)+TCVAL(B).

ARRAYSIMP

ARRAYSIMP simplifies expressions in the array language described in Microver Note #12. This language allows all possible row and column and subarray selection, reshaping, and concatenation of two rectangular arrays of constant height and length. It is completely integrated with the bitstring language in that a word in an array is a bitstring, an array of height 1 is a word, and the length of an array is the (common) length of its words. The height and area of arrays are calculated here, but the length is calculated in AUXILIARYSIMP.

LOGSIMP

LOGSIMP recognizes formulas of the propositional calculus written with implication and disjunction. Free individual variables are allowed, and in this case we treat the formula
as if all the free variables were universally quantified.

AUXILIARYSIMP

This file contains the simplifications of the other "service" functions used in the simplifier. First, we have the representation of an arbitrary continuous piecewise linear function on bounded domain:

\[(\text{SLANT } v (a h) (l_1 s_1) (l_2 s_2) \ldots (l_n s_n)).\]

where \(v\) is the function's argument variable, \(a\) is the left endpoint, \(h\) is the height of the graph at \(a\), and from then on the graph continues \(l_1\) units to the right with slope \(s_1\), and then \(l_2\) units with slope \(s_2\), etc. There are routines for adding slant functions, finding maximum or minimum of two slants, converting from standard arithmetic notation to slant notation, etc. Slants are used mostly as lengths of variable length bitstrings.

There are routines for calculating the length of bitstring expressions, inserting and extracting parentheses, "multiplying out" arithmetic expressions, solving linear equations, and converting from rationals to bitstrings representing them in floating point format.

PRINCIPLES

In the following we describe the principles behind some simplifications for expressions in the state delta language. This is not intended to be a complete survey of all possible simplifications, but rather a representative list of those simplifications found useful in the actual practice of verification, especially the square root algorithm of the FTSC. Thus there is a close correspondence between these simplifications and those actually implemented in the system. Here, though, we describe only the "interesting" ones, and some of these may be stated in different form without mentioning all the cases and specifying the implementation details.

BSC (bitstring constructor) terms

The primitive operations for constructing bitstrings are concatenation \(a@b\), substring selector \(a<i:j>\), and shifts. The definitions of concatenation and shifts are standard. Our conventions for substring selector are that bitstrings are numbered from the right-most bit \(a<0>\) to the left-most \(a<\text{lh}(a)-1>\) where \(\text{lh}(a)\) is the length of \(a\). Note that we shall
allow bitstrings to have variable length. These are called generalized bitstrings. For
integer \(i, j \) a\(<i:j>\) represents the string consisting of bits \(i \) down to \(j \) of \(a \), that is, \(a<i>\oplus a<i-1>\ldots\oplus a<j> \). If \(j \) is greater than \(i \), then this string is nonexistent, and is called
EMPTY. If \(i<0 \) or \(i\geq lh(a) \) then \(a<i> \) is EMPTY. In the following \(f(i) \) and \(g(i) \) will be functions
attaining integer values at integer values of the argument \(i \). We will occasionally omit
mention of \(i \) and write just \(f, g \).

A (generalized) substring is a term of the form \(a<f:g> \) where \(a \) is atomic.

A simplified substring is the EMPTY string or is a substring of the form \(a<f:g> \) where
\[
\forall f(i) < lh(a), \forall g(i) > 0, \neg \forall f(i) < g(i).
\]

Note that when \(f \) and \(g \) are constants, these conditions become \(f<lh(a), g \geq 0, f \geq g \). Note
also that we cannot demand \(\forall f(i) \geq g(i) \), since for example \(a<0:-i> \) is either EMPTY or
\(a<i> \) depending on \(i \). From our definition of the semantics of substring, it follows that
any substring is equivalent to a simplified substring: \(a<f:g> = a<\min\{f, lh(a)-1\},
\max\{g, 0\}> \) or EMPTY. If a canonical simplified substring is desired, some standard values
of \(f \) and \(g \) will have to be taken in the case that \(f(i) < g(i) \), for example \(f(i)=0 \) and \(g(i)=1 \).

Length is defined for a (generalized) substring as the following function of \(i \): (Let \(a, f,
and g \) be functions of \(i \))
\[
lh(a<f:g>)(i) = \begin{cases}
if \ f(i) \geq lh(a(i)) \ then \ lh(a<lh(a)-1:g>(i))
elseif \ g(i) < 0 \ then \ lh(a<f:0>(i))
elseif \ f(i) < g(i) \ then \ 0
else \ f(i) - g(i) + 1.
\end{cases}
\]

An equivalent closed form is
\[
lh(a<f:g>) = \min\{lh(a), \max\{\min\{f, lh(a)-1\} - \max\{g, 0\} + 1, 0\}\}.
\]

This allows the following rewriting: Let \(0(f) \) denote a string of \(f \) zeroes.
\[
\text{If } a \text{ is of the form } 0(f)<g:h>, \text{ then } a \Rightarrow 0(lh(a)). \quad (1)
\]

A BSC (bitstring constructor) term is any term formed from atomic bitstrings,
concatenation, substring, and shifts.
A simplified BSC term is of the form \(b_1 \oplus b_2 \oplus \ldots \oplus b_n \) where \(n \geq 1 \) and each \(b_i \) is a simplified substring.

It can be shown that every BSC term is equivalent to a simplified BSC term. The main simplification rules used in simplifying a BSC term are

\[
(a \oplus b) < f : q > = a < f - \l(a) : g - \l(b) > \oplus b < f : g >
\]

(2)

\[
a \text{SLO } f = 0(\min(\l(a) - f)) \oplus a < \l(a) - f + \max(0, f) > \oplus 0(\min(\l(a), f))
\]

(3)

\[
a < f_1 : g_1 > < f_2 : g_2 > = a < \min(f_1 + g_1, f_2 + g_2) : \max(g_1, g_2) >
\]

(4)

Example Assume \(\l(a) = 4 \), \(\l(b) = 5 \), \(\l(c) = 6 \).

\[
(a \oplus (b \oplus c) \text{ SLO } 5) < 13 : 3 > < 6 : 1 > =
\]

(5)

\[
(0 - 5) \oplus (a \oplus (b \oplus c)) < 9 : 0 > \oplus 0(5) < 9 : 4 > =
\]

(6)

\[
(\text{EMPTY} (a < -2 : -11 > \oplus (b \oplus c) < 9 : 0 >) \oplus 0(5) < 9 : 4 > =
\]

(7)

\[
(b < 3 : 0 > \oplus c < 9 : 0 > \oplus 0(5) < 9 : 4 > =
\]

(8)

\[
(b < 3 : 0 > \oplus c \oplus 0(5) < 9 : 4 > =
\]

(9)

\[
c < 4 : 0 > \oplus 0(1)
\]

BSA (bitstring arithmetic) terms

All the bitstring addition operators are translated into BITPLUS; BITPLUS is noncarry addition between two bitstrings of equal length. When the sign + appears between bitstrings it will always denote BITPLUS. We also use + for numerical addition, but it is clear from the context which is intended. USVAL(a) is the nonnegative integer represented in binary by the bitstring a.

If \(b \) and \(c \) are constant bitstrings and \(\text{USVAL}(b) + \text{USVAL}(c) < 2^\l(b) \), then

\[
(a \oplus b) + c = a \oplus (b + c) < \l(b) - 1 : 0 >
\]

(5)

A similar simplification rule holds for \(c + (a \oplus b) \). Of course the two sides of 5 are equivalent even if \(b \) and \(c \) are not constants, but then the right side is not necessarily
BSR (bitstring relational) terms

There are two main classes of bitstring relations: unsigned value and two's complement. Every unsigned bitstring relation is equivalent to the corresponding real relation on the USVAL's of its arguments. For example, USEQL(a,b) is equivalent to USVAL(a) = USVAL(b). Similarly for two's complement. The simplification of this type of relation will be given in this section. The section on real relations will include (among others) "mixed relations", i.e., those containing both USVAL and TCVAL. TCVAL(a) is the (signed) integer which is the two's complement interpretation of the bitstring a.

Equality

We let *a* __US _b denote USEQL(a,b)=T and similarly for TCEQL. We write _ with no subscript if identity between bitstrings is intended.

If \(\forall j (f_1(i)<j \leq f_2(i) \lor f_1(i)<j \leq f_1(i) \rightarrow a(j)=0) \), then
\[a _f_1: g _ = _US _ a _f_2: g \] (6)

If \(a_1 _US _ a_2 \) and \(b_1 _US _ b_2 \) and \(_ih(b_1) = _ih(b_2) \), or if \(b_1 _US _ b_2 __ih(b_1) = 1:0 \) and \(a_1 _US _ a_2 __b_2 __ih(b_2) \), then
\[a_1 _b_1 _US _ a_2 _b_2 \] (7)

If \(a _US _ 0 \) and \(b _US _ 0 \), then
\[a _b _US _ 0 \] (8)

Of course, there are the obvious generalizations when an arbitrary constant is in place of 0.

If \(a_1 _US _ a_2 \) and \(b_1 _US _ b_2 \) or \(a_1 _US _ b_2 \) and \(b_1 _US _ a_2 \), then
\[a_1 _b_1 _US _ a_2 _b_2 \] (9)

If \(_USVAL(a) \geq 2^{_ih(a)} - 2^{-f} \) or \(0 > TCVAL(a) > 2^{-f} - 1 \), then
\[a _f _1 = 1 \] (10)

If \(a _f_1: g_1 _US _ 0 \) for some \(f_1, 2f, g_1, 5g \), then
\[a<f:g> = \text{US} 0 \]

If \(a = \text{US} b \) and \(a<\text{lh}(a)-1> = b<\text{lh}(b)-1> \) (or \(\text{lh}(a)=\text{lh}(b) \)), then
\[a = \text{TC} b \]

If \(c<f> = a<f+1> = \ldots = a<\text{lh}(a)-1> \), then
\[a<f:0> = \text{TC} a \]

If \(a<f+1>=a<f>=a<f-1> \) and \(b<f+1>=b<f>=b<f-1> \), then
\[(a \underline{+} b)<f> = (a \underline{+} b)<f+1> \]

If \(f_1-q_1 = f_2-q_2 \) and \(a<f_1:g_1> = \text{US} b<f_2:g_2> \), then
\[f_1'q_1 \leq f_2'q_2 \]
or if \(a<\text{lh}(a)-1:g_1> = \text{US} b<\text{lh}(b)-1:g_2> \), then
\[a<f_1:g_1> = \text{US} b<f_2:g_2> \]

Ordering
\[0 \leq \text{TC} a \]

if and only if \(a<\text{lh}(a)-1>=0 \).

BSV (bitstring value) terms

If \(a<\text{lh}(a)-1>=0 \), then
\[\text{TCVAL}(a) = \text{USVAL}(a) \]

If \(a<\text{lh}(a)-1>=0 \), then
\[\text{USVAL}(a) = \text{USVAL}(a<\text{lh}(a)-2:0>) \]
\[\text{TCVAL}(a@b) = 2^{\text{lh}(b)} \times \text{TCVAL}(a) + \text{USVAL}(b) \]
\[\text{USVAL}(a@b) = 2^{\text{lh}(b)} \times \text{USVAL}(a) + \text{USVAL}(b) \]

If \(\text{lh}(a)=\text{lh}(b) \), \(a<f-1>b<f-1>=0 \), \(a<f>=a<f+1>=\ldots=a<\text{lh}(a)-1> \), \(b<f>=b<f+1>=\ldots=b<\text{lh}(b)-1> \), then
\[\text{TCVAL}((a+b)<f:0>) = \text{TCVAL}(a+b) \]

If \(\text{lh}(a)=\text{lh}(b) \) and \(\text{TCVAL}(a) + \text{TCVAL}(b) \geq 2^{\text{lh}(a)-1} \), then
\[\text{TCVAL}(a+b) = \text{TCVAL}(a) + \text{TCVAL}(b) - 2^{\text{lh}(a)} \]
If \(\text{lh}(a) = \text{lh}(b) \) and \(TCVAL(a) + TCVAL(b) < 2^{-\text{lh}(a)-1} \), then
\[
TCVAL(a+b) = TCVAL(a) + TCVAL(b) + 2^{\text{lh}(a)}
\]
(23)

If \(\text{lh}(a) = \text{lh}(b) \) and \(-2^{-\text{lh}(a)-1} \leq TCVAL(a) + TCVAL(b) < 2^{-\text{lh}(a)-1} \), then
\[
TCVAL(a+b) = TCVAL(a) + TCVAL(b).
\]
(24)

RA (real arithmetic) terms

We list here only the rules concerning RA terms which contain BSV terms.

Let \(c_1 \) and \(c_2 \) be functions of \(i \) (as are the \(f \)'s and \(g \)'s). If \(c_1, c_2 > 0, f_1 \geq f_2, g_1 \geq g_2 \), and
\[
\forall i. (c_1(i) \neq c_2(i) \Rightarrow g_2(i) > f_2(i)),
\]
then
\[
\begin{align*}
c_1 \cdot v(a<f_1: g_1>) - c_2 \cdot v(a<f_2: g_2>) = \\
& \leq c_1 \cdot 2^{\max(f_2-g_2,1)} \cdot v(a<f_1: g_1, \max(f_2-g_2,1)>).
\end{align*}
\]
(25)

Note that we do not demand that \(\forall i. (f_2 \geq g_2) \).

If \(a \langle \text{lh}(a)-1 \rangle = 1 \), then
\[
TCVAL(a) + 2^{\text{lh}(a)} \Rightarrow USVAL(a).
\]
(26)

RR (real relational) terms

\[
TCVAL(a \langle \text{lh}(a)-1 : n \rangle) \leq 2^{-n} TCVAL(a)
\]
(27)
Appendix B
FTSC HOST

FTSC HOST

!FTSC.MICROMACHINE

!This version (Mar. 24, 1978) has made it through sftst 618-69A(16).

MICROFTSC:=1

Main Memory

MEM(0:32K)<31:0>!ACTUALLY MEM IS 40 BITS WIDE BUT HERE!
WE JUST DEAL WITH THE PART THAT FITS!
INTO THE CPU DATA BUS.

ROM

!FTSC.CONTROL P214-216

CONTRO1(0:1023)<31:0>!THREE SLICES OF CONTROL
CONTRO2(0:1023)<31:0>,
CONTRO3(0:1023)<13:0>,
MICWORD1<31:0>,
MICWORD2<31:0>,
MICWORD3<13:0>,
RF01<4:0>, IMICWORD1<31:27>,
RF02<9:0>, IMICWORD1<26:17>,
RF03<2:0>, IMICWORD1<16:14>,
RF04<2:0>, IMICWORD1<13:11>,
RF05<2:0>, IMICWORD1<10:8>,
RF06<2:0>, IMICWORD1<7:5>,
RF07<0>, IMICWORD1<4>,
RF08<0>, IMICWORD1<3>,
RF09<2:0>, IMICWORD1<2:0>,
RF10<2:0>, IMICWORD2<31:29>,
RF11<0>, IMICWORD2<28>,
RF12<0>, IMICWORD2<27>,
RF13<0>, IMICWORD2<26>,
RF14<0>, IMICWORD2<25>,
RF15<2:0>, IMICWORD2<24:22>,
RF16<2:0>, IMICWORD2<21:19>,
RF17<3:0>, IMICWORD2<18:15>,
RF18<3:0>, IMICWORD2<14:11>,
RF19<0>, IMICWORD2<10>,
RF20<0>, IMICWORD2<9>.
RF21<0>, !MICWORD<8>,
RF22<2:0>, !MICWORD<7:5>,
RF23<0>, !MICWORD<4>,
RF24<0>, !MICWORD<3>,
RF25<0>, !MICWORD<2>,
RF26<0>, !MICWORD<1>,
RF27<0>, !MICWORD<0>,
RF28<0>, !MICWORD<13>,
RF29<0>, !MICWORD<12>,
RF30<0>, !MICWORD<11>,
RF31<4:0>, !MICWORD<10:6>,
RF32<0>, !MICWORD<5>,
RF33<0>, !MICWORD<4>,
RF34<0>, !MICWORD<3>,
RF35<0>, !MICWORD<2>,
RF36<0>, !MICWORD<1>,
RF37<0>, !MICWORD<0>,
!FTSC.ROMSEQUENCER P.213.217
RECONFIGROM<0:1023><31:0>, RECONFIGURATION ROM P.121
RECONFIGROM: =MEM("F7FF: "F000") P.69
RAD<0:0>, !NEXT ROM ADDRESS
ROMA<0:0>: =RF02<5>,
ROMA<0:0>: =RF02<4>,
ROMA<0:0>: =RF02<3>,
ROMA<0:0>: =RF02<2>,
ROMA<0:0>: =RF02<1>,
ROMA<0:0>: =RF02<0>,
AMODE<0>, !1 IFF ADDRESS MODE=0
MONIO<0>, !1 IN MONITOR CPU
CNTRL<0>, !1 IF CONTROL PANEL WANTS ACCESS TO CPU
SUMM<0><32>, "SUM<32>". THE INPUTS TO THE ALU ARE SIGN-EXTENDED TO 48 BITS AND THEN A DIFFERENCE BETWEEN SUMM<1> AND SUM<31> INDICATES OVERFLOW (OVFF).
SUMM<0><33>, "SUM<33>"
!FTSC.ROMFUNCTIONDECODER P.228
RF00<0>,
RF01<0>,
RF02<0>,
RF03<0>,
RF04<0>,
RF05<0>,
RF06<0>,
RF07<0>,
RF08<0>,
RF09<0>,
RF10<0>,
External Connections

SETROM: SETROM (CONTROM1, CONTROM2, CONTROM3)

Registers

!FTSC. GENERALPURPOSeregisters P209

MANWR[0:7] <23:0>, !8 MANTISSA WORKING REGISTERS
MANWR[4:7] <23:0>, !8 EXPONENT WORKING REGISTERS
MANEXTREG <23:0>: MANWR[4:7] <23:0>, !MANTISSA EXTENSION REGISTER
EXPMEMADD <7:0>: EXPWR[6] <7:0>, !EXPONENT MEMORY ADDRESS
EXPMEMADD <7:0>: EXPWR[5] <7:0>, !EXPONENT MEMORY ADDRESS
MANPC<23:0>: MANWR[7] <23:0>, !MANTISSA PROGRAM COUNTER
EXPPC<7:0>: EXPWR[7] <7:0>, !EXPONENT PROGRAM COUNTER
MANWRIN<23:0>, !FICTITIOUS MANTISSA INPUT
EXPPRIN<7:0>, !FICTITIOUS EXPONENT INPUT
MANWX <23:0>, !MANTISSA WX OUTPUT
WRYB<31:0>, WRYB OUTPUT
MANWRYB<23:0>:=WRYB<31:0>, MANTISSA WRYB OUTPUT
EXPWRYB<7:0>:=WRYB<7:0>, EXPONENT WRYB OUTPUT
EXPWX<7:0>, EXPONENT WX OUTPUT

IFTSC. INSTRUCTION REGISTER P29, 213

INR<31:0>, INSTRUCTION REGISTER
RA<2:0>:=INR<21:19>, SEE PG0
RB<2:0>:=INR<24:22>,

OTHER REGISTERS
HSWI<15:0>, HARDWARE STATUS WORD 1
HSWC<31:0>, HARDWARE STATUS WORD 2
MRAR<15:0>, MOST RECENT ADDRESS REGISTER
MONMSKREG<31:0>, MONITOR MASK REGISTER (REALY?)

IFTSC.PIN (PRIORITY INTERRUPT NETWORK) P229 FF

PERMSKREG<31:0>, PERIPHERAL MASK REGISTER
INTREQREG<7:0>, INTERRUPT REQUEST REGISTER
HOW IS THIS LOADED? SEE 236 AND 112.
RTI AND ARFLT ARE LOADED FROM INSIDE CPU.
The bits correspond to interrupts in the order
given on P74 for INTMSKREG.
INTREQFF<7:0>, INTERRUPT REQUEST FLIPFLOPS

REOPRIORITY<31:0>, HIGHEST ON-BIT OF INTREQFF
INTMRSKREG<7:0>, INTERRUPT MASK REGISTER
PENDING<7:0>, PENDING INTERRUPTS REGISTER
PRIORITYLEVEL<31:0>, PENDING INTERRUPT PRIORITY LEVEL P112

INPROCF<31:0>, INTERRUPT IN-PROCESS FLIPFLOPS

ENADISFF<8>, ENABLE/DISABLE FLIPFLOP (1=DISABLE?)

ALU

IFTSC.ALU INPUT SELECTOR P.288

MANTISSA

MANINA<23:0>, MANTISSA ALU A INPORT
MANAZS<25:0>, EXTENDED INPUT FOR
CALCULATING OVERFLOW AND CARRY
MANINO<23:0>, MANTISSA ALU B INPORT
MANBS<25:0>,

EXPONENT
EXPINA<7:0>,!EXPONENT ALU A INPORT
EXPA0<8:0>,
EXPINB<7:0>,!EXPONENT ALU B INPORT
EXPB0<8:0>,
!FTSC_FUNCTIONINVERSION P.207
!MANTISSA
MANCIN<0>,!MANTISSA CARRYIN
MANSELECT<3:0>,!MANTISSA S0-S3
INVFN<0>,!MANTISSA INVERTER
EXPCOUT<0>,!EXPONENT ALU CARRY-OUT
!EXPONENT
EXPCIN<0>,!EXPONENT CARRY IN
EXPSELECT<3:0>,!EXPONENT S0-S3
INVFN<3>,!EXPONENT INVERTER
!FTSC_ALUFUNCTIONSELECTOR P.206
!MANTISSA ALU OUTPUT FUNCTION (IN2=0)
MANOVF<0>,!MANTISSA OVERFLOW
MANCOUT<0>,!MANTISSA CARRY OUT
!EXPONENT ALU OUTPUT FUNCTION

EXPOVF<0>,!EXPONENT OVERFLOW
!FTSC_AUTOMULDIVSUBP222
!AUTOMULTIPLY FUNCTION P224
!THIS IS A VERY TENTATIVE VERSION
AUTOMULFN<3:0>,!AUTO MULTIPLY BITS
INVERTOR<0>:AUTOMULFN<3>,!INVERT ALU FUNCTION
ALUBLS<0>:AUTOMULFN<2>,!ALUB LEFT SHIFT
ALUBZ<0>:AUTOMULFN<1>,!ALUB ZEROS
CRYSTS<0>:AUTOMULFN<0>,!INTERNAL CARRY STATUS
MULBITS<1:0>,!MULTIPLIER BITS
!FTSC_ALUOUTPUTS P204
SUM<31:0>,!SUM OUTPUT
ZD18<0>, !ZERO DETECT SIGNALS
ZD12<0>,
ZD13<0>,
FD132<0>, !FULL DETECT SIGNAL
CRY803<0>, !MANTISSA CARRYOUT
DV8<0>, !EXPONENT OVERFLOW

WHAT ABOUT MANTISSA OVERFLOW?

EXC23<0> = 1 IFF EXPONENT (I.E. SUM<7;0>) GTR 23

wxSignals, Flipflops

!FTSC.ENDCONDITIONS GENERATOR P223

!NOTE THE QUESTION MARKS BELOW!
ENDCONDS<12;0>, !LIST OF ENDCONDITIONS
SUMERS<0>: =ENDCONDS<12>,
SUMMERS<0>: =ENDCONDS<11>,
SUMMLS<0>: =ENDCONDS<10>,
SUMMCLS<0>: =ENDCONDS<9>,
SUMELS<0>: =ENDCONDS<8>,
SUMCCLS<0>: =ENDCONDS<7>,
WAYRS<0>: =ENDCONDS<6>,
WAYCRS<0>: =ENDCONDS<5>,
WAYMLS<0>: =ENDCONDS<4>,
WAYMCLS<0>: =ENDCONDS<3>,
WAYERS<0>: =ENDCONDS<2>,
WAYELS<0>: =ENDCONDS<1>,
WAYECLS<0>: =ENDCONDS<0>,

!FTSC.FSFG (FLAG AND SPECIAL FUNCTION GENERATOR)
IP. 226, 94

EXTADD<0>, !EXTERNAL (TO THE CPU) ADDRESS SIGNAL
ROMADD<0>, !RECONFIGURATION ROM ADDRESS
HSWCH<0>, !HARDWARE STATUS WORD 1 ENABLE
HSWCH<0>, !HARDWARE STATUS WORD 2 ENABLE
LDMR<0>, !LOAD MR; HOW IS THIS SET? SEE 229.
PERMSK<0>, !PERIPHERAL MASK SIGNAL
INTMSK<0>, !INTERRUPT MASK SIGNAL

MONMSK<0>, !MONITOR MASK SIGNAL
RHTIME<0>, !READ HARDENED TIMER SIGNAL
PROFLAG<2;0>, !PROGRAM FLAGS

INRPT<0>, !INTERRUPT SIGNAL FROM PIN TO ROM SEQUENCER
FLTINT<0>, !FAULT INTERRUPT SIGNAL
FTSC.ILLEGALOPCODEDETECTOR
P219

ILLOPC<0>, ILLEGAL Opcode Signal
FETCHMAX<15:0>, Maximum Value for Fetch Opcodes
STOREMAX<15:0>, Maximum Value for Store Opcodes

FTSC.OVERFLOW DIVIDE CHECK AND CARRY OUT STATUS FLIP FLOPS
P221

!FTSC.OVFDIVCRYFF

OVFF<0>, Overflow Flip Flop
CRYFF<0>, Carry Out Flip Flop
DIVFF<0>, Divide Status Flip Flop
ARFLT<0>, Arithmetic Fault Signal
FCHSTR<5:0>, CPU Fetch/Store Control Signals

FTSC.GENERALPURPOSEFLIPFLOPS
P219

GPSF01<0>, General Purpose Flip Flop 1
GPSF02<0>, General Purpose Flip Flop 2
GPSF03<0>, General Purpose Flip Flop 3

CPU.Buses

FTSC.CPUFETCHANSTORE
P230

IMAB<15:0>, CPU Address Bus
IMDB<31:0>, CPU Data Bus

Loop.Timer

FTSC.LOOPTIMERP219

SEQ11<0>, Loop Branch Conditions
SEQ15<0>,
SEQ22<0>,
SEQ30<0>,
SEQ113<0>,

CPUCLK<0>, CPU Clock Pulse
COUNTER<6:0>, Counts up to 113 Pulses
ASUOFF<0>, Autosubtract Flip Flop
INTMUL<1:0>, For Automultiply
FLOMUL<1:0>

Processes
SEQUENCER:

BEGIN
IF FLTINT -> (RAD<5> - RAD<7> NEXT)
IMM<3> - RECONF
(3 NEXT)
PERMRG<7> - 1 NEXT
IF ILLOPC -> !P218
(RAD<2> NEXT LEAVE SEQUENCER)
NEXT
RAD<9:6> -> RF02<9:6> NEXT
BEGIN
0: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6;
 RAD<2> - ROMA7; RAD<1> - ROMA8; RAD<0> - ROMA9),
1: = (RAD<5> - INR<30>; RAD<4> - INR<29>; RAD<3> - INR<28>;
 RAD<2> - INR<27>; RAD<1> - INR<26>; RAD<0> - INR<25>),
2: = (RAD<5> - ROMA4; RAD<4> - EXG23; RAD<3> - OVF8; RAD<2> - SUM<0>;
 RAD<1> - ZDT24; RAD<0> - SUM<7>),
3: = (RAD<5> - ROMA4; RAD<4> - SUM<1>; RAD<3> - ZDT24; RAD<2> - SUM<29>;
 RAD<1> - SUM<30>; RAD<0> - SUM<31>),
4: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - INR<31>; RAD<2> - INR<18>;
 RAD<1> - INR<17>; RAD<0> - INR<16>),
5: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - OVF8; RAD<2> - SUM<29>;
 RAD<1> - SUM<30>; RAD<0> - SUM<31>),
6: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ZDT24; RAD<2> - SUM<29>;
 RAD<1> - SUM<30>; RAD<0> - SUM<31>),
7: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - SUM<31>;
 RAD<1> - SUM<30>; RAD<0> - SUM<31>),
8: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - OVF8; RAD<2> - SUM<27>;
 RAD<1> - SUM<29>; RAD<0> - SUM<28>),
9: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - GSF803;
 RAD<1> - GSF802; RAD<0> - GSF801),
10: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - SUM<0>;
 RAD<1> - ZDT24; RAD<0> - SUM<7>),
11: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ZDT24; RAD<2> - SUM<29>;
 RAD<1> - SUM<30>; RAD<0> - SUM<31>),
12: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - SUM<1>; RAD<0> - SUM<31>),
13: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - ZDT24; RAD<0> - SUM<31>),
14: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - ZDT24; RAD<0> - SUM<31>),
15: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - SUM<0>; RAD<0> - SUM<1>),
16: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - SUM<8>; RAD<0> - SUM<9>),
17: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
 RAD<1> - SEQ0113; RAD<0> - OVF8),
18: = (RAD<5> - ROMA4; RAD<4> - ROMA5; RAD<3> - ROMA6; RAD<2> - ROMA7;
RAO<1I>-CNTRL; RAO<3>-NRPT),

RAD<1>-ROM<3>: RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA3; RAD<0>-ZDT32),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-SEQ11),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-SEQ15),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-SEQ22),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-SEQ30),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-SUM7),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-DFF),

RAD<5>-ROMA4; RAD<4>-ROMAS; RAD<3>-ROMA6; RAD<2>-ROM5;

RAD<1>-ROMA8; RAD<0>-CRYFF),

DECODE INC<18:16>>

BEGIN

0: = AMODE=0,

OTHERWISE: =AMODE=1

END

END

IF SEQUENCER

NEXTRomWord:

BEGIN

MICWORD1-CONTROM1 [RAD] NEXT

MICWORD2-CONTROM2 [RAD] NEXT

MICWORD2-CONTROM3 [RAD] NEXT

RF01<4:0>:MICWORD1<31:27>NEXT

RF02<3:0>:MICWORD1<26:17>NEXT

RF03<2:0>:MICWORD1<16:14>NEXT

RF04<2:0>:MICWORD1<13:11>NEXT

RF05<2:0>:MICWORD1<10:8>NEXT

RF06<1:0>:MICWORD1<7:5>NEXT

RF07<0>:MICWORD1<4>NEXT

RF08<0>:MICWORD1<3>NEXT

RF09<2:0>:MICWORD1<2:0>NEXT

RF10<2:0>:MICWORD2<31:29>NEXT

RF11<0>:MICWORD2<28>NEXT

91
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF12<0></td>
<td>MICWORD2<27> NEXT</td>
</tr>
<tr>
<td>RF13<0></td>
<td>MICWORD2<26> NEXT</td>
</tr>
<tr>
<td>RF14<0></td>
<td>MICWORD2<25> NEXT</td>
</tr>
<tr>
<td>RF15<2:0></td>
<td>MICWORD2<24:22> NEXT</td>
</tr>
<tr>
<td>RF16<2:0></td>
<td>MICWORD2<21:19> NEXT</td>
</tr>
<tr>
<td>RF17<3:0></td>
<td>MICWORD2<18:15> NEXT</td>
</tr>
<tr>
<td>RF18<3:0></td>
<td>MICWORD2<14:11> NEXT</td>
</tr>
<tr>
<td>RF19<0></td>
<td>MICWORD2<10> NEXT</td>
</tr>
<tr>
<td>RF20<0></td>
<td>MICWORD2<9> NEXT</td>
</tr>
<tr>
<td>RF21<0></td>
<td>MICWORD2<8> NEXT</td>
</tr>
<tr>
<td>RF22<2:0></td>
<td>MICWORD2<7:5> NEXT</td>
</tr>
<tr>
<td>RF23<0></td>
<td>MICWORD2<4> NEXT</td>
</tr>
<tr>
<td>RF24<0></td>
<td>MICWORD2<3> NEXT</td>
</tr>
<tr>
<td>RF25<0></td>
<td>MICWORD2<2> NEXT</td>
</tr>
<tr>
<td>RF26<0></td>
<td>MICWORD2<1> NEXT</td>
</tr>
<tr>
<td>RF27<0></td>
<td>MICWORD2<0> NEXT</td>
</tr>
<tr>
<td>RF28<0></td>
<td>MICWORD3<13> NEXT</td>
</tr>
<tr>
<td>RF29<0></td>
<td>MICWORD3<12> NEXT</td>
</tr>
<tr>
<td>RF30<0></td>
<td>MICWORD3<11> NEXT</td>
</tr>
<tr>
<td>RF31<4:0></td>
<td>MICWORD3<10:6> NEXT</td>
</tr>
<tr>
<td>RF32<3></td>
<td>MICWORD3<5> NEXT</td>
</tr>
<tr>
<td>RF33<0></td>
<td>MICWORD3<4> NEXT</td>
</tr>
<tr>
<td>RF34<0></td>
<td>MICWORD3<3> NEXT</td>
</tr>
<tr>
<td>RF35<0></td>
<td>MICWORD3<2> NEXT</td>
</tr>
<tr>
<td>RF36<0></td>
<td>MICWORD3<1> NEXT</td>
</tr>
<tr>
<td>RF37<0></td>
<td>MICWORD3<0> END, !OF NEXTROMWORD</td>
</tr>
</tbody>
</table>

```
!FTSC.ROMFUNCTIONDECORER    P.220

DECODER:
BEGIN
RF000-0 NEXT
RF001-0 NEXT
RF002-0 NEXT
RF003-0 NEXT
RF004-0 NEXT
RF005-0 NEXT
RF006-0 NEXT
RF007-0 NEXT
RF008-0 NEXT
RF009-0 NEXT
RF010-0 NEXT
RF011-0 NEXT
RF012-0 NEXT
RF013-0 NEXT
RF014-0 NEXT
RF015-0 NEXT
```
RFD16-0 NEXT
RFD17-0 NEXT
RFD18-0 NEXT
RFD19-0 NEXT
RFD20-0 NEXT
RFD21-0 NEXT
RFD22-0 NEXT
RFD23-0 NEXT
RFD24-0 NEXT
RFD25-0 NEXT
RFD26-0 NEXT
RFD27-0 NEXT
RFD28-0 NEXT
RFD29-0 NEXT
RFD30-0 NEXT
RFD31-0 NEXT

DECODE RF31 =>
BEGIN
0: =RF000-1.
1: =RF001-1.
2: =RF002-1.
3: =RF003-1.
4: =RF004-1.
5: =RF005-1.
6: =RF006-1.
7: =RF007-1.
8: =RF008-1.
9: =RF009-1.
10: =RF010-1.
11: =RF011-1.
12: =RF012-1.
14: =RF014-1.
15: =RF015-1.
16: =RF016-1.
17: =RF017-1.
18: =RF018-1.
19: =RF019-1.
20: =RF020-1.
21: =RF021-1.
22: =RF022-1.
23: =RF023-1.
24: =RF024-1.
25: =RF025-1.
26: =RF026-1.
27: =RF027-1.
28: =RF028-1.
29: =RF029-1.
30: =RF030-1.
31: =RF031-1.
THE NEW VALUES OF MANOUF AND MANCOUT STILL HAVE TO BE CALCULATED
ALONG WITH MANOUT BELOW.

MANOUT<24:0>:=
BEGIN
 DECODE RF37 =>
 BEGIN
 0:= (MANA25<24:0><= MANINA NEXT MANB25<24:0><= MANINB NEXT
 (DECODE MANSELECT =>
 BEGIN
 0:= MANCOUT=MANOUT=(MANA25<24:0> AND MANB25<24:0>),
 1:= MANCOUT=MANOUT=(MANA25<24:0> EQV MANB25<24:0>),
 2:= MANCOUT=MANOUT=(NOT MANA25<24:0>) + 0eMANCIN,
 3:= MANCOUT=MANOUT=MANB25<24:0> + 0eMANCIN,
 4:= MANCOUT=MANOUT=(NOT MANB25<24:0>) + 0eMANCIN,
 5:= MANCOUT=MANOUT=MANA25<24:0> + 0eMANCIN,
 6:= MANCOUT=MANOUT=MANA25<24:0> + MANB25<24:0> + 0eMANCIN,
 7:= MANCOUT=MANOUT=#1777777777+(0eMANCIN),
 8:= MANCOUT=MANOUT=MANB25<24:0> + NOT MANA25<24:0> + 0eMANCIN, !Sometimes it
always look like MANA25<24:0> above should be just MANINA. Similarly in next line.
 9:= MANCOUT=MANOUT=MANA25<24:0> + NOT MANB25<24:0> + 0eMANCIN,
 10:= MANCOUT=MANOUT=MANA25<24:0> + (0eNOT MANCIN),
 11:= MANCOUT=MANOUT=(NOT MANB25<24:0>) + (0eNOT MANCIN),
 12:= MANCOUT=MANOUT=MANB25<24:0> + (0eNOT MANCIN),
 13:= MANCOUT=MANOUT=(NOT MANA25<24:0>) + (0eNOT MANCIN),
 14:= MANCOUT=MANOUT=(MANA25<24:0> XOR MANB25<24:0>),
 15:= MANCOUT=MANOUT=(MANA25<24:0> OR MANB25<24:0>)
 END).

END.

1:= (MANA25<24:0><= MANINA NEXT MANB25<24:0><= MANINB NEXT
IF ALUBLS->MANB25-MANB25 SLO 1 NEXT
!FOR AUTOMULTIPLY SIGN-EXTEND MANTISSA TWO BITS BEFORE SHIFTING
!BUT NOT EXPONENT?

(D)E(ODE MAN(SELECT =>
BEGIN
 0:= MANCOUT=MANOUT=(MANA25 AND MANB25),
 1:= MANCOUT=MANOUT=(MANA25 EQV MANB25),
 2:= MANCOUT=MANOUT=(NOT MANA25) + 0eMANCIN,
 3:= MANCOUT=MANOUT=MANB25 + 0eMANCIN,
 4:= MANCOUT=MANOUT=(NOT MANB25) + 0eMANCIN,
 5:= MANCOUT=MANOUT=MANA25 + 0eMANCIN,
 6:= MANCOUT=MANOUT=MANA25 + MANB25+0eMANCIN,
 7:= MANCOUT=#1777777777+(0eMANCIN),
 8:= MANCOUT=MANOUT=MANB25+NOT MANA25+ 0eMANCIN, !Sometimes it
always looks like MANA25 above should be just MANINA. Similarly in next line.
9:= MANCOUT=MANOUT=MANA25+NOT MANB25+0eMANCIN,
10: MANCOUT = MANOUT = MANA25 = (0 & NOT MANCIN),
11: MANCOUT = MANOUT = NOT MANA25 = (0 & NOT MANCIN),
12: MANCOUT = MANOUT = MANB25 = (0 & NOT MANCIN),
13: MANCOUT = MANOUT = NOT MANA25 = (0 & NOT MANCIN),
14: MANCOUT = MANOUT = (MANA25 XOR MANB25),
15: MANCOUT = MANOUT = (MANA25 OR MANB25)
END
END, IF MANOUT

!THE NEW VALUES OF EXPDVF AND EXPCOUT MUST STILL BE CALCULATED ALONG
!WITH EXPOUT BELOW. SEE LINES 8-13 BELOW.

EXPOUT<8:0>:=
BEGIN
EXPA3 := EXPINA NEXT
EXPB3 := EXPINB NEXT
IF ALUALS = EXPBS-EXPBS SL = 1 NEXT
(DECODE EXPCOUT =)
BEGIN
0: = EXPCOUT=EXPOUT=EXPA9 AND EXPB9,
1: = EXPCOUT=EXPOUT=EXPA9 EQ EXPB9,
2: = DECODE EXPCIN= (EXPCOUT=EXPOUT=NOT EXPA9,
EXPCOUT=EXPOUT=NOT EXPA9 + 0 & RF19 + 0 & 1),
3: = DECODE EXPCIN= (EXPCOUT=EXPOUT=EXPB9,
EXPCOUT=EXPOUT=EXPB9 + 0 & RF19 + 0 & 1),
4: = DECODE EXPCIN= (EXPCOUT=EXPOUT=NOT EXPB9,
EXPCOUT=EXPOUT=NOT EXPB9 + 0 & RF19 + 0 & 1),
5: = DECODE EXPCIN= (EXPCOUT=EXPOUT=EXPA9,
EXPCOUT=EXPOUT=EXPA9 + 0 & RF19 + 0 & 1),
6: = EXPCOUT=EXPOUT=EXPA9 + EXPB9 + 0 & EXPCIN,
7: = EXPCOUT=EXPOUT=#777 (0 & EXPCIN),
8: = EXPCOUT=EXPOUT=EXPB9 NOT EXPA9 + 0 & EXPCIN,
9: = EXPCOUT=EXPOUT=EXPA9 = NOT EXPB9 + 0 & EXPCIN,
10: = DECODE EXPCIN= (EXPCOUT=EXPOUT=EXPA9 = (0 & RF19 + 1),
EXPCOUT=EXPOUT=EXPA9),
11: = DECODE EXPCIN= (EXPCOUT=EXPOUT=NOT EXPB9 = (0 & RF19 + 1),
EXPCOUT=EXPOUT=NOT EXPB9),
12: = DECODE EXPCIN= (EXPCOUT=EXPOUT=EXPB9 = (0 & RF19 + 1),
EXPCOUT=EXPOUT=EXPB9),
13: = DECODE EXPCIN= (EXPCOUT=EXPOUT=NOT EXPA9 = (0 & RF19 + 1),
EXPCOUT=EXPOUT=NOT EXPA9),
14: = EXPCOUT=EXPOUT=EXPA9 XOR EXPB9.
15: = EXPCOUT=EXPOUT=EXPA9 OR EXPB9
END
NEXT
OVS= EXPDVF - EXPOUT<8> XOR EXPOUT<7>
END, IF EXPOUT
!FTSC.FSFG (FLAG AND SPECIAL FUNCTION GENERATOR)
IP.226.94

FSFG: = FLAG AND SPECIAL FUNCTION GENERATOR
BEGIN
MONMSK:=RHTIME:=PROFLAG=B NEXT
EXTADD:=ROMADD=HSW1EN=HSW2EN=PERMSK=INTMSK=B NEXT
DECODE IMAB =>
BEGIN
"F800": HSW1EN-1,
"F801": HSW2EN-1,
"F802": MONMSK-1,
"F803": PERMSK-1,
"F804": INTMSK-1,
"F805": RHTIME-1,
IF IMAB GTR "F805 AND IMAB LSS "F889 => ERROR?
"F806": PROFLAG=IMAB<2:0>,
"F807": PROFLAG=IMAB<2:0>,
"F808": PROFLAG=IMAB<2:0>,
"F809": PROFLAG=IMAB<2:0>,
"F80A": PROFLAG=IMAB<2:0>,
"F80B": PROFLAG=IMAB<2:0>,
"F80C": PROFLAG=IMAB<2:0>,
"F80D": PROFLAG=IMAB<2:0>,
"F80E": PROFLAG=IMAB<2:0>,
"F80F": PROFLAG=IMAB<2:0>,
OTHERWISE: =-SEE P 69 .
((IF (IMAB GEQ "F000) AND (IMAB LEQ "F7FF)) =)
ROMADD-1);
((IF (IMAB LSS "F000) OR (IMAB GTR "F7FF)) =)
EXTADD-1))
END
ENDIF FSFG

!FTSC.ILLEGALOPCODEDETECTOR P219

DETECTOR:=
BEGIN
IF RFDO= (ILLOPC=B NEXT LEAVE DETECTOR) NEXT
IF (RFDO OR RFDOI)=
(ILLOPC=IMDO<20> NEXT LEAVE DETECTOR) NEXT
!OR IMDO<21>? ON P64 IT SAYS BIT11=IMDO<20>
BUT ON 205 IT SHOWS BIT10=IMDO<21> AS INPUT.
DECODE INR<31=>
BEGIN
0: = IF 0=INR<30:25> GTR FETCHMAX =>ILLOPC=1,
1: = IF 0=INR<30:25> GTR STOREMAX =>ILLOPC=1
END
ENDIF DETECTOR
LOOP:
BEGIN
PENDING-PENDING OR INTREOFF NEXT
(IF REOPRIORITY > PRIORITYLEVEL => LEAVE LOOP) NEXT
PRIORITYLEVEL <- REOPRIORITY NEXT
(IF PRIORITYLEVEL > INPROCFF => LEAVE LOOP) NEXT
(IF ENADISFF => LEAVE LOOP) NEXT
INRT-1 NEXT
IF RF27 => INTREQREG<PRIORITYLEVEL> := 0 NEXT
INPROCFF<PRIORITYLEVEL> := 1
END, !OF LOOP

PRIORITY:
BEGIN
REPEAT
BEGIN
REOPRIORITY := REOPRIORITY + 1 NEXT
(IF (INTREOF OR REOPRIORITY) EQL 1 =>
LEAVE PRIORITY) NEXT
(IF (REOPRIORITY EQL 8) => (REOPRIORITY := 0 NEXT
LEAVE PRIORITY))
END
END. !REOPRIORITY=the level of highest interrupt requested.

!FTSC.PIN (PRIORITY INTERRUPT NETWORK) P229 FF

PIN:
BEGIN
IF PERMSK:=PERMSKREG:=IMOB NEXT
IF FLTINT:=PERMSKREG<7>=1 NEXT
IF ARFLT:=INTREQREG<7>=1 NEXT
!ADD THE OTHER PRIORITIES HERE.
IF PERMSKREG<7> := INTREOFF@INPROCFF:=0 NEXT
IF INTMSK := INTMSKREG:=IMOB NEXT
IF NOT PERMSKREG<7> := INTREOFF => INTREQREG AND NOT INTMSKREG) NEXT
! IF FLTINT =>...
LEAVE PIN NEXT
IF ILLOPC =>...
LEAVE PIN NEXT
REOPRIORITY:=1 NEXT
PRIORITY() NEXT
LOOP() NEXT
IF (RFDO8 OR RF27 OR PERMSKREG<7>) => INPROCFF:=0 NEXT! ALL OF THEM.
!THERE STILL MAY BE SOME IN PENDING
IF (RFDO1 OR RFDO8) => ENADISFF:=IMOB<23> NEXT
IF RFDO3 => ENADISFF:=1 NEXT
IF RFDO2 => ENADISFF:=0
END, !OF PIN
IFTSC. LOOPTIMER P219

Microinstruction Cycle

CYCLE MAIN :=
BEGIN
DELAY(1) NEXT
RAD-1 NEXT
FETCHMAX="35 NEXT ! THESE ARE THE MAXIMUM OP-CODES FOR
! [NR<31] = 0, 1 RESPECTIVELY
STOREMAX="58 NEXT
COUNTER=0 NEXT
REPEAT
BEGIN
NEXTROMWORD() NEXT
SEQUENCER() NEXT
DECODER() NEXT
IF RFD21 = (GPSF81 + GPSF82 + GPSF83 + ASUBF+8) NEXT
! AUTO MULTIPLY FN. P224
DECODER RF37 = (AUTOMULF+0,
{DECODE RF23 =
BEGIN
0 := MULBITS = INTMUL, ! INTEGER FORMAT
1 := MULBITS = FLOMUL1 FLOATING POINT FORMAT
END
NEXT
DECODE CRYST = MULBITS =
BEGIN
0 := AUTOMULF+2,
\begin{verbatim}
1: =AUTOMULFN-0,
2: =AUTOMULFN-#15,
3: =AUTOMULFN-#11,
4: =AUTOMULFN-0,
5: =AUTOMULFN-4,
6: =AUTOMULFN-#11,
7: =AUTOMULFN-#13
END)

NEXT

MANUX-MANUR[RF03] NEXT
MANURYB-MANUR[RF05] NEXT
EXPWX-EXPUR[RF04] NEXT
EXPYRB-EXPUR[RF06] NEXT
IFTSC.GENERALPURPOSREGISTERS

IFTSC.ALUINPUTSELECTOR

!MANTISSA

DECODE RF20 =>
BEGIN
0: =MANINA-MANGPR[RA],
1: =MANINA-MANGPR[RB]
END
NEXT

DECODE ALUBZ =>
BEGIN
0: =DECODE RF21 OR AMODE\rightarrow(MANINB-MANGPR[RA],MANINB-MANUX),
1: =MANINB-0
END
NEXT

!EXPONENT

DECODE RF20 =>
BEGIN
0: =EXPINB-EXPGRP[RA],
1: =EXPINB-EXPGRP[RB]
END
NEXT

DECODE ALUBZ =>
BEGIN
0: =DECODE RF21 OR AMODE\rightarrow(EXPINB-EXPGRP[RA],EXPINB-EXPWX),
1: =EXPINB-0
END
NEXT
\end{verbatim}
INVERTOR = (RF36 AND INVERTOR) OR (RF37 AND INVERTOR) NEXT

DECODE RF23 =>
BEGIN
0 := (INVFN = INVERTOR; INVVFN = INVERTOR),
1 := INVVFN = INVERTOR
END
NEXT

DECODE INVVFN =>
BEGIN
0 := (EXPCIN = RF24; EXPSELECT = RF18),
1 := (EXPCIN = NOT RF24; EXPSELECT = NOT RF18)
END
NEXT

IFTFSC.ALUFUNCTIONSELECTOR P.286

MANTISSA ALU OUTPUT FUNCTION (IN2 = 0)

EXPONENT ALU OUTPUT FUNCTION

EXPOUT() NEXT

IF ASUBFF = (INVVFN = RF33) NEXT INVERT CARRY IN BITS TO MANTISSA. SEE P 222

DECODE INVVFN =>
BEGIN
0 := (DECODE RF23 =)
BEGIN
0 := MANCIN = EXPCOUT,
1 := MANCIN = RF25
END:
MANSELECT = RF17),
1 := (DECODE RF23 =)
BEGIN
0 := MANCIN = EXPCOUT, !Note this deviation(?) from the documentation.
1 := MANCIN = NOT RF25
END:
MANSELECT = NOT RF17)
END
NEXT

MANOUT() NEXT

IFTFSC.ALUOUTPUTS P284
IMDB = SUM MnANOUT<23:8> EXP OUT<7:8> NEXT

Here I assume that SUM LSB, SUM MSB are always on so that any output of the ALU goes to IMDB and SUM.
SUM MnANOUT<24> NEXT

SUM<12> = MnANOUT NEXT

DECODE SUM<31:8>:
BEGIN
0: = ZDT24+1,
OTHERWISE: = ZDT24+8
END
NEXT

DECODE SUM<7:0>:
BEGIN
0: = ZDT8-1,
OTHERWISE: = ZDT8-8
END
NEXT

DECODE SUM>
BEGIN
0: = (ZDT32-1; FDT32-8)
#7777777777: = (FDT32-1; ZDT32-8)
OTHERWISE: = (FDT32-2; ZDT32-8)
END
NEXT

EXC23-9 NEXT
IF (SUM<7:8> GTR 23) OR (SUM<7:8> LSS -23) => EXC23-1 NEXT

!FTSC-ENDCONDITIONSGENERATOR P223

!NOTE THE QUESTION MARKS BELOW!

DECODE RF22 =>
BEGIN
0: = ENDCOND$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'0'80008000

1: = ENDCOND$SUM1$SUM12$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'0'80008000

2: = ENDCOND$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'0'80008000

3: = ENDCOND$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'0'80008000

4: = ENDCOND$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'1'1111111111

5: = ENDCOND$SUM1$SUM12$SUM<31>$SUM<30>$SUM<29>$SUM<28>$SUM<27>$SUM<26>$SUM<25>$SUM<24>$SUM<23>$SUM<22>$SUM<21>$SUM<20>$SUM<19>$SUM<18>$SUM<17>$SUM<16>$SUM<15>$SUM<14>$SUM<13>$SUM<12>$SUM<11>$SUM<10>$SUM<9>$SUM<8>$SUM<7>$SUM<6>$SUM<5>$SUM<4>$SUM<3>$SUM<2>$SUM<1>$SUM<0>

OTHERWISE: = (RF25 XOR INVFN) e'1'1111111111

!THESE ARE THE END OF THE DOCUMENT PAGE!
IF RF36>>(INVERT><SUM<31>) NEXT!PREVIOUS SUM

!AUTOSUBTRACT FUNCTION
IF RFD22>>(ASUBFF-1) NEXT

IF RDF07>>GPSF01-1 NEXT
IF RDF08>>GPSF02-1 NEXT
IF RDF09>>GPSF03-1 NEXT

!FTSC.CPUFETCHANDSTORE P230

IF RF26>>(MEMORY REQUEST("SPEED UP") (DECODE RF32>>
BEGIN ADDRESS
8: = IMAB-WRYB<15:8>@EXPWRYB,
1: = IMAB-(WRYB<15:8>@EXPWRYB) + #10000 IADD 4896
END) NEXT

IF LDBMRAR => MRAR=IMAB NEXT.
!THE FLAG AND SPECIAL FUNCTION GENERATOR COMES HERE (FTSC.FSFG)
! (STILL INSIDE IF RF26>>)!
!SINCE IT COMPUTES THE VALUE OF EXTADD WHICH IS NEEDED BELOW.
FSFG() NEXT

DETECTOR() NEXT

! CRYFF=B NEXT!OR IS RESTORING ENOUGH? SEE BELOW
! DIVFF=B NEXT!DITTO
IF RDF03>>OVFF-1 NEXT
IF RDF04>>OVFF-8 NEXT
IF RDF05>>CRYFF-MANCOUT NEXT
IF RFO96 =>DIVFF-1 NEXT
IF RFO10 => (OIVFF-IMDB<21> NEXT !RESTORING
CRYFF-IMDB<19> NEXT
DIVFF-IMDB<22>) NEXT
IF RF28 => (IMDB-ENADISFFeDIVFFeOIVFFeILLOPCeCRYFF
@PRIORITYLEVEL<2:0>@HANPC<7:0>@EXTADD) NEXT
ARFLT-DIVFF OR OIVFF NEXT
FCHSTR=RF26@RF27@RF28@RF38@RF18@EXTADD NEXT
!NOTE ORDER IS DIFFERENT THAN ON 230
!Is EXTADD set in FSFG before type of address is known?

DECODE FCHSTR=
BEGIN
#45: = IMDB-EM[IMAB], INORMAL FETCH (INR<31>=0)
#41: = MEM[IMAB]-IMOB, INORMAL STORE (INR<31>=1)
#44: = (IF HSW1EN => IMDB-HSW1 MRAR NEXT IPCPU FETCH P226, P88
IF HSW2EN => IMDB-HSW2 NEXT!P98
IF MONMSK => IMDB-MONMSKREG NEXT!P87
IF PERNMSK => IMDB-PERMMSKREG NEXT
IF INTMSK => IMDB-INTMSKREG), IP88

!ET CETERA.

#40: = !CPU STORE
(IF HSW1EN => HSW1-IMOB<31:16> NEXT
IF HSW2EN => HSW2-IMOB NEXT
IF MONMSK => MONMSKREG-IMOB NEXT
IF PERNMSK => PERNMSKREG-IMOB NEXT
IF INTMSK => INTMSKREG-IMOB),

!ET CETERA.

#24:#25: = IMAB-"F000 + PRIORITLEVEL NEXT
!"VECTOR JUMP"= INTVEC ON 216.
IMOB-MEM[IMAB]),
!PIN SENDS OUT ADDRESS OF INTERRUPT SERVICE ROUTINE; SEE 73.
#10: = ALL = (IMAB-PRIORITYLEVEL NEXT!JSB1" = INTRET ON 216.
MEM[IMAB]-IMOB),
!0:1 = !JSB2
!SPC1 IS SAME DECODE VALUE AS JSB1
!SPC2 IS SAME DECODE VALUE AS NORMAL STORE
#47: = IMOB-MEM[IMAB]!RFI
!RET IS SAME DECODE VALUE AS RFI

END
NEXT

!FTSC.GENERALPURPOSEFLIPFLOPS P219

103
PIN() NEXT
DECODE RF03:
BEGIN IF 210
0: =HANGPRINSUM<31:8>,
1: =HANGPRINSUM<31:8>SUM<31:10>,
2: =HANGPRIN<0>,
3: =HANGPRINIMDB<31:8>,
4: =HANGPRINSUM<30:8>SUM<31:9>,
5: =HANGPRINSUM<31:9>,
6: =HANGPRINSUM<31:8>SUM<31:9>,
7: =HANGPRINIMDB<15:8>
END
NEXT
DECODE RF18:
BEGIN
0: =EXPGPRINSUM<7:8>,
1: =EXPGPRIN<9:2>,
2: =EXPGPRIN<0>,
3: =EXPGPRINIMDB<7:8>,
4: =EXPGPRINSUM<6:0>SUM<31:8>,
5: =EXPGPRINSUM<3:1>,
6: =EXPGPRINSUM<5:0>SUM<31:8>,
7: =EXPGPRINIMDB<7:0>
END
NEXT

IF HF11 >> (DECODE RF20:
BEGIN
0: =HANGPRINRAHANGPRIN,
1: =HANGPRINR2HANGPRIN
END) NEXT
IF RF12 >> (DECODE RF20:
BEGIN
0: =EXPGPRINRAEXPGPRIN,
1: =EXPGPRINRBEXPGPRIN
END) NEXT
END

DECODE RF15:
BEGIN
0: =HANURINWRYB<31:8>,
1: =HANURINWRYMS<31:8>WRYMS<31:10>,
2: =HANURINSUM<31:8>,
3: =HANURINIMDB<31:8>,
4: =HANURINWRYB<31:8>WRYMS<31:10>,
5: =HANURINWRYMS<31:9>,
6: =HANURINWRYB<29:8>WRYMS<31:10>,
7: =HANURINIMDB<15:8>
END
NEXT

DECODING WORKING REGISTERS P. 209
DECODE RF16
BEGIN
0: = EXPWRIN-WRYB<7:0>,
1: = EXPWRIN-WRYB<3:2>,
2: = EXPWRIN-SUM<7:0>,
3: = EXPWRIN-IMDB<7:0>,
4: = EXPWRIN-WRYB<6:0>\,WRYELS,
5: = EXPWRIN-WRYB<8:1>,
6: = EXPWRIN-WRYB<5:0>\,WRYELS\,WRYE2LS,
7: = EXPWRIN-IMDB<7:0>
END

NEXT
IF RF13
' (DECODE RF07
BEGIN
0: = MANWR (RF05)\,MANWR,
1: = MANWR (RF03)\,MANWR
END) NEXT
IF RF14
' (DECODE RF08
BEGIN
0: = EXPWR (RF06)\,EXPWRIN,
1: = EXPWR (RF04)\,EXPWRIN
END) NEXT

DECODE RF37
((INTMUL\,FLOMUL<0),
 (INTMUL\,WRYB<3:2> NEXT
 FLOMUL<WRYB<11:10>)) NEXT

!FTSC. INSTRUCTIONREGISTERP209,213

IF RF020 => INR\,IMDB NEXT
IF RF015 => (RA\,RA + 1 NEXT
 RB\,RB + 1) NEXT!WHAT HAPPENS IF RA OR RB GETS TOO LARGE?
IF RF35 => RB\,RB + 1 NEXT
TIMER()

END!OF REPEAT IN CYCLE
END!OF CYCLE
)!END OF MICROFTSC
Appendix C

FTSC TARGET

FTSC TARGET

MACROFTSC:=

Memory
MEM<0:32K><31:0>

Registers
COUNTER<31:8>, !Loop counter

WATCH OUT: THE COUNTER HERE IS NOT THE SAME AS IN FTSC.MIC!
GPXR<0:7><31:8>, !8 general purpose registers
W<31:0>, !Working register 0
W1<31:0>, !Working register 1
W2<31:0>, !Working register 2
W3<31:0>, !Working register 3
EX<31:0>, !Extension register
MD<31:0>, !Memory data
MA<31:0>, !Memory address
PC<31:0>, !Program counter
EXP<8:0>, !9-bit output of exponent ALU
SUM<31:8>, !32-bit output of ALU
ALUA<33:8>,
ALUB<33:0>,
EXP<8:0>,
EXP<8:0>,
INPR<31:0>, !highest pending interrupt level

INR<31:8>,
AMODE<2:0>=INR<18:16>,
RA<2:0>=INR<21:19>,
RB<2:0>=INR<24:22>,
OPCODE<6:0>=INR<31:25>,
MACRO GPXRA=IGPXR(RA),
MACRO GPXRB=IGPXR(RB),

Signals
OVFF<0>,

107
CRYS<0>, SUMM<2>, SUMM<1>, OVF<8>, DIV<0>, CRY<0>, INVERT<0>, EXG<23>, INRPT<0>, MON<0>, ASUB<0>, EXM<0>, ILOPC<0>, DISINT<0>, EXEC mode

MACRO STATUS: = EXM DISINT DIV OVF ILOPC CRYF INT PRIOR<2; 0>!

Addressing, Fetching

Instruction:
```
BEGIN
  INR]<MEM[PC] NEXT
  MA<INR<15; 0> NEXT
  PC<PC+1
END,
```

Address:
```
BEGIN
  DECODE AMODE->
  BEGIN
    0; 2: NO.OP(),
    3: MA<MEM[MA],
    4: (MA<MA+GPXRA NEXT
      GPXRA<GPXRA+1),
    5: (GPXRA<GPXRA-1 NEXT
      MA<MA+GPXRA),
    6: MA<MA+GPXRA,
    7: MA<MEM[MA+GPXRA]
  END
END.
```

Operand:
```
BEGIN
  IF NOT INR<3>>
    (DECODE AMODE>=
    BEGIN
      0: MD<GPXRA,  !This is slightly different from
      ! the real machine: there AMODE is checked in each function and sometimes
      ! even if AMODE = 0, GPXRA does not have to go through MD.
      ! So there's no need for all the "DECODE AMODE"'s in the body of the program!
      ! But maybe it's better to leave them in, and eliminate the (then) extraneous
      ! DECODE AMODE in operand, in order to make the automatic proving easier.
```

108
I OR INDEED IN ORDER TO MAKE IT POSSIBLE: IF THE MACRODESCRIPTION SAYS
!MD-GPXRA BUT IN FACT THAT DOES NOT HAPPEN, THEN IT CANNOT BE PROVED.
!WE COULD INTRODUCE ANOTHER VARIABLE "ARG" TO TAKE THE PLACE OF
"GPXRA PHI MD".

![MD-MA,]
OTHERWISE:= MD-MEM[MA]

END

Processes

! THE COMPLETE INSTRUCTION CYCLE IS CODED UNTIL CONTROL RETURNS TO INR FETCH
! OR "ALPHA", DEPENDING ON THE INSTRUCTION. THIS DIFFERENCE WILL HAVE
! TO BE COMPENSATED FOR LATER.

LDR:=
BEGIN
GPXRB:=MD
END.

LDE:=
BEGIN
EX:=HD
END.

!LWB-LW3 ARE NOT CODED, BUT IF NEEDED CAN BE CODED LIKE LDR AND LDE.

LOOP1:=
BEGIN
MA:=MA+1 NEXT
DECODE AMODE=>
BEGIN
0:=GPXRB-GPXRA,
OTHERWISE:=GPXRB-MEM[MA]
END

END.

LDR2:=
BEGIN
LDR() NEXT
RA:=RA+1 NEXT
RB:=RB+1 NEXT
LOOP1()
END.

LOOP2:=
BEGIN
LOOP1() NEXT
RA:=RA+1 NEXT
RB:=RB+1
END.
LDR3:
BEGIN
LDR() NEXT
RA=RA+1 NEXT
RB=RB+1 NEXT
LOOP2() NEXT
LOOP1()
END,

LDR7:
BEGIN
LDR() NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP2() NEXT
LOOP2() NEXT
LODP2()
NEXT
END,

LDR:
BEGIN
ALUB<32:8><MD
NEXT
SUM1=SUM--ALUB NEXT
GPXRB=SUM NEXT
IF SUM1 XOR SUM<31>>OVFF=1 OVERFLOW DETECTION
END.

! From here to the end of NORMAL has been checked with DIVF, Mar. 8, 78.
! as DIVFML.

NMLOOP:
BEGIN
REPEAT
BEGIN
IF OVFF=0 (OVFF=1 NEXT LEAVE NMLOOP) NEXT
DECODE GPXRB<29:27>
BEGIN
[0,7] = (EXPOUT= (GPXRB<7> && GPXRB<7:8>) --2 NEXT
OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB=GPXRB<29:8> e'88e EXPOUT<7:8>)
2:5 = LEAVE NMLOOP,
[1,6] = (EXPOUT= (GPXRB<7> && GPXRB<7:8>) --1 NEXT
OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
GPXRB=GPXRB<30:8> e'88e EXPOUT<7:8> NEXT
IF OVFF=0 OVFF=1 NEXT
LEAVE NMLOOP)
END
END
NORMAL: CALLED IN ADDF, SUBF, DIVF, LDIF, LDNF.

Make sure that a test for OVF8 is made at the end of above instructions before entry into NORMAL.

BEGIN
IF SUM1=SUM<31:8> EQ 0 => (GPXRB<7:8>) NEXT

LEAVE NORMAL) NEXT

DECIDE OVF8@SUM1@SUM<31:29> =>

BEGIN

[10:13]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

GPXRB<7:8> EXPOUT<7:8> NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
IF OVF8=OVFF1,

THAT'S RIGHT: IF BOTH THE PREVIOUS EXPONENT AND THE PRESENT ONE OVERFLOW THEN THERE IS NO GENERAL OVERFLOW.

[30:33]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

GPXRB<7:8> EXPOUT<7:8> NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
IF NOT OVF8=OVFF1,

[4:7]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

GPXRB<7:8> EXPOUT<7:8> NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
IF OVF8=OVFF1,

[21:36]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT

GPXRB=GPXRB<30:7>:SUM<31:8> NEXT

IF OVF8=OVFF1,

[21:36]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT

GPXRB=GPXRB<30:7>:SUM<31:8> NEXT

END loop

[21:36]:= (EXPOUT-(GPXRB<7:8>)<GPXRB<7:8>) +1 NEXT

OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT

GPXRB=GPXRB<30:7>:SUM<31:8> NEXT

END loop

END.

From NMLOOP to here has been checked with DIVF

LDNF=

BEGIN
SUM1=SUM<31:8> => (MD<31:8>) NEXT
GPXRB=SUM<31:8> NEXT

111
WI=0 NEXT
NORMAL()
END

LDA:=
BEGIN
LDR() NEXT
IF GPXRB<31>>
(SUM11<<SUM--(GPXRB<31>>@GPXRB) NEXT
GPXRB=SUM NEXT
IF SUM1 XOR SUM<31>>=0VFF>1)
END.

LOA:=
BEGIN
LDR() NEXT
IF GPXRB<31>>
(SUM11<<SUM<31:8>>=(GPXRB<31>>@GPXRB<31:8>) NEXT
GPXRB=SUM NEXT
WI=8 NEXT
NORMAL()
END.

LOC:=
BEGIN
GPXRB=NOT MD
END.

LAI:
BEGIN
IF NOT MON->LDR()
END.

LMO:=
BEGIN
IF MON->LDR()
END.

STR:=
BEGIN
DECODE AMODE=>
BEGIN
B:=GPXRA-GPXRB,
OTHERWISE:=MEM[MA]+GPXRB
END
END.

STE:=
BEGIN
DECODE AMODE=>
BEGIN
B:=GPXRA-EX,
OTHERWISE:=MEM[MA]-EX
SW0-SW3 ARE NOT CODED HERE, BUT IF NEEDED THEY ARE LIKE STR, STE.

STD:=
BEGIN
DECODE AMODE->
BEGIN
0:= (MA<MEM[PC]<15:0> NEXT
INR+MEM[PC]),
OTHERWISE:= (MEM[MA]+GPXRB NEXT
MEM[MA+4896]+GPXRB)
END
END.

STZ:=
BEGIN
DECODE AMODE->
BEGIN
0:=GPXRA=0,
OTHERWISE:=MEM[MA]=0
END
END.

SZD:=
BEGIN
DECODE AMODE->
BEGIN
0:= STD(), /// NO STORING OF ZERO IF AMODE=0?
OTHERWISE:= (MEM[MA]+0 NEXT
MEM[MA+4896]+0)
END
END.

STR2:=
BEGIN
DECODE AMODE->
BEGIN
0:= (GPXRA-GPXRB NEXT
RA-RA+1 NEXT
RB-RB+1 NEXT
GPXRA-GPXRB),
OTHERWISE:= (MEM[MA]+GPXRB NEXT
MA-MA+1 NEXT
RB-RB+1 NEXT
MEM[MA]+GPXRB)
END
END.

STR3:=
BEGIN
DECODE AMODE->
BEGIN
 $1 := \text{GPXRA} \rightarrow \text{GPXRB} \text{ NEXT}
 RA := RA + 1 \text{ NEXT}
 RB := RB + 1 \text{ NEXT}
 \text{STR2()}$
 \text{END.}
 \text{END.}

\text{LOOP4:} \text{! THIS IS ONLY CALLED WHEN AMODE=1}

BEGIN
 \text{STD()} \text{ NEXT}
 RA := RA + 1 \text{ NEXT}
 RB := RB + 1 \text{ NEXT}
 MA := MA + 1
 \text{END.}

\text{STD2:}

BEGIN
 \text{DECODE AMODE=> }
 \text{BEGIN}
 \text{ }$1 := \text{STD()},$
 \text{OTHERWISE:= (LOOP4()) NEXT}
 \text{STD()}$
 \text{. END}

\text{END.}

\text{STD3:}

BEGIN
 \text{DECODE AMODE=> }
 \text{BEGIN}
 \text{ }$1 := \text{STD()},$
 \text{OTHERWISE:= (LOOP4()) NEXT}
 \text{STD2()}$
 \text{. END}

\text{END.}

\text{STD7:}

BEGIN
 \text{DECODE AMODE=> }
 \text{BEGIN}
 \text{ }$1 := \text{STD()},$
 \text{OTHERWISE:= (LOOP4()) NEXT}
 \text{LOOP4()} \text{ NEXT}
 \text{LOOP4()} \text{ NEXT}
 \text{LOOP4()} \text{ NEXT}
 \text{STD3()}$

\text{END.}
BEGIN
MEM[MA]→MA SL 16
END.

BEGIN
MEM[MA]→STATUS→PC<15:0>

!see p.66 of FTSC instruction set document
END.

BEGIN
DECODE AMODE->
BEGIN
0: = NO.OP(),
OTHERWISE: =MEM[MA]+MEM[MA+4096]+STATUS→PC<15:0>
END
END.

BEGIN
DECODE AMODE->

1: = MEM[MA]→GPXRB NEXT

!MAEC<7:0> ARE MEMORY ADDRESS ERROR CODE BITS. SEE 226 LINE 6 AND LAST !FOR CONTRADICTORY INTERPRETATIONS.
END
END.

BEGIN
DECODE AMODE->
BEGIN
0: = GPXRA→GPXRB,
1: = MEM[MA]→GPXRB NEXT
 MAEC=0,
END
END.

BEGIN
DECODE AMODE->
BEGIN
0: = GPXRA→GPXRB,
1: = MEM[MA]→GPXRB NEXT
 MDEC=1,
!!MDEC<7:0> IS MEMORY DATA ERROR CODE.
! END
! END.

!SBPDB:
! BEGIN
! DECODE AMODE=>
! BEGIN
! 0: GPXRA-GPXRB,
! 1: MEM[MA]-GPXRB NEXT
! MDEC->0,
! END
! END.

JMP:=
BEGIN
DECODE AMODE=>
BEGIN
 0: PC-GPXRA,
OTHERWISE: PC+MA
 END
END.

JSB:=
BEGIN
GPXRb-STATUS@PC<15:8> NEXT
DECODE AMODE=>
BEGIN
 0: PC-GPXRA,
OTHERWISE: PC+MA
 END
END.

JPZ:=
BEGIN
IF NOT GPXRB<31=>JMP()
END.

JMI:=
BEGIN
IF GPXRB<31=>JMP()
END.

JZE:=
BEGIN
IF GPXRB EQL 0=>JMP()
END.

JZEF:=
BEGIN
IF GPXRB<31:8> EQL 0=>JMP()
END.
JNZ:
BEGIN
IF GPXRB NEQ 0 => JMP()
END.

JNZF:
BEGIN
IF GPXRB<31:8> NEQ 0 => JMP()
END.

JPS:
BEGIN
IF GPXRB NEQ 0 AND GPXRB <31> EQL 0 => JMP()
END.

JPSF:
BEGIN
IF GPXRB<31:8> NEQ 0 AND GPXRB<31> EQL 0 => JMP()
END.

JMZ:
BEGIN
IF GPXRB<31> EQL 1 OR GPXRB EQL 0 => JMP()
END.

JMZF:
BEGIN
IF GPXRB<31> EQL 1 OR GPXRB<31:8> EQL 0 => JMP()
END.

JDN:
BEGIN
SUM1@SUM=(GPXRB<31> GPXRB) -1 NEXT
GPXRB=SUM NEXT
IF GPXRB NEQ 0 => JMP()
END.

JOS:
BEGIN
IF OVFF => JMP() NEXT
OVFF=0
END.

JCS:
BEGIN
IF CRYFF => JMP() NEXT
CRYFF=0
END.

OISN:
BEGIN
MD=NOT MD NEXT
IF (GPXRB OR MD) NEQ #37777777777
(0C-0C+1)
END.

0ISO:=
BEGIN
MD-NOT MD NEXT
IF (GPXRB OR MD) EQ1 #37777777777
(0C-0C+1)
END.

ASNZ:=
BEGIN
IF (GPXRB AND MD) NEQ 0->0C-0C+1
END.

ASZ:=
BEGIN
IF (GPXRB AND MD) EQ1 0->0C-0C+1
END.

!CSNE AND CSEQ ARE NOT ON THE FLOWCHART DIAGRAMS

ADD:=
BEGIN
SUMM2@SUMM1@SUM-GPXRB<31>@GPXRB + MD<31> @MD NEXT
IF SUMM2>CRYFF+1 NEXT
GPXRB-SUM NEXT
IF (SUMM1 XOR SUM<31>)=OVFF+1
END.

SUB:=
BEGIN
SUMM2@SUMM1@SUM- GPXRB<31>@GPXRB - (-MD<31>@MD) NEXT
IF SUMM2>CRYFF+1 NEXT
GPXRB-SUM NEXT
IF (SUMM1 XOR SUM<31>)=OVFF+1
END.

MPY:=
BEGIN
EX-GPXRB NEXT
GPXRB-0 NEXT
COUNTER-0 NEXT
CRYSTS-0 NEXT
LOOPS:=
REPEAT
BEGIN
ALUA=GPXRB NEXT !IT APPEARS THAT WE NEED GPXRB AND MD SIGN
I EXTENDED TWO BITS, SO HERE ALUA AND
I ALUB SHOULD BE 34 BITS.

ALUB=MD NEXT

118
DECODE CRYSTSEX<1:0>
BEGIN

0 := (SUMM2@SUMM1@SUM-ALUA NEXT
CRYSTS-0),
1 := (SUMM2@SUMM1@SUM-ALUA+ALUB NEXT
CRYSTS-0),
2 := (SUMM2@SUMM1@SUM-ALUA-(ALUB SL0 1) NEXT
CRYSTS-1),
3 := (SUMM2@SUMM1@SUM-ALUA+ALUB NEXT
CRYSTS-1),
4 := (SUMM2@SUMM1@SUM-ALUA+ALUB NEXT
CRYSTS-0),
5 := (SUMM2@SUMM1@SUM-ALUA+(ALUB SL0 1) NEXT
CRYSTS-0),
6 := (SUMM2@SUMM1@SUM-ALUA+ALUB NEXT
CRYSTS-1),
7 := (SUMM2@SUMM1@SUM-ALUA NEXT
CRYSTS-1)
END NEXT

GPXRB=SUMM2@SUMM1@SUM<31:2> NEXT
EX=SUM<1:0>@EX<31:2> NEXT
COUNTER=COUNTER+1 NEXT
IF COUNTER EQL 16=>LEAVE LOOPS
END NEXT

!At this point in the computation, the sign appears in GPXRB<31:30>
!and the msb's to lsb's are in GPXRB<29:0>@EX.

EX=EX<30:0>@GPXRB<31> NEXT
GPXRB=GPXRB<30:0>@EX<31> NEXT
W0=GPXRB NEXT !IS THIS NEEDED FOR SOMETHING? FOR EXAMPLE
!IF MPY IS EXITED ON OVFF.

IF GPXRB<31> XOR GPXRB<30>=0(DVFF-1 NEXT LEAVE MPY) NEXT
GPXRB=EX SRR 1 NEXT !EX ROTATED RIGHT ONE BIT
EX=W0
END.

PPLOOP:

BEGIN
REPEAT
BEGIN
COUNTER=COUNTER+1 NEXT
DECODE INVERTOR=(SUM-GPXRB-HD,SUM+GPXRB+HD) NEXT
GPXRB=SUM<30:0>@EX<31> NEXT
EX=EX<30:0>@NOT INVERTOR NEXT
INVERTOR=SUM<31> NEXT
IF COUNTER EQL 30=>LEAVE PPLOOP
END
END,

PMLOOP:

BEGIN
REPEAT
BEGIN

119
COUNTER = COUNTER + 1 NEXT
DECODE INVERTOR = (SUM - GPXRB + MD, SUM - GPXRB - MD) NEXT
GPXRB = SUM < 31:0 > - EX < 31 > NEXT
EX = EX < 31:0 > - INVERTOR NEXT
INVERTOR = SUM < 31 > NEXT
IF COUNTER EQL 29 THEN LEAVE PMLOOP
END.
END.

DIVPP:
BEGIN
EX = EX SL0 1 NEXT
SUM = GPXRB - MD NEXT
IF NOT SUM < 31 = 0 THEN LEAVE DIVPP NEXT (DENOM = 0 IN DIV)
AND MSB HALF OF NUMERATOR GEO DENOMINATOR IN LDV
GPXRB = SUM < 31:0 > - EX < 31 > NEXT
EX = EX SL0 1 NEXT
INVERTOR = 1 NEXT
PPLoop () NEXT
DECODE INVERTOR = (SUM - GPXRB - MD, SUM - GPXRB + MD) NEXT
GPXRB = SUM NEXT
EX = EX < 31:0 > NOT INVERTOR NEXT
DECODE GPXRB < 31 > =
BEGIN
0 = (W0 - GPXRB NEXT
GPXRB = (EX SL0 1) + 1 NEXT
EX = W0).
1 = (W0 - GPXRB + MD NEXT
GPXRB = EX SL0 1 NEXT
EX = W0)
END.

DIVPM:
BEGIN
!THE STEP EX = EX SL0 1 IS TAKEN CARE OF A FEW LINES HENCE.
SUM = GPXRB + MD NEXT !IN DIV GPXRB = 0 HERE.
IF SUM GTR 0 THEN (DIVFF = 1 NEXT LEAVE DIVPM) NEXT
!THIS IS IMPOSSIBLE FOR DIV. FOR LDV THIS CHECKS IF MS HALF
!OF NUM GTR ABSOLUTE VALUE OF DENOMINATOR.
IF (SUM EQL 0) AND (W0 NEQ 0) THEN (DIVFF = 1 NEXT LEAVE DIVPM) NEXT
!THIS IS ALSO IMPOSSIBLE FOR DIV. IN LDV IT CHECKS IF MS HALF
!OF NUMERATOR EQL ABSOLUTE VALUE OF DENOMINATOR AND LS HALF
!OF NUMERATOR EQL 0.
GPXRB = SUM < 31:0 > - EX < 31 > NEXT
EX = EX < 29:0 > - '01 NEXT
IF SUM EQL 0 THEN INVERTOR = 0 NEXT !AT THIS POINT LS HALF OF
NUM IN LDV IS KNOWN TO BE ZERO.
IF SUM LSS 0 THEN
SUM = GPXRB - MD NEXT
GPXRB-SUM<30:8>EX<31> NEXT
EX-EX SL1 1 NEXT
INVERTOR-SUM<31> NEXT
COUNTER-0 NEXT
PLOOP() NEXT
DECODE INVERTOR->(GPXRB-GPXRB+MD,GPXRB-GPXRB-MD) NEXT
EX-EX<30:8>INVERTOR NEXT
DECODE GPXRB<31>=>(W0-GPXRB NEXT EX-EX SL0 1),
(W0-GPXRB-MD NEXT EX-EX SL1 1)) NEXT
GPXRB-EX+1 NEXT
EX-W0
END.

DIVMP=
BEGIN
EX-EX SL0 1 NEXT
GPXRB-GPXRB+MD NEXT !HERE IN DIV GPXRB+MD-1.
IF GPXRB<31>=>(DIVFF-1 NEXT LEAVE DIVMP) NEXT !CHECK FOR DENOM=0
! ACTUALLY WE MAY HAVE TO EXECUTE ALSO 646 IN ORDER THAT THE PROPER
! VALUES BE IN GPXRB AND EX WHEN CONTROL GETS THE INTERRUPT SIGNAL.
GPXRB-GPXRB<30:0>=EX<31> NEXT
EX-EX SL1 1 NEXT
SUM-GPXRB-MD NEXT
INVERTOR-SUM<31> NEXT
GPXRB-SUM<30:0>=EX<31> NEXT
EX-EX SL1 1 NEXT
PLOOP() NEXT !SAME LOOP AS FOR +/+
DECODE INVERTOR->(SUM-GPXRB-MD,SUM+GPXRB-MD) NEXT
GPXRB-SUM NEXT
EX-EX<30:0>=NOT INVERTOR NEXT
IF GPXRB GTR 0=>(W0-GPXRB-MD NEXT IE.G.-4/5
EX-EX SL1 1 NEXT
GPXRB-EX + 1 NEXT
EX-W0 NEXT
LEAVE DIVMP) NEXT
IF GPXRB EQL 0=>(GPXRB-(EX SL0 1) + 1 NEXT IE.G.-4/4
EX-0 NEXT LEAVE DIVMP) NEXT
IF GPXRB LSS 0=>(GPXRB-GPXRB+MD NEXT
IF GPXRB EQL 0=>(GPXRB-EX SL0 1 NEXT IE.G.-4/2
EX-0 NEXT LEAVE DIVMP) NEXT
IF GPXRB NEQ 0=>(W0-GPXRB-MD NEXT IE.G.-4/3
EX-EX SL0 1 NEXT
GPXRB-EX + 1 NEXT
EX-W0))
END.

DIVMP=
BEGIN
EX-EX SL0 1 NEXT
SUM-GPXRB-MD NEXT !IN DIV GPXRB+1 HERE;
IF SUM LSS 0=>(DIVFF-1 NEXT LEAVE DIVMP) NEXT
!THIS IS IMPOSSIBLE FOR DIV. IN LDV THIS CHECKS IF MD GTR GPXRB
I.E., IF ABS. VALUE OF MS HALF OF NUMERATOR GTR ABS. VALUE OF
DENOMINATOR.
GPXR8+SUM<38:0>EX<31> NEXT
EX=EX SL0 1 NEXT
IF (SUM EQ 0) AND (EX EQ 0)=>(DIVFF*1 NEXT LEAVE DIVMM) NEXT
IS0 '1X8...0/-1 YIELDS DIVFF IN DIV SINCE SUM EQ 0<=> MD=1 IN DIV.
IN LDV THIS CHECKS IF MS HALF OF NUM = DENOMINATOR AND LS HALF =
'1X8...0 AS IN DIV. AGAIN THIS DOES NOT MAKE SENSE.
COUNTER=0 NEXT
INVERTOR=0 NEXT
PMLOOP() NEXT !SAME LOOP AS +/-.
DECODE INVERTOR=>(GPXR8-GPXR8+MD,GPXR8-GPXR8-MD) NEXT
EX=EX<38:0>=INVERTOR NEXT
IF GPXR8 EQ 0=>(GPXR8=(EX SL0 1) + 1 NEXT !E.G.-4/-4
EX=0 NEXT LEAVE DIVMM) NEXT
IF GPXR8 GTR 0=>(W0-GPXR8+MD NEXT !E.G.-4/-5
GPXR8=EX SL0 1 NEXT
EX=W0 NEXT LEAVE DIVMM) NEXT
IF GPXR8 LSS 0=>(W0-GPXR8-MD NEXT
IF W0 EQ 0=>(EX=EX SL1 1 NEXT !E.G.-4/-2
GPXR8=EX+1 NEXT
EX=0 NEXT LEAVE DIVMM) NEXT
IF W0 NEQ 0=>(W0-GPXR8+MD NEXT !E.G.-4/-3
EX=EX SL0 1 NEXT
GPXR8=EX+1 NEXT
EX=W0))
END,
DIVI:=!GPXR8 CONTAINS NUMERATOR AND MD DENOMINATOR. QUOTIENT GOES IN
! GPXR8 WITH REMAINDER IN EX. SIGN OF REMAINDER IS SAME AS
! SIGN OF NUMERATOR.
BEGIN
EX=GPXR8 NEXT
DECODE GPXR8<31>*MD<31>=>
BEGIN
0:=(GPXR8=0 NEXT DIVPP()), !+/+
1:=(GPXR8=0 NEXT DIVPH()), !+-
2:=(GPXR8=-1 NEXT DIVPH()), !+-
3:=(GPXR8=-1 NEXT DIVMM()) !-/
END
END.
LDV:=!NUMERATOR IS EX*GPXR8. DENOMINATOR IS MD. (PROBABLY) EX<31>=GPXR8<31>.
!OTHER DETAILS AS IN DIV.
!(AT THE START EX AND GPXR8 ARE INTERCHANGED)
BEGIN
W0-GPXR8 NEXT
GPXR8=EX NEXT
EX=W0 NEXT
W0=EX SL0 1 NEXT
IF (GPXR8 GEO 0) AND (MD GEO 0)=>(DIVPP() NEXT LEAVE LDV) NEXT
IF (GPXRB GEO 0) AND (MD LSS 0)\(\Rightarrow\)DIVPM() NEXT LEAVE LDV
IF (GPXRB LSS 0) AND (MD GEO 0)\(\Rightarrow\)DIVMP() NEXT LEAVE LDV
IF (GPXRB LSS 0) AND (MD LSS 0)\(\Rightarrow\)DIVMM() NEXT LEAVE LDV
END,

ACO:=
BEGIN
SUMM2@SUMM1@SUM=(GPXRB<31>\&GPXRB)+(MD<31>\&MD)+CRYFF NEXT
GPXRB-SUM NEXT
IF SUMM2\(\Rightarrow\)CRYFF-1 NEXT
IF SUMM1 XOR SUM<31\(\Rightarrow\)OVFF-1
END,

LOOPG:=
BEGIN
REPEAT
BEGIN
GPXR8-GPXRB SL0 2 NEXT
W1-W1-2 NEXT
IF NOT((GPXRB NEQ 0 AND GPXRB<31:29> EQL 0) OR
(GPXRB<31:29> EQL 7))\(\Rightarrow\) LEAVE LOOPG
END
END.

CFL:=
!TAKES GPXRA OR MD INTEGER AND CONVERTS TO FLOATING IN GPXRB.
! THE MANTISSA IS INTERPRETED AS A BINARY FRACTION LESS THAN 1.
BEGIN
GPXR8-MD NEXT
W1-0 NEXT
IF (GPXRB NEQ 0) AND (GPXRB<31:29> EQL 0 OR GPXRB<31:29> EQL 7)\(\Rightarrow\)
LOOPS() NEXT
!LOOPS CAN CHANGE THE VALUE OF W1.
IF GPXRB EQL 0\(\Rightarrow\)(GPXRB="80 NEXT LEAVE CFL) NEXT
IF GPXRB<31\(\Rightarrow\) XOR GPXRB<38\(\Rightarrow\)
!ALREADY NORMALIZED
(GPXRB<7:0>\&W1<7:0> NEXT GPXR8<7:0>\&GPXR8<7:0>+31 NEXT LEAVE CFL) NEXT
IF (GPXR8<31:29> EQL 6) OR (GPXR8<31:29> EQL 1) \(\Rightarrow\)
!NORMALIZE FIRST
(GPXRB-GPXRB SL0 1 NEXT GPXR8<7:0>\&W1-1 NEXT
GPXR8<7:0>+GPXR8<7:0>+31)
END.

ADDLP1:=
BEGIN
REPEAT
BEGIN
GPXR8<31:8>\&GPXR8<31>\&GPXR8<31>\&GPXR8<31:10> NEXT
W1<7:0>+W1<7:0>+2 NEXT
GPXR8<7:0>+MD<7:0> NEXT
IF W1<7:0> EQL 0\(\Rightarrow\)LEAVE ADDLP1
END.
ADDLP2:
BEGIN
 BEGIN
 REPEAT
 $W1 < 7:0 > = $W1 < 7:0 > - 2 NEXT
 $MD < 31:8 > = $MD < 31:8 > + $MD < 31:8 > NEXT
 IF $W1 < 7:0 > EQL 0 => LEAVE ADDLP2
 END
 END.

ADOF:
BEGIN
 FIRST COME THE TWO EXPONENTS. THEIR DIFFERENCE GOES IN EXPOUT.
 EXPOUT = GPXR8 < 7:0 > + GPXR8 < 7:0 > - $MD < 7:0 > NEXT
 $W1 < 7:0 > = SUM < 7:0 > + EXPOUT < 7:0 > NEXT

 WHAT DO WE NEED $W1 FOR?
 IF SUM < 7:0 > EQL 0 => (DECOD ASUBE => (GPXR8 < 31:8 > + GPXR8 < 31:8 > + $MD < 31:8 >,
 GPXR8 < 31:8 > + GPXR8 < 31:8 > - $MD < 31:8 >) NEXT

 $W1 < 0 NEXT NORMAL() NEXT LEAVE ADOF() NEXT
 END

 SO FROM HERE ON SUM < 7:0 > NE0 8.
 OVF8 = EXPOUT < 8 > XOR EXPOUT < 7 > NEXT
 EXG23 = (EXPOUT < 7:0 > CTR 23) OR (EXPOUT < 7:0 > LSS -23) NEXT
 DECODE EXG23 @ OVF8 @ SUM < 8 > @ SUM < 7 >
 BEGIN
 [4:7, #14:17] = { IF GPXR8 < 7 > => IIF GPXR8 EXPONENT < 0
 (DECOD ASUBE => (GPXR8 = MD,
 GPXR8 = (-$MD < 31:8 >) * 0 < 7 >())) NEXT
 LEAVE ADOF()
 ,
 [11, #13] = (DECOD ASUBE => (GPXR8 = MD,
 GPXR8 = (-$MD < 31:8 >) * 0 < 7 >)) NEXT
 LEAVE ADOF()
 ,
 [10, #12] = LEAVE ADOF,
 1 := ADDLP1(),
 3 := (GPXR8 < 31:8 > + GPXR8 < 31:8 > + GPXR8 < 31:8 > NEXT
 $W1 < 7:0 > = $W1 < 7:0 > + 1 NEXT
 GPXR8 < 7:0 > = MD < 7:0 > NEXT
 ADDLP1()
 ,
 8 := ADDLP2(),
 2 := ($W1 < 7:0 > = $W1 < 7:0 > - 1 NEXT
 $MD < 31:8 > = $MD < 31:8 > + $MD < 31:8 > NEXT
 ADDLP2()
 END

END NEXT

124
ALUA<=>GPXRBNEXTISIGNEXTENDONEBIT
ALUB<=>MDNEXT
DECODEASUBE=>
BEGIN
0:SUMM2@SUMM1@GPXRBC31:8>
GPXRBC31>GPXRBC31:8>+MD<31>@MD<31:8>,
1:SUMM2@SUMM1@GPXRBC31:8>
GPXRBC31>GPXRBC31:8>–MD<31>@MD<31:8>
ENDNEXT
IFSUMM2=>CRYFF=1
END

SUBF:
BEGIN
ASUBE=1NEXT!AUTO SUBTRACT ENABLE
ADDF()END,

!From here to the end of MPYF has been checked in MPYFML

!Version of Mar.3,1978
MINUS1:
BEGIN
GPXRBC31:8=>GPXRBC30:8>@EX<31>NEXT
EX=EXSL01NEXT
EXPA<=>GPXRBC7:0>NEXT
EXPOUT–EXPA–1NEXT
OVF8–EXPOUT<8>XOREXPOUT<7>NEXT
GPXRBC7:0=>EXPOUT<7:0>
END,

MINUS2:
BEGIN
GPXRBC31:8=>GPXRBC29:8>@EX<31:30>NEXT
EX=EXSL02NEXT
EXPA<=>GPXRBC7:0>NEXT
EXPOUT–EXPA–2NEXT
OVF8–EXPOUT<8>XOREXPOUT<7>NEXT
GPXRBC7:0=>EXPOUT<7:0>
END,

MPYF1A:=BEGIN
MLOOP1:=
REPEAT
125
BEGIN
IF OVF8@GPXRB<31:29> NEQ 0 AND
 OVF8@GPXRB<31:29> NEQ 7) =>
 LEAVE MLOOP1 NEXT
MINUS2()
END !of MLOOP1
NEXT
IF OVF8@GPXRB<31:29> EQL 6 OR
 OVF8@GPXRB<31:29> EQL 1) =>
 MINUS1(NEXT
EX<31:8>+'0@EX<31:9> NEXT
IF OVF8=>OVFF=1
END,

MPYF1B:=
BEGIN
REPEAT
BEGIN
DECODE OVF8@GPXRB<31:29=>
BEGIN
{1,6}:=MINUS1()
{0,7}:=MINUS2()
(#11,#16):=(MINUS1()) NEXT
EX<31:8>+'0@EX<31:9> NEXT
IF OVF8=>OVFF=1 NEXT LEAVE MPYF1B),
{2:5}:=({OVFF=1 NEXT LEAVE MPYF1B),
[#12:#15]:=(EX<31:8>+'0@EX<31:9> NEXT LEAVE MPYF1B),
[#18,#17]:=(MINUS2()) NEXT
MPYF1A() NEXT LEAVE MPYF1B)
END !of decode
!of REPEAT
!of MPYF1B

MPYF:=
!TAKES NORMALIZED GPXRB AND MD (OR GPXRA) IN FLOATING POINT
!FORM AND PUTS THE SIGN OF THE PRODUCT AND 23 MSB'S IN
!MANTISSA OF GPXRB, 23 LSB'S IN BITS <30:8> OF EXTENSION
!REGISTER, AND EXPONENT IN EXPONENT OF GPXRB.
BEGIN
EX-GPXRB<31:8>='00000000 NEXT
GPXRB<31:8>='0 NEXT
IF NOT AMODE=>(MD-GPXRA) NEXT !OTHERWISE USE OLD MD
COUNTER='0 NEXT
CRYSTS='0 NEXT
LOOPSFI=

REPEAT
BEGIN
ALUA<33:8><GPXRB<31:8> NEXT THERE ALSO (AS IN MPY INTEGER)
!SIGN-EXTEND TWO BITS)
ALUB<33:8><MD<31:8> NEXT

126
DECODE CRYSTSEX<9:8>->
BEGIN
0:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8> NEXT
CRYSTS=0),
1:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8>+ALUB<33:8> NEXT
CRYSTS=0),
2:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8>-(ALUB<33:8> SL0 1) NEXT
CRYSTS=1),
3:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8>-ALUB<33:8> NEXT
CRYSTS=1),
4:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8>+ALUB<33:8> NEXT
CRYSTS=0),
5:=(SUMM2@SUMM1@SUM<31:8>=
ALUA<33:8>+(ALUB<33:8> SL0 1) NEXT
CRYSTS=0),
6:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8>-ALUB<33:8> NEXT
CRYSTS=1),
7:=(SUMM2@SUMM1@SUM<31:8>=ALUA<33:8> NEXT
CRYSTS=1)
END NEXT
GPXRB<31:8>=SUMM2@SUMM1@SUM<31:10> NEXT
EX<31:8>=SUM<9:8>eEX<31:10> NEXT
COUNTER=COUNTER+1 NEXT
IF COUNTER EQL 12->LEAVE LOOPSF
END NEXT
IF GPXRB<31:8> EQL 0->(GPXRB<7:0> NEXT
EX=0 NEXT LEAVE MPYF) NEXT
! THAT IS THE FLOATING REPRESENTATION OF ZERO.
!Eliminate GPSDECODE
GPSDECODE() NEXT LEAVE MPYF) NEXT
EXPA9<GPXRB<7:0> NEXT
HERE WE ARE USING THE MICROMACHINE NOTATION.
EXPB9<HD<7:0> NEXT
EXP9=EXPA9+EXPB9 NEXT
GPXRB<7:0>=EX9<7:0> NEXT
OVF8=EX9<8> XOR EX9<7> NEXT
DECODE GPXRB<31:23>->
BEGIN
[0.7]= (GPXRB<31:8>=GPXRB<29:8>eEX<31:30> NEXT
EX=EX SL0 2 NEXT
DECODE OVF8->
!We do the decode on OVF8 here, even though the first 4 lines
!in both cases are the same, because OVF8 is recalculated immediately
!and I didn t see any other way that would not introduce fictitious
!registers or something like the DELAY.
BEGIN
0:=(EXPA9<GPXRB<7:0> NEXT
EXP9=EXPA9-1 NEXT
OVF8=EX9<8> XOR EX9<7> NEXT
GPXRB<7:0>=EX9<7:0> NEXT
MPYF1A()));
1:=(EXPA9<GPXRB<7:0> NEXT
EXP9=EXPA9-1 NEXT
OVF8=EX9<8> XOR EX9<7> NEXT
GPXRB<7:0>=EX9<7:0> NEXT
127
MPYFILE() END.

BEGIN
 0={EXPAS=GPXR=7:8} NEXT
 EXPOUT=EXPAS+1 NEXT
 OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
 GPXR=7:8=EXPOUT<7:8> NEXT
 EX<31:8>>0*EX<31:9> NEXT
 IF OVF8=>OVFF=1),
 1={EXPAS=GPXR=7:8} NEXT
 EXPOUT=EXPAS+1 NEXT
 OVF8=EXPOUT<8> XOR EXPOUT<7> NEXT
 GPXR=7:8=EXPOUT<7:8> NEXT
 EX<31:8>>0*EX<31:9> NEXT
 IF NOT OVF8=>OVFF=1) !there's the difference
END

WHY ARE 3 AND 5 IMPOSSIBLE? Because GPXR<31:30> contains !the sign bit repeated. 2 is only possible for -2^23x-2^23.

END,

! From the last landmark to here has been checked as MPYFILE.

! From here to the end of DIVF has been checked along with NORMAL, Mar. 8, 78 ! as DIVFILE.

FPPLOOP:
 BEGIN
 BEGIN
 REPEAT
 BEGIN
 COUNTER=COUNTER+1 NEXT
 DECODE INVERTOR=(SUM<31:8>=GPXR<31:8>=MD<31:8>,
 SUM<31:8>=GPXR<31:8>=MD<31:8>) NEXT
 EX<31:8>=EX<30:8>>NOT INVERTOR NEXT
 INVERTOR=SUM<31> NEXT
 IF COUNTER EQ 23> LEAVE FPPLOOP NEXT
 END
 END
 END
 END.

128
FPMLOOP :=
BEGIN
REPEAT
BEGIN
COUNTER := COUNTER + 1
NEXT
DECODE INVERTOR := (SUM < 31:8> := GPXRB < 31:8 > := MD < 31:8 >,
SUM < 31:8 > := GPXRB < 31:8 > := MD < 31:8 >)
NEXT
EX < 31:8 > := EX < 30:8 > := INVERTOR
NEXT
INVERTOR := SUM < 31 >
NEXT
IF COUNTER EQL 23 => LEAVE FPMLOOP
NEXT
END
END
DIVF := !GPXRB / MD
BEGIN
IF NOT AMODE => MD := GPXRA
NEXT
W1 < 7:0 > := "FF
NEXT
EX < 31 > := GPXRB < 8 >
NEXT
GPXRB < 31:8 > := GPXRB < 31:8 > := MD < 31:8 >
NEXT
IF MD EQL 0 => (DIVF := 1 NEXT LEAVE DIVF)
NEXT
DECODE GPXRB < 31 > := MD < 31 >
BEGIN
0 := (COUNTER := 0
NEXT
SUM < 31:8 > := GPXRB < 31:8 > := MD < 31:8 >
NEXT
GPXRB < 31:8 > := SUM < 30:8 > := EX < 31 >
NEXT
EX < 31:8 > := EX < 30:8 > := 0
NEXT
INVERTOR := SUM < 31 >
NEXT
FPMLOOP ()
NEXT
GPXRB < 31:8 > := SUM < 31:8 >
NEXT
W1 < 31:8 > := 0
NEXT
IF FOR USE IN NORMAL () =>
DECODE GPXRB < 31 >
BEGIN
0 := (W0 < 31:8 > := GPXRB < 31:8 >
NEXT
GPXRB < 31:8 > := EX < 31:8 >
SL 1 + 1
NEXT
EX < 31:8 > := W0 < 30:8 > := 1)
1 := (W0 < 31:8 > := GPXRB < 31:8 > := MD < 31:8 >
NEXT
GPXRB < 31:8 > := EX < 31:8 >
SL 1
NEXT
EX < 31:8 > := W0 < SL 0 1)
END
1 := (COUNTER := 0
NEXT
SUM < 31:8 > := GPXRB < 31:8 > := MD < 31:8 >
NEXT
GPXRB < 31:8 > := SUM < 30:8 > := EX < 31 >
NEXT
EX < 31:8 > := EX < 30:8 > := 1
NEXT
INVERTOR := SUM < 31 >
NEXT
FPMLOOP ()
NEXT
GPXRB < 31:8 > := SUM < 31:8 >
NEXT
W1 < 31:8 > := 0
NEXT
DECODE GPXRB < 31 >
BEGIN
0 := (W0 < 31:8 > := GPXRB < 31:8 >
NEXT
From FPPLOOP to here has been checked along with NORMAL.

130
!From here to the end of SRTF has been checked as SORTIL

SRTF: !TAKES FLOATING GPXRA OR MD AND PUTS SQUARE ROOT IN GPXRB.
 !A = m x 2^e. (↑ indicates exponentiation)

BEGIN
IF NOT AMODE->(MD=GPXRA) NEXT
IF MD LSS 0->(OVFF-1 NEXT LEAVE SRTF) NEXT
IF MD EOL 0->(GPXRB->"80 NEXT LEAVE SRTF) NEXT
W1=MD NEXT !This register transfer is pure machine dependence.
W0<31:8>=MD<31:8> SL0 1 NEXT !This too.
!W0<31:9> = M = m x 2^23.
W0<7:8>=0 NEXT
DECODE MD<8> !Even or odd exponent
BEGIN
 0:=(GPXRB-W0<31:30> NEXT !If even, shift argument two bits
 W0=W0 SL0 2) , !left into GPXRB.
 !GPXRB=W0<31:10>=2M, W1=e.
 1:=(GPXRB=W0<31> NEXT !If odd, shift argument one bit left
 W0=W0 SL0 1 NEXT !into GPXRB and add 1 to exponent.
 EXPOUT->MD<7>=MD<7> + 1 NEXT !Exponent overflow check.
 W1<7:8>=EXPOUT<7:8>)
 !GPXRB=W0<31:10> = M, W1=e+1.
END
! In any case, at this stage sqrt(GPXRB=W0<31:10>) x 2↑(W1/2) equals
! 2^12 x sqrt(m) x 2↑(e/2). So all we have to do is take W1/2 for
! the exponent of the answer and for the mantissa (in its fractional
! form) take sqrt(GPXRB=W0<31:10>) x 2↑(-12). What is the same is
! to take sqrt(GPXRB=W0<31:10>) x 2↑(-22) x 2↑(-23), in other words,
! take the square root mentioned here as an integer, and then just
! interpret it as a fraction in the bits <30:8> of the register
! containing the answer (bit <31> will be zero, since we are finding
! the positive square root). Notice that GPXRB<1:0>=W0<31:10> x 2↑22 is
! a 46-bit number, and the range of values is >=2↑44 and <=2↑46 - 2↑22.

NEXT
W1<7:8>=W1<7>=W1<7:1> NEXT !Exponent of root is 1/2 previous value.
IF EXPOUT<8> XOR EXPOUT<7>=W1<7:8>=#100 NEXT
!This is 1/2 of previous value
!In the case of overflow.
!So from here to the end we will be finding the square root of the
!integer GPXRB<1:0>=W0<31:10> x 2↑22.
!For proof of the following, see <MARCUS>SRTFPROOF.XOF.
COUNTER=0 NEXT
W1<31:8>=0 NEXT !Zero is partial square root.
SUM=GPXRB-1 NEXT
GPXRB=SUM<29:8>=W0<31:30> NEXT
SLOOP:
REPEAT
BEGIN
W0=W0 SL0 2 NEXT
COUNTER=COUNTER+1 NEXT
DECOD1 SUM<31=>
BEGIN
B:= (W1<31:8> + 2^W1<31:8> + 1 NEXT
IF COUNTER EQ 23 => (LEAVE SLOOP) NEXT
W2=W1<31:8> + 1 NEXT
SUM=GPXRB+W2 NEXT
GPXRB=SUM<29:0>=W0<31:30>,
L:= (W1<31:8> + 2^W1<31:8> NEXT
IF COUNTER EQ 23 => (LEAVE SLOOP) NEXT
W2=W1<31:8> + 3 NEXT
SUM=GPXRB+W2 NEXT
GPXRB=SUM<29:0>=W0<31:30>)
END
END
NEXT
GPXRB=W1
END.

VADDF:
BEGIN
ADDF() NEXT
RA=RA+1 NEXT
RB=RB+1 NEXT
MA=MA+1 NEXT
IF AMODE=MO-MEM[MA] NEXT
ADDF() NEXT
RA=RA+1 NEXT
RB=RB+1 NEXT
MA=MA+1 NEXT
IF AMODE=MO-MEM[MA] NEXT
ADDF() NEXT
END.

IVSUBF IS NOT ON FLOW DIAGRAMS

VMPYF:
BEGIN
MPYF() NEXT
RA-RA+1 NEXT
RB-RB+1 NEXT
MA-MA+1 NEXT
IF AMODE->MD-MEM[MA] NEXT
MPYF() NEXT
RA-RA+1 NEXT
RB-RB+1 NEXT
MA-MA+1 NEXT
IF AMODE->MD-MEM[MA] NEXT
MPYF() NEXT
END,

VIPF:=
BEGIN
MPYF() NEXT
W3-GPXRB NEXT
MA-MA+1 NEXT
RA-RA+1 NEXT
RB-RB+1 NEXT
IF AMODE->MD-MEM[MA] NEXT
MPYF() NEXT
W2-GPXRB NEXT
MA-MA+1 NEXT
RB-RB+1 NEXT
RA-RA+1 NEXT
DECODE AMODE->
BEGIN
0: =W0-GPXRA,
OTHERWISE: =MD-MEM[MA]
END
NEXT
MPYF() NEXT
DECODE AMODE->
BEGIN
0: =GPXRA+W2,
1: =MD+W2
END
NEXT
ADDF() NEXT
DECODE AMODE->
BEGIN
0: = (GPXRA+W2 NEXT
ADDF() NEXT
GPXRA+W0),
OTHERWISE: = (MD+W3 NEXT
ADDF())
END
END,

VSMF:=
BEGIN
MPYF() NEXT
RB-RB+1 NEXT
MPYF() NEXT
RB-RB+1 NEXT
MPYF()
END.

LOOP7:
BEGIN
REPEAT
BEGIN
W1-W1+2 NEXT
GPXRB-GPXRB<31>:>GPXRB<31>:>GPXRB<31:2> NEXT
IF W1<7:8> EQL 0 => LEAVE LOOP7
END
END.

CFX: !CONVERTS GPXRA OR MD IN FLOATING TO GPXRB INTEGER.
BEGIN
GPXRB-MD NEXT
IF GPXRB<7:8> EQL 0 => !EXponent=0
 (GPXRB-GPXRB SL0 1 NEXT
 (IF GPXRB EQL 0 => GPXRB<1 NEXT LEAVE CFX) NEXT
 (IF GPXRB NEQ 0 => GPXRB=0) NEXT LEAVE CFX) NEXT
! Converts <X00...0> TO -1 AND A NON-ZERO NUMBER OF ABSOLUTE VALUE < 1 TO 0.
IF GPXRB<7:8> (GPXRB=0 NEXT LEAVE CFX) NEXT !NEG Exponent Goes TO 0.
IF GPXRB<7:8> NEQ 0 AND GPXRB<7:8> EQL 0 => !POSITIVE Exponent
 (W1-31 NEXT
W1-GPXRB<7:8>-W1<7:8> NEXT
GPXRB<7:8>=0 NEXT
DECODE W1<7>=W1<8>=
BEGIN
0: = IF W1<7:8> NEQ 0 => OVFF-1,
 !IF W1<7:8> EQL 0, JUST LEAVE CFX.
1: = OVFF-1,
2: = LOOP7(),
3: = (W1-W1+1 NEXT
GPXRB-GPXRB<31>:>GPXRB<31:1> NEXT
IF W1 NEQ 0 => LOOP7())
END)
END.

UPF: !TAKES GPXRA OR MD AND PUTS THE Exponent (SIGN EXTENDED) AND THE MANTISSA IN SUCCESSIVE GP REGISTERS.
BEGIN
GPXRB<7:8> NEXT
RB-RB+1 NEXT
GPXRB<31:8>=MD<31:8> NEXT
GPXRB<7:8>=0
END.

LOOP8:
BEGIN
REPEAT
BEGIN
DECODE GPXR<31:29>
BEGIN
(0,7):= (GPXR-GPXR SL0 2 NEXT
IF SUMM1 XOR W1<7> =>(OVFF+1 NEXT LEAVE LOOP8) NEXT
! HERE SUMM1 IS THE EXTRA HARDWARE BIT TO THE LEFT OF THE EXPONENT
! AND IS USED TO CALCULATE OVF8 (*SUMM1 XOR THE LEFT MOST REAL BIT OF
! EXPONENT.)

SUMM1=W1<7:8>>W1<7:0>-2);
! THE EXPONENT PART OF W1 IS ALL THAT IS USED IN THE CONTINUATION.

[1,6]:= (IF SUMM1 XOR W1<7> =>(OVFF*1 NEXT LEAVE LOOP8) NEXT
SUMM1=W1<7:8>>W1<7:8>-1 NEXT
GPXR-GPXR SL0 1 NEXT
IF SUMM1 XOR W1<7> =>(OVFF+1 NEXT LEAVE LOOP8) NEXT
GPXR<7:0>-W1<7:8> NEXT
LEAVE LOOP8),

2:5:= (IF SUMM1 XOR W1<7> =>(OVFF+1 NEXT LEAVE LOOP8) NEXT
GPXR<7:0>-W1<7:0> NEXT
LEAVE LOOP8)

END

END

END,

PKF:= !TAKES EXPONENT(GPXR OR MD) AND MANTISSA(GPXR OR MEM[MA])
! AND PUTS THEM TOGETHER IN GPXR AS ONE FLOATING POINT NUMBER.
! THIS NEEDS TO BE CHECKED AGAIN,
BEGIN
DECODE AMODE->
BEGIN
0:= (W1-GPXR NEXT !EXponent
GPXR-GPXR), !Mantissa
OTHERWISE:= (MA-MA+1 NEXT
GPXR-MEM[MA] NEXT !Mantissa
W1-MD) !EXponent
END NEXT
IF GPXR EQL 0 => (GPXR-"80 NEXT LEAVE PKF) NEXT LOOP8)
END,

LAND:=
BEGIN
GPXR-MD AND GPXR
END,

LXOR:=
BEGIN
GPXR-MD XOR GPXR

135
IOR:
BEGIN
GPXRB=M0 OR GPXRB
END.

AND:
BEGIN
GPXRB NOT M0 AND GPXRB
END.

LOOP10:
BEGIN
REPEAT
BEGIN
MD=MD+2 NEXT
DECODE GPXRB<29:27>:
BEGIN
[0:7]= GPXRB-GPXRB SL 0 2,
OTHERWISE:=(OVFF=1 NEXT
GPXRB=GPXRB SL 0 2)
END NEXT
IF MD<7:0> EQL 0=>LEAVE LOOP10
END.

LOOP11:
BEGIN
MD=MD+2 NEXT
IF GPXRB EQL 0=> LEAVE LOOP11 NEXT
DECODE GPXRB<31:29>:
BEGIN
[0:7]= GPXRB-GPXRB SL 0 2,
OTHERWISE:=(OVFF=1 NEXT
GPXRB=GPXRB SL 0 2)
END NEXT
IF MD<7:0> NEQ 0=>LOOP10()
END.

LOOPS:
BEGIN
REPEAT
BEGIN
MD=MD-2 NEXT
GPXRB<GPXRB<31:2> NEXT
IF MD<7:0> EQL 0=> LEAVE LOOPS
END
END.
ARS: I SHIFTS GPXRB THE NUMBER AND DIRECTION OF THE SIGNED EXPONENT
PART OF GPXRA OR MD. RIGHT SHIFT CAUSES SIGN-EXTENSION
BEGIN
IF MD<7:0> EQL 0 => LEAVE ARS NEXT
DECODE MD<7>eMD<0>==
BEGIN
0:= LOOPS(),
1:= (MD-MD-1 NEXT
GPXRB<31:1> NEXT
IF MD<7:0> NEQ 0 => LOOPS(),
2:= LOOP11(),
3:= (MD-MD+1 NEXT
IF GPXRB EQL 0 => LEAVE ARS NEXT
DECODE GPXRB<31:29>==
BEGIN
[0,1,6,7]:= GPXRB<GPXRB SL0 1,
OTHERWISE:=(OVFF-1 NEXT
GPXRB<GPXRB SL0 1)
END NEXT
IF MD<7:0> NEQ 0 => LOOP11() END
END,
LOOP100:= BEGIN
REPEAT
BEGIN
MD-MD+2 NEXT
DECODE GPXRB<29:27>==
BEGIN
[0,7]:=(GPXRB<GPXRB<29:0>EX<31:30> NEXT
EX-EX SL0 2),
OTHERWISE:=(OVFF-1 NEXT
GPXRB<GPXRB<29:0>EX<31:30> NEXT
EX-EX SL0 2)
END NEXT
IF MD<7:0> EQL 0 => LEAVE LOOP100
END
END,
LOOP110:= BEGIN
MD-MD+2 NEXT
DECODE GPXRB<31:29>==
BEGIN
[0,7]:=(GPXRB<GPXRB<29:0>EX<31:30> NEXT
EX-EX SL0 2),
OTHERWISE:=(OVFF-1 NEXT
GPXRB<GPXRB<29:0>EX<31:30> NEXT
EX-EX SL0 2)
END NEXT
IF MD<7:0> NEQ 0=>LOOP100() END.

LOOP90:=
BEGIN
REPEAT
BEGIN
MD=MD-2 NEXT
GPXRB=GPXRB<31:2> NEXT
EX=GPXRB<1:0>=EX<31:2> NEXT
IF MD<7:0> EQL 0=>LEAVE LOOP90 END
END.

ARL:=!SHIFTS GPXRB@EX THE NUMBER AND DIRECTION OF THE SIGNED EXPONENT
!PART OF GPXRA OR MD.
BEGIN
EX=EX SLO 1 NEXT
IF MD<7:0> EQL 0=> (EX=EX<31:1> NEXT LEAVE ARL) NEXT
DECODE MD<7>=MD<8>=>
BEGIN
0:= LOOP90(),
1:= (MD=MD-1 NEXT
 EX=GPXRB<0>=>GPXRB<31:1> NEXT
 GPXRB=GPXRB<31:1> NEXT
 IF MD<7:0> NEQ 0=>LOOP90()),
2:= LOOP110(),
3:= (MD=MD+1 NEXT
 IF GPXRB EQL 0=>(GPXRB=GPXRB<30:0>=EX<31> NEXT
 EX=EX SLO 1 NEXT
 (IF MD NEQ 0=>LOOP110()) NEXT
 LEAVE ARL) NEXT
 LEAVE ARL) NEXT

DECODE GPXRB<31:29>=>
BEGIN
[0,1,6,7]:=(GPXRB=GPXRB<30:0>=EX<31> NEXT
 EX=EX SLO 1),
OTHERWISE:=(OVFF=1 NEXT
 GPXRB=GPXRB<30:0>=EX<31> NEXT
 EX=EX SLO 1)
END NEXT
IF MD<7:0> NEQ 0=>LOOP110() END.

END.

LOOP12:=
BEGIN
REPEAT
BEGIN
MD=MD-2 NEXT
GPXRB=GPXRB SRR 2 NEXT
IF MD<7:0> EQL 0=> LEAVE LOOP12
END.
END.

LOOP13:=
BEGIN
REPEAT
BEGIN
MD=MD+2 NEXT
GPXRB=GPXRB SLR 2 NEXT
IF MD<7:0> EQL 0=> LEAVE LOOP13
END
END.

RRS:=
!ROTATES GPXRB NUMBER OF PLACES AND DIRECTIONS GIVEN
!BY THE EXPONENT PART OF GPXRA OR MD.
BEGIN
IF MD<7:0> EQL 0=> LEAVE RRS NEXT
DECODE MD<7>:MD<8>:>
BEGIN
0:= LOOP12(),
1:= (MD=MD-1 NEXT
GPXRB=GPXRB SRR 1 NEXT
IF MD<7:0> NEQ 0=>LOOP12()),
2:= LOOP13(),
3:= (MD=MD+1 NEXT
GPXRB=GPXRB SLR 1 NEXT
IF MD<7:0> NEQ 0=>LOOP13())
END.
END.

LOOP14:=
BEGIN
REPEAT
BEGIN
MD=MD-2 NEXT
SUM=GPXRB NEXT
GPXRB=EX<1:0>:GPXRB<31:2> NEXT
EX=SUM<1:0>:EX<31:2> NEXT
IF MD<7:0> EQL 0=> LEAVE LOOP14
END
END.

LOOP15:=
BEGIN
REPEAT
BEGIN
MD=MD+2 NEXT
SUM=GPXR8 NEXT
GPXR8=GPXR8<29:0><EX<31:30> NEXT
EX=EX<29:0><SUM<31:30> NEXT
IF MD<7:0> EQL 0=>LEAVE LOOP15
END

END.

RRL:=
!ROTATES GPXR8<EX THE NUMBER OF PLACES AND DIRECTION OF THE SIGNED !EXponent PART OF GPXR8 OR MD.
BEGIN
IF MD<7:0> EQL 0=> LEAVE RRL NEXT
DECODE MD<7><MD<0 =>
BEGIN
0:= LOOP14(),
1:=(MD<MD-1 NEXT
SUM=GPXR8 NEXT
GPXR8<EX<0><GPXR8<31:1> NEXT
EX<SUM<0><EX<31:1> NEXT
IF MD<7:0> NEQ 0=>LOOP14()),
2:= LOOP15(),
3:=(MD<MD+1 NEXT
SUM=GPXR8 NEXT
GPXR8=GPXR8<30:0><EX<31> NEXT
EX<EX<30:0><SUM<31> NEXT
IF MD<7:0> NEQ 0=>LOOP15())
END

END.

LOOP16:=
BEGIN
REPEAT
BEGIN
MD=MD-2 NEXT
GPXR8=GPXR8 SR< 2 NEXT
IF MD<7:0> EQL 0=>LEAVE LOOP16
END

END.

LOOP17:=
BEGIN
REPEAT
BEGIN
MD=MD+2 NEXT
GPXR8=GPXR8 SL< 2 NEXT
IF MD<7:0> EQL 0=>LEAVE LOOP17
END

END.

140
LRS: IZEROS ARE SHIFTED IN.
BEGIN
IF NOT AMODE=MD-GPXRA NEXT
IF MD<7:0> EQL 0=>LEAVE LRS NEXT
DECODE MD<7>MD<8>=>
BEGIN
0: LOOP18(),
1: (MD-MD-1 NEXT
 GPXRB-GPXRB SR0 1 NEXT
 IF MD<7:0> NEQ 0=>LOOP18(),
2: LOOP17(),
3: (MD-MD+1 NEXT
 GPXRB-GPXRB SL0 1 NEXT
 IF MD<7:0> NEQ 0=>LOOP18())
END
END.

LOOP18:=
BEGIN
REPEAT
BEGIN
MD-MD-2 NEXT
EX-GPXRB<1:0>EX<31:2> NEXT
GPXRB-GPXRB SR0 2 NEXT
IF MD<7:0> EQL 0=> LEAVE LOOP18
END
END.

LOOP19:=
BEGIN
REPEAT
BEGIN
MD-MD+2 NEXT
GPXRB-GPXRB<29:0>EX<31:30> NEXT
EX-EX SL0 2 NEXT
IF MD<7:0> EQL 0=> LEAVE LOOP19
END
END.

LRL:= IZEROS ARE SHIFTED IN.
BEGIN
IF MD<7:0> EQL 0=> LEAVE LRL NEXT
DECODE MD<7>MD<8>=>
BEGIN
0: LOOP18(),
1: (MD-MD-1 NEXT
 EX-GPXRB<0>EX<31:1> NEXT
 GPXRB-GPXRB SR0 1 NEXT
 IF MD<7:0> NEQ 0=>LOOP18(),
2: LOOP19(),
3: (MD-MD+1 NEXT

141
GPXRB=GPXRB<30:8>£EX<31> NEXT
EX=EX SL0 1 NEXT
IF MO<7:0> NEQ 0=>LOOP19()
END

DSI:=
BEGIN
DISINT=1
END.

ENI:=
BEGIN
DISINT=0
END.

RFI:=
!return from interrupt
BEGIN
PC=MEM[MA]<15:0> NEXT
EXMODE=MEM[MA]<24> NEXT
DISINT=MEM[MA]<23> NEXT
DIVFF=MEM[MA]<22> NEXT
OVFF=MEM[MA]<21> NEXT
ILLOPC=MEM[MA]<20> NEXT
CRYFF=MEM[MA]<19> NEXT
INTPRIOR=MEM[MA]<18:16>
END.

RET:=
!return from subroutine
BEGIN
PC=MEM[MA]<15:0> NEXT
DISINT=MEM[MA]<23> NEXT
DIVFF=MEM[MA]<22> NEXT
OVFF=MEM[MA]<21> NEXT
ILLOPC=MEM[MA]<20> NEXT
CRYFF=MEM[MA]<19>
END.

XEC:=
BEGIN
DECODE AMODE=>
BEGIN
0:= INR-GPXRA,
OTHERWISE:= INR=MEM[MA]
END
NEXT
MA=INR<15:0> NEXT
IF INRPT=>(PC=PC-1 NEXT LEAVE XEC) NEXT
ADDRESS() NEXT
OPERAND() NEXT
OPERATION() NEXT
Operation decode

OPERATION: opcode decode.

BEGIN

DECODE OPCODE ->

BEGIN

!LOAD (FETCH) / STORE

"00":LDR(), ILOAD REGISTER
"01":LDE(), ILOAD EXTENSION REGISTER
! "30":LW0(), ILOAD WORKING REGISTER 0
! "31":LW1(), ILOAD WORKING REGISTER 1
! "32":LW2(), ILOAD WORKING REGISTER 2
! "33":LW3(), ILOAD WORKING REGISTER 3
"02":LDR2(), ILOAD MULTIPLE
"03":LDR3(),
"04":LDR7(),
"05":LDN(), ILOAD NEGATIVE
"06":LDNF(), ILOAD NEGATIVE FLOATING
"07":LDA(), ILOAD ABSOLUTE VALUE
"08":LDAF(), ILOAD ABSOLUTE VALUE FLOATING
"09":LDC(), ILOAD ONE'S COMPLEMENT
"0A":LALO(), ILOAD ACTIVE ONLY
"0B":LMD0(), ILOAD MONITOR ONLY

"40":STR(), ISTORE REGISTER
"41":STE(), ISTORE EXTENSION
! "65":SW0(), ISTORE WORKING REGISTER 0
! "66":SW1(), ISTORE WORKING REGISTER 1
! "67":SW2(), ISTORE WORKING REGISTER 2
! "68":SW3(), ISTORE WORKING REGISTER 3
"42":STD(), ISTORE DOUBLE
"47":STZ(), ISTORE ZERO
"43":SZD(), ISTORE ZERO DOUBLE
"62":STR2(), ISTORE MULTIPLE SINGLE
"63":STR3(),
"44":STD2(), ISTORE DOUBLE MULTIPLE
"45":STD3(),
"46":STD7(),
"49":STH(), ISTORE TO HARD ADDRESS
"48":SPS(), ISTORE PC AND STATUS SINGLE
"44":SPC(), ISTORE PC AND STATUS DOUBLE
! "48":SBA1(), ISTORE BAD ADDRESS PARITY ONES
! "4C":SBA0(), ISTORE BAD ADDRESS PARITY ZEROS
40: SBPD1(), !STORE BAD DATA PARITY ONES
4E: SBPD0(), !STORE BAD DATA PARITY ZEROS

JUMP

50: JMP(), !JUMP
5A: JSBZ(), !JUMP SUBROUTINE
4F: JPZ(), !JUMP IF POSITIVE OR ZERO
51: JMI(), !JUMP IF NEGATIVE
52: JZC(), !JUMP IF ZERO
53: JZEF(), !JUMP IF ZERO FLOATING
54: JNZ(), !JUMP IF NON-ZERO
55: JNZF(), !JUMP IF NON-ZERO FLOATING
56: JPS(), !JUMP IF POSITIVE AND NON-ZERO(?)
57: JPSF(), !JUMP IF POSITIVE AND NON-ZERO FLOATING(?)
58: JNZ(), !JUMP IF NEGATIVE OR ZERO
59: JNZF(), !JUMP IF NEGATIVE OR ZERO FLOATING
5A: JDN(), !DECREMENT RB. JUMP IF NON-ZERO
5C: JOS(), !JUMP IF OVERFLOW SET. RESET OVERFLOW
5D: JCS(), !JUMP IF CARRYOUT SET. RESET CARRYOUT

TEST AND SKIP

29: OISN(), !OR INVERTED AND SKIP IF NOT ONES
2A: OISO(), !OR INVERTED AND SKIP IF ONES
22: ASNZ(), !AND AND SKIP IF NOT ZEROS
23: ASZ(), !AND AND SKIP IF ZEROS
34: CSENE(), !COMPARE AND SKIP IF NOT EQUAL
35: CSEQ(), !COMPARE AND SKIP IF EQUAL

INTEGER ARITHMETIC

19: ADD(), !INTEGER ADD
1A: SUB(), !INTEGER SUBTRACT
1B: MPY(), !INTEGER MULTIPLY
1C: DIVI(), !SHORT DIVIDEND DIVIDE
1D: LDV(), !LONG DIVIDEND DIVIDE
28: ACO(), !ADD CARRYOUT
1E: CFL(), !CONVERT INTEGER TO FLOATING

FLOATING POINT ARITHMETIC

BC: ADDF(), !ADD FLOATING
BD: SUBF(), !SUBTRACT FLOATING
BE: MPYF(), !MULTIPLY FLOATING
BF: DIVF(), !DIVIDE FLOATING
10: SRTF(), !SQUARE ROOT FLOATING
11: VADDF(), !VECTOR ADD FLOATING
12: VSUBF(), !VECTOR SUBTRACT FLOATING
13: VMYPF(), !VECTOR MULTIPLY FLOATING
14: VIPF(), !VECTOR INNER PRODUCT FLOATING
15: VSMF(), !VECTOR-SCALAR MULTIPLY FLOATING
16: CFX(), !CONVERT FLOATING TO INTEGER
"17: =UPF(),
"18: =PKF(),

!UNPACK FLOATING
!PACK FLOATING

!LOGICAL

"1f: =LAND(),
"20: =LXOR(),
"21: =IOR(),
"22: =ANI(),

!LOGICAL AND (Name changed because of conflict with ISPS)
!EXCLUSIVE OR (ditto)
!INCLUSIVE OR
!AND INVERTED

!SHIFT/ROTATE

"23: =ARS(),
"24: =ARL(),
"25: =RRS(),
"26: =RRL(),
"27: =LRS(),
"28: =LRL(),

!ARITHMETIC SHORT SHIFT
!ARITHMETIC LONG SHIFT
!ROTATE SHORT
!ROTATE LONG
!LOGICAL SHORT SHIFT
!LOGICAL LONG SHIFT

!MISCELLANEOUS

"58: =OSI(),
"59: =ENI(),
"60: =RFI(),
"61: =RET(),
"62: =XEC(),

!DISABLE INTERRUPTS
!ENABLE INTERRUPTS
!RETURN FROM INTERRUPT
!RETURN FROM SUBROUTINE
!EXECUTE

END

END

Execution cycle

CYCLE MAIN :=
BEGIN
DELAY(1) NEXT
PC-1 NEXT
REPEAT
BEGIN
INSTRUCTION() NEXT
ADDRESS() NEXT
OPERAND() NEXT
OPERATION() NEXT
GPXR(IRA)-GPXRA NEXT
END
GPXR[RB]~GPXRB NEXT
INRPT-OVFF OR DIVFF
END
IF INRPT=>...
END
)

STOP
MISSION
of
Rome Air Development Center

RADEC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.