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ABSTRACT

Consider a stochastically monotone Markov chain with monotone paths on a

partially ordered countable set S. Let C be an increasing subset of S

with finite complement. Then the first passage time from i c S to C is

shown to be IFRA (increasing failure rate on the average). Several applica-

tions are presented including coherent systems, shock models, and convolu-

tions of IFRA distributions.
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1. Introduction Let S be a countable set with a partial ordering denoted

by <. Consider a discrete time Markov chain {Xn, n > 0) with state space

S, and transition matrix P. Define the Markov chain to have monotone paths

if Pr(Xn+1 > Xn) = 1. Define C c S to be an increasing set if i e C and

j > i implies j e C. Define the Markov chain to be stochastically monotone

if i < j implies P(i, C) j P(j, C) for all increasing sets C.

For a state i and set C define T(iC)to be the first passage time from

i to C, with T(iC)= 0 if i e C, and T(iC)= - if C is never reached. Our

main result (theorem 1) is that for a stochastically monotone tarkov chain

with monotone paths on a partia~ly ordered countable set, T(i ,C) is IFRA for

all states i and all increasing sets C with finite complement. (See section

2 for a definition of iFRA).

Conversely, every discrete IFRA distribution is either a first passage

time distribution of the above described type or the limit of a sequence

of such distributions (corollary 1).

Several applications of theorem 1 are presented in section 5. These

include coherent systems, shock models, convolutions of IFRA distributions,

multinomlal distributions, and sampling. In these applications S is a subset

of pn and the partial ordering is defined by x< y if and only if xt S Y1 , I
t - 1, ... n. The possibility exists for applications to a wider class

of partially ordered sets, for example those studied in combinatorial theory

(Rota [141).

The question arises as to whether the conclusion of theorem 1 can be

strengthened from IFRA to IFR. An example is given to show that even for

a totally ordered set the first passage time need not be IFR. However for

a Narkov chain on the positive integers with TP 2 transition matrix the firct

passage time from 1 tof(: >n}, n - 1, 2, ..... is IFR. This is proved

in section 6.2.
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Examples are given which demonstrate that even for a totally ordered

set the IFRA conclusion does not follow for a stochastically monotone chain

without monotone paths nor for a non-stochastically monotone chain with

monotone paths.

By a uniformization and total positivity argument the result (theorem 1)

extends to continuous time M4arkov chains with countable state space. An

analogue of the theorem 1 undoubtedly holds for continuous state space.

The restriction that the complement of C be finite appears to be a limita-

tion of our methodology rather than an essential condition.

2. Hain result. A random variable Y taking values in {O, 1, ... , -} is

defined to be IFRA if olther Pr(Y = 0) = 1, or Pr(Y = 0) = 0 and [Pr(Y > k)]1/k

is decreasing in k = 1, 2, .... Included as IFRA is the case Pr(Y = °)

1. Note that if Y is IFRA and Pr(Y < -) > 0 then Pr(Y < -) - 1.

Thus if T(i, C) is IFRA then either i e C (in which case T(i, C) 0),/

or starting In i it's impossible to reach C (In which case T(i, C)

or Pr(T(i, C) = 0) = Pr(T(i, C) = -) = 0 and [Pr(T(i, C) > k)]11k is decreasing.

Theorem 1 Let {Xn , n > 0) be a stochastically monotone alarkov chain with

monotone paths on the partially ordered countable set S. Let C be an increasing

set with Z (the complement of C in S) finite. Then T(1, C) the first passage

time from state I to set C, is IFRA.

Proof Define Fk(i, C) - Pr(T(i,C)> k). Our goal is to prove thatrk(l, C))I / k

is decreasing, equivalently that:

(1) Erk(I , C)]
k+1 > Irk+l(l, C))k, k - 1, 2,
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The proof is by induction. ie first show that (1) holds for k = 1.

It is trivially true for i e C. For i 4 C by the monotone path assumption:

(2) T2(i, C) = E P(i, b)P(b, )
b>i ,bZ

By stochastic monotonicity b > i implies P(i, C) > P(b, ), thus from (2):

(3) T 2(i, C) S P(i, Z) E j(i, b) = (Fi(, C))2

b>i ,beC

Assume now that (1) holds for k = 1, ..., x, for all increasing sets with

finite complement. Define Pk to be the k step transition matrix for the

Ilarkov chain. Now:

(4) (FrL1(iC))l+
2  + F +l(i, C)[ zP(i, b)P(b, E) 1+1

By stochastic monotonicity P(b, C) is decreasing in b. We can there-

fore label the finitely many points in F by b1 , ..., bm in such a way that

P(b1 , C) _ P(b2, C) ... '_P(bm, C) and for i < j, bi I  b (b1 Is not smaller

than bj under the partial ordering). It follows that the sets O C, and

j - C - {bl, ... b) j = 1, ... m - 1, are finite sets which are complements

of increasing sets. The induction hypothesis is thus applicable to these

sets. Define a1 = P(bl, C) and aj = P(bj, C) - P(bj. 1 , C), j u 2, .... m, and

note that the b's have been labeled so that:

(5) j_ 0, j. - ... m

Next:
M r m

(6) rAl(i, C) =r-l j Pi(i bd i aj " j mPj(i'Oji' )

By the induction hypothesis:

(7) PI(t, 0j. 1) I [PI+I(i, Uj.1) + * = 1. ... m
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Note that in (7) if i 4 Dj. 1 , then both sides equal zero, and (7) is valid.

By (4), (5), (6) and (7):
1-L m

(8) [F+l(i, C)11+2 > [(F'+ 1(i, C))' + I I aj(P1+10(i 1)

But, Z , Dj_I| by this fact and the monotone path assumption:

(9) F,,1(i, C) = P 1+1(i, t) > Pj+I(i, OD. 1), J = 1, ... m.

The result now follows from (6) (applied to t + 1), (8) and (9) . 0

3. Continuous time Consider a stochastically monotone Harkov chain with

monotone paths and countable state space. Suppose that changes of state

occur according to a Piisson process with rate X. Define T*(i, C) to be

the first passage time (in continuous time) from state i to C, an increasing

set with finite complement. fIow:

Pr(T*(i, C) > t) = ! . Pr(T(i, C) > k)

k= 1

By theorem 1 and theorem 3.6, page 93 of Barlow and Proschan [l, T*(i, C)

is IFRA.

iHext, consider a continuous time flarkov chain with Infinitesimal matrix

A taking values in a partially ordered countable set. Assume that the Markov

chain has monotone paths, equivalently that A(i, J) 0 0 implies i ( j.

Assume that the process is uniformizable, i. e. that sup(-.(1,i))< a.

By Feller [8] p. 312, the rarkov process is representable as a Markov

chain with transition matrix P - I + A for which transitions occur according

to a Poisson process of rate X. The Markov chain with transition matrix P

inherits monotone pat:,s. In view of monotone ptis, the rlarkov chain is

stochastically monotone if and only if A(i, C) E E A(i, x) S A(J, C) for
taC
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all increasing sets C with finite complement and i < j with both i and j

in C. It follows from theorem 1 and the remarks at the beginning of this

section that the first passage time to C for the continuous time process

is IFRA. To summarize:

Corollary 1 (i) Consider a Harkov chain of the type described in theorem 1.

Suppose that transitions occur according toa Puisson process. Then the

first passage time in continuous time from i 4 C to C, an increasing set

with finite complement, is IFRA.

(ii) Consider a Harkov chain in continuous time with countable partially

ordered state space and infinitesimal matrix A. Assume that:

(i) sup(-A(i,i))< -

(ii) A(i, j) 0 0 implies i < j

(iii) A(i, C) < A(j, C) for all increasing
sets C with finite complement, and pairs
of states (i, j) with i < j and i, j both in C.

Then the first passage time from i j C to C, an increasing set with

finite complement, is IFRA.

4. Converse tie will reinterpret a result of Blrnbaum, Esary, and arshall £2)

(described in Barlow and Proschan [1], lemma 2.13, page 88) in terms of

harkov chains. The analogue of %heir result In the discrete case provides

a converse to theorem 1.

The result is that every IFRA distribution in continuous time is either

the system life for a coherent system of independent exponential components,

or is the limit distribution of a sequence of such system lives. But a

coherent system of n independent exponential components is a continuous

ti,. narkov process on the set of the 2n n-tuples of O's and l's with partial
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ordering x( y if and only if xi < YiI i = 1, ... n. iloreover the process

is stochastically monotone with monotone paths, and the system lifetime

is the first passage time to an increasing set. Thus every IFRA distribution

in continuous time is either a first passage time distribution of the above

described type or the limit of a sequence of such first passage time distri-

butions.

Replacing continuous time by discrete time and exponential distributions

by geometric distributions, we can imitate their proof and obtain the following

result.

Lemma 1 Every IFRA distribution in discrete time is either the first passage

time distribution to an increasing set for a stochastically monotone Markov

chain with monotone paths on a partially ordered finite set, or else is

the limit of a sequence of such distributions.

5. Applications

(5.1) Coherent Systems Consider a coherent system of n independent components

(Barlow and Proschan El], chapter 1, section 2). Assume that the survival function

for component i is given by (F(t)) i, i z 1, ... , n where F is continuous.

This is known as the proportional hazard assumption. Each component starts

off in state 0, remains in 0 until failure, at which time it switches to

state 1 and stays there forever. The system fails as soon as the state

vector visits B, an increasing set. In this case S is the set of 2n n-tuples

of O's and l's with partial order x< y <-> xI <Y1, I = 1, ... n.

Consider the embedded discrete time process, starting in state (0, ... , 0),

and changing state each time a component fails. Under the proportional

hazard assumption this process is a I-iarkov chain. If the set of working a!
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components at a given instant is A, then given that a change of state occurs,

the probability that component i c A failed is given by X i/Exj * The Markov

chain is easily seen to be stochastically monotone with monotone paths.

Therefore by theorem 1 the number of component failures until system failure

is IFRA. This generalizes a result of Ross, Shashahani, and Weiss [13],

who proved the IFRA property in the case of i.i.d. components with continuous

distribution (Xi = A).

By corollary 1, if the component lifetimes are exponential then the

time to first failure for the continuous time process is IFRA. This is

a special case of the IFRA closure theorem (Barlow and Proschan [1] p. 85).

5.2 Shock models Assume that Y1 . Y2 1 ... are i.i.d. random vectors.

The set S consists of vectors of the form (X ..1 1 k*k) where w = (wI, ... wk)

is a fixed vector of positive numbers and the i's are non-negative integer

n
valued. Define S n = XYi' n = 1, 2, .... Then Sn n _ 11 is a stochasti-

cally monotone Markov chain with monotone paths, and theorem 1 is applicable.
k

Let g be a function, R+ R+ = [0, .), which is increasing in each argument

and which goes to - as xI + - with (xI ... x I , xi+ 1, ... xk ) held fixed,

for i = 1, ... k. Then the first n such that g(Sn) exceeds a given constant

y is IFRA. This is true because the set {x: g(x) > yl is an increasing

set with finite complement.

Interpreting Yi as the joint damage to k components due to the ith

shock, g as the rule for converting component damage into system damage,

and y as the damage threshold beyond which the system fails, it follows

that the number of shocks required for system failure is IFRA.

riore generally the damage caused by a shock may depend on the previously

accumulated damage. As long as damage is non-negative and the Markov chain

remains stochastically monotone, the IFRA conclusion will hold.
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If shocks occur in time according to a Poisson process then by lemma 1

the waiting time (in continuous time) until system failure is IFRA.

Finally if the damages are not of arithmetic type, i.e. concentrated

on a set S as described above, but are still componentwise non-negative,

then by passage to the limit through approximating vectors of arithmetic

type it follows that the time to system failure is IFRA. This is true for

the discrete time process and for the continuous time process when shocks

occur according to a Poisson process.

Thus the classic shock model results of Esary, Iflarshall, and Proschan

[7] are derivable from theorem 1 and corollary 1, as well as the IFRA char-

acter of the number of shocks until system failure. [ioreover the current

results are more general in that they allow for vector valued component

damages and general system damage function g.

5.3 ioultinomial distributions Consider i.i.d. observations from a multi-

nomial distribution. Define Sn = (Sn1 ... SnK) where S.i is the number

of times category i appears in the first n observations. Then {Sn' n > n

is a rarkov chain of the type considered in example (5.1), i.e. the partial

sums of i.i.d. random vectors with arithmetic distribution.

The following random variables are thus IFRA:

The number of observations required until each category appears at least

once; until at least r categories each appear at least m times; until g(S )

exceeds y where g is described in section (5.2).

(5.4) Sampling with or without replacement Sampling with replacement

is covered by (5.2) above. For sampling without replacement suppose that

an urn contains mi balls of color i, i - 1, ... k. Then the following random

I'
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variables are IFRA. The number of balls sampled until all balls of at least

one color are depleted; until at least one ball of each color is sampled;

until at least ri balls of type i, i = 1, ... k are sampled; until at least

x of the events A1 ... Ak occur, where Ai = {at least ri balls of type i

are sampled). The last case includes the first three.

(5.5) Convolutions Consider two 1,11arkov chains of the type described in theorem 1,

with finite state spaces S1 and S21 and transition matrices Q, and Q2. Let

C1 be an increasing set in S 1" efine a new Viarkov chain on SI x S2, with

product partial ordering, by

(10) M( i, j), ( i )) =
Q1 i i')Q 2 (j, j'), i C1

It follows that the i-larkov chain is stochastically monotone with monotone

paths and finite state space. Theorem 1 is thus applicable.

Consider the set C1 x C2 where C2 is an increasing set in S2. Since

both S1 and S2 are finite so is C1 x C2 . Starting in state (i, j) with

i E V 1 i c 21 the first passage time from (i, j) to C1 x C2 is the sum

of T(i, C1 ) and T(j, C2 ) where the two are independent. Therefore the convo-

lution of two IFRA distributions, each of which is a first passage time

distribution to an increasing set in a stochastically monotone farkov chain

with monotone paths on a finite state space, is IFRA. But by lemma 1 every

IFFA distribution is either of this form or the limit of a sequence of IFRA

distributions of this form. It follows that the class of discrete IFRA

distributions is closed under convolutions.

The closure of IFRA distributions under convolutions in the continuous

case was proved by Block and Savtts [3]. In [4] Block and Savits prove

that closure in the continuous case follows from closure In the discrete case.
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6. Comments and Additions.

(6.1) The following example shows that under the conditions of theorem

1 the conclusion cannot be strengthened from IFRA to IFR even when the state

space is totally ordered. Let {Yi, i > D1 be i.i.d. t;ith Pr(Y = 9) = Pr(Y = 2)

n
Define Sn = JYi, n > 1; Sn is a markov process on the integers. It is sto-

1

chastically monotone and has monotone paths. Consider, T, the first passage

time to (10, 11, 12. ....). d}ow Pr(T = 21T > 2) = 3while Pr(T = 31T > 3) =

therefore the failure rate at 3 is less than the -ailure rate at 2 and

the distribution is not IFR.

(6.2) Consider a Miarkov chain on [1, 2, ... ]. Assume that the transi-

tion matrix is TP2, i.e. that P(i, j)P(i', j') > P(i, j')P(i', j) for all

i < i', j < j'. Lemma 2 below shows that the first passage time from state

1 to Cn = {i: i > n) is IFR (increasing failure rate) for n = 1, 2, ...

A random variable T is defined to be IFR if A., = Pr(T = k)/Pr(T > k) is

increasing.

Lemma 2 In a ilarkov chain with state space (1, 2, ....}, and TP2 transition

matrix P, the first passage time T(1, Cn ), from state 1 to Cn = {i: i > n)

is IFR for n = 1, 2,

Proof Define Pk( 1, i) = Pr(T(1, Cn) > k, Xk = iIX0 = 1), 1 1 1, ... n.

Then Xk, the failure rate for T(1, Cn) at k is given by:

n
JPkI(1,i)P(iCn)

(11) Ak = 1 , k = 1, 2,

IPk-l(lhl)

How, from (11):

Z {PI ,n)'( ,n) ][kl(lJ)Pk(l"l)'Pk-l(l"i)Pk(l ,i)]

1<j<(i<n
12) xk+1 - X,.)= " Pk+1(1, tn)Pk (l, Zn)
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It follows from theorem 2.2 of Karlin [10] that:

(13) P k-1(1, j)Pk(1, i) - Pk.1(l, i)Pk(l, j) i_ 0

And by stochastic monotonicity (which is implied by TP2):

(14) P(i, Cn) > P(jCn) for i > j

Thus from (12), (13) and (14), xK is increasing and T(1, Cn ) is thus IFR. l

The above proof also shows that in a TP2 rarkov chain if for some i0

P(i, j) = 0 for all i > i%, j < i, then T(io, Cn) is IFR for n > iOs In

particular if the Hlarkov chain has monotone paths then the above holds for all i0.

It follows from lemma 2 that for a ±1 random walk with reflecting bar-

rier at 0, starting at 0, that the number of trials required to reach m

for the first time is IFR. Using the argument of corollary 1 which extends

the discrete time result to continuous time, it follows that for a birth

and death process the time required to go from 0 to the first visit to m

is IFR for all mi. This result was obtained using differents methods by

Keilson [11], and Oerman, Ross and Schechner [6].

(6.3) If the Iiarkov chain is stochastically monotone but without monotone

paths then the IFRA conclsion need not hold. For example in the following

chain the first passage time from state 2 to state 3 is DFRA (decreasing

failure rate on the average).

0

P 0

0 0 I

One might attribute the above example to the fact that starting in

state 2 it's possible to go to state I which has smaller failure rate than
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state 2 (i.e. P(1, 3) < P(2, 3)). This might be eliminated if we required

the chain to start in its smallest state. In the following example however

the first passage time from state I to state 3 is not IFRA.

1,18 .09 .73\

P =.17 0 .83;

0 0 1
k

In this example the average failure rate y= Pr(T = jIT > j) equals

.755763 for k = 18, and .755696 for k = 19. Since Yk is not increasing

it follows from (12], lemma 1, that T is not IFRA. It is true however that

T is IU (see section 6.5).

(6.4) In the follovwinq example the fiarkov chain has monotone paths but

is not stochastically monotone. The first passage time from state 1 to

state 3 is DFRA. I I

/0 1
S 3 1

P 0

0 0 1/

(6.5) For a stochastically monotone rMarkov chain on the real numbers,

T(x, C) is stochastically decreasing in x for all increasing sets C. This

is true because by Le.kicnn [12] p. 73, for x < y, we can construct a bivariate

version of the hiarkov chain, {(X ), n > 0) with X = x, Y0 = y, and
Yn0

Xn< Yn for all n; in this construction {Xn , n > 0)({Yn, n > 0)) is distri-

buted as the given larkov chain starting in x(y).

It immediately follows that if the state space is a subset of [a, )

which includes a then T(a, C) is MlBU for all increasing sets C. A random
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variable on (0, 1, 2, ..... I is defined to be 1BU if Pr(T > r + s) <

Pr(T > r)i1r(T > s), for r, s = 1, 2, .... The HBU property is weaker

than IFRA.

Define a partially ordered set S to be of type L if P1 (C) < P2 (C) for

xall increasing sets C implies that there exist random elements (y) with

X - Y P2 and Pr(X < Y) = 1. By Le:, ann f12] p. 73, the real line with

the usual stochastic ordering is of type L. Kamae, Krengel, and O'Brien

[9] show that a Polish space endowed with a closed partial ordering is of

type L.

It follows that for a stochastically monotone 14arkov chain on a type

L partially ordered set S that T(x, C) is stochastically decreasing in x

for all increasing sets C. ioreover, if a < x for all x i S, then T(a, C)

is IBU.

(6.6) The definition of IFRA for discrete distributions followed here

(section 2) is the same as in Barlow-Proschan [1], p. 94, and Block and

Savits [4]. Ross, Shashahani and Weiss [13] use the term SSLSF (star-shaped

log survival function) for what we call IFRA, and reserve the term IFRA
k

for the weaker property, X Pr(T = i IT > i) increasing.
i=1

Im
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