=A088 111  FLORIDA STATE UNIV TALI.AHASSEE DEPT OF STATISTICS e 12/1
| ON THE FIRST PASSAGE TIME DISTRIBUTION FOR A CLISS OF HMKOV CN-EYC(U)

JUL 80 M BROWNe C N RAO 96!0-79-(:-0!5
UNCLASSIFIED FSU-STA?!STXCHSS& AFOSR=TR=80-0381
END

aare
fiueo




. ' c-‘!

=i
= / . On the First Passage Time Distribution /

S For a Class of Markov Chains, ___ /
oD R et [

' Y

ch ()0 ) Harkforom @ . wfrwo [
<t e FROSSTRISTI YT
<

Statistics Report W552
AFOSR /Technical Reg@#t |No. 79-85
i/, q ~ vy

1

g2

. ',",\" PN
P 2217
-1 Jul N80, P

‘ oty
Departinent of Statistics T
The Florida State University

AMS 1980 subject classifications. Primary 60J10; Secondary 60K10.

Key words and phrases: Markov chains, first passage times, reliability,
coherent systems, shock models, multinomial disti-
butions, stochastic monotonicity, partially ordered
sets, total positivity, IFRA, IFR, tBU.

Research

entific Research Grant
Nos. V' F4962D-79~-C-0157 ead” AFOSR 78-3678
7 -

/ I//,

//’( ,/ 2\’ / ’// .
Approved for pudblie release
\3 ib\ltion\mlimlted.
8 O g 1 4: ’ ) 9 4 distr

2om




UNCLASSILL i)

SECURITY CLASSIFICATION OF THIS PAGE (When Dala‘Enlpnd)‘

REPORT DOCUMENTATION PAGE | READ INSTRUCTIOZS

BEFORE COMPLETING FORM

t. ﬁ‘a‘sﬁhﬂ‘efﬂR. 8 O _ 0 5 8 2. GD\Z??SS/IO,NINO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ON THE FIRST PASSAGE TIME DISTIRIBUTION FOR A Interim

CI'ASS OF MARKOV C}IAINS ( 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mark Brown

C. N. Rao F49620-79-C-0157

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT,. PROJECT, TASK
AREA & WORK UNIT NUMBERS

rlorida State University

Department of Statistics "

Tallahassee, FL 32306 61102F 2304/A5

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM July, 1980

Bolling AFB, Washington, DC 20332 13. NUMBER OF PAGES

14

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Olffice) 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entersd in Block 20, {f dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Markov chains, first passage times, reliability, coherent systems, shock models,
multinomial distributions, stochastic nomotonicity, partially ordered sets,
total positivity, IFRA, IFR, NBU

%‘ ABSTRACT (Continue on reverse side if necessary and identify by block number)

ly ordered countable set S. Let C be an increasing subset of S with finite com-
plement. Then the first passage time from S to C is shown to be IFRA (in-
creasing failure rate on the average). Severhl applications are presented in-
cluding coherent systems, shockmodels, and c¢nvolutions of IFRA distributions.

!

dn Clewed o £

Consider a stochastically monotone Markov chain with monotone paths on a partialj

DD , 52:'1,3 1473 EoiTION OF 1 NOV 85 1S OBSOLETE

UNCLASSIFIED

SECUMTY O ASUOIFICATION OF THIS PAGE Whan Data Entered

ety e W e e gee ey T




ABSTRACT

Consider a stochastically monotone tarkov chain with monotone paths on a
partially ordered countable set S. Let C be an increasing subset of S

with finite complement. Then the first passage time from i ¢ S to C is
shown to be IFRA (increasing failure rate on the average). Several applica-

tions are presented including coherent systems, shock models, and convolu-
tions of IFRA distributions.
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1. Introduction Let S be a countable set with a partial ordering denoted
by <. Consider a discrete time Markov chain {X , n > O} with state space
S, and transition matrix P. Define the Markov chain to have monotone paths

if Pr(X > xn) = 1. pefine C ¢ S to be an increasing set if i ¢ C and

n+l =
J 2> 1 implies j € C. Define the Markov chain to be stochastically monotone
if i < j implies P(i, C) < P(j, C) for all increasing sets C.

For a state i and set C define T(i,C)to be the first passage time from
i to C, withT(i,C)=0 if i € C, and T(i,C)= = if C is never reached. Qur
main result (theorem 1) is that for a stochastically monotone Markov chain
with monotone paths on a partia'lyordered countable set, T(i,C)is IFRA for
all states i and all increasing sets C with finite complement. (See section
2 for a definition of iFRA).

Conversely, every discrete IFRA distribution is either a first passage
time distribution of the above described type or the limit of a sequence
of such distributions (corollary 1).

Several applications of theorem 1 are presented in section 5. These
include coherent systems, shock models, convolutions of IFRA distributions,
multinomial distributions, and sampling. In these applications S is a subset
of R" and the partial ordering is defined by x < y if and only if x; < y,,
1i=1, ... n. The possibility exists for applications to a wider class
of partially ordered sets, for example those studied in combinatorial theory
(Rota [14]).

The question arises as to whether the conclusion of theorem 1 can be
strengthened from IFRA to IFR. An example is given to show that even for
a totally ordered set the first passage time need not be IFR. However for
a Markov chain on the positive integers with TP2 transition matrix the firct
passage time from 1 to(i: i>n},n=1, 2, ..... is IFR. This {is proved

in sectfon 6.2.
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Examples are given which demonstrate that even for a totally ordered
set the IFRA conclusion does not follow for a stochastically monotone chain
without monotone paths nor for a non-stochastically monotone chain with
monotone paths.

By a uniformization and total positivity argument the result (theorem 1)
extends to continuous time Markov chains with countable state space. An
analogue of the theorem 1 undoubtedly holds for continuous state space.

The restriction that the complement of C be finite appears to be a limita-

tion of our methodology rather than an essential condition.

2. Hain result. A random variable Y taking values in {0, 1, ..., =} is
defined to be IFRA if either Pr(Y = 0) = 1, or Pr(Y = 0) = 0 and [Pr(Y > k)31/K
is decreasing in k =1, 2, ... . Included as IFRA is the case Pr(Y = =) =
1. Wote that if Y is IFRA and Pr(Y < «) > 0 then Pr(Y < =) = 1,

Thus if T(i, C) is IFRA then eitber i € C (in which case T(i, C) = 0),
or starting in i it's impossible to reach C (in which case T(i, C) = »),

or Pr(T(i, C) = 0) = Pr(T(i, C) = ») = 0 and [Pr(T(i, C) > k)1’ is decreasing.

Theorem 1 Lét {Xn. n > 0} be a stochastically monotone Markov chain with
monotone paths on the partially ordered countable set S. Let C be an increasing
set with T (the complement of C in S) finite. Then T(i, C) the first passage
time from state i to set C, s IFRA.

Proof Define Fk(i, C) = Pr(7(i,C)> k). Our goal is to prove that[Fk(i. C)]l/k
is decreasing, equivalently that:

(1) o, O 2 R0, 0 k=1, 2, ..




The proof is by induction. We first show that (1) holds for k = 1.
It is trivially true for i € C. For i ¢ C by the monotone path assumption:
(2) Fpli, € = & P(i, b)P(b, C)
b>i,beC
By stochastic monotonicity b > i implies P(i, E) > P(b, €), thus from (2):

3 (i, i, € i, b) = (F,(i, ¢))?
(3) o1, €) < P( C)b”fbeeP(l b) = (F,(1, C))

Assume now that (1) holds for k = 1, ..., 2, for all increasing sets with
finite complement. Define Pk to be the k step transition matrix for the

ilarkov chain. How:
(4) (Fp (,ONM2 = F, (4, I SARDLC Bl

By stochastic monotonicity P(b, E) is decreasing in b. We can there-
fore label the finitely many points in c by bl‘ . bm in such a way that
P(bys €) < P(bys €) «uu < PUbys C) and for i < 3, by § bylby 15 not smaller
than bj under the partial ordering). It follows that the sets Db = C, and
Dj =C - {bl. coe bj}, j=1, ...m=-1, are finite sets which are complements
of increasing sets. The induction hypothesis is thus applicable to these
sets. Define a) = P(b), C) and a; = P(by, C) - Pby 1, Oy § =2, oo m, and
note that the b's have been labeled so that:

(5) 0520, j=1, .c.m
Next:

m r m
(6) r‘+1(19 c) = rglpt(isbr) jzlaj = leaipl(i'oj'l)

By the induction hypothesis:

%
(7 Pylts Dg_y) 2 Pyt 0y )T, 5 = 1, Loum




Note that in (7) if i ¢ Dj-l' then both sides equal zero, and (7} is valid.

By (4), (5), (6) and (7):
L

Ly 2
ORHCPL IR e

(8) [Fypuylis O 2 [(F,, (i, NP

But, T > Dj-l‘ by this fact and the monotone path assumption:
(9) rz.'.l(i! C) = Pz...l(i’ E) .>_ Pz+1(19 Dj_l)t j = 1! e M.

The result now follows from (6) (applied to & + 1), (8) and (9). D

3. Continuous time Consider a stochastically monotone Markov chain with

monotone paths and countable state space. Suppose that changes of state
occur according to a Prisson process with rate A. Define T*(i, C) to be
the first passage time (in continuous time) from state i to C, an increasing

set with finite complement. ilow:

® k_ -At
PRI, ©) > ) = ] Qthe  pr(r(i, €) > k)

By theorem 1 and theorem 3.6, page 93 of Barlow and Proschan [1], T*(i,
is IFRA.

ilext, consider a continuous time Markov chain with infinitesimal matrix
A taking values in a partially ordered countable set. Assume that the Markov
chain has monotone paths, equivalently that A(i, j) # O implies i S_j.

Assume that the process is uniformizable, 1. e. that sup(-7i,i))< =,

By Feller [8] p. 312, the Markov process is representable as a {farkov
chain with transition matrix P = | +~A for which transitions occur according
to a Poisson process of rate A. The Markov chain with transition matrix P
inherits monotone pat.s. In view of monotone p.tiis, the Markov chain is

stochastically monotone if and only if A(i, C) = :CA(i, L) € A(j, C) for
Re
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all increasing sets C with finite complement and i < j with both i and j
in T. It follows from theorem 1 and the remarks at the beginning of this
section that the first passage time to C for the continuous time process
is IFRA. To summarize:
Corollary 1 (i) Consider a iiarkov chain of the type described in theorem 1.
Suppose that transitions occur according toa Puisson process. Then the
first passage time in continuous time from i ¢ C to C, an increasing set
with finite complement, is IFRA.

(i1) Consider a rlarkov chain in continuous time with countable partially

ordered state space and infinitesimal matrix A. Assume that:

(i)  sup(-A(i,i))< =
(ii) A(i, j) # 0 implies i < j
(iii) A(i, C) < A(3, C) for all increasing
sets C with finite complement, and pairs -
of states (i, j) with i < j and i, j both in C.
Then the first passage time from i ¢ C to C, an increasing set with

finite complement, is IFRA.

4. Converse lle will reinterpret a result of Birnbaum, Esary, and Marshall [2]

(described in Barlow and Proschan (1], lemma 2.13, page 88) in terms of

ilarkov thains. The analogue of cheir result in the discrete case provides ;_

a converse to theorem 1. i
The result is that every IFRA distribution in continuous time is either

the system 1ife for a coherent system of independent exponential components, i

or is the 1imit distribution of a sequence of such system lives. But a

coherent system of n independent exponential components is a continuous

tize Harkov process on the set of the 2" n-tuples of 0's and 1's with partial

- - adnes -+ oot <. Wdueast e Ao 'TL’—”’Y-M




ordering x < y if and only if X; £ ¥yp 1 =1, ... n. iloreover the process

is stochastically monotone with monotone paths, and the system lifetime

is the first passage time to an increasing set. Thus every IFRA distribution
in continuous time is either a first passage time distribution of the above

described type or the limit of a sequence of such first passage time distri-

butions.

Replacing continuous time by discrete time and exponential distributions
by geometric distributions, we can imitate their proof and obtain the following
result.

Lemma 1 Every IFRA distribution in discrete time is either the first passage

time distribution to an increasing set for a stochastically monotone Markov

chain with monotone pachs on a partially ordered finite set, or else is

the limit of a sequence of such distributions.

5. Applications
(5.1) Coherent Systems Consider a coherent system of n independent components

(Barlow and Proschan [1], chapter 1, section 2). Assume that the survival function

for component i is given by (F(t))xi, i=1, ..., nwhere F is continuous.

This is known as the proportional hazard assumption. Each component starts

off in state 0, remains in O until failure, at which time it switches to

state 1 and stays there forever. The system fails as soon as the state

vector visits B, an increasing set. In this case S is the set of 2" n-tuples

of 0's and 1's with partial order x < y <= x; < y;, 1 =1, «con, {
Consider the embedded discrete time process, starting in state (0, ..., 0),
and changing state each time a component fails. Under the proportional i

hazard assumption this process is a Harkov chain., If the set of working
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components at a given instant is A, then given that a change of state occurs,

the probability that component i ¢ A failed is given by Ai/zxj. The Markov
A

chain is easily seen to be stochastically monotone with monotone paths.
Therefore by theorem 1 the number of component failures until system failure
is IFRA. This generalizes a result of Ross, Shashahani, and \Weiss [13],
who proved the IFRA property in the case of i.i.d. components with continuous
distribution (Ai = A).

By corollary 1, if the component lifetimes are exponential then the
time to first failure for the continuous time process is IFRA. This is

a special case of the IFRA closure theorem (Barlow and Proschan [1] p. 85).

5.2 Shock models Assume that Yl' YZ‘ .e. are i.i.d. random vectors.
The set S consists of vectors of the form (xlw1 ces A”"k) where w = (wl, . “k)

is a fixed vector of positive numbers and the 2's are non-negative integer

n 2 1} is a stochasti-

n
valued. Define Sp = {Yi, n=1,2, ... . Then {S,,
1

cally monotone Markov chain with monotone paths, and theorem 1 is applicable.
Let ¢ be a function, RE > R, = [0, «»), which is increasing in each argument

and which goes to = as Xy * = with (xl oo Xy Xjgps e xk) held fixed,

i+l
fori =1, ... k. Then the first n such that g(Sn) exceeds a given constant
vy is IFRA. This is true because the set {x: g(x) > vy} is an increasing
set with finite complement.

Interpreting Yi as the joint damage to k components due to the ith
shock, g as the rule for converting component damage into system damage,
and v as the damage threshold beyond which the system fails, it follows
that the number of shocks required for system failure is IFRA.

Hore generally the damage caused by a shock may depend on the previously
accumulated damage. As long as damage is non-negative and the Markov chain

remains stochastically monotone, the IFRA conclusion will hold.

IO,
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If shocks occur in time according to a Poisson process then by lemma 1
the waiting time (in continuous time) until system failure is IFRA.

Finally if the damages are not of arithmetic type, i.e. concentrated
on a set S as described above, but are still componentwise non-negative,
then by passage to the limit through approximating vectors of arithmetic
type it follows that the time to system failure is IFRA. This is true for
the discrete time process and for the continuous time process when shocks
occur according to a Poisson process.

Thus the classic shock model results of Esary, Harshall, and Proschan
{7] are derivable from theorem 1 and corollary 1, as well as the IFRA char-
acter of the number of shocks until system failure. lioreover the current
results are more general in that they allow for vector valued component

damages and general system damage function g.

5.3 iultinomial distributions Consider i.i.d. observations from a multi-

nomial distribution. Define Sy = (Sn1 ces SnK) where S . is the number
of times category i appears in the first n observations. Then {Sn, n > 1}
is a Markov chain of the type considered in example (5.1), i.e. the partial
sums of i.i.d. random vectors with arithmetic distribution.

The following random variables are thus IFRA:

The number of observations required until each category appears at least
once; until at least r categories each appear at least m times; until g(Sn)

exceeds y where g {s described in section (5.2).

(5.4) Sampling with or without replacement Sampling with replacement

is covered by (5.2) above. For sampling without replacement suppose that

an urn contains m, balls of color i, i = 1, ... k. Then the following random

e e Y
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variables are IFRA. The number of balls sampled until all balls of at least
one color are depleted; until at least one ball of each color is sampled;
until at least ry balls of type i, i = 1, ... k are sampled; until at least
2 of the events A1 o+« A, occur, vhere Ai = {at least rs balls of type i

are sampled}. The last case includes the first three.

(5.5) Convolutions Consider two Markov chains of the type described in theorem 1,

with finite state spaces S1 and 32, and transition matrices Ql and QZ' Let
C1 be an increasing set in Sl‘ PDefine a new Harkov chain on S1 x 32’ with

product partial ordering, by

. . . - qu(ii i')’ i 581
(10) P((1, 3), (i'5 3%)) =¢ ° o
NN (3, 3'), 1 e g

—

It follows that the ilarkov chain is stochastically monotone with monotone
paths and finite state space. Theorem 1 is thus applicable.

Consider the set C1 x C2 where C2 is an increasing set in 32' Since
both S1 and 32 are finite so is C1 x C2 . Starting in state (i, j) with
ie 31, J e 52, the first passage time from (i, j) to C1 x C2 is the sum
of T(i, Cl) and T(j, Cz) where the two are independent. Therefore the convo-
lution of two IFRA distributions, each of which is a first passage time
distribution to an increasing set in a stochastically monotone harkov chain
with monotone paths on a finite state space, is IFRA., But by lemma 1 every
IFRA distribution is either of this form or the limit of a sequence of IFRA
distributions of this form. It follows that the class of discrete IFRA
distributions is closed under convolutions.

The closure of IFRA distributions under convolutions in the continuous
case was proved by Block and Savits [3]. In [4] Block and Savits prove

that closure in the continuous case follows from closure in the discrete case.

o v s re e b o . A - [
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6. Comments and Additions.

(6.1) The following example shows that under the conditions of theorem
1 the conclusion cannot be strengthened from IFRA to IFR even when the state

space is totally ordered. Let {V¥,, i > 1} be j.i.d. with Pr(Y = 9) = Pr(Y = 2) = %.
n

Define Sn = ZYi, n>l; Sn is a markov process on the irtegers. It is sto-
1

chastically monotone and has monotone paths. Consider, T, the first passage
time to {10, 11, 12, .....}. ilow Pr(T = 2|T > 2) ='% vhile Pr(T = 3|T > 3) =-%;
therefore the failure rate at 3 is less than the failure rate at 2 and

the distribution is not IFR.

(6.2) Consider a Markov chain on [1, 2, ... ]J. Assume that the transi-
tion matrix is TPZ’ i.e. that P(i, j)P(i', §') > P(i, §')P(i', j) for all
i<i', j<3'. Lemma 2 below shows that the first passage time from state
1to Cn = {i: 1 > n} is IFR (increasing failure rate) forn=1, 2, ccocc «
A random variable T is defined to be IFR if A, = Pr(T = k)/Pr(T 2 k) is
increasing.

Lemma 2 In a iarkov chain with state space {1, 2, ....}, and TP2 transition
matrix P, the first passage time T(1, Cn), from state 1 to C, = {i: i > n}
is IFR forn =1, 2, ... .

Proof Define Pk(l, i) = Pr(T(1, Cn) > ks X = i|x0 =1),i=1, ...n
Then A, the failure rate for T(1, Cn) at k is given by:

n
2P (1P

(11) Ak = n ’ k = 1’ 2, seecs

RUR)

vow, from (11):

ls%(isn[p(i’cn)-P(j’Cn)][Pk'l(l’j)Pk(l’i)-Pk'l(l’i)Pk(l’j)]

\112) A!,+1 - kl, =
Pesp(ls TP (1, T))

P
3
!
.
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It follows from theorem 2.2 of Karlin [10] that:

And by stochastic monotonicity (which is implied by TPZ):
(1) P(i, C) 2 P(§, C,) for i 2]

Thus frem (12), (13) and (14), A¢ is increasing and T(1, cn) is thus IFR. N
The above proof also shows that in a TP2 tiarkov chain if for some io

P(i, j) = 0 for all i > ig» § < 1, then T(io, Cn) is IFR for n > i3 In

particular if the Harkov chain has monotone paths then the above holds for all io.
It follows from lemma 2 that for a *1 random walk with reflecting bar-

rier at 0, starting at 0, that the number of trials required to reach m

for the first time is IFR. Using the argument of corollary 1 which extends

the discrete time result to continuous time, it follows that for a birth

and death process the time required to go from 0 to the first visit tom

is IFR for all m. This result was obtained using differents methods by

Keilson [11], and Derman, Ross and Schechner [6].

(6.3) If the iarkov chain is stochastically monotone but without monotone
paths then the IFRA conclsion need not hold. For example in the following
chain the first passage time from state 2 to state 3 is DFRA (decreasing

failure rate on the average).

0

0
One might attribute the above example to the fact that starting in

state 2 it's possible to go to state 1 which has smaller failure rate than

e oy e et TR Tl Sl st =
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state 2 (i.e. P(1, 3) < P(2, 3)). This might be eliminated if we required
the chain to start in its smallest state. In the following example however

the first passage time from state 1 to state 3 is not IFRA.

a8 .09 .73\

!

P=:,17 0 .83
o0 1
1k
In this example the average failure rate v, = E{Pr(T = j|T > j) equals
1
.755763 for k = 18, and .755696 for k = 19, Since Y is not increasing
it follows from [12], lemma 1, that T is not IFRA. It is true however that

T is 1BU (see section 6.5).

(6.4) In the following example the Markov chain has monotone paths but
is not stochastically monotone. The first passage time from state 1 to

state 3 is DFRA.

o1
/0 ] ’z\\

i
B 3 1
P-YO 3 z;
0 0 1/

(6.5) For a stochastically monotone Markov chain on the real numbers,
T(x, C) is stochastically decreasing in x for all increasing sets C. This

is true because byLew:can{12] p. 73, for x < y, we can construct a bivariate
version of the markov chain, {(:"), n > 0} with x0 = X, YO =y, and
n

Xp £ Y, for all n; in this construction {Xn. n> 0}({Yn, n > 0}) is distri-
buted as the given ilarkov chain starting in x(y).

It immediately follows that if the state space is a subset of [a, =)
vhich includes a then T(a, C) is MNBU for all increasing sets C. A random

\
!
b
]

1
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variable on {0, 1, 2, .....} is defined to be WBY if Pr(T > r + s) <
Pr(T > r)r(T>s), forr,s =1, 2, ... . The HBU property is weaker
than IFRA.

Define a partially ordered set S to be of type L if Pl(C) 5_P2(C) for
all increasing sets C implies thét there exist random elements (é) with
X~ Py ¥~ P, and Pr{X < Y) = 1. By Leliann [12] p. 73, the real line with
the usual stochastic ordering is of type L. Kamae, Krengel, and 0'Brien
[9] show that a Polish space endowed with a closed partial ordering is of
type L.

It follows that for a stochastically monotone Markov chain on a type
L partially ordered set S that T(x, C) is stochastically decreasing in x
for all increasing sets C. tioreover, if a < x for all x ¢ S, then T(a, C)

is iWBU,

(6.6) The definition of IFRA for discrete distributions followed here
(section 2) is the same as in Barlow-Proschan [1], p. 94, and Block and
Savits [4]. Ross, Shashahani and Weiss [13] use the term SSLSF (star-shaped

log survival function) for what we call IFRA, and reserve the term IFRA

k
for the weaker property, 1 Pr(T = i|T > i) increasing.
kiz) -
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