
flA0BS OSV NAVAL RESEARCH LAO WASHINGTON DC Flo 20/7

IOCOTRON INSTABILITY OF A RELATIVISTIC COAXIAL 'L.TI-RING NOLL--iTC(U)

A0,U 60 H C CHNO P J PALNADESSO
UNCLASSIFIEO NL-4R-286 NL

-UT

Im7;uuuuuuuuiuHiinz~



co



sECu!T RP DULASSIFICATION OF THIS PAGE (When Dole EnteV)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
R NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Memorandum Report. ," - l g
4. TIL- .... ....... .. . .. . 5. TYPE OF REPORT A PERIOD COVERED

,/ )DIOCOTRONJNSTABILITY OF ARELATIVISTIC Interim report on a continuing

-COAXIAL MULTI-RING HOLLOW ELECTRON BEAM. NRL problem.
- -- ... " 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 8. CONTRAC I4 aLB /)

H.C. .Ren* P.. Palmadesso

9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRA MNT, PROJECT, TASKA EA 0(/
Naval Research Laboratory 67-00
Washington, D.C. 20375 51153N

11. CONTROLLING OFFICE NAME AND ADDRESS 12- A
,_ Augm*@*8d

Office of Naval Research J A g 8 /
Arlington, Virginia 22217 29

14. MONITORING AGENCY NAME & ADDRESS(I! dilferent Irom Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
I ISo. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

DTIC
17. DISTRIBUTION STATEMENT (of the abeect .etered in Block 20. It different from Report) ELECTE

ISl. SUPPLEMENTARY NOTES B
*Science Applications, Inc.
McLean, Virginia 22102

This work was sponsored by the Office of Naval Research under project RR0110703.

IS. KEY WORDS (Continue on reverse side if necessary ind Idinltly by block number)

Autoaccelerator
Diocotron instability
Relativistic electron beam
Hollow beam

20. ABSTRACT (Continue on rever e oid it necessary and Identify by block number)

-The diocotron stability properties of a relativistic coaxial multi-ring hollow electron beam are in-
vestigated using a macroscopic cold fluid description based on moment-Maxwell equations. It is
found that for a broad range of beam parameters and somewhat more general type beam profile
the growth rate of instability has a sensitive depende' - on fractional charge neutralization, rel-

ative position of the rings with conducting wall and gap-length of the rings. In the case of a sharp
boundary density profile, the beam can be stabilized easily by a small fractional charge neutrali-

zation with appropriate gap-length. The growth rate can be either enhanced or reduced depend-
ing on the position and gap-length of the rings..

DD I 1473 EDITION Of I NOV 66 Is OBSOLETE

SSN 0102-LF-01E-6601 SECURITY CLASSIFICATION G(Men Date nlered)' U .2



TABLE OF CONTENTS

I. INTRODUCTION ....................................... 1

II. BASIC THEORY ....................................... 2

III. STABILITY ANALYSIS ... ............................. 5

IV. NUMERICAL RESULTS ................................. 8

V. CONCLUSION ........................................ 10

ACKNOWLEDGEMENT ................................... 11

REFERENCES ........................................ 12

ACCESSION for

NTIS White Sectiol 1

DDC Buff Section 0
UNANNOUNCED E3
JUSTIFICATION

BY

UISTRIUTIONPAW l
Dist. AVAIL end/u VPMIL

I
ill



DIOCOTRON INSTABILITY OF A RELATIVISTIC COAXIAL
MULTI-RING HOLLOW ELECTRON BEAM

I. Introduction

There has been considerable interest in recent years in the

development of powerful relativistic electron beams. 1- 3 Intense

relativistic hollow electron beams have been used in the laboratory

recently for high-power microwave generation2, in electron ring

accelerators and autoaccelerators3 . . . etc.

The autoacceleration process is a collective acceleration

mechanism for generating a high kinetic energy hollow electron beam.

Such beams are often designed to have approximately uniform electron

density within an annular space near the wall of a cylindrical drift

tube, with no electrons outside the annulus. Previous theoretical

studies of the diocotron instability in hollow beams have assumed a

beam profile of this type.

We have considered a somewhat more general type beam profile,

namely a hollow coaxial multi-ring electron beam. Using a macroscopic

cold fluid model, the diocotron instability which characterizes a hol-

low multi-ring electron beam has been investigated for a broad range

of beam parameters and different geometries. Significantly different

results exist between the multi-ring and single-ring hollow beams.

Description of these differences is the purpose of this paper.

The basic theory and assumptions are described and equilibrium

properties of the beam are examined in Section II. In Section III we

confine our study to systems exhibiting linear behavior from which an

eigenvalue equation for the perturbed potential is derived; In the

case of a square radial density profile a closed algebraic dispersion

relation for the complex elgenfrequency is extracted. The dispersion
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relation is solved numerically in Section IV and stability properties

are investigated in detail. Conclusions are drawn in Section V.

II. Basic theory

We start by considering a two-ring electron hollow beam with a

smooth perfectly conducting wall as shown in Fig. 1. Analysis of

dynamic properties is based on a macroscopic cold fluid model which is

idealized in that the flow is laminar and there is no variation in the

axial direction.4 We assume a system infinite in the axial direction,

and a strong uniform background magnetic field which prevents the beam

from spreading. We consider a cylindrically symmetrical electron beam

containing n electrons per unit volume moving along a strong axial

magnetic field in a conducting drift tube at low pressure so that the

beam is neither current nor charge neutralized. Two components are

assumed, ions with charge q have no component of velocity along the

beam and electrons move with velocity Pc e which is assumed large com-z

pared with the transverse velocity. We allow partial neutralization

by a fraction f of charges of opposite sign trapped in the beam. The

neutralization fraction f denoting the ratio of neutralizing charge to

beam charge is assumed uniform across the beam. By virtue of these

assumptions the electrons are described in cylindrical geometry

(r, 0, z) as a macroscopic cold fluid immersed in a uniform axial

magnetic field B ez with both radial space-charge and azimuthal self-

magnetic fields included. The continuity equation and the equation of

motion for the electron fluid can be expressed in the relativistic

form as



6n/6t + V.(nV) = 0 (1)

(O/bt + V'V) ymV = q(E + V x B) (2)

where n(x,t) and V(x,t) are the density and mean velocity and E(x,t)

and B(x,t) are the electric and magnetic fields respectively.

q and m are the charge and rest mass of the electron and y _ (1-p2)
-

and P v b /c are the standard relativistic quantities and c is the

velocity of light in vacuum. The system can be closed by adding

Poisson's equation and Ampere's law as shown below respectively.

-1

V.E = c (1-f) q n (3)

V x B = p q 0 c n e + P c oE/At (4)
0 Z 00-

where P0 and c are permeability and permittivity of free space.

The equilibrium state (6/6t = 0) is azimuthally symmetric

(Wo = 0 and 6/6z = 0) and is characterized by electron density n(r)

and azimuthal electron fluid velocity Ve e . The deviation from

charge neutrality produces a radial electric field that influences the

azimuthal motion of the electron fluid. In the case of a sharp-

boundary equilibrium in which the electrons have a double rectangular

density profile as shown in Fig. 2, where r = R is the radial locationc

of a grounded conducting wall, the self-generated radial electric and

azimuthal fields can be obtained by integrating equations (3) and (4).

Thus,

3



E r(r) = (l-f) -Be(r)

(r2 - R 2 )/r R I < r < R2

1 f (R2
2 

- Rl 2 )/r R2 < r <R= j-- q n(1-f)123

0 (R2
2 

- R 2 + r2 - R 32 )/r R 3 < r < R 4

(R 2  
2 + R 2 _R 2 )/r R4 <r<R

(5)

The radial electric field arising from the space charge has been

reduced by a factor of (1-f) because the effect of partial neutraliza-

tion by ions. It follows from Eq. (2) that equilibrium force balance

in the radial direction can be expressed as

V 
2

- ym q(Er + V0Bo - Oc B ) (6)

Eq. (6) is simply a statement of radial force balance of centrifugal,

magnetic and electric forces on an electron fluid element. The self-

magnetic field produces a force towards the axis which is weaker than

the outward radial electrostatic force. The balance among electric,

centrifugal and magnetic forces gives the angular velocity wb(r) of an

electron fluid element in slow rotational equilibrium

=e Wp 2 1 2f Cr2 - R1
2)/r2  R 1 <r <R 2

Wb(r) - (R 2 - R 2 + r2 - R 2 )/r2  R < r R

(7)

where wcb and wpb are the electron cyclotron and plasma frequencies

respectively. %b can be permitted to depend on r, giving sheared cold

fluid rotation rather than rigid rotation. Laminar flow and the

assumption of azimuthal symmetry together imply that individual charges

moves in helices of constant radius.



III. Stability analysis

We assume all the perturbed quantities satisfy the conditions

o[ ]/bz = 0, 6[ ]/t = iw[ ], and 6[ ]/60 =-iZ[ ] with Im(w) < 0,

where k is the azimuthal harmonic number. After Fourier decomposing

the fluid-Maxwell equations (1) to (4), it is straightforward to show

that in the strong magnetic field regime wcb >> Wpb the eigenvalue

equation for the perturbed field has the form

S a 22\- r-2X6y(r)[6(r-R 1) - 6(r-R 2 ) + 6(r-R 3) - 6(r-R 4 )]
\r- r r rr ~r) r[ w k wb (r)

WD  UD

(8)

where the perturbed potential 6y(r) = 64(r) - 6 Az(r), 4 and A are

the scalar and vector potentials of the electromagnetic field, the dio-

cotron frequency is defined by WD wpb/2YWb, and wb(r) was given in

(7). The right-hand side of the eigenvalue Eq. (8) is equal to zero

except at the surface of the beam. Moreover, the eigenfunction 6Y(r)

satisfies the vacuum Poisson equation except at r = R1, R2 , R3 and R 4

therefore the piece-wise solution for the homogeneous equation can be

expressed as

ar +br 2r 0 <r R

r£  -t < <
cr +dr R1 <r <R2

= e r + f r- Z R2 < r < R3

g 1! + h r - £  R 3 < r < R 4
gr + j r R < r < R

c (9)
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The ten coefficients are functions of RI, R2, R3  . • R
C

to be determined by the boundary conditions, the requirement implied by

delta functions. The eigenfunction is continuous at each boundary and

vanishes both at r = 0 and r = R . The effect of the delta function
c

can be considered by multiplying both sides by r and integrating over

the infinitesimal interval from r(l-E) to r(l + E) with E - 0 in the

vicinity of r = RI, R2, R3 and R4 respectively. Therefore we have the

following dispersion relation given by 10 equations with 10 unknowns

b=O
b += 0 RR +

a R1 1R c R1 + d R1

9. 2 £ I k + b RI - )c R1  - dR - a R2 + b R1 9

e + d R c R + f R2 2 2 2
9. _. 9. _ 2(c R2 + dR 2 -£)

elR2  - fR 2  - cR 2  + d R2

WD I

eR + fR3- = + -R
e R3 9 g R3 + h R3

k 9. _ 9, -2(e R3 + f R3
- )

g R3  -h R3  -e R + f R
3 33 3 Y

WD 2

g R4 + h R i R4
£ + j R4-k

-. 9 _ 2(g R4  + h R - )

i R -j R -g R + h R
4 4 4 4 W-

WD 3

iR +jR -O (10)C c



0

where Y = (l-y2 f) (R 2 - R 2 )/R 21 R2 1/R22

Y2 = (1-y2 f) (R2
2 - R I2 )/R3 2

Y3 (l-y2 f) (R42 - R3 2 + R 2 - R 2 )/R4 2

The determinant of the 10 linear equations gives the dispersion relation

of the form

c 2 + c 3  + c 4 = 0 (11)

where

c, =R 1 c R2c + R3c -R - Y 1 -Y -y Y3

c2 = R12 - R13 + R14 + R23 R 24 + R34 + YI - Y2 + Y3 - 2 + YIY2

+ YY3 + YIY3 - Rl (l + Y + Y2 + Y 3 ) + R2 c (l + Y2 
+ Y 3 )

- R3 c(I + Y1 + Y 3) + R4c(l + Y1 + Y 2 )

c3 = Y1 + Y2 + Y3 - 2YIY3 - YY2 Y 3- R12 (Y2 
+ Y3) + R1 3 (Y1 

+ Y3 )

- R14(Y1 + Y2 ) - R2 3Y 3 + R24Y2 - R 34Y1 - R 1e(1 - 2Y2 - YIY 2

- YiY3 Y2Y3 - R4 3 ) + R2 c(l - 2Y2 - Y2Y 3 - R4 3 )

-R 3c(l- 2YI - YIY3 - R 2) + Rc(I - 2Y1 - YIY2 - R 12)

c = (YI - I)(Y 2 + 1)(Y 3 - 1) + Rc[(l + YI)(I - Y2 )(1 + Y3 )

- (I + Y1 )R 4 3 ] - R2c[(l - Y2 )(1 + Y 3) - R4 3 ]

- R3C(I + Y 3)(Yi - I + R1 2) + R4C(1 + Y2)(Y I - 1 + R1 2)

- R12L(Y2 + 1)(Y 3 - 1) - R 34 + R13 (1 + Yl)(1 - Y3 )

- R14(1 - y2)(1 + Y I R23 - y3) + R24(l - Y2 ) + R34 (Y1 - 1)

2£to 2t Mfw e 2  3 te
where R denoting the ratio of R 2 o 2

ab-a-t . .. .. w T -= 3 then



Eq. (11) gives the results of mono-ring hollow beam case as shown in

Uhm and Siambis 6 . By the methods analogous to those represented, it is

straightforward to extend the case *o multi-ring beams.

IV. Numerical results

It is concluded in Section III that the dispersion relation has

quadratic form for the single-ring case and quartic for two rings, and

so on; i.e., the order of the polynomial equation is twice the number

of rings. The dispersion relation (11) is solved numerically for the

complex eigenfrequency w m w + iw. with real oscillation frequency wr 1 r

and growth rate w. for the unstable mode. One important feature of1

Eq. (11) is that the complex eigenfrequency is linearly proportional to

the diocotron frequency. Consequently the applied magnetic field

strongly reduces the growth rate for fixed beam density. As a result,

it is more instructive to keep the beam and plasma parameters fixed and

study the growth rates for different geometries. Fig. 3 shows the

growth rate for a two-ring beam versus gap-length d of the rings for

different mode numbers k and specified values of f. The gap-length d is

defined as the distance between R2 and R3 while we fix the position R1

and R4 and keep the beamwidth of each ring identical. The total current

of the beam has been held constant for various geometries so that the

growth rates are evaluated at the same beam energy. As we can expect

from Eq. (10) the growth rate has a strong dependence on y2 f. For

simplicity we specify y = 2 and show values of f on each curve. Note

that the zero gap case is equivalent to a single-ring which is always

stable for mode k = I as observed by Uhm and Siambis6 . Therefore,



we

beams with various gap-length will destabilize the k = 1 mode at

least for .04 > F > .005 as can be seen easily from Fig. 3. Note that

there is no instability for the Z = I mode when f = 0. The growth rate

is higher for larger mode numbers ; For i 2 the growth rate remains

almost constant for f = 0 while the growth rate decreases rapidly as

the fractional charge neutralization f is increased, i.e., the

unstable modes can be stabilized easily by a small fractional charge

neutralization with appropriate gap-length. By the way, the real fre-

quency for the unstable modes shown in Fig. 3 is larger for higher k

but does not exceed .6 wD. It has been demonstrated that the growth

rate of the instability exhibits a sensitive dependence on f.

Neutralization is commonly produced from the residual gas in the

apparatus. It is difficult to give a universal theory8 for f which

depends very much on such factors as the energy of the beam and the

composition and pressure of the residual gases, ionization cross

section, the energy of the secondary electrons and whether the ion can

escape from the end of the beam.

Another interesting feature is that for higher modes the double

region in gap-length for instability disappears from Fig. 3 to Fig. 4.

Generally, the unstable mode for a single ring can be stabilized by

increasing the gap-length of a two-ring beam in this kind of geometry.

Next, we want to demonstrate the effect of the total beamwidth

(R4 - R,) on the diocotron instability which is illustrated in Fig. 5

and Fig. 6. The 9 = 1 mode is unstable as before when the single-ring

beam becomes a two-ring beam as shown in Fig. 5. However, the funda-

mentrl mode can no longer occur if the total beamwidth has expanded to

9



the one as shown in Fig. 6. Clearly, the k = I mode can be

destabilized by moving two rings together. For X 2, the growth rate

increases with respect to gap-length when f = 0; Nevertheless, the

growth rate for small f increases with respect to gap-length first and

then decreases sharply.

Finally, it is straightforward to extend the analysis to a three-

ring geometry as shown in Fig. 7. For easy comparison between the two-

ring and three-ring cases, we plot the growth rate versus gap-length

d Z (R5 - R ) while fixing the positions R, and R6 and keeping the beam-5 2

width of each ring identical, the total current is also fixed. The

effect of inserting the center ring can be seen easily while comparing

Fig. 8 to Fig. 3. The unstable modes in two-ring geometry have

been retained in the three-ring case, but also the growth rate has been

enhanced by inserting the third ring in the middle, which may be caused

by the strong coupling among the self-fields of the beams. For higher

mode numbers, unstable modes can be found in three separate regions in

gap-length domain. If we move the outer edge of the beam away from the

wall, Fig. 9 gives the geometry which can be compared to Fig. 6. It

comes as no surprise that the X = 1 mode becomes unstable again. For

higher modes, the triple region for instability is not obviously seen;

The conducting wall plays an important role in the diocotron

instability.

V. Conclusion

We have formulated a fluid-Maxwell theory of the diocotron

instability in an infinitely long relativistic electron beam propagating

parallel to a uniform applied axial magnetic field. In beams with

10



self-fields it frequently permits simple models which illustrate many

of the essential features of more realistic types of beam. The growth

rate has been calculated with special emphasis put on displaying

results as a function of conducting wall geometry, i.e., conducting wall

location relative to the beams position. The results show the strong

influence of neutralization fraction f, relative position of the rings

with conducting wall and gap-length of the rings on the diocotron

instability. It seems the instability has been enhanced by the multi-

ring geometry in a rather complicated manner. In short, the £ = 1 mode

which is always stable in the single-ring case can become unstable in

the multi-ring geometries. However, in the two-ring geometry, the

£ = 1 mode diocotron instability can be avoided by either moving two

hollow beams away from the wall or spreading the two rings farther

apart. For the k 2 modes, the growth rate can be either enhanced

(e.g. Fig. 5 and Fig. 6) or reduced (e.g. Fig. 3 and Fig. 4) depending

on the position and gap-length of the rings. In the three-ring case,

all the unstable modes occurring in the two-ring geometries have been

retained and the growth rates have been enhanced at the same gap-length.
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Fig. 1 - Longitudinal and cross section of equilibrium configuration
and coordinate system
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