DYNAMIC BEHAVIOR OF SHORTEST PATH ROUTING ALGORITHMS FOR COMMUNICATION NETWORKS

Dimitri P. Bertsekas

DTIC SELECTED
AUG 5 1980

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Dynamic Behavior of Shortest Path Routing Algorithms for Communication Networks

by

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Mass. 02139
Several proposed routing algorithms for store and forward communication networks, including one currently in operation in the ARPANET, route messages along shortest paths computed by using some set of link lengths. When these lengths depend on current traffic conditions as they must in an adaptive algorithm, dynamic behavior questions such as stability, convergence, and speed of convergence are of interest. This paper is the first attempt to analyze systematically these issues. It is shown that minimum queuing delay path algorithms tend to exhibit violent oscillatory behavior in the absence of a damping mechanism. The oscillations can be damped by means of several types of schemes two of which are analyzed in this paper. In the first scheme a constant bias is added to the queuing delay thereby providing a preference towards paths with small number of links. In the second scheme the effects of several past routings are averaged as for example when the link lengths are computed and communicated asynchronously throughout the network.
1. Introduction

A central operational problem of a communication network involves the choice of routes used by messages to travel from origin to destination. It is possible, of course, to choose a fixed route for each origin-destination pair, but this precludes the possibility of adjusting routes to alleviate congestion due to variations in average traffic conditions. For this reason attention has focused on adaptive routing strategies whereby congestion in the network is continuously monitored and routes between origin-destination pairs are modified in real time so as to keep average delay per message at a reasonable level. A routing scheme of this type was implemented in the ARPANET in 1969 and attracted considerable attention. The main idea in this scheme is to compute in real time an estimate of the minimum average delay per message for each origin-destination pair and to route messages along the current minimum estimated delay path. When this scheme was first implemented, it was noticed that it is prone to severe oscillations. This behaviour is due to the fact that delay estimates used to choose routes are themselves affected by the route choice with a feedback effect resulting. To remedy this situation it was decided on heuristic grounds to introduce an additive factor, called bias, to the estimated delay of each link, thereby building into the algorithm a preference towards paths with small number of hops to the destination \[5\] - \[7\]. This had a stabilizing effect albeit at the expense of considerable loss of sensitivity to traffic congestion.

The implementation of the minimum delay path idea in the original ARPANET algorithm had a number of flaws allowing, for example, the formation of loops. For this reason alternative schemes based on the same idea were
studied, and a new algorithm called SPF has been developed and imple-
mented [1], [4], [11]. The present paper is an outgrowth of the
author's participation in the design study of this algorithm during the summer
of 1978 at BBN, Inc. However, our analysis does not focus on the ARPANET
and the SPF algorithm in particular, but rather is geared towards understanding
the effect of feedback and the nature of the dynamic behaviour of shortest
path algorithms where link lengths depend on current traffic conditions.
We note that the algorithms of this paper are far from optimal since they
are single path algorithms in the sense that at any given time there is only
one path per origin-destination pair along which messages can travel. Better
performance can be achieved by allowing multiple paths as for example in the
optimization algorithm of Gallager [9] or its second derivative versions [2].
On the other hand the hardware limitations of some of the presently existing
networks including the ARPANET preclude the use of such more sophisticated
algorithms. Furthermore, we feel that the mere fact that the algorithm has
been successfully implemented in a network as interesting and influential
as the ARPANET makes it worthy of analysis and investigation. This is
reinforced by the fact that the behavior exhibited by the algorithm is
quite interesting and can pose nontrivial design problems.

The paper is organized as follows:

In Section 2 we provide a deterministic finite state Markov chain
framework for studying a simple version of the algorithm. We show that for
ring networks the algorithm may tend to oscillate between poor routing paths
and become itself a major contributor to congestion. We also demonstrate
how the use of a bias factor can provide a mechanism for damping oscillations
as confirmed by experience with the original ARPANET algorithm.
The finite state model does not lend itself to analysis of more sophisticated routing schemes and more general network topologies. We consequently introduce in Section 3 a model of a ring network with a continuum of nodes and a single destination. This allows us to employ techniques of stability analysis of discrete-time systems with continuous state space, and enables us to further quantify the relationship between choice of link lengths and algorithmic behavior.

The analysis of Section 3 focuses primarily on the effect of using a bias factor as a damping mechanism. In Section 4 we show that oscillations can also be damped effectively by making the link lengths dependent on several preceding routing paths via some averaging mechanism such as a fading memory scheme or asynchronous link length updating. To our knowledge the fact that averaging can provide a damping mechanism in a shortest path algorithm has not been noticed earlier and in fact when we originally approached this problem at BBN, Inc. there was considerable concern regarding its effect on algorithmic behavior. It is now believed that the significant degree of averaging inherently present in the SPF algorithm is in large measure responsible for the stable dynamic behavior observed in experiments conducted thus far [11].

The analysis of Sections 2-4 focuses on ring networks. The ring topology is central for the extension of our earlier results to more complex network topologies. This extension is carried out in Section 5 under the assumption that an equilibrium routing exists. However, by contrast with ring networks, an equilibrium routing need not always exist for more complex topologies. We demonstrate via example the mechanism by which such a phenomenon can occur.

The results and analysis of the present paper can be generalized to the case where there are more than one destinations. This analysis is
straightforward but considerably more complex technically and may be found in [3].
The continuous node model of Sections 3-5 may be criticized on the grounds that it is unrealistic. On the other hand it is very difficult to provide an extensive analysis of a more realistic finite node network model. In particular, it appears impossible to demonstrate the effect of averaging in such a context. Furthermore we believe that the realism of any algorithmic model must be judged on the basis of the validity of the conclusions it provides regarding the behavior of the related practical algorithm. These conclusions in our case have been verified by extensive numerical experiments with finite node networks [4], [3]. In particular the validity of our qualitative results regarding the role of a bias factor and averaging as damping mechanisms have been amply demonstrated.

2. **A Finite State Markov Chain Model**

Consider a communication network with nodes denoted by 1,2,...,N and directed links denoted by (i, \(l \)) where i is the head node and \(l \) is the tail node. We consider the following algorithm for periodically updating paths for routing messages.

(A) At the beginning of every time period a nonnegative length \(D_{i,l} \) of every link (i, \(l \)) becomes available to each node. Based on these lengths each node computes a shortest path to each destination and routes messages over that path during the period.

The standing assumption for algorithm (A) is that the lengths \(D_{i,l} \) used in computation of a new shortest path depend exclusively on one or more preceding shortest paths. This dependence is **deterministic** via a rule that for the moment we leave unspecified. As an example \(D_{i,l} \) may represent some
measure of average delay per message on link \((i,k)\) during one or more preceding periods perhaps with an added bias factor—a scheme currently implemented in the ARPANET \([1], [11]\). By assuming that the dependence of \(D_{ik}\) on previous shortest paths is deterministic we also implicitly assume that the input traffic originating at each node is a stationary stochastic process whose ensemble parameters can be adequately measured by time averages. This assumption is not valid, of course, in practice but is a reasonable approximation to the situation where the time constant of traffic statistic variations is large relative to the shortest path updating period (a quasistatic assumption, cf. \([9]\)).

Consider first algorithm \((A)\) applied to a given network for the case where the lengths \(D_{ik}\) depend exclusively on the preceding shortest path. Assume also that the shortest path algorithm has a fixed rule for breaking ties between equidistant paths. Then each shortest path uniquely determines the next shortest path. There is a finite number of possible shortest paths (also referred to as routings) which we denote by \(R_1, R_2, \ldots, R_M\) where \(M\) is some integer. To any initial routing say \(R_{io}\), there corresponds a unique sequence of subsequent routings \(R_{i1}, R_{i2}, \ldots\). Thus eventually some routing will be repeated (say \(R_{ik} = R_{ik+1}\)), and once this happens the routing sequence will become periodic. Thus starting at \(R_{io}\) the algorithm will eventually end up cycling through \(R_{ik}, \ldots, R_{ik+n-1}\). Of course it is possible that \(R_{io}\) itself is part of the cycle \((k=0)\), and that the cycle consists of a single routing \((n=1)\) in which case the algorithm stabilizes at that routing.

The model just described is one of a deterministic finite state Markov chain with states \(R_1, \ldots, R_M\). From Markov chain theory or by elementary reasoning it follows that the set of all routings \(\{R_1, \ldots, R_M\}\) can be parti-
tioned into a collection of cycles (or ergodic classes), and a collection of transient routings. If the initial routing is transient it is never repeated by the algorithm, and if it is part of a cycle the algorithm returns to it periodically. More than one cycles may exist. Furthermore, each transient routing leads to a unique cycle.

When the lengths D_{il} depend on a fixed number (say m) of preceding routings, a finite state model for the algorithm can be similarly constructed whereby the state space of the model is the set of all m-tuples of routings. Similarly the state space can be partitioned into cycles and transient states. Analysis of such a model is naturally more difficult in view of the increased size of the state space, and this is more so if D_{il} depends on all preceding routings in which case a countable state Markov chain model is necessary.

In what follows in this section we will restrict attention to the case of a ring network with N nodes shown in Figure 1. Node N is the only destination and all links are bidirectional. By reversing the directions of flow and the role of origins and destinations the subsequent model can be converted to one with a single origin and many destinations. The traffic input originating

![Figure 1](image-url)
at node i and destined for N is denoted by r_i. The routing R_i, $i = 1, \ldots, N$ is the one for which all nodes $j < i$ route their traffic in the clockwise direction and all nodes $j \geq i$ route their traffic in the counterclockwise direction.

![Routing R_i diagram]

Figure 2

as shown in Figure 2. Given a routing R_i, the flows on each undirected link $(j-1,j)$ in the clockwise and counterclockwise direction are denoted by $f_j^-(i)$ and $f_j^+(i)$ respectively and are given by

$$f_j^-(i) = \begin{cases} 0 & \text{if } i \leq j \\ r_i + r_{i-1} + \ldots + r_j & \text{if } j < i \end{cases}$$

$$f_j^+(i) = \begin{cases} 0 & \text{if } j \leq i \\ r_i + r_{i+1} + \ldots + r_{j-1} & \text{if } i < j \end{cases}$$
We will consider the case where the length D_{il} of a link (i,l) is given by an equation of the form

$$D_{il} = d(f_{il})$$

where f_{il} is the flow on link (i,l) during the preceding period and d is a real valued, continuously differentiable and monotonically increasing function of flow with $d(0) > 0$. For simplicity we assume that the function d is the same for all links but this does not affect materially the analysis that follows. Since the flow f_{il} depends only on the preceding routing the same is true for the length D_{il}. It appears that this simplest of all possible situations is the only one that can be analyzed effectively in a finite node network context. The practical situation where D_{il} is taken to be the average time delay for a message to traverse link (i,l) can be reasonably modelled by a function d of the form

$$d(f_{il}) = P_{il} + T_{il} + Q_{il}(f_{il})$$

where

$$P_{il} = \text{Average processing plus propagation delay per message}$$
$$T_{il} = \text{Average transmission delay per message}$$
$$Q_{il}(f_{il}) = \text{Average queuing delay per message when the average flow on link } (i,l) \text{ is } f_{il}.$$

The quantities P_{il} and T_{il} are independent of the flow f_{il} while the dependence of Q_{il} on f_{il} is determined by the statistics of the traffic arriving at i and routed through l. If these statistics can be adequately modelled by an $M/M/1$ queue then Q_{il} takes the form [6], [7]

$$Q_{il}(f_{il}) = \frac{f_{il}}{C_{il} - f_{il}}$$
where C_{ik} is the transmission capacity of link (i,k). We mention, however, that on the basis of experiments conducted thus far it is unclear whether the average delay per message in the ARPANET can indeed by modelled as in (2). This may be due to peculiarities of the ARPANET hardware which are little understood at present. We now define the shortest path algorithm. Given a routing R_i we define the distances $D^-(i,j), D^+(i,j)$ of node j to the destination in the counterclockwise and clockwise directions respectively by

$$D^-(i,j) = \sum_{k=i}^{j} d[f^-_k(i)]$$

$$D^+(i,j) = \sum_{k=j+1}^{N} d[f^+_k(i)].$$

If $D^-(i,i) = D^+(i,i)$ then the algorithm sets the next routing to R_i. If $D^-(i,i) \neq D^+(i,i)$ the algorithm sets the next routing to R_n where the node n is such that

$$D^-(i,j) \geq D^+(i,j) \quad \text{for } j \geq n$$

$$D^-(i,j) < D^+(i,j) \quad \text{for } j < n.$$

It can be easily shown that if $D^-(i,i) \neq D^+(i,i)$ the next routing R_n is uniquely determined by the relations above. Given an initial routing R^0, we consider the sequence of successive routings $R^1, R^2, \ldots R^k, R^{k+1}, \ldots$, generated by the algorithm.

The quantity $d(0)$ may be viewed as a bias factor. It represents link length at zero flow. The following proposition shows that if $d(0) = 0$ and the first two routings are different, i.e. $R^0 \neq R^1$ then the algorithm ends up oscillating between the two extreme routings R_1 and R_N which is the worst possible behavior that can occur. In the context of (2) the case $d(0) = 0$ corresponds to the situation where the processing and transmission delays P_{ik} and T_{ik} are negligible relative to the queuing delay Q_{ik}.
Proposition 1: Let $d(0) = 0$ and assume that $R^0 \neq R^1$. Then there exists an index k such that for all $k \neq k$ either $R^k = R^1$ and $R^{k+1} = R^N$ or $R^k = R^N$ and $R^{k+1} = R^1$.

Proof: Let R_i be a routing and assume that the routing subsequent to R_i is R_n with $n \neq i$. For concreteness assume that $n < i$. We will show that either $i = N$ or else the routing subsequent to R_n is R_j with $j > i$.

If $i \neq N$ then since R_n is the routing subsequent to R_i we have:

\[(4) \quad D^-(i, n-1) < D^+(i, n-1) = D^+(i, i). \]

We also have:

\[(5) \quad D^+(i, i) \leq D^+(n, i), \]

\[(6) \quad D^-(n, i) \leq D^-(i, n-1). \]

From (4) - (6) we have:

\[D^+(n, i) \geq D^+(i, i) > D^-(i, n-1) \geq D^-(n, i) \]

so finally:

\[D^+(n, i) > D^-(n, i). \]

It follows that in the routing R_j which is subsequent to R_n, node i will switch his traffic to the clockwise direction so that $j > i$.

We can show using a very similar argument that if $n > i$ then either $i = 1$ or else the routing subsequent to R_n is R_j with $j < i$.

Thus we have that the number of nodes that lie between two successive routings is increasing at each iteration if none of these routings is R_1 or R_N. On the other hand if the current routing is R_1 or R_N then the next routing will clearly be R_N or R_1 respectively. This proves...
the proposition. Q.E.D.

Notice that, if \(d(0) = 0 \), the situation \(R^0 = R^1 \) can only occur if \(D^-(i, i) = D^+(i, i) \) where \(i \) is the node for which \(R^0 = R^1 \). Thus if we add any \(\varepsilon > 0 \) to any one of the node inputs we will have \(R^0 \neq R^1 \) and the algorithm will again end up oscillating between \(R_1 \) and \(R_N \). We provide an example illustrating the result of Proposition 1. Several additional examples involving more general topologies and multiple destinations may be found in [4].

Example: Consider a 16-node ring network where node 16 is the destination. Let \(r_i = 1 \) for \(i = 1, \ldots, 7, 9, \ldots, 15 \) and \(r_8 = \varepsilon \geq 0 \). If \(\varepsilon = 0 \) and the initial routing is \(R_8 \) then by symmetry all subsequent routings equal \(R_8 \). If \(\varepsilon \) is very small but positive then for the case where

\[
d(f) = f
\]

the sequence of generated routings is \(R_8 \), \(R_{10} \), \(R_3 \), \(R_{16} \), \(R_1 \), \(R_{16} \), \(R_1 \), \(\ldots \).

This fact can be verified via a straightforward calculation in Figure 3 which shows the flow patterns corresponding to successive routings.

We now turn our attention to various notions of equilibria and stability. We say that \(R_i \) is an **equilibrium** routing if

\[
D^-(i, i-l) < D^+(i, i-l), \text{ and } D^+(i, i) \leq D^-(i, i).
\]

It follows from this definition that \(R_i \) is an equilibrium routing if and only if it repeats itself via the shortest path algorithm.

We say that a node \(i \) is an **equilibrium node** if

\[
D^-(i, i) < D^+(i, i), \text{ and } D^+(i+1, i) \leq D^-(i+1, i).
\]

In words a node \(i \) is an equilibrium node if he switches his traffic in both cases where the routing is \(R_i \) and \(R_{i+1} \).
We say that an equilibrium routing \(R_i \) is locally stable if routing \(R_{i+1} \) generates either \(R_i \) or \(R_{i-1} \) through the algorithm, and routing \(R_{i-1} \) generates either \(R_i \) or \(R_{i+1} \). We say that an equilibrium node \(i \) is locally stable if routing \(R_i \) generates \(R_{i+1} \) via the algorithm, and routing \(R_{i-1} \) generates \(R_i \). The definition of local stability is based on the idea that when the algorithm starts "close enough to equilibrium" it should not lead to a "growing" oscillation. The following proposition complements Proposition 1 and suggests that the bias level \(d(0) \) should exceed a certain positive value in order for an equilibrium routing or node to be locally stable.

Proposition 2:
a) An equilibrium routing \(R_i \) is locally stable if

\[
d(0) \geq \max \left\{ \frac{r_{i-1}}{2} \sum_{l=1}^{N-1} m_l^-, \frac{r_i}{2} \sum_{l=1}^{N-1} m_l^+ \right\}
\]

where

\[
m_l^- = \max \{d'(f) | f^-_{\ell}(i-1) \leq f \leq f^-_{\ell}(i) \} \quad \text{for } l = 1, \ldots, i-1
\]

\[
m_l^+ = \max \{d'(f) | f^+_{\ell-1}(i) \leq f \leq f^+_{\ell-1}(i-1) \} \quad \text{for } l = i+1, \ldots, N-1
\]

\[
m_{i-2}\ell^- = \max \{d'(f) | f^-_{\ell}(i-2) \leq f \leq f^-_{\ell}(i-1) \} \quad \text{for } l = 1, \ldots, i-2
\]

\[
m_{i+1}\ell^+ = \max \{d'(f) | f^+_{\ell+1}(i+1) \leq f \leq f^+_{\ell+1}(i) \} \quad \text{for } l = i, \ldots, N-1
\]

where \(d'(f) \) denotes the first derivative of \(d \) at \(f \).

b) An equilibrium node \(i \) locally stable if

\[
d(0) \geq \frac{r_i}{2} \sum_{l=1}^{N-1} m^-_l
\]

where

\[
m^-_l = \max \{d'(f) | f^-_l(i) \leq f \leq f^-_l(i+1) \} \quad \text{for } l = 1, \ldots, i
\]

\[
m^+_l = \max \{d'(f) | f^+_l(i+1) \leq f \leq f^+_\ell(i) \} \quad \text{for } l = i+1, \ldots, N-1.
\]
The proof of Proposition 2 involves a straightforward but lengthy argument and will be omitted. It can be found in [4].

Proposition 2 implies that in order to ensure local stability the bias \(d(0) \) should exceed a level that depends strongly on the traffic conditions. This level is proportional to the input at or near the equilibrium and to a global measure of the derivative \(d' \) along the ring. Thus it may be necessary to choose a value of \(d(0) \) which is large relative to \(r \) and \(d' \) in order to ensure stability for a broad range of input traffic conditions. This can be accomplished by adding a large constant to \(d \). On the other hand this would introduce a tendency in the algorithm to generate routings close to the min-hop routing (i.e. one that selects routes according to minimum number of links to the destination). As a result the algorithm would tend to be insensitive to congestion. This tradeoff will be reencountered in the next section.

The point of view that has been adopted in this section is one whereby the algorithm is viewed as a dynamic system with a finite number of states (the finite collection of possible routings). Unfortunately the study of dynamic behavior and stability properties of such systems is notoriously difficult. To begin with there is no accepted definition of equilibrium, and in fact we saw that in the ring network context there are two types of "equilibria" that are of interest - equilibrium routings and equilibrium nodes. Furthermore there are no established methodological tools that can be helpful in a finite state system framework. As a result our progress has been limited to the results just discussed. We are thus motivated to consider approximation of the discrete system with a continuous system having a continuum of states. For such systems there is an effective and well developed stability theory that can be utilized for analysis. We take this approach in the following two sections where we introduce a network with a continuum of nodes. Despite
the radical nature of this step the analysis provides informative results and clarifies the role of averaging the effects of several past routings as a means of damping oscillatory behavior. The validity of our approach is supported by the fact that qualitative conclusions drawn from the continuous node model have been verified computationally in finite node models.

3. A Continuous Model of a Ring Network

We consider a continuum of nodes arranged in a ring and sending traffic to a single destination as shown in Figure 4.

![Figure 4](image)

Points on the ring are identified with their distance t from the destination in the counterclockwise direction, where t is normalized to take values in the interval $[0,1]$. Traffic can move on the ring in both directions.

For every t in $[0,1]$ we denote by $r(t)$ the input density at t. The meaning of the function r is that for any subinterval $[t_1,t_2]$ of $[0,1]$ the total input traffic originating at nodes in $[t_1,t_2]$ is
We assume that \(r \) is continuous on \([0,1]\) and \(r(t) > 0 \) for at least one te \((0,1)\).

Note that a network with a finite number of nodes can be modelled by a function \(r \) containing impulses and such a function can be approximated by a continuous function consisting of narrow triangular pulses of finite height. We are interested in routings specified by points \(y \) in \([0,1]\), where the flow splits, i.e. points larger than \(y \) send their flow counterclockwise (or in the positive direction) and points smaller than \(y \) send their flow clockwise (or in the negative direction).

To a given function \(r \) and routing \(y \), there corresponds at every point \(t \) a flow in the positive direction \(f^+(y,t) \), and a flow in the negative \(f^-(y,t) \) given by

\[
 f^+(y,t) = \begin{cases}
 \int_y^t r(\tau)d\tau & \text{if } y \leq t \\
 0 & \text{if } t \leq y
 \end{cases}
\]

(7)

\[
 f^-(y,t) = \begin{cases}
 0 & \text{if } t \leq y \\
 \int_y^t r(\tau)d\tau & \text{if } t \leq y
 \end{cases}
\]

(8)

In order to introduce an algorithm such as (A) in the framework of the continuous model we consider a function \(d \) mapping flows into the non-negative real numbers. The meaning of \(d \) is that given a routing \(y \) and any point \(t \), the distances \(D^- \) and \(D^+ \) from \(t \) to the destination in the negative and positive direction are given by

\[
 D^-(y,t) = \int_0^t d[f^-(y,\tau)]d\tau
\]

(9)

\[
 D^+(y,t) = \int_t^1 d[f^+(y,\tau)]d\tau.
\]

(10)
We will assume that \(d \) is a monotonically increasing function of \(f \) with everywhere continuous derivative. We further assume that \(d(0) > 0 \). As Proposition 1 shows, the case where \(d(0) = 0 \) is not interesting from a practical point of view.

We consider the following algorithm for generating routing sequences \(\{y_k\} \):

(Al) Given a routing \(y_k' \), the next routing \(y_{k+1} \) is the solution of the equation

\[
D^-(y_k, y_{k+1}) = D^+(y_k, y_{k+1})
\]

(11)

It will be shown as part of Proposition 3 that equation (11) has a unique solution for every \(y_k \in [0, 1] \). Note that since we have

\[
D^-(y_k', t) \leq D^-(y_k', y_{k+1}) = D^+(y_k', y_{k+1}) \leq D^+(y_k', t) \quad \text{if } t \leq y_{k+1}
\]

and

\[
D^-(y_k', t) \geq D^-(y_k', y_{k+1}) = D^+(y_k', y_{k+1}) \geq D^+(y_k', t) \quad \text{if } t \geq y_{k+1}
\]

it follows that a routing \(y_{k+1} \) determined from (11) is such that every point \(t \) routes its flow in the positive or negative direction according as

\[
D^-(y_k', t) \geq D^+(y_k', t) \text{ or } D^-(y_k', t) \leq D^+(y_k', t), \text{ i.e. according to minimum distance to the destination.}
\]

We say that \(y^* \in [0, 1] \) is an equilibrium if

\[
D^-(y^*, y^*) = D^+(y^*, y^*)
\]

(12)

We first show some preliminary results relating to existence and optimality properties of equilibria:

Proposition 3: There exists a unique equilibrium \(y^* \in (0, 1) \). Furthermore equation (11) has a unique solution \(y_{k+1} \) for every \(y_k \).
Proof: Using (9) and (10) we have for all \(y \) and \(t \)

\[
\frac{\partial D^{-}(y,t)}{\partial t} = d[f^{-}(y,t)], \quad \frac{\partial D^{+}(y,t)}{\partial t} = -d[f^{+}(y,t)].
\]

We have \(d(0) > 0 \) and \(d \) is monotonically increasing, so \(\frac{\partial D^{-}(y,t)}{\partial t} > 0 \) and \(\frac{\partial D^{+}(y,t)}{\partial t} < 0 \). Thus for fixed \(y \), the function \(D^{-}(y,\cdot) \) is continuous, monotonically increasing and satisfies \(D^{-}(y,0) = 0 \), while the function \(D^{+}(y,\cdot) \) is continuous monotonically decreasing and satisfies \(D^{+}(y,1) = 0 \).

Hence the equation \(D^{-}(y,t) = D^{+}(y,t) \) has a unique solution in \(t \) lying within \((0,1)\). Denote by \(g(y) \) the solution corresponding to \(y \). The function \(g: [0,1] \rightarrow [0,1] \) can be easily shown to be continuous and, by Brower's fixed point theorem (\([18], p. 161\)), \(g \) has a fixed point \(y^{*} \). This \(y^{*} \) is an equilibrium. If there exist two equilibria \(y^{*}_{1} \) and \(y^{*}_{2} \) with \(y^{*}_{1} < y^{*}_{2} \), then since \(d(f) > 0 \) for all \(f > 0 \), we must have

\[
D^{-}(y^{*}_{1},y^{*}_{1}) < D^{-}(y^{*}_{2},y^{*}_{2}) \leq D^{-}(y^{*}_{2},y^{*}_{2}) = D^{+}(y^{*}_{2},y^{*}_{2})
\]

\[
D^{+}(y^{*}_{2},y^{*}_{2}) < D^{+}(y^{*}_{1},y^{*}_{1}) \leq D^{+}(y^{*}_{1},y^{*}_{1}) = D^{-}(y^{*}_{1},y^{*}_{1})
\]

which is impossible. Hence the equilibrium is unique. Q.E.D.

Proposition 4: The equilibrium minimizes over all \(y \in [0,1] \) the expression

\[
J(y) = \int_{0}^{1} p[f^{+}(y,t)] dt + \int_{0}^{1} p[f^{-}(y,t)] dt
\]

where \(p \) is any function satisfying for all \(f \)

\[
p'(f) = d(f)
\]

and \(p' \) denotes the first derivative of \(p \).

Proof: The first derivative \(J'(y) \) of \(J \) is given by

\[
J'(y) = \int_{0}^{1} p'[f^{+}(y,t)] \frac{\partial f^{+}(y,t)}{\partial y} dt + \int_{0}^{1} p'[f^{-}(y,t)] \frac{\partial f^{-}(y,t)}{\partial y} dt
\]
It can be seen from (7) and (8) that

\[
\frac{\partial f^+(y,t)}{\partial y} = \begin{cases}
- r(y) & \text{if } y < t \\
0 & \text{if } t < y
\end{cases}
\]

\[
\frac{\partial f^-(y,t)}{\partial y} = \begin{cases}
0 & \text{if } y < t \\
r(y) & \text{if } t < y
\end{cases}
\]

Combining equations (14) - (17) we obtain

\[
J'(y) = r(y)\left[-\int_y^1 d[f^+(y,t)]dt + \int_0^y d[f^-(y,t)]dt \right],
\]

or equivalently

\[
J'(y) = r(y)[D^-(y,y) - D^+(y,y)].
\]

If \(y^* \) is an equilibrium it can be seen that we have

\[
D^-(y,y) \leq D^+(y,y) \quad \text{if } y \leq y^* \\
D^-(y,y) \geq D^+(y,y) \quad \text{if } y \geq y^*.
\]

Thus \(J'(y) \leq 0 \) if \(y \leq y^* \), \(J'(y) \geq 0 \) if \(y^* \leq y \), and \(J'(y^*) = 0 \).

It follows that \(y^* \) minimizes \(J \). Q.E.D.

Proposition 4 shows that one can minimize the integral of average delay over the ring by choosing the function \(d \) to be marginal delay and by guaranteeing that the algorithm converges to an equilibrium.

The need to use marginal delays as link lengths in order to minimize total average delay has been pointed out earlier in a different algorithmic context [9]. The following discussion, however, casts doubt as to whether the algorithm will converge to an equilibrium when the link lengths are
chosen to be the marginal delays. In any case Proposition 4 suggests that convergence of the algorithm to an equilibrium is desirable since a function \(p \) satisfying (14) is monotonically increasing and convex and hence an equilibrium will at least be a reasonably good routing even if it is sub-optimal in terms of a particular design objective.

We now consider the convergence properties of the algorithm. For any \(y \in [0,1] \) we denote by \(g(y) \) the unique solution in \(t \) of the equation \(D^{-}(y,t) = D^{+}(y,t) \) (c.f. Proposition 1). Thus Algorithm (A1) can be written

\[
Y_{k+1} = g(Y_k).
\]

We have for all \(y \in [0,1] \)

\[
D^{-}[y,g(y)] = \int_{0}^{g(y)} d[f^{-}(y,t)]dt = \int_{0}^{1} d[f^{-}(y,t)]dt = D^{+}[y,g(y)].
\]

We evaluate the first derivative \(g'(y) = \frac{dg(y)}{dy} \) for \(y \in (0,1) \). Differentiation in (19) yields

\[
\int_{0}^{g(y)} d'[f^{-}(y,t)]dt + d[f^{-}(y,g(y))]g'(y)
\]

\[
= \int_{0}^{1} d'[f^{-}(y,t)]dt - d[f^{+}(y,g(y))]g'(y)
\]

or

\[
g'(y) = \frac{\int_{0}^{1} d'[f^{+}(y,t)]dt - \int_{0}^{g(y)} d'[f^{-}(y,t)]dt}{d[f^{-}(y,g(y))] + d[f^{+}(y,g(y))]}.
\]

We have for \(t \neq y \)

\[
\frac{\partial d[f^{+}(y,t)]}{\partial y} = d'[f^{+}(y,t)] \frac{\partial f^{+}(y,t)}{\partial y}
\]

(21)

\[
\frac{\partial d[f^{-}(y,t)]}{\partial y} = d'[f^{-}(y,t)] \frac{\partial f^{-}(y,t)}{\partial y}.
\]

(22)
Combining (20) - (22) with (16), (17) we obtain

\[
\min\{y, g(y)\} - \int_0^1 d[f^-(y, t)] dt + \int_{\max\{y, g(y)\}}^1 d'[f^+(y, t)] dt
\]

\[
g'(y) = -\frac{r(y)\int_0^y d[f^-(y, t)] dt + \int_{\max\{y, g(y)\}}^1 d'[f^+(y, t)] dt}{d[f^-(y, g(y))] + d[f^+(y, g(y))]}\]

At the equilibrium \(y^*\) we have \(y^* = g(y^*)\) and \(f^-(y^*, y^*) = f^+(y^*, y^*) = 0\), so (23) yields

\[
g'(y^*) = -\frac{r(y^*)\int_0^{y^*} d'[f^-(y, t)] dt + \int_{y^*}^1 d'[f^+(y, t)] dt}{2d(0)}
\]

By using a theorem of Ostrowski ([8], pp. 300-301) we can state the following local convergence and rate of convergence result for algorithm (Al).

Proposition 5: Let \(y^*\) be the equilibrium. Then if \(|g'(y^*)| < 1\) or equivalently

\[
d(0) > \frac{r(y^*)\int_0^{y^*} d'[f^-(y, t)] dt + \int_{y^*}^1 d'[f^+(y, t)] dt}{2}
\]

there exists an open interval \(I\) containing \(y^*\) such that if \(y_0 \in I\) the sequence \(\{y_k\}\) generated by algorithm (Al) remains in \(I\) and converges to \(y^*\). Furthermore if \(y_k \neq y^*\) for all \(k\) there holds

\[
limit_{k \to \infty} \sup \frac{|y_{k+1} - y^*|}{|y_k - y^*|} = \lim_{k \to \infty} \sup \frac{1}{|y_k - y^*|^k} = |g'(y^*)|.
\]

When the equilibrium \(y^*\) has the property specified in the first conclusion of Proposition 5 we say that it is **locally stable**. If \(|g'(y^*)| > 1\) then the linearized system corresponding to \(y_{k+1} = g(y_k)\) is unstable, so the algorithm tends to diverge from \(y^*\) when started close to it. Notice the similarity of equation (25) with the corresponding local stability conditions for finite node networks (cf. Proposition 2).
A sufficient condition for global convergence of algorithm (A1) can be obtained by requiring that g be a contraction mapping, i.e. for some $\rho \in (0,1)$ there holds

$$|g(y) - y^*| \leq \rho |y - y^*|, \quad \forall y \in [0,1].$$

From Taylor's theorem and the fact $g'(y) \leq 0$ we have

$$|g(y) - y^*| = \left| \int_y^{y^*} g'(z) \, dz \right|$$

Let

$$\delta = \max_{0 \leq f \leq \int_0^1 r(t) \, dt} \frac{d'(f)}{1}$$

From (23) we obtain for all z

$$|g'(z)| \leq \frac{\delta r(z)[1 - |z - g(z)|]}{2d(0)}.$$

Thus (27) is satisfied if

$$\sup_{y \in [0,1], y \neq y^*} \frac{\delta}{2d(0)} \left| \int_y^{y^*} r(z)[1 - |z - g(z)|] \, dz \right| < 1$$

or equivalently if

$$d(0) > \frac{\delta}{2} \sup_{y \in [0,1], y \neq y^*} \left| \int_y^{y^*} r(z)[1 - |z - g(z)|] \, dz \right|. $$

(28)
This will be true in particular if

\[(29) \quad d(0) > \frac{BR}{2}\]

where \(R = \max_{0 \leq t \leq 1} r(t)\). The conclusions of the preceding discussion are summarized in the following proposition.

Proposition 6: If condition (28) or the stronger condition (29) holds, every sequence \(\{y_k\}\) generated by algorithm (Al) converges to the equilibrium \(y^*\).

When the equilibrium \(y^*\) has the property specified in Proposition 6 we say that it is **globally stable.**

In order to put the results obtained thus far in better perspective let us write \(d(f)\) as

\[d(f) = \alpha + \tilde{d}(f)\]

where \(\alpha = d(0)\) represents the bias factor. For fixed input density \(r\) we have that to each positive value of bias \(\alpha\) there corresponds an equilibrium \(y^*_\alpha\). The equilibrium is locally stable for \(\alpha\) satisfying [cf.(25)]

\[(30) \quad \alpha > \frac{r(y^*_\alpha) \left[\int_0^{y^*_\alpha} d'[f^-(y^*_\alpha,t)]dt + \int_{y^*_\alpha}^1 d'[f^+(y^*_\alpha,t)]dt \right]}{2},\]

and globally stable for \(\alpha\) satisfying [cf.(29)]

\[(31) \quad \alpha > \frac{BR}{2}.\]

As \(\alpha\) increases the corresponding equilibria tend to become stable. Furthermore from (24) and (26) it can be seen that the speed of convergence of the algorithm is accelerated as \(\alpha\) increases. On the other hand it is easy to see that \(y^*_\alpha \to \frac{1}{2}\) as \(\alpha \to \infty\), which in the context of the routing problem means that
the algorithm becomes increasingly insensitive to congestion as \(q \to \infty \).

Since in a practical situation we are interested in the stability properties of the algorithm for a broad range of inputs let us consider input densities of the form

\[
(32) \quad r_\lambda(t) = \lambda r(t)
\]

where \(\lambda \) is a positive parameter. Then it is clear that as \(\lambda \) increases a larger value of bias is necessary in order to stabilize the algorithm.

For example if \(d \) is of the form

\[
(33) \quad d(f) = \alpha + \beta f^n
\]

where \(\beta > 0, n > 0 \) then from (3) and (31) we see that if \(r \) is changed to \(\lambda r \) as in (32), then the stability threshold level of the bias is multiplied by \(\lambda^n \). Thus for fixed \(\alpha \) and \(r \) there is a choice of \(\lambda \) for which the corresponding equilibrium is unstable. Incidentally the expression (33) for \(d \) has an interesting property, namely, that the set of all possible equilibria \(\{ \gamma_d^* | \alpha > 0 \} \) as well as the set of all locally or globally stable equilibria is independent of the level of input \(\lambda \) and depends only on \(r \). This is straightforward to verify using (33) and the fact that if \(r \) is changed to \(\lambda r \) and \(\alpha \) is changed to \(\lambda^n \alpha \) then the routing sequences generated by the algorithm are unaffected.

Choosing the Bias as a Function of the Current Routing

Since stability of the algorithm depends strongly on the level of bias and the level of input we are motivated to consider schemes where the bias is not held fixed but is rather adjusted adaptively on the basis of currently available information. An interesting scheme is to use a length function of the form
\[d(f, y) = \alpha(y) + \hat{d}(t) \]

where \(\hat{d} \) is a continuously differentiable, monotonically increasing function with \(\hat{d}(0) = 0 \), and \(\alpha(y) \) is taken to be some monotonically nondecreasing function of \(D_{0}(y) \) given by

\[q(y) = \int_{0}^{1} d[f^{-}(y,t)] dt + \int_{0}^{1} d[f^{+}(y,t)] dt. \]

For example a strictly increasing function of the form

\[(34) \quad \alpha(y) = \gamma_{0} \gamma_{1} D_{0}(y) + \gamma_{2} [D_{0}(y)]^{2} \]

are experimentally determined nonnegative constants. In the context of a finite node network with not necessarily a ring structure a scheme like this can be very easily implemented. In this case \(D_{0}(y) \) can be calculated as the sum of all reported link "delays" \(\hat{d}(t) \). The bias \(\alpha(y) \) can be computed by each node via a formula such as (34) and the link length can be computed as \(D_{1} = \alpha(y) + \hat{d}(f_{1}) \).

A scheme of the type just described can be analyzed along similar lines as earlier in this section. It has been tested in quite extensive numerical experiments involving finite node networks and it was shown to have very satisfactory performance [4], [3]. This can be attributed to the fact that the level of bias increases or decreases with the level of input thus providing automatic scaling with respect to input level. In fact it can be easily seen that if \(\hat{d} \) has the form \(\hat{d}(t) = \beta f^{n} \) where \(\beta > 0 \), \(n > 0 \) and we choose \(\alpha(y) = \gamma D_{0}(y) \) where \(\gamma > 0 \), then for every input density function of the form \(\lambda f(t) \), \(\lambda > 0 \), the output \(f_{1} \) generated by the algorithm do not depend on \(\lambda \).
4. Averaging the Effect of Several Routings

In this section we show that the stability properties of the shortest path algorithm of the preceding section can be improved if link lengths suitably depend on flows corresponding to several past routings. There are several possibilities along these lines. Some examples are as follows:

a) Averaging over the present and the past n routings.

Given a sequence of past routings \(y_k', y_{k-1}', \ldots \), we define for any \(t \in [0,1] \) "averaged" distances to 0 and 1 by

\[
\begin{align*}
B^-(y_k', y_{k-1}', \ldots, y_{k-n}', t) &= \int_0^t \frac{1}{n+1} \sum_{i=0}^{n} d[f^{-}(y_{k-i}', t)]d\tau \\
B^+(y_k', y_{k-1}', \ldots, y_{k-n}', t) &= \int_t^1 \frac{1}{n+1} \sum_{i=0}^{n} d[f^{+}(y_{k-i}', t)]d\tau
\end{align*}
\]

Thus distances are calculated by integrating \(\frac{1}{n+1} \sum_{i=0}^{n} d[f(y_{k-i}', t)] \), which is an averaged length over the routings \(y_k', \ldots, y_{k-n}' \) in place of \(d[f(y_k', t)] \) which is the length corresponding to the last routing.

The new routing \(y_{k+1}' \) is obtained from the equation

\[
\begin{align*}
B^-(y_k', y_{k-1}', \ldots, y_{k-n}', y_{k+1}') &= B^+(y_k', y_{k-1}', \ldots, y_{k-n}', y_{k+1}') \\
\end{align*}
\]

It is easily seen that this defines uniquely \(y_{k+1}' \) in terms of \(y_k', y_{k-1}', \ldots, y_{k-n}' \). As earlier we write the corresponding equation as

\[
y_{k+1}' = g(y_k', y_{k-1}', \ldots, y_{k-n}')
\]

A routing \(y^* \) is said to be an equilibrium if
\[y^* = g(y^*, y^*, \ldots, y^*). \]

It is clear that \(y^* \) is an equilibrium in this sense for a given bias level if and only if it is an equilibrium in the sense given in the preceding section.

We can define local stability of \(y^* \) in the obvious way. We have that \(y^* \) is locally stable if it is also a stable equilibrium of equation \((38)\) linearized around \(y^* \) (see \([8]\) p. 353). It is a known fact that this is true if all roots of the characteristic polynomial

\[
C(p) = p^{n+1} + \sum_{k=1}^{n} \frac{\partial g(y^*)}{\partial y_k} p^{n-k} + \ldots + \frac{\partial g(y^*)}{\partial y_{k-n+1}} p + \frac{\partial g(y^*)}{\partial y_{k-n}}
\]

lie inside the unit circle, (i.e. have modulus less than unity). We calculate the derivatives \(\frac{\partial g}{\partial y_k} \).

We have for \(\alpha > 0 \) similarly as earlier for every \(i \)

\[
\frac{\partial g(y^*)}{\partial y_k} = -\frac{f(y^*)}{2d(y)} \frac{1}{n+1} \left[\int_0^1 d'[f^-(y^*, t)]dt + \int_{y^*}^1 d'[f^+(y^*, t)]dt \right].
\]

Define

\[(39) \quad \mu = \frac{f(y^*)}{2d(0)} \left[\int_0^1 d'[f^-(y^*, t)]dt + \int_{y^*}^1 d'[f^+(y^*, t)]dt \right].\]

Note that, from Proposition 5, \(y^* \) is locally stable for algorithm (Al) if \(\mu < 1 \). The characteristic polynomial can be written as

\[(40) \quad C(p) = p^{n+1} + \frac{\mu^{n+1}}{n+1} p^n + \frac{\mu^n}{n+1} p^{n-1} + \ldots + \frac{\mu}{n+1} p + \frac{\mu}{n+1}.\]

We now use the following fact:

Lemma: Let \(\xi \) be a positive scalar and \(n \) be a positive integer. The roots of the polynomial
lie inside the unit circle if and only if $\bar{\zeta} < 1$.

Proof: This result can be shown by straightforward application of Jury's stability test ([10], p. 97-98). Q.E.D.

We now apply the result of the lemma to our problem. We have that the equilibrium y^* will be locally stable if

$$\bar{\mu} > n + 1.$$

It follows using (39) that in the averaged algorithm the bias level must satisfy

$$r(y^*) \left[\frac{y^*}{d(0)} \frac{1}{2(n+1)} \right] > d'(y^*) \left[f(y^*, t) \right] dt$$

in order for the corresponding equilibrium y^* to be stable. If we compare this with the earlier algorithm [ct. (27)] we see that in the averaged algorithm the bias threshold level for stability is reduced by the factor

$$\frac{1}{n+1}$$

over the one of algorithm (A1). For a given traffic input, and any given bias level the corresponding equilibrium can be made stable by averaging delays over a sufficiently large number of periods.

Regarding rate of convergence, Ostrowski's Theorem again applies. We have from the proof of Th. 10.1.3 of [8] that given any $\epsilon > 0$ there exists a norm on R^{n+1} such that if $y_k \not= y^*$ for all k, then

$$\limsup_{k \to \infty} \frac{(y_{k+1} - y^*, \ldots, y_{k-n+1} - y^*)}{(y_{k} - y^*, \ldots, y_{k-n} - y^*)} \leq \rho(\mu, n) + \epsilon,$$

where $\rho(\mu, n)$ is the maximum root modulus of the characteristic polynomial $C(p)$ of (40). It can be seen that for fixed n we have $\rho(\mu, n) \to 0$ as $\mu \to 0$.

\[\frac{n+1}{p^n} + \frac{n-1}{p^n} + \ldots + \frac{n}{p^n} \]
If \(\rho_1, \ldots, \rho_{n+1} \) are the roots of \(C(p) \) we have \(|\rho_1 \cdots \rho_{n+1}| = \frac{-\mu}{n+1} \), so that
\(p(\mu, n) = (\frac{\mu}{n+1})^{n+1} \). It follows that for fixed \(\mu \) we have \(p(\mu, n) \to 1 \) as \(n \to \infty \), so that the rate of convergence deteriorates as \(n \to \infty \). Thus too much damping can slow down the speed of convergence of the algorithm.

b) Fading Memory Scheme

This scheme is similar to the preceding one except that the lengths corresponding to all past routings are averaged via a fading memory scheme. Given the sequence of all past routings \(\{y_k, y_{k-1}, \ldots\} \), the next routing \(y_{k+1} \) is determined as the solution of the equation

\[
y_{k+1} = \int_0^1 \delta^-_k(t) dt + \int_1^t \delta^+_k(t) dt,
\]

where \(\delta^-_k \) and \(\delta^+_k \) are obtained by the following recursive fading memory scheme with decay factor \(\beta \in [0, 1) \)

\[
\delta^-_k(t) = \beta \delta^-_{k-1}(t) + (1 - \beta) \delta^-(y_k, t)
\]

\[
\delta^+_k(t) = \beta \delta^+_{k-1}(t) + (1 - \beta) \delta^+(y_k, t).
\]

Alternatively, we can write

\[
\delta^-_k(t) = (1 - \beta) \sum_{i=1}^{\infty} \beta^{k-1} \delta^-(y_i, t)
\]

\[
\delta^+_k(t) = (1 - \beta) \sum_{i=1}^{\infty} \beta^{k-1} \delta^+(y_i, t).
\]

Let us write the solution of (46) as

\[
y_{k+1} = g(y_k, y_{k-1}, \ldots).
\]

Let us also consider the linear system obtained by formal linearization of (44) around the equilibrium \(y^* \). We have similarly as earlier that this linearized system is

\[
y_{k+1} = -\mu(1 - \beta)[y_k + \beta y_{k-1} + \beta^2 y_{k-2} + \ldots].
\]
where \(\mu \) is given by (39). Let us denote
\[
z_{k+1} = y_k + \beta y_{k-1} + \frac{\alpha}{2} y_{k-2} + \ldots
\]
Then we have for all \(k \)
\[
y_{k+1} = -\mu(1 - \beta)y_k - \mu(1 - \beta)\beta z_k
\]
\[
z_{k+1} = y_k + \beta z_k
\]
and it follows that the linearized system (45) is in effect the two-dimensional system described by (46) and (47). This latter system is stable if both eigenvalues of the system matrix
\[
\begin{bmatrix}
-\mu(1 - \beta) & -\mu(1 - \beta)\beta \\
1 & \beta
\end{bmatrix}
\]
lie within the unit circle. These two eigenvalues can be calculated to be 0 and \(\beta - \mu(1 - \beta) \). It follows that the linearized system is stable if
\[
\mu < \frac{1 + \beta}{1 - \beta}
\]
Although we do not provide a proof, it is possible to establish rigorously that stability of the linearized system (45) implies local stability of the algorithm (44) and thus we have the result that the threshold value of bias for stability in the flying memory scheme is reduced by the factor \(\frac{1 - \beta}{1 + \beta} \) over the one of algorithm (AI). The optimal speed of convergence is obtained when the eigenvalue \(\beta - \mu(1 - \beta) \) equals zero in which case a super-linear rate of convergence is obtained. This is so when \(\gamma = \frac{\mu}{1 + \mu} \). For other values of \(\beta \) in the interval \(\left(\frac{\mu - 1}{\mu + 1}, 1 \right) \) the rate of convergence is linear, and
for $\beta \geq \frac{\mu - 1}{\mu + 1}$ the equilibrium is unstable. As β is increased from the optimal value $\frac{\mu}{1+\mu}$ towards unity the rate of convergence deteriorates.

c) **Asynchronous Length Reporting**

This type of scheme is patterned after a shortest path routing algorithm where nodes report asynchronously the lengths of their outgoing links and the shortest paths are updated after each report. The set of nodes $[0,1]$ is partitioned into n subsets which we call S_1, S_2, \ldots, S_n. At some time, say 0, the nodes in S_1 report their lengths averaged over the flows corresponding to the preceding n routings and a routing update takes place. Then at time $a_1 > 0$ the nodes in S_2 do the same thing. Similarly, for $i = 1, \ldots, n-1$, at time $(a_1 + a_2 + \ldots + a_i)$ the nodes in S_{i+1} do the same thing. At time $(a_1 + a_2 + \ldots + a_n)$ the nodes in S_1 again report their lengths, an updating takes place and the process is repeated. This type of asynchronous operation is currently in use in the ARPANET [4] where, in a finite node network context, S_i consists of a single node for all i. There are also other variations of asynchronous operation involving for example averaging over all preceding routings via a fading memory scheme. This type of algorithm is described and tested computationally in [4] and [3]. The analysis of all these schemes is very similar as that of the averaging schemes described earlier in this section. The details are quite messy and may be found in [4], where it is shown, via analysis and computational experiment, that asynchronous operation has a substantial beneficial effect on the stability properties of the shortest path algorithm.

5. **The Case of a Network with an Arbitrary Topology**

The extension of the continuous model to the case of a network with
arbitrary topology is quite straightforward. However, the notation required for a precise mathematical description is very cumbersome and tends to cloud the main ideas. For this reason our presentation will be somewhat informal.

Consider the case of an undirected network with a single destination. Let \(r \) be the input density function mapping points on the undirected links of the network to the nonnegative real numbers. The meaning of \(r \) again is that, given any interval \(I \) on a link, the total traffic input originating at this interval is the integral of \(r \) over \(I \). We view the set of points on the network as a subset of a Euclidean space of appropriate dimension, and assume that \(r \) is a continuous function. In order to consider notions of length we associate with each undirected link \((i,j)\) two directions \(i \rightarrow j \) and \(j \rightarrow i \). (There may be more than one links connecting a pair of nodes within our framework. When we refer to a link \((i,j)\) we mean a particular link connecting \(i \) and \(j \) and specify further when there is danger of confusion).

A length function \(\delta \) is a function which assigns to each point on an undirected link \((i,j)\) two nonnegative numbers one associated with the direction \(i \rightarrow j \) and the other associated with the direction \(j \rightarrow i \). We assume that \(\delta \) is piecewise continuous along every link in each direction. The meaning of \(\delta \) is that given any two points on a link \((i,j)\) their distance in the direction \(i \rightarrow j \) is obtained by integrating \(\delta \) as defined in that direction between the two points. The distance in the opposite direction \(j \rightarrow i \) is defined analogously. Similarly we can consider paths between points on possibly different links and define their length in one or the other direction.

We now associate to a given length function \(\delta \) a shortest path of every point, and an associated routing. We assume that \(\delta \) is everywhere positive. Given any point we consider the collection of paths to the destination and
their associated distances specified by the function δ. A path of minimum
distance is referred to as a shortest path from the point to the destination,
and the corresponding distance is referred to as the shortest distance of
the point to the destination. The routing corresponding to δ is the set
of points for which there are more than one equidistant paths to the
destination. A routing is said to be regular if it does not contain any
nodes of the network, otherwise it is said to be singular.

Given the function δ, a shortest path of each point and the corres-
ponding routing can be constructed in a simple manner along similar lines
as for usual networks. We first construct a shortest path tree for the
network in the usual manner by using as (directed) link lengths those speci-
fied by the length function δ. (The length of the directed link (i,j) is
the integral of δ along (i,j) in the direction $i \rightarrow j$). This gives us a
shortest path and the associated shortest distance for every point on the
shortest path tree including all the nodes of the network. A shortest path
for points on links that are not part of the shortest path tree can be
obtained as follows:

Let (i,j) be a link that is not on the tree. Let D_i and D_j be
the shortest distances of nodes i and j. The shortest distance of a point
t on (i,j) is

$$D(t) = \min \{ D_i + \int_t^1 \delta_{ji}(\tau) d\tau, D_j + \int_t^1 \delta_{ij}(\tau) d\tau \}$$

where δ_{ji} is δ in the direction $j \rightarrow i$ and δ_{ij} is δ in the direction $i \rightarrow j$.

It can be seen that the routing corresponding to δ is regular if and only
if each (ordinary) node of the network has only one shortest path associated
with it. If a routing is regular then every one of its points lies in the
"interior" of some link. Notice that the preceding construction shows that a routing (regular or not) consists of \((L - N + 1)\) points where \(L\) and \(N\) are the number of undirected links and nodes respectively.

Given a shortest path tree and the corresponding routing constructed as just described, we can define the flow corresponding to it. At each point, say \(t\), of a link \((i, l)\) there are two flows to consider (one of which is zero); the flow in the direction \(i \rightarrow l\) and the flow in the direction \(l \rightarrow i\). Each is defined in the natural way by integrating the input density function \(r\) over the portion of the network that lies "upstream" from the point \(t\), i.e. over the set of points the shortest paths of which meet \(t\) on their way to the destination. At the points of a regular routing the flow is zero in either direction. Notice that if \(\delta\) is such that the corresponding routing is regular the flow is uniquely determined by \(\delta\). Otherwise the flow will depend not only on \(\delta\) but also on the shortest path tree selected.

Suppose we are given a monotonically increasing, continuously differentiable function \(d\) mapping flow into the positive numbers. Given a shortest path tree \(T\) corresponding to a length function \(\delta\) with routing \(Y\) we can define a new length function \(\delta\) which assigns to points \(t\) in any one of the two possible directions the length \(\overline{\delta}(t) = d[f(t)]\) where \(f(t)\) is the flow at \(t\) corresponding to \(\delta\) and \(T\) in the appropriate direction. The corresponding routing is denoted \(\overline{Y}\). Note that if \(Y\) is singular then \(\overline{\delta}\) and \(\overline{Y}\) depend not only on \(\delta\) but also on \(T\). If \(Y\) is regular then \(\overline{Y}\) is uniquely determined by \(\delta\).

We are now in a position to define an algorithm similar to the one of Section 3. Given a length function \(\lambda_0\) and a corresponding shortest path tree \(T_0\) and routing \(Y_0\), the next length function is \(\lambda_1 = T_0\) with corresponding routing \(Y_1 = \overline{Y}_0\). A shortest path tree \(T_1\) corresponding to \(\lambda_1\) is selected.
and is used to define similarly δ_2, Y_2 and T_2. Similarly the algorithm generates δ_k, Y_k and T_k for all k.

We say that a routing Y^* corresponding to a length function δ^* and shortest path tree T^* is an equilibrium routing if $\delta = \delta^*$ and $Y = Y^*$.

Contrary to the case of a ring network where we were able to prove existence of an equilibrium, in general there need not exist an equilibrium. This fact is demonstrated in the following example and provides an indication of the complexity of the dynamic phenomena that we are investigating.

Example: Consider the network shown in Figure 5.

![Figure 5](image)

There are two nodes 1 and 2 and three links connecting them denoted by A, B, C. Node 2 is the destination. Points on A, B, and C are parameterized by their Euclidean distance to the destination. The Euclidean lengths of A, B and C are all taken equal to unity. Let the input density function be as follows.
For link A: \(r(t) \equiv 1, \quad \forall t \in [0,1] \)
For link B: \(r(t) = r_B, \quad \forall t \in [0,1] \)
For link C: \(r(t) = r_C, \quad \forall t \in [0,1] \)

We assume that \(1 \leq r_B \leq r_C, \ 1 < r_C \). Let

\[
d(f) = \alpha + f
\]

where \(\alpha > 0 \) is the bias factor.

In view of the fact \(1 \leq r_B \leq r_C, \ 1 < r_C \), it is clear that an equilibrium routing cannot contain a point in the interior of link A, while it must contain a point in the interior of link C. We consider two cases:

Case 1: \(r_B = 1 \). Then an equilibrium routing cannot contain a point in the interior of link B so the only candidate for equilibrium are the two types of singular routings shown in Figure 6. In routings \(Y_1 \) and \(Y_2 \) the incoming traffic at node 1 is routed through link A and link B respectively. None of the two routings can be an equilibrium. In routing \(Y_1 \) there will be points in the interior of link A which will have a shorter distance to the destination (corresponding to \(Y_1 \)) through link B rather than through A, and the reverse situation occurs in routing \(Y_2 \). Notice that this argument makes use only of the magnitude of \(r_B \) and \(r_C \) and is independent of the form of the function \(d \).

Case 2: \(1 < r_B \). Then it can be seen that the only candidates for equilibria are routings of the form shown in Figure 7. Each equilibrium routing candidate...
is specified by the points \(y_B, y_C \in [0,1] \) where the flow separates on links B and C. We have that the distances \(D^+(y_B), D^-(y_B) \) of \(y_B \) corresponding to routing \((y_B, y_C) \) along the counterclockwise and clockwise paths respectively are given by

\[
D^-(y_B) = \alpha y_B + r_B \int_0^{y_B} (y_B - t) \, dt
\]

\[
D^+(y_B) = (2 - y_B)\alpha + r_B \int_0^{1} (t - y_B) \, dt
\]

\[+ \int_0^{1} [r_B(1 - y_B) + r_C(1 - y_C) + (1 - t)] \, dt\]

If \((y_B, y_C) \) is an equilibrium we must have

\[
D^-(y_B) = D^+(y_B)
\]

which after some calculation can be written as

\[
2(\alpha + r_B)(1 - y_B) + r_C(1 - y_C) = \frac{r_B - 1}{2}.
\]

By symmetry the equation \(D^-(y_C) = D^+(y_C) \) can be written as

\[
r_B(1 - y_B) + 2(\alpha + r_C)(1 - y_C) = \frac{r_C - 1}{2}.
\]

Equations (48) and (49) are in fact necessary and sufficient conditions for \((y_B, y_C) \) to be an equilibrium routing. Thus there exists an equilibrium routing if and only if the solution \((y_B^*, y_C^*) \) to these equations satisfies \(y_B^* \in [0,1], y_C^* \in [0,1] \). After some calculation, this condition can be shown to be equivalent to

\[
\alpha \geq \frac{r_C(2r_B - r_C - 1)}{2(r_B - 1)}.
\]
Routing Y_1

Routing Y_2

Figure 6

Figure 7
If \(2r_B \geq r_C + 1\) then for every level of bias there exists an equilibrium routing \((y_B', y_C')\). If however \(2r_B < r_C + 1\) then there exists an equilibrium only for \(\alpha\) above the threshold level indicated in (50).

The preceding example shows that existence of an equilibrium can depend on both the level of bias and the input density function. Furthermore, it may happen that, for a given input density function, no value of bias can be found for which an equilibrium exists. This last phenomenon is of a singular nature and is due to the fact that the Euclidean lengths of links A, B, and C are all equal to unity. To see this consider the routing \(Y_\infty\) corresponding to the length function \(\delta^+(t) \equiv 1\), \(\delta^-(t) \equiv 1\). The routing \(Y_\infty\) is analogous to the min-hop routing in discrete node networks, and can be associated with infinite level of bias. It is an equilibrium routing for the case \(d(f) \equiv 1\).

If \(Y_\infty\) is a regular routing, i.e. each node has a unique minimum Euclidean distance path to the destination, then it is clear that, for any given input function \(r\), there exists a threshold level of bias \(\bar{\alpha}\) such that for all \(\alpha > \bar{\alpha}\) a regular equilibrium routing exists.

Characterizing the dynamic behavior of the algorithm in the absence of an equilibrium is certainly an interesting problem but we have been unable to make much progress in this direction. Computational results for finite node networks given in [3] suggest that the stability properties of the algorithm are improved by high level of bias and averaging similarly as in the presence of an equilibrium. In what follows in this section we restrict attention to the case where a regular equilibrium routing exists.

Given a regular equilibrium routing \(Y^* = \{y_1^*, y_2^*, \ldots, y_n^*\}\) consider for \(j = 1, 2, \ldots, n\) the link \((i_j, f_j)\) containing \(y_j^*\) and the two shortest paths from \(y_j^*\) to the destination. A simple but fundamental observation is that these two paths join at some point thereby forming a ring of the type con-

...
considered in Section 3. The zero point on this ring is the point where the two paths join. Let e_j be the Euclidean length of the ring containing y_j^\ast. For $j = 1,2,\ldots,n$ we parameterize points on the ring containing y_j^\ast by the number in $[0,e_j]$ going from smaller to larger numbers as we traverse the ring in a chosen direction similarly as in the previous two sections. Thus points y_j on the link (i_j,ℓ_j) can and will be identified by the number in $[0,e_j]$ specifying their position on the ring corresponding to y_j^\ast. It is easy to see now that given Y^\ast, any collection $Y = \{y_1^\ast,y_2^\ast,\ldots,y_n^\ast\}$ such that y_j lies in the interior of (i_j,ℓ_j) specifies a flow f_Y through each point in the network that follows the (ordinary) shortest path tree corresponding to δ^\ast and Y^\ast and separates on each link (i_j,ℓ_j) in the two opposite directions at the point y_j. This flow defines a length function δ_Y via the relation $\delta_Y(t) = d[f_Y(t)]$ in the direction of the flow, and δ_Y yields in the manner described earlier a shortest path tree and a routing denoted by $g(Y)$. It is easy to show (using the regularity of Y^\ast) that if Y is sufficiently close to Y^\ast then the (ordinary) shortest path tree corresponding to δ_Y is the same as the one corresponding to Y^\ast and that the elements of the routing $g(Y)$ lie on the links (i_j,ℓ_j).

The algorithm described earlier can now be redefined as

\[(51) \quad Y_{k+1} = g(Y_k).\]

The definition is local within a sufficiently small neighborhood of Y^\ast and is associated with the (ordinary) shortest path tree corresponding to Y^\ast and the associated parameterization of the ring subnetworks containing the links (i_j,ℓ_j).

Similarly as in the preceding section we say that an equilibrium
\(y^* \) is **locally stable** if there is a neighborhood of \(Y^* \) (defined in terms of the parameterization of the rings associated with \(Y^* \) as discussed earlier), such that the sequence \(\{g(Y_k)\} \) generated by (50) is well defined and converges to \(Y^* \) for every choice of \(Y_0 \) within this neighborhood.

In order for \(Y^* \) to be locally stable it is sufficient that the \(nxn \) matrix \(\frac{\partial g(Y^*)}{\partial Y} \) be defined and have all its eigenvalues within the unit circle. The computation of \(\frac{\partial g(Y^*)}{\partial Y} \) is straightforward along the lines of Section 3. We first introduce some notation. For \(j=1,2,\ldots,n \) let \(R_{y_j,e_j}^+ \) denote the set of points \(t \in [y_j,e_j] \) on the \(j \)th ring, and \(R_{y_j,e_j}^- \) denote the set of points \(t \in [0,y_j] \) on the same ring. Note that for every \(j,m=1,\ldots,n \) the direction of flow on \(R_{y_j,e_j}^+ \) and \(R_{y_m,e_m}^- \) (or \(R_{y_m,e_m}^- \)) must coincide if these sets have intersection with positive Lebesgue measure.

This implies that at least one of the sets \(R_{y_j,e_j}^+ \cap R_{y_m,e_m}^- \) and \(R_{y_j,e_j}^- \cap R_{y_m,e_m}^+ \) is either empty or has Lebesgue measure zero. Similarly at least one of the sets \(R_{y_j,e_j}^- \cap R_{y_m,e_m}^- \) and \(R_{y_j,e_j}^- \cap R_{y_m,e_m}^+ \) is either empty or has Lebesgue measure zero. The equations defining \(g(Y) \) can be written as

\[
\int_{R_{g_j(Y),e_j}^-} d[f^-(Y,t)]dt = \int_{R_{g_j(Y),e_j}^+} d[f^+(Y,t)]dt, \quad j=1,\ldots,n.
\]

By differentiation with respect to \(y_m \) we obtain similarly as earlier at the equilibrium \(Y^* \)

\[
\frac{\partial g_j(Y^*)}{\partial y_m} = \frac{r(y_m^*)}{2d(0) \theta m}, \quad (51)
\]

where
and $f_j^+(y^*,t), f_j^-(y^*,t)$ are the flows on the jth ring in the positive and negative directions. In view of the preceding discussion, at least two of the integrals in (52) are zero for every j and m.

Let R be the diagonal matrix having $r(y_j^*)$ as jth diagonal element, and let Θ be the nxn matrix having as elements the scalars θ_{jm}. Then we have

$$\frac{\partial R(y^*)}{\partial y} = \frac{1}{2d(0)} \Theta R.$$

We can show that the matrix Θ is negative semidefinite. Indeed the matrix $-\Theta$ is the Gram matrix associated with the functions

$$\chi_{R_j^+,c_j}(t) \ d'[f_j^+(y^*,t)] - \chi_{R_j^-,c_j}(t) \ d'[f_j^-(y^*,t)] , \ j = 1, \ldots, n,$$

where χ_S is the characteristic function of a set S ($\chi(t) = 1$ if $t \in S$, $\chi(t) = 0$ otherwise). By using the fact that R is diagonal it can be shown that the eigenvalues $\lambda_1, \ldots, \lambda_n$ of $\frac{\partial g(y^*)}{\partial y}$ are real and nonpositive. Consider the spectral radius
\[\mu = \max \{|\lambda_1|, \ldots, |\lambda_n|\} . \]

Then the equilibrium \(y^* \) is locally stable for

(53) \[\mu < 1, \]

and hence there exists a threshold level for \(d(0) \) above which the corresponding equilibrium is stable. Similarly as in the preceding section, we can show that if a fading memory scheme with decay factor \(\beta \) is used to average the effects of past routings the equilibrium \(y^* \) is locally stable if

(54) \[\mu < \frac{1 + \beta}{1 - \beta} , \]

and there is a value of \(\beta \) which optimizes the rate of convergence. It is also possible to show that the other forms of averaging the effects of several past routings improve the stability properties of the algorithm.

For the purpose of aiding the reader in understanding the method of calculation of the matrix \(\frac{\partial g(y^*)}{\partial y} \) we provide an example.

Example: Consider the network shown in Figure 8 where node 4 is the destination, and assume that the regular routing \(\{y_1^*, y_2^*, y_3^*\} \) shown in an equilibrium. The figure shows also the chosen positive direction on the ring corresponding to each \(y_i^* \).
We calculate the symmetric matrix Θ with elements θ_{jm} given by (52). The interval between any two nodes i and l is denoted $[i,l]$. The interval between some y_i^* and a node l is denoted $[y_i^*,l]$. We have

\[
\theta_{11} = - \int_{[y_1^*,1] \cup [1,3] \cup [3,4]} d'[f_1^+(Y^*,t)] \, dt - \int_{[y_1^*,3]} d'[f_1^-(Y^*,t)] \, dt
\]

\[
\theta_{22} = - \int_{[y_2^*,2] \cup [2,3] \cup [3,4]} d'[f_2^+(Y^*,t)] \, dt - \int_{[y_2^*,1]} d'[f_2^-(Y^*,t)] \, dt
\]

\[
\theta_{33} = - \int_{[y_3^*,2] \cup [2,3] \cup [3,4]} d'[f_3^+(Y^*,t)] \, dt - \int_{[y_3^*,3]} d'[f_3^-(Y^*,t)] \, dt
\]

\[
\theta_{12} = - \int_{[1,3]} d'[f_1^+(Y^*,t)] \, dt
\]

\[
\theta_{23} = - \int_{[2,3]} d'[f_2^+(Y^*,t)] \, dt
\]
\[\theta_{13} = - \int_{[3,4]} d' \left[f_1^{+}(y^*, t) \right] dt \]

Acknowledgement

This investigation was conducted while the author participated in a design study of the new ARPANET routing algorithm at Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts. This study was supported by ARPA under Contract MDA 903-78-C-0129. The collaboration and discussions with John McQuillan, Ira Richer, and Eric Rosen had a substantial influence on the ideas of this paper. The research was completed at the University of Illinois, Urbana with support from Grant NSF-ENG 77-15949, and at the Massachusetts Institute of Technology with support from Grant ONR-N00014-75-C-1183.

DYNAMIC MODEL OF SHORTEST PATH ROUTING ALGORITHMS FOR COMMUNICATION NETWORKS: WITH MULTIPLE DESTINATIONS

Dimitri P. Bertsekas
Department of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Mass. 02139

Abstract
This paper provides analysis and computational results relating to the dynamic behavior of shortest path routing algorithms for store and forward communication networks. A companion paper [1] focuses on networks with a single destination. The present work considers networks with multiple destinations.

1. Introduction
This paper is a sequel to a companion paper [1] which examines the dynamic behavior of shortest path routing algorithms for communication networks with a single destination. We examine here the case when there are several destinations. Generally speaking, the results obtained for single destination networks have extensions to the multiple destination case although the analysis is considerably more complex. Similarly as for single destination algorithms we find that the addition of a bias factor and the presence of an averaging mechanism have a stabilizing effect on dynamic behavior. Our results also suggest that the presence of multiple destinations has a damping effect on the dynamic behavior of the algorithms. Similarly as in (1) we consider a network model with a continuum of nodes and rely on methods of convergence analysis for discrete-time systems with Euclidean state space. The possibilities for extension of these results to finite node networks are limited. However, it appears that conclusions on algorithmic behavior drawn from analysis of the continuous model remain at least qualitatively valid for finite node networks. The conjecture is supported by results of computational experiments provided in section 3. Throughout the paper we assume that the reader is familiar with (1).

2. A Continuous Model of a Ring Network with Multiple Destinations
We consider a continuum of nodes arranged in a ring and sending traffic to n points on the ring referred to as the destinations. A point is selected on the ring and is referred to as the origin. Every other point on the ring is identified with its Euclidean distance from the origin in the clockwise direction. Where t is normalized to take values in the interval [0,1]. The destinations are identified with their distances from the origin. We assume that

\[0 < x_1 < x_2 < \ldots < x_N. \]

Given any two distinct points \(t_1, t_2 \) on the ring, the interval \(R^c_{t_1, t_2} \) between \(t_1 \) and \(t_2 \) in the clockwise direction is defined to be the set

\[R^c_{t_1, t_2} = \begin{cases} \{t_1, t_2\} & \text{if } t_1 < t_2 \\ \{t_1, t_2\} & \text{if } t_1 > t_2 \end{cases} \]

Similarly the interval \(R^s_{t_1, t_2} \) between \(t_1 \) and \(t_2 \) in the clockwise direction is defined to be the set

\[R^s_{t_1, t_2} = \begin{cases} [0, t_1) \cup (t_2, 1] & \text{if } t_1 < t_2 \\ [0, t_1) \cup (t_1, t_2) & \text{if } t_1 > t_2 \end{cases} \]

For each \(t_1, t_2 \) we define \(R^c_{t_1, t_2} = R^s_{t_1, t_2} = \{t_1, t_2\} \). Notice that we have for all \(t_1, t_2 \in [0,1] \)

\[R^c_{t_1, t_2} = R^s_{t_1, t_2}. \]

For each \(k = 1, \ldots, N \) we are given a continuous function \(t_k : [0,1] \rightarrow [0,\pi] \) such that \(t_k(0) = t_k(1) \). We refer to \(t_t, t_1, \ldots, t_N \) as the probability density function for destination. The meaning of \(t_k \) is that for any two distinct points \(t_1, t_2 \) on the ring the total traffic input that originates in \(R^c_{t_1, t_2} \) is destined for \(t_k \) is

\[\int_{R^c_{t_1, t_2}} t_k(t) dt \]

2. We now introduce notions of length and distance along the ring. These notions will be considered in both the clockwise and counterclockwise directions which are also the negative and positive directions on \([0,1]\). By a length function we mean a function which assigns to each point \(t \in [0,1] \) two positive numbers \(\delta^c(t) \) and \(\delta^s(t) \), the first associated with the positive direction and the second associated with the negative direction. Thus a length function can be identified with the corresponding pair \((\delta^c, \delta^s)\).

In what follows attention will be restricted to length functions \(\delta = (\delta^c, \delta^s) \) for which \(\delta^c \) and \(\delta^s \) are piecewise continuous on \([0,1]\). Given such a length function we define the distance \(d(t_1, t_2) \) of any two points \(t_1, t_2 \in [0,1] \) in the positive direction by

\[d^c(t_1, t_2) = \int_{R^c_{t_1, t_2}} \delta^c(t) dt. \]

Similarly the distance \(d^s(t_1, t_2) \) of \(t_1 \) and \(t_2 \) in the negative direction is defined by

\[d^s(t_1, t_2) = \int_{R^s_{t_1, t_2}} \delta^s(t) dt. \]
Given a length function \((\delta^+, \delta^-) \), it is clear that there exists for every \(i \) a point \(z_i \in (0,1) \) such that \(z_i \neq z_{i+1} \) and
\[
\delta^-_i(z_i, z_{i+1}) = \delta^+_i(z_{i+1}, z_{i}).
\]

(5)

The point \(z_i \) is unique except in the singular case where \(z_i = 0 \) and \(z_{i+1} = 1 \) both satisfy (5). Define
\[
Y_t = \int_{t}^{t+} dt, \quad i = 1, \ldots, n.
\]

(6)

Note that \(y_1 \) is the counterclockwise Euclidean distance between \(x_1 \) and \(x_2 \) along the ring. Clearly we have \(0 \leq y_1 < 1 \) for all \(i \). The vector \(Y = (y_1, \ldots, y_n) \) defined by (5) and (6) is referred to as the shortest path routing generated by \((\delta^+, \delta^-)\). It is easy to verify that \(Y \) has the property
\[
x_1 + z_1 < x_2 + y_2 < \ldots < x_n + y_n.
\]

More generally by a routing we mean an element of \((0,1)^N\) (the Cartesian product of \(N \) copies of \((0,1)\)). Given a routing \(Y = (y_1, \ldots, y_n) \) consider for each \(i \) for which \(y_i = 0 \) the point \(x_i \) on the ring given by
\[
x_i = \begin{cases} x_i + y_i & \text{if } x_i + y_i \leq 1 \\ x_i + y_i - 1 & \text{if } x_i + y_i > 1 \end{cases}
\]

(7)

Define for each \(i = 1, \ldots, N \) and \(t \in (0,1) \) the flow \(f_1^+(Y,t) \) at \(t \) in the positive direction for destination \(i \) by
\[
f_1^+(Y,t) = \begin{cases} 0 & \text{if } y_i = 1, \text{ or } y_j \neq 1 \text{ and } t \in [x_i, x_{i+1}] \\ \int_{x_i}^{x_{i+1}} f_1^+(Y,t) \, dt & \text{if } y_i \neq 1 \text{ and } t \in [x_i, x_{i+1}] \\ \int_{x_i}^{x_{i+1}} f_1^-(Y,t) \, dt & \text{if } y_i = 1. \end{cases}
\]

(8)

Similarly define the flow \(f_1^-(Y,t) \) at \(t \) in the negative direction for destination \(i \) by
\[
f_1^-(Y,t) = \begin{cases} 0 & \text{if } y_i \neq 1 \text{ and } t \in (x_i, x_{i+1}) \\ \int_{x_i}^{x_{i+1}} f_1^-(Y,t) \, dt & \text{if } y_i \neq 1 \text{ and } t \in (x_i, x_{i+1}) \\ \int_{x_i}^{x_{i+1}} f_1^+(Y,t) \, dt & \text{if } y_i = 1. \end{cases}
\]

(9)

Define also the total flows in the positive and negative direction at \(t \in (0,1) \) by
\[
f^+(Y,t) = \sum_{i=1}^{N} f_i^+(Y,t)
\]

(10)

\[
f^-(Y,t) = \sum_{i=1}^{N} f_i^-(Y,t)
\]

(11)

Notice that for fixed \(Y = (y_1, \ldots, y_n) \) the functions \(f^+(Y,\cdot) \) and \(f^-(Y,\cdot) \) can be discontinuous only at the destination points \(x_1, \ldots, x_N \). For every fixed \(t \) \(f^+(Y,t) \) and \(f^-(Y,t) \) are continuous on \((0,1)^N\). Furthermore it can be seen that for all \(i \) and \(y(0,1)^N \)
\[
\frac{df^+(Y,t)}{dt} = \begin{cases} t \left[f_1^+(Y,t) \right] & \text{if } t \in [x_1, x_2] \\ 0 & \text{if } t \in [x_2, x_3] \\ \int_{x_2}^{x_3} f_1^+(Y,t) \, dt & \text{if } t \in (x_3, x_4].
\end{cases}
\]

(12)

\[
\frac{df^-(Y,t)}{dt} = \begin{cases} 0 & \text{if } t \in [x_1, x_2] \\ \int_{x_1}^{x_2} f_1^-(Y,t) \, dt & \text{if } t \in (x_2, x_3].
\end{cases}
\]

(13)

where \(y_i \) is defined in terms of \(y_1 \) via (7).

Similarly as in [1], we are given a continuously differentiable, monotonically increasing scalar function \(d \) of flow such that \(d(f) > 0 \) for all \(f \). For simplicity we exclude the possibility \(d(0) = 0 \). It was shown in [1] that unstable algorithmic behavior results in the single destination case if \(d(0) = 0 \). Given a routing \(Y \) we define the length function
\[
(\delta^*_Y, \delta^-_Y)
\]

(14)

(15)

where \(y_0 \) is a given initial routing.

We say that \(Y \) is an equilibrium routing if
\[
Y = \arg\min_Y \{ J(Y) \}.
\]

Since \(y(0,1)^N \) for every routing \(Y \), it follows that an equilibrium \(Y \) must belong to \((0,1)^N\). We have the following proposition regarding existence, uniqueness, and optimality of an equilibrium. The proof is quite lengthy and has been relegated to Appendix A.

Proposition 1: There exists a unique equilibrium routing \(Y^* \). Furthermore \(Y^* \) minimizes over all \(y(0,1)^N \) the expression
\[
J(Y) = \int_0^1 p[f^+(Y,t)] \, dt + \int_0^1 p[f^-(Y,t)] \, dt
\]

where \(p \) is any function satisfying for all \(f \)
\[
\int_0^1 |f| \, df = d(f).
\]

We have assumed earlier that \(d(0) > 0 \). If this assumption is replaced by \(d(0) = 0 \) then Proposition 1 can still be shown to hold except for the uniqueness part. Existence of an equilibrium can be shown by using Kakutani's fixed point theorem ([12], p. 67) in
place of Brower's theorem in the proof of Appendix I.

The proof of the optimality property of an equilibrium given in Appendix A is also valid under the assumption $d(0) \geq 0$.

We now evaluate the Jacobian matrix

\[
\begin{bmatrix}
3q_1(y) & 2q_2(y) \\
\vdots & \vdots \\
3q_N(y) & 2q_N(y)
\end{bmatrix}
\]

For any routing $Y(0,1)$ define $\tilde{q}_j(y)$, $j=1, \ldots, N$, by the equation (cf. (7)).

\[
\tilde{q}_j(y) = \begin{cases}
x_jy_j & \text{if } x_jy_j \leq 1 \\
x_jy_j - 1 & \text{if } x_jy_j > 1
\end{cases}
\]

The equation defining $q_j(y)$ is (cf. (3) - (5), (14), (15))

\[
\int_{q_j(y)}^{y_j} f(y,y') \, dy' = \int_{q_j(y)}^{y_j} f(y,y') \, dy'
\]

Differentiation of this equation with respect to y_j yields similarly as in (1) the following formula

\[
\left. \frac{d}{dy_j} \right|_{y_j=q_j(y)} \left[\begin{array}{c}
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right) \\
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right)
\end{array} \right] = \left[\begin{array}{c}
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right) \\
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right)
\end{array} \right]
\]

where x_i and x_j are given by (7). At an equilibrium $Y^* = (y_1^*, \ldots, y_N^*)$ we have

\[
\left(\begin{array}{c}
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right) \\
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right)
\end{array} \right) = 0
\]

where for all j

\[
x_j^* = \begin{cases}
y_j^* & \text{if } y_j^*y_j^* = 1 \\
y_j^* - 1 & \text{if } y_j^*y_j^* > 1
\end{cases}
\]

Let k and l be the diagonal entries having x_k and x_l respectively and let $d^j(y)$ be the diagonal elements. Let also G be the symmetric $N \times N$ matrix having elements

\[
\left(\begin{array}{c}
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right) \\
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right)
\end{array} \right)
\]

Then we can write the Jacobian (17) evaluated at Y^* as

\[
\left. \frac{d}{dy_j} \right|_{y_j=q_j(y)} \left[\begin{array}{c}
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right) \\
\frac{d}{dy_j} \left(\sum_{i \neq j} y_i \right)
\end{array} \right] = D^0 y
\]

We now establish that the matrix G is negative semidefinite. For any set S denote by X_S the characteristic function of S, i.e. $X_S(t) = 1$ if $t \in S$, and $X_S(t) = 0$ if $t \notin S$. It can be seen that Θ is the sum of two positive semidefinite matrices. The first matrix is the Gram matrix of the functions

\[
X_S(t) \frac{d}{dy} f(Y(t), t)
\]

in $L^2([0,1])$ (3), p. 56, and the second matrix is the Gram matrix of the functions

\[
X_S(t) \frac{d}{dy} f(Y(t), t)
\]

Since every Gram matrix is positive semidefinite it follows that Θ is negative semidefinite. Now the eigenvalues of $\frac{d}{dy} f(Y(t), t)$ are the same as the eigenvalues of the matrix $D^2/2 I^{1/2} G^{1/2} D^2/2$ which is a negative semidefinite matrix. It follows that all eigenvalues $\lambda_1, \ldots, \lambda_N$ of $\frac{d}{dy} f(Y(t), t)$ are real and nonpositive. It is also possible to show that $\frac{d}{dy} f(Y(t), t)$ has a set of eigenvectors that form a basis for R^N, i.e. it is diagonalizable. Let μ be the spectral radius of $\frac{d}{dy} f(Y(t), t)$, i.e.

\[
\mu = \max(|\lambda_1|, \ldots, |\lambda_N|)
\]

Similarly as in (1), we say that an equilibrium Y^* is locally stable if there exists a neighborhood N of Y^* such that if $Y_{0}\in N$ then the sequence (γ_k) generated by the algorithm (16) remains in N and converges to Y^*. Using Ostrom's theorem (12), p. 300-301 and the fact that $\frac{d}{dy} f(Y(t), t)$ has real eigenvalues and is diagonalizable we can prove the following proposition:

Proposition 2: An equilibrium $Y^* = (y_1^*, \ldots, y_N^*)$ is locally stable if

\[
y < \mu
\]

where μ is defined by (23). Furthermore if $y_k = y^*$ and $y_k \neq y^*$ for all k there exists a norm $||v||$ on R^N such that

\[
\lim_{k \to \infty} \frac{||y_k - y^*||}{||y_k - y^*||} = \mu
\]

Similar as in (1), let us write

\[
\Delta y_k = y_k - \bar{y}_k
\]

where $\bar{y}_k = d(0)$ represents bias. It follows from the previous analysis that a sufficiently high level of bias will induce a locally stable equilibrium an algorithm similar to the one of (1) shows that for sufficiently high level of bias the algorithm will converge to an equilibrium for every initial routing Y_0.

125
When there is a single destination (N=1) we have \(f'(Y, z) = 0 \) and the denominator in (19) equals 2a. Thus it is possible to have a stable equilibrium even if \(a \) is very small while this is not possible when there is a single destination. Based on this fact one is tempted to conclude that the presence of more than one destination tends to have a beneficial effect on the dynamic behavior of the algorithm. This conjecture is supported by the results of computational experiments, but we have been unable to formulate it and establish it mathematically.

As in (1), it is possible to define and analyze an algorithm where the bias \(a \) depends on the current routing \(Y^* \). Similar results as those of (1) can be obtained, so we omit the details.

Basing the Routing Decision on More than one Past Routines

It was seen in (1) that the dynamic behavior of the algorithm for the single destination case can be improved by employing some form of averaging of the effects of several past routings. This analysis and the corresponding conclusions can be generalized to the multiple destination case.

As an example consider the case where the length function \(\delta_k(t) \) used in generating \(Y_k(t) \) depends on all previous routings \(Y_1, Y_2, \ldots \), via a fading memory scheme of the form

\[
\delta_k(t) = \delta_k(t-1) + (1-\beta) d[Y(t), t], \quad \text{Vte[0,1]}
\]

\[
\delta_k(t) = \delta_k(t-1) + (1-\beta) d[Y(t), t], \quad \text{Vte[0,1]}
\]

where \(\beta(0,1) \) is the decay factor. Then the linearized system corresponding to an equilibrium \(Y^* \) is given by \(c.f. (11) \)

\[
Y_{k+1} = (1-\beta) \delta_k(t) Y_k + \text{Bias} Y_{k-1} + \ldots
\]

\[
Y_{k+1} = (1-\beta) \delta_k(t) Y_k + \text{Bias} Y_{k-1} + \ldots
\]

Write

\[
Y_{k+1} = Y_k + \text{Bias} Y_{k-1} + \ldots
\]

Then we have for all \(k \)

\[
Y_{k+1} = (1-\beta) \delta_k(t) Y_k + (1-\beta) \text{Bias} Y_k + \text{Bias} Y_k
\]

\[
Y_{k+1} = (1-\beta) \delta_k(t) Y_k + (1-\beta) \text{Bias} Y_k + \text{Bias} Y_k
\]

\[
Y_{k+1} = Y_k + \text{Bias} Y_k
\]

This system is stable if all eigenvalues of the matrix

\[
\begin{bmatrix}
(1-\beta) \delta_k(t) & \beta(1-\beta) \\
\beta(1-\beta) & \beta(1-\beta)
\end{bmatrix}
\]

\[
I + \beta I
\]

where \(I \) is the Had identity matrix, lie within the unit circle. Since this matrix has rank \(N \) it has \(N \) eigenvalues equal to zero. Its remaining \(N \) eigenvalues can be shown to equal the eigenvalues of the matrix \(\beta I + (1-\beta) \delta_k(t) \), which are \(\beta(1-\beta) \).

\[
1 = \ldots, N \text{where } \lambda_i \text{ is the } i\text{th} \text{ eigenvalue of }
\]

\[
\frac{\beta(1-\beta)}{\lambda_i}
\]

It follows from the fact \(\lambda_i < \beta \) and (23) that the linearized system is stable if

\[
\mu < \frac{1 + \beta}{1 - \beta}
\]

By comparing this inequality with (24) we see that the fading memory scheme improves significantly the convergence properties of the algorithm. The value of \(\beta \) for which an optimal rate of convergence is obtained is the one that minimizes \(\max_i \{ \beta(1-\beta) \lambda_i \} \).

Similarly one can obtain extensions of other results obtained in [1] in connection with averaging algorithms for the single destination case.

3. Computational Results

We experimented with a 30-node ring network and considered a synchronous and an asynchronous algorithm with evenly spaced delay broadcasts. A fading memory scheme was used to average delays corresponding to the present and past routing "histories" are computed at each iteration by means of the formula

\[
\text{New Delay of Link } (i, j) = \beta \text{[Old Delay of Link } (i, j)] + \mu \text{[Current flow of } (i, j)]
\]

The scalar \(\beta \) is referred to as the decay factor and takes values in the interval [0,1]. Large values of \(\beta \) imply a greater degree of averaging with delays corresponding to past routings. The length of link \((i,j) \) used in the shortest path computation was taken to be

\[
[\text{Length of Link } (i, j)] = \beta \text{[Old Delay of Link } (i, j)] + (1-\beta)(0,05) \text{[Current flow of } (i, j)]
\]

(25)

The bias \(\mu \) depends on the current routing (c.f. (11)) and was taken to be

\[
\mu = 0.02 \times \text{Sum of most recently "reported delays" over all links}
\]

In the synchronous algorithm all nodes "report" their link delays simultaneously at each iteration and all of these delays are used in the shortest path computation that determines the new routing.

In the asynchronous algorithm nodes compute their delays at every iteration by using equation (25). However they "report" their link delays only every 5th iteration, with node 1 reporting at the last iteration, node 2 at the 2nd iteration and so on. Thus for example at the 1st iteration node 1 will report its link delays and the new routing will be computed on the basis of the delays reported by node 2 at the 2nd iteration, by node 3 at the 3rd iteration, and so on. This procedure is patterned after the asynchronous operation of the algorithm in the ARPANET.

The traffic inputs for destination 30 are given at the bottom of tables 1-3. The traffic sent by every node to each of the other destinations 1,2,\ldots,29 was taken to be the same and equal to \(\lambda \). We consider two values \(\lambda = 0.05 \) and \(\lambda = 1 \). In all runs the initial routing for destination 30 was taken to be \((1 + 15) \) (modulo 30). We show in tables 1-3 the generated sequences of successive routings for destination 30, i.e. the sequences of the numerically largest node routing messages to destination 30 in the clockwise direction). The sequences of routings for the other destinations are not shown. They exhibited very
similar behavior. An entry e/2 for the \textit{Binary-Census} algorithm means that during a 30-iteration cycle the minimum and maximum routings are e and b. The results indicate that all the conclusions reached regarding the effects of bias and averaging are valid for finite node networks. Furthermore, as the level of λ of traffic input to the destinations 1 through 29 is increased, and the contribution of all destinations to the total traffic is more nearly equal, the dynamic behavior of the algorithms is improved.

<table>
<thead>
<tr>
<th>Mode of (a)</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Input Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Source	0	0.3	0.9	0	0.05	0.09	0.29	0.99
Input Level								
1	15	13	13	13	13	13	13	13
2	13	13	13	13	13	13	13	13
3	13	13	13	13	13	13	13	13
4	13	13	13	13	13	13	13	13

Table 1: Max = 0.8 (Total Delay), Input for Node 30: \(\tau_1 = \ldots = \tau_{30} = \tau = 0.3 \).
Acknowledgement:

This investigation was conducted in part at Bolt, Beranek, and Newman, Inc., Cambridge, Mass. and supported by ARPA Contract No. 803-78-C-0129 and in part at the University of Illinois, Urbana, Ill., and supported by Grant NSF-ENG-77-15949. The comments of John McQuillan, Ira Richer and Eric Rosen, and the assistance of Eli Caffini with the computational experiments are gratefully acknowledged.

References:

Appendix A: Proof of Proposition 1

The function \(g : [0,1]^N \rightarrow [0,1]^N \) is clearly continuous so by Brower's fixed theorem (11, p. 161) it has a fixed point \(\mathbf{Y}^* \) which is an equilibrium.

In order to show that \(\mathbf{Y}^* \) is unique and minimizes over all \(\mathbf{Y} \in [0,1]^N \)

\[
J(\mathbf{Y}) = \int_0^1 p(\mathbf{f}^+(\mathbf{Y}, t)) dt + \int_0^1 p(\mathbf{f}^-(\mathbf{Y}, t)) dt \quad (A.1)
\]

we consider an associated convex programming problem.

Let \(L_2[0,1] \) be the space of (equivalent classes of) square integrable function on \([0,1] \) with norm

\[
||f|| = \left(\int_0^1 (f(t))^2 dt \right)^{1/2}.
\]

The Cartesian product \(L_2^N \) of \(N \) copies of \(L_2[0,1] \), where \(N \) is any positive integer, will have the norm

\[
||(f_1, \ldots, f_N)|| = \left(\sum_{i=1}^N \int_0^1 (f_i(t))^2 dt \right)^{1/2}.
\]

With this norm \(L_2^N[0,1] \) is a Hilbert space with inner product

\[
\langle (f_1, \ldots, f_N), (g_1, \ldots, g_N) \rangle = \int_0^1 f_i(t) g_i(t) dt, \quad i = 1, \ldots, N
\]

for all \((f_1, \ldots, f_N) \in L_2^N[0,1], (g_1, \ldots, g_N) \in L_2^N[0,1] \). Any element \((f_1, \ldots, f_N) \in L_2^N[0,1] \) defines a bounded linear functional on \(L_2^N[0,1] \) by means of the preceding equation, and all bounded linear functionals on \(L_2^N[0,1] \) can be defined this way.

We consider the following convex programming problem in \(L_2^N[0,1] \) which falls within the framework given in Luenberger (13, Chapter 8)

minimize \(\int_0^1 p(\mathbf{f}^+(\mathbf{Y}, t)) dt + \int_0^1 p(\mathbf{f}^-(\mathbf{Y}, t)) dt \)

subject to

\[
\int_0^1 f_i(t) u_i^+(t) dt - f_i^+ = 0, \quad i = 1, \ldots, N
\]

\[
\int_0^1 f_i(t) u_i^-(t) dt - f_i^- = 0, \quad i = 1, \ldots, N
\]

\[
0 \leq u_i^+(t), \quad u_i^-(t) + u_i^+(t) = 1, \quad \forall t \in [0,1],
\]

where \(a.a.t \in [0,1] \) means for almost all \(t \in [0,1] \) with respect to Lebesque measure.

To each routing \(\mathbf{Y} = (y_1, \ldots, y_N) \) with corresponding vector \(\mathbf{u} = (u_1, \ldots, u_N) \) defined by (7) we can associate the following feasible solution of problem (A.2)

\[
f^+(\mathbf{Y}, t) = f^+(\mathbf{Y}, t), \quad f^-(\mathbf{Y}, t) = f^-(\mathbf{Y}, t)
\]

(A.3)

The corresponding value of the objective of problem (A.2) is \(J(\mathbf{Y}) \). The fact that an equilibrium routing minimizes \(J(\mathbf{Y}) \) follows from the following lemma:

Lemma A.1: If \(\mathbf{Y}^* \) is an equilibrium routing then the functions \(f^+, f^-, u_1^+, u_1^- \), \(i = 1, \ldots, N \) corresponding to \(\mathbf{Y}^* \) via equations (A.3) and (A.4) are an optimal solution of problem (A.2).

Proof: Consider the functions \(d[f^+(\mathbf{Y}, \cdot), \cdot], d[f^-(\mathbf{Y}, \cdot), \cdot] \in L_2^N[0,1] \). By the sufficient theorem of [13], p. 220 the result will follow if we show that \(f^+, f^-, u_1^+, u_1^- \) are an optimal solution to the problem
minimize \int_0^1 \left(p(f^+(t)) + p(f^-(t)) \right) dt + d(f^+(y, t), f^-(y, t)) \sum_{i=1}^N x_i^+ + \left(\sum_{i=1}^N x_i^- \right) \int_0^1 x_i^-(t)u_i^-(t)dt - \epsilon f(t) dt + d(f^+(y, t), f^-(y, t)) dt \right) \right) dt + \sum_{i=1}^N x_i^- \int_0^1 x_i^-(t)u_i^-(t)dt - \epsilon f(t) dt \right) \right) dt \\
\text{subject to } 0u_i^+(t), 0u_i^+(t) + u_i^-(t) = 1, \\
a.s.e.(0,1), i = 1, ..., N.

(A.5)

Define

\begin{align*}
D_x^+(t) &= \int_{x_i^+}^t d(f^+(y, t)) dt \\
D_x^-(t) &= \int_{x_i^-}^t d(f^-(y, t)) dt
\end{align*}

A straightforward calculation using integration by parts shows that problem (A.5) can be written as

\begin{align*}
\int_0^1 \left(p(f^+(t)) + p(f^-(t)) \right) dt + d(f^+(y, t), f^-(y, t)) &\left(\sum_{i=1}^N x_i^+ + \left(\sum_{i=1}^N x_i^- \right) \int_0^1 x_i^- dt - \epsilon f(t) \right) \\
\text{subject to } 0u_i^+(t), 0u_i^+(t) + u_i^-(t) = 1, \\
a.s.e.(0,1), i = 1, ..., N.
\end{align*}

Using the fact that \(\frac{dp}{df} = d \), it is easy to see that \(f^+, f^-, u_i^+, u_i^- \), \(i = 1, ..., N \) are an optimal solution to this problem. Q.E.D.

It remains to show uniqueness of the equilibrium. Since \(d(f) > 0 \) for all \(f \), all \(d \) is monotonically increasing, the function \(p \) is strictly convex. Let \(F \) be the convex set of all \((f^+, f^-)\in\mathbb{R}^2(0,1)\) for which there exist \(f^+, f^-, u_i^+, u_i^- \), \(i = 1, ..., N \) which are feasible for problem (A.2). Problem (A.2) can be written as

\begin{align*}
\int_0^1 \left(p(f^+(t)) + p(f^-(t)) \right) dt \\
\text{subject to } (f^+, f^-)\in F.
\end{align*}

If \(Y_1^* \) and \(Y_2^* \) are two equilibria, then

\begin{align*}
[f^+(Y_1^*, \cdot), f^-(Y_1^*, \cdot)] \text{ and } [f^+(Y_2^*, \cdot), f^-(Y_2^*, \cdot)]
\end{align*}

are both optimal solutions of problem (A.6). Using the strict convexity of \(p \), it follows that except for \(t \) in a set having Lebesgue measure zero

\begin{align*}
[f^+(Y_1^*, \cdot), f^-(Y_1^*, \cdot)] = [f^+(Y_2^*, \cdot), f^-(Y_2^*, \cdot)].
\end{align*}

Since \(f^+(Y_1^*, \cdot), f^+(Y_2^*, \cdot), f^-(Y_1^*, \cdot), f^-(Y_2^*, \cdot) \) are continuous everywhere except at \(x_1, ..., x_N \), it follows