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Variable Precision and Interval Arithmetic:
Portable Fnhancements to FORTRAN

Research Agreement No. DAAGo-7-r,-n068

1. Background

The relationship between WFS, 1JSL and ARO heqan when WFF wanted

to examine interval arithmetic as a tool. Tt was hoped that

interval arithmetic would serve as a valuable tool in

ascertaining the reliability of values produces by application

programs in use at WFS. A FOPTRAN implementation of interval

arithmetic had been developed at MRC using the preprocessor

AUGMENT Cl,2,3,4,1. This packaqe was to he installed at bnth U1 L

and WES for the purpose o f determininq whether or not interval

arithmetic would be a toot consistent with the ooal.s and

interests of WES. The role that 11SL otayed concerned the

implementing and benchmarking of the interval arithmetic rackaie.

This involved the conversion of application pronrams in use at

WES so that real and double precision comnutationg would 'e

performed using interval arithmetic. The converted proorams were

then executed over a ranqe of input values. The purpose was to

gauge the value of interval arithmetic in the certification of

each program's reliability. This evaluation proved successful in

that a data sensitivity was uncovered in one of the pronrame. A
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USL technical report 163 was written and published qivino a

description of this work.

During this period there were two separate interval arithmptic

packages implemented at USL. The 4 irst of these was the PC's

single precision real interval nackaqe; the second was a 56

decimal digit interval package. The sinqle precision real version

of the interval arithmetic packaqe represented values as two

single precision real numbers. These two sinqle precision real

numbers are considered as bounds on an "exact" but possiblv not

machine representable value. This packaoe is well described in

C73.

The other interval arithmetic oackaqe, the 56 decimal init

interval versiono was developed here at U L. This version was

based on the 59 decimal diait arithmetic unit of the Honeywell

H68/80 computer and represents the endpoints as two 56 decimal

digit values. All testinq of atnorithms done under the sinole

precision real version was also done under tis version. The

results and a description of the implementation are to be found

in CRI.

The fact that the 56 decimal diqit interval arithmetic nackane

was hardware basedo as well as being written in L/I, orecluded

its beinq transported to any other system. However, the rosults

of work with this packaqe provided valuable insiqhts into the

effects of extendinq the precision in which computations are
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performed. It gave direction to the research that was to 4 ottow.

2. Goats and Accomplishments

It was the intent of the current work to develop, uqinq

preprocessing techninues, extensions to FOPTRAN which wout

include:

1) the extended data types VPTNTFrFR, VPQFAL,

VPCOMPLFX and VP!NTEPVAL. The data types are
Ac~ii For

analogous to those of standard FORTPAN and

the single precision interval data tyn, but D', 7%3
r

Un:' - -c d

can be of arbitrary precision. JU- .... . -on -

B 4,

2) The standard built-in functions (SIN, COS,

SORT, etc.) for use with the new data types. /,a i'.dlo.
D1lt spo.lal

3) the input/output facilities of standard FnQTRAN

extended for use with the extended data

types.

A users guide, which would detail experiences and suqqestions on

when and how to use variable precision arithmetic, was also

produced.

The work was atso to have accomplished the production nf a

comprehensive set of specifications for the organization of an
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arithmetic unit which can efficiently suoport variable precision

arithmet ic.

As outlined in the qrant proposal, FORTRAN waq to have heen

extended using the preorocessor AtJMF?1T. TWO Pxtpndei FMPTPAN

tanguaqes were to have been constructed:

1) Variable Precision FORTRAN (VPFOR)
p

2) Variable Precision Tntervat FOPTRAM! (VPTNTFOR)

VPFOR allows the use of VnOPAL, VPINTF(FP and VPCPIMPLFY. VinTNTFnR

would allow the use of VPTNTFRVAL. Roth tanguaqes would translate

a program written in FORTRAN with the above data types lsino

standard FORTRAN built-in functions and tthe standard FnRTRAN

input/output facilities of READ and WrPTTF into a standard rnPTRAN

program with imbedded subroutine calls which would execute the

appropriate extended precision operations. These tanquaqes were

to be "constructed" as "virtual comoiters" that would transl-ite

the "virtual" source tanquage, VPFOR for exampte, to the

"virtuat" object codep standard FORTRAN.

As with many research projectsp the finished products do not

quite conform to the specifications. There were those ite-n which

proved to involve more effort to implement than their relative

importance justified, As well as those items whose inclusion

greatly enhanced the overall product. The input/outout extensions

were not done as specified. Rather than attnwino the

specifications for input/output of oxtenOPH data types to te
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contained in FORTRAN FORM4AT statements, the inout/outnut was left

as explicit calls but was simplified to be more usable. The

RATFOR preprocessor t91 was attached t o allow "s t rutctured

programming" technioues hy the user. Also the ease of

specification of the precision of variables of the extended -4ata

types was accommodated to a hiqher degree than' was envisioned! in

the proposal. The finished product also allows mixed mode

arithmetic of &ILL of the extended data tynes and their standnrd

FORTRAN counterparts.

There were also changes in product definition dictated by the

actual implementation. Since the base representation of atL of

the extended data types was very similar ando in fact, the same

operations involving two different data tynes would call the the

same subroutines at lower levels, only one FORTQAN lanqujar'e was

constructed. This language, SFPAFOR (Structured Fxtendel

Precision Arithmetic FORtran), includes all of the extended data

types. The next section details the history 04 tho

implementation of the variable precision data type.

3. Design and Imolementation of SEPAFOP

The first major decision to be made in the Oesiqn nhase of the

variable precision interval arithmetic packaqp was how should the

basic operations be implemented. There was already a multiol~e

precision real package in use on Multics, and, in fact, hAd hoen

780aLTO



used by the 56 decimal diait interval packaae in imp(ement inq the

standard built-in FOPTRAM functions. A closer study of the

package, developed by R. P. 9rent of the Australian Mationat

University riO,, indicated that the package was appronriate for

use in the implementation of SEPAFOR. Its assets

included:

1) Portability -- due to the use of integer

arithmetic and standard FORTPAN the nackaoe

was machine independent with the exception of

two conversion subroutines.

2) Reliability -- the Package had been thoroughly

tested and had been in use for quite some

time on several different machines.

3) Well constructed -- the packaqe had been

constructed with contemporary "structured

Programming" technioues. As a result it was

highly modular with fairly qood internal

documentation which lent itself welt tn

modi f ica ti on.

4) Availability -- it was already resident on the

Muttics system.

Once the decision was made to base tho implementation on rrent's

multiple precision package, the next problem tn arise wns in

choosing a strateay for the implementation of the interval

arithmetic roundinas within the multiple precision package. There

were two primary methods to be considered.

HIS PAG3 IS ,i3T tJi,1flyTA 3
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The first of these involved imbedding the roundinos solely in the

four basic operations of multiply, divide, add and subtract. The

implementations of the built-in functions would not be concerned

with rounding strategies hut would let this responsihility tie
C

with the four basic ooerations. The primary advantaqe of this

approach was its simplicity. The only atnorithms which would

reouire extensive analysis were those of the basic arithmetic

operations. The disadvantage of this strateay, which nreclided

its use* was that is was ouite inefficient with resnect to cou

time consumption.

The second implementation method involved imheddinr! the roundinq

strategy in all implemented functions and operations. The primary

disadvantage was that extensive alnorithm analysis had tn be

performed on all implemented functions and operations. Tts

advantaqep which more than offset its disadvantaae, was that one

could take advantaqe of the algorithmic structiure of the various

operations and functions to produce minimally wide interval

results in the most efficient manner possible.

The largest portion of imolementation time was taken tio with the

analysis and modification of operations and functions provi ed hy
I

the basic multiple precision Packaoe to perform interval

arithmetic* This extensive analysis proved valuable in t'at Fn

error in the basic muttiole precision package was uncovered. The

addition routine was incorrectly nerformino addition on the last
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digit of the operands. One modification which proved to save

much more time than it cost was that the subroutines were altered

so that; if one desired, its orioinal function (i.e. muttinte

precision real) could be invoked. That is, the desired truncation

strategy is passed to the routine. The truncation strateaies

available are: upward directed, downward directed and standard

rounding. This greatly eased the implementation of the VnDPAL and

VPINTFGER data types as welt as reducinq the overatL sire mf the

package by sharinq code.

Once it had been assured that the basic set of operations and

functions performed correctly when invoIed with the various

rounding strategies, thouaht was qiven to the implementation of

the interval arithmetic aspects of the operations and functions.

The addition routine, for example, could perform addition with

upward directed, downward directed or standard roundinqs hut did

not perform interval addition per se. An apporoach was to develop

a set of intermediate subroutines which would control thP

interval aspects of the operation or function. Each operatinn and

function was to have a correspondinq subroutine which would

direct the roundinas to conform to interval arithmetic.

After completion of these two staqes, the imheddino of rotindinq

strateqies and the creation of interval ooeration subroutines,

the packaqe was equivalent to the sinte nrecision real interval

package. There was the exception that interval variables could he

of arbitrary precision; however, all interval variables had tn he
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of the same precision.

With the completion of this stage of the nroject, work was hegun

on automating the translation of user source containing the

variable precision interval data type to standard FORTRAA. N4ot|E1
only was this part of the overall plan, but it would also nreatty

facilitate the testing of the programs. The first sten was the

creation of an A trMENT description deck which would -n1hIe

AUGMFNT to perform the translation automatically. This was

followed by the implementation of a skeletal 'virtual compiler"

to aid in the translation by automatically attachina the A(I"FNT

description deck to the extended FORTRAN source.

The installation of the preprocessor RATFOP on the multics systom

was done at this time. The decision was made to insert PATFOR

into the packaqe because it allows the use of extended control

structures (i.e. DO WNTLE, rF-THFN-ELSF, PFPFAT-IINTTL, etc.) in

FORTRAN programmina. The addition of extended control structurps

strongly complements the extended data types. The use nf the

extended control structurps allows the use r to produce morn

readable, more reliable and better documented proorams faster

than with standard FOPTPAN. This is a strona aroument for its

Inclusion.

The final step in the implementation of the basic variable

precision interval arithmetic nackaqe was to find a means of

attowino different variables to have different orecisions. This

SIRI S PAGE I S.2 6, .L T
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was done by "tagginq" the data with its precision and by creatinq

a third level of subroutines for precision controt.

The third level of subroutines developed for precision contrnl

performs such activities as resolvinn precision conflicts amonq

operands and the extraction of the orecision for use by the tower

levels. It should be noted that the imolementation of this thirdf

level of subroutines went very ouickly and easily. The basic

structure of each subroutine is virtuatly identical for all

functions and operations.

With the completion of this final staqe of the implementation o l

the basic variable precision interval nackaae, work was !ipqun on

the implementation of the SEPAFOP "virtual compiler" which would

translate the user oroqram with its extended data tvnes and

controt structures to standard FORTRAN.

The SEPAFOR virtual compiler was constructed usinn PL!1 with

calls to various Multics nperatino system modules. The function

of the SEPAFOR virtual compiler is to take the user rroora

written in SEPAFOR and map the functionality down to MuItics

object code. This is lone hy first passino the user's qCnPrOP

source proaram throuqh the RATrOP preprocessor which translates

the extended control structures into standard FnOPTPAN still

containinq the extended data typos. SEPAFOO dynamically ipnerAtes

an AUGMFNT description deck usinq information obtained fr m the

user's SEPAFOR source nroqram. SEPAFOP takes the PATrnoed source

-is- -



and attaches the qenerated ALJ(MFNT descriptinn deck orodicina an

AUGMENT source deck. The AUGMrNT source deck is then nassed

through AUGMENT to produce a standard FORTOAN source nronram.

SEPAFOR then inserts into the standard FnPTRhM source procram

initializations required by the variable precision interval

arithmetic package. The final act of SFPAFOR is to invokp 14*e

FORTRAN compiler to produce Pultics object code.

At this staqe of the project, we had a useabte subroutine nackAge

which would allow the user to writo pronrams containinq the

extended data type VPINTFRVAL. Each variabte of this data tvoa

could be of arbitrary precision. That is. the variabte CnUNT

could be of precision ?n while the variable Tc could e Of

precision 4on. The entire process of translation of the usrr's

SEPAFOR source prooram to Muttics object code was automated so

that no interaction was required from tho user dtirinn the

translation process. Fnr some period of time after the

completion of this staoe Of the proiect, thp nacka-e was

extensively tested to ensure that all was in wnrking order and to

minimize any problems that mioht appear at a later date. What

remained of the implementation of SFPAF0R was the inclusion of

the rest of the extended data types as outlined in tho pronnsat.

4. Addition of Other Variable Prerision rData Types

It was decided to implement VPPEAL first as it was the simplest

211S PAjELI
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of the extended data types to implement and woutld provide addred

experience for easing the implement 3tion of the remaining

extended data types. As has been mentioned hefore, the basic

mmu1tipte precision packaoe was an implementation of ,iuttinta

precision real. The complete implementation of VPPEAL renuired

the creation of a set of intermediate subroutines for nre.ision

control. As it turned outp this set of subroutines is virtually

identical to the precision control subroutines o VPINITEPI'A!. The

exceptions being that the VPINTFPVAL precision control

subroutines call the interval arithmetic subroutines white the

VPRFAL precision control subroutines call the basic -liltine

precision routines directly and indicate the standard truncition

rather than the directed roundinos.

When it was reatize that the precision control subroutin-s $or

VPREAL would be almost identical to the Pnrecision control

routines for VPINTFRVAL, the implementation of the VP9EAV

precision control subroutines went CuicklV. The imolemontation

entailed text editina on the orecision control routines of

VPINTFRVAL to produce the VPPEAL precision control subroutinos.

The changes made were those outlined above.

A set of tests was anain run on the VPINTFPVAL portion of the

package. This testing consisted of producino values with the

VPINTERVAL data type. The same procedures were run again hut with

the VPRFAL data type with a hiohpr precision. A comparison wis

made between the two values. Theoretically, if nothinn were
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changed between the two runs except for the data tyne exchance

and the higher precision, then the VPRFAL values should always he

contained in the interval produced with the VPTNTFQVAL data type.

Such was the case with all tests run. This indicated that the

modifications made to the basic multiple precision nacleaae in the

hopes of minimizina the widths of the intervals produced anneared

to be correct and proper.

With the completion of the impleirentation of NIPPFAL and its

associated process of testinq, attention was turned tn the

implementation of VPINTEGFP. Since the basic miultiple Drecision

package produced only real values, inteqer arithmetic had to be

simulated. To correctly simulate inteier arithmetico inteper

overflow had to be detected and truncation of fractional values

had to be done properly.

There were two choices for the placement of the inteler

arithmetic simulation. The first of these was, like the interval

arithmetic truncations, in the body of the basic multiple

precision package. This would have entailed analyzino the

routines again to determine which modifications were neee to

produce only integer values and detection of inteqpr overflow. Tt

would also have raised the complexity of the modified routines.

Considering the time it took for the interval arithmetic

analysis. this was an unacceptable approach. The second aonro~ch

was to go ahead and allow full computation of feal values and

perform checks on the results returned and was the approach
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taken.

The precision control suhroutines were th'en to be almost

identical to the precision control subroutines of VpRrPL. The

exception being that before returning to the callinq subroutine a

call would be made to a subroutine which would check the value

for integer overflow and truncate the fractional part. This woutl

ensure that a proper inteqer value would be returned and that no

integer overflow had occurred. The detection of intener overflow

was simple in that all that had to be checked was the exponent.

If the exponent was larger than the precision this indicated that

integer overflow had occurred. Truncation was a matter nf

zeroing out the fractional part.

The remaining data type to be implemented was "DCO'qPlCY. This

proved somewhat more difficult to implement than vnPCFL and

VPINTEGER in that, like VPINTERVAL, a series of intermediate

subroutines had to he written to perform complex arithmetic. The

Implementation was eased by the fact that standard truncation was

to be used by VPCOMPLFX. The implementation o4 VPrOMPIFX did not

take long as considerable experience had been nained in the

manioulation of the base representation. Also, there was no need

to consider the renresentation of the VPCO!MPLFX data type; the

representation used for the VPTNTFRVAL data type was ouite

adequate. The operations to he performed on the real and

Imaginary Darts of VPfOMPLFX were similar to those performed on

the left and rioht endpoints of VP!NTERVAL. Thusp utinq the

Tpw T



intermediate subroutines of VPINTERVAL as a molet, the writinq of

the intermediate subroutines for VPCnMPLFX was completeq very

quickly.

Concurrent with the imolementation of each data type was the

development of AUGmENT description decks to make possible the

automated translation of the data types into standard FODTPM.

The use of the virtual compiler for each data tynP consisted n'

simply substitutina the appropriate AIGMFMT descrintion deck into

the translation process. At this staoe of development we had fotir

separate data types that could be used only in sotitary. Tt was

desired that all four should be able to be used simultaneously in

the same program. To accomplish this there were two thinns that

had to be done. A comprehensive AU(MPNT descriotion deck had to

be developed. This AUCvrNT description decP not only had to

detail the particulars of each data tvpe's conversion into

standard FORTRAN, hut had to detail how interactions &-Porn the

different data types were to be carried out. The second task tn

be accomplished was the creation of a set of conversion routines

for handling the interactions amonq the four extended data typos

as well as the standard FnPTPAN data types.

The remaining tasks were carried out in short orrer. The creatinn

of the comprehensive A(IrMFNT descriptinn Hec was done 1y

combining the description decks that had already been written.

All that needed to be done to complete the comprehensive

description deck was the addition of conversion informatinn that

IglS AGZ IS B,3 Q-I1,1
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was needed for handling the interactions among the various data

types. The writino of the conversion routines was made simnpl in

that each data type's base representation was the samo. For

example# conversion from VPINTEGFR to VPRFAL was the enuivalent

of Simple assiqnment. The only conversion which was of any

trouble was the conversion from VPINTFRPVA to the other data

types; this entailed the writino of a subroutine for the takini

of the midpoint of the interval. Once these two tas Vs were

completed the packaqe was ready for installation at W A.

5. Instatlation of SEPAFOR at WES

The transporting of SEPAFOP to WFS consisted of two parts. First,

the variable precision arithmetic packaqe had to he delivered and

installed on the n615 computer at WFS. The delivery was made hy

magnetic tape. SeconH, the SFPAFOQ virtual compiler had to he

designed and written for compatibility with the G61S ,FCOS

operating system.

The variable precision arithmetic packaqe had heen desiqnPd with

hiqh portability as one of its aoals. Much care was taken in the

writing of the variable orecision arithmetic nackaoe to ensure

that all constructs used were portable. To aid in this endeavorp

PFORT was obtained from 9elt Labs [111. PFnRT checks a rnRTPAN

proqram for compliance with a subset of ANqT gtandard roPTPAN. Tf

a program is PFORT compatible then it should be comoatihe with



the majority of FORTRAN compilers in use today. This provod to he

the case with the G635's FORTRAN comniter. The almost 1xOfn

tines of code compiled on the n635 without nenratinq a sinnle

diagnostic!

Tmptementinq the SEPAFOP virtual compiler prover to he much

harder. Refore transporting the system to WFe, as much of the

Multics S~rAFOR virtual compiler as was onssibte was rewritten in

FORTRAN. This included the A1IMMENT description dock qenermtnr and

the portion of 'FPAFOP whic" inserts tho initiilizinn

information. Upon arrival at WFSP, the workinqs o4 rnrnR were

explained and work was hesun on its i-pplereontation. This

implementation entailed the conversion of tho PI/1-outtics

portions of SFPAFOP which were not convertihle to FnRTPAN into

G635 JCL. These portions included process control ind file

attachment for the various oreprocessnrs. SFCI FnP was installed

on the S635 system in four days with only two minor nro(lms

occurring. Since the nackaqe is intoaer arithmetic bated,

computations involvino the extended data tyos should Produce

identical results on all computer systems on which they Are

executed. This is in sharp contrast to ftoatina point hbaseO

packages which, it seems, are almost auaranteed to produce

different results on different comouter systems.
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The specific objectives of this project are:

1) to design a variable precision interval data type
which would be imbedded in FORTRAN using the
AUGMENT C4*5J preprocessor.

2) to implement R. P. Brent's multiple precision
package [10OJ. incorporating modifications to
support interval arithmetic.

3) to implement the RATFOR preprocessor (93 and to
design an AUGM ENT description deck (4#5)
incorporating them into the variable precision
interval data type package. This would allow users
to write FORTRAN programs containing the variabte
precision interval data type in a structured
manner.

4) to perform an evaluation of the multilevel
interpretation process that was used to implement
structured variable precision interval FORTRAN.

The first section of this document gives an introduction to

interval arithmetic that is helpful in understanding the

properties of variable precision interval arithmetic. Further

details concerning interval arithmetic are given in Appendix D.

The second section describes the variable precision interval

data type* its supportinq arithmetic package and the translator

which translates a user's "rextended FORTRAN" program into

standard FORTRAN. Appendices A and B give additional details

* concerning the RATFOR and AUGMENT preprocessors which are used to

carry out portions of this translation. The last section in this

report contains the summary of the project and the results of

several program tests. in this section the variable precision



interval FORTRAN version of each test program is compared with

other versions of the same atqorithm using previousty

implemented arithmetics. An evaluation of the multilevel

interpretition process is also presented. A userls guide to

structured variable precision interval FORTRAN is included as an

aid to the user writing structured variable precision interval

FORTRAN programs.
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2. gotLiilQni ftziaao_-tQswtorAucmaiI~LaQQl~

The finite precision arithmetic used on computers is an

approximation to the real number system. In interval arithmetico

real numbers are approximated by intervals which contain the

number. A brief introduction to interval arithmetic is given in

Appendix D. Since the finite precision arithmetic used on

computers is an approximation to the real number system, there

are many intervals whose endpoints are not representable with a

finite precision arithmetic. In this case the endpoints of the

interval have to be approximated by the floating point system.

This computer approximation of the real-valued intervals is

represented as a pair of machine representable numbers stored in

consecutive storaqe locations. The first number will be the

lower bound of the machine approximation to the intervato

referred to as the left endpoint, while the second number will be

the upper boundo referred to as the right endpoint.

In order to obtain the smallest computer representable interval

for the result of arithmetic operations on finite precision

intervals, directed roundings on the computer arithmetic

operations must be defined. Assume x is a real number and M1 and

M2 are two machine representable numbers such that M1 S x : M2

and M1 and M2 are either eQual or consecutive. Define Rd to be

the downward directed rounding such that Rd(x) = MI. Define Ru

to be the upward directed such that Ru(x) M42. M1 and M2 wilt

-3-
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be the machine representable numbers that are respectively the

greatest lower bound and the least upper bound for the real

number x. If x is a machine representable number, then Ru(x) a

Rd(x) = x.

Algorithms for performing the machine arithmetic operations with

directed roundings can be found in Yahe [2]. In general a op bo

where a and b are machine representable numbers and op is one of

the machine arithmetic operations, is not a machine representable

number and must be rounded into a machine representable number.

Directed roundings are used to compute the endpoints of the

resultant interval for a particular arithmetic operation

performed on two intervals. A downward directed rounding is

performed to provide Left endpoint and an upward directed

rounding is performed to provide the right endpoint.

For example finite precision interval addition is defined as,

[a,b] + Ec,d] = Ea+cob+d)

where a, b, c, and d are machine representable numbers. The

computer approximation to the resultant interval is defined as

follows:

[a,b] * [c,d] = [Rd(afc),Ru(bed))

where 0 is the machine addition operation.

Since the range of machine representable numbers is bounded.

situations might occur durinq finite precision operations in
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which these bounds are exceeded. If the finite precision number

becomes too small, underflow has occurred. If the finite

precision number becomes too large, overflow has occurred. If

underflow occurs, then the true result is between zero and the

smallest positive or negative representable number. In this case

a directed rounding can give a valid bound. In the case of

overflow, if rounding away from zero is wanted, then there is no

machine representable number which can be used as a correct

bound. This type of error condition* or fault, is known as an

infinity fault.

2.*1 latrea2Laued-EuaCLtiQas

A real-valued function, f, which is defined and continuous on an

interval [a,b] can be extended to an interval-valued function, F,

of an interval variable by defining

F([a,b]) = f(x) : x e [a,b]).

When f is evaluated on a digital computer using machine

representable approximations to the real numbers, a computer

approximation, f, to f results. If F([abJ) is an interval

valued function of an interval %where a and b are machine

representable numbers), then the computer approximation,

F'([a,b]) is defined as an interval that contains F(Eaob]).

Assume f' is the computer approximation of a real valued function

f and f is monotonic increasing on [ab). Then

-5-



F'(Cab3) = ERd(f'(a))#Ru(f'(b))J

where Rd is a downward directed rounding into a machine

representable number such that Rd(fl(a)) _ f(a) and Ru is an

upward directed rounding into a machine representable number such

that Ru(f'(b)) a f(b). Ideally we would like Rd(fl(a)) to be the

largest machine representable number such that Rd(fl(a)) . f(a)

(i.e.* a greatest Lower bound) and Ru(f'(b)) to be the smallest

machine representable number such that Ru(f'(b)) a f(b) (i.e. a

least upper bound).

If f is monotonic decreasing on Capble then

FI(Ea,bJ) = (Rd(f'(b)),Ru(f'(a))3

if f is not monotonic on Eab], then the interval [abJ can be

divided into disjoint subinterviLs; X'(i), i a 1,2,3,...,n; where

the endpoints of each X(i) are machine representable numbers and

U X(i) contains all the machine representable numbers in the

interval [ab] and f is monotonic on each X'M(i). In this case

FI(Eab]) = U F (X°(i)). It should be noted that, in practice*

this partitioning is performed only for the functions supplied bY

the support structure. If, for exampLe, the user wished to

evaluate the polynomial x**2 - x over the interval [.5±te] where

is e is very small then the correct bounds may not be formed.

However, the polynomial is broken down into subexpressions

before evaluation; each of these subexpressions is evaluated

with correct boundlnq since each is monotonic over the interval.

-6-



It may not be possibLep due to algorithmic inadequacies or to

accumulated roundings, to obtain the best bounds for the result

of the computer approximation to the function f. The problem

wilL be illustrated in the next section when describing the

interval counterparts of the Multics basic external functions.

II

L- •



.3.

The variable precision* interval data type is patterned after

the single precision interval data type previously implemented at

University of Southwestern Louisiana [8] and at the Mathematics

Research Center of the University of Wisconsin 12# 113. The

computer representation of the single orecision interval data

type consists of a two element single precision floating point

FORTRAN array. The first element in the array is the Left

endpoint white the second element is the right endpoint. The

interval operations provided include the basic FORTRAN operations

and supplied functions. These operations are supported at their

lowest level by machine dependent procedures which perform the

reouired directed roundings.

The variable precision, interval data type's implementation is j
based upon R. P. Brent's MuLtiole Precision Package which has

been modified to perform the necessary roundings for interval

arithmetic. The implemented supporting package is highly

portable. AlL modules have been successfully Passed through the

PFORT FORTRAN verifier12). PFORT is a subset of ANSI FORTRAN

which should be compatible with the great majority of FORTRAN

compilers. A qood part of the process of translation from

variable precision, interval FORTRAN to standard FORTRAN was

automated to make the task simpler for the user. The following

subsections describe in further detail the variable precision#

-8- 1



interval data type and the underlying supporting package as

well as the translation process.

3.1 IhtrIakL3~itiaD ..I Jra.,tL.Ixna

The variable precision, interval data type is operationally the

same as the single precision interval data type implemented

earlier t83. The difference Lies in their basic machine

representation. white the sinqte precision interval data type is

represented as two single precision real numbers, Figure 1, the

variable precision, interval is represented as two single row

integer arrays, or vectors. Figure 2. The variable precision.

interval data type does, however, allow the user to specify the

precision of each finite precision interval variable.

1 floattng point I floating oint |

I single precision I sinqle precision I

FIGURF 1

Single precision interval data type representation

II I I I I I I I I I

Isdddtl expon I TI I T2 I...I TN I s I expon I T I ... I TN I
I .. .. I I * I !_ _ I_ I 1 _. I.. I 1

FIGURE 2

Multiple precision interval data type representation
(sdddt a sign(O,-1 or +1) concatenated with
the precision concatenated with a temporary
variable indicator (I for temporary. 0 for
non-temporary) expon a exponent (to base b)
Ti digit (in base h) s a sign (, -1 or

+i))
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As an exaupte of the use of the variabte precision, intervat data

type, suppose that a program written with variable precision,

interval variables produces satisfactory results during most of

the computation with a precision TI. Let us assume it executes a

section of computation which has a data sensitivity; that is, for

certain input data the algorithm produces results which are

incorrect or, using intervat arithmetic, the results have

undesirably large interval widths. Using the variable precision,

interval data type the user is able to specify that the

computationatty demanding section of code be performed with a

precision T2 (T?>T1) which would be sufficiently high to produce

satisfactory resutts. Conversety, for a less demanding

computation the user may specify a lower precision. Thus, the

variable precision, interval data type allows the user to tailor

the precision of the interval variables (and subsequently the

computational overhead) to the computational needs of the

algorithi.

Structured, variable precision, interval FORTRAN has been

designed so as to allow the user great freedom in the mixing of

data types. Computations involving integer, real and variable

precision, interval variables are allowed. The precision of

interval operands are determined at runtime. The operations are

performed with the same precision as the operand with the highest

precision. The result is then converted to the precision of the

-10-



variable that is to contain the result, catted the target. In

cases where the target is an intermediate result of a Computation

the precision of the result is retained. Intermediate results

retain the highest precision encountered durinq each computation.

Further computations with an intermediate result are treated as

above, using the highest precision required of the operands.

As a clarifying example consider the computation

Y = X*Z + A*Y + 8 + C

where X, Z, A, Y and 8 are variable precision* interval variables

with precisions 25, 50, 75, 15 and 50 respectively and C is a

real variable. The computation is oerformed as shown in Figure

3.

---------- -- 7---------------------------------
- -operation I precision I target

I I

I X * Z 1 50 I templ (with precision 50)1
I A * Y 1 75 1 temp2 (with precision 75)1

templ * temp2 1 75 I temoi (with precision '5)1
I templ + a I 75 1 templ (with precision 75)1
I convert C to interval 1 10 I temp2 (with precision 10)1
I templ + tem2 1 75 I y (with precision 15) 1

FIGURE 3

Execution record of the FORTRAN statement Y 1
X*Z 4 A*Y + 8 C displaying precision of the
operation and the precision to which the
result is converted

For a different perspective of the example let Y be a real

variable and R an integer. Then the execution record would then
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be that of Figure 4.

* -operation t precision I target

I I I

I X * Z 1 50 I tempi (with precision 50)1
I convert B to interval 1 20 1 temp2 (with precision 20)1
I A * temp2 1 75 I temp2 (with precision 75)1
1 tempi * teup2 75 1 tempi (with precision 75)1
I tempi + a 1 75 I tempi (with precision 75)1
I convert C to interval I 10 I temP2 (with precision 10)1
I tempi + temp2 I 75 I tempi (with precision 75)1
1 convert tempi to real I 75 I y (in single precision) I

-- -- -- -- -- -- - Wee e e e e e e e c C -e ee---- -------- --- - -

FIGURE 4

Execution record of the FORTRAN statement Y =
X*Z + A*Y + B + C with Y changed to a real
variable and B changed to an integer
displaying precision of the operation and the
precision to which the result is converted

3.2 k

Operations involving the variable precision, interval data type

are implemented via a series of calls to a supporting multilevel

interpretive structure. This multilevel interpretive structure

controLs the precision under which the interval operations are

carried out, performs the necessary conversions, executes the

desired operations with the required roundings and takes care of

the housekeeping involved with the variable precision, interval

data type. The supportinq structure is composed of three separate

levels. The first level of the multilevel Interpretive structure

performs the precision adjustments that need to be made before

the actual operations are performed. The second level controls

the details of the interval operation, for exampte, which

l -1?.-



endpoints to use in determining the result and the rounding

strategy to he employed. The third level carries out the actual

operation with the prover roundings. The package can be

represented graphically as shown in Figure S.

IlevelI
------------------------------ I

I
1

I 1t lvel--precision I
1 of operations determined4 I
I (precision control levetlt
I---------------------------I

2ndleel-- controls I
Ithe specifics of theI
I interval operationI
I (interval operation leveM)
I----------------------------I

l7rd level -- _ performs the I
I vector manipulations on I
I the endpoints of theI
I intervalsI
I (vector manipulation teveM)

I I
*I machine operations I

----------------------- --------- I

FJIURE 5

Graphic depiction of the various levels of
the multilevel interpretive support structure

A demonstration of how the levels interact and the



responsibilities of each level can be made by following the

computation C a A + B down through the different levels* where

all variables are of type variable precision interval. The

actions taken at each level are as follows:

1) User program level -- the assignment statement is

translated into a call to the subroutine MVADD

CALL MVADD (A, R, C)

2) Precision control level -- MVADD inspects the
operands A and R determining which has the tarqer
precision. The smaller precision arqument is
converted to the larger precision by copying its
value into a temporary workspace, named MVTFOP,
kept explicitly for that purpose. The precision
for which the computation wilt be performed, kept
in an external location, is then set to the
precision of the larger precision operand. A call
to the interval operation level is then performed
by executing either

CALL MXADD (MVTEMP. MVB, MVTEMP) or
CALL MXAD (MVA, MVTFMPP MVTEMP)

The target is then inspected. If the target is
itself a temporary# an intermediate result, the
result of the operation is retained. If it is not,
adjustments are made on the precision of the
result and the value assigned to the target.

3) interval operations level -- MXADD makes two calls
to the vector operation level to perform the
operation of interval addition

CALL RPADD (MXA(right)p MXR(right)p
MXC(right)p upward directed rounding
indicator)

CALL 14PADD (MXA(teft)p MX9(teft)* 1XC(left),
downward directed rounding indicator)

4) Vector manipulation level -- MPADD performs the
manipulation of addition which is, at this tow
level, an addition of two integer arrays. This
addition is performed by calls to various other
supportive routines at this level which carry out
the actual machine operations of addition on the
integer array which represents the endooint of the
variable precision, interval argument specified
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earlier.

3.3 uuft. QIh

The variable precision# interval data type has been imbedded in

"structured" FORTRAN. This was accomplished through the

incorporation of RATFOR r93P a preprocessor for FORTRAN written

in FORTRAN, into the supporting structure. The end result was

the production of structured, variable precision, interval

FORTRAN.

"Structured" FORTRAN allows the use of contemporary control

structures such as DO-WH1LE, IF-THEN-ELSE and REPEAT-UNTIL [91.

The primary purpose is to make FORTRAN a better programming

language by permitting and encouraging the writing of readable

and wet-structured programs. This is done by providing the

control structures that are unavailable in FORTRAN, and by

improving the "cosmetics" of the language* similar to that done

in FORTRAN 077.

The cosmetic aspects of RATFOR have been desianed to make it

concise and reasonably pleasing to the eye. It is free-form;

statements may appear anywhere on an input line. Other additions

also improve the readability of the language; for example, the

use of the symbol ">" conveys the meaning of code more rapidly

than the equivalent strinq of symbols ".GT.".
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To show the advantages of RATFOR consider the construct

IF (condition) THEN (sl) ELSE (s2).

This construct is, for the most part, fairly easy to understand.

IF the "condition" is true THEN statement "sl" is to be executede

ELSE statement "s?" is to be executed. However, this construct is

rather awkward to express in FORTPAN.

As an exampte, suppose that if the value of the variable X were

greater than or equal to 10.7, then X is to be divided by 19.3

and the counter KOIINT incremented by one. However* if the

condition were false then the variable X is to be multiplied by

18.3 and the counter KOUNT decremented by one. One way of

expressing this in FORTRAN as shown in Figure 6.

IF (X.GE.IO.7) GO TO 10 I

X = X * 18.3
I KOUNT = KOUNT - I

GO TO 20
10 X = X / 18.3

KOIJNT = KOUNT + 1 I
i ?0 CONTINUE

---------------------------------------- 7

FIGURE 6

Example of FORTRAN code

On the other hand, the same logic could be expressed in RATFOR as

shown in Figure 7.
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IF (X >u 10.7)

X = X 1 18.3
KOUNT = KOUNT + 1 I

I ELSE

Ix = X *18.3 1
KOUNT KOUNT - 13 1

-----------------------------

FIGURF 7

PATFOR version of FORTRAN code in Fiqure 6

With these additional contemporary proqramming language

constructs the proqrammer is able to produce a readable,

structured proqram and have it translated automatically into

standard FORTRAN. It is herein that RATFOR's greatest value

Lies. A highly readable, structured program is a vrooram that is

easier to develop, debug and modify. The time it takes a

programmer assigned to modify an existent prooram to get the job

done is directly proportional to the understandability of the

code. By the automatic translation of these constructs into

FORTRANP the programmer is able to devote a larger portion of

time to the development of ideas rather than their translation

white being assured that this translation will be done correctly

each and every time.
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3.4

A "virtual" compiler was developed to compile the structured

variable precision, interval FORTRAN source to the "object code"

of the FORTRAN virtual machine. The virtual compiler allows the

user to write "structured" FORTRAN programs which contain

interval variables. The virtual compiler automatically performs

the simple but laborious task of tending to the technical details

of the translation. The virtual compiler program first passes

the application's source program through the preprocessor PATFOR

producing an intermediate form of the proqram. This intermediate

program is then passed to AUGMENT after an AUGMENT description

deck has been automaticatty attached. A FORTRAN version of the

program is then produced by AUGMENT. This process is graphically

depicted in Fiqure 8. A more detailed description of RATFOR and

the AUGMENT description deck can be found in the appendices.

1Structured Variable I

I Precision Interval I

-------------

I (RATFOR preprocessor under
I Virtual Compiler control)

T AUGMENT Source I

----- 211k-------I
III (AUGMENT preprocessor under

I Virtual Compiler control)
V

I FORTRAN Source I

FIGURE 8

Depiction of translation process
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4.1 BauIu

The test programs used as a basis for the results consist of a

heat transfer program and a program which computes the constant
I

e. The tatter was chose for its simplicity. It consists of a

simple iterative loop with only the basic operations of additiono

0 multiplication and division. One other reason for its inclusion

is that the constant e is known to many decimal places and

therefore some measure of the capabilities of the various

arithmetics can be made. This algorithm also provides an example

of the effects that extending Loop termination factors can have

on resource usage when extended precision is used. The atqoritho

used to compute the constant e is given is Figure 9.

I /* initiatizations */

I sum = 0; nfact = 1;
step * 1; 1 - 0;

I error.factor 2 CONSTANT

/* main' Loop */
repeat

sum sum + step
I =1 + 1*
nfact = nfact * i;
step =/nfact

I until (step <= error-factor);

1 1* output result */
Iput (sum) ;

----------------------------------------I

FIGURE 9

Algorithm to compute the constant e
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I / initializations *t I
I k * 30; t 2 10; c = .12; tO = 70;
I t = s0; ro = 7.1 t 62.3;

pi = 3.1415927;
I get (theta);

I /* loop once for each foot t/
I do feet = 1 to t;

/* initializations for sub-Loop *1
I t = (k * theta)/(t**2 * ro * c);

x a feet/I; /* increment foot t/
sum = 0; count = 0; time = n;

/* loop to determine temperature tl
repeat

count = count 4 1;
xsum * ((-1)**count/count) *

exp((-count)**2 t pi**? * t I
sin(count*pi*x);

" Aum V sum + xsum;
I if (abs(xsum) < error

then time = time + 1;
else time a 0;

until (time = 2);

/* compute and output result t/
I t = tO + (ti-tO) * (x + (2/pi)*sum);
I put (t)
I end;

FIGURE 10

Algorithm to compute the temperature of a
pipe of lenqth I at 1 foot intervals* where
the ambient temoerature is tO degrees and the
heat source is tl degrees

The heat transfer program, an applications source program in use

by the Mechantcat Engineering Department of the University of

Southwestern Louisiana, was chosen to present an atgorithm which

"-20A
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possessed somewhat more sophistication. It is composed of a more

complex Looping structure. It also contains more complex

operations, sine, exponential, conversion, etc. The wide range of

operations will serve to provide a basis for a comparison of the

arithmetics on a cost per digit basis. The algorithm which is

used in the heat transfer program is presented in Figure 1n.

The following results were produced on the Honeywell Muttics

system based on a Honeywell 68/8n two processor configuration.

Two metrics are given for the results produced, cpu time and

paging. It should be noted that the cou time given is the virtual

cpu time for the run. There has been observed some slightly

irregular behavior in the system routine which supplies the

virtual cou time; therefore, these figures are not presented as

the actual amount of cpu time consumed. It is felt that these

figures are reliable enough for performing valid comparisons.

The paginq results presented are more a function of system load

rather than amount of main memory usage. There is, however, some

small but noticeable cost incurred during a page fault. Thus# a

run with a great number of page faults will consume a greater

amount of virtual cpu time than the same run with few page

faults. This metric has major interest only to those intimately

familiar with Multics.

-21-
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4.1.61 , rOIDoU±8~O.ooh.. OS-1oo.tot.5

Figure 11 presents the value of e to 5 decimal digits of

precision. This value was acquired from a handbook of

mathematical tables [7]. it should provide a basis for the

comparison of the following results. Appendix H also contains a

value for e which was obtained by executing a multiple precision

version of the e computation algorithm with a precision of 1500

digits and rounding the result to 1000 digits. This value should

be accurate to all 1000 digits. Source versions of the e program

can be found in appendix I.

I 2.7182R1828459045235360287 I
I ! 7

FIGURF 11

Value of e to 25 digits

The following two results were obtained from single precision and

double precision FORTRAN versions of the program to compute the

constant e. The single precision version, with an error factor of

1.Oe-8, has a result which is accurate to 7 digits. The double

precision version, with an error factor of 1.Oe-15, has a result

which is accurate to 19 digits. The double precision version

produced results which were accurate to more than twice as many

digits as the single precision version.
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- -.. S E UAL TO ..........1.8 1
I COMPUTED IN 10 STEPS ACCURACY * 7 DIGITS

-------------------------------------------------------------
I CPU time = 0.024123 seconds; Page faults 0 0 I

-------------------------------------------------------------

FIGURE 12

Results of single precision e computation
( ERROR a 1.ne-8 )

I e IS EQUAL TO 2.718281828459045235
I COMPUTED IN 18 STEPS ACCURACY = 19 DIGITS 1
I---------------------------------------------------------------1
I CPU time a 5.024731 seconds; Page faults a 0 i
----------------------------- --------------------------- I

FIGURE 13

Results of double precision e computation

( ERROR = 1.0e-15 )

The results presented in Figure 14 are those from the sinqle

precision interval version of the program. It has an error factor

of 1.0e-8 with an accuracy of 7 digits. The interval width is

quite small indicating that the algorithm is stable with respect

to truncation error. Note that the single precision reat double

precision real and the actual value are contained within the

interval, which is ouite desirable. The results did, however,

consume more than an order of magnitude greater amount of cpu

time than did the single precision real version. The price paid

bought the greater trust in the results produced.

---------------------------------- II e IS EQUAL TO t 2.71828172. 2.71828198 )

I COMPUTED IN 1"n STEPS ACCURACY v 7 DIGITS I
I ........................................... ............... I 
I CPU time a 0.4734 4 seconds; Page faults a 1 1

---------------------------------------------------------------I

FIGURF 14

Results from single precision interval e computation
C ERROR a 1.Oe-8 )
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The results presented in Figure 15 were produced from the

56-decimat digit interval version of the program with an error

factor of 1.0e-50. The resutt is accurate to '? digits. The

execution incurred a cpu cost more than two orders of magnitude

greater than that of the double precision real version and an

order of magnitude greater than the single precision interval

versi on.

I IS EQUAL TO

1 E 2.71828182845Q045235360287471352662497757247093699958R4, I
I 2.718281878459045235!608747135266?497757247l93699958R5 I I
COMPUTED IN 4? STFPS ACCURACY = 51 DIGITS

I CPU time a 5.534146 seconds: Page faults & 7 1
---------------------------------------------------------------I

FIGURF 15

Resutts from 56 decimal digit interval e computation
( ERROR a 1.Oe-50 )

There now follows a series of results produced by the variable

precision interval version of the program. The first result is

supplied for comparison to the 56 decimal digit arithmetic. The

other results, all with error factors of 90% of the precision.

provide for the determination of the relationship between amount

of precision and accuracy of the results that is obtainabte. They

will also give some idea of the cpu costs incurred when extending

the precision of a computation using variable precision interval

arithmetic.

The results of Fiqure 16 are computed with 56 decimal digits of

precision with an error factor of 1.0e-50. When compared to the

results gained from the 56 decimal digit interval version with
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the same error factor one finds that the variable precision

interval version incurred a cpu time cost that was only slightly

greater. The accuracy was the same as with the 56 decimal digit

version.

I -IS EQUAL TOI
I E 2.7182818284590452353602874713526624977572470936999588460# 1
I 2.7182818284590452353602874713526624977572470936999598465 I I
I CONPUTEO IN 42 STEPS ACCURACY = 51 DIGITS
I----------------------------------------------- ----------------

* I CPU time = 7.043885 seconds; Page faults u 12 1

FIGURE 16

Results from 56-digit variable precision interval e computation

( ERROR a 1.0e-50 )

The next four results were computed with 100P 200, 500 and 1000

digits of precision respectively. The accuracy, decimal digits.

was 91, 181, 452 and 899 respectively. As can be seen& in alt

cases the number of digits of accuracy closely matched the error

factor.

--------------------------------------------------------------• IS EQUAL TO

I E 2.718281828459045735360287471352662497757247n936999595749 I
I 669676277240766303535475945713821784020548761* t

2.71828182845904523536028747135266?4977572470936999595749 1
1 669676277240766303535475945713821784020548823 1 1
I COPPUTED IN 65 STEPS ACCURACY a 91 DIGITS

I CPU time u 12.R32085 seconds; Page faults 14 1

----------------------------------------------------------------
FIGURF 17

Results from 100-digit variable precision interval e computation
C ERROR a 1.0e-90 )
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•I IS EQUAL TO

I C 2.718281828459045235360787471352662497757247n9369995957496 I
I 696762772407663035354?5945713R?1?85751664274.746639193?0 I
I 030599218171359662904357290n33429576059563073813232R627
I 94349076323325754074104071474686, I
I 2.718281828459045235360287471352662497?57247n9369995957496 I
I 6967627724076630353547594571382178525166427427466391932n I
1 03059921817413596629043572900334295260595630738132328627 1
1 943490763233?5754 074104071474494 1 I
1 COMPUTED IN 111 STEPS ACCURACY = 181 DIGITS
I----------------------------------------------------------------I
I CPU time a 42.957277 seconds; Page faults a 44

FIGURE 18

Results from 200-digit variable precision interval e computation
( ERROR = 1.Oe-lRO )

• e S EQUAL TO

I C 2.7182818284590452353602874713566249775727TQ369995957496
I 69676277240766303535475945713821785251664274274663919320 1
1 03059921817413596629043572900334295260595630738132328627 1
1 94349076323382988075319525101901157383418793070215408914 1

99348841675n92447614606680822648001684774118537423454424 I
I 371075390777449920695517n2761838606261331384583o0n752044 I
I 93382656029760673711320070932870912744374704723069697720 1
1 93101416928368190255151086574637721112523897844250569536 1
I 967604192074485186914613?1006992866910?SQO1'5017n484 1
I 2.718281828459n4523536028747135266249775724709369995957496 I
I 6967627724076630353547594571382178525166427427466391932n I
I 03059921817413596629043572900334295260595630738132328627

943490763233829880753195251O1Q0115738341879!0702154P8914 I
1 99348841675092447614606680822648001684774119537423454424 1

I 371075390777449920695517027618386062613313R4SR3000752044 I

I 933826560297606737113200709328709127443747n4723069697720 I
I 93101416928368190255151086574637721112573897Pt442snS69536 I

I 9676041920744851869146132100699286691025901450170714 I f
I COMPUTED IN 233 STEPS ACCURACY a 452 DIGITS
I I------- e eeeeeeeeeeeeeeeeeeeeee-- w -----------------------------------------------------

I CPU time 2 291.310798 seconds; Page faults 8 I

FIGURE 19

Results from 500-digit variable precision interval e computation
C ERROR a 1.Oe-450 )
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"----------- - --- -------IS EQUAL TO -

I C 2.71828182845904523536028747135?66249775724709369995957496 I
69676277240766303535475945713821785251664274274663919320 I

I 030599218174135966290435729n0334295260595630738132328627 I
I 943490763233829880753195251019011573834187930702154n8914
I 99348841675092447614606680A?2648001684774118537423454424 I

37107539077744992069551702761838606261331384583000752044 1
93382656029760673711320070932870912744374704723069697720

I 93101416928368190255151086574637721112523897844250569536 I

I 96770785449969967946864454905987931636889230098793127736 1
1 178?1542499972957635148220826989519366803318252886939849 1

64651058209392398294887933203625n94431173012381970684161 I
1 40397019837679320683282376464804295311802328782509819455 1
1 81530175671736133206981125099618188159304169035159888851 1

93458072738667385894 287922849989208680S257492796104841 1
I 9844363463244964875602336248270419786232090021609902353 I

04369941849146314O9l431738143640546253152096183690888707 I
01599908889495337516"30483941167953228780215021423391110 I
1358739588910558959275135114281728781578602 1

I 2.718281828459f4S23536028747135266249775724709369995957496 I
I 6967627724076630353547594571382178525166427427466391932n I

030599?18174135966290435729nn33495260595630738132328627 I
I 94349076323382988V751952510191157383187937O2154n8914 I
I 99348841675O92447614606680872648l01684774118537423454424 I

3710753907774499206955170276183860626133138458300075?044 I
1 93382656029760673711320070932870912744374704723069697720 1
I 93101416928368190255151086574637721112523897844250569536 I

967707854499699679466445490598793163688930098793127736 1
178215424999229576351482208?6989519366803318252886939849 1
61651058209392398?94887933203625094431173012381970684161 I
40397019837679320683282376464804295111802328782509819455 I
815301756717361332f6981125099618188159304169035159888851 I

1 934580727386673858947?8792284998920868058257492796104841 1
I 98443634632449684875602336248270419786232090021609902353
I 0436994184914631409343173814364054625315209618369fl8 70? I

0159990888949533751673048394116795322878021521423391110 I
1 1358739588910558959275135114281728781579011 1 1
I COMPUTED IN 412 STEPS ACCURACY a 899 DIGITS

I CPU time = 1574.385312 seconds; Page faults 51
----------------------------------------------------------------

FIGURE 20

Results from 999-digit variable orecision interval e computation
E ERROR * 1ofe-900 )
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To summarize the results of the comparison of the arithmetics

the higher the precision the better the results that could be

obtained and the more cpu time that was consumed. This was

expected; not only was there more information (digits) to be

processed* but the extra precision allowed the extension of the

loop termination factor. The extension of the loop termination

factor resulted in the loop being executed a greater number of

times which in itself would account for a large increase in cpu

time consumption (Figure 21). A summary table of the various run

times for the different arithmetics is given in Figure 21. The

cost of the arithmetic used must be weighed against its benefits.

For this proqram the single precision version produced

acceptable results; the double precision version produced

excellent results. The single precision interval version did not

bring to light any faults in the algorithm. Since the single

precision interval version is much more sensitive than any of the

other interval versions there was no justification for the use of

the other versions other than as a point of comparison. The

results of the extended precision interval versions did

demonstrate that these arithmetics were capable of providing a

high level of significance in those situations which warrant its

use.
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I errorlrealIdoublelsingtel 56 I VARINT Inumberldigitsl
I I I I I I of I of I

I I I I int I int Icpu (digits) liters I acc
1 ------------------------------------ ----- e

110-8 1.02 1 ** I .47 I ** I ** I 10 I 7
110-15 ** .0? I * ** 1 ** I 18 I 19
110-50 ** ** I ** I 5.5 I 7.0 t563 1 42 I 51
110-90 ** ** I ** I ** I 12.8 C1001 I 65 I 91
10-1801 ** ** ** I ** 1 43.0 C2003 I III I 181
110-4501 * ** I ** I * I 291.3 C5003 I 233 I 452
110-9001 ** ** ** I ** 11574.4 (9991 I 412 I 899

------------------------------ ---------------------------------- I

FIGURE 21

Table of run times (in seconds) of various arithmetics

1575 1
1500 1
1425 1
1350 1
1275 1
1200 1
1125 1
1050 I
975 I
900 1
825 1
750 1
675 1
600 I
525 1
450 1
375 1
300 1
225 1
150 1
75 1
01 .XX I .. . I I I I I I

0 100 ?00 300 400 500 600 700 800 900 1000
(digqits of precision)

FIGURE 22

Ptot of diqits of precision versus cpu time consume4
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4.1.1.2 Ibz...Uut..Ic~aletc_. e~cosr

Exact results are not known for this program as was the case

with the @ computation; these results are presented primarily for

comparisons of the various arithmetics on a cost per digit basis.
I

Hence, all versions of the program use the same loop termination

factors; there is no other difference among the various versions

other than precision. The algorithm is also sufficiently complex

to allow a demonstration of the effects that algorithm

configuration can have upon cpu time consumption. The various

versions of the aloorithm are presented in Appendix J. Figure 24

displays the cpu timings for each of the runs along with the

largest interval width produced by the different interval

versions. For those interested the various results are to he

found in appendix K. Figure 23 displays the output from the

single precision real version as a sample output.

Ithe answer for 1 foot Is 7O.00flO00l
I the answer for ? feet is 7O.flOO00 I
I the answer for 3 feet is 69,999996 1

the answer for 4 feet is 7O.0fO006

I the answer for 5 feet is 70.001100 i
the answer for 6 feet is 70.n172399I

f the answer for 7 feet is 72.054155 I

I the answer for 9 feet is 95.780487 1
I the answer for 9 feet is 219.179291 1
I the answer for 10 feet is 5O.)O)05n I

I-------------------------------------------------- I
I CPU time z 0.178528 seconds; Page faults = n i

FIGURE 23

heat transfer -- single precision real version
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-- version -Largest I cpu time I

I interval width I consumption I
I---------------------------------------------
I single I ** I .19
I double I ** I .2n I
1 single int I 1.0e-4 1 6.87 1
1 56 int I 1.0e-51 I 1P12.56 I
I VARINT 56 I 1.0e-53 I 325.10 I
1 VARINT 100 I 1.Oe-96 I 725.97 I
1 VARINT 200 I 1.Oe-197 I 2406.90 I
1 VARINT 500 1 l.0e-495 I 15505.37 I
I VARINT 200 + i 1pOe-1? I 2396.17 I
1 VARINT 2n 4+1 1.Oe-15 I 2377.67 I

I I

FIGURF 24

Table of run times (in seconds) of various arithmetics
+ * -- with output only produced at 20 digits precision )

( *. -- all invariant expressions removed from loops
and minimum necessary precision used )

The first four results presented in Figure 24 are those obtained

with the previously implemented arithmetics. Notice that the 56

decimal digit interval version shows a somewhat anamotous amount

of Cpu consumption. This results from the fact that the 56

decimal digit interval support package relies upon the multiple

precision package for the production of several supplied

functions. Among these are the sine and exponential functions

which partially form the main expression in the inner loop of the

computation. The cpU time consumption of the 56 decimal digit

interval version is strongly affected by this usage of the

multiple precision routines. The result is that the cpu time

consumption for this version is above what one would expect after
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viewing the results of the e computation benchmark# which

included extensions to the loop termination factors.

The next four results of figure ?4 are those obtained with the

variable precision interval version of the heat transfer program

with precisions of 56P 100, 200 and 50n respectively.

The next result shown in Figure 24 was partially computed with 20

digits of precision. The inner loop of the algorithm was Stiltt

computed with 56 digits of precision# but the value to be output

was produced with a precision of 20 digits. It was felt that this

more closely reflected a reasonable number of digits output.

That isp output to more than 20 digits or so of precision is not

realistic; digits after the 20t h would more than likely b e

ignored. The reduction of the only the output computation does

not result in any large reduction in the total amount of Cpu time

consumed. It is, however, significant when one considers that the

reduced precision operations account for only 60 operations out

of more than 6000 total operations.

* The last result shown in the table was Produced with a fully

optimized version of the heat transfer proqram. That is,

* optimized in the sense that aLL invariant expressions are removed

from loops and. constants are stored only to the precision

necessary to maintain their integrity. There is a much more
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substantial reduction in the cou time consumption than was

observed in the previous partially optimized version.

In summary, the writer of programs containing VARINTERVAL

variables must remember that operations upon these variables to
9

any substantial precision incurs a non-trivial amount of cou time

consumption. Thus previously acceptable algorithm configurations

are not appropriate when implemented with variable precision

interval variables. The optimization techniques used on the

VARINTERVAL version of the algorithm would not have been worth

the effort on the sinqte precision version of the algorithm.

Little savings can be realized in a run which consumes cpu time

measured in the hundreths of a second. The rewards are, however,

sufficiently great for one to apply what were previously trivial

optimizations to proqrams containing the variable precision

interval data type.

4.1.2 ha.¥iuatignOIbuLiiftxtLIn±D£Ia~ioE£aa

The multilevel interpretive support structure consists of three

levels. As has been mentioned previouslyp each level has its own

set of ctearly defined responsibilities. The first level controls

the precision of the operation. The second level contains the

logic for controtting the interval aspects of the operation. The

third level performs the actual operation as a set of operations
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on vectors. The multilevel interpretive support structure is to

be evaluated at each tevet. This evatuation witt be made by

choosing one of the primitives provided by the supporting

structure and tracing the interpretive process through each

lever. Appropriate comments witt be made concerning the
9

interactions of the various Levels as wett as identifyino the

satient features at each tevet.

8

The primitive chosen for this evaluation is MVPWR, the power

function. A graphic disptay of the muLttitevet interpretive

structure of MVPWR can be seen in Figure 2S which presents the

calting sequences of the various levels of the primitive as a

tree. At the top Level is MVPWR which initiates a catt to 14XPWR

at the second level. AXPW is supported at the third levet by a

broad base of muttipte precision package routines rAppendix C3.

Consider* now, each levet in turn.
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oe mi I - .

(first Level) I MVPWR I
I I I

I I MVSTR I

~V.
I I

(second tevet) I MXPWR I

I

I I
(third Level) I MPPWR I

-------------- I III - --.... ..
V I

II I I
I MPCHK I I MPMUL I V

-------1I -------I

I I

I MPMUL2 I

I I

!4PNZR I

FIGURE 25

Tree diagram of the muttitevet interoretive
structure of the power function

The first Level, MVPWR. controts the precision at which the

operation is to be Performed. The first action taken at this

levet is the extraction of the precision of the operand. The

precision at which the operation is to be Performed is that of

the operand. The Precision at which the operation is to he
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performed is set by assiqning the precision of the operand to the

variable T, Located in common. The common variable T is

referenced at the lower Levels to determine the precision of the

operation. Once the precision has been set, the format of the

operand, Fiqure 2P is converted to that used at the tower levels*

Figure 49. The only difference is the insertion of four extra

digits of information in the first word of the interval variable.

The first three of these extra digits contain the precision. The

last digit is a temporary variable indicator used to signify

whether or not the variable contains an intermediate result of a

computation and as such may have its precision altered. This

sequence is depicted in the code section in Fiqure 26.

C STATEMENT FUNCTION FOR THE EXTRACTION OF THE COMBOINED

C PRECISION AND TYPE
EXTRACT(WORD1) = IARS(WORD1 - (WORD1/I10oO)*1lo0) t

C
I C PICK OFF THE TYPE AND THE PRECISION OF THE ARGUMENT

WORD1ARG = ARG(1)
PREC = EXTRACT(WORD1ARG)/1O

I C
I C SET THE PRECISION FOR THE LOWER LEVFLS

T = PREC

C
I C CONVERT THE FIRST WORD TO MP FORMAT

ARG(1) = ARG(1)/10001

----------------------------------------------------------------

FIGURE 26

Code section from MVPWR performing argument preparation

The operand is then passed to the second level with a call to

14XPWR. The result is returned in the temporary work space TEMP.

The operand is restored to its previous format. TEMP. which is
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returned in the tower level format, is converted to the first

level format using the precision of the operand. The vatue of

TEMP is then assigned to the target with a catl to MVSTR. MVSTR

inspects the temporary variabte indicator of the tarqet. If the

target is a temporary variabte then the contents of TEMP and the ]
precision information are copied to the target. If the target is

not a temporary variabte then adjustments to the value of TEMP

* must be made before the assignment is carried out. These

adjustments are of the form of either truncation or the fitting

in of unused digits of the target with zeros, dependinq upon

whether the precision of TEMP is greater than or tess than that

of the resutt. The target is then returned to the user program.

This seauence is depicted in Figure 27.

C CALL THE SECOND LEVEL TO PERFORM THE OPERATION
CALL MXPWR (ARG(i)* N, TEMP)

I C
I C RESTORE THE PARTICULARS OF THE FIRST WORD OF THE

C ARGUMENT AND THE TEMPORARY TEMP GETS THE PRECISION OF ARG. I
TEMP(1) = TSTGNCIABS(TEMP(1))lOOOn I

9 EXTRACT(WORD1ARG), TFMP(!))
ARG(!) 2 WORDIARG

I C
I C MAKE THE ASSIGNMENT TO RESULT

CALL MVSTR (TEMP, RESULT) I
C

RETURN

FIGURE ?7

rode section of MVPWR for resutt preparation

This first level incurs the least overhead of the three levels.

The major portion of the overhead is the vector copy operation
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performed during the assignment of the value of TEMP to the

target. The overhead of precision determination and format

conversion is quite small in comparison with the overall resource

usage unless the precision is unusually small.

The second level# MXPWR, contains the logic for performing the

interval aspects of the power operation. The primary function of

this level is the performance of a case analysis to determine

which endpoints are to be used in the production of the result.

The case analysis is necessary to ensure that the result is a

valid interval. In aenerat, the relation Ealoa2]**n a

tal**na2**n) does not hold. For example. [!l21**(-2) a

a .25, 1]. Additional information pertaining

to the interval operations may be found in Appendix D. The case

analysis for MXPWR is displayed in Figure 28. The endpoints of

the interval operand are passed singly to the third level with an

indicator which stipulates the proper rounding strategy. For an

interval [A1.A2, a power N and a target CZl.Z2] with the above

values the two calls would be

CALL MPPWR (Al N. Z2P _)
CALL MPPWP (A?# No Zl 1)

The value I is used to indicate a downward directed rounding]

white the value ? indicates an upward directed roundinq.
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I CASE 1. the POWER is even and positive and the
OPERAND is positive

RESULT(teft) a OPERAND(teft) ** POWER I
RESULT(right) a OPERAND(right) ** POWER

I CASE 2. the POWER is even and positive and the
OPERAND is negative

RESULT(left) u OPERAND(right) ** POWER I
RESULT(right) = OPERAND(teft) ** POWER

I CASE 3. the POWER is even and negative and the
OPERAND is positive I

RESULT(teft) = OPERAND(riqht) ** POWER I
RESULT(right) a OPERAND(teft) ** POWER

I CASE 4. the POWER is even and negative and the
OPERAND is negative

RESULT(feft) a OPERAND(teft) ** POWER
RESULT(right) a OPERAND(right) ** POWER

I CASE 5. the POWER is odd and positive I
RESULT(left) • OPERANO(teft) ** POWER
RESULT(right) 3 OPERAND(right) ** POWER I

I CASE 6. the POWFR is odd and negative
RESULT(teft) a OPERAND(right) ** POWER
RESULT(right) a OPERAND(left) ** POWER

I CASE 7. the POWER is even and positive and the
OPERAND contains zero and the absolute
value of the right endpoint is greater than I
the absolute value of the left endpoint

RESULT(left) = 0 1
RESULT(right) = OPERAND(right) ** POWER I

I CASF 9. the POWER is even and positive and the I
OPERAND contains zero and the absolute I

I value of the right endpoint is less than I
I the absolute value of the left endpoint I

RESULT(left) 3 0 1
RESULT(right) = OPERAND(teft) ** POWER

I CASE 9. the POWER is even and negative and the
OPERAND contains zero

DIVISION BY ZERO ERROR

----------------------------------------------------------

FIGURE 28

* Case analysis for interval power function

The overhead incurred at this level is a function of the

operands. The case analysis of MXPWR serves as an example. The

determination of cases one through six requires very little
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computation. The determination of these cases involves only an

inspection of the word containing the sign rather than the vector

as a whole. For cases seven through ten, however, the

determination of the case requires a comparison between the two

endpoints of the interval operand. This can entail a
a

digit-by-diqit comparison of the endpoints. Naturally, the

greater the precisionm the greater the overhead that will be

incurred during the comparison.

The third le-vel, MPPWR, performs the operations on the vectors

representing the endpoints of the interval variable. At this

level the interval endpoints are no longer considered as forming

one entityp but are treated as separate operands. This level

receives from the second level a single endpoint alonq with an

indicator which stipulates the truncation strateqy to be used. An

outline of the algorithm used in MPPWR is presented in Figure ?9.

The algorithm forms the power by performing successive

multiplications. For neqative powers the reciprocal of the

argument is first formed with a call to MPREC. The

multiplications are performed by MPMUL.

%I
oI
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I# X**O 1

IIF N sO
1 E RESULT a 1

RETURN I

I# SETUP FOR MULTIPLICATIVE LOOP
IF N < 0

I C TEMP = 1/X T
I ELSE

E TEMP aX
I RESULT = 1

1 # MULTIPLICATIVE LOOP
I REPEAT
I IF (N IS 000) RESULT = RESULT * TFMP I
I TEMP = TEMP **
I N a N/2 I
I UNTIL (N = 0)

---------------------------------------------

FIGURF 29

Algorithm for MPPWR (X**N)

MPMUL performs thp multiplication between two multiple precision

numbers as one would multiply in longhand. That is* operand one

is multiplied by the last digit of operand two forming the result

in a work space in common. Then operand one is multiplied by the

second to the last diqit in operand two adding the result to the

value in the workspace in common after shifting left one diait.

The multiplication of operand one by a digit in operand two is

performed with a call to MPMLP. After the result has been formed

in the workspace in common, it is normalized and roundinqs are

performed by MPNZR. An outtine of the atqorithm of MPMIUL is

presented in Figure 30. I
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--
# COMPUTE THE SIGN AND EXPONENT
I OF THE RESULT

I RESULTSIGN s SIGN(X) * SIGN(Y)
RESULTEXPO4ENT u EXPONENT(X)+EXPONENT(Y)I

1 U MULTIPLICATIVE LOOP

1 O 1 a I TO PRECISION
I E # MULTIPLY VECTOR BY SCALAR

TFMP a TFMP + SHIFTLEFT_.(X *

1TH.DtGIT(Y))
PROPAGATE CARRIES I

I NORALIZE AND ROUND RESULT
Z a RESULT

FIGURF 30

Algorithm for MPMIUL(XP YP Z)

MPNZR performs the normalization and rounding of the result in

the workspace in common and assigns the value to the target of

the power operation. The normalization is performed as one would

expect; the digits are shifted left until the first digit is a

non-zero digit. Adjustments are then made to the exponent to

reflect the shift. The rounding is somewhat more involved. The

rounding strategy used to round the result is that stipulated by

the second levelp either a downward directed rounding or an

upward directed rounding. The results of interval operations at

this level are carried to twice the precision with four guard

* digits to minimize the toss of information due to finite

precision representation of real results. MPNZR makes use of

these additional digits of the result in carrying out the

roundings. PPNZR inspects the sign of the result to determine
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the necessary action to be performed to carry out the specified

rounding strategy. For a negative value# an upward directed

rounding requires a simple truncation of the result to the

necessary precision. For example* for three digits of precision

the value -.3339999999 would he rounded to -.333. For a positive

value an upward directed rounding requires the inspection of the

additional digits carried in the result for non-zero values. If

* any non-zero values are found then the result is tru'hcated to the

necessary precision and one is added to the last digit. For

example* for three digits of precision the value .33300000l1

would be rounded to .334. The actions performed for a downward

directed rounding are thp reverse of those performed for the

upward directed rounding. A summary of these actions is

presented in Figure 31.

I roundi----valu---actio
------------------------------------------------ I
I upward I positive I add one if non-zero I

II I additional digits I
I upward I negative I truncate
I downward I oositive I truncate
I downward I negative I add one if non-zero I
I I I additional digits I
------------------------------------------------I

FIGURF 31

Summary of rounding actions7

* Nearly all of the overhead associated with the variable orecision

interval data type is incurred at this level. This is to be

expected since nearly all of the operations performed involving

J



the individual components of the vectors which are used to

represent the variable precision interval data type are performed

at this level. This includes the normalization of the results as

well as the carrying out of the proper roundings on these

results.

In summary, each level of the multilevel interpretive support

structure operates in a cooperative manner, with its own clearly

defined responsibilities. The top two levels, providing control

of the operations upon the interval variables, incurs only a

small fraction of the overhead associated with the use of the

variable precision interval data type. This overhead is fairly

independent of the nrecision. This independence is due to the

fact that the contents of the vectors are almost never operated

upon at these levels. Any variance encountered is introduced by

an occasional copy or compare operation that must be performed on

interval variables at these levels. The majority of overhead is

incurred by the third levelp which actually performs the

operations involving the vectors which represent the variable

precision interval data type. The amount of overhead at this

level is entirely dependent on the precision, the relationship

being exponential in nature rather than linear, Fiqure 24. This

dependence on precision is to be expected as this level deals

exclusively with the vectors.
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Interval arithmetic can* at times# be extremely useful. For

instance, it can be used to indicate the limits of precision of

an algorithm for a given set of data. From the test ing it was i
shown that much better bounds on the results could be

obtained using the variable interval package. This wasp of]

course* not unexpected. The price paid was in runtime

efficiency. The use of standard precision intervals resulted in

approximately an order of magnitude increase in executionj

time over that of single or double precision arithmetic.

56 decimal interval arithmetic resulted in a further increase of

more than one to more than two orders of magnitude. Variable

precision interval arithmetic with precision 56 resulted in anJ

increase of three orders of magnitude. It should be noted hfre

that the 56 digit version was based upon the 50 decimal diqit

hardware arithmetic unit of the Honeywell H68180 processor.I

The software simulated basic operations of the variable precision

interval arithmetic caused that ari thmetic to take much longer.

One obvious application of variable precision interval

arithmetic would be to validate existing programs. Any data

sensitivity discovered could be included in a description of

the algorithm and directions for its use. Although variable

precision interval arithmetic is expensive, its cost must be

balanced against possible consequences of using invalid results.



An organization like the Corps of Engineers might weigh the

possibility of a defective dam or the cost of moving 100,00n tons

of dirt against the cost of a few hours of computer time.

A more effective technique would be to first test the

algorithm using single precision interval arithmetic. Its

relatively small decrease in run time efficiency indicates that

its use is more than justified as an economical means of

identifying possible trouble areas in an algorithm for the data

under consideration. The more expensive variable precision

interval package could be applied to just those cases where

possible trouble areas have been identified. Variable precision

interval arithmetic can be used to determine the precision of

the arithmetic required to guarantee a given significance in the

results of an alqorithm. Arbitrarily picking a given

precision for arithmetic does not guarantee results in which

absolute confidence can he placed. How much more confidence can

one have in results obtained on a 60 bit word machine than in

results obtained on a 36 bit word machine?

In general, whether using interval or regular arithmetic, the

* greater the precision the lonqer the run time required for a

given algorithm. Having variable precision interval arithmetic

would allow the validation of algorithms for which standard

precision interval arithmetic is insufficient. Further, the cost

of this validation could be held to a minimum by making full use
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of the ability to specify different precisions for different

variables. Computations with hiqh precision recuirements could

be performed with the necessary precision while those less

computationally demanding could be performed with a tower, less

cpu consuming, precision. In any case, the overhead
4

associated with execution in interval arithmetic will only be as

great as required for the necessary precision.

The large amount of processor time needed for variable precision

interval arithmetic is its major drawback. The execution speed

of interval arithmetic can be increased in several ways. One

would be to decrease the number of levels of interpretation

required in the current implementation. The optimum solution

would be to have a hardware or firmware module which could

execute variable precision interval arithmetic. Many

existing minicomputer systems have undefined opcodes for just

such requirements. Ps a side effect, an arithmetic unit that

can execute variable precision interval arithmetic can also

execute traditional variable precision floating point arithmetic.

This means that interval arithmetic could be used to

determine the required arithmetic precision needed to obtain

results of the desired accuracy. The algorithm, then, could be

executed using only that precision.
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Appendix A.

EAIlDB

RATFOR is a preprocessor for FORTRAN (written in FORTRAN) which

allows the use of contemporary control structures such as

DO-WHILE, IF-THEN-ELSE and REPEAT-UNTIL C91. RATFOR is unique

in that it has the advantages of being highly portable, easily

used and fairly efficient. The primary purpose of RATFOR is to

make FORTRAN a better proqramming language by Permitting and

encouraging the writing of readable and well-structured programs.

This is done by providing the control structures that are

unavailable in FORTRAN, and by improving the "cosmetics" of the

language.

The cosmetic aspects of RATFOR have been designed to make it

concise and reasonably pleasing to the eye. It is free-form. That

is, statements may appear anywhere on an input line. Other

additions also improve the readability of the language. For

example, the use of the symbol ">" conveys the meaning of code

more rapidly than equivalent strings of symbols such as ".GT.".

To show the advantages of RATFOR consider the construct

IF (condition) THEN (sl) ELSE (s2).

This construct is, for the most part, fairly easy to understand.

IF the "condition" is true THEN statements "sl" are to be

executed, ELSE statements "s2" are to be executed. However, this
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cOnstruct is rather awkward to express in FORTRAN. AS an example.

suppose that if the value of the variable X were greater than or

equal to 10.7o then X is to be divided by 18.3 and the counter

KOUNT incremented by one. However* if the condition were false

then the variable X is to be multiplied by 18.3 and the counter

KOUNT decremented by one. One way of expressing this in FORTRAN

as shown in Figure 32.

. IF (X.GE.10.7) GO TO 10 1
X = X * 19.3
KOUNT KOUNT - 1

1 G0 TO 20
10 X a X / 18.3 1

KOUNT = KOUNT + I I
1 20 CONTINUE

---------------------------------

FIGURE 32

Example of FORTRAN code

On the other hando the same toqic could be expressed in RATFOR as

show in Figure 33.

IF (X >=m 0.7)

X a X 1 18.3
KOUNT - KOUNT + 1 I

FL I

SIX = X * 18.3
a KOUNT KOUNT - 1) 1

FIGURE 33

RATFOR version of FORTRAN code in Figure 32

With these additional contemporary programming language
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constructs the programmer is able to produce a readabte.

structured program and have it translated automatically into

standard FORTRAN. It is herein that RATFOR's greatest value

ties. A hiqhly readable* structured program is a program that is

easier to develop, debug and modify. A programmer assigned to

modify an existent program is able to get the job done quickly in

direct proportion to the understandability of the code. By the

automatic translation of these constructs into FORTRAN, the

programmer is able to devote a larger portion of time to the

development of ideas rather than their translation whitle being

assured that this translation will be done correctly each and

every time.

RATFOR is written in a portable version of FORTRAN. The

installation of RATFOR entails the production of an object code

deck for RATFOR and the providing for input and output

attachments. The input for RATFOR must be attached to the FORTRAN

logical unit number 10. The output for RATFOR is written to

FORTRAN logical unit number 11. Error conditions are displayed on

FORTRAN logical unit number 12. There is also a version of

RATFOR written in RATFOR which is a ouite useful aid in

understanding the translation process used by RATFOR. The RATFOR

version also supplies an excellent example of the use of RATFOR.

The rest of this appendix provides a summary of the statements

and operators accepted by PATFOR.
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1. RATFOR STATEMENT -- One or more FORTRAN statements enclosed in
brackets. (Prackets optionat for a singte FORTRAN
statement.)

EXAMPLE:

RFAD) (5p1) ZI

2. IF STATEMENTS

A. IF (condition)
RATFOR STATEMENT

EXAMPLE:
IF (X.EO.Y) r

OLDX = X
X = Y**?]

S. IF (condition)
RATFOR STATEMFNT

ELSF
RATFOR STATEMENT -- ELSE clause is optional

EXAMPLF:
IF (X z- Y)r

OLOX = X
X =Y**2

ELSE X = X**2

C. IF (condition)

RATFOR STATEMENT

ELSE IF (condition)
RATFOR STATEMENT

ELSE

RATFOR STATEMENT

EXAMPLE:

IF (X.EQ.Y)
? a 0

ELSE if (X > Y)
C

OLDX = Y
X Y**23

ELSE

y

V a 0)
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3. 0 in d ex i in it iaI, fi nal s te p
RATFOR STATE14ENT

EXAMPLE:
DO 1 20100P2

CX(I) a X(!-1) *XCI)

4. SPEAK -- exit f rom loop

5. NEXT -- qo to bottom of toop

Looping structures:

6. WHILE (condition)
RATFOR STATEMENT

EXAMPLE:
WH~ILE CX >u LIMIT)

r SUM a SUM + X
X 9 KURD(X)

7. FOR (initialization; condition;* increment)
RATFOR STATEMENT -- increment and initiatization are

FORTRAN statements; condition is
a FORTRAN loqical expression.

EXAMPLE:
FOR (! = 1; X < Y; I z I + 2)

tX = KURD (XPI)
SUMX v SUMX + X

4h

8, REPEAT
RATFOR STATEMENT

UNTIL (condition)

EXAMPLE:
REPEAT

(SUM a SUM + X
X u KURDWX

UNTIL (X.LT.LIMIT)
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9. c -- Comment statement

EXAMPLE:

# this is a comment statement
SX z 1 N X is assigned the value of one

10. X -- do not process the remainder of the tine; just shift
left one column. (Used to convert FORTRAN comment
statements to RATFOR)

11. DEFINE label value -- value will be substituted for label
throuqhout the progeam

EXAMPLE:
DEFINE YES 1 (replaces "YES" with "1" throughout program)

12. logical operators -- >up <= == >* < !, &P
(get les eq. qtp It, or, and, not)

13. STATEMENT NUMBERS -- if first field in statement is numeric.
it is assumed to be a statement number.

14. INCLUDE n -- begin reading input from FORTRAN i/o unit n. This is
a very primitive include mechanism.
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Appendix 8

AUGMENT is a preorocessor which allows the introduction of

non-standard data types (e.g. multiple precision intervat

numbers) into FORTRAN programs. The introduction of a data type

is accomplished by passing the program containing the extended

data types to AUGMENT along with an AUGMENT description deck. The

description deck contains the necessary information needed by

AUGMENT to properly translate the extended data types and the

operations performed upon them into standard FORTRAN. This

greatly simplifies the task of writing a program for a

multiple-precision interval computation, or converting a single

(or doubte) precision routine to multiple precision.

For example, if AUGMENT is used we can write expressions such as

shown in Figure 34 where X, Y, and Z are multiple precision. This

will automatically be translated to the FORTRAN equivalent as

shown in Figure 35.

-------------------------------
I VARINTFRVAL X* Y, I I

X a Y + Z*FXP(X+I)/Y I

FIGURE 34

Portion of Stuctured Variable Precision
Interval FORTRAN code
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INTEGER X(?4), Y(24), Z(I.4)

CALL MVADDI (X, 1, MPTFMP)
CALL MVEXP (MPTEMP, MPTEMP)
CALL MVMUL (Zp MPTEMPP MPTEMP) I
CALL MVDIV (MPTEMP, Ye MPTEMP) I
CALL MVADO (Y, MPTEMP, X)

FIGURE 35

Standard FORTRAN equivalent of Figure 34

The description deck which specifies the variable precision

interval package to AUGMENT is shown in Figure 36. The AUGMENT

description deck contains 7 major sections. The first section

instructs AUGMENT on how the data type is actually to be declared

in the FORTRAN output. This is very similar to the PASCAL tyoe

declaration. The next section gives details on how operations

upon the extended data type are to be translated. For example, if

A and 8 are of type VARINTERVAL then A+B would be translated as

CALL MVADD(XYRESULT). The third section is supplied for the

extraction of the sign of a variable precision interval variable.

The fourth section is supplied so that information concerning the

inner components of the structured variable precision data type

may be extracted. The foltowing section gives instructions on the

conversion of functional references. Its function is basically

the same as the second section. The sixth section contains

conversion information. For example, conversion from real to

variable precision interval would entail a call to MVCRM. The

last section indicates which routine is to be called to perform
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assignments. In this case it is MVSTR.

IDESCRIBE VARINTERVAL

I DECLARE INTEGER, KIND SAFE SUBROUTINE, PREFIX MV I
I OPERATOR + (,NULL UNARY, PRV, S), - (NEG, UNARY),

+ (ADD, BINARY3, PRV, So S, S, COMM), * (M1UL), I
- (SUB,,,,,, NONCOMM)o I (DIV)p ** (PWR )I
+ (ADDIP,,, INTEGER), * (MULI), / (DIVI), ** (PWR),
.FG. (Eo BINARY2* PRV, So LOGICAL, COMM),
oNE. (NE), .GE. (GE,,,,, NONCOMM), .GT. (GT)I
.LE, (LE), .L T. (LT)

I TEST MPSIGA (SIGA, INTEGER)
FIELD SGN (SIGA, SIGB. (5)o INTEGER)*

EXPON (EXPA. EXPB)o BASE (RASA, BASB),
NUMDIG (DIGA, DIGB), MAXEXP (MEXA, MEXB),

DIGIT (DGAP DGB, (Ss INTEGER))
I FUNCTION ABS (ARS, CS). 5), ASIN (ASIN), ATAN (ATAN).

COS (COS)* COSH (COSH),EXP (EXP), INT (CMIM),
LN (LN)v LOG (LN), SIN (SIN)* SINH (SINH)o
SORT (SQRT), TAN (TAN), TANH (TANH),
MAX (MAX, (S, $)), MIN (MIN)* ROOT (ROOT)o
MPINF (INF(SU9ROUTINE),($,INTEGER.INTFGER,
HOLLERITH)PLOGICAL). MPOUTF (OUTF(SUBROUTINE)).
MPINF (INF(SURROUTINE), (S INTEGER, INTEGER,
INTEGER)), MPOUTF (OUTF(SUBROUTINE))

I CONVERSION CTM (CDMP, DOUBLE PRECISION, So UPWARD),
CTM (CIM, INTEGER)# CTM (CRM, REAL),
CTO (CMD(SURROUTINE)PIDOUBLE PRECISIONDOWPNWARD)PI

I CTI (CMI(SUBROUTINE)P, INTEGER)*
CTR (CMR(SUBROUTINE)v, REAL)

I SERVICE COPY (STR)
I COMMENT END OF AUGMENT DESCRIPTION DECK FOR MP PACKAGE

-------------------------------------------------------------------I

FIGURE 36

AUGMENT description deck for the Variable Precision
Interval data type
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Appendix C

PP is a multiple precision arithmetic packagerlo). it is almost

completely machine independent* and should run on any machine

with an ANSI standard FORTRAN compiler* sufficient memoryp and a

wordlength of at least 16 bits. The machine dependent sections

are those which deal with packed multiple precision numbers.

Some modifications would be necessary for a wordtength of less

than 16 bits.

MP has been tested on a Univac 1108 (e level FORTRAN v)P a

Univac 1100/42 (e and T level FORTRAN ve ascii FORTRAN). a POP 1n

(FORTRAN 10 and FORTRAN 40)p an IBM 360/50 (FORTRAN g and FORTRAN

ho opt a 2)p an IBM 360/91 and 370/168 (FORTRAN h extended# opt =

2)p a Cyber 76 (ftn 4.?P opt = I)* a PDP 11/45 (dos)# and a

Honeywell 68/80 (Muttics release 6.1). These machines have

effective integer word lengths ranging from 16 to 48 bits.

MP numbers are in normalized floating point format as shown in

Figure 37. The base (R) and number of digits (T) are arbitrary

(subject to some restrictions given below), and may be varied

dynami cally.
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I I I I I I 
I s I expon I T1 I T2 I . . . I TN I
I . . . I I I I I I

FIGURE 37

Multiple precision number format. s = sign
(0, -1 or +1) expon = exponent (to base

8) Ti = digit (in base B) Note that words 2
to T+2 are undefined if sign = 0.

Arithmetic is rounded, and four guard digits are used for

addition and multiplication, so the correctly rounded result is

produced. Division, sqrt etc are done by Newtons method* but

give the exact result if it can be represented with T-2 digits.

Other routines (mosin, mpln etc) usually qive a result y = f(x)

which could be obtained by making an o(B**(1-T)) perturbation in

x, evaluating f exactly, then makinq an o(B**(1-T)) perturbation

in y.

Exponents can lie in the range -Ms ... + M inclusive, where M is

set by the user. On underflow during an arithmetic operation, the

result is set to zero by subroutine MPUNFL. On overflow

subroutine MPOVFL is called and execution is terminated with an

error message. Error messages are printed on logical unit LUN*

where LUN is set by the user, and then execution is terminated by

a call to subroutine MPERR. It is assumed that logical records

of up to 60 characters may be written on unit LUN. A working

array of size MXR (see below) must be provided in common.
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The parameters Bo T, Mo LUN and MXR are passed to the utitity

routines in common* together with a working array R which must be

sufficiently large (see below). Most routines use the statements

COMMON 8o To r LUNP MXRP R

INTEGER Bo To, R)

and it is assumed that R is dimensioned sufficiently large in the

calling program, and that MXR is set to the dimension of R in the

callinq proqram.

It is assumed that the compiler passes addresses of arrays used

as arguments in subroutine calls (i.e., call by reference)* and

does not check for array bounds violations (either for arguments

or for arrays in common). Apart from these violationsp HP is

written in ANSI standard FORTRAN (ANSI x3.9-1966). This has been

checked by the Pfort verifier. The only machine-dependent

routine is MPUPK (which unpacks characters stored several to a

word). Other routines which may require trivial changes are

MPSET (which causes an integer overflow), MPINIT and TIMEMP (see

comments below).

There are several constraints that must observed in using the MP

package. They are:
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1) The base B must be at least 2.

2) T (number of digits) must be at least 2.

3) M (exponent ranqe) must be qreater than T and less
than 1/4 the Largest machine-representabLe
integer.

4) 8*B*,2-1 must be no greater than the Largest
machine- representable integer

5) The integers 0. 1. ... P B must be exactly
representable as single precision floating point
numuers

6) 8**(T-1) should be at least 10-.7.

8 and T may be set to qive the equivalent of a specified number

of decimal places by calling MPSET (see below)# or may be set

directly by the user. If MPSET is not catLedp the user must

remember to initiaLize M, LUN and MXR (see above) as well as B

and T before cattinq any MP routines. (It would be possible to

use labelled common instead of blank common throughouto and set

default initializations in a data statement.)

To conserve space choose B fairly Large, subject to the natural

restrictions of word size ind the constraint given above. Maximum

values for the base for various word sizes are given below in

Figure 38. The figures given as a power of ten are useful in

that their use makes for easier debugginq of user programs which

call the MP package. It is, for exampLe, much easier for the

user to determine the base ten value of a digit in base 10000

rather than a digit in base 16384.
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1 48 bits, could use B 4194304 or 1000000 1
36 bits, could use 8 65536 or 10000 t

1 32 bits, could use B - 16384 or 10000
1 24 bits, could use a = 1024 or 1000 1

18 bits, could use B = 128 or 100
I 16 bits, could use B - 64 or 10
I-----------------------------------------------I

FIGURE 38

Maximum values of base for various word sizes

Avoid multiplication or division by MP numbers, as these take

o(T**2) operations, whereas multiplication or division by

integers take o(T) operations.

MP numbers used as arguments of subroutines need not be distinct.

For examplev

CALL MPADD (X, Y. Y) or CALL MPEXP (X# X)

are acceptable. However, distinct arrays which overlap should

not be used.

The MP packaQe used with the interval data type extension has

been modified to incorporate the proper roundings needed for

interval arithmetic. This version of the MP package passes an

added parameter to indicate the type of rounding desired. It not

only incorporates the directed roundinqs but the standard

rounding and truncation as well.
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3. uux.IAaabnAE.Ruit

basic arithmetic -mpadd, mpaddi, unpaddqo modivo mnpdivi, mpaule
mpmulip mpmulqP mprece mpsub

k powers and roots -mppwro mppwr2, mpqpwr, mproot, mpsqrt

elementary functions - npasin, mpatano mpcos, mpcosho MpeXP.
mpln, mptngs# mptni, mosino mpsinh, aptan*
mpt anh

constants - mpepso mpmaxr, mpminro mppip mppigt

input and output - mpdumpo mpin, mpine, mpinf, mpout* mpoutep
mpoutfo mpout2

convers ion - mpca'n. mpcdm, mpc im, mocmd, cpcmdep mpcmefe mpcmi*
mpcmim, mpcmr, mpcmre, mpcqmo .ipcrm

comparison - mpcmpa, mpcmpip mpcmPr, mpcomp, mpeqp mpge# mpgt,
mpLe, mpt mpne

general utility routines - mpabs, mpctr, mpcmf, mpgcdap mpgcdb,
mpinit, mpkstr, momax, mpmino mpneg# mppocko
mppolyp MPSETo mpstr, mounpk

error detection and handling -mpchk, moerr, mpovfl, mpunft

AUGMENT interface routines -mpbasa* mpbasb, modga, mpdgb,
mpdiga, mpdigba mpexpap mpexpbo mpmexaJP
mpmexb, mpsiga, mpsigb

miscellaneous routines used by the above - mpadd2, mpadd3.
mparti, mpbes2, mperf2* mperf3v mpexpi,
mpexto mpqcd, mphank, mpioo mptnso epL235,
mpmtp, mpmul2p mpnzr, mpsini, mpupk, mp4.Od,
mp4Oe, mp4Of, mp4Oqp timemp

When writing programs which use MP via the RATFOR/AUGMENT

interface* it is safest to avoid using the following identifiers

except with their reserved meaning.

base see description of mpbasa and mpbasb in section 6.
ctd see description of mpcmd.
cti see description of mpcmi.
ctm see description of mpcam, mpcdm, mpcim, opcqm,
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moc rm and mpurpk.
ctP see description of mppack.
ct,- see description of mpc-mr.
diyit see description of mpdga and modgb.
expon see description of mpexpd and mpexpb.
frac see description of mpcmf.
gcd see description of mpgcda.
initialize see description of mpinit.
int s ee description of mpcmi m.
Log see description of mptn and mptni.
mjtxexp see description of mpmexa and mpmexb.
mpxxxx (for any Letters or digits xxxx).
multipak see comments in description deck above.
muLtiple see comments in description deck above.
numdiq see description of mpdiqa and mpdigb.
sgn see description of mpsiga and mpsigb.

for the foltowinq, if the reserved word is xxxx see the

description of mpxxxx in section 6.

abs* addqp arti, asino atan. bern, besjo cam, cmfe cuim, cmpa,
compo cosp cosho cqm, dawo ei, erf, erfc, expr expi, gain.
gamq, Lio In, ingme tngs. tni, Ins, max, ruin, mulqo opwro reco
root.- sin, sinh. sqrtp strP tan, tanhP zeta.
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Appendix 0

The details of the mathematical basis for interval arithmetic are

developed in Moore [6]. The set of interval numbers is the set

of all closed intervals on the real number Line. An interval may

be represented by an ordered pair of real numbers Ca.bJ where a <-

b. If a = bo then the interval is said to be degenerate.

The operations of addition, subtraction, multiplication, and

division between two intervals (except for the division of one

interval by an interval containinq zero) are defined as follows

where s is one of the above operations:

ra~b) S [cod] = (x S y : x e Cab] and y f [cod])

Each of the operations of addition, subtraction, multiplication.

and division may be defined as follows:

Eab] + [c,d] = [a+c b+d)

Cab] - [cod] = Ca-dob-c]

ab] * EcdJ = Emin~acadrbcbd},max(acadobcbd)]

Cab] / (c,d) = Eminfa/coa/dob/cb/d),maxta/ca/db/cb/d)]
if 0 0 [cod]

In the cases of multiplication and division, by examlning the

signs of the endooints of the intervals being multiplied or

divided; a determination in advance can be made of which products

or quotients will be the maximum and the minimum.
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The following real single valued functions of intervals may be

useful:

The midpoint of an interval, mid (Ea,b)), is defined to

be the real number (a+b)/2.

The length of an interval, length ([a,bJ), is defined
to be the real number b-a.

The supremum of an interval, sup (Ea~bJ), is the real
number a.

The infimum of an interval, inf ([aeb]), is the real
number b.

The distance from interval [apb] to interval CcodJ, dis

([a,b],[cd)), is defined to be the real number
max( Ic-al Id-b I).

The following interval single valued functions of intervals may

also be useful:

The union of intervals ta,b) and Ec,d), union
(Ea,b,Cc,dJ), is defined to be the smallest
interval containinq both [a,b] and [cd] and is
given by (min(aclmax(bd}]. The intersection of
intervats (a,b] and Ccod], intsct (Cab],(csdJ),
is defined to be the Largest interval contained in
each of Ca,bJ and Ec,d] or is empty if [ab3 and

(c,d] are disjoint intervals and is given by
[max{a,c),min(c,d)].

The relational operations may be defined on intervals as follows:

Ca,b] = [c,d] if and only if a = b z c z d

The above definition means that two intervals are equalt
if and only if they both are degenerate and
represent the same real number. This definition
is employed instead of the more general definition
of testing for a = c and b = d. The reason the
more general definition is not used is because we
will regard intervals as bounds on an exact but
unknown real number. If two intervals were not
degenerate and if both intervals had the same
endpoints, then the intervals may not represent
the same exact real number. The only way for the
two intervals to represent the same exact real
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number is for both intervals to be degenerate with
their endpoints equal to the real number. We also
say that

raobJ 0 EcdJ if and only if (aob) intersection Ecpd) 0

This definition means that two intervals are not equal
if and only if they are disjoint intervals and
cannot represent the same exact real number.

taob) S teid] if and only if b .< c

The above definition means that two intervals are
ordered by the S relational operator if and only
if V x e rapb and V y e 1c,d) x S y.

rab] > rcdl if and only if a > d

The above definition means that two intervals are
ordered by the > relational operator if and only
if V x e rab] and V y f EcdJ. x > y.

Interval valued functions of interval variables are defined in

terms of real valued functions of real variables. If f is a real

valued function of a real variable, then f may be extended to an

interval valued function, F, of an interval variable by defining

F(rabl) =(f (x) : x e rapb3)

If f is defined and continuous on tab), then F(tarb]) will be an

interval. If intervals are to represented as pairs of real

numbers, then the above definition is not operational. Some

means is needed for deriving the endpoints of the image of tasb.

under the function F. The endpoints of the image interval will

be the image under f of points of rapbJ.
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For functions* fe that are monotonic on the interval taoblo the

endpoints of the image of Ea~b] under F can be expressed as the

result of the function f evaluated at the endpoints of (a~b3. If

f is monotonic increasing on (apbJ, then F((aob3) a f(4),- 1(b)3.

* If f is monotonic decreasing on tapb~o then F(CapbJ) a E f(b)P

f(a) 3. If f is not monotonic over ta.-bJ, then EaAb) can be

divided into disjoint subintervas;? X(i)., i a * I2#....n; where U

X(i) C apb] and f is monotonic on each XCI). In this case

F ((asbJ U f (X (i)
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Appendix E

1. tain£oioooLoaiIakbLz-aliai*.4_:dijoo~gcxai_ nutoiz

The suggested method of catting the MV Routine directly is given

first. Second (third, ... ) alternative method(s) (if any) may be

used when the AUGMENT interface, described earlier, is used to

process the user program. Unless otherwise noted, X, Y, Z

represent MV numbers I, J, K, L, IX etc. represent integers, RX.

RY etc. represent reals, and DX, DY etc. denote double precision

numbers. See Appendix C for definitions of B, T, M, LN., MXR, R

etc. Space required means the dimension of R in common. If not

specified, space required is no more than 2*T+4 words, if not

specified, space required is no more than 2*T+4 words.

MVABS ******

usage -- CALL MVABS (X, Y) or Y = ASS x)

description -- sets Y = ABS(X) for MV numbers X and Y

MVAOD ******

usage -- CALL MVADD (X, Yo Z) or Z = X + Y

description -- adds X and Y, forming result in Z, where
X, Y and Z are MV numbers, four guard digits
are used, and then R*-rounding.

MVASIN ******

usage -- CALL MVASIN (X, Y) or Y S ASIN Cx)

description -- returns Y a ARCSIN(x), assuming ABSCX)

.te. 1, for MV numbers X and Y. Y is in the

Appendix E - 69



range -p12 to +pi/2. method is to use
MVATAN, so time is o(M(T)T). dimension of R
must be at least 5T 12

MVATAN ******

usage -- CALL MVATAN (X, Y) or Y a ATAN X)

description -- returns Y = ARCTAN(X) for MV X and Y,
using an o(T.M(T)) method which could easily
be modified to an o(SQRTCT)M(T)) method (as
in MPEXP1). Y is in the range -pi/2 to +pi/2.

for an asymptotically faster method, see -
fast multiple- precision evaluation of
elementary functions (by R. P. Brent), J. ACM
23 (1976), 242-251, and the comments in
MPPIGL. dimension of R in calling program
must be at least 5T+12

MVCDM ******

usage -- CALL MVCOM (DX, Z) or Z z DX

description -- converts double precision number DX to

muttipte-precision Z. some numbers wilt not

convert exactly on machines with base other
than two, four or sixteen, this routine is
not catted by any other routine in MV, so may
be omitted if double precision is not
available.

MVCIM ******

usage -- CALL MVCIM (0X. Z) or Z 2 IX

description -- converts integer IX to
muttiple-precision Z. note - IX should not

be the same location as Z(1) in CALL.

MVCLR ****

usage -- CALL MVCLR (X, N)

description -- sets X(T+3)p ... P X(N+2) to zero.
useful if precision is going to be increased.

* MVCMD ******

usage -- CALL MVCMD (X, DZ) or OZ a X

description -- converts multiple-precision X to double
precision DZ. assumes X is in allowable
range for double precision numbers, there
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is some toss of accuracy if the exponent is

large.

"vcrI

usage -- CALL MVCMI (X, IZ) or IZ = X

description -- converts multiple-precision X to integer
I!, assuming that X not too Large X is
truncated towards zero. if int(X)is too
Large to be represented as a single precision
integer, IZ is returned as zero. the user
may check for this possibility by testing if( (X(1) .he.O). and. (X (2). gt .0).and. (I Z.eq.O) )
is true on return from MVCMI.

MVCMR ******

usage -- CALL MVCMR (X, RZ) or RZ = X

description -- converts muttiple-precision X to single
precision RZ. assumes X in allowable range.
there is some toss of accuracy if the
exponent is Large.

MVCOMP

usage -- J = MVCOMP (X, Y)

description -- compares the multiple-precision numbers
X and Y, returning +1 if X .gt. Ye -1 if X
.It. Y, and 0 if X .eq. Y.

RVCOS ,,*

usage -- CALL MVCOS (X, Y) or Y a COS x)

description -- returns Y = COS(X) for MV X and Y, using
MVSIN dimension of R in common at least
5T+12.

MVCOSH ******

usage -- CALL MVCOSH (X, Y) or Y = COSH X)

description -- returns Y a COSH(X) for MV numbers X andY, X not too large, uses MVEXP, dimension of
R in common at least ST+12

MVCRM * ***

usage CALL MVCRM (RX, Z) or Z a RX
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description -- converts single precision number RX to
multiple-precision Z. some numbers wilt not
convert exactly on machines with base other
than two* four or sixteen.

MVDIV ******

usage -- CALL MVDIV (XP Y, Z) or Z a XlY

description -- sets Z a X/Y, for MV X, Y and Z. MPERR
is catted if Y is zero. dimension of R in
catting program must be at least 4T+10 (but
Z(1) may be R(3T+9)).

MVEQ ******

usage -- if (MPEQ (X# Y)) ... or if (X .EQ. Y) ...

description -- returns logical value of (X .FQ. Y) for
MV X and Y. MVEQ Must be declared logical

unless augment interface is used.

MVEXP ******

usage -- CALL MVEXP (X, Y) or Y = EXP (X)

description -- returns Y = EXP(X) for MV X and Y. EXP
of integer and fractional parts of X are
computed separately, see also comments in
MPEXP1. time is o(SQRT(T)M(T)). dimension of
R must be at least 4T+10 in catting program

MVGE ******

usage -- if (MPGE (X, Y)) ... or if (X .GE. Y)

description -- returns logical value of (X oGE. Y) for
MV X and Y. MVGE Must be declared logical
unless augment interface is used.

MVGT ******

usage -- if (MPGT (XP Y)) ... or if (X .GT. Y)

description -- returns logical value of (X .GT. Y) for
MV X and Y. MVGT Must be declared logical
unless augment interface is used.

MVGET ******

usage -- CALL MVGET (X)

description -- converts the fixed-point decimal number
(read under nal format) in c() ... c(n) to a
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multipte-precision number in X. Warnings
are given for invalid intervals and when the
number of digits in the input exceeds the
precision of the target.

MVINIT ******

usage -- CALL MVINIT (I) or INITIALIZE MV

description -- declares blank common (used by MV
package) and calls MVSET to initialize
parameters. I is a dummy integer argument.
the augment declaration initialize MV causes
a CALL to MVINIT to be generated.

MVLN *****

usage -- CALL MVLN (XP Y) or Y = LN X) or Y = LOG
(X)

description -- returns Y = LN(X), for MV X and Y, using
MVLNS. restriction - integer part of LN(X)
must be representable as a single precision
integer, time is o(SQRT(T).M(T)). dimension
of R in calling program must be at least
6t+14.

MVLT ******

usage -- if (MPLT (X, Y)) .oo or if (X .LT. Y)

description -- returns logical value of (X .LT. Y) for
MV X and Y. MVLT Must be declared type
logical unless augment interface used.

MVMUL ******

usage -- CALL MVMUL (X, Y, Z) or Z = X*Y

description -- multiplies X and Y, returning result in
Z, for MV X, Y and Z.

* MVKE ******

usage -- if (MPNE (X, Y)) .. o or if (X .NE. Y) ...

description -- returns logical value of (X .NE. Y) for
MV X and Y. MVNE Must be declared type
logical unless augment interface used.

MVNEG ******
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usage -- CALL MVNEG (X# Y) or y u -X

description -- sets Y = -X for MV numbers X and Y

MVPUT ******

usage -- CALL MVPUT (X& W, No LUN)

description -- converts muttipte-precision X to FW.N
format and outputs the result to the FORTRAN
logical unit specified by LUN.

MVOVFL ******

usage -- CALL MVOVFL X)

description -- called on multiple-precision overflow#
ie when the exponent of MV number X would
exceed M. at present execution is terminated
with an error message after calling
MPMAXR(X), but it would be possible to
return, possibly updating a counter and
terminating execution after a preset number
of overflows. Action could easily be
determined by a flag in labelled common.

MVP! ******

usage -- CALL MVPI X)

description -- sets MV X = pi to the available
precision, uses pi/4 = 4.arctan(1/5) -

arctan(1/239).

MVPWR ****

usage -- CALL MVPWR (X, N, Y) or Y = X**N

description -- returns Y * X**N, for MV X and Y,
inteqer N, with 0**0 a 1. R must be
dimensioned at least 4T+10 in calling program
(2t+6 is enough if N nonnegative).

MVROOT ******

usage -- CALL MVROOT (X. N. Y) or Y a root (X, N)

description -- returns Y a X**(1/N) for integer no
ABS(N) .LE. max (B, 64). and MV numbers X
and Y, using Newtons method wi thout
divisions, space * 4T10 (but YC1) may be
R(3T+9))
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MVSET ******

usage -- CALL MVSET (tunit, idecpt, itmax2, maxdr)

description -- sets base (8) and number of digits (T)
to give the equivalent of at least idecpt
decimal digits. idecpt should be positive.
itmax2 is the dimension of arrays used for MV
numbers, so an error occurs if the computed T
exceeds itmax2 - 2. MVSET also sets LUN U

tunit (Logical unit for error messages). MXR
U maxdr (dimension of R in common, .ge. T+4),

and M a (w-1)14 (maximum allowable exponent).
where w is the largest integer of the form
2**K-1 which is representable in the machine,

K .te. 47 (on most machines K a one Less than
number of bits per word, but this is not true
on cdc 6000/7000 machines). The computed B
and T satisfy the conditions
(T-1)*ln(B)/Ln(10) .ge* idecpt and

8*B*B-1 .te. w . approximately minimal T and

maximal 8 satisfying these conditions are
chosen. parameters (unite idecpt, itmax2 and
maxdr are integers. beware - MVSET wilt

cause an integer overflow to occur ****

if wordtength is less than 48 bits. if this
is not altowable* change the determination of

w (do 30 ... to 30 w a wn) or set Re To M,

LUN and MXR without calling MVSET.

04VSIN ******

usage -- CALL MVSIN (XP Y) or Y = SIN (X)

description -- returns Y u SIN(X) for MV X and Y,
dimension of R in calling program must be at

least 5T+12

MVSINH ******

usage -- CALL MVSINH (X* Y) or Y a SINN X)

description -- returns Y a SINH(X) for MV numbers X and
Yo X not too large.

MVSORT ***

usage -- CALL MVSQRT (X. Y) or Y w SORT X)

description -- returns Y a SQRT(X), using subroutine
MVROOT if X .GT. 0. dimension of R in
calling program must be at least 4T+10 (but
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Y(1 my be R(3T+9)). X and Y are MVnumbers,

usage -- CALL MVSTR (X, Y) or y X

description -- sets Y N X for MY X and Y.

*. -tw~stUB -******

usage -- CALL MVSUB (X, Y, Z) or Z a X - Y

description -- subtracts Y from X, forming result in Z,
for MV X, Y and Z.

MVTAN ***

usage - CALL MVTAN (X, Y) or Y a TAN (X)

description -- sets Y a TAN(X) for MV X and Y

MVTANH ******

usage -- CALL MVTANH (X# Y) or Y a TANH (X)

description -- returns Y a TANH(X) for MV numbers X and
Y*

MVUNFL ******

usage -- CALL MVUNFL X)

description -- catted on muttipte-precision underfiow.
ie when the exponent of MV number X would be
less than -M. the underfiowing number is set
to zero. an alternative would be to CALLMVMINR (X) and/or return, possibly updating a
counter and terminating execution after a
preset number of underftows. action could
easily be determined by a flag in labeLLed
common.

* Basic Arithmetic - MVADD, MVDIV, MVMULP MVSUB

Powers and Roots - MVPWR, MVROOT. MVSQRT

Elementary Functions - MVASIN, MVATAN, MVCOS, MVCOSN# MVEXP,
MVLN, MVSIN* MVSINH, MVTAN# MVTANN
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Constants - MYT

Input and Output -MVPUT# MVGET

Conversion - I4VCOMP I4CIMP MVCMD* MVCMiI* tVC#4R* MVCRM

Comparison - 14VCOMP. MVEQ, MVGEP MVGTP MVLEo MVLTP MVNE

Genera( Utility Routines - M4VASS V4VCLRP 14VINT4! MVNEGP MVSETP
MVSTR

AUG14ENT Interface Routines - MVBASAP MVSASBP M4VOGA, MvoGe,
14VO!GA, MV1DIGB* MVEXPA* MVEXPBP NYMEXA,
MVMEXB* MVSIGA* 14VSIGB
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Appendix F.

:iamo1: ,.e:o41acaseuaandtoa_ ILzau...uou±

1. e£osg£u m..Cg;oug:_t.._Colo1Lg

1.*1 KAtLLIILL1ucu

# THIS IS A PROGRAM TO COMPUTE e
DATA SUM(t)o NFACT(1)o STEP(1),

ERRORCl) /20,30*40,50/
VARINTERVAL SUMP NFACT, STEPP ERROR

N INITIALIZATION
SUM = 0
flFAfT a I
STEP a1

ERROR = 1.OE-6

I -0
# INITIALIZE THE CPU AND PAGING COUNTERS

CALL CTP (1)

N LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

t SUM = SUM + STEP
I = I+ I

NFACT = NFACT * FLOAT(I)

STEP a 1/NFACT ]--
UNTIL (STEP <= ERROR)

0 DISPLAY THE RESULTS
WRITE(6,2)

2 FORMAT (IX."e IS EQUAL TO")
CALL MVPUT (SUM)
WRITE(6*1) I

1 FORMAT (lh+#Tj,"CO4PUTED IN "p13o" STEPS")

# PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(0)
STOP
END

A
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C uuums PROCESSED BY AUGMENT VERSION #4J 3333.

C TEM4PORARY STORAGE LOCATIONS -----
C VARINTERVAL

INTEGER MVTMP(104#1)
C LOCAL VARIABLES

INTEGER I
C VARINTERVAL

INTEGER ERROR(104)p NFACT(104)p STEP(104)v SUM(104)
C ----- GLOBAL VARIABLES-----

INTEGER MVBASEP MVDISP MVLUNP MVM* MVMAXTv MVMXR*
* MVR(1O4O). MVTv MVTEMP(104)

C SUPPORTING PACKAGE FUNCTIONS
LOGICAL MVLE

C COMMON BLOCKS
COMMON I/ MVDIS, MVBASE, MVTP MVM. MVLUNP MVMXR* MVR
COMMON /MVTEMP/ MVMAXTP MVTEMP

C ==sun TRANSLATED PROGRAM --nm.s
C an=- UNRECOGNIZED STATEMENT ws3==

DATA SUM(l), NFACT(1), STEP(I),
* ERROR(M) /20*30#40,50I

C BEGIN INITIALIZATION
CALL MVINIT (MVTMP(C.1)pI)
CALL MVINIT (ERRORSO)
CALL MVINIT (NFACTO)
CALL MVINIT (STEPPO)
CALL MVINIT (SUMO)

C END INITIALIZATION---
C
C MVMAXT a 50

MVMAXT a 50
C
C MVLUN = 6

MVLUN a 6
C
C MVBASE a 10

MVBASE a 10
C
C MVM a 1000

MVM a 1000
C
C MVT a 0

MVT a 0
C
C MVmXR a 1040

* MVMXR a 1040
C
C MVDIS * 2

MVDIS a 2

C
C PVTEMP(1) a 0

MVTEMP(1) a 0
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C
C MVRC1) a 0

MVR(1) a 0

C SUM1 O
CALL MVCIM (OPSUM)

C
C NFACT a 1

CALL MVCIM (INFACT)
--C -

C STEP a 1
CALL MVCIM (1,STEP)

C
C ERROR = 1.OE-6

,, CALL MVCRM (1.OE-6*ERROR)
C
C 1 0

I=0
C
C CALL CTP (1)

CALL CTP (1)
C
C CONTINUE

CONTINUE
C
C3001 CONTINUE
23001 CONTINUE

C SUM z SUM + STEP
CALL MVADD (SUMPSTEPSUM)

C
C 1 1+1

1 1 + 1

C
C NFACT z NFACT * FLOAT(I)

C =... MIXED MODE OPERANDS ACCEPTED uzsu.
CALL MVCRM (FLOAT (I)vMVTKP(1.1))
CALL MVMUL (NFACTPMVTMP(II)PNFACT)

C
C STEP a I/NFACT
C ===as MIXED MODE OPERANDS ACCEPTED 3333n

CALL MVCIM (1,MVTMP(1,1))
CALL MVOIV (MVTMP(1,1)oNFACT#STEP)

C
C3002 IF(,NOT.(STEP .LE. ERROR)) GOTO 23001

a 23002 IF (.NOT.MVLE (STEPERROR)) GOTO 23001

C3003 CONTINUE

23003 CONTINUE
C
C99 WRITE(6,2)
999 WRITE(6,2)
2 FORMAT (1Xl3He IS EQUAL TO)
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t A L 1 V U S M
CCALL MVPUT (SUM)

C WRITE(6l) I
WRITE(6*1) I

1 FORMAT (lhl.T7*12HCOM4PUTED IN #I3*6H STEPS)
C
C CALL CTP(O)

-~ CALL CTPCO)
C
C STOP

STOP
END
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2. Uat. .trasar...orggam

2.1 fU~L~r

N PROGRAM TO COMPUTE HEAT TRANSFER IN A TEN FOOT IRON BAR
N HEAT SOURCE IS 500 DEGREES# AMBIENT TEMPERATURE IS 70
0 DEGREES. OUTPUT IS TEMPERATURE OF BAR AT ONE FOOT
N INTERVALS. INPUT IS TIME AFTER CONTACT WITH HEAT SOURCE
N IN MINUTES.

N INTEGER VARIABLES
INTEGER FEET, KLENGTHP ITEMPP TIME

#
N VARINTERVAL VARIABLES

0 CONSTANT VALUED VARIABLES
DATA ERROR(1), PI(1). PISQR(1)o L(1)o RO(1), C(d),

K(1) /7*56/
DATA TO(1), TI(1) /2"56/

N VARIABLE VALUED VARIABLES
DATA COUNT(I)v THETACI), SUM(1), XSUM(1), X(1) 15*561
DATA T(1) /56/

# VARINTERVAL DECLARATION
VARINTERVAL PIP PISOR, L, ROP C, K, TOP TI, COUNT,

THETA, SUM, XSUM, X, T, ERROR

N

N BEGIN PROGRAM

# INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
P! = 3.1415927
PISOR a PI * PI
L a 10 N LENGTH OF BAR
K a 30
RO a 7.1 * 62.3

C a .12
TO a 70 # AMBIENT TEMPERATURE
TI a 500 # TEMPERATURE OF HEAT SOURCE
ERROR a 1
00 1 a 1, 10 N SET ERROR a 1.E-56

C ERROR a ERROR/100000 I

0 GET THE TIME. IN MINUTES
WRITE (6,1)

1 FORMAT (" ENTER THE TIME IN MINUTES")

CALL MVGET (THETA)
A
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# CALCULATE TEMPERATURE FOR EACH FOOT
#

KLENGTH L I
00 FEET I 1,KLENGTH

C

N COMPUTE AN INITIAL VALUE FOR 1
T z (K*THETA)I(L**2 * RO * C)

# COMPUTE DISTANCE TO HEAT SOURCE
X a FEET/L

# LOOP FOR THE COMPUTATION OF SUM
SUM 0
XSUM 2 0 # INITIAL LOOP VALUES
COUNT = 0
TIME a 0

REPEAT

C COUNT a COUNT + 1
SUM = SUM + XSUM
ITEMP = COUNT

XSUM = ((-I)**ITEMP/COUNT) *
(EXP( -(COUNT**2) * (PISOR) * T) *
SIN (COUNT*PI*X))

IF (A8S(XSUM) < ERROR )
TIME a TIME + 1

ELSE

TIME - 0

UNTIL (TIME -a 2)

# COMPUTE THE TEMPERATURE FOR THIS DISTANCE
T = TO + (Ti - TO) * (X + (2.01PI) * SUM)

# OUTPUT THE FINAL ANSWER FOR THIS FOOT
WRITE (6p4) FEET
CALL MVPUT (T)

4 FORMAT (iX, "THE ANSWER FOR "*2. " FEET IS ")
WRITE (6*5)

5 FORMAT (" The number of steps is: ")
CALL MVPUT (COUNT)

3
CALL CTP(O)
STOP
END
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2.2 L~a~tu
C nos= PROCESSED BY AUGMENT VERSION .4J sa
C ..... 1TNITIALIZE/ERASE INDEXES----

INTEGER 0011
C TEMPORARY STORAGE LOCATIONS-----

INTEGER OOITMP(l)
C VARINTERVAL

INTEGER MVTMP(116*3)
C LOCAL VARIABLES- -

INTEGER FEET, I, ITEMP. KLENGTH* TIME
C VARINTERVAL

INTEGER C(116), COUNT(116). ERROR(116), K(116),
L1(116)o

* PI1(116)o PISQR(116), RO(116), SUM(116), T(116)o
* TO(116), T1(116)o THETA(116), X(116), XSUM(116)

C GLOBAL VARIABLES
INTEGER MVBASE. MVDIS, MVLUN# MVMP MVMAXTP MVMXRp

* MVR(1160)o MVTP MVTEMP(116)

C SUPPORTING PACKAGE FUNCTIONS-----
LOGICAL MVLT

C ----- COMMON BLOCKS-----
COMMON // MVDISv MVBASE. MVT# MVMP MVLUN, MVMXR, MVR
COMMON /MVTEMP/ MVMAXTP MVTEMP

C ms- TRANSLATED PROGRAM uas-
C n = UNRECOGNIZED STATEMENT u ws*

DATA ERROR(I)o PI(1), PISQR(1), L(1). RO(1). C(1)p
* K(1) /7*56/

C u=333 UNRECOGNIZED STATEMENT za=w=
DATA TOIl), T1(1) /2*56/

C *=on UNRECOGNIZED STATEMENT =
DATA COUNT(1)p THETA(1)M SUM(l)o XSUM(1)# X(1) /5*561

C u=a- UNRECOGNIZED STATEMENT =an==
DATA T(1) /56/

C BEGIN INITIALIZATION------

MVTEMP(1) = 0
MVR(1) = 0
O0 30000 0011 = 1. 3

30000 CALL MVINIT (MVTMP(oI0011)oI)
CALL MVINIT (CO)
CALL MVINIT (COUNTO)
CALL MVINIT (ERROR,0)

CALL MVINIT (K.0)

CALL MVINIT (L.)
CALL MVINIT (PIO)
CALL MVINIT (PISQRPO)
CALL MVINIT CROO)
CALL MVINIT (SUMO)

CALL MVINIT CTo)
CALL MVINIT (TO.0)

CALL MVINIT (T1,O)
CALL MVINIT (THETAO)

CALL MVINIT (Xv0)
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CALL MVIN!T (SUM.0)
C-------------END INITIALIZATION
C
C MVIPAXT a 56

!4VMAXT = 56
C
C MVLUN =6

MVLUN = 6
C
c MVSASF = 10

IMVBASE a 10
C
C f~vm a 1003

MVM a 1003
C
C MVT 2

MVT -. 0
C
C MVf4XR c 1160

f4VMXR = 1160
C
C IWOI1sa 2

MVDIS = 2
C
C PVTEMP(l) a 0

MVTEMP(1) a 0
C
C PIVRC1) = 0

MVRC1) = 0
C
C CALL CTP(1

CALL CTP(l)
C
C P1 a 3.1415927

CALL MVCRM (3,1415927oPI)
C
C PISOR a PI * P1

CALL MVf4UL (PIPI*PISQR)
C
C LI

CALL MVCIM (10,1)

C K z30

C CALL MVCIM (30*K) 7
C RO =7.1 *62.3~

* CALL ?4VCR?4 (7.1.62.3PRO)
C
C C a.12

CALL MVCRM (.12PC)
C
C TO 70

CALL MVCIM (7flTO)

Appendix F -85



C
C TI = 500

CALL MVCIM (S0,T1)
C
C ERROR a 1

CALL MVCIM (1,ERROR)
C
C DO 23001 1 z 1.- 10

DO 23001 1 z lo 10
C
C ERROR = ERROR/100000

CALL MVDIVI (ERRORP100000*ERROR)
C
C3001 CONTINUE
23001 CONTINUE
C
C3002 CONTINUE
23002 CONTINUE
C
C WRITE (6,1)

WRITE (6,1)
1 FORMAT (26H ENTER THE TIME IN MINUTES)
C
C CALL MVGET (THETA)

CALL MVGET (THETA)
C
C KLENGTH = L

CALL M~VCMI (LPOOITMP(l))
KLENGTH=OOITMP( 1)

C
C DO 23003 FEET z 1, KLENGTH

DO 23003 FEET = 1, KLENGT4
C
C T z (K*Tt4ETA)/(L**2 * RO * C)

CALL MVMUL (KPTHETAPr4VTMP(1,1))
CALL MVPWR (Lv2rMVTMP(lP2))
CALL MVMUL (MVTMP(1#2)PROPMVTMP(1,2))
CALL MVMUL (MVTMP(1 ,2) ,CPMVTMP(1 ,2))
CALL MVDIV (MVTMP(1,1 )PMVTMP(1.,2),T)

C
C X a FEET/L
C an- MIXED MODE OPERANDS ACCEPTED =am*=

CALL MVCIM (FEET*MVTMP(1.1))
CALL MVbIV (MVTMP(1,1)#L*X)

C
C SUM a

* CALL MVC!M (0,SUM)
C
C XSUM a0

CALL MVCIM (0PXSUM)
C
C COUNT a 0

CALL ?4VCIM (0,COUNT)
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C7
C TIME = 0

TIME = 0
C
C CONTINUE

CONTINUE
C
C3005 CONTINUE
23005 CONTINUE
C
C COUNT a COUNT + 1

CALL MVADDI (COUNTPIPCOUNT)
C
C SUM aSUM + XSUM

CALL MVADD (SUMXSUMSUM)

C ITEMP = COUNT
CALL MVCMI (COUNTPOOITMP(l))
ITEMP=OOITMP (1)

C
C XSUM =((-1)**ITEMP/COUNT)
C (EXP( -(COUNT**2) * (PISOR) *T)*

C SIN(COUNT*PI*X))
C--------MIXED MODE OPERANDS ACCEPTED =~

CALL MVCIM ((-1)**ITEMPMVTMP(1,1))
CALL MVDIV (MVTMP(1,1 )PCOUNTPMVTMP(1 .1))
CALL MVPWR (COUNTo2,MVTMP(1,2))
CALL MVMUL (YVTMP(1*2)oPISQRPMVTMP(1,2)) -J

CALL MVMUL (MVTMP(1 ,2),T,-MVTMP(1,2))
CALL MVNEG (MVTTP(1.2)PMVTMP(1,2))
CALL MVEXP (MVTMP(1 ,2)PMVTMP(1,2))
CALL MVMUL (COUNT*PIPMVTMP(1,3))
CALL MVMUL (MVTMP(1 .3)oXMVTMP(lo3))
CALL MVSIN (MVTMP(1 13)PMVTMP(1,3))
CALL MVMUL (MVTMP( 1.2).MVTMP(1,3),MVTMP(1,3))
CALL MVMUL (MVTMP(1,1 ),MVTMP(1,3)#XSUM)

C
C IF(.NOT.(ABS(XSUM) .LT. ERROR )) GOTO 23008

CALL MVABS (XSUMPMVTMP(1,1))
IF (.NOT.MVLT (MVTMP(1,1)PERROR)) GOTO 23008

C'
C TIME = TIME + 1

TI14E = TIME + 1
C
C GOTO 23009

GOTO 23009
* C

C3008 CONTINUE
23008 CONTINUE
C
C TIME = 0

TIME = 0
C
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C3009 CONTINUE
23009 CONTINUE
C

-C3(M6 If(fNOT.(TIME .E-, 2)) GOTO 23005
23006 IF(.NOT.(TIME .EQ. 2)) GOTO 23005
C
C3007 CONTINUE
23007 CONTINUE
C
C T = TO + (TI - TO) * (X + (2.OIPI) * SUM)
C =z::= MIXED MODE OPERANDS ACCEPTED 3guzz

CALL MVSUB (TlTOoMVTMP(lol))
CALL MVCRM (2onMVTMP(1,2))
CALL MVDIV (MVTMP(1 2)PPIMVTMP(1,2))
CALL MVMUL (MVTMP(1 2)#SUMMVTMP(l2))
CALL MVADD (XPMVTMP(1,2)PMVTMP(I2))
CALL MVMUL (MVTMP(1,1),MVTMP(1,2),MVTMP(1,2))
CALL MVADD (TOMVTMP(1,2),T)

C
C WRITE (6*4) FEFT

WRITE (6,4) FEET
C
C CALL MVPUT (T)

CALL MVPUT (T)
4 FORMAT (lX, 15HTHE ANSWER FOR oIZ, 9H FEET IS )
C
C WRITE (6,5)

WRITE (6,5)
5 FORMAT (25H The number of steps is: )
C
C CALL MVPUT (COUNT)

CALL MVPUT (COUNT)
C
C3003 CONTINUE
23003 CONTINUE
C
C3004 CONTINUE
23004 CONTINUE
C
C CALL CTP(O)

CALL CTP(O)
CC STOP

STOP

END
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Appendix G

The variable precision interval arithmetic package contains three

distinct levels of subroutines. The first level is calted by the

user program. This first level of routines is distinguished by

the prefix MV. The first level addition routinep for example# is

calted MVADD. This level is responsible for controlling the

precision of the computation. Its duties include:

1) making adjustments to the precision of the arguments
so that when they Are passed to the next level
they are of the same precision.

2) determining and passing the precision in which the
operation is to be performed to the underlying
routines. This is done via an external variable in
unlabelled common.

3) the passing of the argument values to the next level
in a forum acceptable to the underlying routines
(the format of the multiple precision value is
somewhat different at this level than below).

4) examining the target of the computation andI
assigning the value of the result to the target
with appropriate adjustments to the precision of
the result.

The second level# with name prefix MX. is responsible for the

* interval arithmetic aspects of the computation. Its duties

incluide:

1) case analysis (when necessary) to determine which
endpoints of the arguments are to be used in the
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computat ion.

2) the passing of the appropriate endpoints to the next
te"t -w - --a-prope-r indication of the rounding
strategy to be employed (care is taken that no
overwriting of values occurs so that computations
like A = A + A are acceptable).

(first level) I 4VPWR I I
I I .. .V.. .

I II

I I MVSTR I
I I

I I

(second level) I MXPWR I

(thrdlevl) I MP I

T ------------ -------

S V

(third level) I IPW

I 

FI GU I
- - -I I

I I II

I '1
I I .ZR I

Tree Figure of the multilevel interpretive
structure of the power function
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The third level* with name prefix !4Pp is responsible for the

actual performance of the computation employing the rounding

strategy received as a parameter from the second Level. For

exampleo the subroutine invocation history of X uY**N is

graphically represented is Figure 39.

Within the package there are two slightly different multiple

precision interval "word" formats used. The third level operates

on one endpoint of the second level interval. The format used at

the third level is the same as either the left or right portions

of the second level interval format.

The first level interval formato Figure 40P is used only at the

f irst level. The multiple precision word is represented as an

integer array with the first element carrying three pieces of

information. The first digit is used to represent the sign -4

signifies positiver -1 negative# 0 zero. The three digits

following the sign is the precision of the word. The next digit

determines whether or not the word is a temporary variable. 1 is

used to indicate a temporary; two is used to indicate a

non-temporary. For zero the exponent and digits are undefined.

* The second element carries the exponent of the multiple precision

word. The exponent is always a base 10 integer and signifiesI

* (base)**expon. The next N elements contain the N digits of the N

digit precision number. The digits can be of any base (with some

restriction on size) but the package was implemented with base 10I
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as a matter of convenience. Using base 100 would result in atlmost

a 502 savings in the amount of space used by each variable

precision interval variable, but would reouire some slight

modifications to the inputloutput routines.

I I I I I I I I I I I I
Isdddtl expon I T1 I T2 I...I TN I s I expon I TI I...I TN I
It. .. I . . .. I I .. I . I I I_ I I . I .. .I

FIGURE 40

Multiple precision interval number format.
for first Level. sdddt = sign(Oo-l or +1)
concatenated with the precision concatenated
with a temporary variable indicator (1 for
temporary, 0 for non-temporary) expon a
exponent (to base b) Ti = digit (in base b)
s = sign (0, -1 or +1). Note that expon and
Ti are undefined if sign z 0.

The second level interval format# Figure 41, is used at the

second level. The multiple precision interval word at this level

is identical to that of the first level except for the deletion

of the precision information and the temporary variable

indicator.

------------ ------------------------------- j
I I I I I I I I I I I I
I s I expon I TI I T2 I...I TN I s I expon I T1 I...1 TN I
Ie I I I I I I _ I I I I l.......

FIGURE 41

* rmultiple precision interval number format.
* for second level. s 8 sign(O-1 or +1). Note

that the exponent and digits are undefined if
sign 0 0 expon * exponent (to base b) Ti U

digit (in base b)
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The MV routines can be divided into two classes -- one argument

and two argument routines. Within each class aLL MV routines are

* virtually identical. The partitioning of the two argument

routines is given in Figure 42.

-- - - - - - - - - - - - - - - - - - - - - - - - - -I
I determine which argument has the larger precision I
---------------------------------------------------------I
Icopy the value of the argument with the smatter I
Iprecision into a temporary location using the
I precision of the argument with the larger precisioni
I------------------------------------------------------I
I set the precision for the operationp via untabettedi
I common# to the precision of the argument with the I
I larger precision I
-----------------------------eeeeeeeeeeeeeeeeeeeeeeeeee

I convert the word format to that used by the tower I
I level routinesI
---- ---- ---- ---- ---- ---- - --- ---- ---- ---- --a

I pass the arguments to the tower Level routines 1
I-------------------------------------e----
I convert the word format back to tht7se byth
I MV routinesI
I------------------------------------------------------ I
Iif the target is a temporary variable I

*I then copy the result of the operation into the I
I target and set its precision to the same as thel

I larger precision of the two operands
I else convert the result to the same precision as 1

I the target. If the precision of the target is I
I higher then copy the value and fill in with I
I zeros; else mate adjustments to the target I
I consistent with interval arithmetic
-- - - - - - - - -- - - - - - - - -- - - - - - - - -

* FIGURE 42

Partloning of a two argument WV routine

The one argument routines are essentially the same; however*
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there is clearty no need for the precision manipulations

necessary for the two argument routines. The MY routines

available are described in Appendix E.

3. L21aaaiOn.QL-bh.Ult£ecaor.3

3.1 II -aohAUI .aca aIza

The translation sequence from structured variable precision

interval FORTRAN to standard FORTRAN is done in two passes. On

the first pass the program is converted from RATFOR format to

standard FORTRAN format. It is necessary that the program be

written in RATFOR for the conversion. A summary of RATFOR is

given in Appendix A with sample programs in Appendix F.

On the second pass an AUGMENT description deck, described in

Appendix B, is attached to the user program and processed through *1
the AUGMENT precompiter. AUGMENT converts the variable precision

interval variables and the operations upon them to standard

FORTRAN. This also is discussed in Appendix B.

3.2 3nnui£1ganhzocbt. .¥Lr~abi. tsisinn_IDZzcari. Caria bits

Several requirements must be met by the user for the use of

variable precision interval variabtes.

1) variable precision interval variables be declared
VARINTERVAL.
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2) the string "%C*BEGIN" must be placed in column I
after the declarative statement but before the
first executable statement.

3) there must be FORTRAN DATA statements setting the
value of the first element of each variable
precision interval variable to the precision that
it is to contain.

4) the program must be written in RATFOR which is
described in Appendix A.

Suppose the user were to have three variable precision intervat

variables X, Yo and Z with precisions 10o 20 and 30 respectivety.

The program in Figure 43 would be a valid example of a program

containing VARINTERVAL variables. Figure 44 through Figure 46 are

examples of invalid VARINTERVAL programs.

T- N-; F -------I NlTEGER KT '-
I DATA Xr Yo Z /10,20,30/ 1
1 VARINTERVAL Xo Y, Z
I %C*8EG IN
I # VALID RATFOR COMIPENT
I CALL MVGET (X)
I READ (S,1) KT
I 1 FORMAT (110)
I IF (X >= 10.7)
I ty a x / 18.3

Z a KTY 3
I ELSE

I r~z ft X * 18.3 3

CALL ?VPUT (Z)
STOP

END 7

FIGURE 43

Example of a valid VARINTERVAL program
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VARINTERVAL X, Y
VARINTERVAL Z

F- !NT-EGE- KT
DATA X(1)PY(1),

Z(1) /10,20*30/ 1
I # VALID RATFOR COMMENT
I CALL MVGET X)
I READ (5.1) KT

I FORMAT (110)
IF (X >= 10.7)

EY a X / 18.3
Z a KT+Y I

ELSE
tZ a X * 18.3 I

I CALL MVPUT (Z)
STOP

END

FIGURE 44

ExampLe of a invalid VARINTERVAL program
(missing %C*OEGIN)

INTEGER KT I
I VARTERVAL XPYZ

I 'C*BEGIN
I# VALID RATFOR COMMENT
I CALL MVGET (X)
I READ (5,1) KT

1 FORMAT (110)
IF (X >= 10.7)

IY a X / 18.3 1
Z z KT+Y I

ELSE
tZ a X * 18.3 3 1

I CALL MVPUT (Z)
STOP
END

FIGURE 45

Example of a invalid VARINTERVAL program
(no DATA statement setting precision)
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I ~ INTEGER KOUNT

DATA X(1),YC1)Z(1)/10,20*30/ I
I VARINTERVAL XY.Z
I C THIS IS NOT A RATFOR COMMENT
I IF (X.GE.10.7) GO TO 10

I X a X * 18.3
I KOUNT = KOUNT - 1
I GO TO 20
1 10 X a X I 18.3
I KOUNT a KOUNT + I
1 20 CONTINUE

STOP
END

FIGURE 46

Example of invalid VARINTERVAL program

(not written in RATFOR)

3.3 Ioou11Iv-an.u~ou±±iosaLvr Ibt. * 411o

There is very little for the user to be concerned with during the

translation of a structured variable precision interval FORTRAN

program to standard FORTRAN. RATFOR and AUGMENT take care of

almost all of the details. The major exception is that i/o

statements are ignored during the translation process. It is

left up to the user to make the necessary modifications to the

program before translation so that i/o is done property.

For the input of variable precision interval values the

subroutine MVGET is supplied. Its usage is

CALL MVGET (variable precision interval variable)
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which will read a variable precision interval value from the

FORTRAN logical unit specified by LUN. Each endpoint must be on

a separate Line with the left endpoint appearing first.

Generalized floating point format is accepted by the routine.

The input is checked to insure that it forms a proper interval. A

warning is output if the number of digits in the input is greater

than the precision of the target. Truncation of the input to the

precision of the target occurs in this case.

For the outputting of variable precision interval values the

subroutine MVPUT is supplied. Its usage is

CALL MVPUT (variable precision interval variable)

which will output the specified value to the FORTRAN Logical unit

specified by LUN. Output is one value to a line.

3.4 [ooh1.ain~ao.¥a...ettI£innaooroaLAJlgf

There are, naturally# constraints. These are:

1) The precision of a variable precision interval

variable must be Less than 1000 but more than 2.

2) The maximum exponent range is 2000.

3) UnlabelLed common must not be used by the user or it
will disturb the lower levels of the support
structure.

4) Avoid using any names beginning with MV, MX or MP.
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Additional information concerning these constraints may be found

in Appendix C and Appendix E.

3.5 u

The command for the invocation of the virtuaL compiler for the

translation of structured variable precision FORTRAN is "varint"

or "vtol.

The syntax is:

vt path -maxp N (-control-args)

The arguments are as follows:

path
is the pathname of a FORTRAN source segment; the
fortran suffix need not be given.

-maxp N
is a mandatory control argument which indicates to

the virtual compiler that the maximum precision
that will be encountered in the program will be <*
No 2<N<1000.

Control arguments:

-nocompiLe, -nc
does not produce an object code segment from the
FORTRAN output.

-notranstated_source, -nt
checks the VARINTERVAL program for correctness but
does not produce the FORTRAN output.

-augment_tist, als

produce an AUGMENT listing of the FORTRAN output.

Any valid FORTRAN compiler option.
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3.6 Era~i~a±.mmaoa

During the course of testing and development there were

encountered several instances of the use of VARINTERVAL variables

* in which the way in which the algorithm was configured seriously

affected the results that were produced. This is not unusual in

itself; such effects can be noted in all computer implementations

of algorithms. There were, however, several effects peculiar to

VARINTERVAL usage. The user must have a firm understanding of

these effects produced by the configuration of his algorithm.

With such an understanding the user can ensure that the algorithm

is implemented in an efficient manner and produces the proper

results. Without such an understanding he may produce a highly

inefficient FORTRAN program and unknowingly encounter deleterious

side effects. The effects associated with VARINTERVAL usage fall

into three categories:

1) effects associated with the use of standard FORTRAN
variables and constants

2) effects associated with attempts at precision
control

3) effects associated with the repetitious evaluation
of invariant expressions

The following discussion describes in detail what problems are

encountered with these effects and how the user may avoid them.

The usage of standard FORTRAN variables can create serious
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problems for the unwary. These problems can be summarized as:

1) induction of false significance

2) Loss of significance

3) repetitious conversions to VARINTERVAL

false significance can be induced into the results by the mixing

of standard FORTRAN variables with VARINTERVAL variables. The

problem occurs when a VARINTERVAL value of low significance is

assigned to a standard FORTRAN variable and then reassigned to a

VARINTERVAL variable. When a VARINTERVAL value is assigned to a

standard FORTRAN variable the midpoint of the VARINTERVAL value

is used. Standard FORTRAN values are taken as exact results when

they are assigned to VARINTERVAL variables. Figure 47 clearly

illustrates the problem that can arise.

REAL Y I
VARINTERVAL Xo Z

# value input is E-150, +1503 1
CALL MVGET (X)

N value assigned to Y is 0.0 1
Y a X

1 0 Z is given the value CO0O0 I
I Z yI

---- --------------------- --------------- I

FIGURE 47

Example of induction of false significance

A loss of significance may also appear when standard FORTRAN and

VARINTERVAL variables are mixed. This loss of significance takes
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place in the same manner as the induction of false significance.

The problem crops up when a VARINTERVAL value of high

significance is assigned to a standard FORTRAN variable which

has* at most* 8 to 20 decimal digits of precision. Figure 48

demonstrates the problem that might occur.

--REAL - I
VARINTERVAL X, Z

N value input is [1/3,1/3) to 50 decimal I
N digits of precision

CALL MVGET x)

N value assigned is .333333333 I
Y = X

I N value assigned is t.33333333#.333333333) I
Z = Y

FIGURE 48

Example of toss of significance

Loss of significance may also be induced through the use of

constants. This may occur in two ways. The first is through the

use of inappropriately insignificant constants. For exampLe, the

use of the constant pi to 18 digits of accuracy in a section of

code which is to be performed with 100 digits of precision is a

waste of resources. The second manner in which Loss of

significance may occur is through the conversions which naturaLly

occur with real constants. Suppose the program contains the
I

statement

Xa .3456

where X is VARINTERVAL with 30 digits of precision. The value of
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X after the assignment is not .3456 but

0.345600003004074096679687500000e+O00

The reason for the inexact conversion is that .3456 is not

exactly representable in binary, to which it is converted at

compile time. This inexact binary value is converted to

VARINTERVAL, resulting in an overall inexact conversion. The

user can avoid the problem by avoiding real constants. If the

program contained, instead, the two statements

X = 3456

X = X/10000

the conversion will be exact.

The problems associated with the use of constants can be avoided

with the use of care. The user must be especially alert when

converting an existent program to VARINTERVAL. It is quite easy

to overlook constants that may cause problems. The consequences

are grave; these validity of the program's results may be

seriously affected. Furthermore, these problems are not the type

which are detected by the VARINTERVAL data type. The results

produced by the program can appear entirely satisfactory even

when seriously in error. The third problem that the user might

encounter when mixing VARINTERVAL and standard FORTRAN variables

is one of efficiency. In some situations this mixing will have no

effect on the significance of the result, for example, the use of

a DO index in the body of a loop. There may, however, be some

objectionable expense incurred through multiple conversions of

the same value to the same data type. The program segment in
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Figure 49 exhibits this behavior.

I NtTEGER I

VARINTERVAL X, Y. Z

N This loop performs three conversions of I I
N to VARINTERVAL I
00 D I 1, 100 1

' r X : I

* I Y I
X I II

FIGURE 49

Example of repetitious conversions

The user must take care when attempting to exert control over the

precision of the operations. Consider, for example# the statement

T z X * Y * Z

where each variable is VARINTERVAL with 50 digits of precision.

The user may decide that the precision necessary for the

derivation of an acceptable result is 20 digits of precision.

There are two considerations the user must make when Lowering the

precision of a section of code. The first of these is that the

precision is propagated by intermediate results. Thus* if To X

and Z have a precision of 20 white Y has a precision of 50* the

entire catculation will be performed at precision 50. The user

must be careful that such unwanted precision propagation does not

occur. The other consideration pertains to carelessness. The

* user must guard against the towering of a variables precision

when that variables is used elsewhere in the programs thus

unintentionatty affecting the precision of other results.
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Another aspect of precision control that is easily overlooked is

the adjustment of loop termination values. Suppose a program

contains the loop shown in Figure 50o where alL variables are

VARINTERVAL with a precision of 500 decimal digits. In a normal

FORTRAN program ERROR would typically have a value of no less

than 1.Oe-15. This is entirety inadequate for the current

situation; the result would still be significant to only 15 or

20 decimal digits. A value of 1.Oe-400 would be a much more

appropriate vatue.

-REPEAT
t COUNT U COUNT 41 

XSUM = EXP(COUNT*Y)
SUM = SUM + XSUM I I

UNTIL (XSUM < ERROR)
-------------------------------------------------

FIGURE 50

ExampLe where inadequate loop termination value may exist

The third category of effects are those associated with the

repetitious evaluation of invariant expressions. When building

expressions the user must remember that any operation involving

VARINTERVAL operands is non-trivial, especially if performed with

high precision. Thus, the compensation for the effort of removing

only one or two repetitious operations from an expression is

usually justifiable. Figure 51 and Figure 52 give two examples of

configurations which contain such invariant expressions and a

reconfiguration which is more efficient.
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I I

I REPEAT I
I C COUNT a COUNT-+ I

XSUM a EXP(COUNT * Y * PI ** 2) I
I SUM SUM + XSUM I I
UNTIL (XSUM < ERROR ) I

I PISQR a P1 ** 2 I
I REPEAT
I E COUNT =COUNT+1 I
I XSUM = EXP(COUNT * Y * PISGR) I

I SUM SUM + XSUM I I
I UNTIL (XSUM < ERROR)

-------------------- -------------------------

FIGURE 51

Example of invariant expression problem and solution

I KURD z (PI**2) / COUNT + Y * (PI**2) I
I -----------------------------------------
I PISOR =PI**2
I KURD a PISQR / COUNT + Y * PISQR I

FIGURE 52

Example of invariant expression problem and solution
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Appendix H

1 95749669676277240766303535475945713821785251664274 1
1 27466391932003059921817413596629043572900334295260 I
1 5956307381323286279434907632338298807531 9525101901 I
1 15738341879307021540891499348841675092447614606680 I-
1 82264800168477411853742345442437107539077744992069 I
1 55170276183860626133138458300075204493382656029760
1 67371132007093287091274437470472306969772093101416 I
I 92836319025515108657463772111252389784425056953696 I
I 77078544996996794686445490598793163688923009879312 I
I 77361782154249992295763514822082698951936680331825 I

1 28869398496465105820939239829488793320362509443117 I
1 30123819706841614039701983767932068328237646480429
I 531 Th0232878250981 94558153017567173613320698112509 1
1 96181881593041690351598888519345807273866738589422 I
1 87922849989208680582574927961048419844436346324496 1
1 84875602336248270419786232090021609902353043699418 1
1 49146314093431738143640546253152096183690888707016 1
1 76839642437814059271456354906130310720851038375051 1
1 0115747704171898610687396965521267154688957035035(4) 1
I----------------------------------------------------------

4p
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Appendix I
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# THIS IS A PROGRAM TO COMPUTE e
REAL SUM, NFACT, STEP, ERROR

# INITIALIZATION

SUM = 0.0
NFACT a 1.0

STEP = 1.0
ERROR a 1.0E-8

I = 0
# INITIALIZE THE CPU AND PAGING COUNTERS

CALL CTP (1)

# LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

C SUM = SUM + STEP
I=1+I
NFACT = NFACT * FLOAT(I)

STEP x 1/NFACT J
UNTIL (STEP <z ERROR)

# DISPLAY THE RESULTS
WRITE(6,2) SUM

2 FORMAT (1X."e IS EQUAL TO ",'FlO.8)
WRITE(6,1) I

1 FORMAT (1h+4T7,"COMPUTED IN "13o" STEPS")

# PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE

CALL CTP(O)
STOP
END
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# THIS IS A PROGRAM TO COMPUTE e
DOUBLE PRECISION SUM. NFACTP STEPP ERROR

# INITIALIZATION
SUM = ..00
NFACT = 1.ODO
STEP = 1.0DO
ERROR = 1.0D-18
I = 0

# INITIALIZE THE CPU AND PAGING COUNTERS
CALL CTP (1)

# LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

E SUM = SUM + STEP
I= +1
NFACT u NFACT * OBLE(FLOAT(I))
STEP = I/NFACT I

UNTIL (STEP <= ERROR)

# DISPLAY THE RESULTS
WRITE(6,2) SUM

2 FORMAT (1XP"e IS EQUAL TO ".-F20.18)
WRITE(6,1) I

1 FORMAT (lh+,T?."COMPUTED IN ",13*" STEPS")

-.# PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE

CALL CTP(O)
STOP
END
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# THIS IS A PROGRAM TO COMPUTE e
INTERVAL SUM, NFACTv STEP# ERROR

# INITIALIZATION
SUM = 0.0

aNFACT = 1.0

STEP = 1.0
ERROR = 1.OE-8
I=

# INITIALIZE THE CPU AND PAGING COUNTERS
CALL CTP (1)

# LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

ESUM =SUM + STEP
Iz1+ 1
NFACT =NFACT * FLOAT(I)
STEP I /NFACT I

UNTIL (STEP <= ERROR)

# DISPLAY THE RESULTS
WRITE(6,2) SUM

2 FORMAT (1X*"e IS EQUAL TO IC*FO8,Iv1B,3)
WRITE(6ol) I

1 FORMAT (lh+vT7ollCOMPUTED IN "#13o" STEPS')

#PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(0)
STOP
END
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# THIS IS A PROGRAM TO COMPUTE e
INTERVAL SUM. NFACT. STEP. ERROR

# INITIALIZATION
SU 0
NFACT = 1

STEP = 1
ERROR = 1
DO I = 1, 10 4 SET ERROR = 1.0e-50

E ERROR = ERROR/100000
I

I = 0

# INITIALIZE THE CPU AND PAGING COUNTERS

CALL CTP (1)

# LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

C SUM = SUM + STEP

NFACT = NFACT * I
STEP = 1/NFACT )

UNTIL (STEP <= ERROR)

# DISPLAY THE RESULTS
WRITE(6,2)

2 FORMAT (lX."e IS EQUAL TO")
CALL INTPRV (" ",1,3128,SUM)
WRITE(6,1) I

1 FORMAT (lh+,T7p"COMPUTED IN "PI3j," STEPS")

# PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(O)

STOP
END
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# THIS IS A PROGRAM TO COMPUTE e
DATA SUM(l), NFACT(1)o STEP(l), ERROR(1) /4*56/

VARINTERVAL SUM, NFACT, STEP, ERROR

# INITIALIZATION
SUM = 0
NFACT = 1
STEP = 1
ERROR = 1
DO I = 1, 10 # SET ERROR = 1.0e-50

I ERROR = ERROR/I0000-
J

# INITIALIZE THE CPU AND PAGING COUNTERS

CALL CTP (1)

# LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR
REPEAT

C SUM = SUM + STEP
=I + 1

NFACT = NFACT * I
STEP = 1/NFACT I

UNTIL (STEP <= ERROR)

# DISPLAY THE RESULTS

WRITE (6,2)

2 FORMAT (1X,"e IS EQUAL TO")
CALL MVPUT (SUM)

WRITE(6,1) I
1 FORMAT (lh+,T7,"COMPUTED IN ",13," STEPS")

# PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE

CALL CTP(O)
STOP
END
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# THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
# PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70
# DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
# THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
# PLACED AGAINST THE HEAT SOURCE

REAL PI, K, RO, C, TO, Ti, TOUT,
THETA, T, X, SUM, XSUMP ERROR

INTEGER FEET, COUNT, TIME, L

#
#

# BEGIN PROGRAM

# INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
PI - 3.1415927
L 10
K = 3U.0
RO = 7.1 * 62.3
C = .12
TO = 70.00

Ti = 500.0

ERROR = 1.OE-8

# INPUT THlE AMOUNT OF TIME
WRITE (6,1)

1 FORMAT (" ENTER THE TIME IN MINUTES")
READ (5,2) THETA

2 FORMAT (V)

# LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET = 1, L

C

# INITIALIZATIONS FOR INNER LOOP
X a FLOAT(FEET)/FLOAT(L) # COMPUTE DISTANCE TO HEAT SOURCE

# COMPUTE A STARTING VALUE FOR T
T = 4K*THETA)/(FLOAT(L)**2 * RO * C)
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SUM = 0.0
XSUM = 0.0
COUNT a 0
TIME = 0

# LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
# TEMPERATURE AT THIS DISTANCE
REPEAT

COUNT = COUNT + 1
XSUM z ((-1)**COUNT/FLOAT(COUNT)) *

(EXP( -(FLOAT(COUNT)**2) * (PI**2) * T) *

SIN (FLOAT(COUNT)*PI*X))

# CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ASS(XSUM) < ERROR)

C
# SINCE SIN CAN GO CLOSE TO 0, LET ERROR VALUE

# BE EXCEDED TWICE
TIME = TIME + 1

)

ELSE TIME = 0

SUM = SUM + XSUM

J # END OF LOOP TO COMPUTE INTERMEDIATE VALUES

UNTIL (TIME == 2)

# COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT = TO + (Ti - TO) * (X + (2.0/PI) * SUM)

IF (FEET "= 1)
c WRITE (6,4) FEET, TOUT

4 FORMAT (1X, "THE ANSWER FOR ",12, " FOOT IS ",F20.6)

ELSE
I WRITE (6,5) FEET, TOUT

5 FORMAT (lX, "THE ANSWER FOR "P12, " FEET IS "PF20.6)
J

] 0 END OF MAIN ITERATION LOOP

# OUTPUr THE FINAL CPU AND PAGING VALUES

CALL CTP(O)

STOP
END
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# THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
4 PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70
#l DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
# THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
# PLACED AGAINST THE HEAT SOURCE

DOUBLE PRECISION PI, K, RO* C, TO, Ti, TOUT,
THETA# To Xo SUM, XSUM, ERROR

INTEGER FEET, COUNT, TIME, L.

4

# BEGIN PRUGRAM

# INITIALIZATIONS

CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

PI = 3.1415927D0

L = 10
K = 30.OD0
RO = 7.1D0 * 62.3D0

C = .12D0
TO = 70.00D0
Ti = 500.ODO
ERROR = 1.OD-8

# INPUT THE AMOUNT OF TIME

WRITE (6,1)
1 FORMAT (" ENTER THE TIME IN MINUTES")

READ (5,2) THETA

2 FORMAT (V)

# LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET = l, L

# INITIALIZATIONS FOR INNER LOOP
X = DBLE(FLOAT(FEET))/DBLE(FLOAT(L)) # COMPUTE DISTANCE TO HEAT SOURC

# COMPUTE A STARTING VALUE FOR T
T = (K*THETA)/(DBLE(FLOAT(L))**2 * RO * C)
SUM * O.ODO
XSUM = O.ODO

COUNT = 0
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TIME = 0

# LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
# TEMPERATURE AT THIS DISTANCE
REPEAT

C

COUNT = COUNT + 1
XSUM - ((-1)**COUNT/DBLE(FLOAT(COUNT))) *

(DEXP( -(DBLE(FLOAT(COUNT))**2) * (PI**2) * T) *
OSIN (DBLE(FLOAT(COUNT))*PI*X))

N CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR

IF (DABS(XSUM) < ERROR)

# SINCE SIN CAN GO CLOSE TO 0O LET ERROR VALUE
# BE EXCEDED TWICE

TIME TIME + 1
J

ELSE TIME = 0

SUM c SUM + XSUM

] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)

N COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT = TO + (T1 - TO) * (X + (2.ODO/PI) * SUM)

IF (FEET == 1)
C WRITE (6,4) FEET, TOUT

4 FORMAT (IX, "THE ANSWER FOR ",12, " FOOT IS ",D16.11)

ELSE

L WRITE (6,5) FEET, TOUT
5 FORMAT (IX, "THE ANSWER FOR "P12o, " FEET IS ".D16.11)

I # END OF MAIN ITERATION LOOP

0 OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(U)

S TOP
END
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# THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
# PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70

# DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
# THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
# PLACED AGAINST THE HEAT SOURCE

INTERVAL PIP K, ROo Co TO, TI, TOUT, TEMPLe TEMPCT,
THETA, T, Xo SUMP XSUMP ERROR

INTEGER FEET, COUNTP TIME, L

P
#

# BEGIN PROGRAM

# INITIALIZATIONS

CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

Pr a 3.1415927
L a 10
TEMPL = L
K * 30.0
RO a 7.1 * 62.3
C a .12
TO = 70.00
Ti = 500.0
ERROR a 1.OE-8

P INPUT THE AMOUNT OF TIME

WRITE (6,1)
1 FORMAT (" ENTER THE TIME IN MINUTES")
READ (5o2) THETA

2 FORMAT (V)

# LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET u1, L

# INITIALIZATIONS FOR INNER LOOP
X a FLOAT(FEET)/TEMPL N COMPUTE DISTANCE TO HEAT SOURCE

# COMPUTE A STARTING VALUE FOR T
T a (K*THETA)/(TEMPL**2 * RO * C)
SUM * 0.0
XSUM a 0o0
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COUNT " 0

TIME u 0

# LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE

# TEMPERATURE AT THIS DISTANCE
REPEAT

C

COUNT a COUNT + 1
TEMPCT • COUNT
XSUM a ((-l)**COUNT/TEMPCT)

(EXP( -(TEMPCT**2) * (PI**2) * T) *

SIN (TEMPCT * PI * X))

# CHECK FOR INTERMEDIATE VALUE LESS THAN FRROR
IF (ABS(XSUM) < ERROR)

C

N SINCE SIN CAN GO CLOSE TO O LET ERROR VALUE
# BE EXCEDED TWICE
TIME a TIME + 1

ELSE TIME =0

SUM a SUM + XSUM

J U END OF LOOP TO COMPUTE INTERMEDIATE VALUES

UNTIL (TIME " 2)

# COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT a TO + (Ti - TO) * (X + (2.0/PI) * SUM)

IF (FEET no 1)
t WRITE (6#4) FEET, TOUT

4 FORMAT (1XP "THE ANSWER FOR "#12# " FOOT IS

ELSE
E WRITE (6,5) FEET, TOUT

5 FORMAT (X, "THE ANSWER FOR "#I2, " FEET IS ",
"t",Fll .6,","sFll.6,"J")

J # END OF MAIN ITERATION LOOP

# OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)

STOP
END
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N THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
N PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70

N DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES, INPUT IS

N THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN

N PLACED AGAINST THE HEAT SOURCEI

INTERVAL P1o K, RO, Cp TOP TIP TOUT, TEMPI, TEMPCT*
a THETA, To X* SUMP XSUM* ERROR

INTEGER FEET# COUNT, TIME, L

#1
0i

N BEGIN PROGRAM

N INITIALIZATIONS

CALL CTP( ) N INITIALIZE THE CPU AND PAGING COUNTERS

PIK 31415927 N MAKE CONVERSION EXACT
Pi Pl/10000000
L *10
TE1PL a] L

RO a 71 * 623 #RO 7.1 62.3

RO z RO/100
C z ? N C .12
C a WOO0
TO a 70
Ti v 500

ERROR a1 N ERROR = 1.OE-8
ERROR a ERROR/10000
ERROR ERROR10000

# INPUT THE AM4OUNT OF TIME

WRITE (6,1)
I FORMAT (" ENTER THE TIME IN MINUTES)

CALL INTRDV (THETA, EOF)

* N LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET a If L

N INITIALIZATIONS FOR INNER LOOP

X a FLOAT(FEET)/TEMPL N COMPUTE DISTANCE TO HEAT SOURCE

0 COMPUTE A STARTING VALUE FOR T
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T 3 (K*THETA)/(TEMPL**2 * RO * C)
SUM * 0.0 i
XSURa 0.0 i
C Ott* T 0

N LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
# TEMPERATURE AT THIS DISTANCE
REPEAT

* CCOUNT. COUNT + 1
TEMPCT " COUNT
XSU1 4 ((-1)**COUNTITEMPCT) *

(EXP( -(TEMPCT**2) * (PI**2) T) *
SIN (TEMPCT * PI X))

# CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ABS(XSUM) < ERROR)

# SINCE SIN CAN GO CLOSE TO 0o LET ERROR VALUE
M BE EXCEDED TWICE

TIME = TIME + I

ELSE TIME = 0

SUM a SUM + XSUM

3 # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)

# COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT z TO + (TI - TO) * (X + (2.0/Pl) * SUM)
IF (FEET -: 1)

SIWRITE (6*4) FEET
4 FORMAT (X, "THE ANSWER FOR ",I2* " FOOT IS ")

CALL INTPRV (" "olf3p128PTOUT)
3i

ELSE
C WRITE (6o5) FEET

5 FORMAT (lX, "THE ANSWER FOR "oI2o, FEET IS ")

SCALL INTPRV (" "P1,3#128,TOUT)

3

3 # END OF MAIN ITERATION LOOP

N OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)
STOP
END
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N THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
N PIPE AT ONE FOOT INTERVALS, AMBIENT TEMPERATURE IS 70
N DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
N THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
N PLACED AGAINST THE HEAT SOURCE

I

N INTEGER VARIABLES

INTEGER FEET, COUNT, TIME# L

N MULTIPLE PRECISION INTERVAL VARIABLES

DATA PI(1), K(1)p ROP), C(1)v TOI), TIMi). TOUT(l),
TEMPL(1), TEMPCT(1). THETA(1). T(1), X(1)* SUMC1),
XSUM(1), ERROR(1) 115*561

VARINTERVAL Plo K, RO* C, TO, Ti, TOUT, TEMPLe TEMPCTv
THETA, To X, SUM, XSUM, ERROR

CeBEGIN

N BEGIN PROGRAM

N INITIALIZATIONS

CALL CTP(1) N INITIALIZE THE CPU AND PAGING COUNTERS

PI a 31415927 N MAKE CONVERSION EXACT
PI a PI/10000000

L z 10
TEMPL m L
K a 30
RO a 71 * 623 0 RO * 7.1 * 62.3
RO a RO/I100
C a 12
C a CW100
TO a 70
T1 a 500

ERROR I= 1
d ERROR a ERROR/10000

ERROR a ERROR/O000

U INPUT THE AMOUNT OF TIME

WRITE (6,1)
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1 FORMAT (" ENTER THE TIME IN MINUTES")
CALL MVGET (THETA)

2 FORMAT (V)

# LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
bO FEET a 1, L

N INITIALIZATIONS FOR INNER LOOP
X a FLOAT(FEET)/TEMPL # COMPUTE DISTANCE TO HEAT SOURCE

# COMPUTE A STARTING VALUE FOR T
T w (K*THETA)/(TEMPL**2 * RO * C)
SUM a 0.0
XSUM 0.0
COUNT = 0
TIME = 0

# LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
a TEMPERATURE AT THIS DISTANCE
REPEAT

C

COUNT = COUNT + 1
TEMPCT a COUNT
XSUM = ((-t)**COUNT/TEMPCT) *

(EXP( -(TEMPCT**2) * (PX**2) * T) *

SIN (TEMPCT * PI * X))

# CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ABS(XSUM) < ERROR)

N SINCE SIN CAN GO CLOSE TO O LET ERROR VALUE
N BE EXCEDED TWICE
TIME B TIME + 1

J

ELSE TIME - 0

SUM a SUM * XSUM

I # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME 2z 2)

0 COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT a TO + (TI - TO) * (X + (2.0/PI) * SUM)
* IF (FEET an 1)

C WRITE (6,4) FEET
4 FORMAT (IX, "THE ANSWER FOR "*I?2 # FOOT IS W)

CALL MVPUT (TOUT)

ELSE
£ WRITE (6,5) FEET
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5 FORMAT (X, "THE ANSWER FOR "*1?. " FEET IS )
CALL MVPUT (TOUT)

)

3 # END OF MAIN ITERATION LOOP

# OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)

STOP
END
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N THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
# PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70
0 DEGREES; HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
# THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
0 PLACED AGAINST THE HEAT SOURCE

N INTEGER VARIABLES

INTEGER FEET& COUNT# TIME# L

# MULTIPLE PRECISION INTERVAL VARIABLES

DATA PI(1). K(1)f ROP) C(1)o
TEMPL(1)o TERPCT(t)p THETA(1) T(1)o X(1)o SUM(l)o

XSUM(1)v ERROR(i) 112*200/
DATA TOUT(l)p TO(l), T1(1)* X20(1). P120(1). SUM20(1) /6*20/

VARINTERVAL PIP K. RO. C. TOo TI, TOUT. TEMPLP TEMPCTP
THETA, To Xo SUM. XSUMo ERROR#
P120. X20O SUM20

2C*BEGIN
U
U

8 BEGIN PROGRAM

# INITIALIZATIONS

CALL CTPC1) 0 INITIALIZE THE CPU AND PAGING COUNTERS

PI a 31415927 0 MAKE CONVERSION EXACT
PI a PI/10000000

P120 a Pt

L a 10
TEMPL a L

K a 30
RO a 71 * 623 0 RO 7 7.1 * 62.3
RO a RO/IOi
c = 12
C 0 C/100

TO a 70

Ti a 500
ERROR a 1
ERROR a ERROR/10000
ERROR a ERROR/000
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# INPUT THE AMOUNT OF TIME

WRITE (6.1)
I FORMAT (" ENTER THE TIME IN MINUTES")

CALL MVGET (THETA)
2 FORMAT (V)

# LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT

DO FEET a 1, L
E

# INITIALIZATIONS FOR INNER LOOP
X W FLOAT(FEET)/TEMPL N COMPUTE DISTANCE TO HEAT SOURCE

N COMPUTE A STARTING VALUE FOR T
T = (K*THETA)/(TEMPL**2 * RO * C)
SUM 0.0
XSUM * 0.0

COUNT a 0
TIME a 0

0 LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
# TEMPERATURE AT THIS DISTANCE
REPEAT

C

COUNT * COUNT + 1
TEMPCT = COUNT
XSUM ((-1)**COUNT/TEMPCT) *

(EXP( -(TEMPCT**2) * (PI**2) * T) *

SIN (TEMPCT * PI * X))

# CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ABS(XSUM) < ERROR)

C

# SINCE SIN CAN GO CLOSE TO Op LET ERROR VALUE
N BE EXCEDED TWICE

TIME = TIME + I

ELSE TIME * 0

SUM a SUM• XSUM

3 # END OF LOOP TO COMPUTE INTERMEDIATE VALUES

UNTIL (TIME ,u 2)

0 N COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

X20 aX 

SUM20 * SUM
TOUT * TO * (TI - TO) * (X20 + (2,01PI20) * SUM20)
IF (FEET 'a 1)

C WRITE (6,4) FEET
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4 FORMAT (1x. "THE ANSWER FOR "oI2 ' FOOT IS 1
CALL MVPUT (TOUT)

3
ELSE

I WRITE (6#5) FEET
5 FORMAT (0X, "THE ANSWER FOR ".12, " FEET IS ")

CALL MVPUT (TOUT)
3

0 END OF MAIN ITERATION LOOP

# OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)

STOP

END

A x
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# PROGRAM TO COMPUTE HEAT TRANSFER IN A TEN FOOT IRON BAR
# HEAT SOURCE IS 500 DEGREES, AMBIENT TEMPERATURE IS 70
# DEGREES. OUTPUT IS TEMPERATURE OF BAR AT ONE FOOT
# INTERVALS. INPUT IS TIME AFTER CONTACT WITH HEAT SOURCE
# IN MINUTES.

a #

# INTEGER VARIABLES
INTEGER FEET, KLENGTHP ITEMP. TIME

#

# VARINTERVAL VARIABLES

N CONSTANT VALUED VARIABLES

DATA ERRORMI)P PI(1). PISQR(1) /3*200/
DATA L(l)P RO(1), C(1)# ROC(C). K(1) /5*6/
DATA TO(l). Tl(1). TDIFF(1). P120(1)p TPI2OM(1) /5*20/

# VARIABLE VALUED VARIABLES
DATA COUNT(1) 12001
DATA THETA(1)o SUM(1). XSUM(1)* X(1)* T(1)o TEMPL(1)p

PISQRT(1), PIX(1) /8*200/
DATA TOUT(l), X20(1)p SUM20(1) /3"20/

/ VARINTERVAL DECLARATION
VARINTERVAL PIP PISQR, L. RO Co K. TO. TIP COUNT*

TOUT. THETA. SUM* XSUMP Xp To ERROR.
X20o P120, SUM20o PISQRT. PIX. TINIT.
TP1ZOM, TDIFFP ROC. TEMPL

N

# BEGIN PROGRAM

ZC*BEGIN

# INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
PI 2 314159?7 N INITIALIZE PI VALUES
PI a P1/10000000
P120 a PI
TPIZOM a 2/PIZO
PISOR a PI * PI
L 8 10 0 LENGTH OF BAR
TEMPL s L

* K a 30
RO z 71
RO a RO * 623
RO a RO0100
C a 12
C: S C/100

ROC a ff * C
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TO a 70 # AMBIENT TEMPERATURE
TI a 500 N TEMPERATURE OF HEAT SOURCE
TDIFF = TI - TO

ERROR = 1 # ERROR FACTOR FOR LOOP TERMINATION
ERROR a ERROR/10000 # SET ERROR a 1.E-8
ERROR = ERROR/10000

# GET THE TIME, IN MINUTES
WRITE (6,1)

- 1 FORMAT (" ENTER THE TIME IN MINUTES")
CALL MVGET (THETA)

U

# CALCULATE TEMPERATURE FOR EACH FOOT
#

KLENGTH = L

0 COMPUTE THE INITIAL VALUE FOR T
T = (K*THETA)/(L**2 * ROC)
PISQRT = PISQR * T

DO FEET a 1 KLENGTHr

# COMPUTE DISTANCE TO HEAT SOURCE
X a FLOAT(FEET)/TEMPL

N LOOP FOR THE COMPUTATION OF SUM
SUM = 0
XSUM = 0 N INITIAL LOOP VALUES
COUNT a (0
TIME a 0
PIX = Pt * X

REPEAT
E COUNT a COUNT + 1

ITEMP u COUNT
XSUM = ((-1)**ITEMPICOUNT) *

EXP( -(COUNT**2) * PISQRT) *

SIN (COUNT*PIX)
IF (ASS(XSUM) < ERROR )

TIME a TIME + 1
ELSE

TIME a 0

SUM a SUM + XSUM
- )
* UNTIL (TIME us 2)

# COMPUTE THE TEMPERATURE FOR THIS DISTANCE
X20 a X

SUMO SUM
TOUT a TO + (TOIFF) * (X20 + (TPI2OM) * SUM20)
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NOUTPUT THE FINAL ANSWER FOR THIS FOOT
IF CFEET an 1)

E WRITE (6#4) FEET
4 FORMAT (1XP"THE ANSWER FOR "P12," FOOT IS "

CALL MVPUT (TOUT)

ELSE
I WRITE (6P5) FEET

5 FORMAT (tXP"TI4E ANSWER FOR O".12," FEET IS "

CALL MVPUT (TOUT)

CALL CTP(O)
* STOP
* END
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Appendix K

ITHE ANSWER FOR 1 FOOT IS 70.00000OO

THE ANSWER FOR 2 FEET IS 70.000000
1 THE ANSWER FOR 3 FEET IS 69.999996 r

I THE ANSWER FOR 4 FEET IS 70.000006
THE ANSWER FOR 5 FEET IS 70.001100
THE ANSWER FOR 6 FEET IS 70.072399
THE ANSWER FOR 7 FEET IS 72.054155
THE ANSWER FOR 8 FEET IS 95.780487
THE ANSWER FOR 9 FEET IS 219.179291
THE ANSWER FOR 10 FEET IS 500.000050

I-------------------------------- ---------------------
CPU time m 0.191516 seconds; Page faults a 7

----------------------------------------------------

Singte Precision Real

I THE ANSWER FOR 1 FOOT IS 69.999999992
1 THE ANSWER FOR 2 FEET IS 69.999999985
I THE ANSWER FOR 3 FEET IS 69.999999999
I THE ANSWER FOR 4 FEET IS 70.000007146
1 THE ANSWER FOR 5 FEET IS 70.001103333
I THE ANSWER FOR 6 FEET IS 70.072407058
I THE ANSWER FOR 7 FEET IS 72.054161748
I THE ANSWER FOR 8 FEET IS 95.780486256
I THE ANSWER FOR 9 FEET IS 219.17928843
1 THE ANSWER FOR 10 FEET IS 500.08004075

I CPU time a 0.203295 seconds; Page faults a 0 1

Doubte Precisien Real

A
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I THE ANSWER FOR 1 FOOT IS C 69.999985, 70.0000123 1
I THE ANSWER FOR 2 FEET iS r 69.999976, 70.0000263 1
ITHE ANSWER FOR 3 FEET IS C 69.999972, 70.000026) I.

I THE ANSWER FOR 4 FEET IS C 69.999972, 70.000046] 1
1 THE ANSWER FOR 5 FEET IS C 70,001081, 70.0111311 1
1 THE ANSWER FOR 6 FEET IS C 70.072363, 70.072459) 1
I THE ANSWER FOR 7 FEET IS C 72.054106o 72.054229) 1

THE ANSWER FOR 8 FEET IS C 95.780422, 95.780548) 1
I THE ANSWER FOR 9 FEET IS C 219.179247o 219.179348) 1
I THE ANSWER FOR 10 FEET IS C 500.000042o 500.000065) 1

I CPU time a 6.869834 seconds; Page faults a 0 I
I--------------------------------------------------------

Single Precision Interval

--THE ANSWER FOR 1 FOOT IS I
1 [69.9999999920713997670139754738714813670904805420447863.
1 69.9999999920713997670139754738714813670904805420447865 1 1
I THE ANSWER FOR 2 FEET IS I
I t69.9999999849446217613594068819059052165389668889820246, I

69.9999999849446217613594068819059052165389668889820249 3 1
1 THE ANSWER FOR 3 FEET IS
1 [69.9999999989528434642645248200310562998823875344258493o I
1 69.9999999989528434642645248200310562998823875344258495 3
1 THE ANSWER FOR 4 FEET IS I
I [70.0000071455271628203217215513607663038535808661501878, I
1 70.0000071455271628203217215513607663038535808661501880 1 1
I THE ANSWER FOR 5 FEET IS I
1 [70.0011033325388201103208906413237839329219334456339211, 1

?0.0011033325388201103208906413237839329219334456339213 3 I
I THE ANSWER FOR 6 FEET IS I
1 [70.0724070577319816089566527720432835726014296255851165, 1
1 70.0724070577319816089566527720432835726014296255851168 1 1
I THE ANSWER FOR 7 FEET IS
1 [72.0541617475044553413667077006797275524701543365096380, 1

72.0541617475044553413667077006797275524701543365096387 1 1
I THE ANSWER FOR 8 FEET IS
i r95.7804862558086615169995231439860850228618608429275286 I
1 95.7804862558086615169995231439860850228618608429275292 1 1
I THE ANSWER FOR 9 FEET IS I
1 [219.179288428267184047410317087029308769531036695007926, 1
1 219.179288428267184047410317087029308769531036695007927 1 1
I THE ANSWER FOR 10 FEET IS I
1 C500.000040754757403673084082919797630180512327215229061, I
1 500.000040754757403673084082919797630180512327215229062 ] 1

I CPU time a 1812.559863 seconds Page faults a 297 1

56 Decimal Oigit Interval
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I THE ANSWER FOR 1 FOOT IS
[ 69.99999999207139976701397547387148136709048054204478640129, I
69.99999999207139976701397547387148136709048054204478640670 1 1

I THE ANSWER FOR 2 FEET IS
1 1 69.999999984944621761359406881905905216538966888982024683991 1
1 69.99999998494462176135940688190590521653896688898202468957 3 I
I THE ANSWER FOR 3 FEET IS
I [ 69,999999998952843464264524820031056299882387534425849426940 1
1 69,99999999895284346426452482003105629988238753442584943283 3 1
I THE ANSWER FOR 4 FEET IS I
It 70.00000714552716282032172155136076630385358086615018788073, I
1 70.000007145527162820321?2155136076630385358086615018788697 3 1
1 THE ANSWER FOR 5 FEET IS I
I 70.00110333253882011032089064132378393292193344563392116881, I

1 70.00110333253882011032089064132378393292193344563392117413 3 1
1 THE ANSWER FOR 6 FEET IS
1 1 70.072407057731981608956652772043283572601429625585116629120 1
I 70.07240705773198160895665277204328357260142962558511664275 1 1
I THE ANSWER FOR 7 FEET IS
1 1 72.05416174750445534136670770067972755247015433650963834299o I
I 72.05416174750445534136670770067972755247015433650963839775 31
f THE ANSWER FOR 9 FEET IS
1 1 95.780486255808661516999523143986085022861860842927528834780 1
I 95.78048625580866151699952314398608502286186084292752888407 3 1
1 THE ANSWER FOR 9 FEET IS I
I t 219.1792884282671840474103170870293087695310366950079264830# I
1 219.1?92884282671840474103170870293087695310366950079264947 3 I
I THE ANSWER FOR 10 FEET IS
I E 500.0000407547574036730840829197976301805123272152290611000, I
1 500.0000407547574036730840829197976301805123272152290611129 1

I--------------------------------------------------------------I
I CPU time u 325.1 seconds; Page fautts a2

56 Digit Variabie Precision Intervat

A
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I THE ANSWER FOR 1 FOOT IS

r 69.999999992071399767013975473871481367090480542044786403
8923142815495416121329312367913959728749659290

69.999999992071399767013975473871481367090480542044786403
8923142815495416121329312367913959728749660155 3

THE ANSWER FOR 2 FEET IS
C 69.999999984944621761359406881905905216538966888982024686

8653403970508937846340160672520997986138153045 I
69.999999984944621761359406881905905216538966888982024686

8653403970508937846340160672520997986138154210 I
1 THE ANSWER FOR 3 FEET IS
1 I 69.999999998952843464264524820031056299882387534425849429

8863753684735706861831983908290906781006897766
1 69.999999998952843464264524820031056299882387534425849429
1 8863753684735706861831983908290906781006899027 3
I THE ANSWER FOR 4 FEET IS
I C 70.000007145527162820321721551360766303853580866150187883

1424437800092699571706061133102514461188824401 ,

I 70.000007145527162820321721551360766303853580866150187883
1424437800092699571706061133102514461188825889 3

I THE ANSWER FOR 5 FEET IS
I E 70.001103332538820110320890641323783932921933445633921170
1 9400788600587061214387395142214800687191147076

70.001103332538820110320890641323783932921933445633921170
I 9400788600587061214387395142214800687191148308 I
1 THE ANSWER FOR 6 FEET IS
I E 70.072407057731981608956652772043283572601429625585116634
1 7024149546240608397729207966687296706384349432

70.07240705773198160895665277204383572601429625585116634
I 7024149546240608397729207966687296706384351451 I
I THE ANSWER FOR 7 FEET IS
1 1 72.054161747504455341366707700679727552470154336509638369
1 8468035486727088391445119857126504919375701706
1 72.0541617475044553413667077006797275524701S4336509638369
I 8468035486727088391445119857126504919375708004 3
I THE ANSWER FOR 8 FEET IS
I r 95.780486255808661516999523143986085022861860842927528858
I 7990041400454762480637218282543083696452166927
1 95.7804862558n8661516999523143986085022861860842927528858

7990041400454762480637218282543083696452173225 1
I THE ANSWER FOR 9 FEET IS
I C 219.17928842826718404741031708702930876953103669500792649
1 2328344405605824312558710873048065?848715397102
I 219.17928842826718404741031708702930876953103669500792649
I 23283444056058243125587108730480657848715398754 I
1 THE ANSWER FOR 10 FEET IS
1 5 500.00004075475740367308408291979763018051232721522906110

- 97650817149143683241973152003319426877820765670 ,
1 500.00004075475740367306408291979763018051232721522906110 I

97650817149143683241973152003319426877820768680 1
I ----------------------------------aaa--------- ----------- eeeeeeeeeeeeeeeeee

I CPU time• 726.0 seconds; Page faults 2

100 Digit Variable Precision Interval
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-THE ANSWER FOR 1 FOOT -
I 69,9999999920713997670139754738714813670904805420447864038 I

9231428154954161213293123679139597287496597201074425169 1
1422947660540283583204753576139570079007617167560730146 1
69889883301688116244416856941971164 1

69.9999999920713997670139754738714813670904805420447864038 1
9231428154954161213293123679139597287496597201074425169 1
1422947660540283583204753576139570079007617167560730146 1
69889883301688116244416856941971963 1

I THE ANSWER FOR 2 FEET IS I
f C 69.9999999849446217613594068819059052165389668889820246868 1
I 6534039705089378463401606725209979861381536088458973086 1
1 5295440002398738667216714615158396515630479505727161799 1
I 26634896573846985848560113705575258 1
I 69.9999999849446217613594068819059052165389668889820246868
1 6534039705089378463401606725209979861381536088458973086 1
1 5295440002398738667216714615158396515630479505727161799 1
1 26634896573846985848560113705576067 1
I THE ANSWER FOR 3 FEET IS
1 1 69.9999999989528434642645248200310562998823875344258494298 1
1 8637536847357068618319839082909067810068983601937126090 1

6371939923084217980276318407978173736537171412294032596 I
1 70735494364789902863868395419314025

69.9999999989528434642645248200310562998823875344258494298 1
1 8637536847357068618319839082909067810068983601937126090 1
1 6371939923084217980276318407978173736537171412294032596
1 70735494364789902863868395419314767 1 1
I THE ANSWER FOR 4 FEET IS I
1 1 70.0000071455271628203217215513607663038535808661501878831 1
1 4244378000926995717060611331025144611888251494122210329 1

6317952788510652325852138383847697633884316551226493233 1
1 80597649295867707273840571998322541

70.0000071455271628203217215513607663038535808661501878831 1
4244378000926995717060611331025144611888251494122210329 1
6317952788510652325852138383847697633884316551226493233

1 80597649295867707273840571998323369 1 1
I THE ANSWER FOR 5 FEET IS I

I 70.0011033325388201103208906413237839329219334456339211709 1
1 4007886005870612143873951422148006871911478110681272568 1

3491279629832432355349015852807566453690562938360649535 1
08142425200560377751398563366147751

1 70.0011033325388201103208906413237839329219334456339211709 1
1 4007886005870612143873951422148006871911478110661272568 1
1 3491279629832432355349015852807566453690562938360649535 I

081424252n0560377751398563366148463 I I
I THE ANSWER FOR 6 FEET IS
I C 70o072407057731981609956652772043283572614296255851166347 I
I 02414954624060839772920796668729670638435n6146910908660 I

2418288984616609096648694921680015194494702999995358723 1
0018059298645869440?746119028686441

1 70.0724070577319816089566527720432835726014296255851166347 1
1 0241495462406083977292079666872967063843506146910908660 1
I 24182889846166090966486949216800151944947n2999995358723 I
1 00180592986458694402746119028687918 1
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THE ANSWER FOR 7 FEET IS

I 72.05416174750445534136670?7006797275524701543365096383698
4680354867270883914451198571265049193757048066408398931
2813918105650332766831809737749136287632909657279240293
01094044719937746481849453587091419 I

72.0541617475044553413667077006797275524701543365096383698
4680354867270883914451198571265049193757048066408398931
2813918105650332766831809?37749136287632909657279240293
01094044719937746481849453587097169 ]

I THE ANSWER FOR 8 FEET IS

I E 95.7804862558086615169995231439860850228618608429275288587
1 9900414004547624806372182825430836964521696998986069616
1 8684134696796763213490875684952633456912843179639814248
1 85473176572993661969536143655992254
1 95.7804862558086615169995231439860850228618608429275288587

9900414004547624806372182825430836964521696998986069616 1

1 8684134696796763213490875684952633456912843179639814248
1 95473176572993661969536143655997731 1

THE ANSWER FOR 9 FEET IS

I f 219.179288428267184047410317087029308769531036695007926492
1 3283444056058243125587108730480657848715397483192204541
1 17887085143278316329560247394208277777305605086833S0216
I 065836909851728537925681795156475716
1 219.179288428267184047410317087029308769531036695007926492
1 3283444056058243125587108730480657848715397483192204541

1788708514327831632956024739420827777730560508683350216
065836909851728537925681795156476944 1

THE ANSWER FOR 10 FEET IS

I t 500.000040754757403673084082919797630180512327215229061109
I 7650817149143693241973152003319426877E20766831310742892

1122074122072617284752919175416633910948799809071822219
337336386989209282598995681320544230

500.00004075475740367308408291979763018051232721529061109
I 7650817149143683241973152003319426877820766831310742892
1 1122074122072617284752919175416633910948799809071822219

337336386989209287598995681320545520 3 1

I CPU time a 2406.0 seconds; Page fautts a 148

I-------------------------------------------------------------------I

200 Digit VariabLe Precision Intervat

A nI
ADerd-.I -13



ITHE ANSWER FOR 1 FOOT IS
1 69.999999992071399767013975473871481367090480420478640389 1

2314281549541612132931236791395972874965972010744251691422 1
947660540283583204753576139S700790076171675607301466988988 I
3301688116244416856941971559068022800052867351531609414847 1
9520467721798353572474135003962092158180319980594255713741 1
6215630761442926171244988747559667139033080195361698339260 1
1363733215381833013577787751756241330602804?47655697121865
8423826003801689506983412776859976330379096096812354445741
74148762712681026530065004628559895762 .

69.99999999207139976701397547387148136709048054204478640389
I 2314281519541612132931236791395972874965972010744251691422 1

9476605402835832047535761395700790076171675607301466988988 1
3301688116244416856941971559068022800052867351531609414847 1
9520467721798353572474135003962092158180319980594255713741 1
621S630761442926171244988747SS9667139033080195361698339260 I
1363733215381833013577787751756241330602804747655697121865 1
8423826003801689506983412776859976330379096096812354445741 1
74148762712681026530065004628S59897611 1 1

I THE ANSWER FOR ? FEET IS
I C 69,9999999894462176135940688190590521653896688898202466686 1

5340397050893784634016067252099798613815360884589730865295 1
I 4400023987386672167146151583965156304795057271617992663489 1

6573846985848560113705575674345701897696291518993394881234 1
I 8222031292127577158404078167876473757697948739447946844298
I 9084807712449483099533155236272810878301931672367073384353 1

9947605198160591443517020868549317583038201570060971507106 1
1 1 138036909702959605753398626667231538290697554480623640606
I 68784038524087638900936311953814883001 I
I 69.99999998494462176135940688190590521653896688898202468686 1
I 5340397050893784634016067252099798613815360884589730865295 1
I 4400023987386672167146151583965156304795057271617992663489
I 657384698584856n1137055767434570189769691518993394881236 I
I 8222031292127577158404078167876473757697948739447946844Z98- 1
I 90848077124948309953315523627281087830193167z367073384353
1 9947605198160591443517020868549317583038201570040971507106 1

1138036909702959605753398626667231538290697554480623640606 I
68784038524087638900936311953814884876,- . 1

I THE ANSWER FOR 3 FEET IS -
I C 69.9999999989528434642652O8200310,5629988238753442584942988 1
1 637536817357068618319839082909,0678100689836019371260906371
1 9399230842179802763184079781737365371714122940325967073549
1 4364789902863868395419'14'42489675617543873706978951495299 1
I 9835215148213089103190101737751910573272509395530444127308 1
1 2912860076360135710710115501368411472013004983986124523649 1
1 12900355267828759494257856168220129608423714988473013770 1
I 9737?518564737?74?268145662589675587271440980849726333270 I
I 65680151214745928722365606668824563647 1

69.999999998952843464.26452482003105629988238753442584942988 1
6375368473570686183198390829090678100689836019371260906371 1
939923084217980276318407978173736537171412940325967073549 1

1 4364789902863868395419314402489675617543873?069?8951495299 1
1 983521514821308910319010173775191057327 509395530444127308 1
1 2912860076360135710710115501368411472013004983986124523649 1
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1290035526782875949425785616822012960842371479884743013770 1
9737851856473777472568145662589675587271440980849726333270 1
65680151214745928722365606668824565196 3 I

I THE ANSWER FOR 4 FEET IS I
I C 70.00000714552716282032172155136076630385358086615018788314
I 2443780009269957170606113310251446118882514941222103296317 1
I 952788510652325852138383847697633884316 51264932338059764 I

929586?707273840571998322818586139973923)k09728312569031690 I
1 5?65676878356993227546079879004017769266313498146051316835
1 9370584670045221558101295985552829481952977291226407257944
, 0856953566697643354417975989005780232456762378561802572415 1

4954678143373287301659653789853603618706863124203648199022 1
I 28316850637692372528765592372659707870 1
I 70.00000714552716282032172155136076630385358086615018788314 1
I 2443780009269957170606113310251446118882514941222103296317 1
I 9527885106523258521383838476976338843165512264932338059764 1
* I 9295867707273840571998322818586139973923409728312569031690 1
1 5765676878356993227546079879004017769266313498146051316835 1

9370584670045221558101295985552829481952977291226407257944 1
0856953566697643354417975980005780232456762378561802572415 1

I 4954678143373287301659653789853603618706863124203648199022 1
1 28316850637692372528765592372659709682 3
1 THE ANSWER FOR 5 FEET IS I
I C 70.00110333253882011032089064132378393292193344563392117094 1
1 0078860058706121438739514221480068719114781106812725683491 1
1 2796298324323553490158528075664536905629383606495350814242 1
I 5200560377751398563366147976439882015922490066417413176718 I
I 2835976607590796248706993481523562119018836939556684745502 I
1 2951461439201607390673582555120334436721717046032935629354
1 5451825314425808293147035433771259720167534964548561603809

2766108911704320215947749976462523581633935990468415181675 1
I 66195430248467173805649547523177448707 1

70.00110333253882011032089064132378393292193344563392117094 1
1 0078860058706121438739514221480068719114781106812725683491 1

2796298324323553490158528075664536905629383606495350814242 1
1 5200560377751398563366147976439882015922490066417413176718
I 2835976607590796248706993481523562119018836939556684745502 1
1 2951461439201607390673582555120334436721717046032935629354 1
I 5451825314425808293147035433771259720167534964548561603809 1

1 2766108911704320215947749976462523581633935990468415181675 1
I 66195430248467173805649547523177449727 3 1
I THE ANSWER FOR 6 FEET IS I
I C 70.07240705773198160895665277204328357260142962558511663470 1
1 241495462406083977?920796668729670638435061469109086602418 1

2889846166090966486949216800151944947029999953587230018059 1
2986458694402746119028687132905996117304059114293276805638 1

I 5603275566565597052107813506320817346722375004473242782680 1
1 15010904825951237553581097618114087637854555310206?9392621 1
I 454744459943344854707957877513582266517468289185485805817

9691816053354282233493106040002370206447299678750805172266 1
06483578136120164030845651579508388965 1

I 70.07240705773198160895665277204328357260142962558511663470 1
2414954624060839772920?96668729670638435061469109086602418 1

1 2889846166090966486949216800151944947029999953587230018059 1
I 29864586944027461190286871329059961173040591142932?6805638 I
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5603275566565597052107813506320817346722375004473242782680
1501090482595123755358109761811408763785455531020629392621
4547444599433448547079578775135822665174682891854485805817 "
9691816053354282233493106040002370206447299678750805172266
06483578136120164030845651579508390991 3

THE ANSWER FOR 7 FEET IS
I 72.05416174750445534136670770067972755247015433650963836984

6803548672708839144511985712650491937570480664083989312813
9181056503327668318097377491362876329096572792402930109404
4719937746481849453587094641203867914412373207327679192344
0499697316266752893857956207398152275337150572396892888956

* I 1576798365661362721275650445038481372844770946171526961243
* I 8265472801582437048653182033950185245115637656206542378955

6779753118945360753130344554260873817203371560176496395083
49285086675166841981427967192109500938 I

72,05416174750445534136670770067972755247015433650963836984
680354867270883914451198571265(491937570480664083989312813
9181056503327668318097377491362876329096572792402930109404
4719937746481849453587094641203867914412373207327679192344
0499697316266752893857956207398152275337150572396892888956
1576798365661362721275650445038481372844770946171526961243
8265472801582437048653182033950185245115637656206542378955
6779753118945360753130344554260873817203371560176496395083
49285086675166841981427967192409507509 ]

I THE ANSWER FOR 8 FEET IS
I t 95.78048625580866151699952314398608502286186084292752885879
I 90041400454762480637218282543083696452169699898606961686864

1346967967632134908756849526334569128431796398142488547317
1 6572993661969536143655995407781281097088433473933022022261

577604216256057719202828332723426229385515096290628385043
I 00336547633208889543249594591609i90624647886"f03-014 O-961
1 9429945711098145777738064350572098877525094844158781016499
1 975964395036226800228719644?369102028178079858603093956743

83354874021856434265122826672319598424
1 3895.78048625580866151699952314398608502286186084292752885879

1 9004140045476248063721828254308369645216969989860696168684

1346967967632134908756849526334569128431796398142488547317
I 6572993661969536143655995407781281097088433473933022022261
I 5776042162560577192028283327234262293855150296290628385043
I 003365476332n888954324959459160919062464788640531001030596

1 9429945711098145777738064350572098877525094844158781016499

975964395036226800287196442369102028178079858603093956743
1 833548740218564342651228266723196047223

ITHE ANSWER FOR 9 FEET IS
1 C 219.179288428267184()474103170870293087695310366950079264923
T 283444056058243125571804057887153974831922045411788

I 708514327831632956n247394208277777305605086833502160658369
1 I 0985172853792568179515647684941125318473371356142302944833
I 5995664965854082423075134955535888411709351567924626426106
I 3256886177016262888n27493406559477214948760422305996088489
I 8885653891676757252880231619550832629002653312045S31634508

3325917727505922602806578634320412485650560326949106869153
1 743118966082359517504852194508794637976

I 219.1792884282671840474103170870293087695310366950079264923
I 2834440560582431255871087304806578487153974831922045411788
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I 7085143278316329560247394208277777305605086933502160658369
0985172853792568179515647684941125318473371356142302944833

I 5995664965854082423075134955535888411709351567924626426106
I 3256886177016262888027493406559477214948760422305996088489 I
I 8885653891676757252880231619550832629002653312045531634506
I 3325917727505922602806578634320412485650560326949106869153 I
I 7431189660823595175(14852194508794639986 3 I

1 THE ANSWER FOR 10 FEET ISI
I E 500.000040754757403673084082919?976301805123272152290611097 1
I 6508171491436832419731 520033194.268778207668313107428921122 1
1 07412207261728475291917541663391094879980907192221933?3363 1
1 86989209282598995681320545400865060356661116401899203541569 1
1 2995061120224717553418715808324372244011118796351049908048 1
1 99430584618728262590251 96756626572305881919618127181196756 1
I 76144871874004086014981922418526886224161?5291115965602807 1
1 2273365290386789065413557583157592276916680787946258135071 1
1 595556560773068193957563746723927059230 * I
1 500.0000407547574036730840829197976301805123272152290611097 1
1 65081714914368324197-31520033194268778207668313107428921122 1
I 07412207261728475 29191 754166339109487998090718222193373363 1

1 8698920928259899568132054540096506036661116401899203541569 1
1 2995061120224.717553418715808324372244011118796351049908048 1
I 9943058461872826259n251967566265723058819196181 27181196756 I
I 7614487187400408601498192241852688622416175291115965602807 1

1 2273365290386789065413557583157592276916680787946258135071 1
1 595556560773068193957563746723927060090 1 1

I------------------------------------------------------------------- I
I CPU time u15505.37 seconds; Page faults =142 I
I------------------------------------------------------------------

500 Digit Variable Precision Interval
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I THE ANSWER FOR 1 FOOT IS

I [ 69.99999999207139976701* 69.99999999207139976702 3 1
I THE ANSWER FOR 2 FEET IS I
I E 69.99999998494462176135, 69.99999998494462176136 31I
I THE ANSWER FOR 3 FEET IS
1 1 69.99999999895284346426, 69.99999999895284346427 1 1
I THE ANSWER FOR 4 FEET IS
I E ?0.00000714552716282032, 70.00000714552716282033 3 1
I THE ANSWER FOR 5 FEET IS
I I 70.00110333253882011031, 70.00110333253882011033 3 1

* I THE ANSWER FOR 6 FEET IS '
* r 70.07240705773198160895, 70.07240705773198160896 1 1

1 THE ANSWER FOR 7 FEET IS I
I C 72.05416174750445533986, 72.05416174750445534261 3 1
I THE ANSWER FOR 8 FEET IS
I E 95.78048625580866151535, 95.78048625580866151809 1 1
I THE ANSWER FOR 9 FEET IS I

I 219.17928842826718404740, 219.17928842826718404742 I I
I THE ANSWER FOR 10 FEET IS I
I E 500.00004075475740366990, 500.00004075475740367420 1 1

I CPU time = 2396.169230 seconds; Page faults a 223 1

--------------------------- ------------------------ I

200 Digit Variable Precision Interval -- Output Optimized

--THE ANSWER FOR 1 FOOT S I
C 69.99999999207139976701, 69.99999999207139976702 I I

I THE ANSWER FOR 2 FEET IS
I r 69.99999998494462176135, 69.99999998494462176136 3 1
I THE ANSWER FOR 3 FEET IS
I C 69.99999999895284346426, 69.99999999895284346427 1 1
1 THE ANSWER FOR 4 FEET IS I
I C 70.00000714552716282032, 70.00000714552716282033 I I
I THE ANSWER FOR 5 FEET IS I

I C 70.00110333253882011031, 70.00110333253882011033 3 1
1 THE ANSWER FOR 6 FEET IS I
I C 70.07240705773198160895, 70.07240705773198160896 3 1
1 THE ANSWER FOR 7 FEET IS
I C 72.05416174750445533986v 72.05416174750445534261 3 1
1 THE ANSWER FOR 8 FEET IS I
I C 95.78048625580866151535, 95.78048625580866151809 3 1
I THE ANSWER FOR 9 FEET IS I
I C 219.17928842826718404740, 219.17928842826718404742 1 1
I THE ANSWER FOR 10 FEET IS I
I C 500.00004075475740366990, 500,00004075475740367420 1 1

I CPU time - 2377.67 seconds; Page faults a 153 1

200 Digit Variable Precision interval -- Fully Optimized
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SOME EXPERIMENTS USING INTERVAL ARITHMETIC*

Eric K. Reuter, John P. Jeter, J. Wayne Anderson

and Bruce 0. Shriver

Computer Science Department
University of Southwestern Louisiana

Lafayette, Louisiana 7n504

*

This paper reviews past experiences and discusses future
work in the area of interval arithmetic at the University of
Southwestern Louisiana (USL). Two versions of interval
arithmetic were developed and implemented at USL 193. An
interval data type declaration and the necessary mathematical
functions for this data tyoe were added to Fortran via the
preprocessor Augment [4,5. In the first version, the endpoints
of the intervals were represented as single precision floating
point numbers. In the other version, the endpoints were
represented to 56 decimal digits. Production engineering
programs were run as benchmarks [81. The accumulation of
computational and algorithmic error could be observed as a
widening of the intervals. The benchmarks were also run in
normal single and double precision arithmetic. In some
instances, the result obtained from a single or double precision
calculation was not bounded by the correspondinq interval result
indicating some problem with the atqorithm. The widening of an
interval does not necessarily indicate a data sensitivity nor
error in an algorithm. However, these large intervals can be
used as indicators of possible trouble areas. On the other hand,
small intervals can he used as an indicator of no problems, as
could be expected, the 56-decimal digit precision interval qave
better results in terms of smaller intervals due to the
increased amount of precision. The obvious oroblem with this
version is that the amount of overhead required for its execution
is high.

* This work has been supported in part by the U. S. Army Corps

of Engineers, contract numbers DACA3Q-76-M-n249 and
*ACA39-77-M-01 6.
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1.f Introduction

The floating point number system used on contemporary

computers is an approximation to the real number system. In

interval arithmetic, a non-representable real number is

approximated by an interval consisting of machine representable

endpoints which bound the number. Intervals wilt be regarded as

bounds on an exact but unknown real number. This means that if

the interval [ab] is a computer approximation to the exact

result x then a~x~b. To obtain the "best" machine representation

of the intervaL, a must be the greatest lower bound for x and b

must be the least upper bound for x. In this way the interval

tab] will be the smallest computer representable interval that

contains x.

In order to obtain the smallest computer representable

interval for the result of arithmetic operations on intervals,

directed roundings on the computer arithmetic operations must be

defined. If x is a real number and M1 and M2 are two consecutive

machine representable numbers such that Ml<x<M? and if r is a

rounding function, then r is downward directed if r(x) a MI and r

is upward directed if r(x) = M2. M! and M2 will be the machine

representable numbers that are respectively the greatest lower

bound and the least upper bound for the real number x. If x is a

machine representable number, then r(x) = x.

* In general, the result of a finite precision arithmetic

operation does not always oroduce a machine representable number.

In other words, a op b, where a and b are machine representable
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numbers and op is, in general# one of the machine arithmetic

operations# may not be a machine representable number and must he

rounded.

Since the exponent range of floating point numbers is

bounded, exponent overflow and underflow may occur durinq an

arithmetic operation. If underftow occurs, then the true result

is between zero and the smallest positive or neqative

representable number. In the case of underflow, a directed

rounding may aive a valid bound. In the case of overflow, if

rounding away from zero is wanted, then there is no machine

representable number which can be used as a correct bound. This

is known as an infinity fault.

1.1 Interval Valued Functions

A real-valued function, f, which is defined and continuous

on an interval ta,b] can be extended to an interval-valued

function, F, of an interval variable, rabl, by defining

F(Eabl) = Ecodl such that f(x) is contained

in (c~d) for every x in Eabl

where c and d are machine representable numbers.

When f is evaluated at a point x using a machine

representable approximation to x, a computer approximation to f

results. This computer approximation, F(rab!), is defined as an

interval that contains f(x). If f is monotonic increasing on

Cabl, then F([ab)) = Erd(f(a)),ru(f(b))) where rd is such that

rd(f(a)) S f(a) and ru is such that ru(f(b)) Z f(h). Ideally, we



would Like rd(f(a)) to be the largest machine representable

number such that rd(f(a)) . f(a) (i.e., a greatest lower bound)

and ru(f(b)) to be the smallest machine representable number such

that ru(f(b)) a f(b) (i.e. a least upper bound). Simitarly, if f

is monotonic decreasing on tarb), then F(Carb3)

trd(f(b)),ru(f(a))3.

If f is not monotonic on tab), then the interval tab] can

be divided into disjoint subintervals; [a b 3, i
i i

where each a and b are machine representable numbers and f is

i i
monotonic on each subinterval. Further, U [a b I contains all

i i
machine representable numbers in the interval Capb] and f is

monotonic on each subinterval. It can be shown in this case that

F([a .bl) = U F(Ca ,b 1).
i i

Algorithms for performing the machine arithmetic operations

with directed roundings can be found in Yohe [93. These

operations are used to compute the endpoints of the resultant

interval for a particular arithmetic operation performed on two

intervals. A downward directed rounding is performed on the left

endpoint and an upward directed rounding is performed on the

riqht endpoint. For examole, interval addition is defined as

follows:

* (a,b] + Ecd] z Erd(aec),ru(b*d)1

where * is the machine addition operation and rd is a downward

directed rounding and ru is an upwaro directed roundinq.



It may not be possible to obtain the best bounds for the

result of the computer approximation to the function f. An

example would be a machine calculation of the sine which is known

to be accurate to onLy 7 digits out of 9.

* ?.0 The Implementation of the MRC Interval Arithmetic Package

for the Muttics System

The interval arithmetic package and the input/output

routines for interval numbers which have been implemented on the

Multics system follow the design of an interval arithmetic

package implemented on the UNIVAC 1108 computer located at the

Mathematics Research Center, ?ARC, of the University of Wisconsin

C2,6,103. A description of the implementation of the MRC

interval arithmetic package on the Multics system is given in

Appendix A. This appendix is quite tengthy but contains

information related to the implementation of mathematical

software rarely found in the literature.

3.0 Penchmarks

Several production programs were obtained from the Army

Corps of Engineers, Waterways Experiment Station, Vicksburgh,

Mississippi, to be run as benchmarks. These proorams consisted

of four linear equation solvers, a matrix inversion routine, a

fast fourier transform routine, a slope stability program and a

stress program.

The accumulation of computationat and algorithmic error can

be seen as a growth in the width of intervals. wide intervals



are not necessarily a sign of data sensitivity or algorithmic

error. When a program is run using interval data types, a

natural tendency is for intervals to grow wider. However* small

intervals are an indication of no problems and wide intervals

serve as indicators of possible trouble spots.

* During the testing of the initial interval implementation.

there were many instances where the intervals became quite large.

It was difficult to determine during analysis whether this

widening was a problem with the algorithm, an unavoidable result

from interval arithmetic, or due to the lack of precision of the

representation of the endpoints. 56 decimal digit interval was

implemented to help resolve this problem.

3.1 Linear Equation Solvers

Four tinear equation solvers were included in the benchmarks

supplied by the Army Corps of Engineers. Included was a Gaussian

elimination program. It was first tested on a simole 4 by 4

linear system. Using the standard interval package, the

magnitude of the resulting intervals were from ll**-4 to 10**-2.

All routines were also run in reqular sinqle and double

precision. The results obtained by using standard interval

insured the correctness of the results only to the third or

fourth decimal place. In all instances the intervals bounded the

results produced in sinqle and double precision. The same test

case was executed using the 56 decimal digit interval package.

In this case the width of the intervals varied from 10**-51 to

i1.*-50. This extra precision obtained from usino extended
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precision interval was obtained at the cost of an increase in cpu

time used. The standard interval run required only .44 seconds

of processor time while the extended interval required 12.64

seconds. More will be said about the cost of interval and

, extended interval later.

A second test case# this time a 7 by 7 linear system, was

also tried. The standard interval version did not produce any

results as the intervals grew too large. However, the extended

interval version was able to compute results. The width of the

intervals produced varied from 10**-45 to 1O**-4. I
There were three other equation solvers. The second

equation solver, BANSOL, solved banded systems of equations using

Gaussian elimination with no pivoting. The matrix of coefficients

is assumed to be symmetrical and only the upper triangular banded

matrix of coefficients is stored. The SESOL program solved a

banded system of linear equations using the LU decomposition

technique. Operations with zero elements are not performed. The

ratrix of coefficients is symmetrical and only the upper

triangular handed matrix of coefficients is stored. The fourth

equation solver was a spline program. It solved a system of

linear equations usinq an iterative technique to calculate the9

moments of a set of data points in order to fit a cubic spline to

those data points. In all three cases the results were similar

* to those above and are discussed in detail in r?1.

3.2 Matrix Inversion

The matrix inversion program finds the inverse of a square
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matrix. The first test case was a Hilbert matrix of order 4.

The interval results from the standard interval run were quite

wide* from 10**-3 to 0.6. The extended intervals were from

1O**-50 to 10**-47. When an attempt was made to invert a Hilbert

* matrix of order 10, standard interval could not find a solution

and the single precision results were erroneous. The extended

precision intervals widths ranqed from 10**-_6 to 10**-28 and

* again indicated that the double precision results were good to

only 8 or 9 digits of precision.

.3 Fast Fourier Transform

The fast fourier transform (FFT) program supolied by the

Army Corps of Fnqineers proved to be a Quite stable algorithm. A

difficulty in its implementation in double precision and interval

should be mentioned. A FFT program produces complex arithmetic

results. Fortran does not normally support double precision

complex arithmetic and, therefore, it had to be simulated. The

same type of simulation had to be done for interval. This stowed

the execution of the algorithm considerably. In all test cases,

all arithmetics produced good results. The single precision

intervals had a width of on the order of 10**-6 and the extendedJ

* intervals, 1 f.**-53,

3.4 Slope Stability Program

* An application program, SLOPE, was also sent us by the Army

Corps of Engineers. Testing using this program consisted of

varying a set of three inputs (cohesion, unit weight, and phi)



for the program plus or minus ten percent. This resulted in 81

runs for each type of arithmetic.

Two problems arose when implementing the slope program in

interval arithmetic. The first resulted from the way in which

* the interval package evaluates the test value in an arithmetic IF

statement. When an arithmetic IF statement is encountered with

an interval test value, the interval is converted to real. i.e..

* the midpoint is taken. in one of the subroutines a particular

branch was to be taken only if the test value is positive.

Certain intervals were passing along this branch whose midpoint

was indeed positive but whose left endooint was negative. The

interval was subseauentty used as a divisor and, since the

interval contained zero. a zero divide error occured. The

solution to this problem was to recode using a logical IF which

is evaluated in a different manner and avoids this problem.

The second problem was more difficult to pin down. During

testing using standard interval, some of the runs contained

intervals which were "blowing up"o* that is. the width of the

intervals were becoming unacceptably large. After a considerable

analysis effort, a corretation was uncovered between the laroe

intervals and the -Iln value for unit weight. By starting with

the initial value for unit weight and decreasing its value in

increments of .25%, the initial value at which the intervals blew

up could be pinpointed. This occured at about -2.25Y of the

initial value. As long as unit weight did not go below this

value, acceptable results were obtained. After further effort.



the problem was traced to a single statement, "T3 a FSI - FSL".

As unit weight decreased below -2.25T of its original value,

values of FSI and FSL became closer and closer together. This

subtraction resulted in stripping off the significant digits. T3

was subsequently used as a divisor compounding the effect.

During the procedure of tracking down the error source, a

side benefit was reaped which is indicative of the type of

recoding of algorithms sometimes necessary to qet satisfactory

results from limited precision interval arithmetic. Several

computations could be combined and an interval consistently of

less than optimal width could be factored out producing a more

accurate algorithm. The set of runs was repeated using the

extended interval oackaqe. Most of the data sensitivity noted

above disappeared. No interval widths exceeded 1O**-4.

3.5 Testing Summary

The 56-decimal digit interval package did prove useful in

many cases. Often the standard interval either oroduced no

solution or solutions with extremely wide intervals. Some

massaging of the code supplied by the Army Corp of Engineers was

required to execute it satisfactorily using interval arithmetic.

The primary cost of the use of extended precision interval

arithmetic was in terms of central processing time consumed and

increased paging activity. On a system Like Multics, both of

these figures can be perturbed by the load on the system. The

figures in Table 3.1 for the FFT routine indicates a qeneral

trend. This data was gathered from runs made during a contiguous



time interval during a period of low system utilization.

MELAULIS fU-.I1E (seconds)

single precision 23 0.3623

, double precision 36 0.6679

standard interval 30 14.4994

56 decimal interval 3195 466.87R1

Table 3.1
FFT Subroutine Overhead

4.0 Conclusions and Future Work

Interval arithmetic can# at times# be extremely useful. For

instancep it can be used to indicate the limits of precision of

an algorithm for a given set of data. From the testinq it was

shown that much better bounds on the precision were obtained

using the extended interval package. This was, of course* not

unexpected. 56 decimal digits carry more precision than 27

binary digits (equivalent to approximately 8 decimal digits) and

there is no conversion error on input and output for the 56

decimal interval package. The price paid was in terms of runtime

efficiency. Standard precision interval resulted in

* approximately, at most. an order of magnitude increase in

execution time over that of single or double precision

arithmetic. 56 decimal interval arithmetic resulted in a further

increase of more than one to more than two orders of magnitude.

It should he noted here that the 56 digit version was based upon

the 59 decimal diqit hardware arithmetic unit of the Honeywell
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H68/80 processor. Extended precision arithmetic using software

simulated basic operations could be expected to take much longer.

One obvious application of extended interval arithmetic

would be to validate existing programs. Any data sensitivity

* discovered could be included in a description of the algorithm

and directions on its use. Although extended precision interval

arithmetic is expensivep its cost must be balanced against

*possible consequences of using invalid results. An organization

like Corps of Enaineers might weigh a defective dam or the cost

of moving 100P000 tons of dirt against the cost of a few hours of

computer time.

A more effective technique would he to first test the

algorithm using standard precision interval arithmetic. Its

relatively small decrease in run time efficiency indicates that

its use is more than justified as an economical means of

identifying possible trouble areas in an algorithm for the data

under consideration. The more expensive extended interval

package could be applied to just those cases where possible

trouble areas have been identified.

Interval arithmetic can be used to determine the precision 7
* of the arithmetic required to quarantee a given precision in the

results of an algorithm. In some of the benchmarks executed in

56 decimal digit interval arithmetic, the results were good only

*to 40 or so digits. This represents a considerable loss of

precision. It also points out why arbitrarily picking a given

precision for arithmetic does not guarantee results in which



absolute confidence can be placed. How great an increase in

precision is obtained# if any* by going from a machine with

32-bit words to one with 60 bit words'

In generale whether using interval or regular arithmetic,

the greater the precision the longer the run time required for a

given algorithm. Having variable precision interval arithmetic

would allow the validation of algorithms for which standard

precision interval arithmetic is insufficient without having to

go all the way to 56 decimal digit precision. There will also be

instances where it might be desirable or necessary to go beyond

56 decimal digits of precision. In any case* the overhead

associated with execution in interval arithmetic will only be as

great as required for the necessary precision. A variable

precision interval arithmetic package is currently under

development at USL.

The execution speed of interval arithmetic can be increased

in several ways. One would be to decrease the number of levels

of interpretation required in the current implementation. The

optimum solution would be to have a hardware or firmware module

which could execute variable precision interval arithmetic.I

* Many existing minicomputer systems have undefined opcodes for

just such requirements. As a side effect, an arithmetic unit

that can execute variable precision interval arithmetic can also

* execute traditional variable precision fltoating point arithmetic.

This means that interval arithmetic, of the necessary precision,

could be used to determine the required arithmetic precision



required for the results of the algorithm. The algorithm# thenv

could be executed using only the required precision.



Appendix A

A.O The Implementation of the MRC Interval Arithmetic Package

for the Multics System

In the Muttics impLementation, the endpoints of the

intervals are represented as a pair of floating point numbers

stored in consecutive storage Locations. The MuLtics single

• precision floating point format uses a 36 bit word which consists

of an 8-bit 2's complement exponento with the hiqh order bit the

sign bit, followed by a 28-bit normalized P's complement

fraction, with the high order bit the sign bit.

The subroutines of the MRC intervat package can he divided

into eight categories. These cateqories are arithmetic

operations, exponentiation operations, conversion functions,

comparison, basic external functions, supporting functions*

input/output routines and miscellaneous. All of the routines in

each category except the input/output category were written in

Fortran. Several of the fortran subroutines call routines that

are written in PLI/. The PL/l routines correspond for the most

part to the assembler routines that were written for the UNIVAC

1108 version of the interval package and are written specifically

for the multics implementation. Most of the input/output

routines were written in PL/I.

The routines which perform the four basic arithmetic

operations of addition, subtraction, multiplication, and division

on interval numbers are machine dependent. Since we want the
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best computer approximation to the results of computer arithmetic

operations on intervals, directed roundings on the computer

arithmetic operations must be performed. The floating point

hardware on the system does not perform directed roundinqs.

Therefore the four basic single precision floating point computer

arithmetic operations of addition, subtraction, multiplication.

and division had to be simulated in order to provide the correct

roundings. A description of the routines that simulated the

floating point computer arithmetic operations and provided the

proper directed roundings and a description of the routines that

perform the basic computer arithmetic operations on intervals

follows. These routines perform the "best possible arithmetic"

computer operations with directed roundinqs as described by Yohe

rt9. All the routines are written in PL/! for the "uttics

system.

A.1 Basic External Functions

Included in the interval package are the interval

counterparts of the Muttics basic external functions atan?, expo

alog, atoolt, sin, cos, tan, asin, acos, atan, sinh, cosh and

sqrt. The qeneral method of calculation of the interval

functions involves boundina the results of the corresponding

double precision basic external function. For functions that are

* monotonic over an interval, the endpoints of the resultant

interval are the result of the double precision function

evaluated at the endpoints of the input interval and then
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properly bounded. If the function is not monotonic over the

interval# then a case analysis is done by dividing the input

interval into subintervals over which the function is monotonic.

The result obtained from the double precision functions must

be bounded before it can be used as the endpoint of an interval.

Therefore, the accuracy of the results of the double precision

basic external functions are required by determininq a tower

bound on the number of bits of the fraction that the result is

guaranteed to have. This can be illustrated by the following

example. Suppose a result is accurate to 35 bits of fraction and

a 27 bit lower bound for the result is required. Assume that the

27th through 37th bits of the fraction were 10000000000. If the

result were just truncated to 27 bits the 27th bit would be a 1.

If however the 37th bit was one unit too larne, then bits 27

through 37 would be n1111111111 and the 27th bit of the correct

lower bound would be n. It cannot be determined which case is

correct.

The following general bounding technique is performed which

will produce correct bounds in all cases* but it does not

necessarily produce optimal bounds. If a lower bound is sought

for the double precision result, then the fraction is decremented

by one at or before the last bit known to be accurate. If an

upper bound is sought, then the fraction is incremented by one at

or before the Last bit known to be accurate. The same bounding

technique used in bounding the results of the arithmetic
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operations is then used to obtain the 27 bit fraction of the

result.

A.1.1 Accuracy Testing

To our knowledge, there is no documentation concerning the

implementation of the basic external functions on Muttics used by

PL/I and Fortran. Therefore, the accuracy of these functions had

to be determined. Three approaches were considered for use in

determining the accuracy of the required external function:

1) rigorous error analysis of actual implementations

2) rewriting of the algorithms

3) comparison of accuracy with known test data

First, the error analysis of the mathematical library routines

seemed to be impossible due to the: (a) Lack of description of

the algorithms employed, (b) low readability of the source

programs (much of which was written in ALM, the assembly language

of Multics). The second possibility had to be eliminated due to

the time constraints of the project and therefore the third

approach had to be taken.

* The testing itself was done in two stages:

stagel - generation of input test data and
evaluation of the given function

stage? - comparison of significant digits of
the result and corresponding values in
published tables t13
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"Driver" programs were written which generated test data and

caILed the routines which were to be tested. The output was

generated in decimal form and then a check was made as to the

first digit that was different from the result given in the

, table. All digits of function values which were tested proved to

be identical with corresponding tabular digits (the only

exception being the last digit in the Abramovitzgs tables).

* However, the analysis of the very next digit in our results

showed that in each case the error was caused by an upward

rounding.

The test data had been restricted to the decimal values that

can be represented exactly in the floating binary notation.

Thus* we avoided the input conversion error and the function

value could be obtained for the true argument. Also* we have to

warn that the accuracy estimated in this way must be somewhat

pessimistic. We were able to check only as many digits as were

qiven in the standard tables. Thuse the tan function is assumed

to have only 8 accurate decimal digits even though there are

reasons to believe that accuracy is much greater than that.

2.1.2 Error Conditions

The Univac 1108 double precision floating point number has

an 11-bit exponent field vs. an s-bit exponent in the sinqle

precision word. This allowed the checking for overflow and

underflow faults to be done during the conversion from double to
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single precision format. In Muttics, both single precision and

double precision floating point numbers have an 8-bit exponent

field. Therefore, the check for eventual fault conditions had to

be made prior to the calls to the double precision functions.

6I

* Overflow could he produced by the following functions: exp,

sinh, cosh and tanh. In the Multics implementation of interval

arithmetic, overflow in these functions was prohibited by

restricting the domain of the arguments to the interval

r-88.028#88.028]. Should an argument fall outside this domain,

special actions (described Later) had to be taken. Restricting

arguments to this domain prevented overflow from occurinq durinq

the evaluation of the functions. However, the magnitude of the

endpoints of the results were always much smaller than the

larqest representable number. This implies that the domain of

the arguments should be extended.

A.2 Input/Output Routines

The 1/0 routines implemented on muttics were desiqned to

some extent after the I/O routines implemented for the UNIVAC

11i8 version of the interval packaqe [4]. Additional routines

were included in the Multics version to handle scalar interval

variables and a matrix of interval variables.

A.3 56 Decimal Diqit Interval Implementation

A 56 decimal digit version of the oriqinat Multics interval

package has also been implemented on the Multics system. This

version uses the decimal arithmetic hardware available on the
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Honeywell M68/80 processor. The decimal arithmetic unit performs

both fixed and floatinq point 59-decimat digit arithmetic.

Fixed decimal arithmetic was used to implement the decimal

interval package. Floating point decimal arithmetic was not used

due to the lack of control the user has over both the rounding

ir strategy used and the detection of faults (overflow, underflow,

and divide by zero). The endpoints of the intervals are

represented by a 56 decimal diqit fraction and a 17 binary diqit

exponent. A 59-decimal digit fraction was not used because in

the implementation of the SPA routines, two digits were needed

for guard digits and one digit was reserved for overflow.

The implementation of the 56 decimal digit interval Package

followed the implementation of the original Multics interval

package as closely as possible. In this way the logic of the

original interval package was used and the number of errors

encountered in the implementation could be reduced. The entire

56 decimal digit interval package was written in PL/I as Fortran

does not support decimal arithmetic, Only the number of words

required to carry the Pll representation of the interval was

declared in Fortran. The Fortran routines would carry the

interval to be passed to the PL/I routines.

The first step in the implementation of the 56 decimal digit

interval package was the implementation of the best possible

arithmetic * BPA# routines (see section 1.0 of the attached

paper). The existing proceedures for doing BPA for the original

-vii-
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interval package were modified to perform 56 decimal version. In

the single precision interval package the implementation of the

1/0 routines proved to be one of the most difficult tasks. This

was due to the required conversions between fltoating decimal and

floating binary. The correct roundings had to be dome for the

conversions in either direction and the algorithms for the

conversions became rather involved. The implementation of the 56

decimal digit interval 1/0 presented no such problems as the

internal representation of the interval was already in decimal.

The only rounding done is on output when the user requests less

than 56 decimal digits of precision.

In the initial interval effort, the interval counterparts of

the basic external functions were implemented through the double

precision floating binary routines in the Muttics library. This

obviously would not be sufficient for the 56 decimal

implementation. The basic external functions had to be

calculated to a precision of greater than 56 decimal digits. To

achieve t h is the Fortran Multiple Precision Package# MPP,9

developed by Brent 13J was used. The values produced hy the

basic external functions could be calculated to an arbitrary

precision using ?4PP. It was necessary to construct an interface

between Brent's routines written in Fortran and the interval

package written in Pi/I. The implementation of the SIN and COS

routines presented an especially difficult implementation

problem. The arguments had to be reduced to a value between nl

and 2pi. A case analysis then had to he made for each endpoint
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to determine the correct intervaL evatuation of the SIN or COS

-function. The case analysis depended on the correct 56 decimat

digit bounds on the numbers pi/2, Pi, 3piI?, 2pi,- 5pi/2, 3pi and

7pi/2. These constants had to computed using the I4PP.
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A 56 decimal digit version of the original Muttics intervo:
package has been implemented on the Pultics system. This vetrs
uses the decimal arithmetic hardware available on the Wuttic
-system. The iMuttics decimal arithmetic unit performs both fin
and floating point 59 deceima digit arithmetic. Fixed de¢ima
arithmetic was used to implement the decimat interval package
The floating point decimal arithmetic was not used because of t
lack of control-the user has over both the rounding strategy use
and the detection of faults (overflow. underflow and divide b
tore). The end points of the intervals are -represented by
decimal digit fraction and a 17 binary digit exponent. A
decimal digit fraction was not used was because in t
implementation of the "best possible arithmetic" routines* t
digits were needed for guard digits and one digit was reserve
for overflow.

The implementation of the 56 decimal- digit interval p-ack
followed the implementation of the original Muttics interva
packageas closely as possible t3J. In this way the logic of t
original interval package was used and the number of error
encountered in the implementation of the 56 decimal digi
interval package was reduced. The entire 56 decimal digi
interval package-was written-in PLII as Fortran does not supp
decimal arithmetic. Just the number of words required to car
the PLII representation of the interval was declared in Fortra
The Fortran routines would carry the interval to be passed to t
PL/I routines.

The first step in the implementation of the 56 decimal dig
interval package was the implementation of the "Best Possibt
Arithmetic" or "SPA" routines as proposed by Yohe (43. T
already existing procedures for doing SPA for the origin
interval package were modified to perform 56 decimal "'SPA". Th
implementation was fairly straightforward.

In the singte precision interval package supplied by MRC (23 t,
implementation of the 1/0 package proved to be one of the m
difficult operations. The reason was because of the conversi
from floating decimal to floating binary and vice versa. T

* correct roundings had to be done for the conversions in eithe

direction and the algorithms for the conversions became rat
involved. The implementation of the 56 decimal digit i.nter
1/0 presented no problem with conversion since the intern -

* representation of the interval was already in decimal. the on-
rounding is on output if the user requests tess than 56 decime
digits on output.

In the initial interval effort (33 the interval counterparts
the basic external functions were implemented through the doub
precision floating binary routines in the Multics library. T-



obviously would not be sufficient for the 56 decimat
impleuentation. The basic external functions had to b
calculated to a precision of greater than 56 decimal digits. T
achieve this, we are using the Fortran MuLtipLe Prec.isi
Package, MPP, develooed by Richard Brent 1C1uo The bsic externa
functions could be calculated using the PPP to an arbitrary
number of-deimat digits. One problem that was to be solved was
the interf-ace between 8rent's reutines written in Fortran aend th
56 decimal digit interval package written in PL/I. The interfac.
was just a conversion from the data representation in the MPP t
the data representation used in the intervol package after
correct rounding was made. Another problem was in; the
implementation of the SIN and COS routines. These routines

required the greatest amount of work to implement. The argue,,
had to be reduced to between 0 and 2pi. A case analysis then hod
-to be made for each endpoint to deteroine the correct intervat
evaluation of the SIN or COS function. The case anslyst
depended on the correct 56 decimal digit bounds an the numbers
pi/2, pi, 3 pi/2, 2pi, 5pi/2, 3pi and ?piI 2 . These constants had
to be computed using the MPP.

I!
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An example is shown below of a simple 4 by 4 linear system. The
results for single precision, double precision, single preciuion
interval, and extended interval are shown. For the interval
results, the width of the intervals appear below each interval.
The widths for the single precision intervals are expressed as a
single precision value and the widths for the extended intervals
are expressed as an extended intervaL. The widths of the single
precision intervals are of the magnitude 1O**-4 to 10**-2 white
the widths of the extended intervals are of the magnitude 10**-Si
to 10**-50. The reduced interval widths for the extended
intervals is due to the extra precision of the extended
intervals. The price that had to be paid for the increase in
precision was an increase in cpu time from .44 cpu seconds to
12.64 cpu seconds for the extended interval results, but a good
deal of precision was gained.

Matrix of Order 4:

5 7 6 5
7 10 8 7

6 8 10 9
5 7 9 10

Vector of Constants:

23 32 33 31

st nut.! srut OD

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWS:

CPU time - 0.011512 seconds; Page faults -

THE SOLUTION IS AS FOLLOWS:

0,999999449 1.000000328
1.000000179 0.999999903

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWS:

CPU time a 0.032315 secends; Page faults ? 7

THE SOLUTION IS AS FOLLOWS:
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1. 00000000000000003 0.9999999999999998
Oo 99-99;999 , 1.9999999999999

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION AR AS FOLLO

CPU time• 0.44765 seconds; Page faults - 3

THE SOLUTION IS AS FOLLOWS: --

C .99886015+00, .100114449+013 t .99929769400, .1000066993
0. 1142337918e-02 0.70080116109e-03

C .99991752400, .10000813+0013 C .99995276+00, .10000480 4
0. 81 8409025?e-04 00.4761666059e-04

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLO

CPU time z 12,645348 seconds; Page faults 5

THE SOLUTION IS AS FOLLOVS:

C .9999999999+00000. .1000000001+000013
E .?64650000.+00050,,.26465000000-000503

[ .9999999999+00000. .1000000001+000013
t .1623500000-00030, .1623500000-000503

E .9999999999400000. .1000000001.000013
C .1895800000-00051# .1895800000-000513

C .9999999999+00000. .1000000001+000013
[-.1101000000+00oo, .1101000000-000513

Another example. shown below, of a 7 by 7 linear system show

that the single precision interval version has broken down. b
the extended interval version was able to compute the results.
The interval widths were of the magnitude 10*-45 to 100**-43. -

Matrix f Order 7:

180180 120120 90090 72072 60060 51480 45045
120120 90090 72072 60060 51480 45045 40040
90090 72072 60060 51480 45045 40040 36036
72072 60060 51480 45045 40040 36036 32760
60060 51480 45045 40040 36036 32760 30300
51480 45045 40040 36036 32760 30030 27720



45045 40040 36036 32760 30030 27720 25740

Vector of Constants:

I 1I 1 1- 1 " ' .. ......

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWS:

CPU time * 0.19547-seconds$ Page fautts * 0

* THE SOLUTION IS AS FOLLOWS:

0000106439 -0.003075291 0.26859137
-0.101941098 0.188414240 -0.166749334
0.056536387 .

-t @ubL.ftui ainv

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWS:

CPU time a 0.023362 seconds; Page faults 1

THE SOLUTION IS AS FOLLOWS:

0.00015540015540038 -0.00,419580419580964
0.03496S03496507612 -0.12820512820526593
0.23076923076945858 -0.20000000000018252
0.06666666666672321

THE GAUSS ELIMINATION PROCESS HAS BROKEN DOWN BECAUSE NO PIVOT.
GREATER THAN THE INPUT TOLERANCE COULD BE FOUND FOR THE 6TH STEP..

[Latgdta. oLzxai

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWS:

CPU time 25.043362 seconds; Page faults * 11

THE SOLUTION IS AS FOLLOWS:

1 .1554001554-00003, .1554001555-000031
E .3468206177-00043, .3468206178-000431

E-.4195804196-00002,-.4195S04195-00002
C .3357609101-00043, .3357609102-000433



E .3496503496-00001* .3496503497-000013
................... t. 18602.6622 -00063, ,1tO2t t30-0O&3IJ

C-. I 2826S1 283*00e00,-. 1 28,:0512U.O00000)
... ........... ..... .. .... -g 6297511 335- 00 , -. 29,7511 3 $6.- O0 4*j. .. .............

... 2307692307?00000, .230?692308400000
C .183578441-00044*.1835?3#42-O00441

[-.2000000001 00000-. 19999999994000003..... 1[~~ . 4 241493O9"00065, -- 42U149309,-000431 ...........

1 .6666666666-00001.* .66666667-000011
E .1298809545-00045, . 1298809546-000453

DhBlQL.IEBOtWUU

The following example shows the results for the BANSOL routine
which solves a bonded system of equations using Gaussian
etimination with no pivoting. The matrix of coefficients i
assumed to be symmetrical and only the upper triangular banded
mottix of order 4 as the matrix of coefficients. The single
precision Interval resuts have .. .. teBB wid 1 f the
magnitude 10**-1 while the extended interval results have an
interval width of the magnitude 10**-48.

Hilbert Matrix of Order 4

Vector of --Constantg:

1 0 0 a

:lnuLa.P .81DDJl~

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time -0.029758 seconds; Page fault$ I

THE SOLUTION IS AS FOLLOWS:

O.16000.10896e+02 -0.1200011921e+03
0.2400028324e+03 -0.14000182?2e*03

laubLe2cullGio

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time * 0.026642 seconds; Page faults *

THE SOLUTION IS-AS FOLLOWS:



O.16000000000000000562d+02 -0.1200000000000000S8ld+03

O.24000000000000001347d-03 -0.14o0oooooooaooossd403

TIME AND PAGE FAULTS FOR OANSOL METHOD ARE AS FOLLOWS:
CPU time i 0.484731 seconds; Page faults " 3

THE SOLUTION IS AS FOLLOWS:

[ .15969114+02, .16030875+023 r-,12003797+03#-.11996193.033
0.3088021278e-01 0.3800058365e-01

E .23997602+03* .24002383+033 r-414001561+03*-.13998431+033
0.2390098572e-01 0.1564788818e-01

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOW:

CPU time * 1.959542 seconds; Page faults 4

THE SOLUTION IS AS FOLLOWS:

[ .1599999999+00002P .1600000001 000023

C .2227200000-00048, .2227200000-000483

[-. 1200000001.00003,-. 1199999999.00003)
E .2740700000-00048o, .2740700000-000483

C .2399999999+00003. .2400000001 000033
C .1725100000-00048, .1725100000-000483

C-. 1400000001+00003.-. 1399999999.000033
C .1127100000 00048, .1127100000-000483

The next example uses an HiLbert matrix of order 10 for the
matrix of coefficients. The solution for the single preciui
interval case cannot be found. The solution for the extende
interval case could be found with the interval widths rangin
from 10.*-29 to 10.*-25. Also note that the singte precision
results are meaningless.

* Hilbert Matrix of Order 10

Vector of Constants:

I 0 0 0 0 0 0 o 0 o

S;loaLa.E£cuJ,.iso



TIME AND PAGE FAULTS FOR RANSOL METHOD ARE AS FOLLOWS:

CPU time• 0.065116 seconds; Page faults * 1

-" 2**2 -- 4 0.41989sIw4 ~ uiucur90
-o0660.9998340e*05 O.1038329834e06 -go3899774605*+05
-O.S230199170o+05 0,9572640381e+04 0.6173250244e+05
-0.3380692432e+05

TIME AND PAGE FAULTS FOR 9ANSOL METHOD ARE AS FOLLOWS:

CPU time * 0.099313 seconds; Page fautts * 1

THE SOLUTION IS AS FOLLOWS:

0.10000000235788358793d*03 -0.49500002024461207952d4O
0a ?9200084221676551 94d05 -0.600600038896662274d
O252Z520184935S641243d07 -043063005O72087439126d
So 96096008305590789023d*07 -0.875160080i3115931062d4O0.43758004 t008099t415#d 407- - .9S554~6885-d

SOLUTION CANNOT BE FOUND

gx, uo 0d d. .oY~l c ,

TIME AND PAGE FAULT FOR SANSOL METHOD ARE FOLLOWS:

CPU time 130190737 second-s Page autti * 16

THE SOLUTION IS AS FOLLOWS:

r . 99999999+000020 .1-0000000014000033
£ .2607111740-00025, .2607111741-000253

(-,b4 9S000001400004,-. 4949 9 9 9 9 9 9 0 0 0 0 43
C .3216633306-00025, .3216633307-000253

C .791 9999999#00005, .7920000001+000053
C .20783219?600025v .2078321977-000253

C .6006000001-+9e006v-. 600S999999+ 00063
C .9134022350-00026, .9134022351-000263

C .252251 99400007, .2522520001+000073
C .3044631515-0026* .3044631516-000263

_ _ _ .



C- o 630630000140000?-. 3062 999-99.06 073
r .117718276200027 .8177182763-00027

E w9609599999+00007, 9409*00001+000073
........... . .. ... .. ... *1839I61895$-O0027,,*13.TS6'O 2

-.58751600001*00007.-.8751 599999+00007)
E .3552142351-00028, .3552142352-000281

C .4375?99999+00007 .437S800001+000073
E .S 1 U$ 4_6"09-000 29 -,SI 59031&7-_O=02

C-. 923-7 900001 +00004*-. 92377 99999+000061
C .1288532381-00029 .1288532382-000293

SUOL_ 2:aaicu

The SESOL program solves a banded system of tinear equations
using the LU decomposition technique, Operations -with to-

elemewts are not perforeed. The matrix of cefficients i'symmotritota randomly; only the upper triongutr branded eaotrix o,

coefficients. is stored. The first exauple uses an 4itbert matr xa.
of coefficients is stored. The first exampLe uses an Hilbert
matri..* of order 4 for the matrix of coefficients. The single
precision interval results had interval widths of the magnitud.
10**-1, while the extended intervat resuLts had interal widths of
the magnitude 10**-48.

Hitbert Matrix of Order 4

Vector ef Constants:

1000

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:

CPU tie 0.223950 seconds; Page fauLts 5

THE SOLUTION IS AS FOLLOWS:
* 0.1600008774e*02 -*9.1200009499e403

O.2400022411e*03 -0.1400014400e03

TIME AND Page Faults TIME AND PAGE FAULTS FOR SSOL METHOD ARE A-U-I
FOLLOWS:



CPU time 0.225749 seconds; Page faults * 6

THE SOLUTION IS AS FOLLOWS:

................. #il s99999999.99999954td49O29- uieI0.
O.23999999999999998501d.03 -0.13999999999999998998d+03

Siinusm. PtaduisaJonttcxail

TIME ANO PAl! VAULTS f0t S!SOL MTOD ARE AS FOL1LOVS..

CPU time * 0.657901 seconds; Page faults * 9

THE SOLUTION ISAS FOLLOWS:

f .15966054#02# .16033943+02] t -. 1204178103.-.Ir9923.03
0.3394412994e-01 O.4177045822e-01

[ .23997377.03. .24002631.033 C*.14001725+03o-.13998232+03
0.262670570e-01 0.1720905304e-01

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:

CPU-- tI we 2.108744 second$; Page faults * 49

THE SOLUTION IS AS FOLLOWS:

S* 159999999+00002, .1600000001+00002]
E .2479670000-00048, .2479670000-000481

[-.1200000001 00003-.11 99999999.000033
E .3051400000-00048. .3051400000-000483

C .2399999999+00003, .2400000001+000033
E .1920100000-00048, .1920100000-000483

[-.1400000001 00003,-. 1399999999+000033
E .1255600000-00048, .1255600000-000483ti

The next exampte uses an Hilbert matrix of order 10 for the.
matix of c**fficients, The single precision and single

* precision intervat cases could not find a sotution. The extended
interval results had intervat widths of the magnitude 10**-29 to
10*-25. --

Hutbert Matrix of Order 10



Vector of Constants:

1 0 0 0 0 a 0 0 0

STOP ** ZERO DIAGONAL ENCOUNTERED DURING EQUATION SOLUTION

EQUATION NUMBER * 9

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:

CPU time * 0.243050 seconds; Page faults * 6

THE SOLUTION IS AS FOLLOWS:

0.10000000071884660358d+03 -0,49500000625171 377493d+04
0.7920000133783211.5041d+0S -0.60060001220562858816d+
0.25225200583827033424 d+07 -0.63043001608613853932d+0?
0.96096002644256749918d+07 -0.87516002559459038221d+07,
0.43758001345532995439d*07 -0.92378002962530892762d-

STOP **' ZERO-DIAGO*AL ENCOUNTERED DURING EQUATION SOLUTION
EQUATION NUMBER a 6

Jtoa*t.-ao~arxaL

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:

CPl time * 12.364521 seconds; Page faults * 93

THE SOLUTION IS AS FOLLOWS:

.[ *9999999999#00002, .1000000001+000033

E .2961612465-00025, .2961612466-00025]

t-, 4950000001 400004,-. 4949999999400004]

C .3654013424-00025, .3654013425-00025]

* C .7919999999*00005v 07920000000+000053* [ E2360920776-00025# .2360920777-00025]

C-. 6006000001 00006,,-.60059999994000063
E .1037601650-00025, .1037601651-00025]



E .2522519999+00007, .2522520001+000073
... .. ... ... .... ... - -----, 34,5S 623 7?S-00026,--. 3tk~ftZ ?T7-0006 U

E 06306300001 +0000 ?,-.6306;.99999.0000 73
... .. .... ..... ..... [ -- ~ 8t0?tlt-O00r2 - ;29tS$ 711 32-60273 ............. .........

E .9609599999+00007,-.,8751599999+00007
E .2089581813-00027, .2089581814-00027]

(-.8751600001 +0000?-.87.51 599999+00007.
C .4035143144-000t8, t.O3514314S-O0281 1

4

E .4375799999+00007 .4375800001+000073
C .6600675959-00029. .6600675960-000293

-. 9237800001.00006,-.9237799999+00006]
C- 14-63739935-0009, .1-46373936 000293

The sptine -program solves a-system of Linear equations using
itvwrt$vt technique to catcutate-the moments at -set of d
points, in order to fit a cubic slWine to those. data points.
first examplte uses 4 (XPY) data points. The single precisi
interval widths were of the magnitude 10-*-S. The exten
interval widths were of the magnitude 10,*-53.

(XY) DATA POINTS:

x y

1.6 1
5.4 2
7 1
8.2 1

TIRE AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time 0.003969 seconds; Page faults I

INTERPOLATED VALUES

x T
0.100000000001e10. 6069527492e+00
0.3000000000e+01 0.184263442?e+01
0.5000000000e.01 0. 2160504758e*01
0. 70000000e+01 0.1000000000+01
0.9000000000e*01 0.1135431752e.01



flnubL a.ecadaina

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = 0.007115 seconds, Page faults .

INTERPOLATED VALUES

x Y
O.10000000000000000000d+O1 O.60695274774605015625d+O00.3000000000000000000d*O1 0. 1842634435511974666?d+O1

" 0.50000000000000000000d+01 0.21605047819613091100d+O1
0. 7000000000000000000d+01 0. 1000000000000000000d+01
0.90000000000000000000d+01 0. 113S431?7301907?6109d+O1

s iii s~.e u~iaantzr£xai

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time • 0.800636 seconds; Page faults 4

INTERPOLATED VALUES

X = E .IOO0000000000+01, .100000000000+01
0. OO00000000e+00

Y a E .6069516241S50+00,.6069538?423304+O03
0.1 125037670e-05

X - t .3000000000000+01, .3000000000000+013
0. O000000000e+ 00

Y a [ .1842632219195+01, .1842636644841+013
0.2212822437e-05

X a E .5000000000000+01, .5000000000000+01
0. 0000000000e+00

Y a E .2160503506660+01, .2160506069661+013
0.1281499863@-05

X a C .?OO0000000000+01# .700000000000+013
0. 0000000000e+O0

Y " C .IOOOOO0000000+01, .100000000000+013
* 0. O000000000e+00

x a C .9000000000000+01, .9000000000000+013
0000000000e+O0

* Y a [ .1135428726673+01, .1135434836150+013
S0.*3054738045e-05

£ UddJSza



TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time a 5.429209 seconds; Page faults * 0

I-TERPOLATED VALUES

X a 1 .1000000000+00001, .1000000000+000013
E .0000000000,00000, .0000000000+000003

Y a E .6069527477 00000, .6069521478+000003
C .1775000000-00053, .1750000000-000533

X = 1 .3000000000 00001, .3000000000+000013

1 .0000000000+00000, .0000000000+000003
Y = E .1842634435+00001, .1842634436+000013

1 .3700000000-00053# .3700000000-000533

x = c .5000000000+00001, .5000000000+000013
[ .0000000000+00000,. .0000000000+000003

Y a E .2160504781+00001# .21605047824000013

E .2200000000-00053. .2200000000-000533

X = C .7000000000+00001P .7000000000+00001J
1 .0000000000+00000, .0000000000000003

Y = 1 .1000000000+00001. .1000000000+000013
1 .0000000000+00000, .0000000000+000003

X a 1 .9000000000+00001, .9000000000+000013

I .0000000000+00000. .000000000G+000003
Y - r .1135431773+00001, .1135431774+000013

1 .3400000000-00053# .3400000000-000533

The next example uses 11 (X,T) data points. The single precision
interval version of the program could not find a solutione white
the extended interval version could find a solution with interval
widths of the magnitude 10**-51 to 10**-50. (XY) DATA POINTS:

X y
1.0 1.008
10 20.183
19 339,096

28 58.69
37 85.48
46 106.7
55 132.91
64 156.9
73 180.538
82 207.21
91 231

TSaL. REaSLo W
TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOidS:



CPU time m 0.009885 seconds; Page faults •

INTERPOLATED VALUES

x y
0.1 000000000e 01 0.100800000 le+01
0.5000000000e*01 0.9510347366e+01
0.1 0000000e+02 0.2018300009e+02
O.1500000000e+02 0.308565468$e+02
0.2000900000e+02 0.4108214760e+02
0.2500000000e+02 0.5135257101e+02

DoBubLLPELsloa

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = 0.033277 seconds; Page fauLts 2

INTERPOLATED VALUES

x y
0.100000000000000000000d 01 0.10079999999999999999d.01
0.500000000000000000000d+O1 0.95103474691975531663d.01
0.100000000000000000000d.01 0.20182999999999999999d+01
0.150000000000000000000d002 0.41082147846906934087d+02
O.200000000000000000000Od02 0.41082147846906934087d+02
0.250000000000000000000d+02 0.51352571259161417030d+02

Zio gLg._e r iainO.Jngril

SINGLE PRECISION INTERVAL HAS BROKEN DOWN DUE TO BOUNDS FAULTS
(see attachment)

[aodadIaj £xaI

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time * 31.215525 seconds; Page faults 5

INTERPOLATED VALUES

x a r .1000000000+00001, .100000000+000013]
1 . 000000000000000, .. 0000000000+0000)

y a 1 .1008000000+00001, .1008000000000013

* [* t .soOrO000000,oo, .0OO0000000o00o00] j

r .0000000000 00000, .0000000000000003
Y a C .9510347469+00001, .95103474704000013

[ .1518000000-00051, .1518000000-000513



X a E .1000000000+00002, .10000000004000023
EC .00000 00000+00011- .0O0000"00+000003

Y a C .2018300000+00002, .2018300000+000023
E .0000000000+00000, .0000000000+000003

X a E .1500000000+00002* .1500000000+000023
E .0000000000+00000, .00000000004000003

Y = ( .3085654676*00002* .3085654677+000023
E .6490000000-00051# .6490000000-000513

X - C .2000000000 00002, .2000000000+000023
1 .0000000000+00000, .0000000000000003

Y a E .4108214784+00002* .4108214785+000023
1 .3790000000-00051, .3790000000-000513

X a C .2500000000+00002, .2500000000+000023
C .0000000000 00000, .0000000000+000003

Y a C .5135257125+00002o .5135257126+000023
C .1165000000-00050* .1165000000-000553

The matrix inversion program finds the inverse of a square
matrix. The first example finds the inverse of an Hitbert matrix
of order 4. The single precision interval widths were of the
magnitude from 10**-3 to 1. The extended interval widths were of
the magnitude from 10**-50 to 10**-47.

TIME A TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time a 0.006392 seconds; Page faults * 0

INVERSE OF HILBERT MATRIX OF ORDER 4

ROW 1

0.16000119e+02 -. 12000130e 03 0.24000305e+03 -. 14000196e+03

ROW 2
-. 12000130e+03 0.12000141e+04 -. 27000332e+04 0.16800212e 04

ROW 3

0.24000308e03 -. 27000333e+04 0.64800785e+04 -442000503e+04

ROW 4
-. 14000198e+03 0.16800214e+04 -. 42000505e+04 0.28000323e+04

fQUb/b.ECUIAIOD



TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time u0,00209 seconds; Page faults *2

INVER*SE OF H4ILBERT MATRIX OF ORDER 4

Row 1

0.1 60000000000000020002? -.1 20000000000000021d+03
0.240000000000000049d+03 -.140000000000000031d403

ROW 2

* -,1 20000000000000021 d+03 0. 120000000000000023d+04
-.270000000000000053d+04 0. 1680DO000000000034d.04

ROW 3
0.2400000000000000510d03 -, 270000000000000054d+04
0.648000000000000127d+04 -.420000000000000081d+04

ROW 4
-.140000000000000033d*03 0.168000000000000035d*04
-,420000000000000082d+0l4 O.28000000000000005?d.04

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time a 0.363970 seconds; Page fautts u2

INVERSE OF HILBERT MATRIX OF ORDER 4

Row I

E .15999083+02P .16000938+023 t-,12001072*03p,11998957+033
O.9272098541e-03 0.1057004,929e-01

E .23997471403# .24002608+033 E-.14001772.03.v-,13998284+033
0.1014995575e-01 0.1743507395e-01

ROW 2I
[-.12001029+03,-*11998998+033 E .11998861+04* .12001176+043

0.1014995575e-01 0.1156997681e*OO

E-.27002862404#,26997238+043 E .1679812-5.04, .16601943+043
0.2811279297@+00 0.1980416748*400



ROW 3

1 023997635+03, .24002433+033 -.27002782+04,-. 26997313+043
0.2398204803e-01 0.2733917236*+0O

E .64793482+04, .64806767+043 C-.42004596404*-.4199SS?6+043
0.6642456055e+00 0.4509582520e+00

ROW 4

[-.14001562+03p-.13998484+033 E .16798277404, .16801786+043
0.1538562775e-01 0.1753845215e+00

[-.42004345+04,-.4199821+043 C .27997164+044. .28002950+043
0.4261474609e400 0.2892761230e+00

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time * 3.018572 seconds; Page fautts 3

INVERSE OF HILBERT MATRIX OF ORDER 4

ROW 1

C .1 59999999+00002# .1600000001 +000021
C .4854000000-00050o .4854000000-000501

[-.1 200000001+00003.-.1199999999+000033
C .5527000000-00048# .1341800000-000483

[-.1400000001400003.-.1399999999+000033
1 .8760000000-00049, .8760000000-000493

ROW 2

C-. 12 00000001+00003.-.1199999999+00003)
t .5258000000-00049, .5258000000-00049)

C .1199999999+00004o .1200000001+000043
r .599000000-00048. .5990000000-000483

(-.2700000001+00004.-. 2699999999+000043
C .1453800000-00047, .1453800000-000473

&

t .1679999999.00004, .1680000001+000043
C .9493000000-00048, .9430000000-000483

NOW 3
C .2399999999+00003. .2400000001+000031



[ . 1249900000-00048. .1249800000-000483

[-. 2700000001+00004,-.26999999+99000043
C .1423300000-00047o. .1423300000-000473

E .6479999999,+00004, .64800000014000043
I .3455500000-00047, .3455500000-000473

[-. 4200000001+00004.-.4199999999+00004)
E .2256400000-00047* .2256400000-000473

ROW 4
(-.1400000001+00003,-.1 399999999+000033
E .108900000-00049, .8089000000-000493

E .1679999999*00003,-.1 399999999+000033
[ .9213000000-00048, .9213000000-000483

E-.4200000001.00004-. 41 99999999+000043
1 .2236900000-00047, .2236900000-000473

C .2299999999+00004. .2800000001+000043
C .1460700000-00047. .1460700000-000471

The next exampte inverts an Hilbert matrix of order 0. The
single precision interval version could not find a solu-tion. To
conserve space the extended interval results are not shorn but
may be found in the attachment to this letter. The extended
interval widths ranged from 10**-36 to 10**-28. Also not that

the single precision results are meaningless.

£i~osla_..Ez lulo

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time * 0.065202 seconds; Page faults 1

INVERSE OF HILBERT MATRIX OF ORDER 10

ROW 1

0.66628764e+02 -. 19763846e+04 0,17260560e+05 -. 62370884e+05
0.95071291e+05 -. 29811917e*05 -. 5256841?e 05 0.12496660e+04
0.68708063e+05 -.35645043e05

ROW 2

-. 19894290e+04 0.75388504e+05 -. 72811225e+06 0.28178170e+07
-. 46580271e*07 0.20127897e+07 0.23197084e+07 -.10075493e*07
-. 21445800e+07 0.13152878e+07

ROW 3



0.176191200+05 -*73757954&.06 0.76123086..07? -,313787299408
4i6?924e0 -32-?12764e08 -24283263e*Og 0.27613182**08

0.54030478*+0? -.85081013*+07

-ROW 4

-.65350269*405 0s292481S4e+07 -.320906950+08 0.142I5210*409
f*.28389484e.09 0.21212882e.09 0,10t975680+09 -.24367823.409
8.10981.5720+09 -.72728300.+07

ROW 5

0,10526792e+06 -o50690238*+07 0,60455295e408 -&29635527e*09
0O681040059+09 -.63099936.409 -.21897011e+09 0.94184239e409
-.71255193e+09 0.180491,39e+09

ROW 6

-,4287019-5e405 0.25873252e+07 -,638849799.408 0.23780274e409
-.6741i450e*09 0.75598362..09 0.35379525#+09 -.17238461e*1O
0.15614960e+10 -.47486910e+09

tOw 7

-,58890916e+05 0.25351663e+07 -,25165329e+08 0,94883239e+08
-,16748904e+09 0.25520953e+09 -.65S76277e.09 0.11986492e*10
-. 10311218e+10 0*328410154e'09

*rwb 8

0.35385499e*05 -.24513788e+07 0.41530602e*08 -.28713407e*09
0.96178677.409 -.15891991.410 0.98973335ei.09 0.49803286e409
-,97000460e409 0.35773168.409

ROW! 9

0.36014969.405 -,71491391e+06 -.91393845.+07 0.16378166e409
-i67?S17486..#09 0014881434@010 -,79604687#+.09 0,49803286.409
0.16805552.410 -.61501253.+09

Row 10 -
-.25268021.405 0985312601.406 -.36485157*407 -.26486693.+08

0.20763149..09 -.46059757e+09 0,24735363*409 0.,43S8722e409

-46417242 2*409 0.23783952..09

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time 0.104900 seconds; Page fautts *3il



INVERSE OF HILBERT MATRIX OF ORDER 10

ROW I
0. 100000002253344395d 03 -. 49500001 9246086607de04
O.791000040643487569d+05 -. 6006000367013714230da*6
0.252252017413542?26d+07 -. 63063004?659250959d*07
O.96096007790543368?d+07 -. 875160075049289022d+07
0.437580039292925130d+07 -. 923780086205494929d+06

ROW 2

* -,495000019234067032d+04 0. 326700016423196876d+06
-,5880600.34674400374d+07 0.475675231307746156d+08
-,208107914851406841d+09 0. 535134"642199816d+09
-o832431666428663198d+09 O.770140863987992790d+09
-. 389883813499277461d+09 0.831402073490169145d,08

ROW 3

O.792000040597946710d 05 -,588060034657217201d+07
0,112907527315966792d409 -,951350466047641274d+09
0.428107711327598598d*10 -,112378274572331465d011
0.850655590644102323d+10 -. 182908455497076566d 10

ROW 4

-. 600600036647768510d+06 O.475675231279601474d.08
-.951350466020991662d+09 O,824503?395969065S9d 10
-.378756406265519956d+11 O.101001708533916509d+12
-. 161602733919262670d+12 0.152907967373549021d+12
-.788431707725519861d,11 O.170714557978861971d.11

ROW 5

0,252252017381149359d 07 -. 208107914833069535d+09
O.428107711304437945d 10 -. 378756406256024234d11
0.176752989800356975d12 -.477233072943623682d.12
0.771285775115345549d*12 -. 735869592105467831d+12
0,382086134606397841d 12 -. 832233468259027158d+11

ROW 6

-*630630047557023284d407 O.53513464058055002d+09
-0112378274563554215d+11 O.101001708529116143d+12
-,477233072933179610d+12 0. 1301544?446?933733d413
-. 212103588066949894d.1 3 O.203?792714620S2388d 13
-.106438280201023343d+13 0.233025370680439081d012

ROW 7

0.9609600?7?19259721d.0? -. 832431666311491297d*09
0o1?7?585421992469924d+l -. 161602733908321887d*12
0.771285775083595035d+12 -. 212'103588062932535d 13



Oe348067426451O23403d*13 -o3363975272221453226+13

Oi1?~8-7Ot5t~t339d'i3 0.38837561 720t674031ddl 2

NOW a

-,875-160074853957120d+07 0,770140863861501436d09
-.166355O426274663753d*11 O.15290796736041374012
M.7358695920625744 22d.1 2 0.2037792714-5481 3684d13
-63363975?72166389176.13 0.326786-16907994-671-6d+13
-,172328643753417112d+13 0.38044958369994.4922d+12

* ROW 9

0.4-37580039183301780d+07 -.369183813426?85199d*09
Oe8SSM9G526188449d+1O -.78843170764481638-3d*11

* 0,39209613,4579274924d+12 -.1 06438290195662737d*1 3
0,176O?017457.9,53Dd*13 -. 172329643750974710d+13
0,91232811319661604.2d+12 -.202113841114266266d+12

ROW 10

-,9237800859S0684804d+06 O.83140?07331893732d,08
-. 182908455468634313c+10 0. 170 7t4-5-7P58-J?97l5dai1-
-,832233468186303462d.11 O.23302S3706657S4467d*12
-e38$37561?1842S355d+12 O.380449583689833549d+12
-.202113841111777620d.1 2 O.44914186870635418$d. 1

SINGLE PRECISION INTERVAL HAS BROKEN DOWN DUE TO DIVISION BY ZERO
(see attachment)

The extended interval resutts &,re not shown here in order to
conserve space. See the attachment for the results.

The FFT program supptied by WES* once interfaced and running
Correetly an Nuttice, was modified to print out the central
processor time used and page faults generated during various
stages of the overall program. These stages were initialization*
the FFT subroutine, and output.

The FFT program was then converted to double precision. The only
difficulty encountered during this stage of the work was that
complex arithmetic is not supported in double precision in
Puttics fiertran and* thereforer had to be simulated. Similiorly.
during the conversion to Intervalp complex arithmetic again had



to be simulated. Further* in the driver routine, a call to ATAN2
with orguments 1.0 and 0.0 was replaced by the value such a colt
returns. one half pi. The value returhed by ATAN2 was net the
minimum interval representation and, when used in subsequent
calls to the SIN function, resulted in unacceptably large
intervals being returned. The only modification made to the
interval version of the program before executing it utilizing the
56 decimal package was to insert a cal to a subroutine# GENPI. to
obtain a 56 decimal digit precision value for pi.

The single precision, double precision, interval, and 56 decimal
interval versions of the program were executed using the original
real coefficients supplied by WES and also using real
coefficients in the form of a square wave as suggested by WES.
Other real coefficients were also tried but the results added
little additional information for analysis.

Using the real coefficients suplied by WES# all complex
coefficients but one should have* theoretically, been zero. The
following table has example values computed in each of the four
different runs.

single precision 0.0265 0.0428 0.2930 0.3623
double precision 0.3113 0.0460 0.3105 0.6678
standard interval 0.8222 2.5133 11.1639 14.4994
56 decimal interval 260.8131 180.6730 25.3920 466.8781

A large proportion of time had been spent in an attempt to
understand the applications programs. The logic was-carefully
followed using the given data. Throughout the program. the
language of the program was updated (FORTRAN IV as opposed to
FORTRAN Me). detected inefficiencies removed (for example*
unnecessary variables. GO TO's to GO TO's, unused labels. GO TO's
to the next executable statement& etc.)# ando in general# made
more readable. This time proved beneficial not only in
facilitating the conversion of the routines to interval
arithmetic but also in that it exposed some errors in the program
(double initialization of some variables, an integer function
which should have been a real function* etc.) These errors were
corrected and duty reported to WES. It should be noted that all
testing was done using the corrected version of the original
program rather than the heavily modified version* It was felt
that testing conditions should approximate the working conditions
at WES as closely as possible.

Once the program was successfully interfaced with Multtics and
reproducing the desired output* a program of testing was
outlined. This consisted of varying a set of three inputs
(cohesion, unit weight and phi) for the program plus or minus ten
percent. singly and in conjuction with each other. A



comprehensive analysis was run consisting of 81 separate runs
vt1t-2-?covisons--of 3, and were submitted to lIES in July*
197?. The Largest problem encountered at this stage was the
production f summary reports which presented .the analysis -in a
readabte form* The report was I Atty 11qw' t- cOnstat of
27 comparisons of three runs each in regard to central processing
unit-time# paging and fluctuation of the output data (Table 1).

IAIL.I

Configuration of the 27 comparisons of *the test runs. For
exampte.run one compares the three runs cohesion +101 phi 102
unit weight -1ox* cohesion +102 phi 410? unit weight
-002cohesion 4102 phi 4102 unit weight +10?.

cohesion 410% phi 4101 unit weight t-10. no flux. +102)
cohesion +102 phi -002 unit weight (-10. no flux. +102]
cohesion +102 phi -102 unit weight (-1OX no flux, +102)
cohesion -002 phi +10% unit weight C-102. no flux. +101]
cohesion -002 phi -00% unit weight C-102. no flux. +1023
cohesfon -002 phi -10% unit weight (-102. no fLux. 41023
cohesion -101 phi 410% unit weight [-102, no flux. 41023
cohesion -102 phi -002 unit weight (-102 no flux. +102)
cohesion -102 phi -10% unit weight [-102. no flux. +1023
phi 4102 unit weight .10% cohesion (-102. no flux. 4101]
phi 4102 unit weight -00% cohesion 1-102. no flux# +1023
phi -00. unit weight. 410% cohesion (-10%. no flux. 41023
phi -002 unit weight -002 cohesion C-IOX. no flux. 41022
phi -002 unit weight -102 cohesion [-10%. no flux. +10 3
phi -102 unit weight +10% cohesion E-102. no flux. +10%)
phi -102 unit weight -002 cohesion C-101, no flux. 4101)
phi -10 unit weight -102 cohesion [-lOX. no ftux. +10%3
unit weight 4102 cohesion -002 phi C-102. no flux. +102]
unit weight 4101 cohesion -101 phi C-101. no flux. +1013
unit weight -002 cohesion 4102 phi C-102. no flux. 410%3
.unit weight -002 cohesion -002 phi (-1OX. no ftux. 4102)
unit wei.ght -002 cohesion -102 phi C-102. no flu-x. o4103
unit weight -10% cohesion 4101 phi E-102* no flux, +1013
unit weight -102 cohesion -00% phi (-102# no flux-. +1023
unit weight -102 cohesion -102 phi (-IOX no flux. +102)
unit weight +102 cohesion *10% phi [-102. no flux. +102)

At this time the application programs were converted to double
precision and the same testing procedure as outlined above was
aeteid. No significant problems were encountered during the I
conversion. The output of the two tests were given to the same
precision as that given in the report supplied by WES. The
summary report along with each run and data was sent to WES for
further evaluation.

*ur-ing the testing it was noted that one of the inputs to be
varied, cohesion of the first soil, was zero. As 0-102 a 0+102 *



0 no fluctuation was produced by this parameter. A ne-2aro
valve was Pecieved from. WES and.the testing procedure applied
gein. The output was increesed to 8 digits of accuracy, the I

maximum for single precision FORTRAN on Puttics, for this set of
tests.

An analysis of the test output discerned no significent
differente in accuracy between the single and double precision
(Table 2).

Sample values from the case phi-002, unit weight-002 cohesion
(-10O, no flux* 4101) for single precision (SP)P double precision
(DP), single precision interval (SPI)o and extended interval
(E!). The values shown are for CP.

SP -1.6056320 -1.3048941 439.65
OP -. 60S63196598609845 -1.30489416517190121 439.65
SPI E-2.0212812,-1.25856503 (-1.6226176,-1,0324112l t435.14,444.21
El r-1.6056320#-1.60563203 C-1.3048741,-1.30489433 (439.65#439#653

SP -1.6069299 -1.3060394 439.63
OP -1.60692993603933327 -1.30603947523241611 439.63
SPI (-2.0217068.-1.26044113 C-1.6231307,-1.03401423 [435.13;444.183
El C-1.6069299.-1.60692993 C-1.3060194.-1.30603963 C439.63#439.633

:191

SP -1.6082275 -1.3071844 439.60
oP -1.60822753256086878 -1.3071840917743123 439.60
SPI E-2.0220372#-1.26238423 [-1.6235718,-1.03567053 C435.11.444.141
El C-1.6082275#-1.60822753 C-1.3071643,-1.30?18453 (439.60.439.6

Setter than 50% of the output agreed to the full eight digits.
the rest differed by no more than t3 in the eighth digit. This
was attributed to the fact that the HoneyweLL 68/80 does alL
floating point computations in double precision.

Concurrent with the above testing was the transformation of the
applications programs into interval arithmetic. Several problems
occurred during this period which greatly hampered progress. The
first problem was that, apparently, the given interval routines
to ro . in date were designed to reed from one file without
interruption. i.e. file 5 in FORTRAN. The applications and then
reading from it, The second problem# which interacted with the
first te create a much larger problem, was that a bug in the



Nultics FORTRAN 1/0 was struck upon. Normtty when a record Or
syi - r esc-ftefs- ts- read from & fite containing- 80 characters -
the remaining 176 characters are padded with blanks, In this
case they were net; an error message. "rec.erd tee short" was
preduced tfVtead. Thes-e orobtemt- wfere totved and work begun on-
the interval version of the testing.

Testing procedures for the interval version were the same as
these for single and double precision. During the testing of the
interval version two problems worth noting were encountered. The
first problem concerned the manner in whith the algorithm was
ceded. The second problem involved the identification of data
sensitivity. This was much more difficutt to handle, taking some
effort even to determine the nature of the source. Once the
nature of the problem was discovered it took an even larger
portion of.time to track down the source of the problem owing to
the near impossibitlity of fottowing the logic of the programs.
The first problem was a result of the way in which the interval
package evaluates the test value in on arthmetic If statement.
When an arithmetic IF is encountered with an interval test value
the interval is converted to a real (i.e. the midpoint is taken)
and the branch evaluated as normal. The difficulty was to be
taken onty if the test value was positive. Certain intervals
were passing atong this branch whose midpoint was inneed
positive but whose left endpoint was negative. The interval was
subsequently used as a divisor; as it contained zero a
zero-divide error was flagged by the interval arithmetic
routines. The problem was setved simply by receding the branch
as a logical IF stateent which is evaluated in a different
manner and avoids this problem.

The second problem, as stated before, was much meet difficult to
handle. During the testing it was noted thatsome of the runs
contained intervals which were "blowing up". that is* the width
of the intervals were becoming Quite large. After a perusal of
the output a correlation was discovered between the blownup
intervals and the varying of unit weight by -10X: alU runs
which varied unit weight by -10% contained btownwp interals!
esiring to know with some certainty at what point the intervals
would start blowing up the fellowing strategy was devisede each
run would start out with unit weight varied by sere; unit weight
would then be decremented by units of .25% of the initiat value
until the intervals would blewup (Table 3). Once this strategy
was earried out a vatue (2.2S%) was found at which unit weight
could be decreased without generating large interval widths. The
test-ing procedure was redone using this value to decrease unit
weight. In the summary report generated for this set of testing

a note is made indicating those runs in which the unit weight is
decreased by this value rather than the normal 102.



Sample values from one of the graduated runs (cohesion-OO2,
phi-laX). T3 a FSI-FSL. For this run the intervals became
unstable at unit weight-3.252. (* indicates infinity)

UNIT WEIGHT - 2.50%
T3 a C-.382388e-01-.380500e-01
CP 0 [-1.786,-1.0943 (-1.43,-8973 [435,4443

UNIT WEIGHT - 2.75%
T3 a 1-.38430e-01-382241e-013
CP a E-1.786,-1.0933 E-1.43,-8953 [435.4443

UNIT WEIGHT - 3.002 (bounds faults occurred)
T3 a E-.139087e-03.O.826716e-043
CP a C-1.97?.-.97483 1-1.57#-.8013 [434.4463

UNIT WEIGHT -3.25X (bounds faults occurred)
T3 a (-.240356e-03,-.1835823
CP a (-*,) (-*,** C34,57313

WhiLe these runs were being made a large amount of -time and
effort was spent in the tracking down of the source of the
expanding intervals. After an extended effort the source was
traced with a large degree of confidence to one statement. "T3 a
FSI - FSL". It seems that as unit weight is decreased the
difference between FSI and FSL becomes increasingly small.
After a time the subtraction has the effect of stripping off the
significant digits of accuracy of the resultant interval. The
problem was compounded by using T3 as a divisor in a subsequent
computation thus exploding the interval during the next few
computations.

One other unexpected benefit was reaped by during this
procedure. While tracing through the routines it was noted that
in the subroutine WGHT several computations could be combined and
an interval consistently of less than optimal width could be
factored out producing a more accurate algorithm. While its
disturbing influence could not altogether be avoided it was
minimized.

The 56 decimal digit version of the interval package was then
made available. Testing was done as before. Three outstanding
features of the testing were noted. The first was that the data
dependency of the algorithm as noted above disappeared, the
interal widths getting no larger than 10-*-4. The second was the
overly large amount of central processor unit time required for

* processing each run (55 minutes plus or minus 6 minutes) (Table
4). It was noted, however that most of this time was spent in
just a few of the interval routines, principally the
trigonometric functions which take considerabte amounts of time
to evaluate when the argument is greater than one. The fast
fourier transform routines did not encounter this large an



increase in the amount of central processing unit time per run.

This table shows the maximum and minimum centrat proceSSor unit
times which were encountered during each set of testing runs for
single precision, double precision, single precision interval,
extended interval.

SINGLE PRECISION
max -- 2.80 (coheston*10%p phi-lOl. unit weight-lOX)
min -- 2.8 (cohesion-OOX, phi-lOX, unit weight-O0X)

DOUBLE PRECISION
max -- 3.08 (cohesion+lOX, phi-.lOX, unit weight-00Z)
min -- 2.58 (cohesion-O0X, phi*1O, unit weight-O0X)

SINGLE PRECISION INTERVAL
max -- 26.30 (cohesion+IO,. phi-lOX, unit weightlOX)
mn -- 22.35 (cohesion-lOX. phi-lOX, unit weight-lOX)

EXTENDED INTERVAL
max -- 3719 (cohesion-O0X. phi-O0%o unit weight+lOX)
mn -- 2951 (cohesion-O0%. phi-lOX, unit weight-O0X)

The third and most pleasant of the notable features was the
complete tack of problems in, the bringing up and testing of the
56 decimal digit version of the algorithm. This was a benefit of
the absence of any needed large modificatiOns to be made to the
single precision interval to convert it to the 5 decimal digit
version. The only required modification was that of a slight
adjustment to the output parameters to widen the output field.
This was required as the exponent field supplied by the 56
decimal digit routines was somewhat larger.

The STRESS program finds the stress on a plane at particular
nodal points. This program was provided to us as an extra
program from WES to analyze. The program was run in single
precision and double precision. The program terminated
abnormally in both cases. The output produced by WES also
indicated that the program terminated abnormally. The output
produced at USL mtched the output provided by WES up to the
point of termination. The program was also run in single
precision interval and extended interval and also terminated
abnormatlty. We are currently waiting to recieve from WES

* corrections to the STRESS program and additional input to run the
program again.
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We have conctuded that the use of single precision and 56 decimal
digit extended precision interval arithmetic can, at times, be
extremely useful. It can be used to show the limits of precision
of an atgerithm. From the testing it was shown that when-using
the 56 decimal digit data type much better bounds were obtained
for the results than when using the single precision interval
data type. This was expected for two reasons: 1) 56 decimal
digits carry more precision than 2? binary digits (approximately
equivalent to 8 decimal digits) used for single precision and 2)
there was no conversion error on input and output. The price
paid for this increase in precision is a decrease in runtime
efficiency. The testing indicated that single precision interval
arithmetic resulted in, at most, one order of magnitude increase
precision execution. 56 decimal digit interval operation
resulted in a further increase of more than one to more than two
orders of magnitude.

One application for 56 decimal interval arithmetic woutd be to
validate existing routines. Any data sensitivity discovered
could be included in a description of the algorithm and
directions on its use. ALthough 56 decimal interval arithmetic
is expensive, its cost must be balanced against possible
consequences of using invalid results. A defective dam or the
moving of 100,000 tons of dirt unnecessarily would cost
considerably more than a few hours of computer time.

A more cost effective technique might be to first test the
algorithm using single precision interval arithmetic. Its
relatively small decrease in runtime efficiency indicates that
its use is more than justified as an economical means in
identifying possible trouble areas in an algorithm for the data
under consideration. The more expensive 56 decimal interval
arithmetic could then be used to investigate those cases with
possible problem areas.

Interval arithmetic can also be used to determine the precision
of the arithmetic required to guarantee a given precision in the
results of an algorithm. in some of the benchmarks executed in
56 decimal digit interval arithmetic, the results were good only
to 40 or so digits. This represents a considerable loss of
precision. It also points out why arbitrarily picking a given
precision for arithmetic does not guarantee results in which
absolute confidence can be placed. How great an increase in
precision is obtained* if any, by going from a machine with 32
bit words to one with 60 bit words?

In general. whether using interval or regular-arithmetic, the
greater the precision the longer the run time required for a
giver, algorithm. Havinq variable precision interval arithmetic
would allow the validation of algorithms for which single
precision interval arithmetic is insufficient without having to
go all the way to 56 decimal digit precision. There will also be
instances where it might be desirable or necessary to go beyond



56 docimol digits of precision. There witL also be instances
wherve it might be desirabte or necessary to go beyond 56 decimal
digits of precision. In a-ny case* the overhead associated with
execution in interval arithmetic ill only be as great as
reaulred for the necessary precision.

The execution speed of interval arithmetic can be increased in
several ways. One would be to decrease the number of levels of
interpretation required in the current implementation. The

, optimum solution would be to have a hardware or firmware module
which could execute variable precision interval arithmetic.
(Pany existing minicomputer systems have undefined opcodes and
ports for just such requirements). As a side effect, an
arithmetic unit that can execute variable precision interval
arithmetic can also execute variable precision regular
arithmetic. This means that interval arithmetic, of the
necessary precision, could be used to determine the required
arithmetic precision required for the results of the algorithm.
Then* the algorithm could be executed using only the required
precision on the special arithmetic module.
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The floating number system used on computers is an approximation
to the real number system. In interval arithmetic, real numbers
are approximated by intervals which contain the number. A brief
introduction to interval arithmetic is given in Appendix A. We
wilt represent an interval as a pair of floating point numbers
stored in consecutive storage Locations. The first number will
be the left endpoint and the second number will be the right
endpoint of the interval. Since the floating point system used
on computers is an approximation to the real number system, there
are many intervals whose endpoints do not have an exact
representation in a particular floating point system. In this
case the endpoints of the interval have to be approximated by the
floating point system.

We wi Lt regard intervals as bounds on an exact but unknown real
number. We would Like the computer approximation to the interval
to also bound the same real number. This means that if the
interval Ca',b'J is a computer approximation to the interval
Ca,b], then we would Like tab) f, Ea'.b'). in order to insure
that the preceeding set inclusion always holds, a' must be a
Lower- bound for a and b' must be an upper bound for b. Since we
want the best computer approximation to the interval, we want a'
to be the greatest lower bound for a and b' to be the Least upper
bound for b. In this way the interval Ca',b'J will be the
smallest computer representable interval that contains Eab].

In order to obtain the smallest computer representable interval
for the result of arithmetic operations on intervatse directed
roundings on the computer artihmetic operations must be defined.
If x i s a real number and M1 and M2 are two consecutive machine
representable numbers such that M1<x<M2 and if r is a rounding
function, then r is downward directed if r(x) = Ml and r is
upward directed if r(x) a M12. MI and M12 wilt be the machine
representable numbers that are respectively the greatest lower
bound and the Least upper bound for the real number x. If x is a
machine representable number, then r(x) z x.

In general a op b, where a and b are machine representable
numbers and op is one of the machine arithmetic operations, is
not a machine representable number and must be rounded into a
machine representable number. Algorithms for performing the

* machine arithmetic operations with directed roundings can be
* found in Yohe C2]. These operations are used to compute the

endpoints of the resultant interval for a particular arithmetic
operation performed on two intervals. A downward directed
rounding is performed on the Left endpoint and an upward directed
rounding is performed on the right endpoint.
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For example, in Appendix A. interval addition is defined as

fo l lows:

EambJ + Ecod] a Ea+cob+dJ

We assume now that a, b, c. and d are machine representable
numbers. The computer approximation to the resultant interval is
defined as follows:

Ea,bJ 0 EcmdJ = Erl(agc)or2(bgd)J

where 0 is the machine addition operation and rl is a downward
directed rounding and r2 is an upward directed rounding.

Since the exponent range is bounded, certain faults may occur
during an arithmetic operation. If the exponent becomes too
small. underfLow has occurred. If the exponent becomes too
Large, then overflow has occurred. If underfLow occurs, then the
true result is between zero and the smallest positive or negative
representable number. In this case a directed rounding can give
a valid bound. In the case of overfLow, if rounding away from
zero is wanted, then there is no machine representable number
which can be used as a correct bound. This type of fault is
known as an infinity fault.

A reaL-vaLued function, f, which is defined and continuous on an
interval Eaeb) can be extended to an intervaL-vaLued function* F*
of an interval variable by defining

F(Cab]) = (f(x) : x e Ca,b3).

When f is evaluated on a digital computer using machine
representable approximations to the real numbers* a computer
approximation, f'* to f results. If F(CabJ) is an interval
valued function of an interval (where a and b are machine
representable numbers), then the computer approximation*
FI(Cab) is defined as an interval that contains F(Cab]).

If f' is the computer approximation of a real valued function f
and f is monotonic increasing on CabJ. then

FI(Capb]) = trl(fea))*r2(fM(b))
&

where rl is a downward directed rounding into a machine
representable number such that rl(f(a)) f(a) and r2 Is an
upward directed rounding into a machine representable number such
that r2(f(b)) ? f(b). Ideally we would Like r1(f'(a)) to be the
Largest machine representable number such that rl(f1(a)) S f(a)



(i.e., a greatest Lower bound) and r2(f*(b)) to be the smattest
machine representable number such that rZ(f(b)) > f(b) (i.e. a
Least upper bound).

If f is monotonic decreasing on (apb], then

F'([ab3) a Erl(f'(b))Pr2(f'(a))J

if f is not monotonic on faobJ* then the interval EabJ can be
divided into disjoint subintervals; X'(i)# i a 1,2,3,...,n; where
the endpoints of each X'(i) are machine representable numbers and
U X(i) contains all the machine representable numbers in the
interval Eamb] and f is monotonic on each X(i). In this case
FO(Cap-b) a U F (X(i)).

It may not be possible to obtain the best bounds for the result
of the computer approximation to the function f. The problem
wilt be illustrated in the next section when describing the
interval counterparts of the MULTICS basic external functions.

f Lr...MuLIuCEE1Ltm

The interval arithmetic package and the input/output routines for
interval numbers which are implemented on the MULTICS system
follow the design of an interval arithmetic package implemented
on the UNIVAC 1108 computer located at the Mathematics Research
Center of the University of Wisconsin (1,3). This section mainly
presents the difficulties encountered when the interval
arithmetic package was implemented on the MULTICS system and also
the changes that were made to the original interval package
implemented at MRC. Most of the changes dealt with machine
dependencies.

Before the routines are described, a description of the
representation of interval numbers on MULTICS wilt be given along
with a description of the MULTICS double precision floating point
format and how it impacted the realization of the interval
package. The endpoints of the intervals are represented as a
pair of floating point numbers stored in consecutive storage
locations. The MULTICS single precision floating point format
uses a 36 bit word which consists of an 8 bit 2's complement
exponent* with the high order bit the sign bit, followed by a 28
bit normalized 2's complement fraction, with the high order bit
the sign bit.

In the original interval package implemented on the UNIVAC 1108.
the type double precision in Fortran was used extensively to trap
underflow and overflow fault conditions. This could be done
because the exponent range of the double precision floating point

-3- ~



format on the UNIVAC 1108 is greater than the single precision
floating point format. Therefore, with certain precautions.
results could be computed in double precision without fear of
machine underflow or overflow. The underflow Or overflow could

then be trapped when the conversion is made to single precision.
The MULTICS double precision floating point format uses a 72 bit
double word which consists of an 8 bit 2's complement exponent,
with the high order bit the sign bit* followed by a 64 bit
normalized 2's complement fraction, with the high order bit the
sign bit. The double precision floating point format has the
same exponent range as the single precision format. Therefore.
it is much more difficult to trap certain faults. The problem is
amply illustrated in the section describing the implementation of

* the interval basic external functions.

The subroutines of the MRC interval package can be divided into
eight categories. These categories are arithmetic operations*
exponentiation operations. conversion functions, comparison.
basic external functions, supporting functionse input/output
routines and miscellaneous. ALL of the routines in each category
except the input/output category were written in Fortran at the
upper level. Several of the Fortran subroutines call routines
that are written in PL/I. These PL/1 routines correspond for the
most part to the assembler routines that were written for the

UNIVAC 1108 version of the interval package and are written
specifically for the MULTICS implementation. Most of the
input/output routines were written in PL/I.

Each subroutine in the package will be described briefly except
when changes had to be made to a particular subroutine because of
some machine dependencies. In that case a more detailed
description will be given. After the description of each routine

a code will be given that specifies whether that particular
routine was implemented in its original form from the UNIVAC 1108
version, or it was implemented with some changes from the UNIVAC
1108 version, or it was written in PL/I specifically for the
MULTICS system. The codes are (MRCJ for the original form with
no changes* EMRC/MJ for the original form modified, and [MULJ for

the routines written specifically for the MULTICS system.
Appendix C provides a summary of the routines in each of the
above categories. A complete source Listing of the MULTICS
interval package can be found in (83.
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The routines in this category perform the four basic arithmetic
operations of addition, subtraction, multiplication, and division
on interval numbers. Since we want the best computer
approximation to the results of computer arithmetic operations on
intervals, directed roundings on the computer arithmetic
operations must be performed. The floating point hardware on the
MULTICS system does not perform directed roundings. Therefore
the four basic single precision floating point computer
arithmetic operations of addition, subtraction* multiplication#
and division had to be simulated in order to provide the correct
roundings. A description of the routines that simulated the
floating point computer arithmetic operations and provided the
proper directed roundings and a description of the routines that
perform the basic computer arithmetic operations on intervals
follows. These routines perform the "best possible arithmetic"
computer operations with directed roundings as described by Yohe
E23. ALL the routines are written in PL/I for the MULTICS
system.

bpaadd: Performs single precision floating point addition. EMUL]

bpasub: Performs single precision floating point subtraction. A
problem can occur in this routine because the subtraction
is realized by negating the second operand and calling
the bpaadd routine. The problem is negating the smallest
positive representable number, because underflow will
occur using the MULTICS floating point hardware. This
problem can occur in general and the solution to the
problem is described below in the description of the pack
routine. (MULJ

bpamul: Performs single precision floating point multiplication.

(MUL]

bpadiv: Performs single precision floating point division. [MULl

brounding: Performs bounds checking and rounding on the results
from the above four arithmetic operations. The
rounding strategies employed are toward zero* away
from zero, downward directed, upward directed* and
optimal. [MUL3

unpack: This routine unpacks the floating point number from
MULTICS format into a format that the bpa routines will
handle. The number is made positive because the bpa
routines perform their operations on signed magnitude
fractions. (MUL]
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normalize: This routine is used by the bpa routines to normalize

the fraction. EMULJ

shiftright: This routine is used by the bpa routines to shift
the fraction right when fraction overflow occurs.
[MULJ

s-mgn-add: This routine performs a signed magnitude addition of
two 36 bit binary integers. It is used by the bpaadd
routine to add the two fractions. EMULl

pack: This routine packs the floating point result produced by
the bpa routines into the MULTICS floating point format. A
problem can occur in this routine when the number to be
packed is the negative of the smallest positive
representable number. The bpa routines perform signed
magnitude arithmetic on the fractions and a negative result
is obtained in MULTICS format by negating the positive
result. The negation of the smallest positive
representable number will cause an underfLow using the
MULTICS floating point hardware because the normalized form
of that number has an exponent of -129 and is therefore not
representable. If the number is to be negated and it is
the smallest positive representable number, then the bit
pattern that represents the negative of the smallest
positive representable number is assigned to the result.
This number is not in true 2's complement normalized form*
but represents the true value. EMULJ

The following two Fortran subroutines perform the arithmetic
operations of addition, subtraction, multiplication, and division
on intervals. The routines call the bpa routines described above
to perform their operations on the endpoints of the intervals.

arithl: This routine performs the operations of addition arlt
subtraction on intervals. There is an entry point for
addition and an entry point for subtraction. The
operations are performed on the endpoints as described in
Sections 1 and 2. A slight change was made in this
routine from the original routine implemented in the
UNIVAC 1108 version of the interval package. The
original routine only made calls to the bpaadd routine.
In the case of interval subtraction the endpoints of the
second interval operand were negated and the bpaadd
routine was then called. This negation could cause the
same problem as described above in the bpasub and pack

* routines. Since the problem had been taken care of in
the bpasub routine, it was decided to call the bpasub
routine directly if an interval subtraction was to be
performed. rNRC/NJ
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arith2: This routine performs the operations of muttiptication
and division on intervals. There is an entry point for
multiplication and an entry point for division. As is
stated in Appendix AP the signs of the endpoints of the
intervals being multiplied or divided are examined in
order to determine in advance which products or quotients
will be the maximum and minimum. (MRCJ

The routines in this category perform various exponentiation
operations involving interval, double precision, real# and
integer numbers. The exact nature of the exponentiation
performed will be described in the description of each Fortran
routine that follows:

exponl: This routine calculates the value of an interval raised
to an integer power. (MRC)

bpaxp4: This routine computes the best value of a real number
raised to an integer power. It is used by exponl to
calculate the value of an interval raised to an integer
power. Changes were made in this routine to correct the
situation in which the fault flag may not be set
correctly and to take care of the problem of negating the
smallest positive representable number. (MRC/M]

expon2: This routine calculates base ** power where base is an
interval number and power is real, double precision, or
interval. There is an entry point for each type of
exponentiation. EMRC)

The routines in this category perform conversions from the
standard types to type interval and from interval to the standard
types. The following routines are written in Fortran.

convrt: This routine has entry points to convert from integer to
interval, complex to interval, real to interval, and
double precision to interval. (MRC)

intc84: This routine converts from interval to integer. A change
* was made in the routine to set the sign of the result

correctly when the maximum result needs to be set.
(MRC/N3

intc85: This routine converts from interval to real. Changes
were made in this routine to check for underftow



differently than in the original due to the fact that the

exponent range of a double precision floating point
number is not greater than the exponent range of a single
precision floating point number on the H68/80 computer.
[MRC/M_

intc86: This routine converts from interval to double precision.
Changes were made in this routine to check for underfiow
differently than the original because of the same
exponent range of the double precision and singleprecision floating point formats. [MRC/M]

intc87: This routine converts from interval to complex. EMRCJ

funct3: This routine computes an interval with integer endpoints
(in floating point form) which contains the interval of

the argument. EMRC)

The routines in this category are the relational intrinsic
functions for type interval. The following routine was written
in Fortran.

reLatn: This routine has entry points for the relational
functions of equal, not equal, less than, less than or
equal, greater thano and greater than or equal. EMRC3

Included in the interval package are the interval counterparts of
the MULTICS basic external functions atan2, exp, aloge aloglO,
sin, cosp tano asin, acos, atan, sinh, cosh and sqrt. The
general method of calculation of the interval functions involves
bounding the results of the corresponding double precision basic
external function. For functions that are monotonic over an
interval, the endpoints of the resultant interval are the result

* of the double precision function evaluated at the endpoints of
* the input interval and then properly bounded. If the function is

not monotonic over the interval, then a case analysis is done by
dividing the input interval into subintervals over which the
function is monotonic.

The result obtained from the double precision functions must be
bounded before it can be used as the endpoint of an interval.
Therefore, the accuracy of the results of the double precision
basic external functions are required by determining a tower
bound on the number of bits of the fraction that the result is
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guaranteed to have. the number of bits of the fraction that the
result is guaranteed to have are required. This can be
illustrated by the following example. Suppose a result is
accurate to 35 bits of fraction and a 27 bit Lower bound for the
result is required. Assume that the 27th through 37th bits of
the fraction were 10000000000. If the result were just truncated
to 27 bits the 27th bit would be a 1. If however the 37th bit
was one unit too large. then bits 27 through 37 would be
01111111111 and the 27th bit of the correct Lower bound would be
0. It cannot be determined which case is correct.

*

The following general bounding technique is performed which will
produce correct bounds in all cases* but not necessarily optimal
bounds. If a lower bound is sought for the double precision
result. then the fraction is decremented by one at or before the
Last bit known to be accurate. If an upper bound is sought, then
the fraction is incremented by one at or before the Last bit
known to be accurate. The same bounding technique used in
bounding the results of the arithmetic operations is then used to
obtain the 27 bit fraction of the result.

The following Fortran routines compute the basic external
functions for the interval type.

funct2: This routine has entry points for the following interval
functions: sqrt, log. exp, loglO. atan, asino acos, tanho
sinh, cosh. Changes made to the asin and acos functions
are described in Section 2.1.5.2 and changes made to the
functions sinh, cosh and tanh are described in Section
2.1.5.3. [MRC/MJ

funct4: This routine calculates sin(arq) and cos(arg) where arg
is an interval. There is an entry point for the sine and
an entry point for the cosine function. The cosine
routine scales the argument so that the left endpoint is
in the interval [0,2pi). and then performs a case
analysis. The sine routine performs the same scaling as
the cosine routine and performs a case analysis. [MRC/M]

funct5: This routine calculates tan and atan2 of an interval.
The entry point is provided for either function. The
tangent is calculated as follows: the argument is reduced
so that the left endpoint is in the interval: (-p1/2,
pi/23 and then a case analysis is performed. The atan2
routine takes two interval arguments. x and y and
computes atan(x/y). rMRC/M

To our knowledge. there is no documentation concerning the
implementation of the basic external functions on MULTICS
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accessible either by PL/I or Fortran. We considered three
approaches to determining the accuracy of the required external
function:

1) rigorous error analysis of current implementation
2) rewriting of the required routines
3) comparison of accuracy with known test data

First, the error analysis of the mathematical library routines
seemed to be impossible due to the a) lack of description of the
algorithms employed, b) Low readability of the source programs
(much of which was written in ALM - Assembly Language of
MULTICS). The second possibility had to be eliminated due to the
time constraints of the project and therefore the third approach
had to be taken.

The testing itself was done in two stages:

stagel - generation of input test data and evaluation of the
given function

stage2 - comparison of significant diqits of the result and
corresponding value in the tables

"Driver" programs were written which generated test data and
called the routines which were to be tested. The standard tables
of functions, i.e. Handbook of Mathematical Functions by Milton
Abramowitz and Irene A.Stegun [7) were used. The output was
generated in decimal form and then a check was made as to the
first digit that was different from the result given in the
table. All digits of function values which were tested proved to
be identical with corresponding digits in the Handbook. The only
exception being the last digit in the Abramovitz's tables.
However, the analysis of the very next digit in our results
showed that in each case the error was caused by an upward
roundi ng.

The test data had been restricted to the decimal values that can
be represented exactly in the floating binary notation. Thus# we
avoided the input conversion error and the function value could
be obtained for the true arqument. ALso, we have to warn that
the accuracy estimated in this way must be somewhat pessimistic.
We were able to check only as many digits as were given in the
standard tables. Thus, the tan function is assumed to have only 8
accurate decimal digits even though there are reasons to believe
that accuracy is much greater than that.

The list of the number of decimal digits (and binary estimates as
well) that are assumed to be accurate is given below.
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Accuracy

Function decimal binary
sqrt 10 33
Log 16 52
toglO 10 33
exp 16 52
sin 17 56
cos 17 56
tan 8 27
Sas in 12 39
acos 12 39
atan 12 39
sinh 9 29
cosh 10 33
tanh 8 27

The Univac 1108 double precision word has an 11 bit exponent
field vs. an 8 bit exponent in the single precision word. This

allowed the checking for overflow and underflow faults to be done
during the conversion from double to single precision format, as
was stated in section 2.0. This strategy was not applicable for
MULTICS due to the same size of the exponent in both the double
and single precision format. In conclusion* the check for
eventual fault conditions had to be made prior to the calls to
the double precision functions.

The following functions could produce overflows: expo slnh, cosh
and tanh. In the MULTICS implementation* the overflow was
prohibited by restricting the allowable domain of the argument to
the interval C-88.028,88.028J. From this it followed that for
arguments x such that abs(x)>88.028, a special action had to be
taken. At this point it turned out. that the magnitudes of
results produced at the endpoints were much smaller than the
Largest representable number. This implied that the actual
domain should be extended beyond (-88.028P88.0283. The attempt
was made to compute the new endpoints and either compute (if

possible) or estimate the proper bounds for the left and right
endpoints of the interval result. The detailed discussion of
these cases will be given Later on.

The occurence of underfLow was detected in the double precision
functions asin and acos. Analysis of the source programs

revealed that an underflow condition was raised at the point of
the internal function call to the atan routine. Namely.

asin(x) a atan(xosqrt(-x*x*l))

acos(x) = atan(sqrt(-x*x+l)ox)

-11-



and for x very small, the multiplication operation caused an
underflow. The overflow and underflow fault conditions have been
tested with a number of programs.

As we mentioned beforep the MULTICS implementation of the
functions exp, sinh and cosh restricts the domain to the interval
(-88.028#88,028) . Let MIN denote the smallest positive , and MAX
the Largest positive machine representable number. The endpoints
that could actually cause overfLow or underflow were obtained
from:

Log (MIN) = -89.415
log (MAX) = 88.029

Thus. the domain of exp could be extended to the interval
(-89.415,88.029) with exp evaluating to MIN or MAX at the
endpoints. The value of exp outside of this interval and in the
intervals 1-88.415#-88.028J and (88.028.88.0293 was evaluated as
fo Llows:

Lep or rep explep exprep

x < -89.415 MIN, underflow MIN
x = -89.415 MIN MINsround up
-89.415 < x < -88.028 MIN exp(-88.028)
-88.028 <=x<= 88.028 exp(x),round down exp(x).round up
88.028 < x < 88.029 exp(88.028) MAX
x = 88.029 MAX~round down MAX
x > 88.029 MAX, overflow MAX, infinity

where "round down" means round to the next smaller machine
representable number and "round up" means round to the next
larger machine representable number.

The Largest values of the functions hyperbolic sine, cosine, and
tangent could be computed for the argument x=88.029 (since
exp(88.029)=MAX). However, even then they were much smaller than
the Largest representable number. Let x denote the Left or the
riqht endpoints of the argument. For x very large we have

sinh(x) a exp(x)/2
sinh(-x) a -exp(x)12
cosh(x) = exp(x)/2

The smallest positive argument that would cause an overflow was
obtained from:

exp(x)/2 = MAX => exp(x)/2 3 exp(88.029) => x a 88.029+log(2)
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The optimal bounds for the Left and right endpoint are shown in
the table below. "Lep" and "rep" denote the- Left and right
endpoints of the interval argument.

Lep or rep a x sinhLep sinhrep

x > 88.029+Ln(2) MAX, overflow MAX, infinity
88.029 < x<*88.029+Ln(2) MAX/2 MAX
x = 88.029 MAX/2, round down MAX/2
88.028 < x <88.029 sinh(88.028) MAX/2
-88.029< x <-88.028 -MAX/2 sinh(-88.028)
x z -88.029 -MAXI2 -MAX/2, round up
-88.029-Ln(2)<=x<-88.029 -MAX -MAX/2
x < -88.029-ln(2) -MAX, overflow -MAX. infinity

lep or rep = x coshlep coshrep

x >= 88.029+Ln(2) MAX, overflow MAX, infinity
88.029<x < 88.029+Ln(2) MAX/2 MAX
x = 88.029 MAX/2 MAX/2*round up
88.028 < x < 88.029 cosh(88.028) MAX/2

bxzgftCr iL.5 la2QIoJ

Lep or rep = x tanhlep tanhrep

x < -88.028 -1.0 -1.0pround up
x > 88.028 1.0,round down 1.0

Z&.a6 _, u ogL;iog.u 0 €TigDIs

The following routines perform some useful functions involving
intervals. ALL the routines are written in Fortran.

functl: This routine has entry points to calculate the absolute
value of an interval, to store the value of one interval
into another and to store the negative of one interval
into another. A change was made to this routine to take
care of the problem of negating the smallest positive
representable number. CMRC/M3

supinf: This routine has an entry point that returns the left
endpoint of an interval and an entry point that returns
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the right endpoint of an interval. [MRCJ

unints: This routine has an entry point that returns the union of
two intervals and an entry point that returns the
intersection of two intervals. (MRC)

Length: This routine returns the length of an interval. A change
was made in this routine to compute the Length
differently than in the original. The length is computed
by performing a single precision subtract with an away

* from zero rounding strategy. This change was made in
order to trap underfLow or overflow. (MRC/M]

intbnd: This routine returns an interval which bounds a double
precision value to a specified accuracy. (NRC]

dist: This routine computes the distance between two intervals.
(MUL]

compos: This routine returns an interval that consists of the two
real arguments as endpoints. (MUL3

.1.Zin~u1LOQW _uLQWuiocI

The routines in this section were designed to some extent after
the I/O routines implemented for the UNIVAC 1108 version of the
interval package [3]. Additional routines were included in the
MULTICS version to handle scalar interval variables and a matrix
of interval variables. A brief description of each I/O routine
is given here. In Section 3P which describes writing interval
Fortran programs, a more detailed description of the routines is
provided giving the calling sequence and several examples for
each routine. ALL of the following routines are written in PLII.

intrdv: This routine reads interval numbers into any number of
interval scalar variables. (MUL)

intrdf: This routine reads interval numbers into an interval
vector. (NUL1

intrdm: This routine reads interval numbers into an interval
matrix. (MUL3

intprv: This routine outputs interval numbers from any number of
interval scalar variables. (MULl

intpr: This routine outputs interval numbers from an interval
vector. [MUL]
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intprm: This routine outputs interval numbers from an interval
matrix. CMUL]

The following routines are the supporting routines needed by the
above routines in order to perform interval I/O. Atli the
routines are written in PL/I except where noted.

convert-to-binary: This routine converts from fixed decimal to
floating binary performing a specified
rounding. CMUL3

convert.to-decimal: This routine converts from fixed binary to
floating decimal. CMULJ

convertfb-dec: This routine converts from floating binary to
floating decimal performing a specified rounding.
MUL3

getnextintnumber: This routine reads the next interval number
in the input stream making a syntax check of
the number. CMULJ

round.dec: This routine performs a specified rounding of a
decimal number. IMULJ

getchar: This routine returns the next character in the input
stream. This routine is used by the
get-nextintnumber routine. It is written in Fortran.

CMUL3

set-inputpointer: This routine sets the input pointer for the

get.char routine in order to start it off.
CMUL]

Z~L...__ii~lglinlgui

The following routines either fit no other category and/or are

used by routines in more than one category.

intrap: This PL/I routine traps all faults that can occur during
an operation involving interval operands. It is catled

by practically all the routines in the package after an
operation is performed involving interval numbers. The
intrap routine displays an appropriate error message and
any arguments and then takes some action depending on the
type of fault that occurred. The action taken by intrap
when a fault occurs can be specified by the user or a set
of default actions can be taken. Appendix B lists all
the faults that can occur and the default action taken by
intrap after a fault has occurred. Appendix 8 aLso
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provides a description of how the user can change the
action that intrap takes after a particular fault has
occurred. CMULJ

bpac68: This PL/I routine converts a double precision number to a
single precision number using a specified rounding
strategy. The double precision number is taken to be
exact. (MULJ

bpac98: This PL/I routine converts a double precision number to a
single precision number where the accuracy in number of
bits of the fraction of the double precision number is
given. CMULJ

intas: This Pt/I routine is used to allow the assignment of
interval constants to interval variables in a Fortran
program. A description of how this is done can be found
in Section 3 describing the writing of interval Fortran
programs. CMUL]

set-common: This Fortran routine is used to set up the default
actions taken by the intrap routine after a fault has
occurred. CMUL]

finish: This Fortran routine closes the standard Fortran input
and output files and stops the program. It is called by
intrap when the action specified for a particular fault
is to halt the program. CMUL]

comput: This Fortran routine is used to compute the interval
result of an interval function. It is called by the
interval basic external function routines. [MRC]

aidint: This PL/I routine is used to return the double precision
integer portion of its double precision argument. CMULJ

This section provides the user of the interval package with a
guide to writing interval Fortran programs. An interval Fortran
program is a Fortran program in which the extended data type
interval is used. After an interval Fortran program has been
written. it must be processed by the AUGMENT precompiter 14,5J.
The AUGMENT precompitler will generate the necessary calls to the
routines in the interval package. Fortran programs which contain
intervaL variables are compiled on MULTICS by use of the intfor
command which wiLt automatically invoke the AUGMENT precompiler
for the user* see Appendix E. A description is given first of
how to define the interval data type in Fortran and how to use it
in a program. Next a detailed description of the I/0 routines
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for interval numbers will be given. A sample Fortran program
illustrating the interval data type can be found in Appendix 0.

A variable is declared in a Fortran program as having the
interval data type through the use of an interval type
declaration statement. The key word for the interval type
declaration statement is "INTERVAL". For example* if the
statement

INTERVAL APBPC(10)

appeared in the Fortran program, then the scalar variables A and
B would have the type interval and C would be an interval vector
of 10 elements. The key word "INTERVAL" can appear in any
context that the standard type key words (i.e. REAL. DOUBLE
PRECISION, etc.) can appear. For example, if the statement

IMPLICIT INTERVAL (A-Z)

appeared in the Fortran program, then all variables beginning
with the letters A-Z would default to type interval.

All of the standard arithmetic operators are defined for the
interval data type. AlL implicit conversions from interval to
the standard types and from the standard types to interval are
defined except for conversion from logical to interval and
interval to logical. The interval data type always takes
precedence in an implicit conversion. ALL relational operators
are defined between interval data types. AlL cases of
exponentiation between the interval data type and the standard
types are defined except for the standard types logical and
complex. There are two new operators that act on interval
operands. These operators are .INSCT. which finds the
intersection of two intervals and .UNION. which finds the union
of two intervals. For example, if A* B, and C are of type
interval, then the statement

A a B .INSCT. C

finds the intersection of B and C and assigns the result to A.
If the intersection is empty then an error message is displayed.

Most of the builtin functions of standard Fortran have been
implemented for the type interval. The following are the builtin
functions available for use with the interval data type.

ASS - Absolute value
ACOS- Arccoslne
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AINT - Integer
ALOG - Log base e
ALOGIO - Log base 10

ASIN - Arcsine
ATAN - Arctangent

ATAN2 - Arctangent of xly
COS - Cosine
COSH - Hyperbolic cosine
DBLE - Converts to double precision

EXP - Exponential
FLOAT - Converts to real

IFIX - Converts to integer
SIN - Sine
SINH - Hyperbolic sine
SQRT - Square root
TAN - Tangent
TANH - Hyperbolic tangent

All of the above builtin functions take interval arguments and
return an interval result except for the IFIX* FLOAT* and DBLE
functions which return respectively type INTEGER, REAL* and
DOUBLE PRECISION. The FLOAT and DOLE functions return the

midpoint of the interval argument as either a real or double
precision number. The IFIX function returns the integer portion

of the midpoint of the interval argument. The AINT function
computes an interval with integer endpoints (in floating point
form) which contains the interval argument.

Several buiLtin functions were added for the type interval.
These functions are Listed and described below.

COMPOS: This function takes two real arguments and returns an
interval with the first argument as the left endpoint and

the second argument as the right endpoint.

DIST: This function takes two interval arguments and returns
the distance between the intervals as a real number.

INF: This function takes one interval argument and returns its
left endpoint as a real number.

INTBND: This function takes two arguments with the first argument
being double precision and the second argument integer
and returns an interval that contains the double
precision number. The integer specifies the number of
bits of accuracy of the double precision number.

INTSCT: This function takes two interval arguments and returns
their intersection. Note that INTSCT can also be used as
a binary operator as described earlier.
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LENGTH: This function takes one interval argument and returns its
length as a real number.

SUP: This function takes one interval argument and returns its
right endpoint as a real number.

UNION: This function takes two interval arguments and returns
their union. Note that UNION can also be used as a
binary operator as described earlier.

If a constant is to be assigned to an interval variable* then in
some cases the following type of assignment statement should be
used.

A z "interval constant"

where an interval constant is defined in Section 3.2. This type
of assignment statement should be used if 1) the interval being
assigned is not degenerate or 2) a degenerate interval is being
assigned.. but there will be conversion error when converting from
floating decimal to floating binary. An example of this type of
assignment is contained in the sample interval Fortran program in
Appendix D even though it was not necessary in that case to
perform that type of assignment.

An interval constant consists of 1) a pair of floating point or
fixed point numeric constants enclosed in parenthesis or square
brackets and separated by a comma or 2) a single floating point
or fixed point numeric constant that represents a degenerate
interval. The form of the floating point or fixed point numeric
constant is any number acceptable as a floating point decimal
numeric constant in PL/I with a maximum of 59 decimal digits.
Examples of interval constants are shown below:

(1 ,2)
[3,41

C .0el5o 3.49)
234.080 5
0.1
(-5,-')
(-0. l,.6J
(-328.42. 2.3e-14)
C.1o.2)

An interval number enclosed in parenthesis or square brackets
may have any number of blanks before or after the parenthesis or
square brackets and comma. The numbers representing the
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endpoints may not have any embedded blanks. An interval number
that represents a degenerate interval may not have any embedded
blanks. Note that a decimal number that represents a degenerate
interval may not be converted into a degenerate interval
internally. This is because not aLl fractional decimal numbers
have an exact representation in floating binary. For example*
the decimal number 0.1 does not have a finite representation in
floating binary. Therefore the endpoints of the resultant
machine representable interval wilt not be equal because the left
endpoint must be rounded downward and the right endpoint must be
rounded upward when the decimal number is converted to floating
binary.

The foLlowing three routines are used to read interval numbers.
The numbers are input from Fortran file number 5 which is the
standard Fortran input file. Any number of interval numbers can
appear on each input Line with 1 or more blanks separating the
interval numbers. The interval numbers can be input from the
terminal or from a segment through an appropriate operating
system 1/0 attach statement.

Routine: intrdv

Purpose: Read interval numbers into any number of interval scalar

variables.

CaLling sequence: caLL intrdv (ambrc#...eof)

apboc... (output) are interval scalar
variables into which the interval numbers are
to be read.

eof (output) is a Logical variable that is true
if end of file is encountered and is false if
not.

Exampl es:

In the foLLowing examples issume a. be co and d are interval
scalar variables and eof is a Logical variable.

Example 1:

call intrdv (apbeeof)

The next two interval numbers in the input stream will be read
into the interval variables a and b.

Example 2:
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call intrdv (amb~cdmeof)

The next four interval numbers in the input stream are read into
the interval scalar variables a, b, c, and d.

In both of the above examples if end of file was detected* then
the variable eof would be set to true., otherwise it is set to
false.

Routine: intrdf

Purpose: Read interval numbers into an interval vector.

Calling sequence: call intrdf (xijoeof)

0. x (output) is an interval vector.

i (input) is an integer variable or constant
specifying the starting index of where in x the
interval numbers will be placed.

j (input) is an integer variable or constant
specifying the ending index of where in x the
interval numbers will be placed.

eof (output) is a Logical variable that is true
if end of file is encountered and is false if
not.

Examples:

in the following examples assume x is an interval vector that can
contain a maximum of 10 interval numbers and eof is a Logical
variable.

Example 1:

call intrdf (xl*1lOeof)

The next ten interval numbers in the input stream will be read
into the entire vector x.

* ExampLe 2:

cdll intrdf (x,2,?,eof)

The next 6 interval numbers in the input stream will be read into
the interval locations x(2) to xC?).

in the both examples above, if end of file is encountered eof
will be set to true, otherwise eof will be false.
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Routine: intrdm

Purpose: Read interval numbers into an interval matrix in a row

by row fashion.

Calling sequence: call intrdm (xon.k.eof)

x (output) is an interval matrix.

n (input) is an integer variable or constant
specifying the number of rows to be considered.

k (input) is an integer variable or constant

specifying the number of columns to be
consi dered.

eof (output) is a Logical variable that is true
if end of file is encountered and is false if
not.

Examples:

In the following examples assume x is an interval matrix that can
contain a maximum of 5 rows and 6 columns of interval numbers and
eof is a logical variable.

ExampLe I:

call intrdm (x*5v6.eof)

The next 30 numbers in the input stream will be read into the

entire matrix x row by row with 6 numbers per row and 5 total
rows.

Example 2:

call intrdm (x.3.4.eof)

The next 12 interval numbers in the input stream will be read
into the interval matrix x row by row with 4 numbers per row and
3 total rows.

in both examples above, if end of file is encountered* then eof
is set to true* otherwise it is set to false.

The following three routines are used to output interval numbers.
The numbers are output to the PL/I standard output file,
sysprint. The output can be directed to a segment either by an
1/0 attachment or through a file.output command.
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Routine: intprv

Purpose: Output interval numbers from any number of interval

scalar variables.

Calling sequence: call intprv (cconod.nobowidthoaob.c, .... )

cc (input) is a single character representing
the carriage control character. The carriage
control characters are the same as in standard
fortran and are Listed below:

blank - sinqle space
0 - double space

+ - suppress spacing
1 - skip to top of page

nod (input) is an integer variable or constant
specifying the number of interval numbers to
output per Line.

nob (input) is an integer variable or constant
specifying the number of blanks to insert
between each interval number on each Line.

width (input) is an integer variable or
constant specifying the total width that each
interval number wilt occupy in the output Line.
The interval number is output in the form
[±.XX..XxXYYf±.xx..XX,±YY) The number of
significant digits output for each endpoint
will be (width-13)/2.

arboc,... (input) are interval scalar variables
to be output.

Examples:

In the following examples assume a# be co and d are interval

var iab les.

ExampLe 1:

call intprv (lh ,3.1.25oapbrc)

The interval numbers in the interval variables a. be and c will
be output with single spacing. ALL three numbers wilt be on the

sime line. One blank will be between each interval number. Each
interval number will occupy 25 columns providing 6 significant
digits for each endpoint.

-23-



Example 2z

call intprv ("O",3,5,33,ab,€,d)

The interval numbers in the interval variables a# be c, and d
wilt be printed with double spacing. a, b and c will be on one
Line with d on the next line. There will be five spaces between
each interval number. Each interval number will occupy 33
columns providing 10 significant digits for each endpoint.

Routine: intpr

Purpose: Output interval numbers from an interval vector.

Calling sequence: call intpr (ccrnodnobwidthmxij)

cc, nod, nob, and width are the same as for
intprv.

x (input) is an interval vector.

i (input) is an integer variable specifying the
starting index in the interval vector x from
where output is to start.

j (input) is an integer variable specifying the
ending index in the interval vector x where
output is to stop.

Examples:

In the following examples assume x is an interval vector that can
contain a maximum of 10 interval numbers.

Example 1:

call intpr (" ",2,10o35,x*1,10)

The interval numbers in the entire interval vector x will be
output with single spacing. There wilt be two interval numbers
per Line. Ten blanks will be between each interval number. Each
interval number will occupy 35 columns providing 11 significant
digits for each endpoint.

Example 2:

call intpr (1hO,5,1r25,x,3*9)

The 7 interval numbers in interval locations x(3) to x(9) wilt be
printed with double spacing. There will be five interval numbers
per line. One blank wilt be between each interval number. Each
interval number wilt occupy 25 columns providing 6 significant
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digits for each endpoint.

Routine: intprm

Purpose: Print interval numbers from an interval matrix.

Calling sequence: call intprm (ccmnodmnobmwidthexmnmk)

cc, nod, noba and width are the same as for
intprv.

x (input) is an interval matrix.

n (input) is an integer variable or constant
specifying the number of rows of the interval
matrix to output.

k (input) is an integer variable or constant
specifying the number of columns of the
interval matrix to output.

Exampl es:

In the following examples assume x is an interval matrix that can
contain a maximum of 7 rows and 5 columns of interval numbers.

Example 1-.

call intprm C" "P5o1,25oxp7,5)

The interval numbers in the entire interval matrix x will be
printed with single spacing. There will be five interval numbers
per Line. One blank will be between each interval number. Each
interval number will occupy 25 columns providing 6 significant
digits for each endpoint.

Example 2:

call intprm (0O",4p5,27oxo6,4)

The interval numbers in the first 6 rows and 4 columns of the
interval matrix x will be printed with double spacing. There
will be four interval numbers per line. Five blanks wilt be
between each interval number. Each interval number will occupy
27 columns providing 7 significant digits for each endpoint.

r11 Ladner, T. D. and Yohe, J. M., "An interval arithmetic
package for the UNIVAC 1108," The University of
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The details of the mathematical basis for interval arithmetic are
developed in Moore (63. The set of interval numbers is the set
of all closed intervals on the real number Line. An interval may
be represented by an ordered pair of real numbers Ea~bJ where a S
b. If a = b, then the interval is said to be degenerate.

The operations of addition, subtraction, multiplication* and
division between two intervals (except for the division of one
interval by an interval containing zero) are defined as follows
where S is one of the above operations:

Eab] S Ecd) = (x S y : x e Eaob] and y e CcodJ)

Each of the operations of additiono subtraction, multiplication,
and division may be defined as follows:

(a,b] + Ccd] = (a+cb+d]

Cab] - Ccod] = Ca-db-c]

Cab] * [cod] = Cmin~aceadbcobd},max(acadbcbd)]

[ab] / Cod] = [min(a/ca/db/cb/d},maxfa/ca/dob/cb/d)J
if 0 f [cd]

In the cases of multiplication and division, by examining the
signs of the endpoints of the intervals being multiplied or
divided; a determination in advance can be made of which products
or quotients will be the maximum and the minimum.

The following real single valued functions of intervals may be
useful:

The midpoint of an interval, mid ((amb)), is defined to be the
real number (a~b)/2.

The length of an interval, Length (EaobJ)s is defined to be the

real number b-a.

The supremum of an interval, sup (ab]), is the real number a.

The infimum of an interval, inf ([abJ), is the real number b.

The distance from interval [abJ to interval EcdJ, dis
([abEc~d]), is defined to be the real number max(Ic-alld-bl).

The following interval single valued functions of intervals may
also be useful:
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The union of intervals Cab] and CcodJ. union (CaebJ,(cdJ)& is

defined to be the smallest interval containing both Caeb] and
EcodJ and is given by Emin(aoc)omax(bod)J. The intersection of
intervals CabJ and Ccod], intsct (CaobJoc~dJ), is defined to be
the largest interval, contained in each of (asb3 and lcedJ or is
empty if LasbJ and EcodJ are disjoint intervals and is given by
Cma x(ac),min(cd)3.

The relational operations may be defined on intervals as follows: i-
[abJ = Lc,dJ if and only if a = b a c z d

The above definition means that two intervals are equal if and
only if they both are degenerate and represent the same real
number. This definition is employed instead of the more general
definition of testing for a = c and b = d. The reason the more -

general definition is not used is because we will regard
intervals as bounds on an exact but unknown real number. If two
intervals were not degenerate and if both intervals had the same
endpoints, then the intervals may not represent the same exact
real number. The only way for the two intervals to represent the
same exact real number is for both intervals to be degenerate
with their endpoints equal to the real number. We also say that

ab3 0 EcdJ if and only if Cab] intersection Ecd] = 8

This definition means that two intervals are not equal if and
only if they are disjoint intervals and cannot represent the same
exact real number.

(abJ < Ecd] if and only if b I c

The above definition means that two intervals are ordered by the
S reLational operator if and only if v x e CabJ and V y f EcdJ,
x y.

Earb] > [c,d] if and only if a > d

The above definition means that two intervals are ordered by the
> relational operator if and only if V x 0 Cab) and V y * (cd).
x > y.

interval valued functions of interval variables are defined in
terms of real valued functions of real variables. if f is a real
valued function of a real variable, then f may be extended to an
interval valued function, F, of an interval variable by defining

F(Ca,b]) = (f (x) : x e (abJ)

If f is defined and continuous on [ab], then F(CabJ) will be an
interval. If intervals are to represented as pairs of real
numbers, then the above definition is not operational. Some
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means is needed for deriving the endpoints of the image of Capb]
under the function F. The endpoints of the image interval witt
be the image under f of points of (aob].

For functions, f, that are monotonic on the interval Ca.bJ, the
endpoints of the image of CaibJ under F can be expressed as the
result of the function f evaluated at the endpoints of Camb]. if
f is monotonic increasing on Camb* then F(Eamb3) a Ef(a), f(b)3.
If f is monotonic decreasing on (abJ. then F(Ca~bJ) a C f(b)*
f(a) 3. If f is not monotonic over CambJ. then EaibJ can be
divided into disjoint subintervats; X(i), i a 1,23,**..n; where U
X(i) (abJ and f is monotonic on each X(i). In this case
F(Cab]) - U f(X(i)).
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The following table Lists the possible fault conditions that can
arise during an interval operation along with the value of the
fault flag and the default action code that specifies the action
taken by intrap after it is called. The action code is explained
after the table.

Fault Flag Fault Condition Default Response

Left Endpoint Right Endpoint

0 no faults no faults -

1 no faults overflow 3
2 no faults infinity 2
3 no faults underf low 0
4 overflow no faults 3
5 overflow overflow 3
6 overflow infinity 2
7 overflow underfiow 3
8 infinity no faults 2
9 infinity overflow 2

10 infinity infinity 2
11 infinity underf Low 2
12 underfLow no faults 0
13 underf Low overflow 3
14 underfLow infinity 2
15 underf Low underfLow 0

16 division by zero 2
17 zero to the zero power 1
18 square root of a negative number 2
19 log of a non-positive number 2
2U underflow during interval-to-real 0
21 overflow during interval-to-real 2
U intersection of disjoint intervals 2
23 argument out of range 2
24 underfLow during interval-to-double 2
25 underflow 2
26 overflow 2
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The action codes are as follows:

0 - Exit
I - Print error message and arguments

2 - Print error message, arguments and trace stack
3 - Print error message, arguments* trace stack and stop

The arguments that are displayed are the arguments of the calling
program. Three arguments are always passed to intrap. If the
calling program had only two arguments, then the first two
arguments passed to intrap have the same value as the first
argument of the calling routine. If the calling routine has only
one argument., then all three arguments passed to intrap have the
same value as that argument.

Under certain circumstances the user may wish to change the
default action taken by intrap when a fault occurs. The user may
also wish to change the value assigned as the result of an
operation in order to be more mathematically consistent with the
problem to be solved. The user can modify the action taken by
intrap by including the following statements in the user's
Fortran program.

common /intflt/ ifaultroutin.type(3),itgarg(3).rarg(3).darg(3).
itvagr( 2#3),montor (32)

integer type
character*6 routin
real itvarg
double precision darg

"ifauLt" will contain the fault flag after each operation.

"routin" will contain a character string which is the name of the
Last routine to call intrap.

"type" will contain the types of the last three arguments passed
to intrap. If type(i) is zero, then that particular argument was
not present in the call to intrap. The type codes are as
fol lows:

1 - integer
2 - real
3 - double precision
4 - interval

"ltgarg", "rarg", "darg", and "itvarg" will contain the arguments
passed to intrap. They contain respectively either the integer#
real. double precision, or interval arguments. For example* if
type(l) z 3, type(2) = 1. and type(3) z 4 then darg(1) wilt
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contain the double precision argument# itgarg(2) will contain the
integer argument, and itvarg (1,3) will contain the interva.
argument.

"montor" contains the action codes for each type of fault Listed
in the table. If the user wants to change the action for a
particular fault, then the user changes the location in the
montor array that corresponds to the particular fault. For
example, if the user wishes to change the action for a divide by
zero fault to a fatal error# then the following statement is
included in the user's program.

montor(16) a 3

In this case when a zero divide occurs the program will stop.

L!iAtg1_Efrqg. -. jug a t

The following is a List of the error messages produced by intrap.

BOUNDS FAULT DURING "routine name" LEFT ENDPOINT-- "fault" RIGHT
ENDPOINT-- "fault"

DIVISION BY ZERO DURING "routine name"

ZERO TO THE ZERO POWER DURING "routine name"

SQUARE ROOT OF A NEGATIVE NUMBER DURING "routine name"

LOG OF A NON-POSITIVE NUMBER DURING "routine name"

UNDERFLOW DURING CONVERSION FROM INTERVAL TO REAL IN "routine
name"

OVERFLOW DURING CONVERSION FROM INTERVAL TO INTEGER AN "routine
n am e"

INTERSECTION OF DISJOINT INTERVALS DURING "routine name"

ARGUMENT OUT OF RANGE IN "routine name"

UNDERFLOW DURING CONVERSION FROM INTERVAL TO DOUBLE PRECISION IN
"routine name"

UNDERFLOW IN "rouitne name"

OVERFLOW IN "routine name"

UNKNOWN ERROR DURING "routine name"
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The following is a List of the routines written for the interval
package divided into the categories with the codes CN4RCJ.
(f4RC/tM]P and EMUL3.

(NRCJ - Original form from the Mathematics Research Center with
no modifications.

arith2 exponl
expon2 convrt
intc87 retatn
supinf unints
intbnd funct3
comput

EMRC/MJ Original form with modifications.

arithi bpaxp4
intc84 intc85
intc86 functi
Length funct2
funct4 funct5

EMULI - Written specifically for the MULTICS System.

bpaadd bpasub bpamul
bpadiv brounding unpack
normalize shift~right s..mgn..add
aidint pack di it
intrdv intrdf intrdm
intprv intpr intprm
convert..to..binary convert..to-decimat convert-fb-dec
get-.next..int.number round-dec getchar

s et..jnput..pointer intrap bpac68
bpac98 intas setcommon
finish
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The following Fortran program illustrates the use of the interval
data type. The program solves a set of Linear equations using
Gaussian elimination with partial pivoting. The program is just
illustrative of the interval data type and may not be the best
method of solving a set of Linear equations using interval
arithmetic. A listing of the interval program is given followed
by a Listing of the translated program produced by AUGMENT with

* the calls to the interval package routines. Following that is a
sample of the output produced by the program, In one case the
error trapping capability of the interval package is illustrated.
In this case it was set up so that if an error occurred the

* program continued.

Appendix D 1



INTERVAL A(10 11),X(1O),BIGTERMPIVOTCONSTYYTEMP
LOGICAL EOF
INTEGER YES
DATA YES /3Hyes/

910 WRITE6710)
710 FORMAT(/#" ENTER NUMBER OF EQUATIONS")

READ(5.10)NN

10 FORMAT(V)
MzNN
N=M+I

WRITE (6, 750)

750 FORMAT(/#" ENTER MATRIX")
CALL INTRDM(APMPNPEOF)
LAST=M-1

C
C START OVERALL LOOP FOR M-1 PIVOTS
C

DO 200 I=IPLAST
C
C FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT
C

81Ga"0"
DO 50 KuIM
TERM=ABS (A (K,I))

IF(TERM.LE.BIG) GO TO 50
BIG=TERM
L"K

50 CONTINUE
C
C CHECK WHETHER A NON-ZERO TERM HAS BEEN FOUND
C

IF(BIG.EQ."O") STOP
C
C L-TH ROW HAS THE BIGGEST TERM -- IS IL
C

IF(I.EQ.L) GO TO 120
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C
C I IS NOT EQUAL TO L* SWITCH ROWS I AND L
C

DO 100 JuIoN
TEMP=A( IJ)

A(IJ)zA(L.J)
100 A(LPJ)-TEMP
C
C NOW START PIVOTAL REDUCTION
C -

120 PIVOTAC(I,1)

NEXTR=I-
C
C FOR EACH OF THE ROWS AFTER THE I-TH
C

DO 200 J=NEXTRPM
C
C CONST IS MULTIPLYING CONSTANT FOR THE J-TH ROW
C

CONST=A(JoI )/PIVOT
C
C NOW REDUCE EACH TERM OF THE J-TH ROW
C

DO 200 KzUIN
200 A(J#K)"A(J#K)-CONST*A(IPK)
C
C END OF PIVOTAL REDUCTION - PRINT REDUCED MATRIX
C

WRITE (6,501)
501 FORMAT(/#" THE REDUCED MATRIX IS AS FOLLOWS:",/)

CALL INTPRM(1H v3o1.25,AvMN)
C
C PERFORM BACK SUBSTITUTION

C
DO 500 I1m

C
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C IREV IS THE BACKWARD INDEX, GOING FROM M BACK TO 1
C

IREV=M+ -I
C
C GET Y IN PREPARATION
C

Y=A(IREV,,N)
IF(IREV.EQ.M) GO TO 500

C
C NOT WORKING ON LAST ROW, I IS 2 OR GREATER
C

DO 450 J=2ol
C
C WORK BACKWARD FOR X(N), X(N-1) o.., SUBSTITUTING PREVIOUSLY FOUND

C VALUES
C

K=N+1-J
450 YUY-A(IREVoK)*X(K)
C
C FINALLY COMPUTE X
C
500 X(IREV)=Y/A(IREV.IREV)
C
C PRINT VALUES OF X
C

WRITE (6,502)

502 FORMAT(/P" THE SOLUTION IS AS FOLLOWS:"v/)

CALL INTPR(1H ,1O,25oX,1,M)
WRITE(6,950)

950 FORMAT(/P" DO YOU WANT TO CONTINUE?")
READ(5#975) IRESP

975 FORMAT(A3)
IF(IRESP.EQ.YES) GO TO 910
ENDFILE 5
ENDFILE 6
STOP
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END
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C ===== PROCESSED BY AUGMENT VERSION .41 ==Buz
C TEMPORARY STORAGE LOCATIONS
C INTERVAL

REAL INTTMP(2.1)
C------- ------ LOCAL VARIABLES-----

LOGICAL EOF
INTEGER I, IRESPo IREVP J* K, L, LASTP M, N, NEXTR. NNo YES

C INTERVAL
REAL A(2.10,11), BIG(2), CONST(2),, PIVOT(2), TEMP(2), TERM(2)o X(2

* .10)p Y(2)
C SUPPORTING PACKAGE FUNCTIONS

LOGICAL INTEQ, INTLE
C z==== TRANSLATED PROGRAM =-zz
C ===== DATA STATEMENTS ARE NOT PROCESSED BY AUGMENT =sun=

DATA YES I3Hyes/
910 WRITE(6,710)
710 FORMAT(/," ENTER NUMBER OF EQUATIONS")

READ(5.10)NN
10 FORMAT(V)

M=NN
N=M I

WRITE (6, 750)
750 FORMAT(I," ENTER MATRIX")

CALL INTRDM(AMPNEOF)
LAST=M-1

C START OVERALL LOOP FOR M-1 PIVOTS
C

DO 30000 l=1,LAST
C
C FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT
C

CALL INTAS ("0",,BIG)
DO 50 KnIM
CALL INTABS (A(1,KI)PTERM)
IF (INTLE (TERM,BIG)) GO TO 50
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CALL INTSTR (TERMPBIG)
Lu K

50 CONTINUE
C
C CHECK WHETHER A NON-ZERO TERM HAS BEEN FOUND
C
C -a=in MIXED MODE OPERANDS ACCEPTED=33

CALL INTAS ('".INrTMP(1,1))
IF (INTEQ (BIG*INTTMP(1,1))) STOP

L C
C L-TH ROW HAS THE BIGGEST TERM -- IS 13L
C

IF(I.EQ.L) GO TO 120
C
C I IS NOT EQUAL TO Lo SWITCH ROWS I AND L
C

DO 100 J1,#N
CALL INTSTR (A(loIJ)*TE4P)
CALL INTSTR (A(loLoJ)oA(lI.,J))

100 CALL INTSTR (TEMPA(1,L#J))
C
C NOW START PIVOTAL REDUCTION
C
120 CALL INTSTR (A(1,li,)oPIVOT)

NEXTR=I+ 1
C
C FOR EACH OF THE ROWS AFTER THE I-TH
C

DO 30000 J=NEXTRPM
C
C CONST IS MULTIPLYING CONSTANT FOR THE J-TH ROW
C

CALL INTDIV (A (1,JoI)oPIVOToCONST)
C
C NOW REDUCE EACH TERM OF THE J-TH ROW
C
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DO 30000 KuI.N
200 CALL INTMUL (CONST#A(1,IoK)oINTTMPC1,1l))

CALL INTSUd (A(1,JK).,INTTMP(1,1),A(1,J.K))
30000 CONTINUE
C
C END OF PIVOTAL REDUCTION - PRINT REDUCED MATRIX
C

WRI TE (6v 501)
501 FORMAT(/," THE REDUCED MATRIX IS AS FOLLOWS:"*/)

CALL INTPRM(1H *3sl1,25aA,14,N)

C PERFORM BACK SUBSTITUTION
C

DO 500 I11,M
C
C IREV IS THE BACKWARD INDEX# GOING FROM M BACK TO 1
C

IREV=M*1-I
C
C GET Y IN PREPARATION
C

CALL INTSTR (A(1,IREVoN).Y)
IFCIREV.EQ.M) GO TO 500

C
C NOT WORKING ON LAST ROW# I IS 2 OR GREATER
C

DO 30001 Ju2*I
C
C WORK BACKWARD FOR XCN),- X(N-1) ...v SUBSTITUTING PREVIOUSLY FOUND-
C VALUES
C

K=N41-J
450 CALL INTMUL (A(1,IREVK),XC1,K).INTTMP(1.1))

CALL INTSUB (YoINTTMP(1,1)oY) *
C
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C FINALLY COMPUTE X
C
500 CALL INTDIV (Y*A(1gIREV*IREV)*X(1,IREV))
C
C PRINT VALUES OF X
C

WRITE (6, 502)
502 FORMAT(/P" THE SOLUTION IS AS FOLLOWS:",/)

CALL INTPR(IH -1*0*25*X.I.M)
WR ITE (6*950)

950 FORMAT(/P" DO YOU WANT TO CONTINUE?")
REAO(5*9 75) IRESP

975 FORMAT(A3)
IF(1RESP.EQ.YES) 60 TO 910
ENDFILE 5
ENDFILE 6
STOP
E ND
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ENTER NUMBER OF EQUATIONS

2

ENTER MATRIX
536
184

THE REDUCED MATRIX IS AS FOLLOWS:

E .500000+01, .500000+013 E .300000 01, .300000.013 E .600000 01, .600
(-.149012-07, .745059-083 E .739999.01, .740001+013 t .279999.01. .28000

THE SOLUTION IS AS FOLLOWS:

C .972972+00o .972973+00)
C .378378+00, .378379+00)

DO YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS

ENTER MATRIX
5 3 6 8
2831
9462 j
THE REDUCED MATRIX IS AS FOLLOWS:

C .900000+01, .900000+01) 1 .400000.01, .400000 013 [ .600000.01, .6000004
C .200000+01, .200000+013
(-.298024-07, .149012-073 C .711111 01, .711112+013 E .166666+01, .1666674
C .555555+00, .555556+003
E-.596047-07, .596047-073 [-.447035-07* .447035-073 E .248437 01, .248439
C .682812 01. .682813+01)
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THE SOLUTION IS AS FOLLOWS:

E-.135850+01-o.135849+01
r-. 566038+00o,-.566037+00
E .274842+01P .274843+013

DO YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS
2

ENTER MATRIX
E1,2] E5,63 E8,9J
E12,131 [3,4] E15,163

THE REDUCED MATRIX IS AS FOLLOWS:

E .120000+02, .130000+023 c .300000+01v .400000+013 E .150000+02. .16
(-.116667+01, .107693+013 C .433333+01, .576924+01] E .533333+01* .7846

THE SOLUTION IS AS FOLLOWS:

E .596722+00, .110223+013
E .924444+00, .181066+01)

DO YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS
2

ENTER MATRIX
111

222
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THE REDUCED MATRIX IS AS FOLLOWS:

1 .200000+01, .200000+013 E .200000+01., .200000+013 E .200000+01, 200
1 .000000+00, .000000+003 C .000000+00, .000000+003 C .000000+000 .000"(P

DIVISION BY ZERO DURING intdiv
ARGUMENT 1 a [ .00000000000000000000000000+00, .O00000000000000000000000
ARGUMENT 2 = C .00000000000000000000000000+0O .000000000000000000000000,
RESULT = E-.17014118219281863150345791+39, .17014118219281863150345?

BOUNDS FAULT DURING intmut LEFT ENDPOINT--INFINITY RIGHT ENDPOINT-IINFINL
ARGUMENT 1 = C .20000000000000000000000000+01v .20000000000000000000000
ARGUMENT 2 = [-.17014118219281863150345791+39. .1701411821928186315034579
RESULT [ C-.17014118219281863150345791+39# .17014118219281863150345?9

BOUNDS FAULT DURING intsub LEFT ENDPOINT--NO FAULTS RIGHT ENOPOlNT--NFI

ARGUMENT 1 = 1 .2000000000000000000000000001, .20000000000000000000000
ARGUMENT 2 = [-.17014118219281863150345791+39, .17014118219281863150345791
RESULT = [-.17014118219281863150345791+39, .1701411821928186315034S9

THE SOLUTION IS AS FOLLOWS:

E-.850706+38, .850706+383
(-.170142+39, .170142+393

DO YOU WANT TO CONTINUE?
no
STOP
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Function: translates interval fortran programs into standard
Fortran and compiles the translated segment if requested.

Syntax: intfor path -control.args-

Arguments: path is the pathname of an interval Fortran source
segment; a suffix of ".interval" is assumed and need not be
given.

Control arguments: -no.transtated-source. -nts does not
create the translated Fortran segment in the current working
directory; default is to create a translated source segment with
the suffix ".fortran". Any error messages produced during
translation will be in this segment (see Notes below).

-convert-real.to.interval, -cri all variables of type real in the
source will be considered to have the type interval.

-nocompile, -nc the translated source will not be compiled;
default is to compile.

-forcecompilep -fc there wilt be an attempt to compile the
translated source even if there are errors during the
transl at ion.

-augment.List. -als a segment is produced by the AUGMENT
precompiler (see Notes below) that consists of a Listinq of the
input source segment passed to AUGMENT. Any error messages
produced during translation will also be in this segment. The
segment wilt have the suffix "agm.List"

The rest of the control arguments are any arguments acceptable to
the Fortran compiler. These arguments will be passed to the
Fortran compiler if a compilation is to be performed.

Notes: The intfor command uses the AUGMENT precompiLer to
produce the translated source. AUGMENT wilt display how many
errors there were in the processing or translation phase. The
error messages wilt be in the translated source segment next
to the statement that caused the error. Therefore if a program is
being translated for the first time* a translated source segment
should be created in case there are errors. The error messages
can be located in the translated source segment by
searching for the character string "*****" which is attached to
each error message.

CurrentLy the input segment must be in the standard Fortran 80
column format usinq all uppercase letters.
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in order to run an intervaL program the user amIust have the search
rutes set to search the directory
>udd~beta>rgd~a~rld>int~routines. This setting of the search
rutes can be done by a "ssr >udd>beta>r~d>a.r&d>isr" before
running the intervaL program*
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