-AD=-ADBT 56% UNIVERSITY OF SOUTHWESTERN LOUISIANA LAFAYETTE
VARIABLE PRECISION AND INTERVAL ARITHMETICS: PORTABLE ENHANCEHEN‘-ETC(U)
JUL 80 B D SHRIVER DA 629-76-6-0 65
UNCLASSIF!ED ARO=151694+1=M

‘
-

-
A '

UNCLASSIFIED

SECUKITY CLASSIFICATION OF THIS PAGE ("hen Data Entered)

REPORT DOCUMENTATION PAGE BEF o R o Y ORM
J7. _REPORY RUMBER 2. GOVT ACCESSION NOJ 3. RECIFIENT'S CATALOG NUMBER
, m\)lswa-l-n/ /@/)F«%’)/ D-AnE ALY
O —TIYCE Tand Sudritie) A Ry S A /L\’;, w;ns.as;oax'.:zzcmm&gvﬂ.‘p
2 T oo ‘ ’6/ ;q,) Final Kepat'e
é JARIABLE PRECISION AND LNTERVAL ARITHMETIC: 15 Mar 78 - 14 Mar 8§y
_PORTABLE ENHANCEMENTS TO FORTRAN, .
// g > .

7. AUTHOR(s) — ;_'”‘*‘-m% - -] wsnm ‘)
L 7 K q _ _ o '
Bruce D./Shriver. / /5‘ ¥ DAAG29-78-G-068 - |- | .

¢ e —

. e e e T

10. PROGRAM ELEMENT, PROJECT, TASK p
9. PERF.ORMING-ORGAPHZATOON NAME AND ADDRE?S) " A“gg o 'OﬂLK RIT NUMBERS
University of Southwestern Louisiana

¢ Lafayetta, LA 70504 / L 1 : | / ’iLj‘ r/‘g/”/

BEPORT DATE

N2,
) Jul 84
3. TP AL

11. CONTROLLING OFFICE NAME AND ADDRESS
U. S. Army Research Office 4 l
Post Office Box 12211 -

Research Triangle Park, NC 27709
. MONITORING AGENCY NAME & ADD S¢t

19+

1S. SECURITY CLASS. (of thie report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

<4

Ne

)

O

w 16. DISTRIBUTION ﬁruznent (of thie Report) ‘
c .

S

Q

<

N i e I
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Roporf) - 5“'(‘1 >
1 A [

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side Il necessary and identily by DIOCK number)

¢ FORTRAN
programming languages
interval arithmetic
™. variable precision
f'ﬂ. 0 TRACT (Contious an reverse sidv H necoesery and identify by dlock mamber) <.,
M. It was the intent of the research reported here to develop, using preprocessin
few) techniques, extensions to FORTRAN which would include: (l) the extended data]
il § types VPINTEGER, VPREAL, VPCOMPLEX and VPINTERVAL. The data types are analogoys
} to those of standard FORTRAN and the single precision Interval data type, but
Ll can be of arbitrary precision, (2) The gtandard built-in functions (SIN, COS, SQRT':

etc.) for use with the new data types/‘"“p) The input/output facilities of
standard FORTRAN extended for use with the extended data types —

DD e m EOITION OF 1 OV 63 15 OBSOLETE . UNcLassIFien 7/)N N 2 W

8:0--- ~ -oo-v;»...nu MNP T B AAF SR e MNote Pasene -

DOC i

EINAL_REEQRT

Variable Precision and Interval Arithmetic:
Portable “nhancements to FORTRAN

Research Agreement No., DAAGP?O-782-G-NNAR

1. Background

The relationship between WFS, YSL and ARN began when WFS wanted
to examine interval arithmetic as a tool. Tt was hoped that
interval arithmetic would serve as a valuable tool in

ascertaining the reliability of values produced by application

programs in use at WES, A FORPTRAN implementation of dinterval

arithmetic had been developed at MRC wusing the preprocessor

AUGMENT [1,2,3,4,57, This package was to be irstalled at hoth uSL i

and WES for the purpose of determining whether or not interval
arithmetic would be a tool <consistent with the ooals and
interests of WES., The role that USL oplavyed concerned the
implementing and benchmarking of the interval arithmetic rackane.

This dinvolved the conversion of application proarams in use at

¢ WES so that real and double precision computations would he
performed using interval arithmetic. The converted proarams were

; ’ then executed over a range of input values, The purpose was tn ;
gauge the value of interval arithmetic in the certification nf

each program’s reliability., This evaluation proved successful in

that a data sensitivity was uncovered in one of the proaramec, A

<7 QUALTLY PhAviveBuk
1S BEST AMALTTE
THIS PAGE o

FRON Qui'l Fostioina o

SO P P)
4 - . . - o

USL technical report 6] was written and published gqivina a

description of this work,

buring this period there were two separate interval arithmetic
8 packages implemented at USL, The first of these was the MRC's
single precision real interval package’ the second was 2 Sé
decimal digit interval package, The single precision real version
of the interval arithmetic package represented values as two
single precision real numhers, These two single precisior real
numbers are considered as bounds on an "exact” but possihlv not
machine representable value, This packaoce is well descrited in

£71.

The other interval arithmetic package, the Sft decimal dinit
interval version, was developed here at USL, This version was
based on the S9 decimat diait arithmetic unit of the Honevwell
H68/80 computer and represents the endpoints as two 56 decimal
digit values, All testing of alnorithms done wunder the sinnle
precision real version was also done under this version. The
results and a description of the implementation are to be found

in CBJ.

The fact ¢that the SA decimal diqit interval arithmetic nackaqe
was hardware hased, as well as being written in FPL/1, orecluded
its being transported tn any other system, However, the results
of work with this package provided valuahle insinhts into the
effects of extending the precision in which computations are

THS pAGE . 5T
FRCE T 2R L

ANALTTY PRLGTAOABLE
BERARETRY] Pr—

performed, It gave direction to the research that was to ‘ollow,

2. Goals and Accomplishments

It was the intent of the current work to develop, usirg
preprocessing techniques, extensions to FORTRAN which would
include:

1) the extended data types VPINTEGER, VPREAL,

VPCOMPLFX and VPINTEPVAL, The data types are

analoqous to those of standard FORTRAN and

the single nprecision interval data type, but

can be of arhitrary precision,

2) The standard built=-in functions (SIN, COS,

SQRT, etc.) for use with the new data types.

3) the input/output facilities of standard FNARTRAN

extended for use with the extended data

types,

A users quide, which would detail experiences and suanestions on
when and how to use variable precision arithmetic, was also

produced.

The work was also to have accomplished the production nf a

comprehensive set of specifications for the organization of an

VTR RWN 2

!ﬂISPAGEISBEbTQUALL?}f :
PROM 00 poRtiohis TULLG

ey

arithmetic wunit which can efficiently support variable precision

arithmetic,

As outlined in the grant proposal, FORTRAN was to have bheen
extended wusing the preprocessor AUGMENT, Tuwo extended FARTRAN
languages were to have heen constructed: |

1) variable Precision FORTRAN (VPFOR)

2) Variable Precision Interval FORTRAM (VPINTFOR)

VPFOR allows the use of VPREAL, VPINTFGFR and VPCOMPLEY, VPINTFNR
would allow the use of VPINTFRVAL, Roth languaaes would translate
a program written in FORTRAN with the ahove data types usina
standard FNORTRAN built-in functions and thke standard FNRTRAN
input/output facilities of READ and WRITE into a standard FORPTRAN
program with imbedded subroutine calls which would execute the
appropriate extended precision operations. These lanquages were
to be "constructed” as "virtual comonilers” that would translate
the "virtual™ source lanquage, VPFOR for example, to the

"virtual”™ object codesr standard FORTRAN,

As with many research projects, the finished products do not
quite conform to the specifications. There yere those items which
proved to involve more effort to implement than their relative
importance justifieds, as well as those items whose inclusion
greatly enhanced the overall product, The input/output extensions
were not done as specified, Rather than allowine the

gspecifications for input/output of extencded data types to bhe

THIS PAGE IS BE3T QUALITY PRAGILCABLE
FRUM Cur Y . altie TV e PR

A _Si

L LA

1

contained in FORTRAN FORMAT statements, the input/output was left
as explicit catlls but was simplified to be more wusable. The
RATFOR preprocessor (97 was attached to allow "structured
programming” techniques by the user. Also the ease of
specification of the precision of variables of the extended “ata
types was accommodated to a higher degree thar was envisioned in
the proposal. The finished product also allows mixed mode
arithmetic of all of the extended data types and their standard

FORTRAN counterparts.,

There were also changes in product definition dictated by the
actual implementation. Since the base representation of asll of
the extended data types was very similar and, in fact, the same
operations involving two different data tvpes would call the the
same subroutines at lower levels, only one FORTRAN lanquace was
constructed, This {angquage., SFPAFOR (Structured Fxtended
Precision Arithmetic FORtran), includes all of the extended data
types. The next section details the history of tha

implementation of the variable precision data type,

3. Design and Implementation of SEPAFOP

The first major decision to be made in the desinn phase of the
variable precision intervatl arithmetic package was how should the
basic operations be implemented, There was already a wmyltiple

precision resl package in use on Multics, and, in facts, had haen

- b mam e Ms o ee mean e e e = . . - — e

used by the S6 decimal diagit interval package in implementing the
standard built-in FORTRAN functions. A closer study of the 1
package, developed by R, P, Brent of the Auystralian Mational
University F10), indicated that the packaage was appropriate for
use in the implementation of SEPAFOR, 1Its assets
included:

1) Portability == due to the wuse of integer

arithmetic and standard FORTRAN the nackaoce

was machine independent with the exception of

two conversion subroutines,

2) Reliability -- the package had been thoroughly
tested and had been in use for quite some
time on several different machines,

3) Well constructed -- the packane had been
constructed with contemporary "structured
programming” techniques., As a result it was
highly modular with fairly ao0o0od internal
documentation which Lent dtself well tn
modification,

4) Avajtability =-- it was already resident on the

Multics system,

Once the decision was made to base the implementation on Rrent's
multiple precision package, the next problem tn arise was in
choosing a strateay for the implementation of the interval
arithmetic roundinas within the multipte nrecision package, There
were two primary methods to be considered,

IS PAGE 15 3E5T QUALITY PRAGTICABLE

FRO0M COPY FUBNISEEL TVLDC e

o g e

Jid

h

The first of these involved imbedding the roundinas solely in the
four basic operations of multiply, divide, add and suhtract. The
implementations of the built-in functions would not be concernerd
with rounding strategies but would let this responsibility tie
with the four basic ooberations. The primary advantage of this
approach was its simplicity, The only alaorithms which would
require extensive analysis were those of the hasic arithmetic
operations., The disadvantage of this strateay, which nrecluded
its use, was that is was quite inefficient with resnect to cou

time consumption.

The second implementation methord involved imheddine the raounding
strategy in all implemented functions and operations, The primary
disadvantage was that extensive alaorithm analysis had to be
performed on all implemented functions and operations. Tts
advantage, which more tﬂan offset its disadvantage, was that ane
could take advantage of the algorithmic structure nf the variaus
operations and functions to produce minimally wide interval

results in the most efficient manner possihle.

The largest portion of imolementation time was taken up with the
analysis and modification of operations and functions provided by
the basic multiple precision packaae to perform interval
srithmetic. This extensive analysis proved valuable in that an
error in the basic multiple precision package was uncovered. The
saddition routine was incorrectly nerformina addition on the Llast
§ QUADLTY PRACTICASLE

1S PAGR IS BEST S50 e
FROM COr'L LU p i 2

i o —M

digit of the operands, One modification which proved to save

much more time than it cost was that the subroutines were altered
so that, if one desired, its oriainal function (i,e, multinle
precision real) could be invoked. That is, the desired truncation
strategy 1is passed to the routine, The truncation stratecies
available are: upward directed, downward directed and standard
rounding. This greatly eased the implementation of the VORFAL and
VPINTEGER data tynmes as well as réducina the overall size nf the

package by sharing code,

Once it ﬁad been assured that the hasic set of operations and
functions performed correctly when invoked with the various
rounding §trategieso thouaht was qgiven to the imnlementation of
the interval arithmetic aspects of the operations and functions,
The addition routine, for example, could perform addition with
upward directed, downward directed or standard roundinas hut did
not perform interval addition per se, An approach was to develop
a set of intermediate subroutines which would contral the
interval aspects of the operation or function, Fach operation and
function was to have a corresponding subroutine which would

direct the roundinas to conform to interval arithmetic.

After completion of these two stanes, the imheddina of rounrding
strategies and the creation of interval operation subroutines,
the packange was enuivalent to the sinale precision real interval
package, There was the exception that interval variables could he

of arbitrary precision’ however, all interval variables had tn he

WALITY FRACTICABLE

THIS PAGE 15 BE3T AUALITY |
FROM COPY FUKS Laliiw TV 20¢ R

e D N R N Y e

of the same precision,

With the completion of this stage of the nroject, work was heaun
on automating the transtation of wuser source containing the]

variable precision interval data type to standard FORTRAN, Not

only was this part of the overall plan, but it would also areatly
facilitate the testing of the programs. The first stenm was the
creation of an AUGMENT description deck which would enable
AUGMENT ¢to perform the translation automatically. This was
fotlowed by the implementation of a skeletal "virtual conmpiler”
to aid in the translation by automatically attachina the AURMENT

description deck to the extended FORTRAN source.

The installation of the preprocessor RATFOR on the Myltics system

was done at this time. The decision was made to insert PATFOR

into the opackage because it allows the use nf extended control
structures (i, e. DO WHILE, TF~THFN=-ELSF, PFPFAT=IINTTL, etc.) in
FORTRAN programmina. The addition of extended control structures
strongly complements the extended data types, The use nf the
extended control structures allows the wuser tn produce more
readable, more reliable and better documented proorams faster
than with standard FOPTRAN, This is a strong aroument for its

inclusion,

The final step in the implementation of ¢the hasic variahbhle
precision interval arithmetic package was to find a means of

3 allowina different variables to have different precisions., This

’HISPAGEIS&&SIQEALlTxlhAuliddeL
FROM COPY iUk Lornon 20 oot

PP - B -
B - —ia —— ™ Ju, e i

rop———

o SR et . - i s i
AR YAy M S U S S,

was done by "tagging" the data with its precisior and by creating

a third level of subroutines for precision control,

The third level of subroutines developed for precision contral
performs such activities as resolvina precision conflicts among
operands and the extraction of the precision far use hy the lower
Llevels. It should be noted that the implementation of this third
level of subroutines went very aquickly and easilv., The hacic
structure of each subroutine 1is virtually identical for all

functions and operations,

With the completion of this final staaqe of the implementation o
the basic variable precisinn interval nackaae, work was heaun on
the implementation of the SEPAFOP "virtual compiler” which woulAd
translate the user program with 1its extended data tvres and

control structures to standard FORTRAN,

The SEPAFOR virtual compiler was constructed usinn PL/T with
calls to various Multics operating system modules. The function
of the SEPAFOR virtual compiler is to takes the user proaran
written in SEPAFOR and map the functionality down to Multics
object code. This 1is Adone by first passina the user's SFPAFAR
source proaram through the RATFOR preprocessor which translates
the extended control struyctures into standard FNRTRAN still
containing the extended data types, SEPAFOP dvnamically nenerates
an AUGMFNT description deck using information nhtained frnam the

user®'s SEPAFOR source nrogram. SEPAFOR takes the RATFNORed source

. cpichebE

e i i M M e 556 B . 155l B At - ht e e

and attaches the generated AUGMFNT descriptinn deck producina an
AUGMENT source deck, The AUGMFENT source deck is then onassed
through AUGMENT to produce a3 standard FORTPAM spource nrenram,

SEPAFOR then inserts into the standard FORTRAM source procram

initializations required by the wvariable precision interval
arithmetic package. The final act of SFPAFOR is to invoke the

FORTRAN compiler to produce Multics object code.

At this stage of the project, we had a useable subroutine nackage
which would allow the wuser to write pronrams containing the
extended data type VPINTERVAL,., Each variahte of this data tyne
could be of arbitrary opnrecision., That is, the variable CNUNT

could be of precision 2?0 while the variable <STE™ could +he of

precision 400, The &entire process of translation of the user's
SEPAFOR source proaram to Multics object code was autaomated so
b that no interaction was required from the wuser durina the
translation process. Frr some period of time after the

. completion of this stanae of the nproject, the opackane was

LIRS

extensively tested to ensure that all was in wnrking order and to

minimize any prohlems that miaght appear at a later date. Wwhat

remained of the implementation of SFPAFOR was the inclusion of

the rest of the extended data types as outlined in the npronosal,

L, Addition of Other vVariable Precision NData Types i

It was decided to implement VPREAL first as it was the simplest

N S A TR i.'_x‘.;A-vl“t’Ub

WIS PAGE 13 o2 e :
POUM GOt X 0w o e ey

I R i e oo .
3 '" o a DA) PRI IR NSNS « % 2 9077 P
m.“,,AK A o - s . ‘b Lo ” .

- A of the extended data types to implement and would provide added
experience for easing the implementation of ¢the remaining
extended data types, As has been mentioned bhefore, the basic

multiple precision package was an implementation of multinle

precision real, The complete implementation of VPRFAL recuired

P g
S et M WA

the creation of a set of intermediate subroutines for precision
control. As it turned out, this set of subroutires is virtually
identical to the precision control subroutines of VPINTERVAl , The §
exceptions being that the VPINTEPVAL precision control
subroutines call the interval arithmetic subroutines while the
VPREAL precision control subroutines call the basic multinle
precision routines directly and indicate the standard truncation

rather than the directed roundinas.

When it was realizerd that the precision control subroutines for
VPREAL would be almost ididentical to the nrecisinn control

routines for VPINTFRVAL, the implementation of the VPREAL

precision control subroutines went oauickly. The imolementation
entajiled text editina on the precision cantrol routines of
VPINTFRVAL to produce the VPREAL precision control subroutines,

The changes made were those outlined above,

A set of tests was again run on the VYPINTFRYAL portion of the
package. This testing consisted of producina values with the
VPINTERVAL data type. The same procedures were run again huot with
the VPREAL data type with a hiocher precision, A comparisor was

made between the two values. Theoretically, if nothina were

PHIS PAGE IS BEST QUALITY PRASTLICABLE
FROM COPY Fumsi il Tuund

PO et e e

I PR, " it

changed between the two runs except for the data tyne exchange
and the higher precision, then the VPREAL values should always he
contained in the interval produced with the VPINTFRVAL data tyne.
Such was the case with all tests run, This indicated that the
modifications made to the hasic multiple precision packaage in the
hopes of minimizing the widths of the intervals produced anpeared

to be correct and proper,

With the completion of ¢the implementation of VYPRFAL and its
associated process of testings, attentinon was turned ta the
implementation of VPINTEARFR, Since the basic multiple precision
package produced only real values, inteqger arithmetic had to the
simulated. To correctly simulate intener arithmetic, inteqer
overflow had to be detected and truncation of fractional wvalues

had to be done properly,

There were two choices for the placement of the dintener

arithmetic simulation, The first of these was, Like the intervatl

arithmetic truncations, in the body of the basic multiole
precision package, This would have entailed aralyzinn the
routines again to determine which modifications were neede” to 5
produce only integer values and detection of inteaer overflow. Tt]
would also have raised the complexity of the modified routines,
tonsidering the ¢time it took for the interval arithmetic
analysis, this was an unacceptable approach. The second apnroach
was to go ahead and allow full computation of real values and

perform checks on the results returned and was the apnroach

- 919IS PAGE 1S BEST QUALTTY PRACTICABLE
FROM COPY Flalsoans Tuwind

The precision control subroutines were then to be almost
identical to the oprecision control subroutines of VPRFAL, The
exception being that before returning to the calling subroutine a
call would be made to a subroutine which would check the wvaluye
for integer overflow and truncate the fractional part. This woulAd
ensure that a proper integer value would be returned and that no
integer overflow had occurred. The detection of intener overflow
was simple in that all that had to be checked was - the exponent,
1t the exponent was larger than the precision thic indicated that
integer overflow had occurred. Truncation was a matter of

zeroing out the fractional part,

The remaining data type to be implemented was VYPCOMPLEX, This
proved somewhat more difficult to implement than VPRPFAL and
VPINTEGER in that, like VPINTERVAL, a series of intermediate
subroutines had to be written to perform complex arithmetic, The
implementation was eased by the fact that standard truncatinn was
to be used by VPCOMPLFX., The implementation o VPCOMPLFX did not
take long as considerable experience had been nained in the
manipulation of the base representation. Alson, there was no need
to consider the representation of the VPCOMPLFX data type’; the
representation used for the VPINTERVAL data type was ouite
adequate. The operations to be performed on the real and
imaginary parts of VPLOMPLEX were similar to those performed on

the Lleft and riaght endpoints of VPINTERVAL, Thus, using the

ke

intermediate subroutines of VPINTERVAL as a model, the writing of
the intermediate subroutines for VPCOMPLFX was completed very

quickty.

Concurrent with the implementation of each data type was the
development of AUGMENT description decks to make possible the
automated translation of the data types into standard FORTRAN
The use of the virtual compiler for each data type consisted n*¥
simply substitutina the appropriate AUGMEMT description deck into
the transtation process, 2t this stagce of development we had four
separate data types that could be used only in solitary. Tt was
desired that all four should be able to be userd simultanesusly in
the same program, To accomplish this there were two thinns that
had to be done., 2 comprehensive AUCMENT descriotion deck had to
be developed, This AUCYENT description Adeck not only had to
detail the particulars of each data tvpe's conversion into
standard FORTRAN, but had to detail how interactions arorao the
different data types were to be carried out. The secnnd task tn
be accomplished was the creation of a set of conversion routines
for handling the interactions amonqg the four extended data types

as well as the standard FORTRAN data types.

The remaining tasks were carried out in short order, The creation
of the comprehensive AUGMENT description deck was done by
combining the description decks that had already bheen written,
ALl that needed to be done to complete the comprehensive

description deck was the addition of conversion information that

pLl

ny PRACIIOS
57 QUALTLY FiAss
yHIS PAGE 18 BES ¢ =01

IR et ol AN
PRI i aiki .

was needed for handiing the interactions amona the wvarious data J
types. The writino of the conversion routines was made simple in
that each data type's base representation was the same, For J
example, conversion from VPINTEGFR to VPRFAL was the equivalent
of simple assignment, The only conversion which was of any
trouble was the conversion from VPINTFRYAL to the other data
types? this entailed the writino of a subroutine for the takinna
of the midpoint of the dinterval, Once these two tasks were

completed the packange was ready for installation at wWrFS,

S. Installation of SEPAFOR at WES ;

The transporting of SEPAFOR to WFS consisted of two parts. First,
the variable precision arithmetic package had to te delivered and
instatled on the (435S computer at WES, The delivery was made hy
magnetic tape. Second, the SEPAFCR virtual compiler had to he :

designed and written for compatibility with the G6A7S GFCCS

operating system, .

The variahle precision arithmetic packaae had been designed with
hiqh portability as one of its noals. Much care was taken in tha
writing of the variable nrecision arithmetic nackace to ensure
that all constructs used were portable, To aid in this endeavor,
PFORT was obtained from 2ell Labs {111, PFART checks a FNARTPRAN
program for compliance with a subhset of ANS! estandard FORTRAN, T

a program is PFORT compatible then it should bhe compatihle with

APCESEER

'
- -
P .

Ikﬁls E“' - . - . ..'"\ "\. ',""‘»L ’--f—"'f." j
. T"}ﬂ“_‘-u"“" 4%
FROM 0071 U ‘
4 . . . » i sl i

the majority of FORTRAN compilers in use today. This proved to be

the case with the G63S's FORTRAN compiler, The almost 13%,00N
tines of code compiled on the (635 without oenesrating a sinnle

diagnostic!

Implementing the SEPAFOR virtual compiler proved to bhe much
harder., Before transporting the svstem to WFS, as much of the
Myutltics SEPAFOR virtual compiler as was onssibtle was rewritten in
FORTRAN, This included the AUGMENT descrintion deck generator and
the portion of SEPAFNP which inserts the initializinng
information, lUpon arrival at WFS, the workinne nf SFPAFNR yere
explained and work was bhegun on its implementation, This
implementation entailed the conversinn of the Pl /1=-Myltics
portions of SFPAFOP which were not convertihle to FORTRAN into
6635 JCL. These nportions included process control and file
attachment for the various preprocessars. SFPAFNR was installer
on the (635 system in four days with orly two minor orotlems
occurring. Since the oackage is integer arithmetic baced,
computations involvina the extended data types should pnroduce
identical results on all <computer systems on which they are
executed, This is 1in sharp contrast to floatina point baserd
packages which, it seems, are almost aquaranteed to produce

different results on different computer systems,

ok F Y ¢

S AT €T

References

f1) Ladner, T, D, and Yohe, J, M,, "An interval arithmetic
package for the UNTVAC 1178," The Ilnjversity of
Wisconsin, Mathematics Research Center, Technical

Summary Report No, 1NSS, May, 1970,

2] VYohe, J. M., "Rest possible floatina point arithmetic,” The
University of Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1054, *arck, 1770,

£31 Binstocks, W.,, Hawkes, J. and Hsu, N,, "An interval
input/output rackage for the UNIVAC 11N8%," The
University of Wisconsin, Mathematics Research frentear,
Technical Summary Report No, 1212, Septemher, 1973,

f4) Crary, F. Der "The ANGMENT precompiler, T, User
information,” The liniversity of Wisconsins, Mathematics
Research Center, Technical Summary Peport No, 14609,
December, 1974,

€S Crarys F. D.s» "The AUGMFNT nprecompniter, II. Technical
documentation,"” The University of Wiscnnsing,
Mathematics Pesearch Center, Technical Summary Pfeport
No. 1470, October, 1975,

f61 Reuter Eric XK., Jeter John P., *Anderson J. W. and Chriver
Rruce D, "Some Experiments Using Interval Arithmetic”,
Computer Science Department Peport No. 7R=7~1,
University of Southwestern Louisiana., Lafavette,
Louisiana, October, 1077,

f?7) Podlaska-Lando, S. and Reuter fric K.» ""mplementation ard
Fvaluation of Interval Arithmetic Software, Penort 2:
The Honeywell "ultics System”, Techknical Report No,
0-79-1, Nffice, Chief of Fnaineers, U. S. Pfrmy,
Washington D, L. April 1079,

{8 Reuter Fric K.,» Jeter John P,, Aanderson J, W. and <Shriver
Bruce hH, "A S6 Decimal nNigit Tmnlementation of an
Interval Arithmetic Packagqe on the “Multics Svstem”,
Computer Science Department Report No . ?77-7=1,
University of Southwestern Louisiana, Lafavette,
Louisiana, September, 1977,

{9). Sofswace.lools, Kernighan, a, and flauaer, P.s
Addison-Wesley Publishing Companv, Readina,
Massachusetts, 1976,

C10) Brent, Re P.s, "A FORTRAN multiple-precision arithmetic

package," Nepartment of Computer Science,
Carnegie-Mellon IIniversity, Pittsburgh, Pennsylvania,
May, 1976,

THIS PACL 150 Li0Q0ericy i
e dd el il Ladod LOAF ,
. o ViLlCABLE

L A B2 Y
AR Ay B O

(121 Ryder, B, G.» "The PFORY Verifier", Software Pragtice

aad
Experienge, Vol. 4, 1974,

REFERENCES
-*
a
]
P ¥ ""
a0
[. .
P
a7 34"“"'
ot
"C)-'_,&V’
AN

D T R O N, i Sl e g v] AR 7 2 L SR P S b AL i ¢ Vol W6 el A A e R . Lo I N g

B o iy ke s e e e e e e w e e B T A N Ao at! & S gy ¢ 4n ben 4o s AR e e M Y b A L4 ot b ol = e e e et

A VARIABLE PRECISION INTERVAL DATA TYPE
EXTENSION TO FORTRAN

A Project Report
Presented to
The Faculty and Graduate School
of the

University of Southwestern Louisiana

In Partial Fulfillment

of the Requirements for Degree

Master of Science

John P, Jeter

Julys, 1979

*# This work was supported in part by the U. S. Army Corps
of Engineers under grants DAAG29-78-G-0068 and DRXO-MA~15169-M

oy AP TN W T o (W A @A SR o rainEar

% o i, QIR s LA e

1 Introduction.......-...............-...............1

2. sveneral Considerations on the COMPUteT. s vasvessessased

Implementation of Interval Arithmetic
2.1 Interval Valued FUNCtiONS ceeoocsvocnccccsccsnsasnd

3. Structured Variable Precision Interval FORTRAN.ceee8
3.1 The Variable Precision Interval Data Type.cees?
3.2 Supporting Arithmetic Package.viicvencccconiell
3.3 "Structured" FORTRAN..-ooo.o-o-o-ooo.o.o.oo..‘s
3.“ Translation to FORTRAN....-..............-...18

4, Results and SummarY............-..------0-0000000019
4.1 Results......-................---............19
4.17.1 benchmark runs with cCOmMParisSoNScescess2?
to previous arithmetics

implemented at USL
4.1.1.1 e constant coupUtation.-..;..ZZ
4,17.1.2 heat transfer programececeecso30
4.17.2 an evaluation of the multileveleecceosas33

interpretation process

6.2 SUMMArYesaseesoosscssscoasscacscsscossanscsncncasabd
Appendix A. RATFORcevecesccscsscsrccsccsancaacsascncsacaah?
Appendix 8, AUGMENT InterfacC.cccccccsccsccsecsccancsscasnadl
Appendix C. The Basic MP PacCkag€eeeocecasecacsscscssnsnncelB

Appendix D, Mathematical Basis for Interval.eccecececceed’
Arithmetics

Appendix E., Description of MV Routines Availableeeccesed?

Appendix Fo SaMDle Program Source and...-.............?S
FORTRAN Output

Appendix G. User's Guide to Structured Variable..oeae,103
Precision Interval FORTRAN

Appendix H, Value of the Constant e to 1000 Digits...107

Appendix I, User Source Versions of the €.ceccccscces108
Computation Algorithm

Appendix J. User Source Versions 0f the Heateceososoeosllé
Computat ion Algorithm

Appendix K, Results from the Heat ComputatiONeconcesesl30
Algorithm

d

e A B L D W e S e

P

" gt e

s oo s L e G i St
i el 5 i sa VB s B n b M SR “sivA v r i A s e A

b N g IR T Nl B0

1. lotreduction

The specific objectives of this project are:

1) to design a variable precision interval data type
which would be ‘imbedded in FORTRAN wusing the
AUGMENT (4,5] preprocessor,

2) to implement R, P. Brent's multiple precision
package {1013, incorporating modifications to
support interval arithmetic.

3) to implement the RATFOR preprocessor (9] and to
design an AUGMENT description deck C4,5]
incorporating them into the variable precision
interval data type package. This would allow users
to write FORTRAN programs containing the variable

precision interval data type in a structured
manner,
4) to perform an evaluation of the multilevel

interpretation process that was used to implement
structured variable precision interval FORTRAN.

The first section of this document gives an introduction to

interval arithmetic that 1is helpful 1in wunderstanding the
properties of variable precision interval arithmetic. Further
details concerning interval arithmetic are given in Appendix D,

The second section describes the variable precision interval
data types, 1its supporting arithmetic package and the translator
which translates a wuser's "extended FORTRAN"™ program into
standard FORTRAN. Appendices A and B give additional details
concerning the RATFOR and AUGMENT preprocessors which are used to
carry out portions of this translation., The last section in this
report contains the summary of the project and the results of

several program teésts. In this section the variable precision

A e e T

———— T

-y

interval FORTRAN version of each test progranm

other versions of the same atgorithm-

implemented arithmetics. An evaluation of
interpretation process 1is also presented,

structured variable precision interval FORTRAN

is compared with
using previoustly

the aultilevel
A user's guide to

is inctuded as an

aid to the user writing structured variable precision interval

FORTRAN programs,

- e W — == T

v -] \ e b e g W AT i i R R s
. m -

e o

2. General_Copsiderations_oo-the_Lomoutsc_lanlementation
ef _loteryal_Acithpetic

The finite precision arithmetic used on computers is an
approximation to the real number system. In interval arithmetic,
real npumbers are approximated by intervals which contain the
number. A brief introduction to interval arithmetic is given in
Appendix D. Since the finite precision arithmetic used on
computers is an approximation to the real number system, there
are many intervals whose endpoints are not representable with a
finite precision arithmetic, In this case the endpoints of the
interval have to be approximated by the floating point system.
This computer approximation of the real-valueé intervals s
represented as a pair of machine representable numbers stored in
consecutive storage locations. The first number will be the
lower bound of the machine approximation to the interval,
referred to as the Left endpoint, while the second number will be

the upper bound, referred to as the right endpoint,

In order to obtain the smallest computer representable interval
for the result of arithmetic operations on finite precision
intervals, directed roundings on the computer arithmetic
operations must be defined., Assume x is a real number and M1 and
M2 are two machine representable numbers such that M1 ¢ x § M2
and M1 and M2 are either equal or consecutive, Define Rd to be
the downward directed rounding such that Rd(x) = M1, Define Ru

to be the upward directed such that Rulx) = M2, M1 and M2 will

— £ R R e g SE BT

ot SO0E R Lkl Y S5

e L0 Y e Ul e Jad i

B e

be the machine representable numbers that are respectively the
greatest lower bound and the teast wupper bound for the reatl
number x. If x is a machine representable number, then Ru(x) =

Rd{x) = x,.

Algorithms for performing the machine arithmetic operations with
directed roundings can be found in Yohe [2). 1In general a op b,
where a and b are machine representable numbers and op is one of
the machine arithmetic operations, is not a machine representable
number and must be rounded into a machine representable number.
Directed roundings are used to compute the endpoints of the
resultant interval for a particular arithmetic operation
performed on two intervals. A downward directed rounding is
performed to provide (eft endpoint and an upward directed

rounding is performed to provide the right endpoint.
For example finite precision interval addition is defined as.

Carbl + [cod] = Catcobed]

where a, bs ¢, and d are machine representable numbers, The
computer approximation to the resultant interval is defined as
follows:

Casbl ® Ccrdl = CRACa®c),Ru(bed)] l
where € is the machine addition operation.
Since the range of machine representable numbers is boundeds

situations might occur during finite precision operations in

——a ke b s S I I i Al M o RO Moi vt . 08l ra . ubimy. . AR o AN A A sl S UEIARN ** , mrr iamkmr iae

which these bounds are exceeded. If the finite precision number
becomes too small, wunderflow has occurred. If the finite
precision number becomes too large, overflow has occurred. 1f

underflow occurss, then the true result is between zero and the

y smallest positive or negative representable number, In this case
a directed rounding can give a valid bound. In the <case of
, overflows, if rounding away from 2ero is wanteds, then there is no
machine representable number which can be used as a correct
bound. This type of error conditions, or fault, is known as an

infinity fault,

2.1 latecval_Valued_ Eunctioans

A real-valued function, f, which is defined and continuous on an
interval [a,bl can be extended to an interval-valued functions, F,

of an interval variable by defining

F(Carbl) = {fi{x) : x € Carbll.

when f is evaluated on a digital computer wusing machine
representable approximations to the real numbers, a computer
approximation, f', to f results, 1f F(La,bl) is an interval
valued function of an interval +(where a and b are machine
representable numbers), then the computer approximation,

F'(Lasbl) is defined as an interval that contains F(las,bl),.

Assume f' is the computer approximation of a real valued function

f and f is monotonic increasing on C[as,bl. Then

F'(Larbl) = [RA(f'(a)),Ru(f*'(b))]

where Rd is a downward directed rounding into a machine

representable npumber such that Rd(f'{(a)) < t(a) and Ru is an
upward directed rounding into a machine representable number sych
that Ru(f"(b)) 2> f(b)., Ideally we would like Rd(f'(a)) to be the

largest machine representable number such that Rd(f'(a)) £ f(a)
(i.e., a greatest lower bound) and Ru(f'(b)) to be the smallest
machine representable number such that Ru(f'(b)) 2 f(b) (i.e. a

least upper bound),

If f is monotonic decreasing on [asbls, then

F'(Carbl) = [RACF'(D)I,RuCf*(3))]

1+ f s not monotonic on [a,bl, then the interval [a,b] can be
divided into disjoint subintervalss X*'(ids i =2 1,2+3s0ceon’ where
the endpoints of each X'(i) are machine representable numbers and
U X(i) contains all the machine representable numbers in the
interval Lfa,bl and f is monotonic on each X'(i), In this case
F'(La,bl) = U F (X*'(i)). It should be noted thats 1in practice,
this partitioning is performed only for the functions supplied by
the support structure, If, for example, the wuser wished to
evaluate the polynomial x**2 - x over the interval [(.5te]l] where
is e is very small then the correct bounds may not be formed,
However, the polynomial dis broken down into subexpressions
before evaluation’ each of these subexpressions is evaluated

with correct bounding since each is monotonic over the interval,

L RN SR (G s I R N LB T
P

It may not be possibler, due to algorithmic inadequacies or to
accumulated roundings, to obtain the best bounds for the result
of the computer approximation to the function f. The problem
will be illustrated in the next section when describing the

interval counterparts of the Multics basic external functions,

!

1

1
4
5

b @ nem g R e A A5 RIS e arti g b

3. Structurede _Mariable erecisione Iotecyal_EQRIRAN

The variable precisions interval data type is patterned after
the single precision interval data type previously implemented at
Uﬁiversity of Southwestern Louisiana [8] and at the Mathematics
Research Center of the University of Wisconsin [2,11], The

computer representation of the single precision interval data

type consists of a two element single precision floating point

FORTRAN array. The first element in the array 1is the left —
endpoint while the second element is the right endpoint. The
interval operations provided include the basic FORTRAN operations

and supplied functions. These operations are supported at their T

lowest level by machine dependent procedures uwhich perform the ‘j

required directed roundings., i

The variable precisions interval data type's implementation is

based upon R. P, Brent's Multiple Precision Package which has

been modified to perform the necessary roundings for interval

—

4

arithmetic. The implemented supporting package is highly i

3

portabte, All modutes have been successfully passed through the —
PFORT FORTRAN verifier[12]. PFORT 1is a subset of ANSI FORTRAN

which should be compatible with the great majority of FORTRAN
compilers, A good part of the process of translation from
variable precision, interval FORTRAN to standard FORTRAN was

automated to make the task simpler for the user. The following

|

subsections describe in further detail the varfable precisions,

< i g S PN L T A i 1 S AT v < o A g o

interval data type and the underlying supporting package as

well as the translation process.

3.7 Ihe_Yarjable Precision_lnteryal _Rata_lype

The variable precision, interval data type is operationally the
same as the sfngle precision interval data type implemented
earlier [8), The difference Lies in their basic machine
representation, While the single precision interval data type is
represented as two sinale precision real numbers, Figure 1, the
variable precision, interval is represented as two single row
integer arrays, or vectors, fFigure 2. The variable precision,
interval data type does, however, allow the user to specify the
precision of each finite precision interval variable,

R S s O Y R P AD S b D aP S P D AP W e T -

t ftoating point ! floating point 1
| singlte precision ! single precision !
! 1 1

BN WD R DO BB B PP W A e T D Y e

FIGURFE 1

Single precision interval data type representation

D A T RN A G Y G D S Eh R WD S D N D DT e S TR D AR G AR GRS D D D S R AR AP A AP P D W - -

1 | 1 f 1 | i 1 { i i '
Isdddt! expon | T1 1 72 l,ee! TN 1 s | expon | T1 1,..01 TN |
! t t t { 1.2 1 i 1 g | 1 1

ocoeceoee ' cveocsceoe covan ' coce ' vew onee 'vaes 'Tcemnscse " ecece Teoven s

FIGURE 2

Multiple precision interval data type representation
(sdddt = sign(0s,~1 or +1) concatenated with
the precision concatenated with a temporary
variable indicator (1 for temporary, 0 for
non-temporary) expon = exponent (to base b)

T4 = digft (in base bh) s = sign (0, =71 or
+1))

[

Fona

L.

o

e |

e N o W ik N iR M T B

As an-exampte of the use vf the variahte precision, intervat data
types, suppose that a program written with variable precision,
interval variables produces satisfactory results during most of
the computation with a precision T1, Let us assume it executes a
section of computation which has a data sensitivity’ that is, for
certain 1input data the algorithm produces results which are
incorrect ors, wusing interval arithmetic, the results have
undesirably Llarge interval widths, Using the variable precision,
intefval data type the wuser s able to specify that the
computationally demanding section of code be performed with a
precision T2 (T?>T1) which would be sufficiently high to produce
satisfactory results, Ctonversely, for a less demanding
computation the wuser may specify a lower precision. Thus, the
variable precision, interval data type allows the uyser to tailor
the precision of the interval variables (and subsequently the
computational overhead) to the computational needs of the

algorithm,

Structured, variable precision, interval FORTRAN has been
designed so as to allow the user great freedom in the mixing of
data types. Computations involving integer, real and variable
precision, interval variables are allowed, The precision of
interval operands are determined at runtime. The operations are
performed with the same precision as the operand with the highest

precision, The result s then converted to the precision of the

i e vt b TR S N
. . i e e 287 L e o AN LLN S Lt S B s O L Y e e i e LR <
< e KA - ikt iy RIS .

—— g e 0 B A T S L n R s e

) variabte that iJs to contain the result, called the tarqget, 1In
' cases where the target is an intermediate result of a computation
; the precision of the result 1is retained, Intermediate results
retain the highest precision encountered during each computation,
Further computations with an intermediate result are treated as

above, using the highest precision required of the operands.,

. As a clarifying example consider the computation
Y = X%2 + AxY ¢ B + C
where X, 2, A Y and B are variable precision, interval variables

uwith precisions 25, S0, 7S, 15 and SO respectively and € is a

real variable. The computation is performed as shown in Figure

3.

1 “operation 1 precision | target 777

' .---.----------------‘------------------------------“---------'

! ! ! 1

1 X * 2 1 50 ! templ (with precision SO)I 3
I A+ vy t 78 ! temp?2 (with precision 75)1{ —
I templ! *» temp? 1 75 ! temp!1 (with precision 75)1

f templ + B Y 7S ! temp? (with precision 75)1

! convert C to interval | 10 1 temp2 (with precision 10)1 7
1 templ + temp? ! 75 ! v (with precision 15) L

FIGURE 3

Execution record of the FORTRAN statement Y =
X*Z 4+ A+*Y ¢+ B 4 C displaying precision of the
operation and the precision to which the
resutt is converted

N

For 8 different perspective of ¢the example Llet Y be a real

7
%
-4

variable and B an integer, Then the execution record would then

-11-

AR e 58 Rl i ko T a2

be that of Figure 4,

AR G D S W AR D D TR TS W T PR YD DD W G TP ED A D D WP S S D AR P UD AR S WD IDAP P A D Uk W A ER D D D U AR D U P WD G A @ W AP

} - operation -V precision | target
' L X 2 L K K N X L N X R ¥ ¥ X T ¥ N ¥ ¥ ¥ Y 3 ------------------'--‘.----‘-------------'
1 ! 1]
I X » 2 i sQ I temp?! (with précision 50)1t
! convert B to interval | 20 { temp?2 (with precision 2001
i A * temp? 1 75 1 temp?2 (with precision 7531
. t tempt * temp? t 75 ! temp?! (with precision 7?S)1t
1 tempt ¢+ B 1 75 | temp?! (uwith precision 7?5)1
1 convert C to interval 1| 10 I temp?2 (with precision 1001
! templ + temp? i 75 | temp! (with precision ?75)1
! convert temp! to reatl | 75 ! ¥ (in single precision)
v L A X A X R X X L E 2 2 T R X T 2 X L F L X E L K X X 2 X X L2 L & X E LT T E X X L L X % X L X % 2 T ¥ 3 ¥ ¥ ¥ ¥ ¥ ¥ ¥ F F ¥ ¥ ¥
FIGURE &

Execution record of the FORTRAN statement Y =
X¢2Z + A*Y ¢+ B + (with Y changed to a real
variable and B8 changed to an integer
displaying precision of the operation and the
3 precision to which the result is converted

3 3.2 Supporting.Arithmetic_Package

E Operations involving the variable precisions, interval data type

y

t are implemented via a series of calls to a supporting multilevel i]
interpretive structure, This multilevel interpretive steucture

controls the precision under which the {nterval operations are

carried out, performs the necessary conversions, executes the
desired operations with the required roundings and takes care of
. the housekeeping involved with the variable precision, interval
dats type, The supporting structure is composed of three separate
tevels, The first level of the multitevel interpretive structure
performs the precision adjustments that need to be made before
the actual operations are performed, The second Llevel controls

the detafils of the fnterval operation, for examples which

}'

endpoints to use in determining the result and the rounding 7

strategy to bhe employed, The third Llevel carries out the actual <j

operation with the proper roundings. The package can be

represented graphicalty as shown in figure S, 3

{ user program 1
! level 1
| I |
}
cevecocrecccoel cccaccncesnee
{ 1st Level -- precision 1

1 of operations determined 1|
| (precision controtl level)t
| U |
1
cencccccccvrce’ccccccacecenee
1 2nd level == controls '
| the specifics of the 1
! interval operation !
| (interval operation level)l
t

S EE A B G S D D P D G " an .-

! 3rd level == performs the |
! vector manipulations on 1
! the endpoints of the 1
! intervals 1
! (vector manipulation level)!

e ccccccccccccccccccccene]

1

coccencncnccncVcccnccaccanen

!)

! machine operations !]
1 ! 3

- S N P G P IS G P TR T W YRS -

FIGURE S

Graphic depiction of the various levels of
the multilevel interpretive support structure

A demonstration of how the levels interact and the

E it o . S

) 5 = Fevmat dai AN " 3
B N e e T i R L R Ll A, P " . LD g RPN, 6T JE R T S0

responsibilities of each Llevel can be made by following the
computation C = A + B down through the different Llevels, where
all wvariables are of type variable precision interval, The

sctions taken at each levelt are as follows:

1) User program level -~ the assignment statement isg
translated into a call to the subroutine MVADD

CALL MvVADD (A, B, C)

2) Precision control Level =~ MVADD Tfnspects the
operands A and B determining which has the larger
precision, The smaller precision arqument is
converted to the larger precision by copying its
value into a temporary workspace, named MVTEwWP,
kept explicitly for that purpose, The precision
for which the computation will be performeds, kept
in an external Llocations, is ¢then set to the
precision of the larger precision operand, A call
to the interval operation level is then performed
by executing either

CALL MXADD (MVTEMP, MVB, MVTEMP) or
CALL MXADD (MVA, MVTEMP, MVTEMP)

The target is then inspected, If the target s
itself a temporary, an intermediate resutlt, the
result of the operation is retained. If it is not,
adjustments are made on the precision of the
result and the value assigned to the target,

3) Interval operations level =<« MXADD makes two calls
to the vector operation Llevel to perform the
operation of interval addition

CALL MPADD (MXA(right)., MXB(right),
mxC(right), wupward directed rounding
indicator)

CALL MPADD (MXA(left), MXB(left), MXC(left),
downward directed rounding indicator)

4) Vector manipulation (evel == MPADD performs the
manipulation of addition which 1is, at this low
level, an addition of two integer arrays, This
addition is performed by calls to various other
supportive routines at this Level which carry out
the actual machine operations of addition on the
integer array which represents the endpoint of the
variable precision, interval arqument specified

it~

S en g R TR - § SRS

S s P S N NSRS S K g i,

eartier.

3.3 ZstructucedZ EQRIRAN

The variable precision, interval data type has been imbedded in
"structured” FORTRAN, This was accomplished through the
incorporation of RATFOR (9], a preprocessor for FORTRAN written
in FORTRAN, into the supporting structure, The end result was
the production of structured, variable precision, interval

FORTRAN,

"Structured” FORTRAN allows the wuse of contemporary control
structures such as DO-WHILE, IF-THEN-ELSE and REPEAT-UNTIL (9],
The primary purpose is to make FORTRAN a better programming
language by permitting and encouraging the writing of readable
and well-structured programs. This 1is done by providing the
control structures that are wunavailable in FORTRAN, and by
improving the “"cosmetics” of the language, similar to that done

in FORTRAN '77,

The cosmetic aspects of RATFOR have been desianed to make it
concise and reasonably pleasing to the eye, It is free-form:
statements may appear anywhere on an input line, Other additions
also improve the readability of the language; for example, the
use of the symbol ">" conveys the meaning of code more rapidly

than the equivalent string of symbols ",G6GT,", ‘

o

o

To show the advantages of RATFOR consider the construct

IF (condition) THEN (s1) ELSE (s2),
This construct is, for the most part, fairly easy to understand.
IF the "condition” is true THEN statement "s1" is to be executed,
ELSE statement "s2" is to be executed. However, this construct is

rather awkward to express in FORTRAN,

As an example, suppose that if the value of the variable X were
greater than or equal to 10,7, then X is to be divided by 18,3
and the counter KOUNT dincremented by one. However, if the
condition were false then the variahle X is to be multiplied by
18.3 and the counter XOUNT decremented by one. One way of

expressing this in FORTRAN as shown in Figure 6,

W AP D D A G D DD AP D DG D G D DR G WA MDD U G Gp AP AS W

IF (X.GE.10.7) GO TO 10
X = X »« 18,3
KOUNT = KOUNT - 1

|

t

1

GO0 TO 20 |

10 X =X / 18,3 !
KOUNT = KOUNT + 1 |

20 CONTINUE {
!

A D D A D WD D WD G > D A G YD D D A EDED WP G MDA W

FIGURE 6

Example of FORTRAN code

On the other hand, the same logic could be expressed in RATFOR as

shown in fFigure 7,

.16~

IF (X >= 10.7)

1
1
!
!
|]
!
1
!
1
1

- I . W S e -

r
X = X / 18,3
KOUNT = KOUNT + 1
ELSE
C

X = X *« 18,3
KOUNT = KOUNT - 1)

FIGURE 7

RATFOR version of FORTRAN code in Fiqure 6

With these additional contemporary programming tanguage
constructs the proagrammer 1is able to produce a readable,
structured program and have it translated automatically into
standard FORTRAN, It is herein that RATFOR's greatest value
lies. A highly readable, structured program is a proaram that is
easier to develop, debug and modify. The time it takes a
programmer assigned to modify an existent proaram to get the job
done is directly proportional to the wunderstandability of the
code, By the automati¢c translation of these constructs into
FORTRAN, the programmer is able to devote a Llarger portion of
time to the development of ideas rather than their translation

while heing assured that this translation will be done correctly

each and every time,

I A g — —

3.4 Icapslation.of_Structured. _VYariable Precision_lntecyal
EQRIBAN_to EQRIRAN

A "virtual” compiler was developed to compile the structured
variable precision, interval FORTRAN source to the "object code”
of the FORTRAN virtual machine, The virtual compiler allows the
user to write "structured” FORTRAN programs which contain
interval variables, The virtual compiler automatically performs
the simple but laborious task of tending to the technical details
of the translation. The virtual compiler program first passes
the application’s source program through the preprocessor RATFOR
producing an intermediate form of the program. This intermediate
program is then passed to AUGMENT after an AUGMENT description
deck has been automatically attached., A FORTRAN version of the
program is then produced by AUGMENT., This process is graphically
depicted in Fiqure 8, A more detailed description of RATFOR and

the AUGMENT description deck can be found in the appendices,

! Structured Variable |
) Precision Interval !

'-EQBIRAN--T----------'

| (RATFOR preprocessor under

t Virtual Compiler control)
------‘----v-----------
t AUGMENT Source |

ORI '] Y -§ SRS
! (AUGMENT preprocessor under
1 Virtual Compiler controt)
! FORTRAN Source |
! f

covcocecel88Kanaaaaa.

FIGURE 8

Depiction of translation process

[R

AR D -l 7 M L0 iy i 35 sn AR R U

4. Results_apd_Supmary

4.1 Besulls

The test programs used as a basis for the results consist of a

heat transfer program and a program which computes the constant

e. The Llatter was chose for its simplicity. It consists of a
simple iterative loop with only the basic operations of addition.,
. multiptication and division, One other reason for its inclusion
is that the constant e 1is known to many decimal places and
therefore some measure of the capabilities of the various
arithmetics can be made, This algorithm also provides an example
of the effects that extending loop termination factors can have
on resource usage when extended precision is used. The algorithm

used to compute the constant e is given is Figure 9,

/* initializations =»/
sum = 02 nfact = 17
step = 17 § = 02 ‘
error_factor = CONSTANT

/* main” Loop */
repeat
sum = sum + step
=4 + 17
nfact = nfact * §;
step = 1/nfact
until (step <= error_factor)’

/* output result «/
put (sum);

FIGURE 9

Algorithm to compute the constant e

-19-

VA G D AP WD Y S D S D S P T TP WD S P D W AP P WD S YD WD NS G A Y TR D AP A O s e

/* initializations *»/

k= 307 L= 107 ¢ = ,122 t0 = 70;
t1 = SO0 ro = 7,1 * 62,32

pi = 3,1415927;

get (theta)?’

/* toop once for each foot */
do feet = 1 to °

/* initializations for sub=-loop */
t = (k * theta)/(t**2 = ro * ¢);

x = feet/l? /* increment foot #»/
sum = 07 count = 07 time = N;?

/* Loop to determine temperature #*/
repeat
count = count + 17
xsum = ((~1)+xcount/count) =~
exp({-count)&«%x?2 * piss? « ¢t =
sin(count*pi*x)?
SuUm = sum + xsum;
if (abs(xsum) < error
then time = time ¢+ 1;
else time = 07
until (time = 2).

/* compute and osutput result =/

t = t0 + (t1~-t0) » (x + (2/pidrsum)’
put (t)?

end;

- en A A D w P s D D W GRS sup GNE T TER GUD SEP D way VEP NS WD wt AED AU G S amy
W D s A e D A T g L ol WS b W D WD R D R D am TS R TS e ED Guy P P -

FIGURE 10
Algorithm to compute the temperature of a
pipe of Llength t at 1 foot intervals, where

the ambient temperature is t0 degrees and the
heat source is t1 degrees

The heat transfer program, an applications source program in
by the Mechanical Engineering bDepartment of the Universi

Southwestern Louisiana, was chosen to present an algorithm

use
ty of
which

i

possessed somewhat more sophistication, It is composed of a more
complex Looping structure, It also contains more complex
operations, sine, exponential, conversion, etc. The wide range of
operations will serve to provide a basis for a comparison of the
arithmetics on a cost per digit basis, The algorithm which is
used in the heat transfer program is presented in Figure 10,
4.1.1 Qepchmacks.with_Compacisons.to Beexious Arithpetics.
lsolemented at _USL

The following results were produced on the Honeywell Muyltics
system based on a Honeywell 68/80 two processor configuration,
Two metrics are gqiven for the results produced, cpu time and
paging. It should be noted that the cpu time given is the virtual
cpu time for the run, There has been observed some slightly
irregular behavior in the system routine which supplies the
virtual cpu time; therefore, these figures are not presented as
the actual amount of c¢pu time consumed., It is felt that these
figures are reliable enough for performing valid comparisons.
The paging results presented are more a function of system load
rather than amount of main memory usage, There {s, however, some
small but noticeable cost incurred during » page fault, Thus, a
run with a great number of page faults will consume a8 greater
amount of virtual cpu time than the same run uwith few page
faults. This metric has major interest only to those intinqtely

familiar with Myltics.

.21~

-

4,1.1.1 Comoutation.of_the_Copstapnt_ e

Figure 11 presents the value of e to 25 decimatl digits of
precision. This vatue was acquired from a handbook of
mathematical tables (7], It should provide a basis for the
comparison of the following results., Appendix H also contains a
value for e which was obtained by executing a multiple precision
version of the e computation algorithm with a precision of 1500
digits and rounding the result to 1000 digits. This vatue should
be accurate to all 1000 digits. Source versions of the e program
can be found in appendix 1,

T ST ST G T G ARG D W A W W e W W apen

i '
! 2.718281828459045235360287 !
! 1

FIGURE 11
Vatue of e to 25 digits
The following two results were obtained from single precision and
double precision FORTRAN versions of the program to compute the
constant e. The single precision version, with an error factor of
1.0e~8, has a result which is accurate to 7?7 digits. The double
precision version, with an error factor of 1.0e~-15, has a result
which is accurate to 19 digits. The double precision verston

produced results which were accurate to more than twice as many

digits as the single precision version,

22~

e e ANl 5 A 7 554 s AR kSl 41 Mt 5 e Sl o 3 B

\

ol g a0 I DRI o T i

-

e i s it oW sgpei o AL

- D S D S WP D D D PR WP D D W WD WP G WS R WP WD TP AP P D ER DD WD D W AP W AP D W D G D W D D W W W S

T "e 1S EQUAL To 2.71828178 1

! COMPUTED IN 10 STEPS ACCURACY = 7 DIGITS '

' .----‘---'

1 CPU time = 0.024123 seconds? Page faults = |

' .------------------------------‘--------’------------------’-'
FIGURE 12

Results of single precision e computation
(ERROR = 1,0e~-8)

T e IS FQUAL TO 2.718281828459045235 1

!{ COMPUTED IN 18 STEPS ACCURACY = 19 DIGITS 1

' L X X X X 2 2 X P B X R X 1 ¥ B I 2 X I J - an - - . ---‘~--------------------'

! CPU time = N.N24731 seconds? Page faults = 0o 1
FIGURE 13

Results of double precision e computation
(ERROR = 1,0e-15)

The results presented in Figure 14 are those from the sinqgle
precision interval version of the program, It has an error factor
of 1.0e~-8 with an accuracy of 7 digits. The dinterval width s
quite small indicating that the algorithm is stable with respect
to truncation error, Note that the single precision real, double
precision real and the actual value are contained within the
interval, which 1is auite desirable, The results did, however,
consume more than an order of magnitude qreater amount of cpu
time than did the single precision real version, The price paid
bought the greater trust in the results produced.

D S T N G TR AR A D D YRS AR D R A TP D AR D W SR Y ED D YRR T W G D TR W AR S P P SR W O U WD AP T b AR WD A

e IS EQUAL TO [2.71828172, 2.71828198)
COMPUTED IN 10D STEPS ACCURACY = 7 ODIGITS

-
'---------------------------_--------------------------------.

CPU time = 0,473424 seconds? Page faults = 3

FIGURF 14

Results from single precision interval e computation
¢ ERROR = 1_.0e-8)

The results presented in Figure 1S were oproduced from the

o2 o e AL R M s it

S6é-decimal digit interval version of the program with an error

SRR

factor of 1,0e=50, The result is accurate to ?? digits. The

R

execution 1incurred a cpu cost more than two orders of magnitude
greater than that of the double precision real version and an
order of magnitude greater than the single precision intervat

version,

e IS EQUAL To ___TTTTTTTTTTTTTEETETTTmes eI Y

C 2.71828182845904523536028747135266249775724709369995884,
2.718281828459065235%6028747135266249775724709369995885)

COMPUTED IN 4?2 STFPS ACCURACY = S1 DIGITS

! CPU time = 5.534146 seconds? Page faults =

FIGURE 15

Results from 56 decimal digit interval e computation
(ERROR = 1,0e~S0)

There now follows a series of results produced by the variable

precision interval version of the program, The first result is
supplied for comparison to the 56 decimal digit arithmetic., The
other results, all with error factors of 90% of the precision,

provide for the determination of the relationship between amount

of precision and accuracy of the results that is obtainable. They]

* will atso give some idea of the cpu costs incurred when extending _}
. the precision of a computation using variable precision interval

- arithmetic. 7
e . The results of Figure 16 are computed with 56 decimal diqits of

precision with an error factor of 1,0e-50, When compared to the

results gained from the S6 decimal digit interval version with

Vol i i

et e L
i o LA o L 3 ¢ DN 457 R s N v MBS N DR AT A o e i RN i e NS B S heatae B e) A S Ly

210 PPN

the same error factor one finds that the variadle precision
interval version incurred a cpu time cost that was only stightly
greater, The accuracy was the same as with the 5S4 decimal digit

version,

! e IS EQUAL TO

| € 2.7182818284590452353602874713526624977572470036999588460,

1 2.718281828459N45235360287471352662497757247N93690909588465 I

I COMPUTED IN 42 STEPS ACCURACY = S1 DIGITS !

' L X X L ¥ ¥ ¥ X T ¥ T RF-¥-¥ 3 -----------------‘--------------------- LA X K ¥ X T J ‘

! CPU time = 7.043885 seconds’; Page faults = 12 1

' -----------------’ L E X X XK X ¥ ¥ ¥ % ¥ 3 L 2 X X X ¥ ¥ ¥ ¥ ¥ 3 '
FIGURE 16

Results from 56~-digit variable precision interval e computation
(ERROR = 1,0e-5S0)

The next four results were computed with 100, 200, SO0 and 1000
digits of precision respectively. The accuracy, decimal digits,
was 91, 181, 452 and B99 respectively. As can be seen, din alt
cases the number of digits of accuracy closely matched the error
factor,

1 e IS EQUAL TO

I € 2.718281828459045235%60287471352662497757247N93%36999595749 !
t 669676277240766303535475945713821784020548761, !
| 2.7182218284590452353602874713526624977572470936999595749 !
! $69676277240766303535475945713821784020548823] 1
t COMPUTED IN 65 STEPS ACCURACY = 91 DIGITS 1
1.
I
!

CPU time = 12.83208S seconds, Page faults = 14

FIGURF 17

Results from 100-digit variable precision interval e computation
(ERROR = 1_,0e-90)

M- At - Sy = RV S VTS T D SN QU A B s

L4

- A PP N G W P T W D R D P D D W TS D T G S D A D D W AP D T S P D G S D W S D R D GP P ER G PR O DGR DD

1 e IS EQUAL TO

1 [2.71828182845904523536028747135266249775724709369995957496
i 69676277240766303535475945713821785251664274274663919320
1 030599218174 135906629N4357290N33429526059563073813232R627
! 94349076323325754074104071474386,

| 2.7182B182845904523536028747135266249775724709369995957496
! 69676277240766303535475945713821785251664274274663919320N
! 03059921817613596629043572900334295260595630738132328627
f 94349076323325754 074104071474494 1

| COMPUTED IN 111 STEPS ACCURACY = 181 DIGITS

! CPU tine = 42, 957277 seconds. Page faults = 44

FIGURE 18

Results from 200-4digit variable precision interval e computation
(ERROR = 1,0e-180)

- . s YD R A R R T P WD W D R AP U D AR D D R Eh AR DD R D WD DD WD W TP D R R AP T R AR TR G AP WS WD D D D AR e

e IS EQUAL TO

C 2.718281828459N452353602874713526624977572L7093699959057496
696762772407663N3535475945713821785251664274274663919320
03059921817413596629043572900334295260595630738132328627
94349076323382988075319525101901157383418793070215408914
993488416750924476146606680822648001684774118537423454424
371075390772744992069551702761838606261331384583000752044
93382656029760673711320070932870912744374704723069697720
93101416928368190255151086574637721112523897844250569536
9676041920744851869146132100699286691025901450170484 ’

2.718281828459N4523536028747135266249775724709369995957496

6967627724076630353547594571382178525166427427466391932N
0305992181741359662904357290N0334295260595630738132328627
943490763233829880753195251019011573834187920702154N8914
993488B41675092447614606680822648B0016847746118537462345442¢4
37107539077744992069551702761838606261331384S83000752044
93382656029760673711320070932870012744374704723069697720
931016169283681902551510865746377211125?73897R44250569536
9676041920744851869146132100699286691025901450170714

1 COMPUTED IN 233 STEPS ACCURACY = 452 ODIGITS

'--------.-----------‘---'D---------0-“-----. L X X X ¥ ¥ ¥ 3 - e e e e

1 CPU time = 291.310798 seconds? Page faults = 48

!

-l
. s GE D wm D G WD A S D D uup D) S wp D D S wn = -

X LT Y L T L P E L L2 ¥ L LR ¥ X DX PV X ¥ 8 ¥R L U 2 L2 2 T3 T T X 7 T ¥ 23

fFIGURE 19

Resuylts frowm S00-digit variable precision interval e computation
(ERROR = 1.0e=450)

, " “Mv e ‘

MG M EE @S P BT WD AP EE W O G R D WD D G @ AP WP IR YD G D D G AP WD YR AP WD D WA D AP WS B W e

IS EQUAL TO
2.718281828459N4523536028747135266249775724709369995957496
69676277240766303535475965713821785251664274274663919320
030599218174 13596629043572900334295260595630738132328627
94349076323382988075319525101901157383418793070215408914
99348841675092447614606680822648001684774118537423454424
37107539077744992069551702761838606261331384583000752044
93382656029760673711320070932870912744374704723069697720
93101416928368190255151086574637721112523897844250569536
96770785449969967946864454905987931636889230098793127736
178215424999229576351482208269895193668N03318252886939849
64651058209392398294887933203625094431173012381970684161
40397019837679320683282376464804295311802328782509819455
8153017567173613320698112509961818B159304169035159888851
934580727386673858942287922849989208680SR257492796104841
98443634L6324496848756N023362482704619786232090021609902353
04369941849146316093431738143640546253152096183690888707
0150090888949533751673D0483941167953228780215021423391110
1358739588910558959275135114281728781578602 ’
2.71828182845904523536N28747135266249775724709369995957496
69676277240766303535475945713821785251664274274663919320
030599218174135966290435729N0334295260595630738132328627
94349076323382988N075319525101901157383418793N0702154N8914
99348841675N92447614606680R226480016847741185374623454424
37107539077744992069551702761838606261331384583000752044
9338265602976067371132007093287N912744374704723069697720
93101416928368190255151086574637721112523897844250569536
96770785449969967946R64454905987931636889230098793127736
17821542499922957635148220826989519366803318252886939849
64651058209392398294887933203625094431173012381970684161
40397019837679320683282376464804295311802328782509819455
81530175671736133206981125099618188159304169035159888851
9345807273866738589422879228499892086805R257492796104841
98443634632449684875602336248270419786232090021609902353
04369941849146314093631738143640546253152096183690888707
01599908889495337516730483941167953228780215021423391110
1358739588910558959275135114281728781579011]
i ! COMPUTED IN 412 STEPS ACCURACY = 899 DIGITS
'------------‘-------------------------“----‘----‘,Q--~ - -

1 CPU time = 1574.,385312 seconds’ Page faults = 51

'-------—--------o A PME DE S @D GG e S T T e T W W W W W A '

e
4

t
!
|
|
|
!
1
|
'
!
1
1
i
1
!
1
!
!
|
!
!
1
|
1
!
!
!
!
|
1
1
!
!
I
|
'
1

D iy WDy D o WP > D G AP D D v WD i D gy WD A D S U wp WD A D S WD W D G > wn N wp

-

FIGURE 20

Results from 999-digét variable orecision interval e computation
. (ERROR = 1,Ne=-900)

2 e T T T e N -

'
i

o i AR SN TN 515. N Wl A - T2 i g N TS e L S T T Lo st R AR A SN

To summarize the results of the comparison of the arithmetics =<
{ the higher the precision the better the results that could be
obtained and the more cpu time that was consumed. This was
; expected; not only was there more information (digits) to be
/ processed, but the extra precision allowed the extension of the
loop termination factor., The extension of the loop termination
factor resulted in the loop being executed a greater number of
- éi-es which in itself would account for a targe increase in cpu
time consumption (Figure 21)., A summary table of the various run
times for the different arithmetics is given in Figure 21. The
cost of the arithmetic used must be weighed against its benefits,
For this program the single precision version produced
acceptable resutts? the double precision version produced
excellent results. The single precision interval version did not
bring to Light any faults in the atgorithm., Since the single
precision interval version is much more sensitive than any of the
other interval versions there was no justification for the use of
the other versions other than as a point of comparison, The
results of ¢the extended precision intervat versions did
demonstrate that these arithmetics were capable of providing a
high level of significance in those situations which warrant its

use, -

L3

| errorireallidoublelsinglel 56 1 VARINT Inumber Idigits
| | | ') ' I of 1 of |
1 ! ! 1 int 1| int lcpu [digits) liters 1 ace |

'----------------- ------’-----------.--’-----‘-------‘

110-8 1,02 1 2» b7 1 wx | *d 1 10 1 7 1

!
110=-18 1 »2 § 02 1 #& | %« { * & I 18 1 19 1
110=-S0 1 #+ | *= | «x | S§,S | 7.0 €S6Y 1 42 1 S1 |
11090 | #& | *x | «+ | «* | 12,8 €100 t 6S | 91 ¢
110=-1801 o« | %« § x* | & | 43,0 C2003 ¢ 111 ¢ 181 1
1904500 »¢ | *% | & | &% | 291,33 CS00) ! 233 | 4S2 1
110-90071 *+ | «% | *% | #% [1S74,4 [9993 | 412 | 899 |
| ceccccee U |
FIGURE 21

Table of run times (in seconds) of various arithmetics

1575
1500
1425
1350
1275
1200
1125
1050
9?75
900
825
750
675
600
525
4S0
375
300
22s
150
75

X

X
S St SEUVIUIVIIUIIUID DICIUIDNS DAUNNY PIVHUIUNS DASIUUNY DG DRI SN S

100 200 300 400 SO0 600 700 80N 900 1000
{(digits of precision)

D e an D v S AR wp mn YD Gp S TS E® WD R wp D wp WP s D

FIGURE 22

Plot of diqits of precision versus cpu time consumed

"

-

4o1,1,2 Ihe_Heat_Iransfer_Progran

Exact results are not known for this program as was the case
with the e computation? these results are presented primarily for
comparisons of the various arithmetics on a cost per digit basis,
Hence, all versions of the program use the same loop termination
factors:; there is no other difference among the various versions
other than precision. The algorithm is also sufficiently complex
to allow a demonstration of the effects that algorithm
configuration can have upon cpu time consumption, The various
versions of the alaoorithm are presented in Appendix J. Figure 24
displays the <c¢pu timings for each of the runs along with the
largest dinterval width produced by the different interval
versions. for those interested the various results are to bhe
found in appendix K, Figure 2?23 displays the output from the

single precision real version as a sample output,

CPY time = 0.178528 seconds’ Page faults = 0

! the answer for 1 foot is 70.000000 1
I the answer for ? feet is ?70.000000 ¢
! the answer for 3 feet is 69.,999994 1|
{ the answer for & feet is 70.000006 1
! the answer for S feet is 70.001100 1
| the answer for 6 feet is 70,072399 |
f the answer for 7 feet is 72.0541S8S 1
| the answer for 8 feet is 95.780487 |
| the answer for 9 feet is 219.,179291% |
{ the answer for 10 feet is SNO.NONOSN 1
1 !
! 1
! t

FIGURE 23

heat transfer -~ single precision real version

e st - T

B -

B i SIS f Dt e S WL Sl O i o O b O
")
A

D WD W S D D D S U D D D D S T AR R R WP WD D D W AR R WD A R A WS P S AR T e W

1 wversion 1 largest 1 cpu time 1
{ ! interval width | consumption |
'--------- Rt A A A L L A B A A & 2 L T X N L L X X N T X X X X T XX ¥ X X3
| single 1 L L] | «19 !
! double ! *a ! o2N {
! single int | 1.0e=4 ! 6.3%7 |
1 S6 int 1 1.0e~-51 ! 1812.56 |
I VARINT Sé6 ! 1.0e-5% 1 325.10]
t VARINT 100 1 1.0e-96 ! 725.97 1
1 VARINT 200 ' 1.0e-197 ! 2406 .90 |
I VARINT 500 1 1.0e-495 i 15508,37 |
I VARINT 200 + 1 1.0e-17 1 2396.17 !
1 VARINT 200 #+1{ 1.0e-=15 1 2377.67 1
| S |
FIGURF 24

Table of run times (in seconds) of various arithmetics

(# == with output only produced at 20 digits precision)

(44 ~- all invariant expressions removed from Lloops
and minimum necessary precision used)

The first four results presented in Figure 24 are those obtained
with the previously imptlemented arithmetics. Notice that the 56
decimal digit interval version shows a somewhat anamolous amount
of cpu consumption, This results from the fact that the 5S6
decimal digit dinterval support package relies upon the multiple
precision package for the production of several supplied
functions, Among these are the sine and exponential functions
which partially form the main expression in the inner loop of the
computation. The cpu time consumption of the 56 decimal digit
interval version {s strongly affected by this wusage of the
sultiple precision routines, The result s that ¢the cpu time

consumption for this version is above what one would expect after

-31-

IS 5L i s A ik

i B A AT i WIS < o S - U AL D M. e i ol

o>

3 righiirnaiaiiie

viewing the results of the e computation benchmark, which

included extensions to the loop termination factors,

The next four results of Figure 24 are those obtained with the
variable precision interval version of the heat transfer progranm

with precisions of S6, 100, 200 and SO0 respectively,

The next result shown in Figure 24 was partially computed with 20
digits of precision, The inner lLoop of the algorithm was still
computed with 56 digits of precision, but the value to be output
was produced with a precision of 20 digits, It was felt that this
more closely reflected a reasonable number of digits output.
That dis, output to more than 20 digits or so of precision is not
realistic; digits after the 20th would more than 1Lliketly be
ignored. The reduction of the only the output computation does
not result in any large reduction in the total amount of cpu time
consumed, It is, however, significant when one considers that the
reduced precision operations account for only 60 operations out

of more than 6000 totat operations,

The \ast result shown in the table was produced with a fully
optimized version of the heat transfer program, That is,
optimized in the sense that all invariant expressions are removed
from Loops and . constants are stored only to the precision

necessary to maintain their integrity. There §s a much more

-32-

B m———h————

RUBIL 5 . iinen

substanttial reduction in the <¢pu time consumption than was H

observed in the previous partially optimized version, ¢

In summary, the writer of programs containing VARINTERVAL

variables must remember that operations upon these variables to

any substantial precision incurs a non-trivial amount of cpu time

2 consumption, Thus previousty acceptable algorithm configurations
4 » are not appropriate when implemented with variable precision
interval variables. The optimization techniques wused on the
VARINTERVAL version of the algorithm would not have been worth
the effort on the single precision version of the algorithm,

; Little savings can be realized in a run which consumes cpu time

measured in the hundreths of a second, The rewards are, houwever,
sufficiently great for one to apply what were previously trivial
optimizations to programs containing the variable precision

interval data type.

6.1.2 Ap.Exaluatiopn_of_the Myltilevel_ lpterpcetation _Process

The wmultilevel interpretive support structure consists of three
tevels, As has been mentioned previously, each level has its own
set of clearly defined responsibitlities, The first level controls
. the precision of the operation, The csecond Llevel contains the
togic for controlling the interval aspects of the operation, The

third level performs the actual operation as a set of operations

-33-

on vectors. The multilevel interpretive support structure is to
be evaluated at each level, This evaluation will be made by
choosing one of the oprimitives provided by the supporting
structure and tracing the interpretive process through each
levet, Appropriate comments will be made concerning the
interactions of the various levels as well as identifying the

salient features at each level,

The primitive chosen for this evaluation is MVPWR, the power
function, A graphic display of the multilevel interoretive
structure of MVPWR can be seen in Figure 25 which presents the
calling sequences of the various tevels of ¢the primitive as a
tree, At the top level is MVPWR which initiates a call to MXPWR
at the second level, MXPUR is supported at the third level by a
broad base of multiple precision package routines [Appendix (€],

Consider, now, each level in turn,

-34-

v~

S N B 4 A,

i A Mot § 4t

L AN - AL s et AR S Ly

L At T TR AN Piioia e e A o -4 i i i it ST 0 i LA 36 Sy i R N B ik B o+ PN o LN L i S e
1 | D
(first (evel) I MVPUR | !
| cmeaVaooo
1 I
| | MVYSTR |
' L |
coceVauo.
| !
(second levetl) I MXPUR
| I
)
! !
(third level) ! MPPWR |
| A
—ectccce———a PN | |
| | '
cocaVacao weeeVeaao |
1 | ! | 1
I MPCHK 1 1 MPMUL v
| R | | R | “ s«
|
eVl v
' * [] L]
1 MPMyL2 1
O |
PP,
{ 1
! MPNZR 1!
{ D
FIGURE 2S

Tree diagram of the multilevel interpretfve
structure of the power function

The first Level, MVPWR, controls the precision at which the

operation is to be performed. The first action taken at this

level is the extraction of the precision of the operand. The

precision at which the operation is to be performed is that of

the operand. The precision at which the operation is to be

-35-

pisg nain — — e dn i icieitins A SR AU B o are 1 o e S SR NP, -7 e st e a3

MRy Brrt e s e gub e il A B g e e e -

|

§ performed is set by assigning the precision of the operand to the !
| variable T, Llocated in common, The common variable T s
referenced at the lower levels to determine the precision of the
operation, Once the precision has been set, the format of the =

operand, Fiqure 2, is converted to that used at the lower levels,

! * Figure 49, The only difference is the insertion of four extra
digits of information in the first word of the interval variabte, -
- The first three of these extra digits contain the precision, The
last digit is a temporary variable indicator wused to signify
whether or not the variable contains an intermediate result of a -
computation and as such may have its precision altered., This
sequence is depicted in the code section in Figure 26,
1" "C STATEMENT FUNCTION FOR THE EXTRACTION OF THE COMBINED 1
1 C PRECISION AND TYPE 1 -
| EXTRACTC(WORD1) = IABS(WORD1T - (WORD1/71000N)*10000) 1
f C 1
| C PICK OFF THE TYPE AND THE PRECISION OF THE ARGUMENT 1 -
{ WORDT1ARG = ARG(1) {
1 PREC = EXTRACT(WORD1ARG)/1D !
{ c 1 .
1 C SET THE PRECISION FOR THE LOWER LEVELS |
I T = PREC]
{ C 1 -
| C CONVERT THE FIRST WORD TO MP FORMAT 1
! ARG(1) = ARG(1)/10000 1
'---' -
' FIGURF 26
Code section from MVPWR performing argument preparation
. The operand 1is then passed to the second level with a call to

MXPWR, The result is returned in the temporary work space TEmMP, -

The operand s restored to its previous format, TEMP, which is

36~

-

- o AT T 3.5 S VU b AR

returned in the tower tevel format, s converted to the first
level format wusing the precision of the operand. The value of
TEMP is then assigned to the tarqet with a call to MVSTR., MVSTR
inspects the temporary variable indicator of the target. 1f the
target is a temporary variable then the contents of TEMP and the
precision information are copied to the target, If the target is
not a temporary variable then adjustments to the value of TEMP
must be made before the assignment is carried out. These
adjustments are of the form of either truncation or the filling
in of unused digits of the target with 2zeros, dependinag upon
whether the precision of TEMP is greater than or less than that
of the result., The target is then returned to the wuser program,
This sequence is depicted in Figure 27,

€ CALL THE SECOND LEVEL TO PERFORM THE OPERATION
CALL MXPWR (ARG(1), N, TEMP)

RESTORE THE PARTICULARS OF THE FIRST WORD OF THE

ARGUMENT AND THE TEMPORARY TEMP GETS THE PRECISION OF ARG,
TEMP(1) = ISIGN(IABS(TEMP(1))+10000 +

g EXTRACT(WORD1ARG), TEMP(1))

ARG(1) = WORDVARG

[aNaXal

[a Mal

MAKE THE ASSIGNMENT TO RESULT
CALL MVSTR (TEMP, RESULT)

RETURN

- et D e s WD T R W D T D an -
- e) e D wp D wm wl wn WD el -

FIGURE 27

tode section of MVPUR for result preparation

This first Llevel incurs the least overhead of the three levels.,

The major portion of the overhead s the vector copy operation

-37-

b

Lo

;
;
{
]
k)
4

performed during the assignment of the value of TEMP to the

target., The overhead of precision determination and format
conversion is quite small in comparison with the overall resource

usage unless the precision is unusually small,

The second Level, MXPWR, contains the togic for performing the
interval aspects of the power operation, The primary function of
this level is the performance of a case analysis to determine
which endpoints are to be used in the production of the result,
The case analysis is necessary to ensure that the result is a
valid interval, In aeneral., the relation [al,a2)sen =
fals*n,a2**n] does not hold. for example, 01,2)1¢e(=2) =
[2#%(=2),1%%(-?2)] = (.25, 11, Additional information pertaining
to the intervatl operations may be found in Appendix D, The case
analysis for MXPWR is displayed in Figure 28, The endpoints of
the interval operand are passed singly to the third Level with an
indicator which stipulates the proper rounding strateagy. Ffor an
interval (A1,A2], a power N and a target [21,22) with the above
values the two calls would be

CALL MPPWR (A1, N, 22, ?2)
CALL MPPUWR (A2, No 21, 1)

The value 1 is used to indicate a downward directed rounding.,

while the value ? indicates an upward directed rounding.

- o ARSI ST I SRS 0 2100 15 Nt R paty B TR 9 5 5 0 - RSN N o I T ML U S NS A >l s % . o ad e ek i

1 CASE 1, the POWER is even and positive and the
1 OPERAND is posgitive

| RESULT(tleft) = OPERAND(left) «% POWER
! RESULT(right) = OPERAND(right) #2 POWER
| CASE 2., the POWER is even and positive and the
! OPERAND is negative

! RESULT (Lleft) = OPERAND(right) =»+ POWER
1 RESULT(right) = OPERAND(left) #« POWER
! CASE 3. the POWER is even and negative and the
! OPERAND is positive

| RESULT(left) = OPERAND(right) w#+ POWER
t RESULT(right) = OPERAND(Lleft) *% POWER
1 CASE 4, the POWER is even and negative and the
| OPERAND is negative

1 RESULT(teft) = OPERAND(left) ** POWER
1 RESULT(right) = OPERAND(right) *% POWER
! CASE S, the POWER is odd and positive

f RESULT(Lleft) = OPERAND(left) *x POWER
! RESULT(right) = OPERAND(right) «+ POWER
!

1

!

!

|

1

!

1

1

1

'

|

{

t

!

1

t

f

1

;
1
:
]
;
£
i
3
i
i
;
1

CASE 6. the POWFR is odd and negative
RESULT(left) = OPERAND(right) #** POWER
RESULT(right) = OPERAND(left) *x POWER
CASE 7, the POWER is even and positive and the
OPERAND contains zero and the absolute
value of the right endpoint is qreater than
the absolute value of the left endpoint
RESULT(left) = 0
RESULT(right) = OPERAND(right) #*+ POWFR
CASF 8, the POWER is even and positive and the
OPERAND contains zero and the absolute
value of the right endpoint is less than
the absolute value of the left endpoint
RESULT(left) = 0
RESULT(right) = OPERAND(left) ** POWER
CASE 9, the POWER is even and negative and the
OPERAND contains zero
DIVISION BY ZERO ERROR

- D S -) SN L S D = T) AND P I D D . VD uh WD D) = IR WD D wp D aE D G W D S =

FIGURE 28 i

Case analysis for interval power function

The overhead incurred at this Llevel is a function of the
operands. The case analysis of MXPWR serves as an example., The

determination of cases one through six requires very Llittle

B e R ia R K

o A TR A A v W e 7 gm s L9,

»

computation, The determination of these cases involves only an

inspection of the word containing the sign rather than the vector
as 3 wholte. for cases seven through ten, however, the
determination of the case requires a comparison between the two
endpoints of t he interval operand., This can entail a
digit-by~-digit comparison of the &endpoints., Naturally, the
greater the precisions, the greater the overhead that will be

incurred during the comparison.

The third Level, MPPWR, performs the operations on the vectors
representing the endpoints of the interval variable. At this
tevel the interval endpoints are no longer considered as forming
one entitys, but are treated as separate operands. This Llevel
receives from the second lLevel a single endpoint along with an
indicator which stipulates the truncation strateqy to be used, An
outltine of the algorithm used in MPPWR is presented in Figure 29,
The algorithm forms the power by performing successive
multiplications., For negative powers the reciprocal of the
argument is first formed with a call to MPREC, The

multiptications are performed by MPMUL,

" " N —— N A MR e e e e A i ARV T SN
e e A S - e S-S WP AP T Kbt i b b - L i,

Loo- o= e o R W el no i mm s st ol o - . ‘ - R I R

- D NG D G D D e P T Y T P S S R EP P AP MR D D W A A P T O

f# Xxe0 = 1
IF N=20
C RESULT = 1
RETURN 1]

1

t

l

1

t

' # SETUP FOR MULTIPLICATIVE LOOP
1 IFNCDO d
! £ TeEmMP = 1/%x)
! ELSE

! C TEMP = X]
L RESULT = 1

1

{ # MULTIPLICATIVE LOOP

! REPEATY

! T 1fF (N IS ODD) RESULYT = RESULT = TEMP
! TEMP = TEMP #% ?

{ N = N/2]

I UNTIL (N = 0)

!

. D N D D D - = D S AER ED ED D g S ey

FIGURE 29

Algorithm for MPPWR (X&&N)

MPMUL performs the multiptication between two multiple precision

numbers as one would multiply in longhand. That is, operand one

is multiplied by the last digit of operand two forming the résult

in a work space in common., Then operand one is multiplied by the

second to the last digit in operand two adding the result to the

value in the workspace in common after shifting left one digit.

The multiplication of operand one by a digit in operand two s i

§ performed with a call to MPMLP, After the result has been formed

| . in the workspace in common, it is normalized and roundings are
performed by MPNIR, An outline of the alqorithm of MPMUL s 'f'

presented in Figure 30, 3

pe

] i . o ot R e S AR 2 23 R st
s M AN bk o gt

- e U G R D W S wP T GG R TS DA WD A G DAY b W G W WD YD AR G W ER W W

!

1 # COMPUTE THE SIGN AND EXPONENT

LI OF THE RESULT

1 RESULT_SIGN = SIGN(X) * SIGN(Y)

! RESULT_EXPONENTY = EXPONENT(X)+EXPONENT(Y)

MULTIPLICATIVE LOOP
PO 1 = 1 TO PRECISION
L # MULTIPLY VECTOR BY SCALAR
TEMP = TEMP + SHIFT_LEFT_I(X +
TTH_BIGITLY))
PROPAGATE CARRIES J

NORMALIZE AND ROUND RESULT
7 = RESULT

- P M B s m W B WD
- ey S aE P wfs D amp D D D s W

FIGURF 30

Atgorithm for MPMUL(X, Y, 2)

MPN2R performs the normalization and rounding of the result in
the workspace Jin common and assigns the value to the target of
the power operation., The normalization is performed as one would
expect; the digits are shifted left until the first digit is a
non-2ero digit. Adjustments are then made to the exponent to
reflect the shift, The rounding is somewhat more involved, The
rounding strategy used to round the result is that stiputated by
the second Llevel, either a downward directed rounding or an
upward directed rounding, The results of interval operations at
this Llevel are carried to twice the precision with four guard
digits to wminimize the toss of information due to finfte
precision representation of real results, M™MPNZR makes use of
these additional digits of ¢the result in carrying out the

roundings. MPNIR dinspects the sign of the result to determine

—‘2-

i

LMMJ s mmaa

| the necessary action to be performed to carry out the specified
rounding strategy. For a negative value, an upward directed
rounding requires a simple truncation of the result to the
necessary precision, For example, for three digits of precision
the value -,3339999999 would be rounded to -.333, for a positive
value an upward directed rounding requires the inspection of the
additionat digits carried in the result for non-zero values. 1If

. any non-zero values are found then the result is truncated to the

necessary precision and one is added to the last digit, for
example, for three digits of precision the value .3330000001
would be rounded to .334, The actions performed for a downward
directed rounding are the reverse of those performed for the
upward directed rounding, A summary of these actions is

presented in Figure 31,

D - > - - W D S WG D e s D R TR D R AP R i W R G A Gh Gn D U G YD S Y

b D AP D L D P R b R WD D YD G TGP P WD G LD A @ AR A W) B G D 4D G G S GD D W P

f{ rounding ! vatue ! action { 7
3 '-ﬁ--------'------------'----“---'------------'

! wupward I positive | add one if non-zero !

{ f 1 additional digits | =
3 ! upward ! negative | truncate {

! downward | opositive | truncate |

! downward | negative | add one 1f non-2ero | -

i { { additional digits |

1 | 3

FIGURE 31

Summary of rounding actions

R T

. Nearly all of the overhead associated with the variable precision

interval data type is incurred at this Llevel, This {s to be

i

expected since nearly all of the operations performed involving

-4~

e bt 30 G5 A S i A NI ARSNGB ARG 5 .. . i Aol -39 e

S

1 2 ANENEI sl 5l

the individus!l components of the vectors which are used to

represent the variable precision interval data type are performed

at this level, This includes the normalization of the results as
well as the carrying out of the proper roundings on these

results,

In summary, each level of the multilevel interpretive support

> structure operates in a cooperative manner, with its own clearly

S
|

defined responsibilities. The top two levels, providing control
of the operations upon the interval variables, incurs only a
small fraction of the overhead associated with the use of the
variable precision interval data type. This overhead is fairly
independent of the nprecision, This independence is due to the
fact that the contents of the vectors are almost never operated

upon at these levels. Any variance encountered is introduced by

4 an occasional copy or compare operation that must be performed on
interval variables at these lLevels. The majority of overhead is
incurred by the third Llevels which actually performs the
operations involving the vectors which represent the variable

‘ precision interval data type, The amount of overhead at this
level is entirely dependent on the precision, the relationship

. being exponential in nature rather than linear, Figure 24, This

dependence on precision is to be expected as this (evel deals

L T i S . A T R TP S 13 N 0 ot e 90

. exclusively with the vectors,

bl

e A e Y o % 1 o 4 e et -

b it

4.2 Suesacy

Interval arithmetic can, at times, be extremely useful., For
instance, it can be used to indicate the Llimits of precision of
an algorithm for a given set of data. From the testing it was
shown that much better bounds on the results could be
obtained usina the variable interval package. This was, of
course, not unexpected, The price paid was in runt ime
efficiency. The use of standard precision intervals resulted in
approximately an order of magnitude increase in execution
time over that of single or double precision arithmetic.
56 decimal interval arithmetic resulted in a further increase of
more than one to more than two orders of magnitude., Variable
precision interval arithmetic with precision 56 resulted in an
increase of three orders of magnitude. It should be noted hé&re
that the 56 digit version was based upon the S9 decimal digit
hardware arithmetic unit of the Honeywell HER/80 oprocessor,
The software simulated basic operations of the variable precision

interval arithmetic caused that arithmetic to take much Llonger,

One obvious application of variable precision interval
arithmetic would be to validate existing programs., Any data
sensitivity discovered could be dncluded in a description of
the algorithm and directions for its wuse. Although variable
precision interval arithmetic s expensive, {ts cost must be

balanced against possible consequences of using invalid results,

-4 §-

N PN B

PR 34 ltt—— - TN - i B SR SNt - - e i i, -SRI O SRS
v T " e

An orgenization Llike the Corps of Engineers might weigh the
possibility of a defective dam or the cost of moving 100,000 tons

of dirt against the cost of a few hours of computer time,

A more effective technique would be to first test the
algorithm using single precision interval arithmetic. 1Its
relatively small decrease in run time efficiency indicates that
its use is more than justified as an economical means of
identifying possible trouble areas in an algorithm for the data
under consideration, The more expensive variable precision
interval package could be applied to just those cases where
possible trouble areas have bheen identified, Variable precision
interval arithmetic can be used to determine the precision of
the arithmetic required to guarantee a given significance in the
results of an algorithm, Arbitrarily picking a given
precision for arithmetic does not guarantee results in which
absolute confidence can be placed. How much more confidence can
one have in results obtained on a 60 bit word machine than in

results obtained on a 36 bit word machine?

In general, whether using interval or regular arithmetics the
greater the precision the (onger the run time required for a
atven algorithm, Having variable precision interval arithmetic
would allow the validation of algorithms for which standard
precision interval arithmetic is insufficient, Further, the cost

of this validation could be held to a minimum by making full use

-lb=

of the abitity to specify different precisions for different
variables, Computations with high precision recuirements could
be performed with the necessary precision while those Lless
computationaltly demanding could be performed with a lower, less

cpu consuming, precision, In any case, the overhead

b associated with execution in interval arithmetic will only be as

great as required for the necessary precision,

The (targe amount of processor time needed for variable precision

interval arithmetic is its major drawback, The execution speed ;
of interval arithmetic can be increased in several ways. One
would be to decrease the number of levels of interpretation
required in the current implementation, The optimum solution
would be to have a harduare or firmware module which coutd
execute variable precision interval arithmetic, Many
existing minicomputer systems have undefined opcodes for just
such requirements. As a side effect, an arithmetic unit that
can execute variable precision interval arithmetic can atlso
execute traditional variable precision floating point arithmetic,
' This meuns that interval arithmetic could be used to
determine the reaquired arithmetic precision needed to obtain
resutts of the desired accuracy., The algorithm, then, coutld be

* executed using only that precision,

-47-

N W Y —— R g ey
” - Lo S o tak ignhiab S D 5 6 PLASRI S s
e L o o Pl N 5

-

p £11 (Ladner, T, D, and Yohe, J. M.,r “An interval arithmetic
| package for the UNIVAC 1108," The University of
Wisconsin, Mathematics Research Center, Technical
Summary Report No, 1055, ™May, 1970,

{21 Yohe, J, M,, "Rest possible floating point arithmetic," The
University of Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1054, March, 1970,

o

>

{3) Binstock, W.» Hawkes, J, and Hsu, N.., “An interval -
input/output package for the UNIVAC 1108," The i
University of Wisconsin, Mathematics Research Center,

Yechnical Summary Report No. 1212, September, 1973,

» (4 Crary, F, Deo "The AUGMENT precompiler, | User
information,” The University of Wisconsin, Mathematics
Research Center, Technical Summary Report No. 1469,
December., 1974,

fS] Crarys Fo. D.r "The AUGMENT precompiler, 1II. Technical
documentation,” The University of Wisconsin,
Mathematics Research Center, Technical Summary Report
No. 1470, October, 1975,

f6] #~oore, R, €, Interyal_Apalysis. Prentice~Hall Inc..
Englewood Cliffs, N. J.» 1966.

{73 Abramovitz, ™, and Stegun, J. A., (ed.)e Hapndbook of

Matbematical fupciiops. Nationat Bureau of Standard
Applied Mathematics Series, June, 1964,

{8) Podlaska-Lando, S. and Reuter Eric Koo "Implementation and
Evaluation of Interval Arithmetic Software, Report 2:
The Honeywell Myltics System”, TYechnical Report No.
N=79-1, Offices, Chief of Engineers, U, S. Arwmy,
Washington D, C., April 1979,

{9). Saoftware_lgols- Xernighan, B. and Plauger, Pav
Addison~-Wesley Publishing Company., Reading,
massachusetts, 1976, 7

¢ £10) Brents, P. P., "A FORTRAN multiple-precision arithmetic

. package," Department of Computer Science, 7
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
May, 1976,

L]

. [11) vYohe., Je M., "Software for interval arithmetic: a

reasonably portable package,"” Irapsactions on
-Mathematical_Softuace,to be published.]

[12) Ryder, B, G.»r "The PFORT Verifier”, Softuare Pfcragtice and
Expecience, Vol. &, 1974,

REFERENCES

L byl A AP A SR s b g

Appendix A,

BAIEQSB

A

RATFOR s a preprocessor for FORTRAN (written in FORTRAN) which

allows the use of contemporary control structures such as

DO-WHILE, IF=-THEN-ELSE and REPEAT=UNTIL [9]), RATFOR is unique é
in that it has the advantages of being highly portable, easily ?
used and fairly efficient, The primary purpose of RATFOR is to j
make FORTRAN a better programming language by permitting and !
encouraging the writing of readable and well-structured programs,
This is done by providing the control structures that are
unavailable in FORTRAN, and by improving the "cosmetics” of the

language,

The cosmetic aspects of RATFOR have been designed to make it
concise and reasonably pleasing to the eye, It is free-form, That
is, statements may appear anywhere on an input Lline., Other mé
additions also improve the readability of the language, Ffor
example, the use of the symbol ">" conveys the meaning of code
more rapidly than equivalent strings of symbols such as ",G6T7.",

-

Yo show the advantages of RATFOR consider the construct

IF (condition) THEN (s1) ELSE (s2).
This construct is, for the most part, fairly easy to understand.
IF the “condition” 4{s true THEN statements "s1" are to be

executeds, ELSE statements "s2" are to be executed, However, this

Appendix A = 49

e e Seanits 3o R DRI L RN B2 e .

construct is rather awkward to express in FORTRAN, AS an example,
suppose that if the value of the variable X were greater than or
equal to 10,7, then X is to be divided by 18,3 and the counter
KOUNT incremented by one, However, if the condition were false
then the variable X is to be multiplied by 18.3 and the counter
KOUNY decremented by one, One way of expressing this in FORTRAN

as shown in Figure 32,

! If (X,6E.10.7) GO TO 10 |
' X = X « 18,3

l KOUNT = KQUNY - 1
! GO TO0 20

1t 10 X =X / 18,3

! KOUNT = KOUNT + 1
t 20 CONTINUE

!

FIGURE 32

Example of FORTRAN code

On the other hand, the same logic could be expressed in RAYFOR as

show in Figure 33,

1F (X >= 10.7)
r
X =X/ 18,3
KOUNT = KOUNT + 1

ELSE
C
X = X » 18,3
KOUNT = KOUNY - 1)

- - - g =, > . - -
e
D e e |

FIGURE 33

RATFOR version of FORTRAN code in Figure 32

With these additional contemporary programming Language

Appendix A - SO

]
k|
]

o S A B e @ T e kiRt I

constructs the programmer is able to produce a readable,
structured program and have it transiated automatically into
standard FORTRAN, It is herein that RATFOR's greatest value
ties. A highly readable, structured program is a program that is
easier to develops, debug and modify., A programmer assigned to
modify an existent program is abte to get the joh done quickly in
direct proportion to the understandability of the code, By the
" automatic translation of these constructs 1into FORTRAN, the
programmer is able to devote a larger portion of time to the
development of ideas rather than their translation while being
assured that this translation will be done correctly each and

every time,

RATFOR s written in a portable version of FORTRAN, The
installation of RATFOR entails the production of an object code
deck for RATFOR and the providing for input and output
attachments. The input for RATFOR must be attached to the FORTRAN
logical wunit number 10, The output for RATFOR is written to

FORTRAN logical unit number 11, Error conditions are displayed on

FORTRAN logical unit number 12, There is also a version of

RATFOR written in RATFOR which is a oquite wuseful aid in

understanding the translation process used by RATFOR, The RATFOR Iy

version also supplies an excellent example of the use of RATFOR.]

- The rest of this appendix provides a summary of ¢the statements

and operators accepted by RATFOR, -

Appendix A - S1

F'

o bt AL ESRR Al < i e AL R e
S AN« o i, WA T .

BAJEQR_stateeent:
1« RATFOR STATEMENT =-- One or more FORTRAN statements enclosed in
brackets. (Brackets optional for a single FORTRAN
statement,)

EXAMPLE:
ft x =1
RFAD (S,1) 21

fenditional_statements:
2e 1F STATEMENTS

A. IF (condition)
RATFOR STATEMENT

EXAMPLE:
IF (X.,EQ,Y) T
oLpX = X
X =2 Yax2]

B, IF (condition)
RATFOR STATEMENT

ELSE
RATFOR STATEMENT -- ELSE clause is optionatl
EXAMPLF:
IF (X == 1Y)
f
oLDY = X
X = Y#a?
7

ELSE X = X##2 -

C. IF (condition)
RATFOR STATEMENT 3
ELSE IF (condition)
RATFOR STATEMENT ;
ELSE]
RATFOR STATEMENT

EXAMPLE: -
1fF (X.EQ,Y)
2 =0
ELSE if (X > V) -
4
oLdX = ¥
X = Yan2) -
ELSE
r

1
0 -
0]

x <~

Appendix A - §2

L e

et s o i

N Il R) 550 1 X bl MR S Dt MR S TSN st DS SR 5 i st 0 L e

»

a2 e’ e SN T8 g s RN e
- A Rl Ca et L

- e i W PR

R0_sgatement:

3. DO index = initial, final, step
RATFOR STATEMENT

EXAMPLE:
DO I = 2,100,2
IxC1) = x(I=1) = X(I)
X(I=-1) = Y(I-1)
]

Logp._coptrol_statements:

4, BREAK == exit from Loop

Se NEXT == go to bottom of loop

Looping structures:

6. WHILE (condition)
RATFOR STATEMENT

EXAMPLE
WHILE (X >= LIMIT)
L Sum = Sym + X
X = KURD(X)
]

7. FOR (initialization’ condition’ increment)
RATFOR STATEMENT -=- jncrement and initialization are
FORTRAN statements. condition is
2 FORTRAN togicsl expression.

EXAMPLE:
FOR (I = 12 X < Y2 1 =1 + 2)
T X = KURD (X,I)
SUMX = SUMX + X
]

8., REPEAT
RATFOR STATEMENT
UNTIL (condition)

EXAMPLE
REPEAT
CSuM = Sum + X
X = KURD(X)
]
UNTIL (X LT.LIMIT)

Appendix A - S$3

Misgellanegus:
9, # -- comment statement

EXAMPLE:

this is a comment statement
X = 1 # X is assigned the value of one

10. %2 == do not process the remainder of the line; just shift
« (Used to convert FORTYRAN comment

Left one column
statements to R

ATFOR)

11. DEFINE Label value == value will be substituted for label
throughout the proczam

EXAMPLE ¢

DEFINE YES 1 (replaces "YES™ with "1" throughout program)

12. togical operators --

>, <=, =2, >,

<, 1 %, -

(ge, te, eqs gts, Lt, Or, and, not)

13. STATEMENT NUMBERS -~

if first field in statement is numerice,
it is assumed to be a statement number,

14, INCLUDE n ~~ begin reading input from FORTRAN I/0 unit n, This is
a very primitive include mechanism.

Appendix A - S4

ek

bt coivians

}

b tufoe e it AR ey ot

-

L L 2 i O il A g s

-

Appendix 8

AUGMENI Intecface

AUGMENTY 1is a preprocessor which allows the introduction of
non-standard data types (e,g. multiple precision interval
numbers) into FORTRAN programs. The introduction of a data type
is accomplished by passing the program containing the extended
data types to AUGMENT atong with an AUGMENT description deck, The
description deck contains the necessary information needed by
AUGMENT to properly transtate the extended data types and the
operations performed wupon them into standard FORTRAN, This
greatly simplifies the task of writing a program for s
multiple-precision interval computation, or converting a single

(or double) precision routine to multiple precision,

For example, if AUGMENT is used we can write expressions such as
shown in Fiqure 34 where X, Y, and 7 are multiple precision, This
will automatically be transtated to the FORTRAN equivalent as

shown in Figure 35,

VARINTERVAL Xo Y, 2

{
t
! .
! .
! X 2 Y ¢ I#EXP(X+1)/Y
!

- ey Wt e —

FIGURE 34

Portion of Stuctured Variable Precision
Interval FORTRAN code

Appendix B - SS

I L ey e T

R N R e e P K 153 S B D s Nl) el Al i s -

P

»

D R S W R A D G AR D W RS 4D WD D W W A AP

INTEGER X(24)s Y(24), 2(¢44)

CALL MVMUL (2, MPTEMP, MPTEMP)
CALL MVDIV (MPTEMP, Y, MPTEMP)
CALL MVADD (Y, MPTEMP, X)

| |
| !
' '
1 . 1
I CALL MVADDI (X, 1, MPTEMP) 1
| CALL MVEXP (MPTEMP, MPTEMP) !
1 !
| 1
| !
! 1

FIGURE 35

Standard FORTRAN equivalent of Figure 34

The description deck which specifies the variable precision
interval Dpackage to AUGMENT is shown in Figure 36, The AUGMENT
description deck contains 7 major sections, The first section
instructs AUGMENT on how the data type is actually to be declared
in the FORTRAN output., This is very similar to the PASCAL type
dectaration, The next section gives details on how operations
upon the extended data type are to be translated. For example, if
A and B8 are of type VARINTERVAL then A+B would be transiated as
CALL MVADD(X,Y,RESULT), The third section is supplied for the
extraction of the sign of a variable prec,sion interval variable.
The fourth section is supplied so that information concerning the
inner components of the structured variable precision data type
may be extracted., The following section gives instructions on the
conversion of functional references, Its function is basically
the same as the second section. The sixth section contains
conversion information. Ffor example, conversion from real to
varisble oprecision interval would entail a call to MVCRM, The

last section indicates which routine is to be called to perform

Appendix B = Sé6

1 LA - 1L A i 5 56 et S et S SN IR LN I NG IR T s

e

P ot

assignments, In this case it 3is MVSTR,

*DESCRIBE VARINTERVAL

| DECLARE INTEGER, KIND SAFE SUBROUTINE, PREFIX MV
; ! OPERATOR ¢+ (,NULL UNARY, PRV, %), = (NEG, UNARY),

| + (ADD, BINARY3, PRV, %, S, S, COMM), » (MUL),
| - (SUBssosrsese NONCOMM), / (DIVY, *x (PWR2),
1 + CADDIsrees INTEGER), * (MULI), / (DIVI), *+ (PWR),
! «fQ, (EQ, BINARYZ?2, PRV, $, LOGICAL, COMM),
! oeNE., (NE), .GE, (GEssrsrsrsr NONCOMM), _GT, (GT),
1 «LE, (LEY, .L T (LT
! TEST MPSIGA (SIGA, INTEGER)
| FIELD SGN (SIGA, SIGB, ($), INTEGER),
! EXPON (EXPA, EXPB), BASE (BASA, BASB),
| NUMDIG (DIGA, DIGB), MAXEXP (MEXA, MEXB),
! DIGIT (DGA, DGB, (%, INTEGER))
I FUNCTION ABS (ABS, (%), %), ASIN (ASIN), ATAN (ATAN),
] CO0S (CO0S)s, COSH (COSHILEXP (EXP), INT (CMIM),
! LN (LND, LOG (LNY» SIN (SINY, SINH (SINH),
t
|
)
!
!
!
}
!
!
|
1
|
f
'

I~ s T =S VSt

e
*

SARYT (SQRT), TAN (TAN), TANH (TANH),
MAX (MAX, ($, $)), MIN (MIN), ROOT (ROOT),
MPINF (INF(SUBROUTINE),(S,INTEGER,INTEGER,
HOLLERITH),LOGICAL), MPOUTF (OUTF(SUBROUTINE)).,
MPINF (INF(SUBROUTINE), (8, INTEGER, INTEGER,
INTEGER)), MPOUTF (OUTF(SUBROUTINE))
CONVERSION CTM (CDM, DOUBLE PRECISION, %, UPWARD),
CTM (CIM, INTEGER), CTM (CRM, REAL).,
CTD (CMD(SURROUTINE) +%,DOUBLE PRECISION,DOWNWARD),
CTI (CMI(SUBROUTINE)»» INTEGER),
CYR (CMR(SUBROUTINE),, REAL)
SERVICE COPY (STR)

N S P o D oy WD D M S D wup G S G D D) WE b BB amy) w=h W ap S uh WR =

COMMENT END OF AUGMENT DESCRIPTION DECK FOR MP PACKAGE
FIGURE 36 7
AUGMENT description deck for the Variable Precision E
F Interval data type -
1

B PO |

Appendix B - S§7

|

o s wEllman

BN 57 o b e

Appendix ¢

Ihe_ Basic_MP_Pagkage

1. Geperal_pPescriptiop.of_the MB_Pagkage

Y S LA A1 B Do AT . R, i M ..

MP is a multiple precision arithmetic packagefl10), It is almost
completely machine independent, and should run on any machine
. with an ANS] standard FORTRAN compiler, sufficient memory, and a
wordlength of at Least 16 bits, The machine dependent sections
are those which deal with packed multiple precision numbers,
Some modifications would be necessary for a wordlength of less

than 16 bits,

MP has been tested on a Univac 1108 (e lLevel FORTRAN v), a
Univac 1100742 (e and T Level FORTRAN v, ascii FORTRAN), a PDP 1N
(FORTRAN 10 and FORTRAN 40), an IBM 360/50 (FORTRAN g and FORTRAN
hse opt = 2), an IBM 360/91 and 370/168 (FORTRAN h extended, opt =
2)s @ Cyber 76 (ftn 4.2, opt = 1), a PDP 11745 (dos), and a
Honeywelt 68/80 (Multics release 6.1). These machines have

] effective integer word lengths ranging from 16 to 48 bits.

MP numbers are in normalized floating point format as shown in 11
Figure 37. The base (B) and number of diqits (T) are arbitrary
- (subject to some restrictions given below), and may be varied

dynamically,

Appendix € - S8

romae

B e e e canadibiihs . Lo s S

i

- N B W i I N Sl

v« - SRR i

R

-

I s lexpon |l T1T 1 T2 1 ¢« « o | TN 1
| |

| | | Y DU PSRRI DI
FIGURE 37
Multiple precision number format, s = sign
(0, =1 or +1) expon = exponent (to base

B) Ti = digit (in base B8) Note that words 2
to T+2 are undefined if sign = 0.

Arithmetic is rounded, and four guard digits are wused for
addition and multiplications so the correctly rounded result is
produced, Division, sqrt etc are done by Newtons methods, but
give the exact result if it can be represented with T-2 digits.
Other routines (mpsins, mpln etc) usually qive a result vy = f(x)
which could be obtained by making an o(B#**(1-T)) perturbation in
xe evaluating f exactly, then making an o(B**x(1-T)) perturbation

in y.

Exponents can lie in the range =M, ... » +M inclusives where M is
set by the user. On underflow during an arithmetic operation, the
result is set to zero by subroutine MPUNFL. On overflow
subroutine MpPOVFL is called and execution is terminated with an
error message, Error messages are printed on logical unit LUN,
where LUN is set by the user, and then execution is terminated by
a call to subroutine MPERR, It is assumed that Llogical records
of up to &0 characters may be written on unit LUN, A working

array of size MXR (see below) must be provided in common.

Appendix C ~ 59

ORI, 35 2= o i B 03

The parameters B, T, M, LUN and MXR are passed to the wutitity
routines in commons, together with a working array R which must be
sufficiently lLarge (see below). Most routines use the statements
COMMON B, T, M, LUN, MXR, R
INTEGER B,» T» R(1)
and it is assumed that R is dimensioned sufficiently large in the
catlting program, and that MXR is set to the dimension of R in the

calling progranm.

It s assumed that the compiler passes addresses of arrays used
as arguments in subroutine calls (i.e., call by reference), and
does not check for array bounds violations (either for arguments
or for arrays in common). Apart from these violations, MP is
written in ANSI standard FORTRAN (ANSI x3.9-1966). This has been
checked by the pfort verifier, The only machine-dependent
routine is MPUPK (which unpacks characters stored several to a
word). Other routines which may require trivial changes are
MPSET (which causes an integer overflow), MPINIT and TIMEMP (see

comments below),

2. Cgastcaiots

There are several constraints that must observed in using the MP

package, They are:

Appendix ¢ - 60

N ies e R R Sy

1) The base B must be at least 2.

2) T (number of digits) must be at least 2.

3) M (exponent range) must be greater than T and less
than 174 the targest machine-representable
integer.

4) Bx*Bax2-1 must be no greater than the largest
machine- representable integer

5) The integers (s 14 <eo ¢+ B must be exactly
representable as single precision floating point
L4 numpers

6) Bxx(T=-1) should be at least 10%«7,

8 and T may be set to give the equivalent of a specified number
of decimal places by <calling MPSET (see below)s, or may be set
directly by the user. If MPSET is not called, the wuser must
remember to initialize M, LUN and MXR (see above) as well as B
and T before calling any MP routines, (It would be possible to
use Llabeltted common instead of blank common throughouts and set

default initializations in a data statement.)

To conserve space choose B fairly large, subject to the natural
restrictions of word size and the constraint given above, Maximum
values for the base for various word sizes are given below in ";
Figure 38. The figures given as a power of ten are wuseful in
that their use makes for easier debugging of user programs which
call the MP package. It is, for example, much easier for the
user to determine the base ten value of a digit in base 10000

rather than a digit in base 16384,

Appendix C - 61

- T D D D S T - - - . - - arm e oo

4194304 or 1000000 1

| 48 bitss could use 8 =

t 36 bits, coutld use 8 = 65536 or 10000 1
I 32 bitss, could use B = 16384 or 10000 |
! 24 bits, could use 8 = 1024 or 1000 {
! 18 bitss, could use B = 128 or 100 i
{ 16 bits, could use B = 64 or 10 |
e e e e ————— I |

FIGURE 38

Maximum values of base for various word sizes
Avoid multiplication or division by MP numbers, as these take
o(T*x2) operations, whereas multiplication or division by

integers take o(T) operations.,

MP numbers used as arguments of subroutines need not be distinct.
for example,

CALL MPADD (Xo Y, Y) or CALL MPEXP (X« X)
are acceptable, However, distinct arrays which overlap should

not be used.,

The MP package wused with the interval data type extension has
been modified to incorporate the proper roundings needed for
interval arithmetic. This wversion of the MP package passes an
added parameter to indicate the type of rounding desired. It not
only incorporates the directed roundings but the standard

rounding and truncation as well.

Appendix C - 62

T R TR

K06 18 . o

3. Suomary.of_Available _ME_Boutines

basic arithmetic - mpadd, mpaddi, mpadda, mpdivs, mpdivi, mpaul.,
mpmuli, mpmulq, mprec, mpsudb

powers and roots - mppwr, mppwrd2, mpgpwrs, mproot, mpsqert

DRSS M NG SO SLUAR I d A6 e 0-Shady SRl sl

elementary functions - mpasins, mpatan, mpcoss, mpcoshs, mpexp,
mpln, mplngs, mplni, mpsin, mpsinh, mptan,
mptanh

constants - mpepSs, mpmaxre mpminr, mppir, mppigl

. input and output - mpdumps, mpin, mpine, wmpinf, mpouts, mpoute,
mpoutf, mpout?

conversion - mpcam, mpcdm, mpcims, mpcmds cpcmde, mpcmefs, mpcmios
mpcmim, mpcmr, mpcmre, mpcqme, mpcrm

comparison - mpcmpa, mpcmpi, mpcmpr, mpcomp, mpeGes Mmpges mpates
mple, mplt, mpne

general utility routines - mpabs, mpclrs, mpcmf, mpgcda, mpgcdbe
mpinit, mpkstr, momaxs, mpmins, mpnegs, mppacks,
mppolys, MPSET, mpstrs, mpunpk

error detection and handling = mpchks mperr, mpovfl, mpunfl

AUGMENT interface routines - mpbasa, mpbasb, mpdgae mpdgb .,
mpdigas, mpdigbs mpexpas, mpexpb, mpmexa,
mpmexb, mpsiga, mpsigb

miscellaneous routines wused by the above - mpadd2, mpadd3,
mpartl, mpbes2, mperf2, mperf3, mpexpil,
mpexts, mpgcds, mphank, mpio, mplins, mpl235,
mpmip, mpmull2, mpnzr, mpsini, mpupks mpéO0d,
mp4QOe,» mpt0f, mp40gs, timemp

4., RBestricted_Names

When writing programs which use MP via the RATFOR/AUGMENT
. interface, it is safest to avoid using the following identifiers

except with their reserved meaning.

base see description of mpbasa and mpbasb in section 6,
ctd see description of mpemd.
cti see description of mpcmi.

ctm see description of mpcam, mpcdms, mpcim, mpcqgm,

Appendix C - 63

2 . N P - 2 s - T
(o RS a7 i ﬁ'b&»ﬁ.-?“é%vmw.ww 3 LA I S

iy i S N9

T R e o N L

4
A
mpcecrm and mpurpke.
ctp see description of mppack,
ctr see description of mpcmr. ' : : -
! digit see description of mpdga and mpdgb.
f expon see description of mpexpa and mpexpb.
H frac see description of mpcmf.
gcd see description of mpgcda,
initialize see description of mpinit.
; - int see description of mpcmim.
i o . » N
' log see description of mpln and mplni,
maxexp see description of mpmexa and mpmexb.
mpxxxx (for any letters or digits xxxx),
multipak see comments in description deck above.
. multiple see comments in description deck above,
numdig see description of mpdiga and mpdigb.
sgn see description of mpsiga and mpsigb.
for the following, if the reserved word 1is xxxx, see the
description of mpxxxx in sectjion 6.
abs, addgs artl, asin, atan, bern, besj, cam, cmf, cmim, cmpa, :
comps cO0S» coshs cqms daws ei, erf, erfcs, exps expl, ganm, 1
gamgs (i, (n, ingm, tngs, tni, Lns, maxs, min, mulqr agpwr, rece f
roots, sin, sinhes sqrts str, tan, tanh, zeta. i
%
!
)
?
%
1
|
- _Jil

o e e gy

Appendix C -~ 64

A N M e 3 i " i i A LD, 0 - sl RO B o n g it i cun0 S
(o il Lo .,4.me

- fas

e k- ¢

; ' Appendix O

Mathematical_Basis_for_Intecval_Acithoetic —3

E The details of the mathematical basis for interval arithmetic are
3 developed 1in Moore [6]1, The set of interval numbers is the set
of all closed intervals on the real number Line, An interval may

be represented by an ordered pair of real numbers [a,b] where a

[7aY

. b. If a = b, then the interval is said to be degenerate.

The operations of addition, subtraction, multiplication, and
division between two intervals (except for the division of one
interval by an interval containing zero) are defined as follows

J where $ is one of the above operations:
Casbl 8 [ced) = {x $ y ¢ x € Larbl and y € [c,d))

Each of the operations of addition, subtractions, multiplication,
and division may be defined as follows:

Larbl + [c,dl Ca*crb+d)

Carbl - Lcodl Ca=-dsb-c]

* Casbl « [c,d] [min{acsradsbcrbdd)semax{acradebcebdl)]

Lasbl 7 Lcodl Cmin{a/csa/dsb/coeb/d}smax{al/coal/deb/cobl/d}]

if 0 ¢ [c.d]

In the cases of multiplication and division, by examining the

signs of the endpoints of the intervals being multiplied or
divided; a determination in advance can be made of which products

or quotients will be the maximum and the minimum,

Appendix D - 65

T a7 WS R e WA S 2 TR DN A ..

U et

e A NG N3 3 M s A AL

) i vl NS s Fid] EAL T 7 % e R e 2 S IS - . -

The following real single valued functions of intervals may be

usefut:

The

The

The

The

The

The follo
also be u

The

midpoint of an interval, mid (Larsbld)s, is defined to
be the real number (a+b)/2.

length of an interval, length (Casbl)y is defined
to be the real number b-a.,

supremum of an interval, sup ([arsbl)s is the creal
number aa.

infimum of an interval, inf (Larebl)s 1is the real
number b.

distance from interval Ca,bl to interval Ccodls dis
(Carblslcedl)sr is defined to be the real number
max{ic-al,ld=bl),

wing interval single valued functions of intervals
seful:

union of intervals farb] and Lcedd, union
(La,0l),Lc,d]), 1is defined to be the smallest
interval containing both [ar,bl] and C(ced] and is
given by [min{asclrmax{br,d}]l. The intersection of
intervals U[a,bl and Lcrdl, intsct (L{asblsLecedl),
is defined to be the largest interval contained in
each of Lar,bl and Lcrd]l or is empty if Carbl and
[cod]l are disjoint ‘intervals and 1is given by
[max{a,cremin{cr,d)].

may

The relational operations may be defined on intervals as follows:

* The

Casb) = [csod]l if and only if a = b = ¢ = d

above definition means that two intervals are equal
if and only if they both are degenerate and
represent the same real number, This definition
is employed instead of the more general definition
of testing for @a = ¢ and b = d, The reason the
more general definition is not used is because we
will regard intervals as bounds on an exact but
unknown real number., 1f two intervals were not
degenerate and if both intervals had the same
endpoints, then the intervals may not represent
the same exact real number. The only way for the
two 1intervals to represent the same exact real

Appendix D - 66

L, St 5 A YA RN 0 "‘"'f’ Fa e e A Wb

NN 1 A

© ki i o RO O, A 15V e Sl A IS 5 TR e T A

NSt r

number is for both intervals to be degenerate with
their endpoints equal to the real number, We also
say that
Ca,bl) # CLcrd) if and only if Carbl intersection [ced] = ¢
This definition means that two intervals are not equal
if and only if they are disjoint intervals and
cannot represent the same exact real number,
fa,b] & Tcrdl if and only if b € ¢
The above definition means that ¢two intervals are
ordered by the ¢ relational operator if and only
if ¥ x € Casrb]l and ¥ y € [codlsr x £ y.
[asb) > CLcoed) if and only if a > d
The above definition wmeans that two intervals are
ordered by the > relational operator if and only
if ¥ x ¢ [arb) and ¥ y € Ccedds x > y,
Interval valued functions ot interval variables are defined in
terms of real valued functions of real variables., If f is a real

valued function of a real vartiable, then f may be extended to an

interval valued functions Fs» of an interval variable by defining
F(LCarsbl) =" (f (x) 2 x € Carbl)

1f f is defined and continuous on Casbl, then F(Larb)) will be an

interval, If intervals are to represented as pairs of real
numbers, then the above definition 1is not operational, Some T
means is needed for deriving the endpoints of the image of [a/,b) B
under the function fF. The endpoints of the image dinterval wilt
be the image under f of points of Casbl. i}

Appendix D = 47

P s i WM AT S a 2 g § RIS b e i i

For functionss f, that are monotonic on the interval Car,bl, the

endpoints of the image of Ta,b) under F can be expressed as the

result of the function f evaluated at the endpoints of [a,bl., If
f is monotonic increasing on La,bl, then F(La,bl) = (f(a), f(b)I,
It £ 1is monotonic decreasing on [a,bl, then F([a,sbl) = [f(b),
f(a) . If f is not monotonic over T[a,bl, then Ca,bl] can be
divided into disjoint subintervals? X(i)s, i =2 1+2+s350con7 where U
X(i) = CCa,b) and f is monotonic on each X(i), In this case

F(Carbl) = U f(X(i)).

Appendix D - 68

M 2 AN - e iy

e i 1 e i - AL

. em & e, S i3 s Fpirr o Tl dirts & a3

- . B . R —— e oA AP S
e N e 0 BRI SRS i NS TS AN AP B AN i A S it v b et ikl

Appendix E

Descriotion_of MY _Routines_Avajilable
1. DResscciptiop_of Available_Varciable Precision_lntecval_Boutines

The suggested method of calling the MV Routine directly is given
first, Second (third, ...) alternative method(s) (if any) may be
used when the AUGMENT interface, described earlier, is used to
process the wuser program, Unless otherwise noted, X, Y, 2
represent MV numbers 1, J, Ko Ls IX etc. represent integers, RX.,
RY etc. represent reals, énd 0Xs, DY etc. denote double precision
numbers, See Appendix C for definitions of Bs Ts» M, L'"N, MXR, R
etc. Space required means the dimension of R in common., If not
specified, space required is no more than 2*T+4 words. if not

specified, space required is no more than 2*T+4 words.

MVABS '22X22;
usage == CALL MVABS (X, Y) or Y = ABS (X)
description == sets Y = ABS(X) for MV numbers X and Y
MVADD 2T X
usage == CALL MVADD (X, Y» 2) or 2 =X + Y
description -~ adds X and Y, forming result in 2, where
Xs Y and 2 are MV numbers, four guard digits
are used, and then R*-rounding.
MVASIN anewwsn
usage == CALL MVASIN (X, Y) or Y = ASIN (X)

description == returns Y =2 ARCSIN(X), assuming ABS(X)
le. 1, for MV numbers X and Y, Y is in the

Appendix € - 69

e A ORI AT i 55 A gy T N A RN b AL W B SO 194 A s 2500 L0 AN S IR0 AR Nk o S Y%, o - s st ik et ey
¥ L e N

e

range -pi/2 to +pi/2. method s to use
MVATAN, so time is o(M(T)T). dimension of R
; must be at Lleast 5T+12

2
H
§
i
i
M ’

et o ST

MVUATAN esawne b
usage == CALL MVATAN (X, Y) or Y = ATAN (X)

description == returns Y = ARCTAN(X) for MV X and VY,
using an o(T . M(T)) method which could easily
be modified to an o(SART(TIM(T)) method (as
in MPEXP1), Y is in the range =pi/2 to +pi/2,
for an asymptotically faster method, see -
fast multiple- precision evaluation of
» elementary functions (by R, P, Brent), J. ACM
23 (1976), 242-251, and the comments in
MPPIGL. dimension of R in calling program
must be at least ST+1?2

[

anladiili

MVCDM L XXX R 2]
usage == CALL MVCDM (DX, 2Z) or 2 = DX

description -- converts double precision number DX to
mul tipte=-precision 2. some numbers will not
convert exactly on machines with base other
than twos, four or sixteen, this routine is
not called by any other routine in MV, s0 may
be omitted if double precision is not !
avaitable.

MVUCIM *kswan

usage == CALL MVCIM (IX, Z) or Z = IX
description - converts integer 1% to iv
muttiple-precision 12, note - IX should not '
be the same location as 2(1) in CALL, .
MVCLR ARRARN j
usage == CALL MVCLR (X, N) .

description «- sets X(T+3), ... ¢ X(N+2) to zero,
useful if precision is going to be increased,

[MVCEMD I E2 XX

usage -~ CALL MVCMD (X, D2) or ©DZ = X

description == converts multiple~precision X to double
precision 02, assumes X s in allowable
range for double precision numbers, there

Appendix E - 70

is some Lloss of accuracy if the exponent is
large,

mvcm: Rhdhkhd

usage == CALL MVCMI (X, 12) or 112 = X

description -- coaverts multiple-precision X to integer
17, assuming that X not too large X is

truncated towards 2zero. if int(X)is teoo
large to be represented as a single precision
integer, 12 is returned as 2ero. the wuser

may check for this possibility by testing if
((X(1)ene.D)eand.(X(2),gt.0),and.(12.eq.0))
is true on return from MVCMI,

MV CMR hhhhhh
usage == CALL MVCMR (X, RZ) or RZ = X

description -- converts multiple-precision X to single
precision RZ. assumes X in allowable range,
there is some loss of accuracy if the
exponent is large.

MVCOMP #aaxdaw
usage == J T MVCOMP (X, Y)
description ~- compares the multiple-precision numbers

X and Y, returning +1 if X .qt. Y, =1 if X
«lt, Y, and 0 if X .eq. Y.

Mvecos [Z 2T X
usage == CALL MVCOS (Xo Y)Y or Y = COS (X)
description -~ returns Y = COS(X) for MV X and Y, using
MVSIN dimension of R in commen at least
ST+12.
MVCOSH I TR X
usage == CALL MVCOSH (X, Y) or Y = COSH (X)
description -~ returns Y = COSH(X) for MV numbers X and

Y» X not too large., wuses MVEXP, dimension of
R in common at least 5T+42

MYCRM setans

usage =~ CALL MVCRM (RX, 2) or 1 = RYX

Appendix E - 71

[

i tTmct e gy, C e . - prs— - C e P . R .. & o~ e

description -~ converts single precision number RX to
multiple-precision 2., some numbers will not
convert exactly on machines with base other
than twos four or sixteen,

&I'ﬂmmw P l

MVDIV ANk hh
usage -= CALL MVDIV (X, Y, 2) or 2 = X/Y

description -- sets 2 = X/Y, for MV X, Y and 2. MPERR
is called if Y is zero. dimension of R in
calling program must be at least 4T+10 (but
Z(1) may be R(3749)),

» MVEQ [XXX XX

usage -~ if (MPEQ (X, Y)) ... or if (X LEQ., Y) ...

description -- returns logical value of (X €@, Y) for —
MV X and Y. MVEQ Must be declared logical :
unless augment interface is used,

MVEXP Ak hhd

usage =~ CALL MVEXP (X, Y) or Y = EXP (X)

description -- returns Y = EXP(X) for MV X and Y, EXP
of integer and fractional parts of X are
computed separately. see also comments in
MPEXP1, time is Oo(SQRT(TIM(T)), dimension of
R must be at least 4T+10 in calling program

MVGE soatds

£ aliaadaio

usage - if (MPGE (Xo Y)) eee or if (X .GEQ Y) cae

k description == returns logical vatue of (X ,GE, Y) for
MV X and Y., MVGE Must be declared logical
unless augment interface is used,
mMveT (T2 X 2]

usage == if (MPGT (Xs Y)) 4ee Or if (X GTe Y) Lae

description -- returns logical value of (X ,GT, Y) for
MV X and Y. MVGT Myust be declared logical
unless augment interface is used,

MVGET ARt ANR

R Ll et

usage == CALL MVGET (X)

description -- converts the fixed-point decimal number
(read under nal format) in ¢(1) ,.. c{n) to a

Appendix E - 72

multiple~precision number in X, Warnings
are given for invalid intervals and when the
number of digits in the input exceeds the
precision of the target,

MVINIT khdddd
usage -- CALL MVINIT (I) or INITIALIZE MV
description =-- declares blank common (used by My
package) and calls MVSET to initialize
parameters., I is a dummy integer argument,
the augment declaration initialize MV causes
a CALL to MVINIT to be generated,
MULN tteres

usage == CALL MVLN (X, Y) or Y = (N (X)) or Y = (06
(x)

description == returns Y = LN(X), for MV X and Y, using
MVLNS. restriction =~ integer part of LN(X)
must be representable as a single precision
integer., time is O(SART(TI.MIT)). dimension
of R in calling program must be at least
6t+14,
MVLT [X EZ2X X
usage =~ if (MPLT (Xs Y)) eee OF if (X LT4 YY) .e0.
description -~ returns logical value of (X ,LT, Y) for
MV X and Y. MVLT Must be declared type
togical unless augment interface used.
MYMUL L E XX X 24
usage == CALL MVMUL (X, Y, Z) oOrFr 7 = XrY

description == multiplies X and Y, returning result in
s fOr MV X, Y and 2.

MYNE (22 XXX
usage -- if (MPNE (Xs Y)) ese or if (X oNE. Y) ese
description -~ returns logical value of (X NE. Y) for

MV X and Y, MVNE Must be declared type
logical unless augment interface used,

MYNEG *rnans

Appendix E ~ 73

i
j
|

usage =-- CALL MVNEG (X, Y) or Y = =X

description =~ sets Y = X for MV numbers X and Y

MVPUT 2 XX 22
usage == CALL MVPUT (X, W, N, LUN)

description = converts multiple-precision X to FuW,N
format and outputs the result to the FORTRAN
logical unit specified by LUN,

MVOVFL *wanaw
usage =-=- CALL MVOVFL (X)

description -- called on multiple-precision overflows,
ie when the exponent of MV number X would
exceed M, at present execution is terminated
with an error message after calling
MPMAXR(X), but it would be possible to
return, possibly wupdating a counter and
terminating execution after a preset number
of overflows. Action could easily be
determined by a flag in Labelled common,

MVPI I E2 222
usage -- CALL mvePl (X)

description =- sets MV X = pi to the available
precision, uses pi/& = 4,arctan(1/5) -
arctan(1/7239).

MV PWR [T 2 X XX
usage == CALL MVPWR (X, Nso YD) orFr Y = XnsN

description -- returns Y = X#*N, for MV X and VY,
integer Ne with Q02«0 = 1, R must be
dimensioned at least 4T+10 in calling program
(2t+6 is enough 1f N nonnegative),

MVROOT sttt an
usage == CALL MVROOT (Xs No Y) or Y = root (Xo N)

description == returns Y = Xa&x(1/N) for integer n,
ABS(N) LLE. max (B, 64), and MV numbers X
and Yo using Newtons method without
divisions, space = 4T+10 (but Y(1) may be
R(3T+9))

Appendix € - 74

S < e o e an

-tg,*—-ll-llllll-lll.‘

D=A087 56% UNIVERSITY OF SOUTHNESTERN LOUISIANA LAFAYETTE
VARIABLE PRECISION AND INTERVAL ARITHMETIC: PORTABLE ENNANCEHEN'-ETC(U)
JUL 80 B D SHRIVER AGZ9—7B-G-006
@NCLASSIFIED ARO=~1516%9+1~-M

%rm3~ ...-.......

a__

L S s B 45030 W A T b A

MVSET

MVSIN

MVSINH

. MVSQRT

L2228 2

usage =-- CALL MVSET (lunit, idecpl, itmax2, maxdr)

description -~ sets base (8) and number of digits (T)
to give the equivalent of at least idecpl
decimal digits, idecpl should be positive.
itmax2 is the dimension of arrays used for MV
numbers, so an error occurs if the computed T
exceeds itmax2 - 2. MVSET also sets LUN =
lunit (logical unit for error messages), MXR
=2 maxdr (dimension of R in commen, .ge. T¢&),
and M = (w=1)/4 (maximum allowable exponent),
where w is the lLargest integer of the form
2**K=1 which is representable in the machine,
K .te, 47 (on most machines K = one less than
number of bits per word, but this is not true
on cde 600077000 machines)., The computed B
and T satisfy the conditions
(T=-1)*tn(B)/Ln(10) «gC. idecpl and
8*3#B-1 ,le, w ., approximately minimal T and
maximal B satisfying these conditions are
chosen. parameters lunit, idecpl, itmax2 and
maxder are fintegers, beware - MVSET will
cause an integer overflow tO0 OcCCur #*asste
if wordlength is Less than 48 bits., if this
is not altowable, change the determination of
w (do 30 ... to 30 w = wn) or set R, T, M,
LUN and MXR without calling MVSET,

(2 222 2

usage =-- CALL MVSIN (X, Y) or Y = SIN (X)
description == returns Y = SIN(X) for MV X and Y,
dimension o0f R 4n calling program must be at
teast 5T+12
LA X X2

usage == CALL MVSINH (Xs Y) or Y = SINH (X)

description -= returns Y = SINH(X) for MV numbers X and
Y, X not too large,

ok hd
usage == CALL MVSQRT (X, Y) or Y = SQRT (X)
description == returns Y s SQRT(X), wusing subroutine

MVROOT {f Xx 6T, O, dimension of R in
calling program must be at least 4T+10 (but

Appendix E = 75

PSP S N

b

WY

-MASUHEB - wdvrvwn

T

Y{(1) may be R(3IT+9)),
numbers,

[A#,_....m “ R N 2 m B T U

usage == CALL MVSTR (X, Y) or Y = X

description ~~ sets Y = X for MV X and Y,

usage == CALL MVSUB (X, Y, 2) or 2 = X - Y

description ~~- subtracts Y from Xo forming resutlt in 2,
for MV X, Y and z.

MYTAN 2aeanxn

usage == CALL MVTAN (X, Y) or Y = TAN (X) —

description -~ sets Y = TAN(X) for MV X and Y
MVUTANH axaxss
usage == CALL MVTANH (X, Y)Y or Y = TANH (X)

description -~ returnsg Y = TANH(X) for MV numbers X and
Yo -)

MVUNFL wawnan
usage == CALL MVUNFL (X)

description «= catled on muttiple-precision underflow,
ie when the exponent of MV number X would be
less than -M, the underflowing number is set
to 2ero. an alternative would be to CALL
MVMINR (X) and/or return, possibly updating a
counter and terminating execution after a
preset number of underflows. action could
easily be determined by a flag in labelled
common,

2. Sulla:x-ci-ﬂxaithLs-!nziahlg-E:ssininn-lnx::xal.aon:inzs
Basic Arithmetic -~ MVADD, MVDIV, MVMUL, MVSUB

Powers and Roots - MVPWR, MVROOT, MVSQRT

Elementary Functions - MVASIN, MVATAN, MVCOS, MVCOSH, MVEXP,
MVLN, MVSIN, MVSINH, MVTAN, MVTANM

Appendix E = 7§

PRS-

Constants - MVPI

Input and Output = MVPUT, MVGET

Conversion - MYCOM, MVCIM, MVCMD, MVCMI, MVCMR, MVCRM
Comparison - MVCOMP, MVEQ, MVGE, MVGT, MVLE, MVLT, MVNE

General Utility Routines ~ MVABS, MVCLR, MVINIT, MVNEG, MVSET,
) o MVSTR
L 4

&

AUGMENT Interface Routines - MVBASA, MVBASB, MVDGA, MVDGB.,

MVD IGA, MVDIGB., MVEXPA, MVEXPB, MVMEXA,
MVMEXBs MVSIGA, MVSIGB

Appendix € - 7?7

-Appendix F,.

 Samols_rogras_Sourse_and £0RIRAN_Qutout

1. Prograp.to_fompute_the_Constapt_e
1f1 !l!{ylﬁkxag.inyggg

THIS IS A PROGRAM T0O COMPUTE e
DATA StM(1), NFACT(1), STEP(1),
ERRORC1) /20,30,40,50/
. VARINTERVAL SUM, NFACT, STEP, ERROR

N INITIALIZATION

SuMm = 0
- NFACT = 1
STEP = 1
ERROR = 1,0€E-6
- T =0

INITIALIZE THE CPU AND PAGING COUNTERS

CALL CTP (1)

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
T SUM = SUM + STEP
I =1+ 1

1 NFACT = NFACT + FLOAT(I)
STEP = 1/NFACT 31~
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2)
2 FORMAT (1X,"e IS EQUAL TO™
CALL MVPUT (SUM)
WRITE(6,1) 1
1 FORMAT (1h+,T7,"COMPUTED IN ",13," STEPS™)

PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(DD
sToP
END

Appendix F - 78

s e

1.2 EQRIBAN-Qufout

o

[Mol (2 KaNal

[a Mol

(2 Xal

szzzz PROCESSED BY AUGMENT VERSION ,4) sssss
e=s== TEMPORARY STORAGE LOCATIONS -v-e-
VARINTERVAL

INTEGER MVTMP(104,1)

wceee LOCAL VARIABLES ~===-

INTEGER I

VARINTERVAL

INTEGER ERROR(104), NFACT(104), STEPC104), SUM(104)

~emee GLOBAL VARIABLES =~===-

INTEGER MVBASE, MVDIS, MVLUN, MVM, MVMAXT, MVMXR,

*

MVR(1040), MVT, MVTEMP(104)
==w=e= SUPPORTING PACKAGE FUNCTIONS =~=~-

LOGICAL MVLE

ceeses COMMON BLOCKS =<w=w-

COMMON // MVDIS, MVBASE, MVY, MVYM, MVLUN, MVMXR, MVR
COMMON /MVTEMP/ MVMAXT, MVTEMP

sz=== TRANSLATED PROGRAM ===z=z=

szz2x UNRECOGNIZED STATEMENT ss=zs=
DATA SUM(1), NFACT(1), STEP(1),

*

CALL
CALL
CALL
CALL
CALL

ERROR(1) /20,30,40,50/
weee= BEGIN INITIALIZATION =====
MVINIT (MVTMP(1,1),1)
MVINIT (ERROR,D)
MVINIT (NFACT,0)
MVINIT (STEP,O0)
MVINIT (SUm,0)
e=«=== END INITIALIZATION ~==--

MVMAXT = SO
MVMAXT = 50

MVLUN = 6
MVLUN = 6

MVBASE = 10
MVBASE = 10

Mvm = 1000

MVM

MvY
MVT

MYMXR
MVMXR

= 1000

= 0
= 0

1040
1040

MVDIS = 2
MVDIS = 2

MVTENP (1) = O
MVTEMP(1) = O

Appendix F - 79

MVR(1) = 0

€
C

MVR(1) = 0
— - ,;f_, S
C sSuM = 0
CALL MVCIM (0,SUM)
¢
(4 NFACT = 1
CALL MVCIM (1,NFACT)
s _ - €- e - . R . -
¢ c STEP = 1
CALL MVCIM (1,STEP)
c —a

. ¢ ERROR = 1,0E-6

h CALL MVCRM (1.0E=-6,ERROR)

c 1 =0
1 =0
- 2 : -1
c CALL CTP (1)
CALL CTP (1)
c - . - -
c CONTINUE
CONTINUE
c —1 4
C3001 CONTINUE
23001 CONTINUE
,c -
c SUM = SUM + STEP
CALL MVADD (SUM,STEP,SUM)
¢
¢ I =1 +1
1 =1 +1
c
¢ NFACT = NFACT * FLOATCI)
C ====zz MIXED MODE OPERANDS ACCEPTED ===== . 3
CALL MVCRM (FLOAT (I),MVTMP(1,1)) 2
CALL MVMUL (NFACT,MVTMP(1,1),NFACT) ;
c ;
¢ STEP = 1/NFACT
C sms== MIXED MODE OPERANDS ACCEPTED =ssz==
CALL MVCIM (1,MVTMP(1,1))

* CALL MVODIV (MVTMP(1,1),NFACT,STEP) N
c M
€3002 IF(,NOT.(STEP ,LE. ERROR)) GOTO 23001 ’

2 23002 1f (.NOT.MVLE (STEP,ERROR)) GOTO 23001

. c
€3003 CONTINUE
23003 CONTINUE ;
o 3
€99 WRITE(6,2) ‘
999 WRITE(6,2)
2 FORMAT (1X,13He IS EQUAL TO)

Appendix F - 80

t

e e - it s e M o ae s e e

¢ R
¢ CALL MVPUT (SUM)
CALL MVPUT (SUM)
c Ny
¢ WRITE(6,1) 1
WRITEC6,1) 1
1 FORMAT (1h+,T7,12HCOMPUTED IN ,I3,6H STEPS)
c
¢ CALL CTPC(O)
SR ' " CALL CTPC(O)
¢ ¢
(sTOP
sSTOP
END

Appendix F - 81

R e A AR = e

2.

2.1 YARINIEBYAL Spurce

Heat_ transfec_ncogran

¥
¥
¥
¥
v
’
L

#
E
BEGIN PROGRAM
INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
Pl = 3,1415927
PISGR = Pl » Pl
L = 10 # LENGTH OF BAR
K = 30
RO = 7,1 » 62.3
C = ,12
T0 = 70 # AMBLIENTY TEMPERATURE s
T1 = 500 # TEMPERATURE OF HEAT SOURCE
ERROR = 1
00 1 = 1, 10 # SET ERROR = 1,E-S56 7
L ERROR = ERROR/100000 3
GET THE TIME, IN MINUTES]
WRITE (6.,1)
1 FORMAT (™ ENTER THE TIME IN MINUTES™)
CALL MVGET (THETA)
4
Appendix f - 82
-

PROGRAM TO COMPUTE HEAT TRANSFER IN A TEN FOOT IRON BAR
HEAT SOURCE IS SO0 DEGREES, AMBIENT TEMPERATURE 1S 70
DEGREES, OUTPUT IS TEMPERATURE OF BAR AT ONE FOOY

INTERVALS, INPUT IS TIME AFTER CONTACT WITH HEAT SOURCE
IN MINUTES.

INTEGER VARIABLES

VARINTERVAL VARIABLES

INTEGER FEET, KLENGTH, ITEMP, TIME

CONSTANT VALUED VARIABLES

DATA ERROR(1), PI(1), PISGR(1), (1), ROCY1), C(1),
KC1) /7%56/

DATA TOC1), T1(1) /2256/

VARIABLE VALUED VARIABLES

DATA COUNT(1), THETA(1), SUMC1), XSUM(1), X(1) /Sx56/
DATA T(1) 756/

VARINTERVAL DECLARATION
VARINTERVAL PI, PISQR, Ls RO, C» K, TO0, T1, COUNT,
THETA, SUM, XSUM, X, T, ERROR

O Al Mk AR A

}&

CALCULATE TEMPERATURE FOR EACH FOOT
¥

KLENGTH = L
00 FEEYT = 1, KLENGTH
C
COMPUTE AN INITIAL VALUE FOR 7
= (K*THETA)/(L**2 « RO * C)

- &

COMPUTE DISTANCE TO HEAT SOURCE
e FEET/L

X X%

LOOP FOR THE COMPUTATION OF SUM
sum = 0

XSUM = 0 # INITIAL LOOP VALUES
COUNT = 0

TIME = 0

REPEAT
£ COUNT = COUNT + 1
SUM = SUM + XSUM
ITEMP = COUNT
XSUM = ((=1)«xITEMP/COUNT) *
(EXP(~(COUNT#*#2) » (PISQR) * T) +
SIN (COUNT=2PI~X))
IF (ABS(XSUM) < ERROR)
TIME = TIME + 1
ELSE
TIME = 0
]
UNTIL (TIME == 2)

COMPUTE THE TEMPERATURE FOR THIS DISTANCE
T =70+ (T1T = T0) » (X + (2.0/P1) » Sum)

OQUTPUT THE FINAL ANSWER FOR THIS FOOT

WRITE (6,4) FEET
CALL MVPUT (T)

4 FORMAT (1X, "THE ANSWER FOR ",12, " FEET IS ™)
WRITE (6,5)

5 FORMAT (™ The number of steps is: ™)
CALL MVPUT (COUNT)

]

CALL CTP(D)
STOP
END

Appendix F - 83

- ey TR T T R TR e

Earaitl e

. T

e e, A S Y e M S e e G

- IR ST I PR SR

2.2 fortcan.Qutout

LC(118),

C asxxz PROCESSED BY AUGMENT VERSION ,4) =xsx=
4) ' sceae INITIALIZE/ERASE INDEXES <s-w-
INTEGER 0011
c wwwe= TEMPORARY STORAGE LOCATIONS ==-=--
INTEGER OODITMP(1) :
C VARINTERVAL
INTEGER MVTMP(116,.3)
< ~=eoe= LOCAL VARIABLES ~===-
INTEGER FEET, 1, ITEMP, KLENGTH, TIME
C VARINTERVAL
INTEGER (C(116), COUNT (116), ERROR(116), K(116),
* PI(116), PISQR(116), RO(116), SUM(116), T(116),
* TOC(116), T1(116), THETAC116), X(116), XSUM(116)
C ===== GLOBAL VARIABLES =~=«-
INTEGER MVBASE, MVDIS, MVLUN, MVYM, MVMAXT, MVMXR,
* MVR(1160), MVT, MVTEMP(116)
c e==== SUPPORTING PACKAGE FUNCTIONS =-=--
LOGICAL MVLT
C wmaece COMMON BLOCKS =e«--
COMMON // MVDIS, MVBASE, MVT, MVM, MVLUN, MVMXR, MVR
COMMON /MVTEMP/ MVMAXT, MVTEMP
C z=zzz= TRANSLATED PROGRAM ===x=x
C =z=== UNRECOGNIZED STATEMENT =zz=n=z

DATA ERROR(1), PI(1), PISQR(1Y, LC1), ROC1),» C(1),
v K(1) /7+56/
C ====z2= UNRECOGNIZED STATEMENT =====
DATA TOC1), T1C1) [/2256/
€ s=zz== {NRECOGNIZED STATEMENT ===z==
DATA COUNT(1), THETA(1), SUM(1), XSUM(1), X(1) /5%56/
€ =z=zs== UNRECOGNIZED STATEMENT =====
DATA T(1) /56/
c eeee- BEGIN INITIALIZATION =—we-
MVTEMP (1) = 0
MVR(1) = 0
b0 30000 0011 = 1, 3
30000 CALL MVINIT (MVTMP(1,0011),1)
CALL MVINIT (C,0)
CALL MVINIT (COUNT.,O0)
CALL MVINIT (ERROR.O0)
CALL MVINIT (x.D) s
CALL MVINIT (L.,OD)
CALL MVINIT (PI,0)
CALL MVINIT (PISQR,0)
CALL MVINIT (RO,0)
CALL MVINIT (SumM,()
CALL MVINIT (T,0)
CALL MVINIT (T0,0)
CALL MVINIT (T1,Q)
CALL MVINIT (THETA,O)
CALL MVINIT (X,0)

Appendix F - B84

CALL MVINIT (XSum,0)

==e== END INITIALIZATION —e==-

MVMAXT = 56
MVMAXT = 56

MVLUN = 6
MVLUN = 6
’ 4 MVBASE = 10
* MVBASE = 10
¢
c mvm = 1003
MVvM = 1003
. c
c MVT = 0
MVT = 0
c
¢ MVMXR = 1160
MVMXR = 1160
c
c mvpIS = 2
MVDIS = 2
, c
] c MVTEMP(1) = O
MVTEMP(1) = O
¢
c MVR(1) = O
MVR(1) = 0
C
c CALL CTP(T)
CALL CTP(1)
, C
] ¢ PI = 3.1415927
5 CALL MVCRM (3,1415927,P1)
¢
¢ PISGR = PI * P]
CALL MVMUL (PI,PI,PISQR)
c
C L =10
CALL MVCIM (10,L)
c
. c K = 30 7
CALL MVCIM (30.,K)
c _
¢ RO = 7,1 * 62.3 -
. CALL MVCRM (7.1%62.3,R0)
c ‘
c cC= .12 7
CALL MVCRM (,12,C)
¢ E
c T0 = 70

CALL MVCIM (70,T0)

Appendix F - 85

e

g A Pl XA LD o D1 o S 55 S 5 S R i 010y i P b N bt) - W g M Ll ;.

[P SISy N P P O T v N - B - e

Fe
‘*
; c
! ¢ T1 = 500
| CALL MVCIM (500,T1)
_f c - . -
e c ERROR = 1
{ CALL MVCIM (1,ERROR)
s ¢
i c O 23001 1 = 1, 10
5 b0 23001 I = 1, 10
H c
i * c ERROR = ERROR/100000
CALL MVDIVI (ERROR,100000,ERROR)
c
€3001 CONTINUE
. 23001 CONTINUE
¢
€3002 CONTINUE
23002 CONTINUE
¢
c WRITE (6,1)
WRITE (6,1)
1 FORMAT (26H ENTER THE TIME IN MINUTES)
¢
c CALL MVGET (THETA)
CALL MVGET (THETA)
C 3
c KLENGTH = L :3
CALL MVCMI (L,00ITMP(1))
KLENGTH=001TMP (1)
¢
c DO 23003 FEET = 1, KLENGTH
DO 23003 FEET = 1, KLENGTH
c
c T = (K*THETA)/(L##2 * RO * C)
CALL MVMUL (K,THETA,MVTMP(1,1))
CALL MVPWR (L,2,MVTMP(1,2))
CALL MVMUL (MVTMP(1,2),R0,MVTMP(1,2))
: CALL MVMUL CMVTMP(1,2),C,MVTMP(1,2))
3 CALL MVDIV (MVTMP(1,1),MVIMP(1,2),T)
‘ c
¢ X = FEET/L
. C ===== MIXED MODE OPERANDS ACCEPTED ==z===
CALL MVCIM C(FEET,MVTMP(1,1))
CALL MVDIV CMVTMP(1,1),L,X)
¢
‘ c SuM = 0
. CALL MVCIM (0,SUM)
c
c XSUM = O
CALL MVCIM (0,XSUM)
¢
c COUNT = 0

CALL MVCIM (0,COUNT)

Appendix F - 86

-, o N S SN L5 5 AT L 51 AT MDA N N 2 ARGt S0 i MG SRl 5 SR N 08 3 611055 -5 b N R0OF L A 05 M A S -0 - AN N

o R

[a Nl

(o e

[aNaNaNeNal

[a)

laNal

c3008
23008

TIME
TIME

CONT
CONT

CONT
CONT

= 0
=0

INUE
INUE

INUE
INUE

COUNT = COUNT + 1
CALL MVADDI (COUNT,1,COUNT)

SUM = SUM + XSUM
CALL MVADD (SUM,XSUM,SUM)

ITEMP = COUNT

CALL

MV CMI

(COUNT,O00ITMP (1))

ITEMP=00ITMP (1)

XSUM
(EXP

CALL
CALL
CALL
CALL
caLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

IFC(.NOT.(ABS(XSUM) .LT. ERROR)) GOTO 23008
CALL MVABS (XSUM,MVTMP(1,1))
IF (NOT.MVLT (MVTMP(1,1),ERROR)) GOTO 23008

TIME
TIME

GO0TO
GoTo

CONT
CONT

TIME
TIME

= ((

=1)2«ITEMP/COUNT) *

(=C(COUNT%42) + (PISQR) * T) =«
SINCCOUNT*PI%X))
= MIXED MODE OPERANDS ACCEPTED =====

MVCIM
MVDIV
MVPUR
MV MUL
MVMUL
MV NEG
MVEXP
MVMUL
MVMUL
MVSIN
MVMUL
MV MUL

23009
23009

INUE
INUE

0
0

TIME + 1
TIME + 1

((=1)*+ITEMP,MVTMP(1,1))
(MVYTMP(1,1),COUNT,MVTMP(1,1))
(COUNT,2,MVTMP(1,2))
(MVTMP(1,2),PISQR,MVTMP(1,2))
(MVTMP (1,2),T,MVTMP(1,2))
(MVTMP(1,2),MVTMP (1,2))
{(MVTMP(1,2),MVTMP(1,2))
(COUNT,PI,MVTMP(1,3))
(MVTMP(1,3),X,MVTMP(1,3))
(MVTMP(1,3),MVTMP(1,3))
(MVTMP(1,2)sMVTMP(1,3), MVTMP(1,3))
(MVTMP(1,1),MVTMP(1,3),XSUM)

Appendix F - 87

€3009 CONTINUE
23009 CONTINUE
¢
€3006 - IFCNOT.(TIME JEQ, 2)) GOTO 23005
23006 IF(.NOT.(TIME .EQ, 2)) GOTO 23005
C
C3007 CONTINUE
23007 CONTINUE
c
c T=TO ¢ (T1 = T0) = (X & (2,0/P1) » SUM)
C ===== MIXED MODE OPERANDS ACCEPTED =====
CALL MVSUB (T1,TO,MVTMP(1,1))
CALL MVCRM (2,0,MVTMP(1,2))
CALL MVDIV (MVTMP(1,2),PIl,MVTMP(1,2))
. CALL MVMUL (MVTMR(1,2),SUM,MVTMP(1,2))
CALL MVADD (X, MVTMP(1,2),MVTMP(1,2))
CALL MVMUL (MVTMP(1,1),MVTMP(1,2),MVTMP(1,2))
CALL MVADD (TO,MVTMP(1,2),T)

¢
C WRITE (6,4) FEET
WRITE (6,4) FEET
C
C CALL MyPyT (T)
CALL MVPUT (T)
4 FORMAT (1X, 1SHYHE ANSWER FOR ,I2, 9H FEET IS)
c .
C WRITE (6,5)
WRITE (6,5
5 FORMAT (25H The number of steps is:)
(o
C CALL MVPUT (COUNT)
CALL MVPUT (COUNT)
C

C3003 CONTINUE
23003 CONTINUE

€3004 CONTINUE
23004 CONTINUE

C

C CALL CTP(D)
CALL CTP(D)

C

* .-

¢ sSTOP
sTOP ?
END

Appendix F - 88

[

Appendix G

User.Guide_to Structured Variable Precision_lnterval EQRIRAN

1. General_DRescciption_of_the_Package Design_Methodology

The variable precision interval arithmetic package contsins three
distinct levels of subroutines., The first level is called by the
user program, This first Level of routines is distinguished by
the prefix My, The first level addition routine, for example, is
catled MVADD., This Llevel is responsible for controlling the
precision of the computation, Its duties include:
1) making adjustments to the precision of the arguments
so that when they are passed to the next level
they are of the same precision,
2) determining and passing the precision in which the
operation is to be performed to the underlying

routines. This is done via an external variable in
unlabelled common,

3) the passing of the argument values to the next Llevel
in a form acceptable to the underlying routines
(the format of the multiple precision value is
somewhat different at this level than below).

4) examining the target of the computation and
assigning the wvalue of the result to the target
with appropriate adjustments to the precision of
the result,
The second Llevel, with name prefix MX, is responsible for the
interval arithmetic aspects of the computation., Its duties
include:

1) case anslysis (when necessary) to determine which
endpoints of the arguments are to be used in the

Appendix G - 89

e

e .l

W e b R 2 L gL b e N N T AL s R T e B e

computation,

2) the passing of the appropriate endpoints to the next
- tevet -with a proper - indication of the rounding
strategy to be employed (care is taken that ne
overwuriting of values occurs so that computations

tike A = A + A are acceptable).

* 1T T T Ve
(first Level) | MVPUWR | !
| B B |
| |
. ! 1 MVSTR |
! | B |
v

! '
(second Llevel) I MXPWR |
! '

|
[
(third Ltevel) | MPPUR |
i |

! { '

coww " aooae -—-oe ' - coee '---

! MPREC | | MpMmyL Vv
| D R | e o o
|
weeaVecaea v
' ' L] - L J
{ mpMyL2 |
D | 7
' ;
ceceaVaee '
! 1 -
I MPNZR | :
| S |
L} .
FIGURE 39
3
' Tree Figure of the multitlevel interpretive -
. structure of the power function

Appendix G = 90

o

Y Ty P R
-

The third level, with name prefix MP, is responsible for the
actual performance of the computation employing the rounding
strategy received as a parameter from the second Level, for
example, the subroutine 1invocation history of X = Y#e«N is

graphically represented is Figure 39,

Within the package there are two slightly different multiple
. precision interval "word” formats used. The thfrd level operates
on one endpoint of the second level interval, The format used at
the third level s the same as either the left or right portions

of the second Level interval format.

r The first level interval format, Figure 40, is used only at the
first Llevel, The multiple precision word is represented as an
integer array with the first element carrying three pieces of

§ information, The first digit is used to represent the sign == +1

signifies positive, -1 negative, O zero. The three digits
following the sign is the precision of the word, The next digit

determines whether or not the word is a temporary variable, 1 s 3

used to indicate a temporary; two 1is used to indicate a A;
non-temporary. For zero the exponent and digits are wundefined,
The second element carries the exponent of the multiple precision 7
word. The exponent 1is always a base 10 integer and signifies
. (base)*r*expon, The next N elements contain the N digits of the N

digit precision number, The digits can be of any base (with some 7

restriction on size) but the package was implemented with base 10

Appendix G - 91

o

88 3 wmatter of convenience., Using base 100 wveuld result in atmost
a S0X savings in the amount of space used by each variable
precision interval variable, but would require some slight

modifications to the input/output routines,

- P A s B Y TR G A WD D T W W W - - e D G P G W W W -

! ! ! | 1 { ' | |
Isdddt] expon | T1 1 T2 leeel TN I s ! expon | T1 J.e.! TN 1
t] { 1

N

FIGURE 40

Multiple precision interval number format.
for first level, sdddt = sign(0,=-1 or +1)
concatenated with the precision concatenated
with a3 temporary variable indicator (1 for
temporary, 0 for nen-temporary) expon =
exponent (to base b) Ti = digit (in base b)

s =2 sign (0, -1 or +#1), Note that expon and
Ti are undefined if sign = 0,

The second level intervat format, Figure 41, s used at the
second level, The multiple precision interval word at this level
is identical to that of the first level except for the deletion

of the precision information and the temporary variable

indicator.

D D W A DS D P D A D DR WD D YD D P D DD G D WD G D G AR SRR G A G TR WP TS R W A D WS G D e dp D

t 1 1 1 1 1 1 ' 1 1 1 !
1 s) expon | TY 1 T2 teeel TN | s | expon | T1 leeel TN |
| P 1 { ! ! | ' } { | |

oocew coceoceoe eceeow oeoecece 'eee ' eceoceceosn eeoeoe'coee ' ceaes

FIGURE 41

Multiple precision interval number format,
for second level, s = sign(0,-1 or +1), Note
that the exponent and digits are undefined ¢f

sign = 0 expon = exponent (to base b) Ti =
digit (in base b)

Appendix G - 92

A e A B N Banrs s N T =< et s g SAA AR S Uil o Ml L e i b et o e AR - T P R O iR, 1T

[

i 2. Dessriotion_af_the MV_Boutiges 3

The MV routines can be divided into two classes -- one argument
and two argument routines, Within each class all MV routines are j
virtually identical, The partitioning of the two argument

routines is given in Figure 42, ‘3

| determine which arqument has the larger precision
l L rx X X X X 2 T X ¥ T X ¥ ¥ ¥ ¥ ¥ ¥ 1 ¥ X ¥ X ¥ X T T X 1 J 2 T X X X 1 X T X ¥ 2 X ¥ t 2 ¥ T 2 X T X 1 J

! copy the value of the argument with the smaller
| precision into a temporary location using the

t precision of the argument with the larger precision =
' L X X T X 1 X T X ¥ 1 2 ¥ T ¥ ¥ X N ¥ L N ¥ & ¥ X X T ¥ X X L 2T 2 X L L X X X X X ¥ X 2 T X X X X X 2 1 J

! set the precision for the operation, via unlabelled

| common, to the precision of the arqument with the B
| Larger precision

t convert the word format to that used by the lower
| level routines
' - X T B ¥ ¥ ¥ T ¥ L ¥ W ¥ ¥ K ¥ X ¥ I K ¥ ¥ X X L T J X X = I K X I I K X X X K _ ¥ X I _JEX T 2 T X 2 X 2 J

|
t
1
1
1
1
1
1
|
)
[
1
{
! pass the arguments to the lower level routines 1
! : 1
|
{
1
|
|
!
|
!
|
|
1
I
|

D WP W - - - T P D D G G D D D D D GRS T TP A W G G D WP TR

1 convert the word format back to that used by the
! MV routines

| R
! if the target is a temporary variable

| then copy the resutt of the operation into the

| target and set its precision to the same as the
' Larger precision of the two operands

! else convert the result to the same precision as

! the target., If the precision of the target is

1 higher then copy the value and fill in with

i 2eros; else make adjustments to the target

1 consistent with interval arithmetic

!

- D - AP T D DD S D R A P D W CPED D WD b R D D D S AD W R A T W W

* FIGURE 42
Partioning of a two argument MV routine

The one argument routines are essentially the same’; however.,

Appendix G - 93

there is clearly no need for the precision manipulations
necessary for the ¢two argument routines. The MV routines

available are described in Appendix E.

3. Prepacation.of_the _Usec_Progran

3.7 RAIEOR_and AUGMENI._Essentials

The translation sequence from structured variable precision
interval FORTRAN to standard FORTRAN is done in two passes. On
the firgt pass the program is converted from RATFOR format to
standard FORTRAN format. It 1is necessary that the program be
written in RATFOR for the conversion, A summary of RATFOR s

given in Appendix A with sample programs in Appendix F,

On the second pass an AUGMENT description deck, described in

Appendix B, is attached to the user program and processed through

the AUGMENT precompiler, AUGMENT converts the variable precision

ifnterval variables and the operations upon them to standard

-
3
]
3
i
i
3
i

FORTRAN, This also is discussed in Appendix B,

3.2 BReguiresepnts_for_the_Use_of_Variable frecision.
lotecyal_Vaciables E

Several requirements must be met by the user for the use of

variable precision interval variabtes. -

1) wvariable precision fnterval variables be declared
VARINTERVAL,

Appendix G ~ 94

2) the string "XC*BEGIN" must be placed in column 1
after the declarative statement but before the
first executable statement,

3) there must be FORTRAN DATA statements setting the
value of the first element of each variable
precision interval variable to the precision that
it is to contain,

-

4) the program must be written in RATFOR which is
described in Appendix A,

. Suppose the wuser were to have three variable precision interval
variabtes X, Y, and 2 with precisions 10, 20 and 30 respectively,
The program in Figure 43 would be a valid example of a program
containing VARINTERVAL variables, Figure 44 through Figure 46 are

examples of invalid VARINTERVAL programs,

D DD W A D Y G DD SO D D G WD YD D D G WD W

INTEGER KT
DATA Xo Yo 2 710,20,30/
VARINTERVAL X, Y, 2
XC*BEGIN
VALID RATFOR COMMENT
CALL MVGET (X)
READ (S,1) KT
1 FORMAT (1I10)
1f (X >= 10.7)
Ly = x / 18.3
7 = KT4Y)
ELSE
£2 = x # 18,3 1
CALL MVYPUT (1)
sTOP
END

D D G W G G G AT D S P W W S 4 -

D G s G e AUs CED m DS amm R S SER Gun G R e
W W ANp e D MU M T Wb um ewd D Gun s W R g

FIGURE 43 B

Example of a valid VARINTERVAL program

Appendix 6 - 95

it

S i o e TS bt T P KA et
3 e e e o i

P R el

- R D TP D DR G5 A TR G TS R AP W AD WS T A D W AP A W

' VARINTERVAL X, Y
) VARINTERVAL 2
s INTEGER KT
DATA X(1),Y(1),
2¢1) /710,20,30/
VALID RATFOR COMMENT
CALL MVGET (X)
READ (S,1) KT
1 FORMAT (110)
IF (X >= 10.7)
£y = x / 18.3
7 = KT4+y]
ELSE
£2 = X « 18,3 1
CALL MVPUTY (2)
sTOP
END

s

" S G A wEn WD Gmp D e D D WD i =

FIGURE 44 J

' Example of a invalid VARINTERVAL program
‘ (missing %C+«BEGIN)

' - A D S AP D A D AP W D EED WD WD P A D YD P W WY

INTEGER KT
VARINTERVAL XoYo2
%C*BEGIN
VALID RATFOR COMMENT
CALL MVGET (X)
READ (S,1) KT
1 FORMATY (110)
1fF (X >= 10.7)
Cy = X / 18,3
7 = KT+y 3]
ELSE
£z = X » 18,3 1]
CALL MVPUT (2)
STOP
END

e D A D G TES SR W R D emn em wmn
S wm w ey SR D G WD wn WD s T S -

FIGURE 45

txample of a invalid VARINTERVAL program
] (no DATA statement setting precision)

Appendix G - 96

,.‘
L A AL At 2 o] T bt e g A W, L o IS 507 ik s el o lAB o Antas 1 i pemn e S e A -2 N s

g T IE = T T St PRSP P . - T e

- e b - > - - - - e e e o ey @ -

INTEGER KOUNT
DATA X€1),Y(€1),2¢1)/10,20,307 1
VARINTERVAL XosYel !
C THIS IS NOT A RATFOR COMMENT !
IF (X.6E.10.7) GO TO 10 |
X = X * 18,3 |
KOUNT = KOUNT - 1 !
GO0 T0 20 |
10 X =2 %X /J 18.3 !
KOUNT = KOUNT + 1 !
20 CONTINUE |
sTOP !
END |
!

FIGURE 46

Example of invalid VARINTERVAL program
(not written in RATFOR)

3.3 loputtipg_and_Quitouttipg_of_Yariable Precision
lptecyal_Yaciables

There is very little for the user to be concerned with during the
transtation of a structured variable precision interval FORTRAN
program to standard FORTRAN, RATFOR and AUGMENT take care of
almost all of the details, The major exception is that i/o
statements are ignored during the translation process. 1t s
left up to the user to make the necessary modifications to the

program before translation so that i/o is done properly.

for the input of variable precision interval values the

* subroutine MVGET is supplied. Its usage is

CALL MVGET (variable precision interval variable)

Appendix 6 - 97

which will read a variable precision interval value from the

FORTRAN logical unit specified by LUN. €ach endpoint must be on
] separate Lline with the Lleft endpoint appearing first,
Generalized floating point format is accepted by the routine,
The input is checked to insyre that it forms a proper interval, A
warning is output if the number of digits in the input is greater
than the precision of the target. Truncation of the input to the

precision of the target occurs 1in this case,

for the outputting of variable precision interval vatues the

subroutine MVPUT is supplied. Its usage is
CALL MVPUT (variable precision interval variable)

which will output the specified value to the FORTRAN logical unit

specified by LUN. Output is one value to a line,

3.4 Copstraingts.opn_Yariable Precisiop_lpntecxal_Usage

There are, naturally, constraints, These are:
1) The precision of a variable precision interval
variable must be less than 1000 but more than 2.
2) The maximum exponent range is 2000,
3) Unlabelled common must not be used by the user or it
witl disturdb the Llower levels of the support

structure.,

4) Avoid using any names beginning with MV, MX or MP,

Appendix G - 98

I

ok

Additional information concerning these constraints may be found

in Appendix C and Appendix E,

3.5 Usipg.the Varips_Command_opn_Myltics

The command for the invocation of the virtual compiler for the

transtation of structured variable precision FORTRAN is "varint”

or "yt",
The syntax is:

vt path -maxp N {(~control_args?)

The arguments are as follows:

path
is the pathname of a FORTRAN source segment; the
fortran suffix need not be given,
maxp N
is a mandatory control argument which indicates to
the virtual compiler that the maximum precision
that will be encountered in the program will be <=
Control arguments: ;
-no_compiler =nc 3

does not produce an object code segment from the
FORTRAN output.

“no_translated_source, -nt

checks the VARINTERVAL program for correctness but
does not produce the FORTRAN output,

~augment_List, als
produce an AUGMENT listing of the FORTRAN output.

Any valid FORTRAN compiler option.

Appendix G - 99

3.6 Pragtical_Comaments

puring the course of testing and development there were
encountered several instances of the use of VARINTERVAL variables
in which the way in which the algorithm was configured seriously
affected the results that were produced. This is not wunusual in
iéself: such effects can be noted in all computer implementations
of algorithms. There were, however, several effects peculiar to
VARINTERVAL usage., The user must have a firm understanding of

these effects produced by the configuration of his algorithm,

With such an understanding the user can ensure that the algorithm
is implemented in an efficient manner and produces the proper

results. Without such an understanding he may produce a highly

e

inefficient FORTRAN program and unknowingly encounter deleterious

side effects., The effects associated with VARINTERVAL usage fall

into three categories:

1) effects associated with the use of standard FORTRAN
variables and constants

2) effects associated with attempts at precision
control

3) effects associated with the repetitious evaluation
of invariant expressions

The following discussion describes in detail what problems are

encountered with these effects and how the user may avoid them,

The wusage of standard FORTRAN variables can create serious

Appendix 6 - 100

kY

& Sl MREIID s 8 B s

(‘v

s 5 A OO 5, vl e SO0 e AN e S SAAB LSRN, o i i

problems for the unwary. These problems can be summarized as:
1) induction of false significance
2) loss of significance

3) repetitious conversions to VARINTERVAL

fFalse significance can be induced into the results by the mixing
of standard FORTRAN variables with VARINTERVAL variables, The
problem occurs when a VARINTERVAL value of Llow significance s
assigned to a standard FORTRAN variable and then reassigned to a
VARINTERVAL variable. When a VARINTERVAL value is assigned to a
standard FfORTRAN variable the midpoint of the VARINTERVAL value
{s used., Standard FORTRAN values are taken as exact results when
they are assigned to VARINTERVAL variables. Figure 47 clearly
illustrates the problem that can arise.

R T W e @ D GG D W G DD S S Gh O D A -

REAL Y
VARINTERVAL X» 2Z

value input is [=150, +150]
CALL MVGET (X)

value assigned to Y is 0,0
Y =X

2 is given the value [(0,0)
71 =Y

FIGURE 47

Example of induction of false significance

A" Loss of significance may also appear when standard FORTRAN and

VARINTERVAL variables are mixed. This loss of significance takes

Appendix G - 101

YT 4 9 PRI TR R

SN MR 1 J AP it A 1 AP M BN AT 50 3 e A G s b i 2 JE T e o ittt £ .. IR T
o - R -A Pk aw e o - . . - . PO .. e e e wrw e

e nr e e e e e mmees e et

place in the same manner as the induction of false significance.

The problem crops up when a VARINTERVAL value of high

o S o A ML LRt e A

significance is assigned to a standard FORTRAN wvartable which
has, at most,s, 8 to 20 decimal digits of precision, Figure ¢8

demonstrates the problem that might occur.

REAL Y
VARINTERVAL X» 2

value input is [1/3,1/3] to 50 decimal
digits of precision
CALL MVGET (X)

value assigned is .333333333
Y = X

value assigned is [.33333333,.333333333)
72 =Y

- o D Gy WS Gy T Y ey ==
- D wmp D e B wmt NS b D e ==

FIGURE 48

Example of toss of significance

Loss of significance may also be induced through the use of
constants. This may occur in two ways. The first is through the
use of inappropriately insignificant constants. fFor example, the
use of the constant pi to 18 digits of accuracy in a section of
code which is to be performed with 100 digits of precision is a
waste of resources, The second manner in which Lloss of

* significance may occur is through the conversions which naturally

occur with real constants, Suppose the program contains the

< statement

X = ,3456

where X is VARINTERVAL with 30 digits of precision, The value of

Appendix G - 102

T NG 3 R I e a5 Lk i A T N s A e 1Tt B at KNSl 13020 O Wi b it i L e e L o . 7. 2

s

3
g X after the assignment is not .3456 but j
g 0.345600003004074096679687500000e+000 j
% The reason for the inexact conversion 1is that 3456 s not
% exactly representable in binary, to which it is converted at E
g‘ compile time. This inexact binary value is converted to Aj
i * VARINTERVAL, resulting in an overall inexact converiion. The
user can avoid the problem by avoiding real constants, If the ?
. programs contained, instead, the two statements ;
X = 3456
X = x/10000

the conversion will be exact,

The problems associated with the use of constants can be avoided

with the use of care. The user must be especially alert when

converting an existent program to VARINTERVAL. It is quite easy

to overlook constants that may cause problems., The consequences

are grave’ these validity of the program's results may be

d seriously affected. Furthermore, these problems are not the type
which are detected by the VARINTERVAL data type, The results
produced by the program can appear entirely satisfactory even
when seriously in error. The third problem that the user might
encounter when mixing VARINTERVAL and standard FORTRAN variables
is on§ of efficiency. In some situations this mixing will have no
’ effect on the significance of the result, for example, the use of
a D0 index in the body of a loop. There may, however, be some
objectionable expense incurred through multiple conversions of

the same value to the same data type. The program segment in

Appendix 6 -~ 103

7
i
i

g e b S 5 it AR S B T el e

o oyt o e W

Figure 49 exhibits this behavior.

- - - G T W W W S YD AP AP W D AP 2 €D D AR AP AP ED YD WD G WD A D T W

INTEGER 1
VARINTERVAL X, Y, 2

i

I

}

! # This loop performs three conversions of !
{ " to VARINTERVAL

i o0 1 =1, 100

t L
|

!

}

> < x

1
1
1

]

D A YD A G G WS W AP N G G D D R G PGP P S WS WGP G W R D R AR PP W A A D -

FIGURE 49

Example of repetitious conversions

The user must take care when attempting to exert control over the
precision of the operations, Consider, for example, the statement
T=X*Y « 2
where each variable is VARINTERVAL with S0 digits of precision.
The wuser may decide that the precision necessary for the
derivation of an acceptable result is 20 digits of precision.
There are two considerations the user must make when lowering the
precision of a section of code. The first of these is that the
precision is propagated by intermediate results, Thus, if T, X
and 7 have a precision of 20 while Y has a precision of S0, the
entire calculation will be performed at precision 50. The wuser
must be careful that such unwanted precision propagation does not
ocecur, The other consideration pertains to carelessness, The
user must guard against the lowering of a varisbles precision
when that variables is wused elsewhere in the program, thus

unintentionally affecting the precision of other results,

Appendix G - 104

Another aspect of precision control that is easily overlooked is
the adjustment of Ltoop terminatieon values. Suppose a program
containg the loop shown in Figure S0, where all variables are
VARINTERVAL with a8 precision of SO0 decimal digits. In a nermal

FORTRAN program ERROR would typically have a vatue of no Lless

than 1,0e-15, This is entirely inadequate for the current
situstion’ the result would still be significant to only 1S5 or
20 decimal digits. A value of 1,0e-400 would be a much more
appropriate value.

- DD WP D S D AP D DG En AP D AR A TP AR D WD S WD En W AR TP AR WD A W T TP AP W W W A W G

) REPEAT

| [COUNT = COUNT + 1 !
! XSUM = EXP(COUNTwY) 1
i SUM = SUM ¢+ XSUM] 1
1 {
1 i

UNTIL (XSUM < ERROR)

- W P D WP D R W W R WS DGR AP T A S G R D P AP AR G W D D D G D DD W A ™

it

FIGURE 50

Example where inadequate loop termination value may exist

The third category of effects are those associated with the
repetitious evaluation of invarfant expressions. When building ~
expressions the user must remember that any operation i{nvolving ;
VARINTERVAL operands is non~trivial, especially if performed with
high precision., Thus, the compensation for the effort of removing -
only one or two repetitious operations from an expression is
vsually justifiable, figure 51 and Figure 52 give two examples of
configurations which contain sucth dnvariant expressions and o -

reconfiguration which is more efficient,

Appendix G - 105

oo _m-E===Eﬂ=ZEEEEEEﬂlEEIElIIlIlll....-nil.ﬁﬁﬁi.lﬁ-nﬂﬂﬂ"
- . P TP DR TR W W W)

© e A0 AR o 16k b A ST 42 i i 3 et e e e
A - 2

e AR s BT o tres e m < e

OB BB O VDG W DA S PP A P b dn 9GP W T YD W«

!
: | REPEAT
; I € COUNT = COUNT + 1
: | XSUM = EXP(COUNT * Y * PI #x 2)
| SUM = SUM + XSUM)
| UNTIL (XSUM < ERROR)
' LA L DL 2 L L 2 L K L X 2 L E & K L L X L & T A 2 X £ L K A & 2 & X £ L L J
| PISQR = PI #» 2
| REPEAT

* I [COUNT = COUNT + 1
| XSUM = EXP(COUNT » Y + PISQR)
| SUM = SUM + XSUM]
T UNTIL (XSUM < ERROR)
8 '-----~-----“-------------"----------
FIGURE 51
Example of invariant expression problem and solution
T-------- - e e -----0-----------‘-------o-----;
1 KURD = (PI*#2) / COUNT + Y & (Pl#x2) I
'--‘--- LA R K K B 2 L A A K _ K K & _E X X X T X X K X L JF E R KX & XK §E & & 2 2 J '
I PISQR = Plxx? ' 3
! KURD = PISQR / COUNT + Y » PISQR } Z
FIGURE S2
Example of invariant expression probtem and solution -
3
E
L/

Appendix 6 - 106

o, YA NI i d -5 B isT L St A AR, Yt M IOV o 1 oo o b i 8 b i Nk oo Y AT edh P O A it - 124

- M S AT e e -

H ‘ Appendix H

Calsulased valug_of the Lopstant_e_t9._1000.Rigits -

I 2. 71828182845904523536028747135266249775724709369995 |
| 95749669676277240766303535475945713821785251664274 ¢
i 27464663919320030599218174135966290435729003342952¢60 i
| 59563073813232862794349076323382988075319525101901 |
| 15738341879307021540891499348841675092447614606680 |
| 82264800168477411853742345442437107539077744992069 |
I 55170276183860626133138458300075204493382656029760 |
| 67371132007093282091274437470472306969772093101416 |
| 92336819025515108657463772111252389784425056953696 |
1 77078544996996794686445490598793163688923009879312 [
| 77361782154249992295763514822082698951936680331825 |
t I
| |
| |
| |
| |
| 1
i |
| |
} }

b AL 0L Dk s E O A N L gl L

28869398496465105820939239829488793320362509443117
30123819706841614039701983767932068328237646480429
53118023287825098194558153017567173613320698112509
96181881593041690351598888519345807273866738589422
87922849989208680582574927961048419844436366324496
84875602336248270419786232090021609902353043699418
491463140936431738143640546253152096183690888707016
76839642437814059271456354906130310720851038375051
D115747704171898610687396965521267154688957035035(4)

g

Appendix H - 107

T A T TGN P a2 o T

Appendix 1

Usec_Soucce_Versicns.of_the_e_Comoutatico.Algociths

¥ecsion .l --_Siogle_Precision_Real

THIS IS A PROGRAM TO COMPUTE e
REAL SUM, NFACT, STEP, ERROR

INITIALIZATION
suM = 0,0
NFACT = 1.0
STEP = 1.0
ERROR = 1.,0&E-8
I =0
INITIALIZE THE CPU AND PAGING COUNTERS
CALL CTP (1)

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
L SuM = suM + STEP
I = 1+1

NFACT = NFACT +« FLOAT(I)
STEP = 1/NFACT 1]
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2) SUM

2 FORMAT (1X,"e IS EQUAL TO ",F10.8)
WRITE(6,1) 1
1 FORMAT (1h+,T7,"COMPUTED IN “,13," STEPS™)

PRESENY THE CPU TIME AND PAGING FOR TH1S PROCEDURE
CALL CTP(D)
STOP
END

Appendix 1 -~ 108

i oot DTN 2 e SO0 i e i AEM L g iy W . et i VT o Ao e i A

i s A 1
o et -

e — —m—— P = VR e e

yersion.2.==_Qouble Precision_Beal

THIS IS A PROGRAM TO COMPUTE e
DOUBLE PRECISION SUM, NFACT, STEP, ERROR

INITIALIZATION
: SUM = 0,000
* NFACT = 1.000
STEP = 1.000
ERROR = 1.,00-18
1 =20
. # INITIALIZE THE CPU AND PAGING COUNTERS .
CALL CTP (1) e 4

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
C SUM = SUM + STEP
I =1 +1

NFACT = NFACT » DBLE(FLOAT(I))
STEP = 1/NFACT 1]
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2) SUM

3 2 FORMAT (1X,"e IS EQUAL TO ",F20.18)
WRITE(6,1) I
1 FORMAT (1h+,T7,"COMPUTED IN ",I3," STEPS"™)

PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(D) 1
STOP 4
END

TR
*

Appendix 1 - 109

" ST T g - o I R R a i e R T e e

e AR B 0 5 25 A Y ol s L ML

yersion 3_c--_Sipngle_Precisicn_interyal

THIS IS A PROGRAM TO COMPUTE e
INTERVAL SUM, NFACT, STEP, ERROR

INITIALIZATION

sum = 0,0
NFACT = 1.0
STEP = 1,0
ERROR = 1,0€E-8
I1 =20

B INITIALIZE THE CPU AND PAGING COUNTERS
CALL CTP (1)

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
C SUM = SUM + STEP
I =1+ 1

NFACT = NFACT =* FLOAT(I)
STEP = 1/NFACT]
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2) SUM

2 FORMAT (1X."e IS EQUAL TO "o "(",Ff10.8+",",F10.8,"3")
WRITE(6,1) 1
1 FORMAT (1h+,T7,"COMPUTED IN ",13," STEPS™

PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(D)
STOP
END

e

|

Appendix I -« 110

,.m—l —:

e it

!ensiau-é;éz-55:2ésiuaL-niai:-losszxal

THIS IS A PROGRAM TO COMPUTE e
INTERVAL SUM, NFACT, STEP, ERROR

INITIALIZATION

suM = 0
NFACT = 1
STEP = 1

ERROR = 1

DO I = 1, 10 # SET ERROR = 1.0e-50
C ERROR = ERROR/100000
]
1 =0

INITIALIZE THE CPU AND PAGING COUNTERS
CALL CTP (1)

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
£ SUM = SUM + STEP
I =1 +« 1
NFACT = NFACT «]

STEP = T/NFACT 3]
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2)
FORMAT (1X,"e IS EQUAL TO")
CALL INTPRV (" ",1,3,128,5UM)
WRITE(6,1) 1
FORMAT (1h+,T7,"COMPUTED IN ",13," STEPS™)

PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTPWO)
sToP
END

Appendix I - 111

don

L" Ry

Lm. R |

version.3_-=.¥ariable Precision_lntecyal

THIS IS A PROGRAM TO COMPUTE e
DATA SUM(1), NFACT (1), STEP(1), ERROR(1) /4*56/
VARINTERVAL SUM, NFACT, STEP, ERROR

INITIALIZATION
sum = 0
NFACT = 1
STEP = 1
ERROR = 1
DO I = 1, 10 # SET ERROR = 1,0e-50
[ERROR = ERROR/100000
]
1 =2
INITIALIZE THE CPU AND PAGING COUNTERS
CALL €CTP (1)

LOOP THROUGH UNTIL STEP IS LESS THAN OR EQUAL TO ERROR

REPEAT
C SUM = SUM + STEP
I =1 ¢+ 1

NFACT = NFACT » [
STEP = 1/NFACT 1
UNTIL (STEP <= ERROR)

DISPLAY THE RESULTS
WRITE(6,2)
FORMAT (1X,"e IS EQUAL TO™)
CALL MVPUT (SUM)
WRITE(S6,1) 1
FORMAT (1h+,T7,"COMPUTED IN ",13," STEPS™)

PRESENT THE CPU TIME AND PAGING FOR THIS PROCEDURE
CALL CTP(D)
sTOP
END

Appendix I - 112

Appendix J ‘é
usec.Socucse._Versioos_of_the Heat Comeutatiop._algerithe -—

yecrsigo_1_=-_Single Precision_Real —

THIS 1S A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF

PIPE AT ONE FOOT INTERVALS., AMBIENT TEMPERATURE IS 70 ;
DEGREES, HEAT SOQURCE TEMPERATURE IS 500 DEGREES. INPUT IS —
H

H

THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
PLACED AGAINST THE HEAT SOURCE

REAL PI, K, RO, C» TO, T1, TOUT, i
THETA, T, X» SUM, XSUM, ERROR é

INTEGER FEET, COUNT, TIME, L

K E
y :
BEGIN PROGRAM
INITIALIZATIONS ‘
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
PI = 3.1415927 -
5 L = 10 ;
E K = 30.0 E
L RO = 7.1 * 62.3 —
i C = .12
i TO = 70.00
‘ T1 = 500.0 -

ERROR = 1,0E-8

INPUT THE AMOUNT OF TIME]
WRITE (6,1)

D .

N 1 FORMAT (" ENTER THE TIME IN MINUTES™) —

; READ (5,2) THETA ~

2 FORMAT (V) _

3 R # LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT !

1 DO FEET = 1, L |

, £ |
? 4 INITIALIZATIONS FOR INNER LOOP

X = FLOAT(FEET)/FLOAT(L) # COMPUTE DISTANCE TO HEAT SOURCE

COMPUTE A STARTING VALUE FOR T
T = (K*THETA)/ (FLOAT(L)*%2 » RO =+ C)

Appendix J - 113

e -

i+ e eSS S i attina A S T UM AN, 5 . s s i 3o
e

SUM = (.0
Xsum = 0.0
COUNT =
TIME = 0

LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE

13 # TEMPERATURE AT THIS DISTANCE
1 REPEAT
ik L
< . COUNT = COUNT + 1
XSUM = ((=1)**COUNT/FLOAT(COUNT)) +

v (EXP(=(FLOAT(COUNT)*%2) » (PI**2) * T) *
; SIN (FLOAT(COUNT)I*PI*X))

CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR -
IF (ABS(XSUM) < ERROR)
€
SINCE SIN CAN GO CLOSE TO0 O, LET ERROR VALUE
BE EXCEDED TWICE :
TIME = TIME + 1 g
] e
ELSE TIME = 0 :

| .
e e I e o e, 3

SUM = SUM + XSUM

v

] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)

o8 a2

COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE 'f

TOUT = T3 + (T1 = T0) » (X + (2.0/P1) *» SUM)
IF (FEET == 1)
C WRITE (6,4) FEET, TOUT
4 FORMAT (1X, "THE ANSWER FOR ",I2, " FOOT IS ",F20.6)

ELSE
C WRITE (6,5) FEET, TOUT
S FORMAT (1X, "THE ANSWER FOR ",12, " FEET IS "»F20.6)
]

rTTT——

1 i)l # END OF MAIN ITERATION LOOP

i # OUTPUT THE FINAL CPU AND PAGING VALUES 3
' CALL CTP(Q) ™

STGP
END

Appendix J - 114

v -

e e A 20 b R e SRR o

A D w7 A1 1 s alinds s bt SRR S W I LA MR > 2

Version 2_.==_Double_Precsisiopn_Beal

THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF

PIPE AT ONE FOOT INTERVALS.
HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN
PLACED AGAINST THE HEAT SOURCE

"
]
4 DEGREES,
#
#

AMBIENT TEMPERATURE IS 70

DOUBLE PRECISION PI, K,» RO, C» TO,» T1, TOUT,
THETA, Ts Xo» SUMs XSUM, ERROR

INTEGER FEET.,

BEGIN PRUGRAM

COUNT, TIME, L.

INITIALIZATIONS

CALL CTP(1)

INITIALIZE THE CPU AND PAGING COUNTERS

3.141592700

0.000

7.100 * 62.300

1200
70.0000
500.000

ERROR = 1.,0D-8

INPUT THE AMOUNT OF TIME

WRITE (6,1)

1 FORMAT (" ENTER THE TIME IN MINUTES"™)
READ (5,2) THETA

2 FORMAT (V)

LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET = 1, L

L

INITIALIZATIONS FOR INNER LOOP ‘
= DBLE (FLOATC(FEET))/DBLECFLOAT(L)) # COMPUTE DISTANCE TO HEAT SOURC &

COMPUTE A STARTING VALUE FOR T

T = (K*THETA)/(DBLE(FLOAT(L))**2 » RO * ()
Ssum = 0.000
Xsum = (0,000

COUNT = 0

A g o AT NS APl Oy 1)

Appendix J

e

- 115

e

[y

|
|
|

E

e+

P " 9 . . 2l i i P T P
ki G NI 2 il idoe it . s o el U L p NG PP AN s B 8 b b T meamn L - o -

1
E
| TIME = O
i # LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
K A TEMPERATURE AT THIS DISTANCE
REPEAT
L
COUNT = COUNT + 1
] XSUM = ((=1)**COUNT/DBLE(FLOAT(COUNT))) =
ik (DEXP(=-(DBLECFLOAT(COUNT))#*#2) » (PI#%2) % T) +
: . DSIN (DBLECFLOATCCOUNT))*PI%X))

H CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (DABS(XSUM) < ERROR)
L
SINCE SIN CAN GO CLOSE TO 0, LET ERROR VALUE
BE EXCEDED TWICE
TIME = TIME + 1
]
ELSE TIME = O

SUM = SUM + XSUM

] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)

¥ COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT = TQ + (T1 = TO) » (X 4 (2.000/P1) *» SuMm)
IF (FEET == 1)
L WRITE (6.,4) FEET, TOUT
& FORMAT (1X, "™THE ANSWER FOR ",I2, ™ FOOT IS ",D16.11)

ELSE
C WRITE (6,5) FEET, TOUT
S FORMAT (1X, "THE ANSWER FOR ",12, " FEET IS ",016.11)

]
1 # END OF MAIN ITERATION LOOP

OUTPUT THE FINAL CPU AND PAGING VALUES
. CALL CTP(D)

sTOP
END .

Appendix J - 116

EA R R A B Wy st 7, - - AT SR A e SR

et o o padR g LAY

Yersion 3_==_.Sipgle_Precision_lpntecyal -

THIS IS A PROGRAM WHICH QUTPUTS THE TEMPERATURE OF A PIECE OF

PIPE AT ONE FOOT INTERVALS, AMBIENT TEMPERATURE IS 70

4 DEGREES, HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS b
" THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN

PLACED AGAINST THE HEAT SOURCE

INTERVAL P11, Ks» RO, Co» TO, T1, TOUT, TEMPL, TEMPCT,
THETA, T, Xo SUM, XSUM, ERROR

INTEGER FEET, COUNT, TIME, L

E 3 I 3

BEGIN PROGRAM

INITIALIZATIONS

CALL CcTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

P = 3,.1415927 -
L =10

TEMPL = L

XK = 30,0 '“
RO = 7,1 » 62,3

C= ,12

T0 = 70.00 -
Tt = 500.0

ERROR = 1,0E-8

o

w
i

INPUT THE AMOUNT OF TIME

WRITE (6,1)
1 FORMAT (" ENTER THE TIME IN MINUTES"™)

READ (5,2) THETA h
2 FORMAT (V)

R

; # LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT

3 D0 FEET = 1, L

i - 8)
INITIALIZATIONS FOR INNER LOOP
X = FLOAT(FEET)/TEMPL # COMPUTE DISTANCE TO HEAT SOURCE

COMPUTE A STARTING VALUE FOR 7

T = (K*THETA)/(TEMPL*%2 « RO * ()

Sum = 0.0 -
xsum = 0,0

Appendix J - 117

o <1”=ﬂ====,'g=g..........'..-n..-........----.-lllllllllllnlllii

ke AN IS 437 i . - IV I R (O N s M3 b 2 Wi B i s A B 23t
N e r mioe arak s R

o -

i
i
1
%

COUNT = 0
TIME = O

L0 i ey

LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
TEMPERATURE AT THIS DISTANCE
REPEAT
C
COUNT = COUNT + 1
TEMPCT = COUNT
' XSUM = ((=1)**COUNT/TEMPCT) =
¢ (EXP(~(TEMP(T#*%2) * (PIa%2) * T) «»
SIN (TEMPCT » PI « X))

i i d

o KRRl bl e R ot

ek

N CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
. IF (ABS(XSUM) < ERROR)
[—
SINCE SIN CAN GO CLOSE TO O, LET ERROR VALUE
BE EXCEDED TWICE
TIME = TIME + 1
]
ELSE TIME = O

ST

F——

SUM = SUM + XSUM

] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES -
UNTIL (TIME == 2)

COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT = TO + (T1 - TO) ~ (X ¢ (2.0/P1) » SUM) -

IF (FEET == 1) \

C WRITE (6,4) FEET, TOUT i

4 FORMAT (1X, "THE ANSWER FOR ",12, " FOOT IS ", -
"['.'F11.6"""'F11.6'"]'I)

A

ELSE -
L WRITE (6,5) FEET, TOUT :
R S FORMAT (11X, "THE ANSWER FOR ",12, "™ FEET 1S ",
Lo FT11.60"s"0F11,.6,"1") -
)

N J # END OF MAIN ITERATION LOOP -

] # OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(D) =

STOP
END -

Appendix J = 118

i

il avE L sma

o i e s e e L e

m e g e L s T T T e Sl N i Gt AT st A ST WU 20 N g R e Lt P R R Ty ittt - TR

g

Yersion_4_==_36_Decimal_Rigit_lnteryal

THIS 1S A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
" PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70

" DEGREES, HEAT SOURCE TEMPERATURE 1S 500 DEGREES., INPUT IS
» THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN

N PLACED AGAINST THE HEAT SOURCE

INTERVAL PI, Kl RO, C, T0, T1, TOUT, TEMPL, TEMPCT,
THETA, T, X» SUM, XSUM, ERROR

INTEGER FEET, COUNT, TIME, L

BEGIN PROGRAM

¥ INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

Pl = 31415927 # MAKE CONVERSION EXACT
PI = P1/10000000

L =10

TEMPL = L

K = 30

RO = 71 = 623 # RO = 7.1 » 62,3
RO = RO/100

t = 12 # C = .12

¢ = c/7100

70 = 70

Tt = 500

ERROR = 1 # ERROR = 1,0E-8
ERROR = ERROR/10000

ERROR = ERROR/10000

INPUT THE AMOUNT OF TIME
WRITE (6.,1)

1 FORMAT (" ENTER THE TIME IN MINUTES"™)
CALL INTRDV (THETA, EOF)

L]

. # LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT

DO FEET = 1, L
|8
INITIALIZATIONS FOR INNER LOOP
X = FLOAT(FEET)/TEMPL # COMPUTE DISTANCE TO HEAT SOURCE

COMPUTE A STARTING VALUE FOR 7

Appendix J - 119

O A T AN T R ol RN Sy A S R A e

T & (KeTHETA) /(TEMPLE*2 » RO * C)
sum = 0,0

xXsum = 0,0

COUNT = O

TIME = 0

LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
¥ TEMPERATURE AT THIS DISTANCE
REPEAT
C
COUNT = COUNT + 1
TEMPCT = COUNT
XSUM = ((=~1)**COUNT/TEMPCT) =+
(EXPC ~(TEMPCT*42) » (PI#%2) &« T) «
SIN (TEMPCT » PI + X))

CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ABS(XSUM) < ERROR)
18
SINCE SIN CAN GO CLOSE TO O, LET ERROR VALUE
" BE EXCEDED TWICE
TIME = TIME + 1
]
ELSE TIME = O

SuUM = SUM + XSUM

] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)

COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

TOUT = TO ¢ (T1 = T0) » (X + (2,0/P1) » SUM)
IF (FEET == 1)
t WRITE (6,4) FEET
4 FORMAT (1%, "THE ANSWER FOR ",12, " FOOT 1S ")
CALL INTPRV (" ",1,3,128,T0UT)

ELSE
€ WRITE (6,5) FEET
S FORMAT (1X, "THE ANSWER FOR ",12, " FEET IS ")
CALL INTPRV (* ",1,3,128,TOUT)
]

J ¥ END OF MAIN ITERATION LOOP

OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)

sTOP

END

Appendix J = 120

L

B L T e e I e R N R R et

Yersigcon 3. =-.Yariable Precisiop_lptecyal

THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OFf
4 PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70

» DEGREES? HEAT SOURCE TEMPERATURE IS 500 DEGREES. INPUT IS
" THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN

) PLACED AGAINST THE HEAT SOURCE

i

¥ INTEGER VARIABLES

INTEGER FEET, COUNT, TIME, L

MULTIPLE PRECISION INTERVAL VARIABLES

DATA PIC1)s K(1)» RO(1), C(1), TOCY), TI1(1), TOUT(1),
TEMPLC(1), TEMPCT(1), THETAC(1), T(1), X(1), SUM(1),
XSUM(1), ERRORCI) /715+56/

VARINTERVAL Pl, K, ROs C» TO, T1, TOUT, TEMPL, TEMPCT,

THETA, T+, X» SUM, XSUM, ERROR

XC+BEGIN

#

N

¥ BEGIN PROGRAM

INITIALIZATIONS
CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

Pl = 31415927 # MAKE CONVERSION EXACT
P1 = P1/10000000
L= 10
TEMPL = L
K = 30
RO = 71 =~ $23 ¥ RO = 7,1 « 62.3
L RO = RO/100
C = 12
¢ = ¢c/7100
T0 = 70
T = 500
ERROR = 1
P ERROR = ERROR/10000
ERROR = ERROR/10000

INPUT THE AMOUNT OF TIME

WRITE (6,1)

Appendix J - 121

o oaid

1 FORMAT (" ENTER THE TIME IN MINUTES™)
CALL MVGET (THETA)
2 FORMAT (V)

LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
00 FEET = 1, L
C
INITIALIZATIONS FOR INNER LOOP
X = FLOATLFEET)Y/TEMPL # COMPUTE DISTANCE TO HEAT SOURCE

COMPUTE A STARTING VALUE FOR T
T = (K«THETA)/(TEMPL*22 * RO * ()
sum = 0.0

XSum = 0,0

COUNT = O

TIME = O

LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE
H TEMPERATURE AT THIS DISTANCE
REPEAT
€
COUNT = COUNT + 1
TEMPCT = COUNT
XSUM = ((=1)**COUNT/TEMPCT) =
(EXP(~(TEMPCT*22) « (PI#22) % T) *
SIN (TEMPCT = PI + X))

CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IF (ABS(XSUM) < ERROR)
L
SINCE SIN CAN GO CLOSE TO 0, LET ERROR VALUEF
" BE EXCEDED TWICE
TIME = TIME + 1
]
ELSE TIME = 0

SUM = SUM + XSUM
] # END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME == 2)
COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE
TOUT = TO ¢ (T1 = TO0) » (X ¢+ (2,0/PI) *= SUM)
If (FEET == 1)
C WRITE (6,4) FEEY

4 FORMAT (11X, "THE ANSWER FOR ",12, ™ FOOT IS ™
CALL MVPUT (TOUT)

¢ WRITE (6,5) FEET

Appendix J - 122

S FORMAT (11X,

"THE ANSWER FOR ",12,

CALL MVPUT (TOUT)

]

]l # END OF MAIN ITERATION LOOP

OUTPUT THE FINAL CPU AND PAGING VALUES

CALL CTP(O)

STOP
END

Appendix J - 123

" FEET IS ™)

Yecsion. 6. ==_¥aciable Precision intecyal with _Partial_Ootiwmizations

THIS IS A PROGRAM WHICH OUTPUTS THE TEMPERATURE OF A PIECE OF
¥ PIPE AT ONE FOOT INTERVALS. AMBIENT TEMPERATURE IS 70

L DEGREES? HEAT SOURCE TEMPERATURE IS SO0 DEGREES, INPUT IS
THE AMOUNT OF TIME AFTER WHICH END OF THE PIPE HAS BEEN

PLACED AGAINST THE HEAT SOURLE

INTEGER VARIABLES

INTEGER FEET, COUNT, TIME, L

MULTIPLE PRECISION INTERVAL VARIABLES

DATA PIC(1), K(1), RO(1), CC1),
TEMPL(1)y TEMPCT (1), THETA(Y), T(1)s X(1), SUMC1),
XSUMC(1), ERRORCY) /712+200/
DATA TOUT(1), TO(1), T1(1), X20C1), P120C1), SUM20(C1) /76+20/
VARINTERVAL Pl, K, RO, Co TO, T1, TOUT, TEMPL, TEMPCT.,
THETA, T, Xo SUM, XSUM, ERROR,
P120, x20, SUM20

XC*BEGIN

BEGIN PROGRAM

¥ INITIALIZATIONS

CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS

Pl = 31415927 # MAKE CONVERSION EXACT =
PI = P1/710000000

P120 = PI1 i
Lt = 10 -
TEMPL = (

K = 30 g
RO = 71 « 423 # RO= 7,1 » 62,3 7
RO = RO/100

cCs 12 ;
¢C = ¢c/100 =
T0 = 70

T1 = S00 |
ERROR = 1 1
ERROR = ERROR/10000
ERROR = ERROR/10000

Appendix J - 124

INPUT THE AMOUNT OF TIME

WRITE (6,1)

1 FORMAT (" ENTER THE TIME IN MINUTES™)
CALL MVGET (THETA)

2 FORMAT (V)

LOOP ONCE THROUGH THE COMPUTATION FOR EACH FOOT
DO FEET = 1, L

“
|8

INITIALIZATIONS FOR INNER LOOP

X = FLOAT(FEET)/TEMPL # COMPUTE DISTANCE TO HEAT SOURCE
- # COMPUTE A STARTING VALUE FOR T

T = (KxTHETA)Y/(TEMPL#*2 * RO * ()

SUM = 0.0

Xsum = 0,0

COUNT = O

TIME = 0

LOOP TO COMPUTE THE INTERMEDIATE VALUES FOR THE

N TEMPERATURE AT THIS DISTANCE

REPEAT

C

COUNT = COUNT + 1

TEMPCT = COUNT

XSUM = ((=1)#&COUNT/TEMPLT) «»
(EXP(~(TEMPCT*#2) = (PI2%2) & T) #
SIN (TEMPCT » PI *» X))

CHECK FOR INTERMEDIATE VALUE LESS THAN ERROR
IfF (ABS(XSUM) < ERROR)
L .
SINCE SIN CAN GO CLOSE TO O, LEY ERROR VALUE %
] BE EXCEDED TWICE
TIME = TIME + 1 7
]
ELSE TIME = 0

SUM = SuUM + XSUM

*] ¥ END OF LOOP TO COMPUTE INTERMEDIATE VALUES
UNTIL (TIME s= 2)

bl .

. ¥ COMPUTE AND OUTPUT THE TEMPERATURE FOR THIS DISTANCE

x20 = x
SUM20 = SuUM
TOUT = TO + (T1 = TO) » (X%X20 ¢ (2,0/pP120) =+ SUM20)
IF (FEET == 1)
C WRITE (6,4) FEET

st

Appendix J - 12§]

- : - —— — A{Hﬁ.ﬂi“uuﬂﬂﬂi‘

M s
. Gt - S vt A 1 T a0 ik v b
0 AN e S, e s 0 WO~ 17, G G .5 e S5 AT L L -

e

& FORMAT (1%, "THE ANSWER FOR ",12, " FOOT 1S ™)
CALL MVPUT (TOUT)

ELSE
X WRITE (4,5) FEET
5 FORMAT (1X, "THE ANSWER FOR ",12, " FEET IS ")

CALL MVPUTY (TOUT)
h
< l # END OF MAIN ITERATION LOOP

; # OUTPUT THE FINAL CPU AND PAGING VALUES
CALL CTP(O)

sSTOP
END

Appendix J - 126

Yersign_Z_=z_Vaciable Brecision_Interval_with_ full_Optimizatioos

PROGRAM TO COMPUTE HEAT TRANSFER IN A TEN FOOT IRON BAR
HEAT SOURCE IS 500 DEGREES, AMBIENT TEMPERATURE IS 70
DEGREES,. OUTPUT IS TEMPERATURE OF BAR AT ONE FOOT
INTERVALS. INPUT IS TIME AFTER CONTACT WITH HEAT SOURCE
IN MINUTES.,

TR

INTEGER VARIABLES
INTEGER FEET, KLENGTH, ITEMP, TIME

VARINTERVAL VARIABLES

CONSTANT VALUED VARIABLES

DATA ERROR(1), PI(1), PISQR(1) /3%200/

DATA L(1)s RO(1), C(1)s ROC(1), K(1) /Se6/

DATA TOC1), T1C1), TOIFF(1), P120C1), TPLI20M(1) /S*20/

VARIABLE VALUED VARIABLES

DATA COUNT(1) 7200/

DATA THETA(1)s SUM(1), XSUM(1), X(1)s T(1), TEMPL(1),
PISQRT (1), PIX(1) /8#200/

DATA TOUT(1), X20C1), SUM20C1) /3%20/

VARINTERVAL DECLARATION

VARINTERVAL PI, PISQR, L, RO, C» K, TO, T1, COUNT,
TOUT, THETA, SUM, XSUM, X, T, ERROR.

g x20, P120, SUM20, PISGRT, PIX, TINIT,

TPI20M, TODIFF, ROC, TEMPL

¥

’

BEGIN PROGRAM

XC+BEGIN

INITIALIZATIONS
E' CALL CTP(1) # INITIALIZE THE CPU AND PAGING COUNTERS
PT = 314615927 # INITIALIZE Pl VALUES
PI = P1/10000000
‘ P120 = P}
l TP120M = 2/P120
PISQR = Pl » PI
L =10 # LENGTH OF BAR
= TEMPL =
° K = 30
! RO = 71
i RO = RO * 623
RO = RO/100
C = 12
c = C/7100
ROC = RO » €

Appendix J - 127

T0 = 70 4 AMBIENT TEMPERATURE
T1 = 500 # TEMPERATURE OF HEAT SOURCE
TDIFF = T1 - Y0

ERROR = 1 # ERROR FACTOR FOR LOOP TERMINATION
ERROR = ERROR/10000 # SET ERROR = 1_.E-8
ERROR = ERROR/10000

GET THE TIME, IN MINUTES
WRITE (6.,1)
* 1 FORMAT (" ENTER THE TIME IN MINUTES"™)
CALL MVGET (THETA)

CALCULATE TEMPERATURE FOR EACH FOOT

KLENGTH = L

COMPUTE THE INITIAL VALUE FOR T
T = (K«THETA) /(L&%2 * ROC)

PISQRT = PISQR » T

DO FEET = 1, KLENGTH
1

COMPUTE DISTANCE TO HEAT SOURCE
X =2 FLOAT(FEET)/TEMPL

LOOP FOR THE COMPUTATION OF SUM
= Sum = 0
! XSuUM = 0 # INITIAL LOOP VALUES
COUNT = 0
TIME = 0
PIX = P1I » X

REPEAT -
L COUNT = COUNT + 1 !
ITEMP = COUNT
XSUM = ((=1)eeITEMP/COUNT) »
EXP(=(COUNT%22) *« PISQRT) +
SIN (COUNT#PIX)
IF (ABS(XSUM) < ERROR)
TIME = TIME + 1
ELSE
TIME = 0

SUM = SUM + XSUM
.]
- UNTIL (TIME == 2)

COMPUTE THE TEMPERATURE FOR THIS DISTANCE

X20 = X

SUM20 = SUM

TOUT = TO + (TOIFF) » (%20 ¢+ (TPI20M) +» SUM2D)

Appendix J - 128

u[ﬂ S, bl o s ool A AR b . A < SR LM IGS b1 P05 SIS tpbets 30 Ao . MU 5 5 oo ot 2 i
T——

¢

OUTPUT THE FINAL ANSWER FOR THIS FOOT
1F (FEET == 1)
C WRITE (6,4) FEET
4 FORMAT (I1X,"THE ANSWER FOR ",12,"™ FOOT IS ™)
CALL MVPUT (TOUT)

]
ELSE
C WRITE (6,5) FEET ;
. S FORMAT (1X,"THE ANSWER FOR ",12," FEET IS *)]
. CALL MVPUT (TOUT) 5
]
p)
CALL CTP(O)
. sTOP
. END
r
4
} N
; .
s
L
'[L}

Appendix J = 129

SR T e,

Appendix K

Besults_from_the Heat Compustation. Algorithe

CPU time = 0.191516 seconds’ Page faults = 7

- - Y G TR e Gy Gn S PR D W W W - o o - - -—an w e

! THE ANSWER FOR 1 FOOT IS 70.000000
| THE ANSWER FOR 2 FEET 1S 70.008000
‘ I THE ANSWER FOR 3 FEET IS 69.999996 1
* I THE ANSWER FOR & FEETY IS 70.000006 1
| THE ANSWER FOR S FEET IS 70.001100 1
I THE ANSWER FOR 6 FEET 1$ 70.072399 1 .
. ! THE ANSWER FOR 7 FEET IS 72.054155 | »
. I THE ANSWER FOR 8 FEET IS 95,780487 | -
! THE ANSWER FOR 9 FEET IS 219.,179291 1 -
I THE ANSWER FOR 10 FEET IS $00,000050 1
(t
) [
1

Single Precision Real -

A S D A Y PR G W o AR D D D TP W D TP TP WD A > G AR U A W W W W WG W 1

..... L X L X % 2 % ¥ R K £ X ¢ ¥ X X % ¥ ¥ ¥ ¥ ¥ ¥ J -------------‘----'
CPU time = 0,20329S5 seconds’ Page faults = 0 | -

-----------Oo------o------..-------------‘-----'

| THE ANSWER FOR 1 FOOT IS 69.999999992 |

I THE ANSWER FOR 2 FEET IS 69.999999985 | 1

I THE ANSUWER FOR 3 FEEYT IS 69.999999999 | -

1 THE ANSWER FOR & FEET IS 70,000007146 |

! THE ANSWER FOR 5 FEET IS 70.001103333 |

| THE ANSWER FOR 6 FEET IS 70,072407058 E
. I THE ANSWER FOR 7 FEET IS 72.054161748 |

1 THE ANSWER FOR B FEET IS 95.780486256 1

! THE ANSWER FOR 9 FEET IS 219.17928843 | -

! THE ANSWER FOR 10 FEET IS S00.00004075 1

1

1

)

Double Precision Real

Appendix X - 130

} THE ANSWER FOR 1 FOOT IS [69.999985, 70.000012) 1
)} THE ANSWER FOR 2 FEEY IS [69.999976, 70.000024) |
1 THE ANSWER FOR 3 FEET IS [69.999972, 70.0000263 1
1 THE ANSWER FOR & FEET IS [69.999972, 70.000046]1
1 THE ANSWER FOR S5 FEETY IS C 70.,001081, 70.0011311 |
! THE ANSWER FOR 6 FEEY IS [70.,072363, 70.072459) 1
! THE ANSWER FOR 7 FEET IS [72.054106, 72.054229]
I THE ANSWER FOR 8 FEET IS [95.780422, 95.780548) 1|
! THE ANSWER FOR 9 FEET IS [219.179247, 219.179348] |
I THE ANSWER FOR 10 FEET IS C 500.000042, S00.000065) 1
' DG G AP GE D ORGP AP GP D AP G SR G R AT A B D W R DR P PPN PP PP wwa l
! CPU time = 6.869834 seconds’ Page faults = 0
e ccccccccccccccccccccccncccrrcrccrccacemcnecencm———— |

Single Precision Interval

THE ANSWER FOR 1 FOOT IS
£69,.9999999920713997670139754738714813670904805420447863,
69.9999999920713997670139754738714813670904805420447865 1
THE ANSWER FOR 2 FEET IS
[69.9999999849446217613594068819059052165389668889820246,
69.9999999849446217613594068819059052165389668889820248 1
THE ANSWER FOR 3 FEET IS
[69.9999999989528434642645248200310562998823875344258493,
69.99999999895284346642645248200310562998823875344258495)
THE ANSWER FOR & FEET IS
£70.00000714552716282032172155134607663038535808661501878,
70.0000071455271628203217215513607663038535808661501880 1
THE ANSWER FOR S FEET IS
£70.,0011033325388201103208906413237839329219334456339211,
70.00110333253882011032089064613237839329219334456339213 1
THE ANSWER FOR 6 FEET IS
{70.0724070577319816089566527720432835726014296255851165,
70.0724070577319816089566527720432835726014296255851168)
THE ANSWER FOR 7 FEET IS
€72.0541617475044553413667077006797275524701543365096380,
72.05416174750445534136670770067972755264701543365096387 1
THE ANSWER FOR 8 FEET IS
[95.7804862558086615169995231439860850228618608429275286,
95.7804862558086615169995231439860850228618608429275292)
THE ANSWER FOR 9 FEET IS
[219.179288428267184047410317087029308769531036695007926,
219.1792884282671840474610317087029308769531036695007927)
THE ANSWER FOR 10 FEET IS
£500,000040754757403673084082919797630180512327215229061,
S00.000040754757403673084082919797630180512327215229062 1

- D AR R D G T YD Gy S G ey DD G NS R) Y LR W Y W W T G W D W A

CPU time = 1812,559863 seconds’? Page faults = 297 1

.----------------o------------n--.—-----------------‘0--—---‘

- - AP A A G P WA A W -

D D S A D A W e D G SEL SER D apd W L G A D) S = Ghb egn D) A D o

§6 Decimal Digit Interval

Appendix K - 131

R P W W W WA W D T D T WD WD G D S G P PP D R G AR D D G @ D D YD D AP D D dh D > D D " -

THE ANSWER FOR 1 FOOT IS ! -
[69.99999999207139976701397547387148136709048054204478640129, |
69,99999999207139976701397547387148136709048054204478640670]
THE ANSWER FOR 2 FEET IS 1
[69.99999998494462176135940688190590521653896688898202468399, |
69.,99999998494462176135940688190590521653896688898202468957 1 |
THE ANSWER FOR 3 FEET IS |
L 69.,99999999895284346426452482003105629988238753442584942694, |
69,99999999895284346426452482003105629988238753442584943283)
THE ANSWER FOR &4 FEET IS 1
L 70.,00000714552716282032172155136076630385358086615018788073, |
70.00000714552716282032172155136076630385358086615018788697 1 |
THE ANSWER FOR S FEET IS !
L 70,00110333253882011032089064132378393292193344563392116881, |
70.001103332538820110320890646132378393292193344563392117413 1 |
THE ANSWER FOR 6 FEET IS |
L 70.07240705773198160895665277204328357260142962558511662912, |
{

|

|

!

1

!

1

1

|

1

!

1

1

1

!

!

DN s Cailas. -

CTRES T L S s TR T

T MTE ST T T e A
oo

ey

70.,0724070577319816089566527720432835726014296255851166427S5 1]
THE ANSWER FOR 7 FEET IS
L 72.0541617475044L5534136670770067972755247015433650963834299,
72.05416174750445534136670770067972755247015433650963839775 1]
THE ANSWER FOR B FEET IS
L 95.78048625580866151699952314398608502286186084292752883478,
95.78048625580866151699952314398608502286186084292752888407 1
THE ANSWER FOR 9 FEET IS
L 219.,1792884282671840474103170870293087695310366950079264830,
219,1792884282671840474103170870293087695310366950079264947 1
THE ANSWER FOR 10 FEET IS
[S00.0000407547574036730840829197976301805123272152290611000,
$500.0000407547574036730840829197976301805123272152290611129 1

D D AR D D RGP T S D W R S W P D D S D G PR PR GD D D A TP A D AP AR MR D TR AP D Gr AP G R .-

CPU time = 325.1 seconds? Page faults =

P D CHD W G W m G wm e A s SN G G) GET GID D WS GED IR @IS P S G D A egy S e D eu

T T D G T G D A D R A D S R D EDED Yh R G D R AP 4D D D W T AR T G A AR R WD WD W A TR WD

56 Digit Variable Precision Interval

Appendix K - 132

b . w

I THE ANSWER FOR 1 FOOT IS

I [69.999999992071399767013975473871481367090480542044786403

! 8923142815495416121329312367913959728749659290 ’
! 69.,999999992071399767013975473871481367090480542044786403

1 89231428154954161213293123679139597287496601S8S]
| THE ANSWER FOR 2 FEET 1S

I € 69.999999984944621761359406881905905216538966888982024486

! 8653403970508937846340160672520997986138153045 .
i 69.999999984944621761359406881905905216538966888982024686

| 8653403970508937846340160672520997986138154210]
I THE ANSWER FOR 3 FEET IS

I [69.999999998952843464264524820031056299882387534425849429

1 8863753684735706861831983908290906781006897766 ’
1 69.999999998952843464264524820031056299882387534425849429

| 8863753684735706861831983908290906781006899027]
| THE ANSWER FOR 4 FEET IS

! € 70.000007145527162820321721551360766303853580866150187883

! 1424437800092699571706061133102514461188824401 ’
| 70,000007145527162820321721551360766303853580866150187883

1 1424437800092699571706061133102514461188825889]
! THE ANSWER FOR S FEET IS

I € 70,001103332538820110320890641323783932921933445633921170

' 9400788600587061214387395142214800687191147076 ’
1 70,001103332538820110320890641323783932921933445633921170

1 9400788600587061216387395142214800687191148308]
|
1
|
!
1
!
1
|
|
1
!
1
1
|

!
1

1

|

|

|

|
!

|

|

'

AR . bl O e e A

'

!

f

i

1

|

1

1

|

1

!

1

!

1

1

|

|

(

1

|

I

1

1

1

THE ANSWER FOR 6 FEET 1IS 1
C 70.072407057731981608956652772043283572601429625585116634 |
7024149546240608397729207966687296706384349432 e |
70.072407057731981608956652772043283572601429625585116634 |
7024149546240608397729207966687296706384351451] 1

THE ANSWER FOR 7 FEET 1S |
£ 72.056161747504455341366707700679727552470154336509638369 t
84680354867270883914465119857126504919375701706 ’ 1
72.054161747504455341366707700679727552470154336509638369 |
8468035486727088391445119857126504919375708004] |

THE ANSWER FOR 8 FEET IS {
[95.7804862558086615169995231439860850228618608429275288S58 1
79900414004547624806372182825643083696452166927 1

95. 780686255808661516999523143986085022861860842927528858 l
7990041400454762480637218282543083696452173225] |

THE ANSWER FOR 9 FEET IS 1
€ 219.17928842826718404741031708702930876953103669500792649 1
23283444056058243125587108730480657848715397102 ’ {
219.,17928842826718404741031708702930876953103669500792649 1
23283444056058243125587108730480657848715398754] |

THE ANSWER FOR 10 FEET IS 1
€ $00.00004075475740367308408291979763018051232721522906110 |
97650817149143683241973152003319426877820765670 ’ |
500,00004075675740367308408291979763018051232721522906110 |
97650817149143683241973152003319426877820768680] 1
'--‘-------’--------‘-------------'“------------‘-_------‘-----‘-'
|

l

I CPU time = 726.0 seconds’ Page faults = 2

l e e e e ccccccronccmacccecemeccecee et eeenm e eceeeaeee e —eeaoeon

100 Digit variable Precision Interval

Appendix K = 133

htmtadadadad A L LA L L L 2 & L 2 K L X L. 2 3 L T T T ¥ T L 2 T X R P 2 T 2 R ¥ P P T PR 2 2 2 T 2 T2 TP PPy T X T T T

|
|
'
|
}
|
i
i
|
'
t
!
|
'
!
|
|
|
!
1
|
|
|
1
'
|
!
|
!
!
1
!
!
1
1
|
1
1
!
|
!
|
|
!
'
|
|
|
'
1
!
!
'
1

THE ANSWER FOR 1 FOOT IS
C 69.9999999920713997670139754738714813670904805420447864038
9231428154954161213293123679139597287496597201074425169
1622947660540283583204753576139570079007617167560730146
69889883301688116246416856941971164
69.,9999999920713997670139754738714813670904805420447864038
9231428154954161213293123679139597287496597201074425169
1622947660540283583204753576139570079007617167560730146
69889883301688116244416856941971963
THE ANSWER FOR 2 FEET IS
£ 69.9999999849446217613594068819059052165389668889820246868
6534039705089378463401606725209979861381536088458973086
$295440002398738667216714615158396515630479505727161799
26634896573846985848560113705575258
69,9999999849446217613594068819059052165389668889820246868
6534039705089378463401606725209979861381536088458973086
529564400023987386672167164615158396515630479505727161799
26634896573846985848560113705576067
THE ANSWER FOR 3 FEET IS
[69.9999999989528434642645248200310562998823875344258494298
86375368473570686183198390829090678100689834601937126090
6371939923084217980276318407978173736537171412294032596
T0735494364789902863868395419314025
69.99999999895284346426452482003105629988238753442584942098
8637536847357068618319839082909067810068983601937126090
63719399230842179802763184079781737365371714122940%2596
70735494364789902863868395419314767
THE ANSWER FOR 4 FEET IS
[70.0000071455271628203217215513607663038535808661501878831
4244378000926995717060611331025144611888251494122210329
6317952788510652325852138383847697633884316551226493233
80597649295867707273840571998322541
70.0000071455271628203217215513607663038535808661501878831
4244378000926995717060611331025144611888251494122210329
63179527885106523258521383838476976338843165512264693233
80597649295867707273840571998323369
THE ANSWER FOR 5 FEET IS
r 70.0011033325388201103208906413237839329219334456339211709
4007886005870612143873951422148006871911478110681272568
3491279629832432355349015852807566453690562938360649535
08142425200560377751398563366147751
70.00110333253882011032089064613237839329219334456339211709
4007886005870612143873951422148006871911478110681272568
3491279629832432355349015852807566453690562938360649535
08142425200560377751398563366148463%3
THE ANSWER FOR 6 FEET IS
€ 70.,0724070577319816089566527720432835726014296255851166347
0241495462406083977292079666872967063843506146910908660
2618288984L616609096648694921680015194494702999995358723
00180592986458694402746119028686441
70,0724070577319816089566527720432835726014296255851166347
0241495462406083977292079666872967063843506146910908660
2618288984616609096648694921680015194494702999995358723
00180592986458694402746119028687918

Appendix X = 134

R D D emt THP wn P W D) D) S) WD cmp WD Amy WD wyh WP A GEHD sk NS S) AP T IR S G D D GED o D GNP TR o UR G D and WD ok IR Gap D S M e @

R

i

THE ANSWER FOR 7 FEET IS
L 72.0541617475044553413667077006797275524701543365096383698

4680354867270883914451198571265049193757048066408398931
2813918105650332766831809737749136287632909657279240293
01094044719937746481849453587091419

72.05641617475064553413667077006797275524701543365096383698

4680354867270883914451198571265049193757048066408398931
2813918105650332766831809737749136287632909657279240293
01094044719937746481849453587097169

THE ANSWER FOR B FEET IS
£ 95.7804862558086615169995231439860850228618608429275288587

9900414004547624806372182825430836966521696998986069616
B86846134696796763213490875684952633456912843179639814248
B85473176572993661969536143655992254

95.7804862558086615169995231439860850228618608429275288587

9900414004547624806372182825430836964521696998986069616
86846134696796763213490875684952633456912843179639814248
85473176572993661969536143655997731

THE ANSWER FOR 9 FEET IS
t 219,179288428267184047410317087029308769531036695007926492

3283444056058243125587108730480657848715397483192204541
1788708514327831632956024739420827777730560508683350216
065836909851728537925681795156475716

219,1792884282671840474103170870293087695310366950079268492

3283444056058243125587108730480657848715397483192204541
1788708514327831632956024739420827777730560508683350216
065836909851 72R8537925681795156476944

THE ANSWER FOR 10 FEET IS
L 500,000040754757403673084082919297630180512327215229061109

7650817149143683241973152003319426877820766831310742892
1122074122072617284752919175416633910948799809071822219
337336386989209282598995681320544230

500,000060754757403673084082919797630180512327215229061109

7650817149143683241973152003319426877820766831310742892
1122074122072617284752919175416633910948799809071822219
3373363869892092872598995681320545520

200 Digit Varjable Precision Inteerval

Appendix X = 135

1 ¢CPU time = 2406.0 seconds’ Page faults = 148

. - P D D D D e D e D R e e D P D AP WU WS A S G D D an SP Gh E R WD W W W D e

| THE ANSWER FOR 1 FOOY IS

- T e aw W TS D G G D W N e Gl Gy A AP TEP wmn WS Gip o TED TR MEn WD AED GED WD M G AP GaN TED D 4uS Amn AP AE b @I GEP WD GUS GNS GUD G N e W GND WD S

€ 69.99999999207139976701397547387148136709048054204478640389

2314281549541612132931236791395972874965972010744251691422
9476605402835832047535761395700790076171675607301466988988
3301688116244416856941971559068022800052867351531609414847
9520467721798353572474135003962002158180319980594255713741
6215630761442926171244988747559667139033080195361698339260
1363733215381833013577787751756241330602804747655697121865
8423826003801689506983412776859976330379096096812354445741
T4148762712681026530065004628559895762
69,99999999207139976701397547387148136709048054204478640389
2314281549541612132931236791395972874965972010744251691422
9476605402835832047535761395700790076171675607301466988988
3301688116244416856941971559068022800052867351531609614847
95204667721798353572474135003962092158180319980594255713741
6215630761442926171244988747559667139033080195361698339260
136373321538183301357778775175624133060280474765569712186S
8423826003801689506983412776859976330379096096812354445741
74148762712681026530065004628559897611

THE ANSWER FOR 2?2 FEET IS
[69.99999998494462176135940688190590521653896688898202468686

5340397050893784634016067252099798613815360884589730865295
44000239873866721671466151583965156304795057271617992663489
6573846985848560113705575674345701897696291518993394881234%
8222031292127577158404078167876473757697948739447946844298
90848077124649483099533155236272810878301931672367073384353
9947605198160591443517020868549317583038201570060971507106
1138036909702959605753398626667231538290697554480623640606
68784038524087638900936311953814883001
69.99999998494462176135940688190590521653896688898202468686
5340397050893784L634016067252099798613815360884589730865295
44600023987386672167146151583965156304795057271617992663489
657384698584 8560113705575674345701897696291518993394881234

8222031292127577158404078167876473757697948739447946844298

9084807712449483099533155236272810878301931672367073384353
9947605198160591443517020868549317583038201570060971507106
1138036909702959605753398626667231538290697554480623640606
6878‘038524087638900936311953816884876 L

THE ANSWER FOR 3 FEET IS
[69. 99999999895286366626452482003105629988238753442584942988

6375368473570686183198390829090678100689836019371260906371
9399230842179802763184079781737365371714122940325967073549
63647899028638683956419314402489675617543873706978951495299
9835215148213089103190101737751910873272509395530444127308
2912860076360135710710115501368411472013004983986124523649
1290035526782875949425785616822012960842371479884743013770
97378518564737774L725681456625896755872714640980849726333270
65680151214745928722365606668826563647
69,99999999895284346426452482003105629988238753442584942988
6375368473570686183198390829090678100689836019371260906371
9399230842179802763184079781737365371714122940325967073549
4364789902863868395419314402489675617543873706978951495299
9835215148213089103190101737751910573272509395530444127308
2912860076360135710710115501368411472013004983986124523649

Appendix X - 136

[4

]

D) D au SED WD FEP map WD AND AT GE WD GE M) MM CED SR D SEP G D D S D cup THD D R Ay TED SHp D D TED ML EDR D GND GEh Wl M AR G TS GNL R Gue W U WD s S =

1290035526782875949425785616822012960842371479884743013770
9737851856473777472568145662589675587271440980849726333270
65680151214745928722365606668824565196]
THE ANSWER FOR & FEET IS
L 70.00000714552716282032172155136076630385358086615018788314
2443780009269957170606113310251446118882514941222103296317
9527885106523258521383838476976338843165512264932338059764
9295867707273840571998322818586139973923%09728312569031690
5765676878356993227546079879004017769266313498146051316835
9370584670045221558101295985552829481952977291226407257944
0856953566697643354417975989005780232456762378561802572415
4954678143373287301659653789853603618706863124203648199022
28316850637692372528765592372659707870 ’
70.00000714552716282032172155136076630385358086615018788314
2443780009269957170606113310251446118882514941222103296317
9527885106523258521383838476976338843165512264932338059764
9295867707273840571998322818586139973923409728312569031690
5765676878356993227546079879004017769266313498146051316835
93705846700452215581N01295985552829481952977291226407257944
0856953566697643354417975989005780232456762378561802572415
49564678143373287301659653789853603618706863124203648199022
28316850637692372528765592372659709682]
THE ANSWER FOR 5 FEET IS
€ 70.0011033325388201103208906413237839329219334456339211709¢
0078860058706121438739514221480068719114781106812725683491
2796298324323553490158528075664536905629383606495350814242
5200560377751398563366147976439882015922490068417413176718
2835976607590796248706993481523562119018836939556684745502
2951461439201607390673582555120334436721717046032935629354
5451825314425808293147035433771259720167534964548561603809
2766108911704320215947749976462523581633935990468415181675
66195430248467173805649547523177448707 ’
70.00110333253882011032089064132378393292193344563392117094
0078860058706121638739514221480068719114781106812725683491
27962983243235536490158528075664536905629383606495350814242
52005603777513985633661479764398820159224900664174131748718
2835976607590796248706993481523562119018836939556684745502
2951461439201607390673582555120334436721717046032935629354
5451825314425808293147035433771259720167534964548561603809
2766108911704320215947749976462523581633935990468415181675
66195630248467173805649547523127449727]
THE ANSWER FOR 6 FEET IS
[70.07240705773198160895665277204328357260142962558511663470
2414954L624060839772920796668729670638435061469109086602418
2889846166090966486949216800151944947029999953587230018059
2986658696402746119028687132905996117304059114293276805638
5603275566565597052107813506320817346722375004473242782680
1501090482595123755358109761811408763785455531020829392621
6S4764459946334L4B547079578775135822665176682891854485805817
9691816053354282233693106040002370206447299678750805172266
06483578136120164030845651579508388965 .
70.07240705773198160895665277204328357260142962558511663470
24614954624060839772920796668729670638435061469109086602418
2889846166090966486949216800151944947029999953587230018059
29864586964402746119028687132905996117304059114293276805638

- D Gl Gus M Ap D R RS D WS WD YIS MMy GNP cum M AN WD D TS ANy AR G TS Gup NN N GEP GhE AID IP WD AN TS I I MR WD D A G WP IR WD @ WP AR B AP WS AN WD o

Appendix K - 137

)
1
|
|
|
t
!
l
!
i
|
t
1
|
|
|
|
!
|
|
|
{
|
t
1
!
|
1
|
|
|
|
|
|
i
L
1
1
|
|
|
1
|
|
|
|
!
'
!
|
l
!
|
I
|

$603275566565597052107813506320817346722375004473242782680
1501090482595123755358109761811408763785455531020629392621
4547444599433448547079578775135822665174682891854485805817
9691816053354282233493106040002370206447299678750805172266
06483578136120164030845651579508390991

THE ANSWER FOR 7 FEET IS
[72.05416174750445534136670770067972755247015433650963836984

6803548672708839144511985712650491937570480664083989312813
9181056503327668318097377491362876329096572792402930109404
6799937766481849453587094641203867914412373207327679192344
0699697316266752893857956207398152275337150572396892888956
15767983656613627212756504645038481372844770946171526961243
8265472801582437048653182033950185245115637656206542378955
6779753118945360753130344554260873817203371560176496395083
49285086675166841981427967192409500938
72.05416174750445534136670770067972755247015433650963836984
6803548672708839144511985712650491937570480664083989312813
9181056503327668318097377491362876329096572792402930109404
4719937746481849453587094641203867914412373207327679192344
04996973162667528938579562073981522753371505723946892888956
1576798365661362721275650445038481372844770946171526961243
82654672801582437048653182033950185245115637656206542378955
67797531189453607531303445542608738172033715601766496395083
49285086675166841981427967192409507509

THE ANSWER FOR 8 FEET IS
[95.78048625580866151699952314398608502286186084292752885879

9006 1400465476248063721828254308369645216969989860696168684
1346967967632134908756849526334569128431796398142488547317
6572993661969536143655995407781281097088433473933022022261
5776062162560577192028283327234262293855150296290628385043

0033654763320888954%324959459160919062464788840531001D30596__

9429945711098145777738B064350572098877525094844158781016499
9759663950362268002287196442369102028178079858603093956743
83354874021856434265122826672319598424

95.78048625580866151699952314398608502286186084292752885879

9004140045476248063721828254308369645216969989860696168684
13469679676321349087568469526334569128431796398142488547317
6572993661969536143655995407781281097088433473933022022261
5776042162560577192028283327234262293855150296290628385043
0033654763320888954324959459160919062464788640531001030596
9429945711098145777738064350572098877525094844158781016499
9750643950362268002287196442369102028178079858603093956743
83354874021856434265122826672319604722

THE ANSWER FOR 9 FEET IS
€ 219.1792884282671840474103170870293087695310366950079264923

2834440560582431255871087304806578487153974831922045411788
7085143278316329560247394208277777305605086833502160658369
0985172853792568179515647684941125318473371356142302944833
5995664965854082423075134955535888411709351567924626426106
3256886177016262888N27493406559477214948760622305996088489
8885653891676757252880231619550832629002653312045531634508
3325917727505922602806578634320412485650560326949106869153
743118966082359517504852194508794637976
219.,1792884282671840474103170870293087695310366950079264923
2834440560582431255871087304806578487153974831922045411788

Appendix XK - 138

4

-—-‘-——-—-—-‘----—-————-J—-—-—..———-—-—-—-————.——--——“-‘——

RIS iAol b

e < S Wy e M . T A S

A o AR Sl

A 3 S i s P . - i
ity it . AR AN b e G MREIS: N K WA TN 5. ¢ S My A5 ko s 5 ps e . o T o it s e 7L

7085143278316329560247394208277777305605086833502160658369
0985172853792568179515647684941125318473371356142302944833
5995664965854082423075134955535888411700351567924626426106
3256886177016262888027493406559477214948760422305996088489
8885653891676757252880231619550832629002653312045531634508
3325917727505922602806578634320412485650560326949106869153
743118966082359517504852194508794639986
THE ANSWER FOR 10 FEET IS
£ 500.0000407547574036730840829197976301805123272152290611097
6508171491436832419731520033194268778207668313107428921122
0741220726172847529191754166339109487998090718222193373363
8698920928259899568132054540086506036661116401899203541569
2995061120224717553418715808324372244011118796351049908048
9943058461872826259025196756626572305881919618127181196756
T61448T7187400408601498192241852688622416175291115965602807
2273365290386789065413557583157592276916680787946258135071
595556560773N68193957563746723927059230
500.0000407547574036730840829197976301805123272152290611097
6508171491436832419731520033194268778207668313107428921122
0741220726172847529191754166339109487998090718222193373363
8698920928259899568132054540086506036661116401899203541569
2995061120224717553418715808324372244011118796351049908048
9943058461872826259025196756626572305881919618127181196756
7616487187400408601498192241852688622416175291115965602807
2273365290386789065413557583157592276916680787946258135071
595556560773068193957563746723927060090]

CPU time = 15505.37 seconds; Page faults = 142

- D D D P D D D D A AR D D D A D YD AP W D G R D G D DD P AR R TGN TR G WS B WD D WGP WD WD WD R AR D WD W WD WD D W

b

]

SO0 pigit Variable Precision Intervat

Appendix K - 139

Lo . R

THE ANSWER FOR 1 FOOT IS
[69.99999999207139976701,
THE ANSWER FOR 2 FEET IS
[69.99999998494462176135,
THE ANSWER FOR 3 FEET 1S

69.99999999207139976702

69.99999998494462176136

]
]

€ 69.99999999895284346426, 69.999999998952863466427)
THE ANSWER FOR 4 FEET IS
C 70.0N0000714552716282032, 70.00000714552716282033)
THE ANSWER FOR 5 FEETY IS
C 70.00110333253882011031, 70,00110333253832011033)
THE ANSWER FOR & FEET IS
L 70.07240705773198160895, 70.07240705773198160896 1
THE ANSWER FOR 7 FEET IS
L 72.05416174750465533986, 72.05416174750445534261]
THE ANSWER FOR 8 FEET 1IS
£ 95.78048625580866151535, 95.78048625580866151809)

THE ANSWER FOR 9 FEET 1S
[219.17928842826718404740, 219,17928842826718404742)
THE ANSWER FOR 10 FEET IS
€ 500.00004075475740366990, 500.00004075475740367420 2

'----c--- LA A L LA X LA L L L L ALY P XL P YT R L L L 2 2 3 2 ¥ 2 X ¥ '

NS wam S G D Ep TR R P G WS G D s WD G D e

! CPU time = 2396,169230 seconds? Page faults = 223 |
| S — e ——— ceccccccane]

200 Digit Variable Precision Interval -- Output Optimized
| THE ANSHER FOR K FOOT IS {
I [69.99999999207139976701, 69,99999999207139976702 2 1
| THE ANSWER FOR 2 FEET IS |
1 [69.99999998494462176135, 69,.99999998494462176136 1 |
| THE ANSWER FOR 3 FEET IS {
1 € 69.99999999895284346426, 69,99999999895284346427 1 |
] THE ANSWER FOR &4 FEET 1S ¢
1 € 70.00000714552716282032, 70.000007146552716282033 1 |
! THE ANSWER FOR S FEETY IS |
! € 70.00110333253882011031, 70.0011033325388201103% 13 |
| THE ANSWER FOR 6 FEET 1IS '
! €L 70.07240705773198160895, 70.07240705773198160896 J |
f THE ANSWER FOR 7 FEET IS 1
I € 72.056416174750445533986, 72.05416174750445534261] |
! THE ANSWER FOR 8 FEET IS !
1 [95.78048625580866151535, 95.78048625580866151809 1 1|
! THE ANSWER FOR 9 FEET 1S |
I € 219,17928842826718404740, 219,17928842826718404742]
| THE ANSWER FOR 10 FEET IS |
1 € $00.00004075475740366990, S00,00004075475740367420 1 |
LT L cecccccnccnna -eecececcccsaa L L cecocce=]
f CPU time = 2377.67 seconds? Page faults = 153 1

200 digit Variasble Precision Interval -- Fully Optimized

Appendix K - 140

3 T R YL Y LY L R XY LY P Y Y Yy Y Y Y P Y ¥ Y

B T e D - BT 5

T AT 3 SR T " e Ao shengr

L e g e £ S AT I T AP ET o T8

SOME EXPERIMENTS USING INTERVAL ARITHMETICs

Eric X, Reuter, John P, Jeter, J. Wayne Anderson
and Bruce D. Shriver

Computer Science Department
University of Southwestern Louisiana
Ltafayette, Louisiana 7NS504

- wn anan W - -

This paper reviews past experiences and discusses future
work in the area of interval arithmetic at the University of
Southwestern Louisiana (USL), Two versions of interval
arithmetic vere developed and implemented at ysStL (R], An
interval data type declaration and the necessary mathematical
functions for this data type were added to Fortran via the
preprocessor Augment [4,5]), In the first versions, the endpoints
of the intervals were represented as single precision floating

point numbers, In the other version, the endpoints were
represented to 56 decimal digits, Production engineering
programs were run as benchmarks [81, The accumulation of

computational and algorithmic error could be observed as a
widening of the intervals, The benchmarks were also run in
normal single and double precision arithmetic, In some
instances, the result obtained from a single or double precision
calculation was not bounded by the corresponding interval result
indicating some problem with the algorithm., The widening of an
interval does not necessarily indicate a data sensitivity nor
error in an algorithm, However, these Llarge intervals can be
used as indicators of possible trouble areas., On the other hand,
small dintervals can be used as an indicator of no problems., 12as
could be expected, the Sé-decimal digit precision interval gave
better results in terms of smaller intervals due to the
increased amount of precision. The obvious oroblem ywith this
version is that the amount of overhead required for its execution
is high.

* This work has been supported in part by the U, S. Army Corps
of €Engineers, contract numhers DACA3O=76=-M=0240 and
DACA39=-77-M=-0106,

s Bt s " PPz e ") 4 o i Lo Al : e I e
ey : f i - 2 v

1.0 Introduction

The floating point number system used on contemporary
computers is an approximation to the real number system, In
interval arithmetic, a non-representable real number s

approximated by an interval consisting of machine representable

endpoints which bhound the number. Intervals will be regarded as
bounds on an exact but unknown real number, This means that if
the dinterval ([a,b) 1is a computer approximation to the exact
result x then a<x<b, To obtain the "best” machine representation
of the interval, a must be the greatest lower bound for x and b
must be the least upper bound for x. In this way the interval
far,b)l will be the smallest computer representable interval that
contains x.

In order to obtain the smaliest computer representable
interval for the result of arithmetic operations on intervals,
directed roundings on the computer arithmetic operations must be
defined. If x is a real number and M1 and M2 are two consecutive
machine representable numbers such that M1<x<M? and if r is a f
rounding function, then r is downward directed if r(x) = M1 and r
is upward directed if r(x) = M2, M1 and M2 will be the machine
representable numbers that are respectively the greatest lower
bound and the least upper bound for the real number x, If x is a
machine representable number, then r(x) = x,

; . In general, the result of a finite precision arithmetic

} operation does not always produce a machine representable number,

In other words, a op b, where a and b are machine representable

numbers and op iss, in generals, one of the machine arithmetic

operations, may not be a machine representable number and must be

rounded.

Since the exponent range of floating point numbers is
bounded, exponent overflow and underflow may occur during an
arithmetic operation., If underflow occurs, then the true result
is between zero and the smatliest positive or neqative
representable number, In the case of wunderflow, a directed
rounding may aive a valid bound., In the case of overflow, if
rounding away from 2ero is wanted, then there is no machine
representable number which can be used as a correct bound, This

is known as an infinity fault.

1«17 Interval Valued Functions

A real-valued functions, f, which is defined and continuous
on an interval T[a,b)l <can be extended to an interval-valued
functions F, of an interval variable, lfa,bl, by defining

F(La,bl) = [cod) such that f(x) is contained
in [crd) for every x in [a,b)
where ¢ and d are machine representable numbers,

When f is evaluated at a point x wusing a machine
representable approximation to xs, a computer approximation to f
results, This computer approximation, F(fa,bl), is defined as an
interval that contains f{(x). If f is monotonic increasing on
Ca,bl, then F(la,bl) = Lrd(f(a))sru(f(b))] where rd is such that

rd(f(a)) < f(a) and ru

is such that ru(f(b)) > f(h), tdeally, we

would like rd(f(a)) to be the Llargest machine representable
number such that rd(f(a)) ¢ f(a) (i.e., a greatest lLower bound)
and ru(f(b)) to be the smallest machine representable number such
that ru(f(b)) 2 f(b) (i,e. a least upper bound). Similarty, if §
is monotonic decreasing on farbl, then F(la,b) =

Ced(f(bY)orulf(al)],

If f is not monotonic on [a,bl, then the interval Ca,bl can

be divided into disjoint subintervals? fa »b 3, ¥ = 1,2,3s00een’

] 1
where each a and b are machine representable numbers and f is
i]
monotonic on each subinterval, Further, U [a »b) contains all
A IR

machine representable numbers in the interval [Ca,b)l and § is
monotonic on each subinterval. It can be shown in this case that

F(Ca »bl) = U F(La ,b V),
i i

Algorithms for performing the machine arithmetic operations
with directed roundings can be found in Yohe (9], These
operations are used to compute the endpoints of the resultant
interval for a particular arithmetic operation performed on two
intervals, A downward directed rounding is performed on the left
endpoint and an upward directed rounding is performed on the
right endpoint, Ffor example, interval addition is defined as

follows:
Casbl + [cod) = [rd(a®c)eru(bld)

where 8 s the machine addition operation and rd is a downward

directed rounding and ru is an upwara directed rounding.

It may not be possible to obtain the best bounds for the
result of the computer approximation to the function f. An
example would be a machine calculation of the sine which is knoun
to be accurate to only 7 digits out of 9,

2.0 The Implementation of the MRC Interval Arithmetic Package
for the Multics System

The interval arithmetic package and the input/output
routines for interval numbers which have heen implemented on the
Multics system follow the design of an interval arithmetic
package implemented on the UNIVAC 1108 computer located at the
Mathematics Research Center, MRC, of the University of Wisconsin
(2,6,10]. A description of the implementation of the MR(C
interval arithmetic package on the Multics system 1is gqgiven in
Appendix A, This appendix 1is quite Llenathy but contains
information related to the implementation of mathematical

software rarely found in the Lliterature,

3.0 Penchmarks

Several production oprograms were obtained from the Army
Corps of Engineers, VYWaterways Experiment Stations Vicksburgh,
Mississippio, to be run as benchmarks. These proorams consisted
of four linear equation solvers, a matrix inversion routine, a
fast fourier transform routine, a slope stability program and a
stress program,

The accumulation of computational and algorithmic error can

be seen as a growth in the width of intervals, Wide intervals

Lo

2 i AT RSO i 2 G B2 B e T st SN DI i

are not necessarily a sign of data sensitivity or algorithmic

error, When a program is run wusing interval data types, a
natural tendency is for intervals to grow wider, However, small
intervals are an indication of no problems and wide intervals
serve as indicators of possible trouble spots,

During the testing of the initial interval implementation,
there were many instances where the intervals became quite large.

It was difficult to determine during analysis whether this

widening was a problem with the algorithm, an unavoidable resutt

from interval arithmetic, or due to the lack of precision of the
representation of the endpoints, 56 decimal diqit interval was

implemented to help resolve this problem,

3.7 Linear Equation Solvers

Four linear equation solvers were included in the benchmarks
supplied by the Army Corps of Engineers, Included was a Gaussian
elimination program, It was first tested on a3 simple 4 hy 4
linear system, Using the standard interval package, the
magnitude of the resulting intervals were from 10#%=4 to 10%w=2
ALl routines were also run in reqular single and double
precision, The results obtained by wusing standard interval
insured the correctness of the results only to the third or
fourth decimal place, 1In all instances the intervals bounded the
results produced in single and double precision, The same test
case was executed using the 56 decimal digit interval packagqe.
In this case the width of the intervals varied from 10++-51 to

1Nee=50, This extra precision obtained from using extended

d

[

R R o PN

precision interval was obtained at the cost of an increase in cpu

g time wused. The standard interval run required only .44 seconds
? of processor time while the extended interval required 12,64
g seconds, More will be said about the <cost of interval and R
%_ . extended interval later,]
]
* A second test case, this time a ? by 7?7 Llinear system, was
also tried, The standard interval version did not produce any E
: results as the intervals grew too large., However, the extended 3

interval version was able to compute results., The width of the
intervals produced varied from 10##=45 to 10#+=43,

There were three other equation solvers, The second _
equation solver, BANSOL, solved banded systems of equations using
Gaussian elimination with no pivoting. The matrix of coefficients
is assumerd to be symmetrical and only the upper triangular banded .
matrix of <coefficients is stored. The SESOL proaram solved a

banded system of Linear equations wusing the U decomposition

technique, Operations with zero elements are not performed, The
matrix of coefficients is symmetrical and only the upper
triangular banded wmatrix of coefficients is stored. The fourth

equation solver was a spline program. It solved a system of

tinear equations wusing an iterative technique to calculate the
moments of a set of data points in order to fit a cubic spline to
those data points. In all three cases the results were similar

. to those above and are discussed in detail in (23],

3.2 Matrix Inversion

The matrix inversion program finds the inverse of a square

O o e s s s e e

matrix, The first test case was a Hilbert matrix of order &,
The interval results from the standard interval run were quite
vide, from 10*+~-3 to 0.26. The extended intervals were from
10#4=50 to 10**=47, When an attempt was made to invert a Hilbert
matrix of order 10, standard interval could not find a solution
and the single precision results were erroneous, The extended
precision intervals widths ranged from 10«*~36 to 10**~28 and
again indicated that the double precision results were good to

only B or 9 digits of precistion.

3.3 Fast Fourier Transform

The fast fourier transform (FFT) prodaram supplied by the
Army Corps of Fngineers proved to be a quite stabte atgorithm, A
difficulty in its implementation in double precision and interval
should be mentioned, A FFT program produces complex arithmetic
results. fortran does not normally support double precision
complex arithmetic and, therefore, it had to be simutated. The
same type of simulation had to be done for interval, This slowed
the execution of the alqorithm considerably. In all test cases,
all arithmetics produced good results, The single precision
intervals had a width of on the order of 10¢+~6 and the extended

intervals, 10#%*=53,

3.4 Slope Stability Program
An application programe SLOPE, was also sent us by the Army
Ctorps of Engineers., Testing wusing this proaram consisted of

varying a set of three inputs (cohesion, unit weight, and phi)

S rdutssius SR, - it P

G, !! it~ e R bk i MDA 2980 s, i U RIS, 3 WA Sl ST /A0 V(T L T dre ot A RN kD] 4 A

for the ©program plus or minus ten percent. This resulted in 81

runs for each type of arithmetic.

S SO S v R Ll Al i N Y s s v

Two problems arose when implementing the slope program in

interval arithmetic, The first resulted from the way in which

ol <. i Lot s L

. the interval package evaluates the test value in an arithmetic IF
statement. When an arithmetic IF statement is encountered with
an interval test value, the interval is converted to real, i,e..
» the midpoint is taken. In one of the subroutines a particular
branch was to be taken only if the test value is positive,
Certain intervals were passing along this branch whose midpoint
was indeed positive but whose left endpoint was negative, The
interval was subsequently used as a divisor and, since the
interval contained 2ero, a zero divide error occured. The
solution to this problem was to recode using a logical IF which

is evaluated in a different manner and avoids this problem,
The second problem was more difficult to pin down., During
E testing using standard interval, some of the runs contained
intervals which were "blowing up”, that is, the width of the
2 intervals were becoming unacceptably large, After a considerable
analysis efforts, a correlation was uncovered between the Llarage
. intervals and the <1N% value for unit weight, By starting with
the initial value for unit weight and decreasing its value in
increments of .25%, the initial value at which the intervals blew
up could be pinpointed. This occured at about -2,25Y of the

initial value, As long as unit weight did not qo below this

ﬁ

3 value, acceptable results were obtained. After further effort,

as

the problem was traced to a single statement, T3 = FS1 - FSL",

As unit weight decreased below =2,25% of its originsl value,
values of FS1 and FSL became closer and closer together. This
subtraction resulted in stripping off the significant digits, T3
was subsequently used as a divisor compounding the effect.

During the procedure of tracking down the error source, a
side benefit was reaped which 1is indicative of the type of
recoding of algorithms sometimes necessary to get satisfactory
results from Limited precision interval arithmetic. Several
computations could be combined and an interval consistently of
less than optimal width could be factored out producing a more
accurate algorithm, The set of runs was repeated using the
extended interval package., Most of the data sensitivity noted

above disappeared. No interval widths exceeded 10#a=f

2.5 Testing Summary

The S6-decimal digit interval package did prove useful in
many cases. O0Often the standard interval either oroduced no
solution or solutions with extremely wide dintervals. Some
massaging of the code supplied by the Army Corp of Engineers was
required to execute it satisfactorily using interval arithmetic.
The primary cost of the wuse of extended precision interval
arithmetic was in terms of central processing time consumed and
increased paqging activity. On 3 system Like Multics, hoth of
these figures can be perturbed by the Load on the system, The
figures in Table 3.1 for the FFT routine indicates a general

trend, This data was gathered from runs made during a contiguous

-9

WA AL AN 5y IR0 i ot i U553 Tk Wi SO Skt 0 S e Rt e

16 e i i KX RS i e

PRy

time interval during a period of low system utilization,

BAGE_EAULIS CBU_IIME (seconds)

single precision 23 0.3623

double precision 36 0.6678

standard interval 39 16,4994

56 decimal interval 3195 466,8781
Table 3,1

FFT Subroutine Overhead

4.0 Conclusions and Future Work

Interval arithmetic cane af times, be extremely useful, Ffor
instance, it can be used to indicate the limits of precision of
an algorithm for a given set of data. From the testing it was
shown that much better bounds on the precision were obtained
using the extended interval package. This was, of course, not
unexpected, S6 decimat digits carry more precision than 27
binary digits (equivatent to approximately 8 decimal diaits) and
there is no conversion error on 1input and output for the 56
decimal interval package. The price paid was in terms of runtime
efficiency, Standard precision interval resulted in
approximately, at most, an order of magnitude increase in
execution time over that of single or double precision
arithmetic, 56 decimal interval arithmetic resulted in a further
increase of more than one to more than two orders of maonitude,
1t should hbhe noted here that the 56 digit version was based upon

the 59 decimal digit hardware arithmetic unit of the Honeywell

-10-

Aok L2 seadiindas o

H68/8D0 processor, Extended precision arithmetic using software
simulated basic operations could be expected to take much longer.

One obvious application of extended interval arithmetic
would be to validate existing programs. Any data sensitivity
discovered could be included in a desceription of the alqgorithm
and directions on its use, Although extended precision interval
arithmetic is expensive, its cost must be balanced against
possible consequences of using invalid results, An organization
Like Corps of Enaineers might weigh a defective dam or the cost
of moving 100,000 tons of dirt against the cost of a few hours of
computer time,

A more effective technique would be to first test the
algorithm wusing standard precision interval arithmetic, 1Its
relatively small decrease in run time efficiency indicates that
its use 1is more than justified as an economical means of
identifying possible trouble areas in an algorithm for the data
under consideration, The more expensive extended interval
package could be applied to just those cases where possible
trouble areas have been identified,

Interval arithmetic can be used to determine the precision
of the arithmetic required to quarantee a given precision in the
results of an algorithm. 1In some of the benchmarks executed in
56 decimal digit interval arithmetics, the results were good only
to 40 or so digits. This represents a considerable loss of
precision, It also points out why arbitrarily picking a given

precision for arithmetic does not guarantee results in which

MR s P S iy 1

S dd SRR

T

iy T

S B M o ST st M it e ST A =

absolute confidence can be placed. How great an increase in
precision is obtained, if any, by going from a machine with
32-bit words to one with 60 bit words”

In general, whether using interval or regular arithmetic,
the greater the precision the longer the run time required for a
given algorithm, MHaving variable precision interval arithmetic
would allow the validation of algorithms for which standard
precision interval arithmetic is insufficient without having to
go all the way to 56 decimal digit precision, There will also be
instances where it might be desirable or necessary to go beyond
56 decimal digits of precision. In any case, the overhead
associated with execution in interval arithmetic will only be as
great as required for the necessary precision, A variable
precision interval arithmetic package is currently under
development at USL.

The execution speed of interval arithmetic can be increased
in several ways. One would be to decrease the number of levels
of interpretation required in the current implementation, The
optimum solution would be to have a hardware or firmware module
which could execute variable precision interval arithmetic.
Many existing minicomputer systems have undefined opcodes for
just such requirements, As a side effect, an arithmetic wunit
that can execute variable precision interval arithmetic can also
execute traditional variable precision floating point arithmetic,
This means that interval arithmetics, of the necessary precision,

could be wused to determine the required arithmetic precision

-12-

£ st et i i e

R W e

ks b e nrbbn s

Lk

Rl e

W AR o I <06 LN, NI - BRI A R 05 - i NI - 4 7 NI e G 07257 e
. — -

required for the results of the algorithm. The algorithm,

could be executed using only the required precision,

i

e LSRN A SN 1 T NN, - i L ity

o 5 v A

then,

S < A 1L W i O XS N TR - B as SRR I, S R S i g

Appendix A

A.0 The Implementation of the MRC Interval Arithmetic Package

for the Multics System

In the Multics implementation, the endpoints of the
intervals are represented as a pair of floating point numbers
stored in consecutive storage locations, The Multics single
precision floating point format uses a 36 bit word which consists
of an 8-bit 2's complement exponent, with the high order bit the
sign bit, followed by a 28-bit normalized ?'s complement

fraction, with the high order bit the sian bit,

The subroutines of the MRC interval package can be divided

into eight categories, These categories are arithmetic
operations, exponentiation operations, conversion functions,
comparison, basic external functions, supporting functions.

input/output routines and miscellaneous. All of the routines in
each category except the input/output category were written in
Fortran, Several of the Fortran subroutines call routines that
are written in PL/I, The PL/1 routines correspond for the most
part to the assembler routines that were written for the UNIVAC
1108 version of the interval packaae and are written specifically
for the Myltics implementation, Most of the input/output

routines were written in PL/!.

The routines which perform ¢the four Dbasic arithmetic
operations of addition, subtraction, multiplication, and division

on interval numbers are machine dependent, Since we want the

-j-

ViR SRR e S

WO i oF PR AR SR i . .
B +

best computer approximation to the results of computer arithmetic
operations on intervals, directed roundings on the computer
arithmetic operations must be performed, The floating point
hardware on the system does not perform directed roundings,
Therefore the four basic sinagle precision floating point computer
arithmetic operations of addition, subtractions, multiplication,
and division had to be simulated in order to provide the correct
roundings. A description of the routines that simutated the
floating point computer arithmetic operations and provided the
proper directed roundings and a description of the routines that
perform the basic computer arithmetic operations on intervals
follows. These routines perform the "best possible arithmetic”
computer operations with directed roundings as described by Yohe
91, ALl the routines are written in PL/! for the Multics

system,

A.1 Basic External Functions

Included in the interval package are the interval
counterparts of the Multics basic external functions atan?, exp.,
alogs aloa10, sins, cos, tan, asin, acos, atan, sinh, cosh and
sqrt. The qeneral method of calculation of the interval
functions involves bounding the results of the corresponding
double precision basic external function, For functions that are
monotonic over an interval, the endpoints of the resultant
interval are the result of ¢the double precision function

evaluated at the endpoints of the input interval and then

-fi-

S

]

T e —— T

properly bounded. 1If the function is not monotonic over the
interval, then a8 case analysis 1is done by dividing the input

interval into subintervals over which the function is monotonic.

The result obtained from the double precision functions must
be bounded before it can be used as the endpoint of an interval,
Therefore, the accuracy of the results of the double precision
. basic external functions are required by determining a lower

bound on the number of bits of the fraction that the result is
guaranteed to have, This can be illustrated by the following
example, Suppose a result is accurate to 35 bits of fraction and
a 27 bit Llower bound for the result is required, Assume that the
27th through 37th bits of the fraction were 10000000000, If the
result were just truncated to 27 bits the 27th bit would be a 1.
If however the 37th bit was one unit too larae, then bits 27
through 37 would be N1111111111 and the 27th bit of the correct
lower bound would be NN, It cannot be determined which case is

correct,

The following general bounding technique is performed which
will produce correct bounds in all <cases, but it does not
necessarily produce optimal bounds. If a lower bound is sought
for the double precision result, then the fraction is decremented
by one at or before the Last bit known to be accurate. It an
. upper bound is soughts, then the fraction is incremented by one at

or before the last bit known to be accurate. The same bounding

technique wused in bounding the results of the arithmetic

-{ii-

B o, kot N

] operations is then used to obtain the 27 bit fraction of the

result,

A.1.1 Accuracy Testing

o To our knowledge, there is no documentation concerning the

a

implementation of the basic external functions on Multics used by
PL/1 and Fortran, Therefore, the accuracy of these functions had

* to be determined. Three approaches were considered for use in

determinina the accuracy of the required external function:

1) rigorous error analysis of actual implementations

2) rewriting of the algorithms

3) comparison of accuracy with known test data

First, the error analysis of the mathematical Ulibrary routines
seemed to be impossible due to the: (a) lack of description of
the algorithms employed, (b) Llow readability of the source
programs (much of which was written in ALM, the assembly language
of Multics). The second possibility had to be eliminated due to

the time constraints of the project and therefore the third

approach had to be taken,

. The testing itself was done in two stages:]
stagel - ogeneration of input test data and ‘j
evaluation of the given function 1

stage? - comparison of significant digits of
the result and corresponding values in
published tables 1]

-iv-

R S

“Driver" programs were written which generated test data and
called the routines which were to be tested. The output was

generated in decimal form and then a check was made as to the

first digit that was different from the result given in the

. table., All digits of function values which were tested proved to

sk, SN R

be didentical with corresponding tabutar digits (the only
exception being the last digit 1in the Abramovitz's tables).
. However, the analysis of the very next digit in our results
showed that 1in each case the error was caused by an upward

rounding.

The test data had been restricted to the decimal values that
tan be represented exactly in the floating binary notation.
Thus, we avoided the input conversion error and the function
value could be obtained for the true argument, Also, we have to
warn that the accuracy estimated in this way must be somewhat

pessimistic. We were able to check only as many digits as were

given in the standard tables. Thuses the tan function is assumed
to have only 8 accurate decimal digits even though there are

reasons to believe that accuracy is much greater than that,

o
ki

2.1.2 Error Conditions

The Univac 1108 double precision floating point number has
an 11-bit exponent field vs. an 8-bit exponent in the single
precision word, This allowed the <checking for overflow and

under flow faults to be done during the conversion from double to

e N T Rty o i SR W el

single precision format, In Multics, both single precision and
double precision floating point numbers have an 8-bit exponent
field, Therefore, the check for eventual fault conditions had to

be made prior to the calls to the double precision functions,

Overflow could be produced by the following functions: exp,
sinh, <cosh and tanh. In the Multics implementation of interval
arithmetic, overflow in these functions was prohibited by
restricting the domain of the arguments to the interval
r-88.028,88%.,0281. Should an argument fall outside this domain,
special actions (described later) had to be taken, Restricting
arguments to this domain prevented overflow from occuring during
the evaluation of the functions. However, the magnitude of the
endpoints of the results were always much smaller than the
targest representable number, This implies that the domain of
the arguments should be extended,

A.2 ITnput/Output Routines

The 1/0 routines implemented on Multics were designed to
some extent after the 1/0 routines implemented for the UNIVAC
1108 version of the interval package [41], Additional routines
were inctuded in the Multics version to handle scalar interval

variables and a matrix of interval variables.

A.3 56 Decimal Digit Interval Implementation
A 56 decimal digit version of the original Multics interval

package has also been implemented on the Multics system, This

version uses the decimal arithmetic hardware available on the

i A AR Nl it CRIHOAREML ¢ LRt TP 054 L. 188521 5 0 st AN B LN Sl S AKX, 5 - vt it

PR

CA N i i il i i kit b piagy . o A i oA S0 AR A AR B, i T

i T T e B = Gy mee vt b4 b

Honeywell H68/80 processor. The decimal arithmetic unit performs
both fixed and floating point 59-decimal digit arithmetic.
Fixed decimal arithmetic was used to implement the decimal
interval package. Floatina point decimal arithmetic was not used

R due to the lack of control the user has over hoth the rounding

strategy used and the detection of faults (overflow, underflow,
f and divide by zero), The endpoints of the intervals are
“ . represented by a 56 decimal digit fraction and a 17 binary diqit
exponent. A S59-decimat digit fraction was not used because in
the implementation of the BPA routines, two digits were needed

for guard digits and one digit was reserved for overflow.

The implementation of the 56 decimal digit interval package

followed the implementation of the original Multics interval

package as closely as possible, In this way the logic of the
original interval package was wused and the number of errors

encountered in the implementation could be reduced. The entire

S6 decimal digit interval package was written in PL/1 as Fortran
does not support decimal arithmetic, Only the number of words ,;
required to carry the PL/I representation of the interval was
declared in Fortran, The Fortran routines would carry the

interval to be passed to the PL/I routines. —

The first step in the implementation of the 56 decimal digit LA
. interval package was the implementation of the best possible
arithmetic o+ BPA, routines (see section 1.0 of the attached

paper)., The existing proceedures for doing BPA for the original o

interval package were modified to perform S6 decimal version. In
the single precision interval package the implementation of the
1/0 routines proved to be one of the most difficult tasks, This
was due to the required conversions betueen floating decimal and
floating binary., The correct roundings had to be done for the
conversions in either direction and the alqorithms for the
conversions became rather involved. The implementation of the 56
decimal digit interval 1/0 presented no such problems as the
internal representation of the interval was already in decimal,
The only rounding done is on output when the user requests Lless

than S6 decimal digits of precision.

In the initial interval effort, the interval counterparts of
the basic external functions were implemented through the double
precision floating binary routines in the Multics library. This
obviously would not be sufficient for the 56 decimal
imptementation, The basic external functions had to be
calculated to a precision of greater than S6 decimal digits, To
achieve this, the Ffortran Multiple Precision Package, MPP,
developed by Brent [3] was used., The wvalues produced by the
basic external functions coutld be calculated to an arbitrary
precision using MPP, 1t was necessary to construct an interface
between PArent's routines written in Fortran and the interval
package written in PL/1, The implementation of the SIN and (€OS
routines presented an especially difficult implementation
problem, The arguments had to be reduced to a value between N

and 2pie. A case analysis then had to he made for each endpoint

e M B e e

" ; s Xt i R 200 Tl o S H o 4 N e e
B s e R Ay i g R AI a3 s N, Wi B T S

PR - I

to determine the correct interval evaluation of the SIN or (¢OS
function. The case analysis depended on the correct S6 decimal
digit bounds on the numbers pi/2, pis 3pil2, 2pis, SpiZ2, 3pi and

?pi/2. These constants had to computed using the MPP,

Py

References

£11

2]

€31

rfed

£s1

€63

€73

£3)

€93l

€101

Abramovitz, M, and Stegun, I. A., (ed.)» Handhook of
Mathegatical fupctignss National Bureau of Standard
Applied Mathematics Series, June, 1964,

Binstocks, W.r, Hawkes, J, and Hsur, N,, AN interval
input/output package for the UNIVAC 1108," The
University of Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1212, September, 1973,

Brents R. P., "A fortran multiple-precision arithmetic

package,” Department of Computer Science.,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
May, 1976,

Crary, F,. Do "The AUGMENT precompiler, l. User
information,” The University of Wisconsin, Mathematics
Research Center, Technical Summary Report No. 1469,
December, 1974,

Crarys, €, D, "The AUGMENT precompiler, 111. Technical
documentation,” The University of Wisconsin,
Mathematics Research Center, Technical Summary Report
No. 1470, October, 197S.

Ladner, T, D, and Yohe, J. M., "An interval arithmetic
package for the UNIVAC 1108," The University of
Wisconsin, Mathematics Research Center, Technical
Summary Report No. 1055, May, 1970.

Moore, R, Er Iptecyval_Apalysise Prentice-Hall Inc. e
Englewood Cliffs, N, J,r 1966,

Reuter, E, K, and Podtaska-Lando, S.» "Source Listing for
the MULTICS Interval Arithmetic Package,™ Computer
Science Department Report No. 76-7-3, University of
Southwestern Louisianas, Lafayette, Louisiana, August,
1976.

Yohe, J. M,» "Best possible floating point arithmetics,™ The

University of Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1054, March, 1970.

Yohe, J. M., "Software for interval arithmetic: a

reasonably portable package,” Transaxctions o0
Yathematical Software, to be published.

-namcam.

Report No. T?=7=1
19?7?

A 56 Decimal Digit Implementstien of an
Interval Arithmetic Package on the MULTICS Systemes

Computer Science Department
University of Southwestern Loufisiana
Lafayette, Louisiana 70504 .

: by o
Eric Reuter, JePodeter, JeWoAndersah. 8,0, 5heiver

*

¥ B A AP

et e Bk

R R

e ORI S\ 9l b ARS8 AR 2 B0 25 B 32 I P 4 i e KON A Sl il

v RS

e

" —

R 3

** This work was supported under contract DACA39=-76-M=0249 from]
Department eof the Army, Computer Analysis Branch, Waterways:
Experiment Station, Corps of Engineers,

S6_becisal_Digft_lotsryal EQRIBAN.Work

A 56 decimal digit verstion of the original Multics intervoﬂ
package has been implemented on the Multics system., This vers
uses the decimal arithmetic hardware available on the Multic
system, The Multics decimal arithmetic unit performs both fix
and floating point 59 decimal digit erithmetic, Fixed decims
srithaetic was used to implement the decimal interval package;
The floating point decimal arithmetic was net used because of th
lack of control the user has over both the rounding strategy use
and the detection of faults (overflow, underflow and divide by
gere), The end points of the intervals are represented by
decimal digit. fraction and a 17 binary digit expenent., A ¥
decimal digit fraction was not wused was because in tiv
implementation of the “best possible arithmetic™ routines, twy
digits were needed for guard digits and one digit was reserved
fer overflow, :

The implementation of the Sé6 decimal digit interval packag
foellowed the implementation of the original Multics interval
package as closely as possible [3]. In this way the logic of thy
eriginal interval package was used and the number of erreorg
encountered in the implementation of the 56 decimal digig
interval package was reduced, The entire 56 decimal digig
interval package was written in PL/1 as Fortran dees not suppord
decimal arithmetic, Just the number of words required to carry
the PL/I representation of the interval was declared in Fortrany
The Fertran routines would cerry the interval to be passed to ¢
PL/1 routines.

The first step in the implementation of the 56 decimal dig¥§
interval package was the implementation of the "Best Possibly
Aritheetic” or "BPA" routines as proposed by Yohe (4], Th
slready existing procedures for deing BPA for the origined
interval package were modified to perform 56 decimal "BPA", Th¢
implementation was fairly straightforward.

In the single precision interval package supplied by MRC [2] ti
implementation of the 1/0 package proved te be one of the mo#
difficult operations, The reason was because of the conversie
frem fleating decimal to floating binary and vice verss, T
correct roundings had toe be done for the conversions in efthed
direction .and the algorithms for the conversions became rathel
involved, The implementation of the 56 decimal digit interved
1/0 presented no problem with cenversion since the interng
representation of the interval was already in decimal. The onlg
rounding 1is on output if the user requests less than 56 decimal
digits on output,

In the initial interval effort (3] the interval counterparts
the basic external functions were implemented through the doubll
precision fleating binary routines in the Multics library, Thi

T

xRk 4 A

sbviously would not Dbe sufficient for the 56 decimal
isplemantation, The basic externat functions had to z
calculated to a precision of greater than 56 decimal digits, Te
achieve this, we are using the Fortran Multiple Precision
Package, MPP, developed by Richard Brent (1), The basic external}
functions could be calculated using the MPP to an arbitrary:
number of decimal digits. One problem that was to be solved wvas]
the interface between Brent's reutines written tn Fortran and the]
56 decimal digit interval package written in PL/I, The interface]
was just s conversion from the data representation in the NPP to]
the data representation used in the finteetval package after ¥
coerrect rounding was made. Another problem was in thei
implementation of the SIN and (OS routines, These reoutines
required the greatest amount of work to implement, The argument]
had to be reduced to between 0 and 2pi. A case analysis then hadi
to be made for each endpoint to determine the <correct intervaly
evaluation of the SIN or (0S5 function, The case analysis]
depended on the correct S6 decimal digit bounds eon the numbers ;
pil2, opis 3pil/2, 2pis, Spi/2, 3pi and 7pi/2., These constants had !
te be computed using the MPP, ™

Suspacy_lables
Gausssian_Elipination

An example is shown below of a simple 4 by & linear system. The
results for single precision, double precisions, single precision
interval, and extended interval are sheun, For the interval
results, the width of the intervals appear below each intervat,
The widths for the single precision intervals are expressed as @
single precision value and the widths for the extended intervals
are expressed as an extended interval, The widths of the single
precision intervals are of the magnitude 10%2=4 to 10#e=-2 yhile
the widths of the extended intervals are of the magnitude 10¢«e=-59
to 10++=-50, The reduced interval widths for the extended
intervals is due to the extra precision of the extended
intervals, The price that had to be paid for the increase in
precision was an increase in cpu time from .44 cpu seconds to
12.64 cpu seconds for the extended interval results, but a good
deal of precision was gained,

Matrix of Order 4:

5 7 6 5 -
7 10 8 ?
) 8 10 9
5 7 9 10 B
Vector of Constants: B
23 32 33 3N
Sinale_Precision

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWSS
CPU time = 0.011512 seconds’ Page faults = 1)

THE SOLUTION IS AS FOLLOWS:

0.999999449 1.000000328
1.000000179 0.999999903
Rouble_Brecision

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOMWS?®

CPU time = 0.032315 secands? Page faults = ?

THE SOLUTION 1S AS FOLLOWS:

D‘M)B'I S6% UNIVERSITY OF SOUTHWESTERN LOUISIANA LAFAYETTE 9/2
VARIABLE PRECISION AND INTERVAL ARITHMETIC: PORTABLE ENHANCENEN-EYC(U)
JUL 80 B D SHRIVER AGZQ-T!—G-OO
WPNCLASSIFIED ARQ=15169+1=M

B[[[[
-A

1.00000000000000003 0.9999999999999998
0.99999999999999999 . 1.9999999999999999

‘Singie_erecision_Inzeryal |
TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION AR AS FOLLO

CPU time = 0,644765 seconds’ Page faults = 3
THE SOLUTION IS AS FOLLOWS:

C 99886015400, .100114449+01) € .99929769+00, .1000066993

0.1142337918e-02 0.70080116109e-03
(.99991752+00, .10000813+001] [.99995276400, .10000480+0
0.8184090257e~04 00.4761666059e~-04)
Extended_loserval

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLO '
CPU timpe = 12.645348 seconds’ Page faults = S
THE SOLUTION IS AS FOLLOWS:

[.9999999999+00000, .1000000001+00001]
{ .2646500000+00050,.26465000000-000502

.9999999999+00000, .1000000001+000011
-1623500000-00050, .1623500000-00050]

-~ ™

.9999999999400000, .1000000001+00001)
~1895800000-00051, .189S800000~00051]

~~

«9999999999+00000, ,1000000001+00001)
"«1101000000+00051, .1101000000-00051)

™~

Anéther exampler shown belows of 2 7 by 7 Llinear system show
that the single precision interval version has broken downs, bu
the extended interval version was able to cempute the resultsg
The Interval widths were of the magnitude 10%¢=4S to 100%*=43,

Matrix of Order 7:

180180 120120 90090 72072 60060 51480 45045 |
120120 90090 72072 60060 51480 45045 40040
90090 72072 60060 $1480 45043 40040 38036 i
72072 60060 51480 45045 40040 36036 32760 ;
60060 S1480 45045 40040 36036 32760 30300
S1480 45045 40040 36038 32780 30030 27720 -

R

T,

o L,

450458 40040 36036 327@0 30030 27720 25740
Vecter of Constants:

L B | L IR R IR

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOWST]
CPU time = 0.19547 seconds? Page faults = 0
THE SOLUTION IS AS FOLLOWS:

0,000106439 ~-0.003075291 0.26859137

-0.101941098 . 0.188414240 -0.166749334
0.056536387 EE R
Rouble_Precision

TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATION ARE AS FOLLOUS;{
CPU time = 0.023362 seconds; Page faults = 1 |

THE SOLUTION IS AS FOLLOWS:

0.00015540015540038 =0.00419580419580964
0.03496503496507612 ~0.12820512820526593
0.23076923076945858 -0.20000000000018252
0.06666666666672321

Sinéik-énssiiinn.lnxszxal

THE GAUSS ELIMINATION PROCESS HAS BROKEN DOWN BECAUSE NO PIVOT
GREATER THAN THE INPUT TOLERANCE COULD BE FOUND FOR THE 6TH STEP, j

Eateoded lnsecyal
TIME AND PAGE FAULTS FOR THE GAUSSIAN ELIMINATIO& ARE AS FOLLOUS!T
CPﬁ time = 25.063362 secinds: Page faults = 11
THE SOLUTION IS AS FOLLOWS:

€ .155600155‘-00063o «1554001555-00003)
C .3468206177-00043, .3468206178-00043)

(-.4195804196-00002,-.4195804195-00002)
C .3357609101-00043, .3357609102-000431

t'.i282051283000060o°.12820512820000603
O e6297511335%00044,5 62975 11834=00044) T

(..23076923070000000 «2307692308+00000]
€ .1835758441~-00044, .1833738442-000442

C-.20000060001+00000,~.1999999999400000)
€ L42611469309=0004%, . 4241149309=000487 ~ -

[.6666666666-00001, .6666666667-00001)
£ .1298809545-00045, .1298809566-000633

BAHSDL-BBQE!AB

The following example shows the results for the BANSOL routine
which solves a banded system of equations using Gaussian |
elimination with no piveting. The matrix of coeffictents {3}
assumed to be symmetrical and only the upper triangular banded j
satrin of order 4 as the matrix of coefficients, The single |
precisien interval results have an Tnterval width of the)
magnitude 10#**~1 yhile the extended interval results have an
interval width of the magnitude 10##+-48,

Hilbert Matrix of Order 4
Vector of Constantsy 0 o mmmeme e

1 0 0 0O ;

_ Sipale.Breciaion L , ”:i
TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time = 0.,029758 seconds’ Page faults = 1

THE SOLUTION IS AS FOLLOWS:

0.1600010896e+02 =0.1200011921¢+03

0.2400028324e403 - =0.1400018272¢+03
Rouble._Pcecision

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time = 0.026642 seconds’ Page faults = 1

THE SOLUTION IS AS FOLLOWS:

0.16000000000000000562d+02 =6,12000000000000000581d+03
0.240000000000000013474-03 -0.14000000000000000855d+03

Siogls_eresisisn Intscyat

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:
CPU time = 0.484731 secends: Page faults = 3

THE SOLUTION IS AS FOLLOWS:
o ' T 15969114+02, .16030875+02] [~+12003797403,-.11996195+03]

. 0.3088021278e-01 0.380005836Se~01
‘T «23997602403, .24002383403) [~,14001561+403,-.13998431+03)
0.2390098572¢-01 0.1564788818e~01
* Extended_lnfecyal)

T!Hé AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOW:
CPU time = 1.959542 seconds? Page faults = 4
THE SOLUTION IS AS FOLLOWS:

[.1599999999+00002, .1600000001+00002]
 .2227200000-00048, .2227200000-00048)

(~.1200000001+00003,~.1199999999+00003]
[.2740700000-00048, .2740700000-000481

{ «2399999999+00003, .2400000001+000031]
€ .1725100000-00048, .1725100000-00048]

t-.1&00000001+00003:°.139999§999000063]
[.1127100000+400048, .1127100000-000481]

The next example uses an Hilbert matrix of order 10 for the
matrix of coefficients., The solution for the single precisiow
interval case cannot be found. The solution for the extended!
interval coase could be feund with the interval widths ranging
from 10#2-29 to 10%e=25, Also note that the single precision
results are meaningless.
+ Hilbert Matrix of Order 10
Vector of Constants:

1 0 0 0 0 0 0 O 0 O

$1n§Ls-Eztti§190

R T —-

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time = 0.065116 seconds; Page faults = 1
C 076804037952€%02 0,204 1981995€%04 0, 18025877696 %05
«0,6609998340e+05 0.,1038329834e+06 -0.3899778605¢+0S
-0,5230199170e+0S 0.,9572640381e+04 0,61732%50244e¢0S
«0,3380692432e¢08 . g
T poublz_Erecizion

TIME AND PAGE FAULTS FOR BANSOL METHOD ARE AS FOLLOWS:

CPU time =
THE SOLUTION IS AS FOLLOWS:

0.100000002357838358793d+03
0.792000046292167635194d+03
0,25225201849355641243d+07
6.96096008305590789023d+07

0.09§313 seconds’ Page faults = 1

=0,600600038881966622744+0¢

-0.49500002024461207952d+04

~0,63063005072087839126d+03
~0.,87516008013115931062d+0%

‘CPU time =

0.43758006200809984750d+07 ~0.923780092266953698850+08

Siosls Beecision_lntecial
SOLUTION CANNOT BE FOUND

Exttoded_lotecval
TIME AND PAGE FAULT FOR BANSOL METHOD ARE FOLLOWS:
13.190837 seconds: Page faults = 18
THE SOLUTION IS AS FOLLOWS:

[«9999999999+00002, .1000000001+00003]
C .260711i76076002$f”.2’0?111761-00025]

(=+49500000081+00004,-,4949999999+00004)
«3216633306-00025, .3216633307-00025)

~

«79199999994080005, .7920000001+00005)
«2078321976-00025, «2078321977-00025)

4
C
{ «6006000001+400006,-.6005999999+400006)
[.9134022350-00026, .9134022351-00026)
C
C

.2522519999400007, .2522520001+000807)

«3044631515-0026, .3044631516-00026)

(~.6306300001400007,~.6306299999+00007)
R [.8177182762-00027, .B177182763-000271]

[+9609599999+00007, «9609600001+00007)
S E RSOt E1E9S< 00027, 18394 61896-00027]

[-.8751600001400007,~.8751599999+00007)
[.3552162351-00028, .3552142352-000257

€ .4375799999400007, .4375800001+000071
- | T .S810S846D8-00029, .S8Y0584807-000297 =

(-+9237800001400006,~.9237799999+00006]
C .1288532381-00029, .1288532382-00029]

j) SESOL_Erogras
The SESOL progras solves a banded system of Llineesr eauatﬁont?
, using the LU decomposition technique. Operations with zerd]
i elements are not performed. The wmatrix of coefficients {s

syametrical randomly; only the upper trisngular brended motrix of:
coefticients is stored. The first example uses an Hilbert matrin:
of coefficients is stored. The first example uses an Hilbert:
matein of order 4 for the matrix of coefficients, The single!
precision interval vresults had interval vwidths of the magnituded
109+=1, while the extended interval results had interal widths ofﬁ
the magnitude 10+4+-48, -

Hilbert Matrix of Order &
Vector ef Constants:
1000

3 Single_Precision
: TIME AND PAGE FAULTS FOR SESOL netﬂoo ARE AS FOLLOWS:

CPU time = 0.223950 seconds? Page fnults = 5

THE SOLUTION IS AS FOLLOWS:

* 0. 160000877 4e+02 ~B5.1200009499¢+03 ;|
0.26400022611e403 =-0.1400014400e+03 f
. bouble_Precision

TIME AND Page Faults TIME AND PAGE FAULTS FOR SESOL METHOD ARE i§—
FOLLOMS ¢

L i e ais e nic: it

CPU time = 0.225749 seconds? Page faults = é

THE SOLUTION IS AS FOLLOUS:.
S e (304 $999999999999000542d9402 =0, 119999999999999994 074303
0.23999999999999998501d+03 <0.139999999999999989098d+03
Single_Precisien_lotecyal
TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS? -

i~

CPU time = 0.657901 seconds’ Page faults = 9
THE SOLUTION IS AS FOLLOWSS

T 15966054402, .160339434¢02) {-.12004178+03,<,11995823+0

0.3394412994e-01 0.,4177045822e~01
[.23997377+¢03, .24002631+403) £<.14001725+403,=,13998282+03
0.262670570e-01 0.1720905304e~-01
Exteoded_logerxal

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS: ‘
T CPU time = 2,108744 sectondss Page faults = 49 .
THE SOLUTION IS AS FOLLOWS:

[.1599999999+00002, .1600000001+60002)
€ .2479670000-00048, +2479670000-00048)

(-.1200000001+00003,~,.1199999999+00003]
C .3051400000-00048, .3051400000-000481]

[.2399999999+00003, .2400000001+000031]
€ .1920100000-00048, .1920100000-000487

, (-.1400000001+00003,~,1399999999+00003]
< € .1255600000-00048, .1255600000-000481]

The next example uses an Hilbert matrix of order 10 for thof
"etrin of coefficients. The single precision and single

N precision interval cases could net find s selutien., The extended |
interval results had interval widths of the magnitude 10v#=29 tg |
10..-250 ’

Hilbert Matrinx of Order 10

e T E——

-

Vector of Constants:

1t 0 0 0 0 0 0 0 0 O

51nnlc-t:csixinn

STOP e«s 7ZERO DIAGONAL ENCOUNTERED DURING EQUATION SOLUTION
EQUATION NUMBER = 9

Bouble_Breciaien
TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:S
CPU time = 0.243050 seconds’ Page faults = 6
THE SOLUTION IS AS FOLLOWS:

0.10000000071884660358d+03 =0.49500000625171377493d+04"
0.7920000133783211.5041d+05 ~0.60060001220562858816d+04
0.25225200583827033424d407 -0.63063001608613853932d+07?
0.96096002644256749918d4+407 -0.87516002559459038221d+07

0.43758001345532895439d+407 ~0.923780029625308927624d+0

Single.Brecision_Intecval :
STOP awe ZERQ DIAGONAL ENCOUNTERED DURING EQUATION SOLUTION |
EQUATION NUMBER = [
Extended_Interyal

TIME AND PAGE FAULTS FOR SESOL METHOD ARE AS FOLLOWS:
P time = 12.364521 seconds? Page faults = 93 ;
THE SOLUTION 1S AS FOLLOWS: ‘f
T +9999999999+00002, .1000000001+00003) -

C .2961612465-00025, .2961612466-00028)

(=.4950000001+00004,-.4949999999+000041 B
C «3654013424-00025, .3654013425-00028)

{ .7919999999+00005, .7920000000+400005) -
[.2360920776-00025, .2360920777-0002S51

C-.6006000001+00006,-.6005999999+00006)
C .1037601650-00025, .1037601651-00025)

b

{ o

N B e, g~ 4

g U U S VU S0 R U U O S AR PR

[.2522519999+00007, .2522520001+00007)

e 3458623 775-000267 < 34586237 76-00026

(~+6306300001+00007,-.6306299999+00007]

o S 92890TTI3T=000275 928907 1132=00027)

[«9609599999+00007,-,.8751599999+400007]
[.2089581813-00027, .2089581814<00027]

[-.8751600001+00007,~.87515999994000071
€ .4035143144=00028, .4035143145<000287

[4375799999+400007, .4375800001+00007]
. € +6600675959~-00029, .6600475960~-00029)

(~.9237800001+00006,~.9237799999+000061
[«1463739935-00029, .1663739936+00029)

SEBLINE
The spline pregram solves 3 system of Llinear equations using o
iterstive technigue to calculste the moments at & sét of daty
peints - in order to fit a cubic spline to theose data points, T
first example uses & (X,Y) data peints, The single precisief
interval widths were of the wmagnitude 10e2-5, The extendw
interval widths were of the magnitude 10##=S3 3

(XsY) DATA POINTS:

X Y
1.6 1
S.4 2
? 1
8,2 1

Sipgle_precisiop
TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:
CPU time = 0.003969 seconds’ Page faults = 1

INTERPOLATED VALUES

X v
0.1000000000e +01 0.6069527492e+400
0.3000000000e+01 0.,1842634425¢+01
0.5000000000e+01 0.2180504758e+01
0. 7800000000 +01 0.1000000000+01
0.9000000000e +01 0.1135431752e+01

A AR TS G o 52 5 Lt W SIS O o N M M s i St i - o ety s e e i a3 2l Pl

S s,

Rouble. Brecision

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = 0.007115 seconds’? Page faults = 1

INTERPOLATED VALUES

0. 10000000000000000000d+01 0.606952747746050156254+00
0.300000000000000000004401 D.78426344355119746667d+01

0.50000000000000000000d+01
0.70000000000000000000d+01

0.21605047819613091100d4+01
0.10000000000000000000d+01

0.90000000000000000000d+01 0.11354317730190776109d+01

Siogle Precision _Intecyal

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = 0.800636 seconds; Page faults = 4

INTERPOLATED VALUES

X

Y

C
t

~

.1000000000000+01, .1000000000000+011]
0.,0000000000e+00

«6069516241550400,.,60695387423304+00)
0.1125037670e~05

+3000000000000+01, .3000000000000+013
0.0000000000e+00

«1842632219195401, .1842636644841+401)
0.2212822437e-05

«5000000000000+01, .5000000000000+011]
0.0000000000e+00

«2160503506660+01, .2160506069661+401]
0.1281499843¢-05

« 7000000000000401, .7000000000000¢011]
0.0000000000e¢+00

«1000000000000+01, .1000000000000+011
0.0000000000e+00

«9000000000000+01, .9000000000000+011]
0.0000000000e+00

«1135428726673401, .1135434836150+01)
0.3054738045e~05

Exteoded_lotecyal

i

s R ARSI . - LA i IR I sl A T A A AN e o on i i

i RN it v SRR AP 8

-

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = $.429209 seconds’ Page faults = 0

INTERPOLATED VALUES

X

Y

[N Ne Nl [on 2N on Man N on | L B e Mo N | [N N N]

Lo B o M N o |

- 1000000000+00001 .,
- 0000000000+00000,
«6069527477+00000,
«1775000000-00053,

«3000000000+00001.,
.0000000000+00000,
«1842634435+00001,
«3700000000-00053,

«5000000000+00001 »
.0000000000+00000,
«2160504781+400001,
.2200000000- 00053,

«7000000000+00001,
- 0000000000+00000,
.1000000000+00001 .,
. 0000000000+00000,

.9000000000+00001,
«0000000000+00000,
»1135431273+00001,
«3400000000-00053,

The next example uses 11

«1000000000+000013]
«0000000000+00000]
«6069527478+00000)
«1750000000-000531

«3000000000+000011]
- 0000000000+000001]
«1842634436+00001]
«3700000000-000531

«5000000000+00001)
- 0000000000+000001]
«2160504782+00001)
.2200000000-000531

«7000000000+00001)
. 0000000000+00000]
+1000000000+000011]
. 0000000000+00000]

«9000000000+4000011]
. 0000000000+000001
«1135431774+00001]
«3400000000~-000531]

(X,Y) data points. The single

precision

interval version of the program could not find a solution, while
the extended interval version could find a solution with interval
widths of the magnitude 10#4=5S1 to 10**=50, POINTS:
X Y

1.0 1.008

10 20,183

19 339.096

28 58.69

37 85,48

46 106.7

ss 132.91

64 156.9

73 180.88

82 207.21

91 231

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

Single_Presisien

R D s ¥ et 5 AN i ok o A

NS, 9. 4 st k5

g ot abiir m ; ‘ u i
% .
%
% CPU time = ‘0.009885 seconds’ Page faults =
§ INTERPOLATED VALUES
i
3 X Y)
i 0.1000000000e+01 0.1008000001e+01
3 0.5000000000e+ 01 0.9510347366e+01
' 0.1000000000e+02 0.2018300009e+02
; 0.1500000000e+02 0.3085654688e+02
! 0.2000000000e+02 0.6108214760e+02
: 0.2500000000e+02 0.5135257101e402

Rouble_Precision
TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:

CPU time = 0.033277 seconds’ Page faults = 2

INTERPOLATED VALUES

Y
0.10079999999999999999d+01
0.95103474691975531663d+01
0.201829999999999999994+01
0.41082147846906934087d+02 :]

X
0.100000000000000000000d+01
0.500000000000000000000d+01
0.100000000000000000000d4+01
0.150000000000000000000d+02
0.200000000000000000000d+02
0.250000000000000000000d+02

0.,41082147846906934087d+02
0.51352571259161417030d+402

Single_Precision_Interval

SINGLE PRECISION INTERVAL HAS BROKEN DOWN DUE TO BOUNDS FAULTS
(see attachment)

Extepnded_Intecyal

TIME AND PAGE FAULTS FOR SPLINE ARE AS FOLLOWS:
CPU time = 31.215525 seconds’; Page faults = S

INTERPOLATED VALUES

-

.1000000000+00001, .1000000000+00001]
. 0000000000+00000, .0000000000+009001]
. 1008000000+00001, .1008000000+000013]
.0000000000+00000, .0000000000+000001]

hf X

» -
] "
e I Mmear

«5000000000+00001, .5000000000+00001)
- 0000000000+ 00000, .0000000000+4000001]
«9510347469+00001, .9510347470+00001]
«1518000000-00051, .1518000000-000511]

-
[]

D i 1 L WE TUFPN

5 B R AN i e 4 e e it

«1000000000+00002.,
«06006000000+00000+
«2018300000+00002,
»0000000000+00000,

«1500000000+00002,
« 0000000000+ 00000,
«3085654676+00002,
«6490000000-00051.,

«2000000000+00002,
« 0000000000+ 00000,
«4108214784+00002,
«3790000000-00051,

«2500000000+00002,
- 0000000000+00000,
«5135257125+00002.,
«1165000000-00050,

L Sy ks SR L a2 il e R e e i M 3 il e 2 e 7 ey ek

. 1000000000+000021
«0000000000+00000]
«2018300000+00002)

- 0000000000+000001]

« 1500000000+000021
- 0000000000+000003
« 3085654 677+00002)
«6490000000-00051]

.2000000000+000022
.0000000000+000003]
«4108214785+00002]
+«3790000000-000511]

«2500000000+400002]
- 0000000000+00000]
«5135257126+000021
«1165000000~-000551

MAIRLX.INVERSLON

The matrix inversion program finds the inverse of a square
matrix. The first example finds the inverse of an Hilbert matrix
of eorder 4, The single precision interval widths were of the
magnitude from 10*+=3 tp 1, The extended interval widths were of
the magnitude from 10»22=50 to 10%»=47,

Sipole_Btesizion
TIME A TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time = 0.006392 seconds; Page faults = 0
INVERSE OF HILBERT MATRIX OF ORDER &4
ROW 1
0.16000119e+02 -,12000130e+03 0.24000305e+03 =-,14000196e+03

ROW 2
~.12000130e+03 0.12000141e+04 -+27000332e+04 0.16800212e+04

ROW 3
0.24000308e+03 =«27000333e+404 0.66480078Se+04 =+42000503e+04

rROW 4
~.14000198e+03 0.16800214e+04 ~+%2000505e+04 0.28000323e+04

Rouble . Precision

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time =

INVERSE OF HILBERT MATRIX OF

ROW 1

0.160000000000000020d+02
0.240000000000000049d+03

ROW 2

-.120000000000000021d+03
-.270000000000000053d+04

ROW 3
0.240000000000000051d+03
0.648000000000000127d+04

ROW 4
~+140000000000000033d+03
~+420000000000000082d+04

0.00209 seconds’ Page faults =

-.1200000000000000214+03
=.140000000000000031d+03

0.120000000000000023d+04
0.168000000000000034 d+04

-.270000000000000054d+04
-.420000000000000081d+04

0.168000000000000035d+04
0.280000000000000052d+04

s1n913-z:etixinn.xhxc:xnl

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time = 0.363970 seconds’ Page faults = 2 j}

INVERSE OF HILBERY MATRIX OF ORDER 4

ROV 1 3

C .15999083+402, .16000938+02]

C-.12001072403,-.11998957403) {
0.9272098541e-03

0.1057004929e-01

C .23997471403, .246002608+031 (~.14001772403,~-.13998284+03]

0.1014995575¢-01 0.1743507385e-01 73

ROV 2 B
[~.12001029403,~,11998998+03] L 11998861404, .12001176404)

. 0.1014995575e-01 0.1156997681e+00 f

(=.27002862404/,~,26997238404)
0,2811279297¢400

C 16798125404, .168019043+04) i
0.1980416748e+00 ;

JoR T

ROV 3

(«23997635+03, .24002433+403] (-.27002782404o~,26997313404)

0.2398204803e~01 0.2733917236e+00
C 66793482404, ,64806767404] (=.42004596404,=-,.41995576404]
0.6642456055e+00 0.4509582520e+00
ROW &
[=.14001562¢03,~,13998484+03] € .16798277+04, .16801786+04]
¢ 0.1538562775e-01 0.1753845215e+00
[~ 42004345¢04,-.41995821404) L 279971644044, ,28002950404] '“;

0.4261474609e+00 0.2892761230e+00
Extended Beecision_loterual
TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU tine = 3.018572 seconds’ Page faults = 3 ’

INVERSE OF HILBERT MATRIX OF ORDER & -

ROV 1 :}
f .1599999999+00002, .1600000001+00002] i
C .4854000000-00050, .4854000000-00050)

{=.1200000001+00003,~.1199999999+00003) B
L .5527000000-00048, .1341800000-00048] :

{~.1400000001+00003,-,1399999999+00003] T
C .8760000000-00049, .8760000000-00049]

ROW 2 -

C~.1200000001+00003,~.11999999994000033 :
t .5258000000-00049, .$258000000-000491 o

[.11999999994¢00004, .1200000001+000041]
€ .5990000000-00048, .5990000000-00048) -

[-.2700000001+00004,~,.2699999999+000041) :
' € .1433800000-00047, .1453800000-00047] T

[.1679999999+00004, ,1680000001+00004]
€ .9493000000-00048, .9430000000-00048] B

ROW 3 :
L .2399999999+00003, .2400000001+00003) -

L R A BB ¢

5
z
1
H
3
i

oo b A A AR DU 5 A AL 78w b Y e el 75 AR 415 LN M RN 0 M 13 MR+ YA i WAEE SR 50 o5 v O ot e N2 YL D T T Al S,

W-m»._u

{ .1249800000-00048, .1249800000-00048)

(-.2700000001+00004,~.2699999999+00004)
€ .1423300000-00047, .1423300000~00047]

{ .6479999999+00004, .6480000001+00004)
€ .3455500000-00047, .3455500000-00047)

(-.4200000001+400004,~.4199999999400004)
L .2256400000-00047, .2256400000-00047]

ROV &
(-.1400000001+00003,-.1399999999+00003]
C .8i08900000-00049, .8089000000~-000491]

€ .1679999999400003,~.1399999999+00003)
€ .9213000000-00048, .9213000000-00048]

(-.4200000001+00004,-.4199999999+00004]
€ .2236900000-00047, .2236900000-00047]

[.2299999999+00004, .2800000001+00004)
C .1460700000-00047, .1460700000-00047]

The next example inverts an Hilbert matrix of erder 0. The
single precision intervel version could net find a selution. To
conserve space the extended intervel results are net shown but
may be found in the attachment to this letter. The extended

interval widths ranged from 10+#=-34§ to 10%+-28, Also not that
the single precision results are meaningless.

Sinale_frecision

TIME AND PAGE FAULTS FOR THE INVERSION ARE AS FOLLOWS:

CPU time = 0.065202 seconds; Page faults = 1

INVERSE - OF HILBERT MATRIX OF ORDER 10

ROV 1
0.66628764e¢02 ~=,19763846e404 0,17260560e+405 =-,62370884Le+0S
0.95071291e¢05 <~,29811917e+05 =.52568417¢+05 0.12496660e+04
0.68708063e¢05 ~,35645043e+405

ROW 2
~e19894290e4046 0.75388504e¢05 ~.72811225e¢06 0,28178170e+¢07
~e46580271e407 0,20127897e+407 0,23197084e+07 =-,10075493e¢407?7
«,21445800e¢07 0.13152878e+07

ROW 3

0.17619120e+405

05676921008

0.54030478e+07
ROV 4
~.65350269¢ 405
-, 285894846409
0.10984572¢+09
ROW $
0.10526792e+06
0.681046005¢+09
~.71255193¢409
ROV &
-e42870195e+05
- 67411450409
0.15614960e+10
ROW 7
~.58890916e+05
«.16748904e409
-.10311218e+10
Rov 8
0.35385499e405
0.96178677e409
-.97000460e+09
ROV 9
0.360146969¢+05
e 775174860409
0.16805552e+10
®OW 10
-.25268021e+05

0.20763149e+09
~066172422e409

TIME AND PAGE FAULTS

CPU time =

«. 73787954 e+06

= 3271276 Te+08

=+85081013e+07

0.29268154e+07
0.21212882e+09
=.72728300e+07

~+50690238e+07
-2.63099936e+09
0.18048439e409

0.25873252e+07
0.75598362e+09
~e47486910e+09

0.25351663e+07
0.25520953e+09
0.32840154e+09

=e24513788e+07
~«15891991e+10
0.35773168e+09

“~e71491391¢406
0., 164881434e+10
~e$51501253e+09

0.85312601e+06
«o 46059757¢+09
0.23783952e+09

0.76123086e+07
«,2428%283e4¢08

=+32090695e+08
0.10197568e+09

0.60455295e+08
“.21897011e+09

~238849799%9e+08
0.3537952S5e+09

~e25165329e+08
=.65576277e+09

0.41530602e+408
0.98973335&+09

~«91393845e+07
~e79604687¢+09

~e36485157e407
0.24735363e+09

Double_Peecision

0.104900 seconds? Page faults =

~e31378729¢408
0.,27813182¢+08

0.14215210e+09
~e24367823e+09

=:29635527e+09
0.94184239¢+409

0.23780274e+09
“.17238461e410

0.94883239e+408
0.11986492e 410

-«28713407e409
0.49803286e +09

0.16378166e+09
0.49803286e+09

~e26486693e408
0.43837222e+409

FOR THE INVERSION ARE AS FOLLOWS:

INVERSE OF HILBERT MATRIX OF ORDER

ROW 1
0.100000002253344385d+03
0.792000040643482569d+05
0.252252017413542726d+07
0.960960077905433687d+07
0.437580039292925130d+07

Row 2

-«495000019234067032d+04
~+588060034674400374d+07
~«208107914851406841d+09
~o832431666428663198d409
~.389883813499277461d+09

ROW 3

0.792000040597946710d+0S
0.112907527315966792d+09
0.4281077113275985984d+10
0.850655590644102323d+10

ROW 4

=.600600036647768510d+06
=.951350466020991662d+09
~e378756406265519956d+11
~«1616027339019262670d+12
~o788431707725519861d+11

ROW 5

0.2522520173811493594d+07

0.428107711304437945d+10
0.176752989800356975d+12
0.,771285775115345549d+12
0.382086134606397841d+12

ROW 6

~«630630047557023284d+07
=e112378274563554215d+11
=oh77233072933179610d+12
~e212103588066949894d+13
~.106438280201023343d+13

ROW 7
0.960960077719259721d+07

0.,177585421992469924d+11
0.771285775083595035d+12

10

=.495000019246086607d+04
~-.600600036703711230d+06
~.630630047659250959d+07
=< 875160075049289022d+07
~.923780086205494929d+06

0.326700016423196876d+06
0.6756752313077461564408
0.53513464064219908164d+09
0.770140863987992790d+09
0.831402073490169145d+08

~.588060034657217201d+07
=+951350466047641274d+409
~e112378274572331485d+11
~. 182908455497076566d+10

0.475675231279601474d+408
0.824503739596806%894+10
0.101001708533916509d+12
0.152907967373%49021d+12
0.170714557978861971d+11

-.208107914833069535d4+09
=.378756406256024234d+11
~oh77233072963623682d+12
~e 735869592105467831d+12
~.832233468259027158d+11

0.535134640580455002d+09
0.1070871708529116143d+12
0.130154474467933733d+13
0.203779271462052388d+13
0.233025370680489081d+12

~e8324316663114912974409
~e1616027339083218872d+12
~.27127103588062932535d+13

beiad

0.348067426451023403d+13
T 0STT6e08 701 731213639d#13 -

ROW 8

~«875160074853957120d+07
~e 166350426274663753d+11
=~e735869392062%74422d412
=+336397527216638917d+13
= 172328643753417112d+13

* ROW 9

0.437580039183301780d+07
. 0.850655590526188449d+10
. 0.382086134578274924d+12
0.176608701745795530d+13
0.912328113196616042d+12

ROV 10
-.9237800859506 84804 d+06

=.182908455468634513d+10
~e832233468186303462d+11

-« 388375617184253555d+12 .

=.202113841111777620d+12

~e336397527222145322d+13
“.388375617201074031d+12

0.770140863861501436d+09
0.152907967360415374d412
0.203779271454813844d+13
0.326786169079946716d+13
0.380449583699944922d+12

~«389883813426785199d+09
“o788431707644816383d+11
~e106438280195682737d+13

= 172328643750974790d+13

~+202113841114266266d412

0.831402073318937322d+08
0.170714557958832975d+11
0.233025370665754467d+12
0.380449583689833549d+12
0.449141868706854188d+11

s1unl§-£::si;inq.;pz;£ggl7

SINGLE PRECISION INTERVAL HAS BROKEN DOWN DUE TO DIVISION BY ZERO

(see attachment)

Exx:ndsd-!:esisinn-ln:s:xil

The extended interval results

are

not shown here in order to

congserve space, See the attachment for the results,

The FFT program was then converted to double precision, The eonly

The FFT program supplied by WES,
correctly on PNMultics, was

precesser time used and page
stages of the overall program,
the FFT subroutine, and output.

faults

EEI.Bcodras
once: interfaced and running
modified to print out the central

generated during various
These stages were initialization,

difficulty encountered during this stage of the work was

complex oarithmetic s net
Multics fertran ands, therefore, had to be simulated,

supported {in double precisioen in
Similiarly,

during the conversion to interval, complex arithmetic again

adndiantn Lol S0 A SRR ARG sl A AOSMPGATT A Rt 4 -

. . s el ol b g B
S 5 o W< g o o R Al £ AR S S Rty e o by ot e e i

i

te be simulated, Further, in the driver routine, a call to ATANZ2
with argumsents 1.0 and 0.0 was replaced by the value such a call
returns, one halt pi., The value returhed by ATANZ was net the
etnioun interval representation and, when wused n subsequent
colls te the SIN function, resulted {in unacceptably Llarge
intervals being returned. The only modification made to the
fnterval version of the program before executing it utilizing the
; 56 decimal package wos to insert a2 cal to & subreutine, GENPI, to
t obtain 8 56 decimal digit precision value for pi.

The single precision, double precision, intervals, and 56 decimal
interval versions of the program were executed using the original
real coefficients supplied by WES and atso using real
coefficients in the form of a square wave as suggested by WES,
Other real coefficients were also tried but the results added
N little additionatl information for analysis.

Using the real coefficients suplied by WES, all complex
coefficients but one should have, theoretically, been 2ero. The
fellowing table has example values computed in each of the four
different runs.,

single precision 0.0265 "T0.0428 0.2930 0.3623

double precision 0.3113 0.0460 0.3108 0.,6678

standard interval 0.8222 2.5133 11,1639 16,4994

56 decimal interval 260.8131 180.6730 25.3920 466,873
SLOLE_Bregran ¥ork

A large proportion of time had been spent in an attempt to
understand the applications programs, The logic was carefully
followed using the given data. Throughout the programs the
language of the program was updated (FORTRAN IV as epposed to
FORTRAN 11), detected ineffictencies remeved (for example,
unnecessary variables, GO T70's to 60 TO's, unused labels, GO TO's
to the next executable statements, etc.)s ands, in general, made
more readable, This time proved beneficial not eonly in
facititating the convergion of the reutines to interval
arithmetic but also in that it exposed some errors in the progranm
(deuble initfalization of some variasbles, an integer functien
which should have been a real function, etc.) These errors vere
corrected and duly reperted to WES. It should be noted that all
testing was dene using the corrected version of the original
program rather than the heavily modifted version., It wes felt
that testing conditions should approximate the working conditions
at WES as closely as possible,

Once the opregram was successfully interfaced with Multics and
reproducing the desired outputs a program of testing was
outlined, This coensisted of varying & set of three inputs
(cohesion, unit weight and phi) for the program plus or minus ten
percent, singly and 1in conjuction with each other, A

X W (i N . . i

C e AT St bl e s oA RN ST bl w2 A

< AN WAL 3 B 419 i 534 b o e S 05 A i S Yk oo s L NGB Bl b~ MR et 34

e w1

comprehensive analysis was run consisting of 81 separate runs
with 27 compavisons of 3, and were submitted to WES {n July,
1972, The Llargest preblem encountered at this stage was the
preduction of summary reports which presented the analysts n o
readabte form. The veport was finasttly configured teo consist of
27 compearisens of three runs each in regard to central processing
unit.-time, paging and fluctuation ef the output data (Table 1),

I8BLE.L

Configuration of the 27 ceomparisens of -the test runs, For
examples run one compares the three runs cohesien +10XY phi +10%
unit weight -10%, cohesion +10% phi +10% unit weight
«00%,cohesion +10% phi +10% unit weight +10%,

cohesion +10% phi +10X unit weight (-10%X, no flux., *+10%]
cohesion +10X phi -00X unit weight [-10X, ne flux, +10%X]
cohesion +10% phi -10X unit weight [(-10X, no flux, +10%X)
cohesion =-00X phi ¢10% unit weight [~-10%, ne flux, +10%]
cohesion ~-00X phi ~00% unit weight [(-10%, ne flux, +10X)
cohesion ~00X phi =10% unit weight [-10%, no flux, +10%]
cohesion =10% phi +10% unit uweight [-10X, ne flux, #10%)
cohesion ~10% phi «00X unit weight [~10X ne flux, +10X)
cohesion =10% phi «10% unit weight [(~-10X, ne flux., +10%]
phi +10%X unit weight +10X cohesion [(-10%, ne flux, +10%)
. phi +10%X unit weight -00X cohesion [-10%, ne flux, +10X]
phi -00X unit ueight ¢+10X cohesien [-10%, ne flux, +10%)
phi ~00X unit weight ~00X coheston (-10%,» ne flux, +10X%]
phi =00% unit weight -10X cohesion [-10X, no flux, +10%]
phi =10X unit weight +10% cohesion [~-10%, no flux, +10%]
phi 10X unit weight ~00%X coheston [-10%, ne flux, +10%)
phi ~10% unit weight =10X cohesion [-10X, ne flux, +10%)
unit veight +10X cohesion -00X phi [-10X, ne flux, +10X]
unit weight +10X cohesion -10X phi C-10X, ne flumx, +10%)
unit weight -00X cohestion +10X phi [-10X, noe flux, +10X)]
unit weight ~00X cohesion -00X phi [-10X, ne flux, +10X)
unit weight ~-00X cohesion -10X phi [-10%, ne flux, +10X)
unit weight -10X cohesien +10X phi (=-10X, no flux, +10%X)]
unit weight =10X cohesion -00X phi [-10X, no flux, +10X)
unit weight ~10X cohesion -10%X phi [-10%, no flux, +10%]
unit weight +10X cohesion +10X phi [-10%, ne flux, +10%]

At this time the application programs vere converted te double
precision and the same testing preocedure as outlined sbove wss
spplieds. No significant problems were enceuntered during the
cenversion, The output of the tue tests were given to the same
precision as that given in the report supplied by WES, The
summary repert aleng with each run and data was sent to WES for
further evaluation,

buring the testing it was neted that ene of the inputs to be
veried, cohesion of the first soil, was zero. As 0-10% = 0010§ -

R e e M S Sl S0 A, PR)

1 e e ol A a8 AT i P e G i S VBT G AN K U Y R T LT

0 ne fluctuatien was produced by this parameter, A nen-2ero
velue was recieved from- WES and the testing precedure easpplied
agein, The output was increased to 8 digits of sccuracy, the
saxiaun for single precision FORTRAN on Multics, for this set of
tests.

An analysis of the test output discerned ne significent
difference in accuracy between the single and double precision
(Table 2).,

) TABLE.2

Sample values from the case phi-00%, unit weight-00%, cohesion
{-10X, ne flux, +10X]) for single precision (SP), double precision
(DP)» single precision dinterval (SP1), and extended finterval

. (Eld)e The values shown are for CP,
210X
sP «1.60856320 =-1.30648941 439,65
pP ~1.6056319659860984S “1.30489416517190%121 439,65

sPp1 (-2,0212812,-1.2585650] [=1.6226176,-1,0324112) ([435,14,444,21 i
€l (-1.6056320,-1,60563201 C-1.3068741,-1,3048943) [439,65,439,65] |

os.flux
sP =1.6069299 -~1.3060394 439,63
oP -1.60692993603933327 «1.306039047523241611 439,63

SP1 (~2.0217068,-1.2604411) [-1.6231307,-1.0340142] (435,13,444,18] |
El (-1.6069299,-1.6069299) ([-1.3060194,-1,3060396) (439,63,439,.63) §

=102
sP -1.6082275 -1.3071844 . 439,60
oP -1.60822753256086878 -~1.30718409177463123 439,60

SPI (-2.0220372,-1,2623842] [~-1,6235718,-1,.0356705] C435.11,4644.14)
El (-1.6082275,-1.6082275] (-1.3071643,-1,3071845] (439.60,439,60%

Setter than 50X of the output agreed to the full eight digits,
the rest differed by no more than £3 in the eighth digit., This

. was attributed to the fact that the Honeywell 68/80 does all
floating point computations in double precision.

Concurrent with the above testing was the transformation of the

spplications pregrams into interval arithmetic. Several proebleams
. eccurred during this period which greatly hampered progress. The]

first problem was that, spparently, the given interval routines

to reesd in data were designed to reead from one file without

interruption, t{.e. file S in FORTRAN, The applications and then

reading from it, The second preblem, which interscted with the

first to create a wmuch Llarger problem, was that a bug in the

s el i sl A SO AN 8 £330 i s T3 Sy il i we

Multics FORTRAN 1/0 was struck upon., Nermally when a recoerd of.,

T SEys 236 characters ts read trom 5 ftile containing 80 characters.,

the ramaining 176 characters oare padded with blanks, In this
case they were net’ am error messages, “record teo short” was

" preduced tnstesd. These probléems were solved and vwork bBegun on

the interval version of the testing,

Testing procedures for the interval version were the same as
those for single and double precision, During the testing of the
interval versien two problems werth noting were encountered., The
first problem concerned the manner in whith the algerithm was
coded, The secend problem involved the identification of data
sengitivity, This was much more difficult to handle, taking some
effort even to determine the nature of the source. Once the
nature of the problem was discovered it took an even Llarger
pertion of. time to track down the source of the problem owing to
the near impossibility of fotlewing the tlogic of the programs.
The first preblem was a result of the way in which the interval
package evaluates the test value in an arthmetic 1I1f statement.
When an srithmetic IFf is encountered with an interval test value
the interval is converted to 2 real (i.e. the aidpoint is teken)
and the branch evaltuated as normal. The difficulty was to be
taken eonty {f the test value was positive., Certsin intervals
were passing atong this branch whose aidpoint was inneed
positive but whose Left endpoint was negative. The interval was
subsequently wused as a diviseor’ as it conteined zere a
zero~divide error was flagged by the interval oerithmetic
reutines, The problem wes seolved simply by recoding the branch
s a legical 1IF statement which is evaluated in a different
manner and avoids this problem,

The second problem, 8s stated befores was much more difficult to
handle, Puring the testing it was noted that some of the runs
contained intervals which were "blowing uw”, that iss the width
of the fintervals were Deconing quite large, After » perusal of
the eutput 2 correlation was discovered between the blownup
intervals and the varying of umit weight by =-10X: all runs
which varied unit weight by ~-10X% contained bloewnup interals?
9esiring to kmow with some certainty at what peint the intervals
weuld start blewing up the fellewing strategy was devised: each
fun would staet out with unit weight varied by zere’ unit weight
would then be decremented by units of .25X of the d{nitial vatue
until the intervals would blowup (Table 3). Once this strategy
was carried out o value (2,25%) was found at which unit weight
could be decreased without generating large intervel widths. The
testing procedure wvas redone using this value te decrease unit
veight, In the summary report generated for this set of testing
8 note is made indicating those runs in which the unit weight is
decreased by this value rather than the normat 10%,

IABLE.3

Sample values from one of the graduated runs <{(cohesien-00%,
phi-10%), T3 = PS1-FSL. For this run the intervals became
unstable at unit weight-3.25%, (» indicates infinity)

UNIT WEIGHT - 2,50%
T3 = (~,382388e~01,-.380500e-011
CP = [~1,786,-1.094] ([-1.43,-897] ([435,444]

UNIT WEIGHT - 2,75%
T3 = [(~,38430e~01,-382241e~01]
CP = T-1,786,-1,093) [-1,43,-895] ([435.444)

UNIT WEIGHT - 3,00X% (beunds faults occurred)
T3 = [~,1390087¢~03,0.826716e~04)
CP 8 [=1,977,-,9748) [=1,57,=-.801] (434,448)

UNIT WEIGHT -3,25% (bounds faults occurred)
73 & (~,240356e~03,~,183582] -
CP = [=n,42] [=w,4+] [34,5731]

While these runs were being made a Llarge amount of -time and
effort was spent in the tracking down of the source of the
expanding intervals, After an extended effort the source was
traced with a Large degree of confidence to one statement, "73 =
FS1T == FSL™, It seems that as unit weight is decreased the
difference between FS1 and FSL becomes increasingly smalt,
After 2 time the subtraction has the effect of stripping off the
significant digits of accuracy of the resultant interval, The
problem was compounded by using T3 as a divisor in a subsequent
computation thus exploding the interval during the next few
computations,

One other unexpected benefit was reaped by during this
procedure. While tracing through the routines it was noted that
in the subroutine WGHT several computations could be combined and
an interval consistently of Lless than optimal width could be
factored out producing a more accurate algorithm, While 1{ts
disturbing influence could not altogether be avoided it was
minimized.

The 56 decimal digit version of the interval opackage was then
made available. Testing was done as before. Three outstanding
festures of the testing were noted. The first was that the data
dependency of the altgorithm as neted above disappeasred, the
interal widths getting no larger than 10%*<4, The second was the
everly large amount of central processor unit time required for
processing each run (55 minutes plus or minus 6 minutes) (Table
4), 1t was noted, however that most of this time was spent in
just ' few of the interval routines, perincipally the
trigonometric functions which take considerable amounts of time
to evaluate when the argument is greater than one, The fast
fourier transform routines did not encounter this Llarge an

]f
? »

e e T TS O e T e s

increase in the amount of central precessing unit time per run,

TABLE. &

This table shows the maximum and mintmum central oprocessor unit
times which were encountered during each set of testing runs for
single precision, double precision, single precision interval.,
extended interval,

SINGLE PRECISION
max -~ 2.80 (cohesion+10%, phi=-10%, unit weight=-10%)
min == 2,48 (cohesion=-00%, phi=-10%, unit weight-00%)

DOUBLE PRECISION
max == 3,08 (cohesion+10X, phi=10X, unit weight-00%)
mpin ~= 2.58 (cohesion=-00X, phi+10%, unit weight-00%X)

SINGLE PRECISION INTERVAL
max == 26.30 (cohesion+10%X, phi=10%, unit weight+10%)
min == 22,35 (cohesion=-10X, phi=10%, unit weight-10%)

EXTENDED INTERVAL
max == 3719 (cohesion-00X, phi=-00%, unit weight+10%)
min == 2951 (cohesion-00%, phi=-10%, unit weight=-00%)

The third and most pleasant of the notable features was the
complete lack of problems in the bringing up and testing of the
56 decimal digit version of the algorithm. This was a benefit of
the absence of any needed Llarge modifications to be made to the
single precision interval te convert it to the S decimal digit
version. The only required wmodification was that of a slight
adjustment to the output parameters to widen the output field.,
This was required as the exponent field supplied by the S6
decimal digit routines was somewhat tlarger,

SIBESS

The STRESS program finds the stress on a plane at particular
nodal peints, This oprogram was provided to us as an extra
program from WES to analyze. The program vas run in single
precisien and double precision, The program terminated
abnermally in both cases, The output produced by WES also
indicated that the oprogram terminated abnersally. The esutput
produced at USL matched the output provided by WES up to the
point of termination, The program was alse run in single
precision interval and extended interval and atse terminated
abnormalily, Ve are currently waiting to recieve from MWES
corrections to the STRESS program and additional input to run the
program again,

fonclusicns_and BRecempasndations

We have concluded that the use of single precision and S6 decimal
digit extended precision interval arithmetic can, at times, be
extremely useful. It can be used to show the Limits of precision
of an algerithm. From the testing it was shown that when using
the 56 decimal digit data type much better bounds were obtained
for the results than when using the single precision tnterval
data type. This was expected for two reasons: 1) 56 decimal
digits carry more precision than 27 binary digits (appreximately
equivalent to 8 decimatl digits) used for single precision and 2)
there was no conversion errer on input and eutput. The price
paid fer this increase in precision is a decrease in runtime
efficiency. The testing indicated that single precision interval
arithmetic resulted in, at most, one order of magnitude increase
precision execution, Sé decimal digit interval operation
resulted in a further increase of more than one to more than two
orders of magnitude,

One application for 56 decimal interval arithmetic would be to
velidate existing routines, Any data sensitivity discovered
could be included in a description of the algorithm and
directions on its use, Although 56 decimal interval arithmetic
is expensive, its cost must be balanced against possgible
consequences of wusing invalid results, A defective dam or the
moving of 100,000 tons of dirt unnecessarily would cost
considerably more than a few hours of computer time.

A more cost effective technique might be to first test the
algerithm wusing single precision interval arithmetic, Its
relatively gsmall decrease in runtime efficiency indicates that
its use is more than justified as an economical means in
identifying possible trouble areas in an algorithm for the data
under consideration, The more expensive 56 decimal dinterval
arithmetic could then be used to investigate those cases with
possible problem areas.

Interval arithmetic can also be used to determine the precision
of the arithmetic required to guarantee a given precision in the
results of an algorithm. In some of the benchmarks executed in
56 decimal digit interval arithmetic, the results were good only
to 40 or so digits. This represents a considerable Lloss of
precision. It also points out why arbitrarily picking a given
precision for arithmetic does not guarantee results in which
absolute confidence can be placed. How great an increase in
precision is obtained, if any, by going from a machine with 32
bit words to one with 60 bit words?

In general, whether using interval or regular arithmetic, the
greater the precision the longer the run time required for oa
giver algorithm, Having variable precision interval arithmetic
would allow the validation of algorithms for which gsingle
precision interval arithmetic is insufficient without having to
go all the way to 56 decimal digit precision, There will also be
instances vhere it might be desirable or necessary te go beyond

i T B ML+ e

o MR S LA s O O St et m e Sy

— A e S e A

B> ol e, sl 1Y | A ik St S8 e e e e e s AN, Mt o bl e I NN

56 decimal digits of precision. There will also be instances

‘where it might be desirable or necessary to go beyond S& decimal

digits eof precision. In any case, the overhead associated with
execution in interval arithmetic will only be as great as
required for the necessary precision, '

The execution speed of interval arithmetic can be increased in
several ways, One would be to decrease the number of levels of
interpretation required in the current implementation, The
optimum solution would be to have & hardvare or firmware wmodule
which could execute vartadble precision interval arithaetic.
(Many existing minicomputer systems have undefined opcodes and
ports for just such requirements), As a side effect, an
arithmetic unit that can execute variable precision interval
arithmetic can tlso execute variable oprecision regular
arithmetic. This means that interval arithmetic, of the
necessary precision, could be used to determine the required
arithmetic precision required for the results of the algoritha,
Thens the algorithm could be executed using only the required
precision on the special arithmetic module,

s e o g S
i etk 5o ot - 10 1 it WA 2 e i, £ RSt S oA s e an s
e SRR X =

;

‘.

?

i Refecenses

% C1) Brents R, P.s "A fortran multiple-precision arithmetic
package," Department of Computer Science,
Carnegie-Mellon University, Pittsburghs, Pennsylvania,
May, 1976,

s Akl ¢ Wik e ropien

(2] Ladners T, b. and Yohesr Je Mosr "An interval oerithmetic

package for the Univac 1108," The University of

' Wisconsine Mathematics Research Center, Technical
Summary Report Ne. 1085, may., 1970,

[3) Reuter, E, K.» Podlaska-Lando, S« and Shriver, B8.,0.,
T he implementation of the wmathematics research
center's interval arithmetic opackage on the MULTICS
. system,” Computer Science Department Report 76=7-2.A,
University of Southuestern Loutsiana, Lafayette,
Louisiana August,1976,

[4] Yoheo, Je M., "Best possible fleating peint
arithmetics," The University of Wisconsin, mathematics
Research Center, Technical Summary Report No. 10Sé4,]
March, 1970. T

Report No, 76=7-2,A*
August, 1976

The Implementation of the Mathematics Research Center's
Interval Arithmetic Package on the MULTICS System#a+

Computer Science Department
University of Southwestern Louisiana
Lafayette, Louisiana 70504

by

Eric Reuter, S.Podlaska-Landos B.,D.Shriver

* This report superceeds Report No. 76=7-2

** This work was supported under contract DACA39-76~-M-0249 from
Department of the Army, Computer Analysis Branch, Waterways
Experiment Station, Corps of Engineers.,

1.0

2.0

3.0

4.0

Table of Contents

General Considerations on the Computer Implementation
of Interval Arithmetic

1.1 Interval valued Functions

The Implementation of the MRC Interval Arithmetic
Package for the MULTICS Systenm

2.1 Interval Arithmetic Package Subroutines

2.1.1 Arithmetic Operations

2.1.2 Exponentiation Operations

2.1<3 Conversion Functions

2.1.4 Comparisons

2.1.5 Basic External Functions
2e1.5.1 Accuracy Testing
2.1.5.2 <Conditions for Errors
2,1.5,3 Domain Extension to functions

exps sinh, cosh

2.1.6 Supporting Functions

2.1.7 Input/Output Routines

2.1.8 Miscellaneous

Wwriting Fortran Programs on MULTICS using Interval
Arithmelic

3.1 bDefinition and Use of the Interval Data Type
3.2 Interval Input/Output Routines

References

Appendix A -~ Mathematical Basis for Interval Arithmetic

Appendix B ~ Description of Interval faults and List of

Error Messages

Appendix 0 ~ Sample Interval Fortran Program

Appendix E ~ Use of the intfor command on MULTICS

Page

00 00 N~ W &»

- ©

12

13
14
15

Appendix C =~ Summary of Interval Subroutine Modification C~=9

N

A

A‘_L

1.0__Geperal _considerations.on.the_Comoutec_lIspicacntation
gf_loterval_Acitheetic

The floating number system used on computers is an approximation
to the real number system. In interval arithmetic, real numbers
are approximated by intervals uwhich contain the number. A brief
introduction to interval arithmetic is given in Appendix A, We
will represent an interval as a pair of floating point numbers
stored in consecutive storage locations. The first number will
be the Left endpoint and the second number will be the right
endpoint of the interval. Since the floating point system used
on computers is an approximation to the real number system, there
are many intervals whose endpoints do not have an exact
representation in a particular floating point systea, In this
case the endpoints of the interval have to be approximated by the
floating point system.

We will regard intervals as bounds on an exact but unknown real
number, We would like the computer approximation to the interval
to also bound the same real number, This means that if the
intervalt [a'sb'] 1is a computer approximation to the interval
La,bl, then we would Like L[a,b) ¢ [a*yb’]). In order to insure
that the preceeding set inclusion always holds, a' must be a
Lower. bound for a and b*® must be an upper bound for b. Since we
want the best computer approximation to the intervals, we want a°'
to be the greatest lower bound for a and b' to be the least upper
bound for b, In this way the idinterval Ca',b'] will be the
smallest computer representable interval that contains [a.b].

In order to obtain the smallest computer representable interval
for the result of arithmetic operations on intervalss, directed
roundings on the computer artihmetic operations must be defined,
I1f{ x is a real number and M1 and M2 are two consecutive machine
representable numbers such that M1<x<M2 and if r is a rounding
function, then r is downuward directed if r(x) = Ml and r is
upward directed if r(x) = M2, M1 and M2 will be the machine
representable numbers that are respectively the greatest lower
bound and the least upper bound for the real number x. If x is a
machine representable number, then r(x) = x,.

In general a op b, where a and b are machine representable
numbers and op is one of the machine arithmetic operations, is
not @ machine representable number and must be rounded into a
machine representable number, Algorithms for performing the
machine arithmetic operations with directed roundings can be
found in Yohe (2], These operations are used to compute the
endpoints of the resultant interval for a particular arithmetic
operation performed on two intervals, A downward directed
rounding is performed on the left endpoint and an upward directed
rounding is performed on the right endpoint.

[S

i

s TE i S T S g L B D e Y i

For exampler in Appendix A, interval addition is defined as
follows:

Lasrb] + [ced) = [a+tcobtd]
Wwe assume now that a, b, ¢, and d are machine representable
! numbers, The computer approximation to the resultant interval is
‘ defined as follows:

Ca,bl 0 [coed] = [r1 a®c)or2(bed)]

where ® 1is the machine addition operation and r!1 is a downward
directed rounding and r2 is an upward directed rounding.

. Since the exponent range is bounded, certain faults may occur
during an arithmetic operation. If the exponent becomes teoo
smalls, underflow has occurred, If the exponent becomes too

large, then overflow has occurred. 1f underflow occurs, then the
true result is between zero and the smallest positive or negative
representable number. 1In this case a directed rounding can give
a valid bound. In the case of overflows if rounding away from
zero is wanteds then there is no machine representable number
which can be used as a correct bound. This type of fault is
known as an infinity fault,

lal__Iptecval_Valued functions

A real-valued functions, f, which is defined and continuous on an
interval La,b]l can be extended to an interval-valued function, f,
of an interval variable by defining

F(Caosbl) = (f(x) ¢ x € Larbl),

Wwhen f is evaluated on a digital computer using machine
representable approximations to the real numbers, a cosputer
approximation, f', to f resultse. 1f F(Larbl) 1is an interval
valued function of an interval (where a and b are machine
representable numbers), then the computer approximations
F*(Carbl) is defined as an interval that contains F(lasbl).

1f f' 1is the computer approximation of a real vatued function f
and f is monotonic increasing on [a,bls then

F*'(Ca,bl) = Cr1(f*(ad)or2(f’(b))]

where r1 is a downward directed rounding into a machine
representable number such that r1(f'(a)) < f(a) and r2 is an
upward directed rounding into a machine representable number such
that r2¢(f° (b)) 2 f(b). Ideally we would Llike r1(f*(a)) to be the
targest machine representable number such that r1(f'Ca)) g f(a)

-2-

B L s SN B

(i.eer @ greatest lower bound) and r2(f°(b)) to be the smatlest
machine representable number such that r2(f°(b)) 2 f(b) (i.eo a
least upper bound).

I1f f is monotonic decreasing on [asbl, then
F'(Lasbl) = Cr1(f*(b)),r2(f*(a))]

If f 1is not monotonic on [ar,blese then the interval (arsb] can be
divided into disjoint subintervals’? X*(ids i = 1,2,3400.sn; where
the endpoints of each X'(i) are machine representable numbers and
U X(i) contains all the machine representable numbers in the
interval C(a,bl and f is monotonic on each X*'(i)., In this case
F'(larbl) = U F (X'(Ci)),

It ma; not be possible to obtain the best bounds for the result
of the computer approximation to the function f. The problem
will be illustrated in the next section when describing the
interval counterparts of the MULTICS basic external functions.

2.0_.1he_Implementation_of the MBC_lotecrval Acithmetic Pagckage
for_the MULIICS_Systenm

The interval arithmetic package and the input/output routines for

interval numbers which are implemented on the MULTICS systea

follow the design of an interval arithmetic package implemented

on the UNIVAC 1108 computer located at the Mathematics Research

Center of the University of Wisconsin [1,3]. This section mainly

presents the difficulties encountered when the intervat 3
arithmetic package was implemented on the MULTICS system and also

the changes that were made to the original interval package ‘
implemented at MRC., Most of the <changes dealt with machine -
dependencies,

Before the routines are describeds a description of the 7
representation of interval numbers on MULTICS will be given along
with a description of the MULTICS double precision floating point
format and how it impacted the realization of the interval o

package. The endpoints of the intervals are repregsented as a

pair of floating point numbers stored in consecutive storage
* tocations. The MULTICS single precision floating point format —

uses a 36 bit word which consists of an 8 bit 2°'s complement

exponent, with the high order bit the sign bit, followed by a 28

bit normalized 2's complement fraction, with the high order bit -
. the sign bit.

In the original interval package implemented on the UNIVAC 1108, 7

the type double precision in Fortran was used extensively to trap
underf low and overflow fault conditions. This could be done
because the exponent range of the double precision floating point .

-3- —

[

o R WA, el le L SR © oo Tt 5 e B ey SN S 2 IV SRR AN 3 S W 3o N ety i Mz

en iR e A e A ATl

format on the UNIVAC 1108 is greater than the single precision
floating point format. Thereforer, with certain precautions,
results could be computed in double precision without fear of
machine underflow or overflow. The underflow or overflow could
then be trapped when the conversion is made to single precision,
The MULTICS double precision floating point format uses a 7?2 bit
double word which consists of an 8 bit 2°'s complement exponent,
with the high order bit the sign bit, followed by a 64 bit
normal ized 2's complement fraction, with the high order bit the
sign bit. The double precision floating point format has the
same expohent range as the single precision format, Therefore,
it is much more difficult to trap certain faults. The problem is
amply illustrated in the section describing the implementation of
the interval basic external functions,

Qal__Interyal_Acrithaoetic _Package_Subroutioes

The subroutines of the MRC interval package can be divided into
eight categories. These categories are arithmetic operations,
exponentiation operations, conversion functions, comparison,
basic external functions, supporting functionss input/output
routines and miscellaneous, ALl of the routines in each category
except the input/output category were written in fFortran at the
upper level, Several of the Fortran subroutines call routines
that are written in PL/I. These PL/1 routines correspond for the
most part to the assembler routines that were written for the
UNIVAC 1108 version of the interval package and are written
specifically for the MULTICS implementation, Most of the
input/output routines were written in PL/I.

Each subroutine in the package will be described briefly except
when changes had to be made to a particular subroutine because of
some machine dependencies, In that case a wmore detailed
description will be given., After the description of each routine
a code will be given that specifies whether that particular
routine was implemented in its original form from the UNIVAC 1108
version, or it was implemented with some changes from the UNIVAC
1108 version, or it was written in PL/]l specifically for the
MULTICS system, The codes are [MRC] for the original form with
no changes, [MRC/M) for the original form modified, and {MUL] for
the routines written specifically for the MULTICS system.
Appendix C provides a summary of the routines in each of the
above categories, A complete source Llisting of the MULTICS
interval package can be found in (8).

N o ki i s DA TS N AL 3, Wi T W1 I AR S RSV e e e

Calal__Acitheetic_Qoecations

The routines in this category perform the four basic arithametic
operations of addition, subtraction, multiplications, and division
on interval numbers, Since we want the best computer
approximation to the results of computer arithmetic operations on
intervals, directed roundings on the computer arithmetic
operations must be performed, The floating point hardware on the
MULTICS system does not perform directed roundings. Therefore
the four basic single precision floating point computer
arithmetic operations of addition, subtractions, multiplication.,
and division had to be simulated in order to provide the correct
roundings., A description of the routines that simulated the
floating point computer arithmetic operations and provided the
proper directed roundings and a description of the routines that
perform the basic computer arithmetic operations on intervals
follows. These routines perform the "best possible arithmetic”
computer operations with directed roundings as described by Yohe
£21. ALl the routines are written in PL/I for the MULTICS
system,

bpaadd: Performs single precision floating point addition. ([MUL]

bpasub: Performs single precision floating point subtraction. A
problem can occur in this routine because the subtraction
is realized by negating the second operand and calling
the bpaadd routine, The problem is negating the smallest
positive representable number, because underflow will
occur using the MULTICS floating point hardware., This
problem can occur in general and the solution to the
problem is described below in the description of the pack
routine, [MUL]

bpamul: Performs single precision floating point multiplication,
ctmuLl

bpadiv: Performs single precision floating point division. ([MUL]

brounding: Performs bounds checking and rounding on the results
from the above four arithmetic operations, The
rounding strategies employed are toward zeror, away
from zero, downward directed, upward directed, and
optimal, [MUL]

unpack: This routine wunpacks the floating point number from
MULTICS format into a format that the bpa routines will
handle, The number is made positive because the bpa
routines perform their operations on signed magnitude
fractions. (MUL]

o

= e g

normal ize: This routine is used by the bpa routines to normalize
the fraction., [MUL]

shift_right: This routine is used by the bpa routines to shift
the fraction right when fraction overflow occurs.
CMuLl

s.mgn_add: This routine performs a signed magnitude addition of
two 36 bit binary integers. It is used by the bpaadd
routine to add the two fractions, [MUL]

pack: This routine packs the floating point result produced by
the bpa routines into the MULTICS floating point format, A
problem can occur in this routine when the number to be
packed is the negative of the smallest positive
representable number. The bpa routines perform signed
magnitude arithmetic on the fractions and a negative result
is obtained in MULTICS format by negating the positive
result, The negation of the smallest positive
representable number will cause an wunderflow wusing the
MULTICS floating point hardware because the normalized foram
of that number has an exponent of =129 and is therefore not
representable, If the number is to be negated and it is
the smallest positive representable number, then the bit
pattern that represents the negative of the smallest
positive representable number is assigned to the result.
This number is not in true 2's complement normalized form,
but represents the true value, [MUL]

The following two Fortran subroutines perform the arithmetic
operations of additions, subtraction, multiplications, and division
on intervals. The routines call the bpa routines described above
to perform their operations on the endpoints of the intervals,

arithl: This routine performs the operations of addition ard
subtraction on intervals, There is an entry point for
addition and an entry point for subtraction, The
operations are performed on the endpoints as described in
Sections 1 and 2. A slight change was made in thigs
routine from the original routine implemented in the
UNIVAC 1108 version of the interval package. The
original routine only made calls to the bpaadd routine.
In the case of interval subtraction the endpoints of the
second interval operand were negated and the bpaadd
routine was then called. This negation could cause the
same problem as described above in the ©bpasub and pack
routines., Since the problem had been taken care of in
the bpasub routine, it was decided to call the bpasub
routine directly if an interval subtraction was to be
per formed, [MRC/M]

arith2: This routine performs the operations of wmultiplication
and division on intervals., There is an entry point for
multiplication and an entry point for division. As is
stated 1in Appendix A, the signs of the endpoints of the
intervals being multiplied or divided are examined in
order to determine in advance which products or quotients
will be the maximum and minimum, [MRC]

2ala2._Exponentiatiop Qgerations

The routines in this category perform various exponentiation
operations involving intervals, double precision, reals and
integer nusbers., The exact nature of the exponentiation
per formed will be described in the description of each Fortran
routine that follows:

exponl: This routine calculates the value of an interval raised
to an integer power., L[MRC)

bpaxpé: This routine computes the best value of a real number

raised to an integer power. It is used by expont to
calculate the value of an interval raised to an integer
power. Changes were made in this routine to correct the

situation in which the fault flag may not be set
correctly and to take care of the problem of negating the
smallest positive representable number. [MRC/M]

exponld: This routine calculates base ** power where base is an
interval number and power is reals double precisions, or
interval., There is an entry point for each type of
exponentiation, [MRC]

Calad._Conyersion_functions

The routines 1in this category perform conversions from the
standard types to type interval and from interval to the standard
types. The following routines are written in Fortran,

convrt: This routine has entry points to convert from integer to
intervals, complex to interval, real to interval, and
double precision to interval. [MRC]

intc84: This routine converts from interval to integer. A change
was made in the routine to set the sign of the result
correctly when the maximum result needs to be set,
(MRC/M]

intc85: This routine converts from interval to real, Changes
were made 1in this routine to check for wunderflow

-7~

_ —_— IIiI'lI.......‘i

i a9 AT A g KA O O 5l S Bl RIS B T 8 v i A i M b WM e am

differently than in the original due to the fact that the
! exponent range of a double precision floating point
number is not greater than the exponent range of a single
precision floating point number on the #68/80 computer,
[MRC/M]

intc86: This routine converts from interval to double precision,
Changes were made in this routine to check for underflow
differently than the original because of the same
exponent range of the double precision and single
. precision floating point formats. [MRC/M]

intc87: This routine converts from interval to complex, [MRC]
funct3: This routine computes an interval with integer endpoints

(in floating point form) which contains the interval of
the argument, [MRC]

2alosbd__LomDoarisons

The routines in this <category are the relational intrinsic
functions for type interval., The following routine was written
in Fortran.,

relatn: This routine has entry points for the relationat
functions of equals not equal, less than, less than or
' equal, greater than, and greater than or equal. [MRC]

dalad__Basic_External_Euactioans

Included in the interval package are the interval counterparts of
the MULTICS basic external functions atan2, exp, aloge alogl0,
sin, <cos, tan, asin, acos, atan, sinh, cosh and sqrt. The
general method of calculation of the interval functions involves
bounding the results of the corresponding double precision basic
external function. For functions that are monotonic over an
interval, the endpoints of the resultant interval are the result
of the double precision function evaluated at the endpoints of
the input interval and then properly bounded. If the function {s
not monotonic over the interval, then a case analysis is done by
dividing the input interval into subintervals over which the
function is monotonic,

Rt AR

The result obtained from the double precision functions must be
bounded before it can be used as the endpoint of an interval,
Therefore, the accuracy of the results of the double precision
basic external functions are required by determining a (lower
bound on the number of bits of the fraction that the result is

-8~

) R)
. i sl N e imaibaieti L o Kb i vl P A e B A A 5% S S A A0 I i | B VT mitin it oot on St RIS g A 20 L

guaranteed to have, the number of bits of the fraction that the

result is gquaranteed to have are required. This can be
illustrated by the following example, Suppose a result s
accurate to 35 bits of fraction and a 27 bit lower bound for the

result is required. Assume that the 27th through 37th bits of

the fraction were 10000000000, If the result were just truncated

to 27 bits the 27th bit would be a 1. If however the 37th bit -
was one unit too Llarge., then bits 27 through 37 would be 3
01111111111 and the 27th bit of the correct Lower bound would be

0. It cannot be determined which case is correct.

The following general bounding technique is performed which will
produce correct bounds in all casess but not necessarily optimal
bounds. If a lower bound is sought for the double precision
result, then the fraction is decremented by one at or before the
last bit known to be accurate. If an upper bound is sought, then
the fraction is incremented by one at or before the Llast bit
known to be accurate, The same bounding technique used in
bounding the results of the arithmetic operations is then used to
obtain the 27 bit fraction of the result.

The following Fortran routines compute the basic external
functions for the interval type.

funct2: This routine has entry points for the following interval
functions: sqrt, lLoges exps LOg10, atans asin, acos, tanh,
sinhs cosh. Changes made to the asin and acos functions
are described in Section 2.1.5.2 and changes made to the
functions sinh, c¢osh and tanh are described in Section
2a1.5.3. [MRC/M]

functé: This routine calculates sin{arg) and cos(arg) where arg
is an interval. There is an entry point for the sine and
an entry point for the <cosine function, The cosine
routine scales the argument so that the left endpoint is
in the interval [0,2pils, and then performs a case
analysise The sine routine performs the same scaling as
the cosine routine and performs a case analysis. [MRC/M]

functS: This routine calculates tan and atan2 of an interval,
The entry point 1is provided for either function. The
tangent is calculated as follows: the argument is reduced
i so that the Left endpoint is in the interval: ([-pi/2.,
pi/2]1 and then a case analysis is performed. The atan?
routine takes two interval arguments, x and y and

computes atan(x/y). CMRC/M]

b Caladal.__Accucacy._testinog

To our knowledge, there is no documentation concerning the
; implementation of the basic external functions on MULTICS

-9

j R . . .
LS et e o L ————— . SO R L R

X accessible either by PL/I or Fortran. We <considered three
i approaches to determining the accuracy of the required external
function:

1) rigorous error analysis of current implementation
2) rewriting of the required routines
3) comparison of accuracy with known test data

Firsts the error analysis of the mathematical library routines
seemed to be impossible due to the a) lack of description of the
algorithms employeds b) low readability of the source programs
{much of which was written in ALM - Assembly Language of
. MULTICS). The second possibility had to be eliminated due to the
; time constraints of the project and therefore the third approach
had to be taken.

The testing itself was done in two stages:

stagel - generation of input test data and evaluation of the
given function

stage2 - comparison of significant digits of the result and
corresponding value in the tables

"briver" programs were written which generated test data and
called the routines which were to be tested. The standard tables
of functions, i.e, Handbook of Mathematical Functions by Milton
Abramowitz and Irene A,Stegun (7] were used. The output was
generated in decimal form and then a check was made as to the
first digit that was different from the result given in the
table. ALl digits of function values which were tested proved to
be identical with corresponding digits in the Handbook. The only
exception being the Llast digit in the Abramovitz's tables.
However, the analysis of the very next digit in our results
showed that in each case the error was caused by an wupward
rounding,

The test data had been restricted to the decimal values that can
be represented exactly in the floating binary notation. Thus, we
avoided the input conversion error and the function value could
be obtained for the true argument. Alsos, we have to warn that
the accuracy estimated in this way must be somewhat pessimistice, ;
We were able to check only as many digits as were given in the 3
standard tables. Thus, the tan function is assumed to have only 8
accurate decimal digits even though there are reasons to believe
that accuracy is much greater than that. '

The Llist of the number of decimal digits (and binary estimates as
well) that are assumed to be accurate is given below.

-10-

s a0 5ot 5T 0 oy P 07 A s AL oS B o+
.

Wi, AR N RSl b oS

[R e

Accuracy
fFunction decimal binary
sqrt 10 33
log 16 52
log10 10 33
exp 16 52
sin 17 56
cos 17 56
tan 8 2?
asin 12 39
acos 12 39
atan 12 39
sinh 9 29
cosh 10 33
tanh 8 27

Calada2._fonditions.._forc._eccocLs

The Univac 1108 double precision word has an 11 bit exponent
field vs. an 8 bit exponent in the single precision word. This
allowed the checking for overflow and underflow faults to be done
during the conversion from double to single precision format, as
was stated in section 2,0, This strategy was not applicable for
MULTICS due to the same size of the exponent in both the double
and single precision format. In conclusion, the <check for
eventual fault conditions had to be made prior to the calls to
the double precision functions.

The following functions could produce overflows: exps, sinh, cosh
and tanh, In the MULTICS implementation, the overflow was
prohibited by restricting the allowable domain of the argument to
the interval (-88.028,88.028]. From this it followed that for
arguments x such that abs(x)>88.028, a special action had to be
taken, At this point it turned outs that the magnitudes of
results produced at the endpoints were much smaller than the
largest representable number. This implied that the actual
domain should be extended beyond [(~88.028,88.028]. The atteampt
Wwas made to compute the new endpoints and either compute (if
possible) or estimate the proper bounds for the left and right
endpoints of the interval result. The detailed discussion of
these cases will be given later on,

The occurence of underflow was detected in the double precision
functions asin and acos. Analysis of the source programs
revealed that an underflow condition was raised at the point of
the internal function call to the atan routine. Namely.,

asin(x) = atan(x,sqrt(=-x+x+1))
acos(x) = atan(sqrt(=x+x+1),x)

P

i I I 5 X i TRt 0N SO 1205 - DI

and for x very small, the wayltiplication operation caused an
underf low. The overflow and underflow fault conditions have been
tested with a number of programs.

2ala5.3._Dopain._extension_for_functiocns._expe_sinhe_gcosbh.

As we mentioned before, the MULTICS implementation of the
functions exp, sinh and cosh restricts the domain to the interval
(-88.028,88,028) . Let MIN denote the smallest positive , and MAX
the Llargest positive machine representable number. The endpoints
that could actually cause overflow or underflow were obtained
from:

log (MIN) = -89.415

Ltog (MAX) = 88.029

Thuss, the domain of exp could be extended to the interval
(-89.415,88.029) with exp evaluating to MIN or MAX at the
endpoints. The value of exp outside of this interval and in the
intervals (-88.415,-88.028) and (88.028,88.029] was evaluated as
follows:

lep or rep explep exprep

x < =-89,415 MIN, underflow MIN

x = =-89,415 MIN MIN,round up
-89.415 < x < -88.028 MIN exp(~88.028)
-88.028 <=x<= 88,028 exp{x)sround down exp(x),round up

88,028 < x < 88.029 exp(88.028) MAX

x = 88,029 MAXsround down MAX

x > 88.029 MAX, overflow MAX, infinity

where "round down" means round to the next smaller machine
representable number and "round up"™ means round to the next
Larger machine representable number,

The Largest values of the functions hyperbolic sine, cosine, and
tangent could be <computed for the argument x=88.029 (since
exp (88.029)=MAX), However, even then they were much smaller than
the largest representable number. Let x denote the left or the
right endpoints of the argument. for x very large we have

sinh(x) = exp(x)/2
sinh(-x) = -exp(x)/2
cosh(x) = exp(x)/2

The smallest positive argument that would cause an overflow was
obtained from:

exp(x)/2 = MAX => exp(x)/2 = exp(88.029) => x = 88,029+log(2)

-

e —m SPAb a3
A o emiinh Lo MK o sl S o8 e I o e v e st cren AR WL MMM b T 1L S A e B e et R) B e . T a A

e] st kL e

The optimal bounds for the Left and right endpoint are shown in
the table below. "lep” and “"rep” denote the Lleft and right
endpoints of the interval argument,

byperbolic_sine
1 lep or rep = x sinhlep sinhrep
s x > 88.029+Lln(2) MAX, overflow MAX, infinity
: ' 88.029 < x<=88.029+Ln(2) MAX/2 MAX
. x = 83.029 MAX/2, round douwn MAX/2
88.028 < x <88.029 sinh(88.028) MAX/2
-88.029< x <-88.028 -MAX/2 sinh(-88,.028)
x = -88.029 ~-MAX/2 -MAX/2, round up
~88.029-Lln(2)<=x<~-88,.029 -MAX -MAX/2
¢ x < -88,029-1n(2) -MAX, overflow -MAX, infinity
byperbolic_cosjione 7
Ltep or rep = x coshlep coshrep é
x >= 88,029+Lln(2) MAX, overflow MAX, infinity
88.029<x < 88.029+ln(2) MAX /2 MA X ;
x = 58,029 MAX/ 2 MAX/2+sround up 3
88.028 < x < 88,029 cosh(88.028) MAX/2
bxperbelis_tangent
lep or rep = x tanhlep tanhrep 3
x < -88,028 -1.0 ~1.0,r0und up -
x > 88.028 1.0+,round down 1.0 -

2ela6__Supporting Euoctioons

The following routines perform some useful functions involving
intervals, All the routines are uwritten in fFortran,

functl: This routine has entry points to calculate the absolute
value of an interval, to store the value of one interval
into another and to store the negative of one interval -
into another, A change was made to this routine to take
care of the problem 0of negating the smallest positive
representable number, [MRC/M]

-
supinf: This routine has an entry point that returns the left j
endpoint of an interval and an entry point that returns)

-13-

Y- T

bR S S TN R AT N Yy N

i st ca ks s -

L ARV i 15 o Sl i s 255 it X o Wi U b

the right endpoint of an interval. [MRC]

unints: This routine has an entry point that returns the union of
two intervals and an entry point that returns the
intersection of two intervals. [MRC]

Length: This routine returns the length of an interval. A change
was made in this routine to compute the Llength
differently than in the original. The Length is computed
by performing a single precision subtract with an away
from 2zero rounding strategy. This change was made in
order to trap underflow or overfilow. [MRC/M]

intbnd: This routine returns an interval which bounds a double
precision value to a specified accuracy. [(MRC]

dists This routine computes the distance between two intervals.
CMuLl

compos: This routine returns an interval that consists of the two
real arguments as endpoints, [MuL]

2alaZ__lnputiOutout _Routines

The routines in this section were designed to some extent after
the I1/0 routines implemented for the UNIVAC 1108 version of the
interval package (3], Additional routines were included in the
MULTICS version to handle scalar interval variables and a wmatrix
of interval variables. A brief description of each I/0 routine
is given here, 1In Section 3, which describes writing interval
Fortran programss, a more detailed description of the routines is
provided giving the calling sequence and several examples for
each routine, ALl of the following routines are written in PL/I,

intrdv: This routine reads interval numbers into any number of
interval scalar variables, [MUL]

intrdf: This routine reads interval numbers into an intervat
vector. [MUL)

intrdm: This routine reads interval numbers into an interval
matrix. CMUL]

intprv: This routine outputs interval numbers from any number of
interval scalar variables, ([(MUL]

intpr: This routine outputs interval numbers from an intervatl
vector, [MUL]

R A KU I A 1 i FY o 0t gt SRR RN SRR 5 R s S e ARt R At

L

s

e A o

intprm: This routine outputs interval numbers from an interval
’ matrix. CMUL]

The following routines are the supporting routines needed by the
above routines in order to perform interval 1/0. All the
routines are written in PL/l except where noted,

i convert_to_binary: This routine converts from fixed decimal to
) floating binary performing a specified
: rounding. CMUL]

convert_to_decimal: This routine converts from fixed binary to
floating decimatl. [MUL]

convert_fb_dec: This routine converts from floating binary to
floating decimal performing a specified roundinge.
{MuLl

get_next_int_number: This routine reads the next interval number 7
in the input stream making a syntax check of
the number. [MUL] _j

round_dec: This routine performs a specified rounding of a
decimal number, [MUL]

get_char: This routine returns the next character in the input
stream, This routine is used by the :
get_next_int_number routine., It is written in Ffortran. —
CMUL] i

set_input_pointer: This routine sets the input pointer for the —

get_char routine in order to start it off,
CmuLl

2alaB__Miscellaneous

The following routines either fit no other category and/or are _
used by routines in more than one category. -

intrap: This PL/I routine traps all faults that can occur during
an operation involving interval operands., It ts called
by practically all the routines in the package after an
operation is performed involving interval numbers. The
intrap routine displays an appropriate error message and
. any arguments and then takes some action depending on the
type of fault that occurred. The action taken by intrap
when a fault occurs can be specified by the user or a set
of default actions can be taken, Appendix B (ists all
the faults that can occur and the default action taken by
intrap after a fault has occurred, Appendix B also

bl

-
i
!
H
i
i
—

-15=-

e RGN e A NN OB AR 5 i 3o 4

provides a description of how the user can change the
action that intrap takes after a particular fault has
occurred., CMUL]

bpac68: This PL/I routine converts a double precision number to a
single precision number using a specified rounding
strategy. The double precision number is taken to be E
exact., [MUL]

bpac98: This PL/I routine converts a double precision number to a “}
single precision number where the accuracy in number of
bits of the fraction of the double precision number is
given, {MUL] 1

intas: This PL/I routine is used to allow the assignment of
interval <constants to interval variables in a Fortran -]
program. A description of how this is done can be found
in Section 3 describing the writing of interval fFortran
programs. [MUL] -

set_common: This Fortran routine is used to set up the default .
actions taken by the intrap routine after a fault has]
occurred, [MUL]

finish: This fortran routine closes the standard Ffortran input 7
and output files and stops the program, It is called by
intrap when the action specified for a4 particular fault :
is to hatt the program, [MUL] -

comput: This Fortran routine is wused to compute the interval
resutt of an interval function, It is called by the —
interval basic external function routines. [(MRC] :

aidint: This PL/l routine is used to return the double precision -
integer portion of its double precision argument. [MUL]

3.0__wciting_lotecval_Eoctran.Prograns_on MULIICS using
latecval_Acithaetic

This section provides the wuser of the interval package with a
guide to writing interval fFortran programs. An interval Fortran
program is a Fortran program 1in which the extended data type 7
interval is used, After an interval Fortran program has been
written, it must be processed by the AUGMENT precompiler [4,5]. :
The AUGMENT precompiler will generate the necessary calls to the '“
. routines in the interval package. Fortran programs which contain
interval varijables are compiled on MULTICS by use of the intfor
command which will automatically invoke the AUGMENT precompiler
for the user, see Appendix E. A description is given first of
how to define the interval data type in Fortran and how to use it ;
in a program. Next a detafled description of the 1/0 routines 7

d

-lb- -

A TS o U Bt Lt T B 7 5 g o SRS > 400 NS I 1 SR D o S AN A R e L v

!

b

i

; for interval numbers will be given. A sample Fortran program

: illustrating the interval data type can be found in Appendix 0.

) d.l._Defipition.and.use_qof_the_lotecyal_Rata_Iyoe

% A variable 1is declared in a Fortran program as having the

. interval data type through the wuse of an interval type

' declaration statement., The key word for the interval type
. declaration statement 1is "INTERVAL"™, For example, if the

statement
INTERVAL A,B8,C(10)

appeared in the Fortran programs, then the scalar variables A and 7
B would have the type interval and C would be an interval vector
of 10 elements. The key word “INTERVAL" can appear in any

context that the standard type key words (i.e. REAL, DOUBLE 3
PRECISION, etc.) can appear, For example, if the statement P
IMPLICIT INTERVAL (A=2) =

appeared in the Ffortran program, then all variables beginning
with the letters A-2 would default to type interval, B |

All of the standard arithmetic operators are defined for the
interval data type. All implicit conversions from interval to
the standard types and from the standard types to interval are
defined except for conversion from logical to interval and
interval to Llogical. The interval data type always takes
precedence in an implicit conversion. All relational operators
are defined between interval data types, ALl cases of
exponentiation between the interval data type and the standard
types are defined except for the standard types Llogical and
complex, There are two new operators that act on interval
operands. These operators are «INSCT, which finds the
intersection of two intervals and .,UNION, which finds the union
of two intervals. For example, if A, B»r and C are of type B
interval, then the statement

A =B INSCT. C

finds the intersection of B and C and assigns the result to A,
1f the intersection is empty then an error message is displayed.

Most of the buyiltin functions of standafd Fortran have been
implemented for the type interval. The following are the builtin
functions avallable for use yith the interval data type.

ABS - Absolute value i
ACOS~- Arccosine '

-17-

A & A D S R 2 A s T o b MR, ARSI A S D N AT LS S i ot R DT R

AINT - Integer
ALOG - Log base e
ALOG10 - Log base 10
ASIN - Arcsine
ATAN - Arctangent
} ATAN2 - Arctangent of x/y
4 €C0S - Cosine
COSH - Hyperbolic cosine
§ DBLE - Converts to double precision
) EXP ~ Exponential

* FLOAT - Converts to real
IFIX - Converts to integer
SIN - Sine

SINH - Hyperbolic sine

SQRT - Square root 3
TAN -~ Tangent -
TANH = Hyperbolic tangent

AllL of the above builtin functions take interval arguments and
return an interval result except for the IFIX, FLOAT, and DBLE
functions which return respectively type INTEGER, REAL, and
DOUBLE PRECISION. The FLOAT and DBLE functions return the
midpoint of the interval argument as either a real or double
precision number, The IFIX function returns the integer portion
of the midpoint of the interval argument, The AINT function
computes an interval with integer endpoints (in floating point
form) which contains the interval argument,

Several builtin functions were added for the type interval,
These functions are listed and described below.

COMPOS: This function takes two real arguments and returns an
interval with the first argument as the left endpoint and
the second argument as the right endpoint,

DIST: This function takes two interval arguments and returns
the distance between the intervals as a real number, 7

INF: This function takes one interval argument and returns its 3
left endpoint as a real number. —

INTBND: This function takes two arguments with the first argument
being double precision and the second argument integer 3
and returns an interval that contains the double
precision number, The integer specifies the number of
bits of accuracy of the double precision number. -

INTSCT: This function takes two interval arguments and returns

their intersection. Note that INTSCT can also be used as -
a binary operator as described earlier,

-18- =

LENGTH: This function takes one interval argument and returns its
length as a real number,

SUP: This function takes one interval argument and returns its
right endpoint as a real number,

UNION: This function takes two interval arguments and returns
their wunion, Note that UNION can also be used as a
binary operator as described earlier,

If a constant is to be assigned to an interval variable, then in
some cases the following type of assignment statement should be
used.

A = "interval constant”

where an interval constant is defined in Section 3.2, This type
of assignment statement should be used if 1) the interval being
assigned is not degenerate or 2) a degenerate interval 1is being
assigned, but there will be conversion error when converting from
floating decimal to floating binary. An example of this type of
assignment is contained in the sample interval Fortran program in
Appendix D even though it was not necessary 1in that case to
perform that type of assignment,

Ja2__1pteryal_Ilpputi{Qutout_Roytines

An interval constant consists of 1) a pair of floating point or
fixed point numeric constants enclosed in parenthesis or square
brackets and separated by a comma or 2) a single floating point
or fixed point numeric constant that represents & degenerate
interval, The form of the floating point or fixed point numerfc
constant is any number acceptable as a floating point decimal
numeric constant in PL/I with a maximum of 59 decimal digits.
Examples of interval constants are shown below:

(1,2)

C3,4)

1

(1.0e15,
234,08e15

de1

(=5,=-4)

('0.10.6]
(~328.42, 2.3e-14)
(01'02)

An interval number enclosed in parenthesis or square brackets

may have any number of blanks before or after the parenthesis or
square brackets and comma. The numbers representing the

*]Q=

1S e OV g P ¢ WD e R et A G s ki o ki = e e e i . P T R >

AR wm ot -

B

endpoints may not have any embedded blanks, An interval number
that represents a degenerate interval may not have any embedded
blanks. Note that a decimal number that represents a degenerate
interval may not be converted into a degenerate interval
internally., This is because not all fractional decimal numbers
have an exact representation in floating binary, For example,
the decimal number 0.1 does not have a finite representation in
floating binary. Therefore the endpoints of the resultant
machine representable interval will not be equal because the Lteft
endpoint must be rounded downward and the right endpoint must be
rounded upward when the decimal number is converted to floating
binary.

loeut_Boutiones

The following three routines are used to read interval numbers,
The numbers are input from Fortran file number S which is the
standard Fortran input file. Any number of interval numbers can
appear on each input line with 1 or more blanks separating the
interval numbers, The interval numbers can be input from the
terminal or from a segment through an appropriate operating
system I/0 attach statement.

Routine: intrdv

Purpose: Read interval numbers into any number of interval scalar
variables.

Calling sequence: call intrdv (asbscrecereof)
arbstreas (output) are interval scalar
variables into which the interval numbers are
to be read,
eof (output) is a logical variable that is true
if end of file is encountered and is false if
not.

Examples:

In the following examples assume a, b, co and d are interval
scalar variables and eof is a logical variable.

Example 1:
call intrdv (asbreof)

The next two interval numbers in the input stream will be read
into the interval variables a and b,

Example 2:

«20-

T B B L i S I« < St g e, AT P A M MBS s S D i] DT kS TR Vs

D T

call intrdv (asbscrdseoct)

1 The next four interval numbers in the input stream are read into
the interval scalar vartiables a, b, ¢, and d.

In both of the above examples if end of file was detectede then
the variable eof would be set to true, otherwise it is set to
false.

Routine: intrdf

Purpose: Read interval numbers into an interval vector.

Calling sequence: call intrdf (x,isjeeot)

x (output) is an interval vector.

i (input) 1is an integer variable or constant
i specifying the starting index of where in x the
interval numbers will be placed.

j C(input) is an integer variable or constant
specifying the ending index of where in x the
interval numbers will be placed.

, eof (output) is a logical variable that is true
. if end of file is encountered and is false if
: nota.

Examples:
! In the following examples assume x is an interval vector that can

contain a maximum of 10 interval numbers and eof is a logical
variable,

Example 1:

call intrdf (xs1,10se0f)

The next ten interval numbers in the input stream will be read
? into the entire vector =x.

. Example 2:
call intedf (xs2,7se0f)

The next 6 interval numbers in the input stream will be read into
the interval locations x(2) to x(?7).

In the both examples above, if end of file is encountered eof
will be set to true, otheryise eof will be false.

Routine: intedm

Purpose: Read interval numbers into an interval matrix in a row
by row fashion,

Calling sequence: call intrdm (xenskseof)
x (output) is an interval matrix,

n (input) 1is an integer variable or constant
specifying the number of rows to be considered.

k (input) is an integer variable or constant
specifying the number of columns to be
o considered.

l eof (output) is a logical variable that is true
. if end of file is encountered and is false if
i ﬂoto

Examples:

In the following examples assume x is an interval materix that can
contain a maximum of S rows and 6 columns of interval numbers and
eof is a logical variable,

Example 1:

call intrdm (xs5,6,e0f)

The next 30 numbers in the input stream ywill be read into the
entire matrix x row by row with 6 numbers per row and S5 total
' rous.

Example 2

call intrdm (x,3,4,e0f)

The next 12 interval numbers in the input stream will be read
into the interval matrix x row by row with 4 numbers per row and

3 total rows.

In both examples above, if end of file is encountered, then eof
is set to trues, otherwise it is set to false.

Qutout _Boutioes

]

The following three routines are used to output interval numbers,
The numbers are output to the PL/I standard output file,
sysprint, The output can be directed to a segment either by an
I1/0 attachment or through a file_output command,

Routine: intprv

Purpose: Output interval numbers from any number of interval
scalar variables.

Calling sequence: call intprv (ccenodsnobewidthrsasbeCreces)

cc (input) is a single character representing
the carriage control character. The carriage
control characters are the same as in standard
fortran and are listed below:

blank - single space

0 - double space

+ - suppress spacing

1 - skip to top of page

nod (input) is an integer variable or constant
specifying the number of interval numbers to
output per Lline,

nob (input) is an integer variable or constant
specifying the number of blanks to insert
between each interval number on each line,

width (input) s an integer variable or
constant specifying the total width that each
interval number will occupy in the output line,
The interval number is output in the form
[2aXXea XX2YY s £, XX oo XX2YY] The number of
significant digits output for each endpoint
will be (width=13)/2.

asrbrcCreae (input) are interval scalar variables
to be output.

Examples:

In the following examples assume a, bse cr and d are interval
variablese.

Example 1:
call intprv (1h ,3,1+,250asbosc)

The interval numbers in the interval variables are be and ¢ will
be output with single spacings All three numbers will be on the
sdme Line. One blank will be between each interval number, Each
interval number will occupy 25 columns providing 6 significant
digits for each endpoint,

Y

Example 2:
call intprv ("0",3,5,33530bscrd)

The interval numbers in the interval variables a» bs c» and d
will be printed with double spacing. ar, b and ¢ will be on one
line with d on the next line. There will be five spaces between
each interval number, Each interval number will occupy 33
columns providing 10 significant digits for each endpoint.

VR SR

Routine: intpr

Purpose: Output interval numbers from an interval vector,

calling sequence: call intpr (ccenodsnobewidthexeisj)

¢ccs, nods nob, and width are the same as for
intprve.

x (input) is an interval vector.

i (input) is an integer variable specifying the 3
starting index in the interval vector x from '
where output is to start,

j (input) is an integer variable specifying the
ending index in the interval vector x where
output is to stop.

Examples:

In the following examples assume x is an interval vector that can
contain a maximum of 10 interval numbers.

Example 1:

call intpr (" ",2,10,35,%x,1,10)

The interval numbers in the entire interval vector x will be
output with single spacing. There will be two interval numbers
per line., Ten blanks will be between each interval number, Each
interval number will occupy 35 columns providing 11 significant
digits for each endpoint.

Example 2:

(1h0,5+,1025¢x%03,9)

call intpr

The 7 interval numbers in interval locations x(3) to x(9) will be
printed with double spacing, There will be five interval numbers
per line. One blank will be between each interval number. Each
interval number will occupy 25 columns providing 6 significant

-2‘-

e AR RAR SN e s A e oh N T ettt Sl G e+ -

Vi S '."H:’. | AR
e e ek, A LS 2 S LI i

diqgits for each endpoint,
Routine: intprm

Purpose: Print interval numbers from an interval matrix.

Calling sequence: call intprm (cconodenobewidthexensk)

ccs nods, nobs and width are the same as for
intprv,

x (input) is an interval matrix,

n (input) 1is an integer variable or constant
specifying the number of rows of the interval
matrix to output.

k (input) 1is an integer variable or constant

specifying the number of columns of the
interval matrix to output,

Examples:

In the following examples assume x is an interval matrix that can
contain a maximum of 7 rows and S columns of interval numbers,

Example 1:
call intprm (" ",5,1+25+%+7,5)

The interval numbers in the entire interval matrix x will be
printed with single spacing. There will be five interval nuabers
per line. One blank will be between each interval number, Each
interval number will occupy 25 columns providing 6 significant
digits for each endpoint.

Example 2:

call intprm ("0",4,5,27+s%x+6+4)

The interval numbers in the first 6 rows and & columns of the
interval matrix x will be printed with double spacing. There
will be four interval numbers per Lline. Five blanks will be

between each interval number. Each interval number will occupy
27 columns providing 7 significant digits for each endpoint,

References

€1} Ladner, T, 0, and Yohe, J, M., "An interval arithmetic
package for the UNIVAC 1108," The University of

-25-

ki o

| il il RO . -V e A i AN - B bl o B PRI g Vo e MY N o i Ll LRGBS G, <~ .y o i e

Wisconsin, Mathematics Research Center, Technical
Summary Report No. 1055, May, 1970.

2] VYohe, J. M., "Best possible floating point arithmetic,” The
University of Wisconsin, Mathematics Research Center.,
Technical Summary Report No. 1054, Marches 1970.

{3) Binstocks W.r Hawkes, J. and Hsus N,, “An interval
; input/output package for the UNIVAC 1108,” The
A University of Wisconsines, Mathematics Research Center,
Technical Summary Report No. 1212, Septembers, 1973,

€41 Crary, F, Der “The AUGMENT precompiler, 1. User
information," The University of Wisconsins, Mathematics
Research Center, Technical Summary Report No. 1469, ;
December, 1974, —

£S5 Crary, F. De.r "The AUGMENT precompiler, 1l1. Technical
documentation,"” The University of Wisconsin, ,
Mathematics Research Center, Technical Summary Report ~1
No. 1470, October, 1975, 3

(6] Moores, R. E» Ioterval_Analysis- Prentice-Hall Inc..
Englewood Cliffs, N. Jo»r 1966,

7] Abramovitzs, M. and Stegun, 1. A., (ed.)e Haodbook of

Mathematical Eupgtiopsr, National Bureau of Standard ~?
Applied Mathematics Series, June, 1964,

[8) Reuter, E. K. and Podlaska~-Lando, S., "Source Listing for
the MULTICS Interval Arithmetic Package,” Computer
Science Department Report No., 76-7-3, University of
Southwestern Louisiana, Lafayette, Louisiana, August,
1976.

ke

-26-

A o

i AN SR G it N AT B Ul AT i s

it

A O M e TR I BN MNP Ll LN (- W AU D 2 i L s

e LI TN

spegndix_A_=_Matheratical Basis_for Interval_Aritheetic

The details of the mathematical basis for interval arithmetic are
developed in Moore [6]. The set of interval numbers is the set
of all closed intervals on the real number line. An interval may
be represented by an ordered pair of real numbers (a,b]l where a
b, If a = bs then the interval is said to be degenerate.

The operations of addition, subtraction, multiplications, and
division between two intervals (except for the division of one
interval by an interval containing zero) are defined as follows
where $ is one of the above operations:

Larsbl $ (ced) = {(x $y 2 x € [awb]l] and y € [cedl)

Each of the operations of addition, subtraction, multiplication,
and division may be defined as follows:

Carbl + Lcod]l = Lat+tcobtd])

Lasbl = Lcodl]

La=dsb-c]

Carbl * [c,d] [min{acsadsbecrbd)emax{acradsbecobdl)]

Casbl 7/ Ccodl

Cmin{a/cra/dsb/cob/dlsmax{alcsral/deblcobl/d)]
if O ¢ [cod)

In the cases of multiplication and division, by examining the
signs of the endpoints of the intervals being nultiplied or
divided;, a determination in advance can be made of which products
or quotients will be the maximum and the minimum,

The following real single valued functions of intervals may be
useful 2

The midpoint of an interval, mid (Lasbl)ys is defined to be the
real number (atb)/2.

The Ltength of an interval, length (lasbl), is defined to be the
real number b-a.

The supremum of an intervals, sup (Larbl), is the real number a,
The infimum of an interval, inf (Casbl)s is the real number b,

The distance from interval C(a,bl) to interval (c,dl, dis
(Casblslcodl)s is defined to be the real number max{lic-al,ld=-bl),

The following interval single valued functions of intervals may
also be useful:

Appendix A - 1

e AP e STAR St 7 1 L B bt reni e

i

s L i 0 RN LA B o 5 L R

The wunion of intervals [a,b) and [c,dl, union (Larsblslcoedl)s is
defined to be the smallest interval containing both (ar,b) and
[crdl and is given by [(min{asc),max{(b,d}], The intersection of
intervals [arb) and [cedl, intsct (Lar,blsLecrdl), is defined to be
the largest interval contained in each of [arb) and [ced) or is
empty if Larsbl and [csd) are disjoint intervals and is given by
{max{arscd,min{c,d)].

The relational operations may be defined on intervals as follows:
Ca,bl) = [cod) if and only if a = b = ¢ = d

The above definition means that two intervals are equal if and
only if they both are degenerate and represent the same real
number. This definition is employed instead of the more general
definition of testing for a 3 ¢ and b = d. The reason the more
general definition is not wused is because we will regard
intervals as bounds on an exact but unknown real number. If two
intervals were not degenerate and if both intervats had the same
endpoints, then the intervals may not represent the same exact
real number, The only way for the two intervals to represent the
same exact real number is for both intervals to be degenerate
with their endpoints equal to the real number. We also say that

Carsbl # (cod] if and only if Larbl] intersection [ced) = P

This definition means that tuwo intervals are not equal if and
only if they are disjoint intervals and cannot represent the same
exact real number.

Casbl £ (cod] if and only if b € ¢

The above definition means that two intervals are ordered by the
€ relational operator if and only if ¥ x € [ar,b) and ¥ y € [c.dl,
Xsy.

Casbl > [ced] if and only if a > d

The above definition means that two intervals are ordered by the
> relational operator if and only if ¥ x € [a,b) and ¥ y € [c.dl,
X > Y.

Interval valued functions of interval variables are defined in
terms of real valued functions of real variables, If f is a real
valued function of a real variable, then f may be extended to an
interval valued functions, F» of an interval variable by defining

FCCarbl) = {f (x) 2 x € [asb]l)
It f is defined and continuous on [ar,bls then F(Lasbl) will be an

interval, If intervals are to represented as pairs of real
numbers, then the above definition 1is not operational. Some

Appendix A - 2

means is needed for deriving the endpoints of the image of C[arbl
under the function F, The endpoints of the image interval will
be the image under f of points of [arsbl,

For functionss, f, that are monotonic on the interval C[arbl, the
endpoints of the image of [arbl under F can be expressed as the
result of the function f evaluated at the endpoints of [a,bl. 1If
f is monotonic increasing on [asbls, then F(Larbl) = [f(ad, f(b)]I,
I1f f is monotonic decreasing on Larbls then F(Lasbl) = [(b,
f¢a) 1. If f 1is not monotonic over [a,bl, then [arbl can be
divided into disjoint subintervals; X(i)s i 2 1,2+3s00en’ where U
Xx¢(i) = fa,b) and f is monotonic on each X(i), In this case
F(Ca,bl) = U €£(X(i)),

Appendix A - 3

sl

_

' b T o ki iR O MY i ek A ke s i G g 1w AR et
el i I i IR Pt i Kt s, v o .

sopendix_B_=_desccietion_of logteryal_Eaulgs_and
Liss.of _Eccoc_Messages

AT . S et A R R il W BA i i

The following table Llists the possible fault conditions that can
arise during an interval operation along with the value of the
fault flag and the default action code that specifies the action
taken by intrap after it is called. The action code is explained

i after the table.
3 -«
Fault Flag Fault Condition Default Response
Left Endpoint Right Endpoint
R 0 no faults no faults -
1 no faults overflow 3
2 no faults infinity 4
3 no faults underflow 0
4 overflow no faults 3
5 overflow overflow 3
6 overflow infinity 2
7 overflow underflow 3
8 infinity no faults 2
9 infinity overflow 2
10 infinity infinity 2
11 infinity underflow 2
12 underflow no faults 0
13 underflow overflow 3
14 underflow infinity 2
15 underflow underflow 0
16 division by zero 2
17 zZero to the zero power . 1
18 square root of a negative number 2
19 log of a non-positive number 2
20 underflow during interval-to~-real 0
21 overflow during interval=-to=reat 2
22 intersection of disjoint intervals 2
23 argument out of range 2
24 underflow during interval=-to~double 2
2S underflow 2
26 overflow 2

Appendix B8 - 1

‘ j . e h B IR g
A AR Sl b S e Pt s N ek L sl MBI T ik 6 R il 1 8 B 0 b S SR Gt i R e it .

R o TS g

The action codes are as follows:

- Exit

= Print error message and arguments

Print error message, arguments and trace stack

- Print error message, arguments, trace stack and stop

W =0
J

The arguments that are displayed are the arguments of the calling
program, Three arguments are always passed to intrape. If the
calling program had only two arguments, then the first two

¢ arguments passed to intrap have the same value as the first
argument of the calling routine. 1If the calling routine has only
one argument, then all three arguments passed to intrap have the
same vatue as that argument.

i
L]
5
¥
1
4

intrap_Modificatiop

Under certain circumstances the wuser may wish to change the
default action taken by intrap when a fault occurs. The user may
also wish to <change the value assigned as the result of an
operation in order to be more mathematically consistent with the
problem to be solved, The user can modify the action taken by
intrap by 1including the following statements in the user's
fortran program,

common /intflt/ ifaultsroutinstype(3),itgarg(3lsrarg(3).darg(3).,
itvagr(2,3),montor(32)

integer type
character*6 routin
real itvarg

double precision darg

"ifault” will contain the fault flag after each operation.

"routin” will contain a character string which is the name of the
Last routine to call intrap.

"type” will contain the types of the last three arguments passed
to intrap., If type(i) is zero, then that particular argument was
not present in the call to intrape. The ¢type codes are as
follows:

1 - integer

2 - real

3 - double precision
4 - interval

"itgarg", "rarg", "darg", and "itvarg” will contain the arguments
passed to intrap. They contain respectively either the integer,
real, double precisions, or interval arguments, Ffor example, if
type(1) = 3, type(2) = 1, and type(3) = & then darg(1) will

Appendix B - 2

i o MM R AP o, R
~ e e Y O S SN

contain the double precision argument, itgarg(2) will contain the
integer argument, and itvarg(1,3) will <contain the interval
argument.

“montor” contains the action codes for each type of fault Listed
in the table, If the user wants to change the action for a
particular fault, then the user changes the location in the
montor array that corresponds to the particular fault, for
example, if the user wishes to change the action for a divide by
zero fault to a fatal error, then the following statement s
included in the user's program.

montor(16) = 3

In this case when a zero divide occurs the program will stop.

Liss_of Error_Messages
The following is a List of the error messages produced by intrap.

BOUNDS FAULT DURING "routine name”™ LEFT ENDPOINT== "fault®” RIGHT
ENDPOINT-- “fault"®

DIVISION BY ZERO DURING "routine name”

ZERO TO THE ZERQ POMER DURING "routine name”

SQUARE ROOT OF A NEGATIVE NUMBER DURING "routine name”
LO6 OF A NON-POSITIVE NUMBER DURING "routine name”

UNDERFLOW DURING CONVERSION FROM INTERVAL TO REAL IN "routine
name"

OVERFLOW DURING CONVERSION FROM INTERVAL TO INTEGER iunN "routine
name"

INTERSECTION OF OISJOINT INTERVALS DURING "routine name"
ARGUMENT OUT OF RANGE IN "routine name"

UNDERFLOW DURING CONVERSION FROM INTERVAL TO DOUBLE PRECISION 1IN
“routine name"”

UNDERFLOW IN "rouitne name”
OVERFLOW IN "routine name"”

UNKNOWN ERROR DURING "routine name"”

Appendix B - 3

oo xS TE

o s A d M T i T A sk g SRR AL L D

adpneadix _C_-_Summary_of_lpterval_subroutine mModiticatiop

The following is a List of the routines written for the interval
package divided into the categories with the codes (MRCI,
LMRC/M], and CMUL].

[MRC] = Original form from the Mathematics Research Center with
no modifications,

arithe exponl
expond convrt
intc87 relatn
supint unints
intbnd funct3
comput

CMRC/M] - Original form with modifications.

arithl bpaxpé
intc84 intc85
intc86 funct
Length funct?
functé functS

EMUL] - Written specifically for the MULTICS System,

bpaadd bpasub bpamul
bpadiv brounding unpack
normalize shift_right s_mgh_add
aidint pack dist
intrdyv intrdf ' intrdm
intprv intpr intprm
convert_to_binary convert_to_decimal convert_fb_dec
get_next_int_number round_dec get_char
set_input_pointer intrap bpacé8
bpac98 intas set_common
finish

Appendix C - 1

Appendix_b_c-_Sasple_iptecval_foctran Progeae

The following fortran program illustrates the use of the interval
data type. The program solves a set of Llinear equations using
Gaussian elimination with partial pivotings The program is just
illtustrative of the interval data type and may not be the best
method of solving a set of Llinear equations using intervat
arithmetic. A listing of the interval program is given followed
by a Llisting of the translated program produced by AUGMENT with
the calls to the interval package routines. Following that is a
sample of the output produced by the program, In one case the
error trapping capability of the interval package is illustrated.
In this case it was set up so that if an error occurred the
program continvued.,

Appendix D - 1

910
710

10

750

[aNaN gl

OO0

a2 XaRY,]

[zl oW o)

INTERVAL AC10,11)¢XC10),BIG,TERM,PIVOT,CONST,Y,TEMP
LOGICAL EOF

INTEGER YES

DATA YES /3Hyes/

WRITE(6,710)

FORMAT(/," ENTER NUMBER OF EQUATIONS"™)
READ(5,10)NN

FORMAT (V)

M=NN

N=M+1

WRITE(6,750)

FORMAT(/+" ENTER MATRIX")

CALL INTROM(A,M/,N,EOF)

LAST=M-1

START OVERALL LOOP FOR M=1 PIVOTS

DO 200 I=1,LAST

8l16="0"

00 50 K=1I,M

TERM=ABS (A(K,1))
IF(TERM.LE.BIG) GO TO 50

FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT ij

BIGSTERM =
L=K :
CONTINUE 1
CHECK WHETHER A NON-ZERO TERM HAS BEEN FOUND
IF(BIG.EQ."0") STOP —
L-TH ROW HAS THE BIGGEST TERM == I§ I=L _3
IF(I.EQ.L) GO TO 120
Appendix 0 - 2 .
i

[aRaXal

100

[z N aNal

a K aNa)

200

501

OO

e e 2 W M i YRR+ e S e i digcn QAT YL e N LSS it o e s e e

I IS NOT EQUAL TO L, SWITCH ROWS I AND L
D0 100 J=1,N

TEMP=A(1,J)

AClsJd)=A(lL,J)

A(L,J)STEMP

NOW START PIVOTAL REDUCTION

PIVOT=A(I,1)
NEXTR=1+1

FOR EACH OF THE ROWS AFTER THE I-TH

DO 200 J=NEXTR,M

CONST IS MULTIPLYING CONSTANT FOR THE J-TH ROW
CONST=A(J,I)/PIVOT

NOW REDUCE EACH TERM OF THE J-TH ROW

00 200 K=I,N
ACJoKIZAC(JPK)I=-CONSTH*AC(I,K)

END OF PIVOTAL REDUCTION = PRINT REDUCED MATRIX
WRITE(6,501)

FORMAT(/," THE REDUCED MATRIX IS AS FOLLOWS:",/)
CALL INTPRM(TH +»3,1+25+,A0M,N)

PERFORM BACK SUBSTITUTION

00 500 I=1,M

Appendix D - 3

-

- RE R e Ay e

e R I AL 79 Mo 5o L 5 3l

j R . ot Bt 4w - i aih
% e S Y i RIS syt o T S-S ; o

T SR

950

975

IREV 1S THE BACKWARD INDEX, GOING FROM M BACK TO 1
IREV=M+1 -1
GET Y IN PREPARATION

Y=A(IREV,N)
IF(IREV.EG.M) GO TO 500

NOT WORKING ON LAST ROW, I IS 2 OR GREATER
DO 450 J=2.1

WORK BACKWARD FOR X(N), X(N=1) ..., SUBSTITUTING PREVIOUSLY FOUND
VALUES

K=N+1-J
Y=Y-ACIREV,K)*X(K)

FINALLY COMPUTE X
XCIREV)I=Y/A(IREV,IREV)
PRINT VALUES OF X

WRITE(6,502)

FORMAT(/," THE SOLUTION IS AS FOLLOWS:",/)
CALL INTPRCTH »1+0,25+%X0s14M)
WRITE(6,950)

FORMAT(/," DO YOU WANT TO CONTINUE?™)
READ(5,975) IRESP

FORMAT(A3)

IF(IRESP.EQ.YES) GO TO 910

ENDFILE 5

ENDFILE 6

sSTOP

Appendix D - &

P .. o e g 2 g ST S W BV O P K P

e T e T W ¢

N i g i iler 8 s

-5

N
0

Appendix

END

vtered
—
R
o

5 e ol A

ool T D I R i X il
= e il

il ik A9

e

i C ===2=2 PROCESSED BY AUGMENT VERSION ,4] =====
C ~==== TEMPORARY STORAGE LOCATIONS ~=e==- 19
C INTERVAL 3
REAL INTTMP(2,1) j
C eww=e LOCAL VARIABLES ====--
. LOGICAL EOF
INTEGER I, IRESP,» IREVse Jos Ko Ls LAST, M, No NEXTRs NN, YES
C INTERVAL)
REAL A€2,10,11), BIG(2), CONST(2), PIVOT(2), TEMP(2), TERM(2), X(2
" * 210), Y(2)
C ==w== SUPPORTING PACKAGE FUNCTIONS <====-
LOGICAL INTEQ, INTLE
C ===== TRANSLATED PROGRAM ===z=z==
C ===== DATA STATEMENTS ARE NOT PROCESSED BY AUGMENT =ssz==

DATA YES /3Hyes/

910 WRITE(6,710)

710 FORMAT(/," ENTER NUMBER OF EQUATIONS")
READ(5,10Q)NN

10 FORMAT (V)
M=NN
N=M+1
WRITE(6+750) _
750 FORMAT(/,"™ ENTER MATRIX") -5
CALL INTRDM(A,M,N,EOF) 3
LAST=M-1
1 C
C START OVERALL LOOP FOR M~1 PIVOTS
C
” 00 30000 I=1,LAST
1 C !
C FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR P]IVOT
¢ :

’ CALL INTAS ("0",B16)
1 00 SO K=1,M ;
‘ CALL INTABS (AC1,K,I),TERM) *
IF CINTLE (TERM,BIG)) GO TO 50 1

Appendix D - 6

o PRV AR M1 7 TR - oy BT P 0, S A

CALL INTSTR (TERM,BIG)

e AN G b AP Rt BN . e St oA .

L=K
50 CONTINUE
C
C CHECK WHETHER A NON-2ERO TERM HAS BEEN FOUND
* C
C ==a=== MIXED MODE OPERANDS ACCEPTED =====

CALL INTAS ("O",INTTMP(1,1))
IF (INTEQ (BIG,INTTMP(1,1))) STOP

C
: C L-TH ROW HAS THE BIGGEST TERM -~ IS I=L
C
IF(I.EQ.L) GO TO 120
c
C I IS NOT EQUAL TO L., SWITCH ROWS I AND L
C

0 100 J=1,N

CALL INTSTR (A(1,1,J),TEMP)

CALL INTSTR (A(1,Led)rAC1,144))
100 CALL INTSTR (TEMP,A(1,L,J))

c
C NOW START PIVOTAL REDUCTION
¢
120 CALL INTSTR (AC1,I.,1),PIVOT)
NEXTR=I+1
¢
C FOR EACH OF THE ROWS AFTER THE I-TH
C
00 30000 J=NEXTR,M
C
C CONST IS MULTIPLYING CONSTANT FOR THE J-TH ROW
C
CALL INTOIV (AC1,J,1),PIVOT,CONST)
c
c NOW REDUCE EACH TERM OF THE J=TH ROW
C

Appendix D = 7

it albe ©

4. Yl el

il Stb el 4

v gl V. e e o i e WS

R e . et

m i

o don g 80 T o pam i S
G et it 2 A I s iy o R s P L S SR e T -
i ’ i oA M use $6r7 o

e e

D0 30000 K=]I,N i

200 CALL INTMUL (CONST,AC(1,1I,K)LINTTMP(1,1)) -
CALL INTSUB (A(1,J0,K),INTTMP(1,1),A(1+40K))

30000 CONTINUE

C END OF PIVOTAL REDUCTION - PRINT REDUCED MATRIX
WRITE(6,501)

501 FORMAT(/," THE REDUCED MATRIX IS AS FOLLOWS:",/)
CALL INTPRM(IH »3+1,25+,AsMeN)

C
C PERFORM BACK SUBSTITUTION
C
00 500 I=1,M
C
C IREV IS THE BACKWARD INDEX, GOING FROM M BACK TO 1
C
IREV=M+1 =]
C
C GET Y IN PREPARATION
C
CALL INTSTR C(ACT1,IREVsN),Y)
IFCIREV.EQ.M) GO TO SOO
C
C NOT WORKING ON LAST ROW, I IS 2 OR GREATER
¢ _
DO 30001 J=2,1
C 3
C WORK BACKWARD FOR X(N)s X(N=1) ,..e¢ SUBSTITUTING PREVIOUSLY FOUND
C VALUES
C
K=N+1-J

450 CALL INTMUL (AC1,IREVIKISX(1,KILINTTMP(1,1))
CALL INTSUB (Y,INTTMP(1,1),Y)

30001 CONTINUE

C

Appendix 0 - 8

. Ml U S

(S

e

-

- s

1L 2 ek B AN o BNy A

Ay e S VD S B b

[a N a Wl N el o]
(=]
o

502

950

975

FINALLY COMPUTE X
CALL INTDIV (Y A(1,IREVSIREV)I,X(1,IREV))
PRINT VALUES OF X

WRITE(6,502)

FORMAT(/," THE SOLUTION IS AS FOLLOWS:",/)
CALL INTPR(IH ,+1,0,25+,X0s1.M)
WRITE(60950)

FORMAT(/,™ DO YOU WANT TO CONTINUE?"™)
READ(S,»975) IRESP

FORMAT(A3)

IF(IRESP.EQ.YES) GO TO 910

ENDFILE 5

ENDFILE 6

STOP

END

Appendix D - 9

e ot g K e il - . . 24

SO AR ot .1 Al AP 5 N o 105 o ANk, N 0 s WA =P b B 1 e

S SN

) S i

ENTER NUMBER OF EQUATIONS
2

P

ENTER MATRIX
536
y 18 4

R

THE REDUCED MATRIX IS AS FOLLOWS:

C .500000+01, .500000+013 [.300000+01, .300000+01) C .600000+01., .600000!
{-.149012-07, .745059-081 [.739999+01, ,740001+401]) U .279999+01, .28000

THE SOLUTION IS AS FOLLOWS:

[.972972+00, .972973+00)]
[.378378+00, .378379+001]

DO YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS

3 ;
ENTE MATRIX

5 3 8

2 8

9 4

R 5
6 :
31 3
6 2]
THE REDUCED MATRIX IS AS FOLLOWS: o
t .900000+01, .900000+01) [.400000+401, .400000+011 [.600000+01., .6000004
[.200000+01, .200000+01)] B
(-.,2980264-07, 149012-071 € 711111401, .711112401] [.166666+01, .166667!
L 555555400, .555556+001 1
(-.596047-07, .596047-07] (~.447035-07, .447035-07] [.248437+01, «2684381
[.682812+01, .682813+011]

Appendix D - 10

1
§
-1

B P TGy BN e s

e e

Rl T

i G

T s

THE SOLUTION IS AS FOLLOWS:

(-.135850401,-.,135849+01]
€-.566038+00,-,.566037+001]
U .274842+01, ,274843+011]

00 YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS
2

ENTER MATRIX
£1,2]) [5,6] [B,9]
12,131 [3,4] [15,16])

THE REDUCED MATRIX IS AS FOLLOWS:

€ .120000+02, .130000+02] € .300000+01,
(-.116667+01, .107693+01] [.433333+01,

THE SOLUTION IS AS FOLLOWS:

C .596722+00, .110223+01]
£ 924444400, .181066+011]

00 YOU WANT TO CONTINUE?
yes

ENTER NUMBER OF EQUATIONS
2

ENTER MATRIX
LI I |
2 2 2

Appendix

b - 11

«400000+01] C .150000+02, .16“;
5769264011 [533333401, 7846

- S DR s AP W 10 NI . M e 50tk P gl At M, il -

o i A M otim—. i =

R P i TR LAY b i e IOl 5 AR A AN e s i

THE REDUCED MATRIX IS AS FOLLOWS:

C .200000+01, .200000+01] U .200000+01, .200000+011 (L .200000+01., .20000
C .000000+00, .000000+00] C .000000+00., .000000+001 L .000000+00. - 00000%

AR Ak AN R R AN AR R AR R TR RN R R AR R AR AR AN RN R AR RN AR AR AR AN RN N RSN RO NN RO RO
DIVISION BY ZERO DURING intdiv 1
ARGUMENT 1 = [.00000000000000000000000000+00~ .00000000000000000000000"f
ARGUMENT 2 = (,00000000000000000000000000+00, ,000000000000000000000000¢
RESULT = [-.17014118219281863150345791+39, ,17014118219281863150345

iﬁt*t*itﬁiitt**iitiiittttﬁtittiiﬁi*itit**iﬁiﬁtit*tiittﬁiittttﬁttt*tt.t..t‘

RN RR R R RN R R R AR RN AR A AR I AR AR R AR SN AN A AR AN AN AN N AR RARA R AR R AR A RA R AR RS
BOUNDS FAULT DURING intmul LEFT ENDPOINT--INFINITY RIGHT ENDPOINT-=-INFINIY
ARGUMENT 1 = [.20000000000000000000000000+01, .20000000000000000000000004
ARGUMENT 2 = [~,170146118219281863150345791+439, .1701411821928186315034579%
RESULT = [-.170146118219281863150345791+39, .1701411821928186315034579%

(2228222 RS R R R R AR 2R s AR 222 R 2 SR XXX YY |

e i ooy
BOUNDS FAULT DURING intsub LEFT ENDPOINT-=NO FAULTS RIGHT ENDPOINT--INFINE
ARGUMENT 1 { .20000000000000000000000000+01, .2000000000000000000000000C
ARGUMENT 2 [=-.17014118219281863150345791¢39, .1701411821928186315034579¢
RESULT = [-.17014118219281863150345791+439, .17014118219281863150345791]

RANRRRARN R AR RN A RRRAR A ANARRNRRAN R AN R AR ARRAARA R AR AR AR ARARANRRANAAANA AR AR NS

THE SOLUTION IS AS FOLLOWS:

(-.850706+38, .850706+381]
C=.170142+39, .170142+39]

DO YOU WANT TO CONTINUE?
no
sToP

Appendix D - 12

UM 2 T o A el TN 52 SR WA AN S50 S 1y 0 il i 9O gL St 2 " s a1 A i s ol o e s O AR - Ry T,
MOt EA i o, 1 o - — Ca rw T wa

R — . [m e e e PO -

Appendix_E_=_use_of_the_iotfoc_Lommand_on_MULILIICS

Function: translates interval fortran programs into standard
fortran and compiles the translated segment if requested.

Syntax: intfor path -control_args~

Arguments: path is the pathname of an interval Fortran source
segment; a suffix of ",interval™ 1is assumed and need not be
given,

Control arguments: -no_translated_source, -nts does not
create the translated Fortran segment in the current working
directory; default is to create a translated source segment with
the suffix ".fortran”, Any error messages produced during
translation will be in this segment (see Notes below).

~convert_real_to_interval, -cri all variables of type real in the
source will be considered to have the type interval.

-no_compile, =-nc the transtated source will not be compiled’
default is to compile.

~force_compile, -fc there will be an attempt to compile the
translated source even it there are errors during the
translation,

-augment_Llist, =-als a segment is produced by the AUGMENT
precompiler (see Notes below) that consists of a Listing of the
input source segment passed to AUGMENT. Any error messages
produced during translation will also be in this segment. The
segment will have the suffix "agm.list"

The rest of the control arguments are any arguments acceptable to
the Ffortran compiler. These arguments will be passed to the
Fortran compiler if a compilation is to be performed.

Notes: The intfor command uses the AUGMENT precompiler to
produce the translated source, AUGMENT will display how many
errors there were 1in the processing or translation phase., The
error wmessages will be in the translated source segment next
to the statement that caused the error. Therefore if a program is
being translated for the first time, a translated source segment
should be created in case there are errors. The error mwmessages
can be located in the transtiated source segment by
searching for the character string "»#«s*” yhich is attached to
each error message.

Currently the input segment must be in the standard Fortran 80
column format using all uppercase letters.

Appendix E - 1

PRSI Ty S S i

ak Ao

Ry~ y

S e, e e

In order to run an interval program the user must have the search
rules set to search the directory
>udd>beta>rgd>a.rid>int_routines, This setting of the search
rules can be done by a “ssr >udd>beta>rid>a.r8d>isr® before
running the interval program,

Appendix E - 2

