THE LSR/Z OPTICALLY COUPLED SIGNAL TRANSMISSION LINK. (U)

DEC 79 J C BLACKBURN

UNCLASSIFIED

HDL-TH-79-24
The design is presented for a fiber-optic transmission system intended for carrying analog instrumentation signals over a 1-km length of single fiber. The bandwidth (+3 dB) is 5 kHz to 220 MHz with a dynamic range of -35 dB. Special attention is given to minimizing the modal noise produced by the single-mode laser source.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. SYSTEM DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>3. SPECIFICATIONS</td>
<td>7</td>
</tr>
<tr>
<td>4. TRANSMITTER CIRCUITRY</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Laser Stabilization</td>
<td>8</td>
</tr>
<tr>
<td>4.2 Calibrator</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Remote Control</td>
<td>11</td>
</tr>
<tr>
<td>5. OPTICAL RECEIVER CIRCUITRY</td>
<td>12</td>
</tr>
<tr>
<td>6. MODAL NOISE REDUCTION</td>
<td>14</td>
</tr>
<tr>
<td>7. FIBER-OPTIC CABLE</td>
<td>16</td>
</tr>
<tr>
<td>8. CONCLUDING REMARKS</td>
<td>17</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>18</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>19</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External views of (a) laser transmitter and (b) optical receiver</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Internal view of laser transmitter</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Laser temperature control and temperature monitor circuitry</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Laser optical output stabilizer</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>100-MHz stable sine-wave generator</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Optical control circuitry</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Optical receiver</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Current dependence of peak wavelength (data for ML-2205F laser, reproduced from Mitsubishi specifications)</td>
<td>15</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The LSR/2 Fiber-Optic System is intended as a first step in providing a tractable signal transmission system to replace long runs of expensive unwieldy coaxial cable, as well as providing other benefits such as immunity from electromagnetic interference. The flat frequency characteristic of modern optical fiber makes it unnecessary to provide equalization, save for a modest amount built permanently into the electronics of the receiver and transmitter. The convenience of the fiber optics is evident from the fact that a cable containing six individual 1-km-long fibers, each capable of nearly flat frequency response to several hundred megahertz, is packaged on a spool which can be lifted by one man.

As can be seen in figures 1 and 2 (p 6 and p 7) no attempt was made to minimize either the physical size or the power requirements of the LSR/2. To do this was not a requirement for the present application, and it was felt that serviceability and adaptability would be enhanced if a convenient physical assembly were employed. It is expected that additional functions and features will be found desirable as experience is accumulated in the application of this system: the extra "real estate" will probably enable these to be added on inside the original cabinets.

Although at least one commercial source offers a package consisting of laser, thermoelectric cooler, and intensity stabilizer, in our tests it was not clear that this package offered all the desired design features; with the modular construction of the LSR/2 it will be possible to retrofit improved lasers without having to replace other portions of the system. At the time of writing (April 1979), the Mitsubishi ML-2205F was being used.

2. SYSTEM DESCRIPTION

The basic concept of the LSR/2 is extremely simple: a cw laser diode is biased to an optimum value for linearity and modulated by the applied signal. This amplitude-modulated light signal is then transmitted to a remote point by an optical fiber. The signal is then detected and demodulated by a silicon diode, amplified, and made available at an output connector.

The laser must be carefully selected and individually tested to determine its actual dynamic operating characteristics. It must then be maintained at a constant (optimum) operating point by optical feedback, temperature control, or both (the LSR/2 employs both). At the receiving end, the silicon detector must be temperature stabilized. Throughout the system, the circuitry must be wideband and also provide substantial gain. In addition to this, some nonbasic functions such as remote
control, calibration, and self-check are provided to allow for convenient use. The LSR/2 incorporates a recently devised means of decreasing the modal noise which is created when coherent sources are transmitted through multimode fibers.

Figure 1. External views of (a) laser transmitter and (b) optical receiver.
3. SPECIFICATIONS

The LSR/2 is designed to transmit analog signals within the limits of approximately ±0.3 V; the exact limits vary from unit to unit and are specified in the individual calibration data. Digital signals may also be transmitted, but a shift in operating bias is desirable if only digital use is desired. The bandwidth is at least from 5 kHz to 200 MHz (-3 dB points) for a transmission distance of 1 km.

The dynamic range is greater than 30 dB, defined as follows: the lower signal level is that which produces a 1:1 signal to noise ratio (S/N), as determined by the tangential method; the upper signal level is that where the harmonic content is as many decibels below the fundamental as the fundamental is above the level producing the 1:1 S/N.

System gain is approximately 1. The gain may at any time be determined to an accuracy of 1 dB by energizing the calibrator (see sect. 4.2). The system inverts the signal being transmitted. This is easily

contended with by the use of the inverting switch which appears on the oscilloscope vertical deflection plug-in. Where this is not feasible, a wideband (transmission-line wound) inverting transformer may be used at either the receiver or transmitter.

A calibrator is an integral part of the signal transmitter and can be energized either by the control on the transmitter front panel or (via the optically coupled remote control) by the control on the receiver panel. When the calibrator is operated, a coaxial switch disconnects the transmitter's input from the front-panel input connector and instead connects it to a 100-MHz sine-wave oscillator which is stable ±1 dB and has a harmonic content of -30 dB or better.

The LSR/2 system is intended for use in a laboratory temperature range of 10 to 35 °C. Where required, this temperature range can be considerably extended by modification of the system. Operation of the transmitter in areas of very high humidity may cause difficulty from water condensation on the laser (which is temperature controlled at about 25 °C). If operation in such environments is necessary, the unit can be modified either by raising the laser temperature (with possibly some sacrifice in S/N) or by hermetically sealing the temperature-controlled laser.

4. TRANSMITTER CIRCUITRY

4.1 Laser Stabilization

A laser is used as the transmitting element in the LSR/2. It produces an optical output which serves as the carrier, and this carrier is amplitude modulated by the input signal. The single-mode laser used in this system has a highly linear light-output versus current-input relationship, making low distortion possible. A seemingly desirable consequence of the structure of the single-mode laser--its very narrow spectral line width--actually exacerbates problems such as modal noise which result from interference between the various modes propagating in a multimode fiber. It must be emphasized that these undesirable interference effects should not be looked upon as malfunctions of the laser; instead they are created in the optical fiber and its connectors as a result of the coherence of even a perfectly normal single-mode laser. Section 6 discusses some aspects of the problem of controlling modal noise in the system.

To obtain maximum linearity it has been found necessary to measure the actual dynamic characteristics of the individual laser with a test apparatus consisting of a variable-amplitude laser driver, a laser bias and temperature controller, a low-distortion optical receiver, and a spectrum analyzer. The optimum bias current (within a
reasonable portion of the laser's rated drive) and the most favorable
temperature (within the range of about 15 to 30 C) are determined by
experiment. Although an operating system will certainly be obtained by
biasing on the basis of the manufacturer-supplied dc laser curves, a
dynamic measurement will determine more accurately the proper levels.

The laser's temperature is held at the optimum temperature by a
thermoelectric (Peltier effect) heater/cooler module. Even with thermal
stabilization the laser will slowly degrade over thousands of hours so
that the optical output for a given current will fall off. A photodiode
observes the actual output of the laser and feeds back a signal which
increases the current slightly as required to maintain the original
intensity.

IC2 and T1 to T6 (fig. 3) control the laser's temperature
through the thermoelectric heater/cooler. TH1 and R2 form a voltage
divider so that the input to the inverting terminal of IC2 becomes more
positive as temperature increases. This voltage is compared with the
voltage at the noninverting input, with the result that the voltage out
of IC2 equals half the 5.25-V supply voltage when the temperature is
correct, becomes more negative when the temperature is high, and more
positive when the temperature is low. A more positive voltage turns on
T1, T2, and T3. The end result is that the current applied to the
heater/cooler assumes a proper polarity and amplitude so as to correct
the temperature drift.

IC1 amplifies the output of a separate thermistor and this
output drives the monitor panel meter in the 10 C position of the five-
position monitor switch.

IC3 and associated circuitry (fig. 4) form the optical sta-
bilizer for the laser. The laser's output is monitored by PIN diode D1,
and the PIN's current is balanced against the current through R5. If
the laser's intensity decreases, the current through the PIN decreases,
causing an increased forward bias to T7. The increased current through
T7 increases laser intensity. To avoid the possibility of some tran-
sient or malfunction burning out the laser, the voltage drop across R4
and the 100-ohm laser isolation resistor is made high enough that even
saturation of T7 will not produce burnout.

IC4, in connection with the monitor meter and the five-position
monitor selector switch, allows one to determine whether the intensity
regulator is within normal operating range. The meter will indicate at
the red reference mark whether the intensity stabilizer is in balance.
Figure 3. Laser temperature control and temperature monitor circuitry.

Figure 4. Laser optical output stabilizer.
4.2 Calibrator

Calibration is provided by a stabilized 100-MHz oscillator employing the MC1648 (fig. 5). This IC combines an emitter-coupled oscillator, a buffer amplifier, and feedback stabilization of amplitude. L1-C1 determines frequency and L2-C2 forms the buffer tank, which is tapped to provide an impedance match. R6 allows for level adjustment. To monitor the level of the calibrator it can be disconnected from the coaxial relay (RY1) and fed directly to a 50-ohm scope or spectrum analyzer.

![Calibrator Circuit Diagram](image)

Figure 5. 100-MHz stable sine-wave generator.

4.3 Remote Control

Two PIN diodes, D2 and D3, of figure 6, are mounted on the front panel of the transmitter. The current through the PIN diode appears as a voltage drop across a 1-megohm resistor and is compared to a fixed voltage at the (+) input of IC7 or IC8. When PIN diode D2 is illuminated, the output of IC7 goes low and pulls the (+) input of IC3 low via the line connected to CN-1. This causes the laser current to switch to a low (although not zero) idle current. When D2 is dark, the output of IC7 goes high and D4 disconnects IC7 from IC3.
NOTE: NEGATIVE POWER SUPPLY

IC7, IC8: CA3160
D2, D3: PIN DETECTOR DIODES, hp4207
RY1: COAXIAL RELAY

In similar fashion, D3 and IC8 control the current through RY1, thus connecting the laser input to either the front-panel connector or the output of the calibrator.

5. OPTICAL RECEIVER CIRCUITRY

The optical signal receiver diagrammed in figure 7 consists of an avalanche photodetector which detects and demodulates the amplitude-modulated signal from the laser diode, a power supply and protection circuit for the photodiode, and a wideband signal amplifier of approximately 20x gain. IC10 produces a 2.5-V reference which is compared with the cathode voltage on detector D4 via R9 and R10. IC9 drives T8 sufficiently to pull the required current through R11 and R12 to drop the cathode voltage to the correct value. Z2 drops the collector voltage of T8, thus reducing its dissipation. Thermistor TH1 provides
for an increase in detector voltage as temperature increases; as conduc-
tion through TH1 increases (in response to increasing temperature) a
higher current is required through R9, thus increasing detector volt-
age. R8 adjusts the rate of temperature correction.

Figure 7. Optical receiver.

If the +15 V supply should fail and the supply voltage to IC9 and
IC10 approach levels where the regulation would not function, T10 will
go out of conduction and T9 will turn on, crowbarring the detector
voltage to 100 V, a safe value under any condition. This protection is
necessary since excessive voltage drive to detector D4 can quickly
damage it.

The signal amplifier consists of two stages of Avantek Co. GPD
amplifiers. The upper bandwidth limit of these devices is over 500 MHz
and the lower limit is controlled by the coupling capacitors. The laser
produces enough optical power that the signal reaching the detector is
large (~50 μW) even after passing through 1 km of fiber and several
connectors. A 15-percent transmission filter is placed between the detector and the fiber to limit current to a safe level while the detector voltage (and consequently gain) is great enough to provide reach-through and high-frequency operation. The large signal makes a low-noise front end (such as the typical transimpedance design) unnecessary. The shot noise and excess noise contributions of the avalanche detector are greater in this analog-modulated system than in typical digital systems; this is because a "weak signal" is really a small variation superimposed on a much larger dc background signal. A large background increases both types of noise.\(^2\)

The receiver cabinet also contains two LED's and their associated current-limit resistors and switches for the purpose of sending the remote-control signals through the fiber-optic control lines to the PIN diodes D2 and D3 of figure 5.

6. MODAL NOISE REDUCTION

As Epworth points out,\(^3\) modal noise occurs when the constantly varying speckle pattern produced in the fiber by interference between fiber modes is passed through a mode selective mechanism such as a misaligned fiber butt-joint. In any real system the speckle constantly varies in response to many variables, such as change of laser wavelength in response to laser temperature changes in response to modulation current, mode jumps in the laser in response to modulation, and changes in mode structure in the fiber in response to pressure, flexure, vibration, etc. To minimize modal noise, several approaches are possible, including minimizing the number of fiber joints, making these joints as non-mode-selective as possible, and decreasing the coherence of the laser source in order to minimize interference among fiber modes.

In the LSR/2 only one fiber-to-fiber joint is used, the one on the front panel of the transmitter. This joint connects the fiber pigtail which is integral with the ML2205F laser to the 1-km transmission fiber. Several types of butt-type connectors and a Deutsch\(^*\) lens-type connector were tried at this location; the experiments convinced us that the Deutsch connector was less conducive to modal noise than any of the butt-type connectors. This is probably because the lens system in the Deutsch connector was designed to conserve not only optical power but

\(^*\)Manufactured by the Deutsch Electronic Components Division, Banning, CA.
also the optical mode structure. Assuming such mode conservation, the undesirable mode selection mechanism is reduced or eliminated.

At the receiving end of the link, the fiber's end is simply directly mated to the window of the optical detector (with the 15-percent transmission filter interposed). It was found that an avalanche detector which was fitted with an integral short length of optical fiber (a few millimeters) at the input increased modal noise; this is no doubt due to the mode-selective character of typical butt-joints.

A novel technique, experimentally found to decrease modal noise and presumed to operate by decreasing the laser's coherence, is used to further decrease modal noise problems. A signal of about 2 GHz is applied to the laser along with the signal to be transmitted. This signal constantly drives the laser back and forth across a significant portion of its modulation range, presumably constantly dithering the frequency, as suggested by figure 8, and thus decreasing coherence. This modulation frequency is sufficiently high that the receiver has no response and thus responds to the average value, which is set by the modulation signal applied to the input connector.

![Figure 8. Current dependence of peak wavelength (data for ML-2205F laser, reproduced from Mitsubishi specifications).](image)

7. FIBER-OPTIC CABLE

For a transmission distance as great as 1 km the practical choice of possible fiber types is restricted to the graded-index type. Fibers such as PCS (plastic-clad silica) have both loss and dispersion too great to maintain signal strength and bandwidth. Step-index silica fibers have losses similar to graded-index silica, but the dispersion is too great to maintain bandwidth.

Single-mode fibers have the potential for almost limitless bandwidth, but at present are intractable for this type of application. The laser-to-fiber coupling losses are high, and there is considerable difficulty in maintaining the single-mode structure when demountable connectors and severe microbends (induced in laying the flexible cable) are present. Epworth points out that one of the worst possible conditions for modal noise is that where a "single-mode" fiber begins to support two modes which interfere.

High-quality graded-index fibers having a diameter consistent with the laser's fiber pigtail and the Deutsch connectors are available from a number of manufacturers, although the Corning product was used for testing purposes. Several companies who do not themselves make fibers do assemble fiber cables. The net result is that almost any combination of optical fibers, conductors, strength members, armor, etc, is available.

The operating temperature for all-glass fibers is very wide; the operating temperature for a fiber cable (one or more fibers along with their protective sheaths and strength members) is determined by the cabling materials and methods. With suitable cabling techniques (and no doubt some trade-offs) temperature from near cryogenic to several hundred degrees Celsius can be accommodated.

The breaking strength of fibers is exceedingly high (on a cross-sectional basis), but the small cross section means that a bare fiber can be broken fairly easily—the result, again, is that the cable strength is determined by cabling methods. The commonly used plastic and glass cables have a size somewhat less than, a weight much less than, and a breaking resistance (in our experience) similar to that of RG-58. These cables are also at least as flexible as the coaxial cable.

It is well known that fibers are susceptible to radiation damage; it is less appreciated that the frequently used "decibel of transmission loss per meter per rad" specification ignores important dose-rate effects. Data obtained in our laboratory, which provide a continuous subnanosecond-resolution measure of fiber loss before, during, and after a short radiation pulse, have shown that there is no direct relationship between magnitudes of short-term and long-term fiber responses. It is
therefore necessary to make certain that the correct fiber loss values, long-term or prompt, are used in fiber selection.

In addition to causing increased fiber loss, radiation causes the fiber to emit light produced by Cerenkov radiation; this light can be a serious source of noise (and in some instances can completely obscure the optical signal). Blackburn\(^6\) cites the use of optical filters to substantially reduce the noise produced in the optical receiver by the luminescence.

8. CONCLUDING REMARKS

The LSR/2 extends the advantages of fiber-optic transmission to analog signalling over a wide bandwidth; the most serious limitation is the 30 to 35 dB dynamic range. The dynamic range, in spite of careful design, is limited primarily by the modal noise which forms the noise floor. It is hoped that optical sources, presumably lasers, will be developed which provide the highly linear response of present-day single-mode lasers while having less coherence (and therefore less tendency to excite modal noise). The transmission properties of optical fibers continue to improve and the price to decrease; this, along with handling ease and freedom from noise and TEMPEST effects, continues to make optical transmission increasingly attractive.

LITERATURE CITED

DISTRIBUTION

ADMINISTRATOR
DEFENSE DOCUMENTATION CENTER
ATTN DDC-TCA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY RSCH & STD GP (EUR)
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH
FPO NEW YORK 09510

COMMANDER
US ARMY MATERIEL DEVELOPMENT & READINESS COMMAND
ATTN DREAM-TL, HQ TECH LIBRARY
ATTN DRDC-EQ, DIR FOR DEF & ENGR
ATTN DRDC-ER, SYSTEMS EVALUATION & TESTING
ATTN DRDC-R, DIR FOR COMMUNICATIONS-ELECTRONICS
ATTN DRDC-RM, DIR FOR BATTLEFIELD SYS INTEGRATION
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

COMMANDER
US ARMY ARMAMENT MATERIEL READINESS COMMAND
ATTN DSMR-LEP-L, TECHNICAL LIBRARY
ROCK ISLAND, IL 61299

COMMANDER
US ARMY MISSILE & MUNITIONS CENTER & SCHOOL
ATTN ATMK-CTR, Hq
REDSTONE ARSENAL, AL 35809

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ATTN DRDSY-MP
ATTN DRDSY-CC, COMM & ELECTRONICS
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DSBR-SEB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

TELEDYNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
ATTN DR. MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

ENGINEERING SOCIETIES LIBRARY
345 EAST 47TH STREET
ATTN ACQUISITIONS DEPARTMENT
NEW YORK, NY 10017

U.S. ARMY ELECTRONICS TECHNOLOGY
AND DEVICES LABORATORY
ATTN DELET-DD
FORT MONMOUTH, NJ 07703

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.
ATTN PHYSICS DEPT
UPPER, LONG ISLAND, NY 11973

AMES LABORATORY (ERDA)
ATTN NUCLEAR SCIENCE CATEGORY
IOWA STATE UNIVERSITY
AMES, IA 50011

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
WASHINGTON, DC 20234

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTER FOR RADIATION RESEARCH
WASHINGTON, DC 20234

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
ATTN J. HULL
BOULDER, CO 80303

DEPARTMENT OF COMMERCE
NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION
ATTN ENVIRONMENTAL RESEARCH LABS
ROCKVILLE, MD 20852

US ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION
ATTN ASSIST ADMIN FOR NUCLEAR ENERGY
ATTN DIV OF COMMUNICATIONS & COMPUTER OPERATIONS
ATTN OFFICE OF TECHNICAL INFORMATION
WASHINGTON, DC 20545

DIRECTOR
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ATTN DIR, NUCLEAR MONITORING RES OFFICE
ATTN DIR, TECHNOLOGY ASSESSMENTS OFFICE
ATTN DR. SHERMAN KARP
ARCHITECT BLDG
1400 WILSON BLVD
ARLINGTON, VA 22209

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
ATTN TECH LIBRARY
WASHINGTON, DC 20305

19
DISTRIBUTION (Cont'd)

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
ATTN CHIEF FOR MIL COMMAND SYS
WASHINGTON, DC 20301

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEERING CENTER
ATTN RES & DEV
ATTN TECHNICAL LIBRARY
1860 Wihele Ave
RESTON, VA 22090

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
ATTN DT-1, NUCLEAR & APPLIED SCIENCES DIV
ATTN DT-4, ELECTRONICS & COMMAND & CONTROL DIV
WASHINGTON, DC 20301

CHAIRMAN
OFFICE OF THE JOINT CHIEFS OF STAFF
ATTN J-6, COMMUNICATIONS-ELECTRONICS
WASHINGTON, DC 20301

CHIEF
LIVERMORE DIVISION, FIELD COMMAND, DNA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550

NATIONAL COMMUNICATIONS SYSTEM
OFFICE OF THE MANAGER
ATTN NCS-TS
WASHINGTON, DC 20305

DIRECTOR
NATIONAL SECURITY AGENCY
ATTN O. D. VAN GUNTEN, R-425
ATTN FRANK LINNEEY
ATTN PAUL SZAPEPANCH
ATTN HARRY SOLOMON
ATTN S-65, P. BENSON
ATTN R-13, H. HOENN, N. GROVE
FORT GEORGE G. MEADE, MD 20755

DIRECTOR
DEFENSE NUCLEAR AGENCY
ATTN RAEP, ELECTRONIC VULNERABILITY
ATTN TITL, LIBRARY
ATTN RAEP, EMP EFFECTS DIVISION
ATTN SPTD, TEST DIVISION
WASHINGTON, DC 20305

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
ATTN PCD-A4, TECH REF BR
ATTN PertMei, Mr. GARTICK
KIRTLAND AFB, NM 87115

UNDER SECRETARY OF DEFENSE
FOR RESEARCH & ENGINEERING
ATTN DEP DIR (TEST & EVALUATION)
ATTN ELECTRONICS & PHYSICAL SCIENCES
WASHINGTON, DC 20301

OFFICE OF THE DEPUTY CHIEF OF STAFF
FOR RESEARCH, DEVELOPMENT, & ACQUISITION
DEPARTMENT OF THE ARMY
ATTN DARA-ARZ-A, CHIEF SCIENTIST,
DA & DIRECTOR OF ARMY RESEARCH,
DR. M. E. LASSER
ATTN DARA-CSN-1, NUCLEAR TEAM
ATTN DARA-MSW, GROUND COMBAT SYS DIV
WASHINGTON, DC 20310

COMMANDER
US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
ATTN DRDM-CAMS, CANNON ARTILLERY
WEAPON SYS/SEMILACTIVE LASER
GUIDED PROJECTILES
ATTN DRR-ARSEM, MATERIEL DEV EVAL
ATTN DRR-ARLCN, NUCLEAR APPLICATIONS DIV
ATTN DRR-ARTS, TECHNICAL SUPPORT DIV
DOVER, NJ 07801

COMMANDER
US ARMY AVIATION RESEARCH & DEVELOPMENT COMMAND
P.O. BOX 209
ATTN DRDAV-E, DIR FOR DEV & ENGR
ATTN DRDAV-N, ADVANCED SYS TECHNOLOGY
INTEGRATION OFFICE
ST LOUIS, MO 63166

COMMANDER
ATMOSPHERIC SCIENCES LABORATORY
ATTN DELAS-SL-C, COMBAT ENVIR BR
WHITE SANDS MISSILE RANGE, NM 88002

BALLISTIC MISSILE DEFENSE PROGRAM
MANAGER OFFICE
ATTN DACE-BMS-C, DEPUTY DIR
COMMONWEALTH BUILDING
1300 WILSON BLVD
ARLINGTON, VA 22209

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS COMMAND
P.O. BOX 1500
HUNTSVILLE, AL 35807

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDA-ARV, VULNERABILITY/
LETHALITY DIV
ABERDEEN PROVING GROUND, MD 21005
DISTRIBUTION (Cont'd)

COMMANDER
US ARMY COMM-ELEC ENGR INSTAL AGENCY
ATTN TECH LIB
FORT HUACHUCA, AZ 85613

COMMANDER
US ARMY COMMUNICATIONS COMMAND
COMBAT DEVELOPMENT DIV
FORT HUACHUCA, AZ 85613

COMMANDER
US ARMY COMMUNICATIONS RESEARCH AND
DEVELOPMENT COMMAND
ATTN DRDCO-SE, SYS ENGR & INTEGRATION
ATTN DRDCO-COM, COMMUNICATIONS SCIENCES
ATTN DRCPM-ATC, FM, ARMY TACTICAL
COMMUNICATIONS SY SY
ATTN DRDCO-COM-RM4, J. CHRISTIAN
ATTN DRDCO-COM-RM1, L. DWORKIN
ATTN DRDCO-COM-RM1, A. MONDRICK
ATTN DRDCO-COM-RM, I. KULLBACK
ATTN DRDCO-COM, S. DIVITO
FT. MONMOUTH, NJ 07703

CHIEF
US ARMY COMMUNICATIONS SYS AGENCY
FT. MONMOUTH, NJ 07703

COMMANDER
US ARMY COMMUNICATIONS & ELECTRONICS
MATERIEL READINESS COMMAND
ATTN SELEM-ES, DIR FOR ELECTRONICS
SYS MAINTENANCE
FT. MONMOUTH, NJ 07703

COMMANDER
US ARMY COMMUNICATIONS COMMAND AGENCY
USA COMM AGENCY, WS
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
US ARMY COMPUTER SYSTEMS COMMAND
ATTN TECH LIB
FORT BELVOIR, VA 22060

US ARMY OFFICE TEST DIR
JON Joint SERVICES
ELECTRO-OPTICAL GUIDED WEAPONS
COUNTERMEASURES TEST PROGRAM
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
ERADCOM TECHNICAL SUPPORT ACTIVITY
ATTN DELSO-L, TECH LIB DR
FORT MONMOUTH, NJ 07703

DIRECTOR
ELECTRONIC WARFARE LABORATORY
ATTN DELEN-C, COMM INTEL/CM DIV
FT MONMOUTH, NJ 07703

COMMANDER
US ARMY ELECTRONICS COMMAND
OFFICE OF MISSILE ELECTRONIC WARFARE
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
FORT HUACHUCA
DEPT OF THE ARMY
FORT HUACHUCA, AZ 85613

COMMANDER
EML
ATTN DELEN-I
INTEL MAT DEV & SPT OFFICE
FT MEADE, MD 20755

COMMANDER
US ARMY MATERIALS & MECHANICS
RESEARCH CENTER
ATTN DREMR-PL, TECHNICAL LIBRARY
WATERBURY, CT 06702

COMMANDER
US DARCOM FIELD OFFICE
P.O. BOX 5290
KIRTLAND AFB, NM 87117

DIRECTOR OF MATERIEL MANAGEMENT
US ARMY COMMUNICATIONS & ELECTRONICS
MATERIEL READINESS COMMAND
ATTN DRESEL-MME, ELECTRONICS DIV
FORT MONMOUTH, NJ 07703

PROJECT MANAGER, FIREFINDER
DRCPM-FF
FT. MONMOUTH, NJ 07703

PROJECT MANAGER, LANCE
DRCPM-EC
REDSTONE ARSENAL, AL 35809

PROJECT MANAGER
Patriot missile system, USADARCOM
DRCPM-MD-T-E
REDSTONE ARSENAL, AL 35809

PROJECT OFFICER
US ARMY ELECTRONICS RES & DEV COMM
FORT MONMOUTH, NJ 07703

COMMANDER
US ARMY MISSILE COMMAND
ATTN DRCPM-DT, TOW-DRAGON PROJ OFFICE
ATTN DROMI-TB, REDSTONE SCIENTIFIC INFO CENTER
ATTN DROMI-E, ENGINEERING LABORATORY
ATTN DROMI-ET, TEST & EVALUATION DIR
REDSTONE ARSENAL, AL 35809

21
DISTRIBUTION (Cont'd)

COMMANDER
NAVAL ORDNANCE STATION
INDIANHEAD, MD 20640

SUPERINTENDANT
NAVAL POSTGRADUATE SCHOOL
ATTN LIBRARY, CODE 2124
MONTEREY, CA 93940

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN 5000, ELECTRONICS SCI & TECH DIR
ATTN 5200, ELECTRONICS TECH DIV
ATTN 5500, OPTICAL SCI DIV
WASHINGTON, DC 20375

COMMANDER
NAVAL SEA SYSTEMS COMMAND HQ
DEPT OF THE NAVY
ATTN NSEA-08G32, TECH LIB
ATTN NSEA-03, RES & TECHNOLOGY DIR
WASHINGTON, DC 20362

COMMANDER
NAVAL SHIP R&D CENTER
ATTN INSTRUMENTATION DEV
BETHESDA, MD 20034

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN DF, ELECTRONICS SYS DEPT
ATTN DF-14, APPLIED ELECTRONIC BR
ATTN DG-30, APPLIED SCIENCE & MATERIALS DIV
ATTN DX-21, LIBRARY DIV
DASHLOREN, VA 22448

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN WA-31, SENSOR ELECTRONICS BR
ATTN WA-50, NUCLEAR WEAPONS EFFECTS DIV
ATTN WR, RESEARCH & TECHNOLOGY DEPT
ATTN WR-42, ELECTRO-OPTICS BR
WHITE OAK, MD 20910

COMMANDER
NAVAL TELECOMMUNICATIONS COMMAND HQ
ATTN TECHNICAL LIBRARY
4401 MASS AVE NW
WASHINGTON, DC 20390

COMMANDER
NAVAL UNDERWATER SYSTEMS CENTER
ATTN WEAPON SYS DEPT
NEW LONDON, CT 06320

COMMANDER
NAVAL WEAPONS CENTER
ATTN 315, LASER/INFRARED SYS DIV
ATTN 394, ELECTRO-OPTICS DIV
ATTN 06, TEST & EVALUATION DIV
CHINA LAKE, CA 93555

COMMANDER OFFICER
NAVAL WEAPONS EVALUATION FACILITY
KIRTLAND AIR FORCE BASE
ATTN TECH LIBRARY
ALBUQUERQUE, NM 87117

COMMANDER
HQ AERONAUTICAL SYSTEMS DIV (AFSC)
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
ARNO LD ENGINEERING DEVELOPMENT CENTER
ATTN DY, DIR TECHNOLOGY
ATTN DMR, R&D DIV
ATTN XO, DIR TEST
ARNOLD AIR FORCE STATION, TN 37389

DIRECTOR
AF AVIONICS LABORATORY
ATTN KJ (TE), ELECTRONIC TECH DIV
ATTN KJA (TEO), ELECTRO-OPTICS TECHNOLOGY BR
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
AF ELECTRONIC SYSTEMS DIVISION
ATTN NW, DFC FOR CONTROL & COMMUNICATIONS SYS
L. G. HANSCOM AFB, MA 01730

COMMANDER
HQ FOREIGN TECHNOLOGY DIVISION (AFSC)
ATTN YEG (ETW), ELECTRONIC WARFARE DIV
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
SPACE & MISSILE SYSTEMS ORGANIZATION (SAMSO)
PO BOX 92960
WORLDWAY POSTAL CENTER
ATTN XR, DPC FOR DEV PLANS
LOS ANGELES, CA 90009

COMMANDER
HQ AIR FORCE SYSTEMS COMMAND
ATTN DL, DIR, SCI & TECHNOLOGY
ATTN TECHNICAL LIBRARY
ANDREWS AFB
WASHINGTON, DC 02334

COMMANDER
HQ AF TEST & EVALUATION CENTER
ATTN TEK, ELECTRONICS DIV
KIRTLAND AFB, NM 87115

COMMANDER
AFWL/DYC
ATTN EL, ELECTRONICS DIV
ATTN COL GERALD P. CHAPMAN
KIRTLAND AFB, NM 87117
<table>
<thead>
<tr>
<th>DISTRIBUTION (Cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMES RESEARCH CENTER</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>ATTN TECHNICAL INFO DIV</td>
</tr>
<tr>
<td>MOFFETT FIELD, CA 94035</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>GOODYEAR SPACE FLIGHT CENTER</td>
</tr>
<tr>
<td>ATTN 250, TECH INFO DIV</td>
</tr>
<tr>
<td>GORDON, MD 20771</td>
</tr>
<tr>
<td>JET PROPULSION LABORATORY</td>
</tr>
<tr>
<td>CALIFORNIA INSTITUTE OF TECHNOLOGY</td>
</tr>
<tr>
<td>ATTN TECHNICAL LIBRARY</td>
</tr>
<tr>
<td>4800 OAK GROVE DRIVE</td>
</tr>
<tr>
<td>PASADENA, CA 91103</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>LANGLEY RESEARCH CENTER</td>
</tr>
<tr>
<td>ATTN TECHNICAL LIBRARY</td>
</tr>
<tr>
<td>HAMPTON, VA 23665</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>LEWIS RESEARCH CENTER</td>
</tr>
<tr>
<td>ATTN TECHNICAL LIBRARY</td>
</tr>
<tr>
<td>CLEVELAND, OH 44135</td>
</tr>
<tr>
<td>G. E. SPACE DIVISION</td>
</tr>
<tr>
<td>P.O. BOX 8555</td>
</tr>
<tr>
<td>ATTN DARRETTI TARCA</td>
</tr>
<tr>
<td>ROOM 2432, BLDG 100</td>
</tr>
<tr>
<td>PHILADELPHIA, PA 19101</td>
</tr>
<tr>
<td>DEUTSCH ELECTRONIC COMPONENTS</td>
</tr>
<tr>
<td>ATTN HARRY SPRY</td>
</tr>
<tr>
<td>MUNICIPAL AIRPORT</td>
</tr>
<tr>
<td>BANNING, CA 92220</td>
</tr>
<tr>
<td>CATHOLIC UNIVERSITY OF AMERICA</td>
</tr>
<tr>
<td>CARDINAL STATION</td>
</tr>
<tr>
<td>P.O. BOX 232</td>
</tr>
<tr>
<td>ATTN J. CLARK</td>
</tr>
<tr>
<td>WASHINGTON, DC 20017</td>
</tr>
<tr>
<td>TRW DEFENSE & SPACE SYSTEMS GROUP</td>
</tr>
<tr>
<td>ONE SPACE PARK</td>
</tr>
<tr>
<td>ATTN 8/239, G. ARMSTRONG, R. EASTMAN</td>
</tr>
<tr>
<td>ATTN M2/2384, J. TAMBE,</td>
</tr>
<tr>
<td>ATTN M1/1330</td>
</tr>
<tr>
<td>ATTN M1/1334, F. GODSMITH</td>
</tr>
<tr>
<td>ATTN M2/2145, S. KIMBLE</td>
</tr>
<tr>
<td>REDONDO BEACH, CA 90278</td>
</tr>
<tr>
<td>HUGHES RESEARCH LABS</td>
</tr>
<tr>
<td>DIV OF HUGHES AIRCRAFT COMPANY</td>
</tr>
<tr>
<td>ATTN R. BLAIR</td>
</tr>
<tr>
<td>MALIBU CANYON ROAD</td>
</tr>
<tr>
<td>MALIBU, CA 90265</td>
</tr>
<tr>
<td>EFFECTS TECHNOLOGY INC.</td>
</tr>
<tr>
<td>ATTN W. NEUMAN</td>
</tr>
<tr>
<td>ATTN R. WENGLE</td>
</tr>
<tr>
<td>ATTN E. BICK</td>
</tr>
<tr>
<td>5383 HOLLISTER AVE</td>
</tr>
<tr>
<td>SANTA BARBARA, CA 93111</td>
</tr>
<tr>
<td>EG&G, INC.</td>
</tr>
<tr>
<td>ATTN R. LYNN</td>
</tr>
<tr>
<td>ATTN M. NELSON</td>
</tr>
<tr>
<td>ATTN T. DAVIES</td>
</tr>
<tr>
<td>130 ROBIN HILL ROAD</td>
</tr>
<tr>
<td>GOLETA, CA 93017</td>
</tr>
<tr>
<td>GENERAL DYNAMICS CORPORATION</td>
</tr>
<tr>
<td>ATTN K. WILSON</td>
</tr>
<tr>
<td>PO BOX 80986</td>
</tr>
<tr>
<td>SAN DIEGO, CA 92138</td>
</tr>
<tr>
<td>CALILIEO ELECTRO-OPTICS CORPORATION</td>
</tr>
<tr>
<td>ATTN R. JAEGGER</td>
</tr>
<tr>
<td>ATTN L. OWEN</td>
</tr>
<tr>
<td>CALILIEO PARK</td>
</tr>
<tr>
<td>STURBRIDGE, MA 01518</td>
</tr>
<tr>
<td>ITT ELECTRO-OPTICAL PRODUCTS DIVISION</td>
</tr>
<tr>
<td>ATTN M. MAKAD</td>
</tr>
<tr>
<td>ATTN L. HUYBRECHTS</td>
</tr>
<tr>
<td>ATTN A. ASAM</td>
</tr>
<tr>
<td>ATTN G. WILHEIMI</td>
</tr>
<tr>
<td>7655 PLANTATION ROAD</td>
</tr>
<tr>
<td>ROANOKE, VA 24019</td>
</tr>
<tr>
<td>PHYSICS INTERNATIONAL COMPANY</td>
</tr>
<tr>
<td>ATTN F. SAUER</td>
</tr>
<tr>
<td>ATTN C. GODFREY</td>
</tr>
<tr>
<td>ATTN R. GENUARIO</td>
</tr>
<tr>
<td>2700 MERCEDES STREET</td>
</tr>
<tr>
<td>SAN LEANDRO, CA 94577</td>
</tr>
<tr>
<td>LOCKHEED MISSILES AND SPACE COMPANY, INC.</td>
</tr>
<tr>
<td>ATTN H. POLISKY</td>
</tr>
<tr>
<td>WWPC BOX 92915</td>
</tr>
<tr>
<td>LOS ANGELES, CA 90009</td>
</tr>
<tr>
<td>ROCKWELL INTERNATIONAL CORPORATION</td>
</tr>
<tr>
<td>ATTN G. MESSENGER</td>
</tr>
<tr>
<td>ATTN D. STILL</td>
</tr>
<tr>
<td>PO BOX 3105</td>
</tr>
<tr>
<td>ANAHEIM, CA 92803</td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
</tr>
<tr>
<td>ATTN K. SITES</td>
</tr>
<tr>
<td>PO BOX 19057</td>
</tr>
<tr>
<td>LAS VEGAS, NV 89119</td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS, INC.</td>
</tr>
<tr>
<td>ATTN F. MILLER</td>
</tr>
<tr>
<td>1257 TASMAN DRIVE</td>
</tr>
<tr>
<td>SUNNYVALE, CA 94086</td>
</tr>
</tbody>
</table>

24
DISTRIBUTION (Cont'd)

SPECTRONICS
ATTN L. STEWART
ATTN MR. SHAUNFIELD
830 EAST ARAPAHO
RICHARDSON, TX 75081

SRI INTERNATIONAL
ATTN D. KEOUGH
ATTN G. ABRAHAMSON
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025

TIMES WIRE AND CABLE
ATTN W. PRIMOSE
358 HALL AVE
WALLINGFORD, CT 06492

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT

HARRY DIAMOND LABORATORIES
ATTN CO/TC/TG/DIVISION DIRECTORS
ATTN RECORD COPY 81200
ATTN HDL LIBRARY (3 COPIES) 81100
ATTN HDL LIBRARY, (WOODBRIDGE) 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 21000
ATTN CHIEF, 21200
ATTN CHIEF, 21300
ATTN CHIEF, 21400 (2 COPIES)
ATTN CHIEF, 21500 (3 COPIES)
ATTN CHIEF, 22000
ATTN CHIEF, 22100
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN DICKINSON, P., BETA-FD
ATTN MILETIA, J., 21100
ATTN WIMENITZ, F., 20240
ATTN KERRIS, K., 22900
ATTN BLACKBURN, J., 22300 (30 COPIES)