STINT/CD: A STAND-ALONE EXPLICIT TIME INTEGRATION PACKAGE FOR S--ETC(U)
JUN 80 P 6 UNDERWOOD, K C PARK
N00014-74-C-0355

UNCLASSIFIED

END
DATE
9-80
DPC
STINT/CD: A STAND-ALONE EXPLICIT TIME INTEGRATION PACKAGE
FOR STRUCTURAL DYNAMICS ANALYSIS

Philip Underwood and K. C. Park
Applied Mechanics Laboratory
Department 5233, Building 205
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

June 1980

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
This paper is a user's guide for the stand-alone explicit direct time integration package STINT/CD for structural dynamics analysis. STINT/CD uses an automatic variable time increment central difference method. The purpose, function, limitations, and usage of the package are described. A FORTRAN listing of STINT/CD is given along with a sample problem which illustrates its usage and performance.
Abstract

This paper is a user's guide for the stand-alone explicit direct time integration package STINT/CD for structural dynamics analysis. STINT/CD uses an automatic variable time increment central difference method. The purpose, function, limitations, and usage of the package are described. A FORTRAN listing of STINT/CD is given along with a sample problem which illustrates its usage and performance.

1. Introduction

Direct time integration of the discrete equations of motion governing linear and nonlinear structural dynamics is a frequently used solution method for transient response analysis. It would appear that the central difference integrator is the most commonly used explicit method; for example, it is used in the HONDO [1] and STAGS [2] computer codes. A difficulty with the central difference integrator has been in the selection of the time increment to maintain stability and desired accuracy over a range of structural behavior and loading conditions. A central difference integration method [3,4] has recently been developed to overcome this difficulty. This central difference method [3,4] automatically selects the time increment to maintain stability and to achieve user requested accuracy. The time increment is selected so that user specified sampling rates with respect to the dominant and maximum "apparent" response frequen-
cies are maintained. In addition the central difference method [3,4] is implemented as a stand-alone package (STINT/CD) so that it is easily interfaced with existing structural analyzers (finite-element and -difference computer codes).

This paper is a user's guide for STINT/CD (Stand-alone Time INTEGRator/Central Difference) and includes a FORTRAN listing (Appendix A). The user's guide presents: 1) a description of this automatic variable time increment central difference method, 2) a description of the user written subroutines (examples are listed in Appendix B) required to interface with a host structural analyzer, 3) a sample problem (embedded in the example user written subroutines) which illustrates many of the features of this method, and 4) some suggestions for usage of STINT/CD. The subroutines are written in FORTRAN IV, utilize in-core storage after an initial data transfer from mass storage, and are operational with minor changes on the DEC VAX-11/780, UNIVAC 1100, and CDC 6000/7000 computer operating systems.

2. Method Description

The purpose and function of this central difference method are described briefly; to the extent that a user can apply it to a specific problem. The theory and implementation underlying the method are contained in references [3,4]; the user is en-
couraged to read these references before using the method. In the function description the error measures are reviewed because there are additions since publication of references [3,4]. This section concludes with a description of the limitations of the method.

Purpose

The time integrator package STINT/CD, which is comprised of the subroutines STINTC, CENDIF, ACLTN, ERRORE, STEPSZ, ROTATE, and VIPDA given in Appendix A, solves the discrete equation of motion

\[M \ddot{u}^n + D \dot{u}^n + f_s(u^n) = f(t^n) \]

(1)

governing structural dynamics, where \(u \) is the computational displacement vector, the superscript \(n \) indicates the vector value at the discrete time \(t^n \), the superscript dot \(\cdot \) denotes temporal differentiation, \(M \) is a diagonal mass matrix, \(D \) is a damping matrix, \(f_s(u^n) \) is the set of internal forces due to the stiffness that oppose the structural deformation (stiffness forces), and \(f(t^n) \) is the applied load. For a linear problem the stiffness force \(f_s(u) \) becomes \(\mathbf{K} \mathbf{u} \), where \(\mathbf{K} \) is the linear stiffness matrix. The damping term is treated as \(f_d = D \dot{u} \), or \(D \) itself may be used if it is diagonal. Therefore all quantities in eqn. (1) are computational vectors; i.e. one dimensional arrays of length equal to the number of degrees of freedom.
Function

The subroutine STINTC provides an internal control interface between the host structural analyzer and the subroutine CENDIF which is the "main" subroutine for the variable time increment central difference integrator. The input to STINTC is supplied by the user through the user written subroutine DRIVER which is described in Section 3. In addition the diagonal M matrix (a vector containing the diagonal), the D matrix, if diagonal and the matrix option is chosen, and the initial conditions u^0 and \dot{u}^0, if present, are read from mass storage.

The subroutine CENDIF, called by STINTC, contains the integrator formulas for the fixed time increment and increasing or decreasing time increments; see [3,4] for the details of the various formulas. Both u^n and $\ddot{u}^{n-\frac{1}{2}}$ are computed based on the acceleration at t^{n-1}. The acceleration is computed in subroutine ACTLN for the cases: 1) no damping, 2) diagonal damping, and 3) nondiagonal damping; again, the details can be found in references [3,4]. Before the new displacement u^n and the velocity $\dot{u}^{n-\frac{1}{2}}$ are accepted, the error for this step is computed in subroutine ERRORE which is discussed below. Based on the error computation the time increment for the next step is computed in subroutine STEPSZ; see [4] for the details. Once the step is accepted the computed displacement u^n and velocity \ddot{u}^n (extrapolated to the same time as the displacement) and t^n are transferred through the user written subroutine OUTPUT.
In subroutine ERRORE the "maximum perturbed apparent" frequency \[3,4\] and the "dominant apparent frequency* (a new frequency measure, discussed below) error measures are computed. From \[4\] the "maximum perturbed apparent frequency" error measure \(\varepsilon_m\) is

\[
\varepsilon_m = \max(\varepsilon_1^n, \ldots, \varepsilon_{\text{MAXDEG}}^n)
\]

where,

\[
\varepsilon_i^n = (h_n^2/4)(a_i^n/b_i^n)
\]

\[
a_i^n = |\dot{u}_i^n - \dot{u}_i^{n-1}|
\]

\[
b_i^n = \max_{|i-j| \leq m_b} (|u_j^n - u_j^{n-1}|)
\]

and \(\text{MAXDEG}\) is the size (dimension) of the solution vector in eqn. \(1\), \(h_n\) is the \(n\)-th time increment, and \(m_b\) is the bandwidth (average) of the \(i\)-th degree of freedom. The "dominant apparent frequency" error measure \(\varepsilon_d\) is

\[
\varepsilon_d = \frac{h_n^2}{4} \sqrt{(\Delta u^n)^T \Delta u^n}
\]

where
\[\Delta u^n = u^n - u^{n-1} \]
\[\Delta \ddot{u}^n = \ddot{u}^n - \ddot{u}^{n-1} \]

and superscript T indicates transposition. The argument of the square root in eqn. (3) is recognized as a form of Rayleigh's quotient. Hence it gives an estimate of the frequency of the global (dominant) change in the solution vector \(u^n \) at \(t^n \). This measure has been found to accurately estimate the dominant frequency of the response. The user controls the stability and accuracy by specifying the number of samples/cycle for both the maximum and dominant apparent frequencies; see [3,4] for the relationship between samples/cycle and the error measures given by eqns. (2) and (3). Suggested values for the samples/cycle are given in the listing for the user written subroutine DRIVER and the integrator performance for various samples/cycles is presented with the sample problem in Section 4.

The two other subroutines ROTATE and VIPDA are utility subroutines that update vector address pointers and compute the vector inner product, respectively.

The subroutines listed in the Appendices are the DEC VAX-11/780 versions. The only changes required to use these subroutines on a UNIVAC or CDC computer are: 1) the INCLUDE command for inserting the labelled common CENTDF into the subroutines, and 2) the inline comment symbol ! in subroutine STEPSZ and the user written subroutines (Appendix B).
Limitations

A fixed or variable time increment may be selected. For the fixed time increment no check is made on the accuracy or stability. For the variable time increment the user specifies the minimum and maximum time increment and samples/cycle for the maximum and dominant response frequencies. It is recommended that the minimum time increment be a conservative estimate (very small), because the automatic time increment strategy will work more effectively with little loss in efficiency. If more runs are made on the same or similar problems, the minimum time increment can be increased if the performance of the previous run indicates the initial choice was too conservative.

This algorithm will constrain a degree of freedom to a zero value if the corresponding mass matrix entry is zero. No other constraints are allowed.

The diagonal damping option has received only minimal usage so users should study results from this option before accepting them. The no damping and nondiagonal damping options have been exercised for many problems and the authors have confidence in their performance.

If the algorithm is used in the variable time increment mode for pure wave propagation response (i.e. integration of the linear wave equation), it will generally not perform at its
best. In some cases the results are terrible; see [4] for an example. Note that, the performance for this problem with a properly chosen fixed time increment is excellent.

3. User Written Subroutines

The user written subroutines are: DRIVER, FORCE, DFORCE, SFORCE, and OUTPUT; they are shown schematically in Figures 1 and 2. First, DRIVER transmits the problem parameters to the time integrator through the arrays INTGR, LOGIC, and REALN, plus the starting address in core that is to be used by the time integrator. Second, the applied load subroutine FORCE, provides the load vector data to the time integrator. Third, subroutine DFORCE provides the damping force, and fourth, subroutine SFORCE provides the stiffness force. Finally, subroutine OUTPUT provides display of the response. Note that, all data is transmitted as vectors, inasmuch as diagonal matrices may be considered vectors.

The listing of the user written subroutines in Appendix B includes the purpose and usage requirements of each subroutine. In this case the DRIVER subroutine also includes the mass matrix and initial velocity data for the example problem: normally this data is generated in the host structural analyzer. Here the structural analyzer is embedded in the user written inter-
face subroutines and the DRIVER subroutine is the main program. In a typical application the user written subroutine DRIVER is called by the host structural analyzer and the user written subroutines FORCE, DFORCE, SFORCE, and OUTPUT call the host structural analyzer to furnish the required data.

4. Sample Problem

The sample problem is the two degree of freedom nonlinear model shown in Figure 3. For this model the kinetic energy, T, potential energy, V, and the dissipation function, F, are given by

$$T = \frac{1}{2}m_1 \dot{u}_1^2 + \frac{1}{2}m_2 \dot{u}_2^2$$

$$V = k_1 \log(\cosh u_1) + \frac{1}{2}k_c (u_1 - u_2)^2 + k_2 \cosh u_2$$

$$F = \frac{1}{2}d (\dot{u}_1 - \dot{u}_2)$$

From Lagrange's equation [5],

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{u}_i} \right) - \frac{\partial T}{\partial u_i} + \frac{\partial F}{\partial u_i} + \frac{\partial V}{\partial u_i} = p_i$$

the mass matrix, damping forces, and stiffness forces are found
to be

\[
M = \begin{bmatrix}
m_1 & 0 \\
0 & m_2
\end{bmatrix}
\]

\[
d_1 = d(\dot{u}_1 - \dot{u}_2)
\]

\[
d_2 = d(\dot{u}_2 - \dot{u}_1)
\]

\[
f_1 = k_1 \tanh u_1 + k_c (u_1 - u_2)
\]

\[
f_2 = k_2 \cosh u_2 + k_c (u_2 - u_1)
\]

where \(m_1 = m_2 = 1.0\), \(d = 5.0\), \(k_1 = k_2 = 1000.0\) and \(k_c = 100.0\). The initial conditions and the forcing function are shown in Figure 3.

Physically, the system comprises a softening element with an initial velocity and a hardening element subjected to a time delayed rectangular force with the two nonlinear elements moderately coupled by a linear spring and dashpot. This model was chosen because the response illustrates how well the time increment selection strategy of the time integrator package works.

The printed output for the sample problem is listed in Appendix C. The first three lines, the time increment data and the synopsis data are printed from the STINT/CD package. The response data are printed in subroutine OUTPUT. The example
problem was also run for 20, 100, and 500 samples/cycle on the dominant frequency (REALN(5)) in addition to the 50 samples/cycles run shown in Appendix C. All other problem parameters are held constant. In Figure 4 the time increment versus the response time is shown. In general the time increment is increased at the beginning followed by decreases after \(t = 0.5 \) sec., when the rectangular load is applied to the hardening element. This behavior is very reasonable. A large time increment is possible for \(t < 0.5 \) sec. because the softening element dominates the response, but later the hardening element, with a higher frequency, dominates the response. Also, note that as the sampling rate is increased (more accuracy) the time increment consistently decreases.

To illustrate that convergence is obtained the example problem was also run for a fixed time increment of 0.005 sec. This time increment is much smaller than any time increment selected by the time integrator algorithm, so it should be sufficiently small to provide a converged solution. The displacement and velocity history for the four variable time increment runs and the fixed time increment run are shown in Figures 5-8. During the first half of the response the results are nearly identical, but afterward some slight differences are seen. Note that the response for the 500 samples/cycle and the fixed time increment are identical; look near the very end of the response histories for the clearest picture.
In a fixed time increment mode this problem will remain stable for a time increment up to approximately 0.03 sec. At this time increment though the accuracy is minimal. For a non-stiff (closely spaced eigenvalues) problem with a small (1-3) number of degrees of freedom accuracy considerations usually dominate over stability considerations. For a stiff (widely separated eigenvalues) problem with more degrees of freedom, such as the cantilever beam [4], stability dominates and the accuracy is well within what the user requests.

For the variable time increment mode the behavior of the average time increment versus the requested samples/cycle of the dominant apparent frequency, shown in the Table below, sheds more light on stability versus accuracy.

<table>
<thead>
<tr>
<th>Dominant Frequency</th>
<th>Average Time Increment (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples/Cycle</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0062112</td>
</tr>
<tr>
<td>50</td>
<td>0.0056818</td>
</tr>
<tr>
<td>100</td>
<td>0.0045455</td>
</tr>
<tr>
<td>500</td>
<td>0.0010917</td>
</tr>
</tbody>
</table>

Only the time increment change from 100 to 500 samples/cycle shows a decrease in proportion to the samples/cycle ratio. At the other sampling rates the time increment is being controlled by a mixture of stability and accuracy. Hence the ratios between the sampling rate and the average time increment do not correlate unless accuracy clearly controls the time increment.
5. Suggested Usage

The stand-alone in-core time integrator package STINT/CD presented here is easily adapted to problems with several hundred degrees of freedom. However, before attempting a problem this large, it is suggested that the user experiments with a small problem with characteristics similar to a larger problem that one is interested in solving. The user may also want to change some of the algorithm parameters in the subroutine STEPSZ to fit a particular class of problems more efficiently. References [3,4] should be studied before adjusting the time increment selection parameters.

In the authors' work environment (solving a variety of interdisciplinary problems) the stand-alone feature is most desirable, since it allows the quick assembly of software elements to solve the current problem. However, in a strictly production environment, where the mechanics of the problem seldom change, some efficiency may be gained by embedding the time integrator into the structural analyzer; see [6].

The explicit central difference integrator is most suited to short duration transient loads or problems in which the stiffness may suddenly change. The automatic variable time increment feature is especially suited to these problems in that it selects the largest possible time increment consistent with
maintaining stability and accuracy based on the current system behavior. Therefore a small time increment does not have to be used during the entire computations to achieve accuracy during one small time interval, since the small time increment is automatically selected only when it is needed.

6. Acknowledgement

The authors wish to acknowledge support of this work by the Office of Naval Research under Contract N00014-74-C-0355 and by the Lockheed Missiles & Space Company's Independent Research Program.

7. References

Appendix A

STINT/CD Computer Code Listing

SUBROUTINE STINTC(LOGIC, INTGR, REALN, C)

PURPOSE

Provides the interface between the user supplied 'driver' routine and the central difference time integrator CENDIF/VECTOR (CALL CENDIF)

INPUT

LOGIC array of logical control data

INTGR array of integer control data

REALN array of real control data

C starting address of common (core) to be used by the integrator

EXTERNAL GASPER

INCLUDE 'PRODCD.PCR'

LOGICAL LOGIC(1)

LOGICAL IGASP, IDISP, IVEL

INTEGER INTGR(1)

REAL C(1)

REAL REALN(1)

IGASP = LOGIC(1)

IFORCE = LOGIC(2)

IDISP = LOGIC(3)

IVEL = LOGIC(4)

FIXSTP = LOGIC(5)

IDAMP = LOGIC(6)

IDMPDG = LOGIC(7)

MAXDEG = INTGR(1)

IUNIT = INTGR(2)

KBAND = INTGR(3)

KBAND = KBAND - 1

TIME = REALN(1)

TMAX = REALN(2)
DTMIN = REALN(3)
DTMAX = REALN(4)
EPSDFQ = REALN(5)
EPSHFQ = REALN(6)
ALFA = REALN(7)
BTA = 0.5*ALFA

C
IF(FIXSTP) DTMIN = DTMAX
DT = DTMIN
MAXSTP = 3*DTMAX/DTMIN
NSTEP = 1
C
IF(EPSHFQ .LT. 3.14) EPSHFQ = 4.0
EPSHFQ = (3.14159265/EPSHFQ)**2
IF(EPSDFQ .LT. 3.14) EPSDFQ = 4.0
EPSDFQ = (3.14159265/EPSDFQ)**2
UPNTR(1) = 0
UPNTR(2) = 1
UPNTR(3) = 2
MAXVEC = 3
IF(FIXSTP) MAXVEC = 1
IF(FIXSTP) UPNTR(2) = 0
IF(FIXSTP) UPNTR(3) = 0
NDOUBL = 0
NCUTS = 0
NFACTS = 0
C
C *** STORAGE ALLOCATION
C
M = MAXDEG
MM = MAXVEC*MAXDEG
C
LSM = 1
LRSM = LSM + M
IF(FIXSTP) LRSM = LSM
LSC = LRSM + M
LU = LSC
IF(IDMPDG) LU = LSC + M
LUD = LU + MM
LUDD = LUD + MM
LW = LUDD + MM
LWORKA = LW
IF((IDMPDG) .OR. (IDAMP)) LWORKA = LW + M
LWORKB = LWORKA + M
LEND = LWORKB + M - 1
C
WRITE(6,200) LEND
200 FORMAT(1H1, 2X,'WELCOME TO STINTC THE STAND-ALONE CENTRAL DIFFERENCE TIME INTEGRATOR',//,17X,'STINTC REQUIRES',I10,' WORDS OF STORAGE',//,27X,'6 DECEMBER 1979 VERSION',//)
C
DO 10 I=1,LEND
C(I) = 0.0
10 CONTINUE
C
IF(IGASP) GO TO 20

C *** UNFORMATTED READS
READ(IUNIT) (C(LSM-1+I),I=1,M)
IF((IDMPDG) .AND. (IDAMP)) READ(IUNIT) (C(LSC-1+I),I=1,M)
IF(IDISP) READ(IUNIT) (C(LU-1+I),I=1,M)
IF(IVEL) READ(IUNIT) (C(LUD-1+I),I=1,M)
CLOSE(UNIT=IUNIT)

GO TO 30

C *** DMGASP READS NOTE: IF NOT AVAILABLE REPLACE BY OTHER EFFICIENT
C *** I/O PACKAGE
20 CALL DM RAST (IUNIT, C(LSM), M)
 CALL ETS PRT(1,'STINTCR1')
 CALL DH HAST (0, GASPER, 0)
IF((IDMPDG) .AND. (IDAMP)) CALL DM RAST (IUNIT, C(LSC), M)
 CALL ETS PRT(1,'STINTCR2')
 CALL DH HAST (0, GASPER, 0)
IF(IDISP) CALL DM RAST (IUNIT, C(LU), M)
 CALL ETS PRT(1,'STINTCR3')
 CALL DH HAST (0, GASPER, 0)
IF(IVEL) CALL DM RAST (IUNIT, C(LUD), M)
 CALL ETS PRT(1,'STINTCR4')
 CALL DH HAST (0, GASPER, 0)
 CALL DM FAST (IUNIT, 0, 0)
30 CONTINUE

C CALL CENDIF(C(LSM), C(LRSM), C(LSC), C(LU), C(LUD), C(LUDD),
 C(LW), C(LWORKA), C(LWORKB))

C RETURN
END

SUBROUTINE CENDIF(SM, RSN, SC, U, UD, UDD, W, WORKA, WORKB)

C SOLVES SECOND ORDER STRUCTURAL DYNAMICS BY EXPLICIT CENTRAL
C DIFFERENCE METHOD

C *** EQUATIONS OF MOTION
C
M*UDD + D*UD + K*U = F

WHERE M IS A DIAGONAL MASS MATRIX
D IS THE DAMPING MATRIX
K*U IS THE FORCE DUE TO STIFFNESS (LINEAR OR NONLINEAR)

C *** VECTOR FORMULATION (IE D*UD AND K*U ARE AVAILABLE AS VECTORS)

C *** DEFINITIONS

W = UD + 0.5*ALFA*(HN+HNM1)*(DV - D*UD/M) (NONDIAGONAL
C DAMPING)
W used to store damping force (diagonal damping)

HN the time step from N to N+HALF
HN11 the time step from N-HALF to N

*** STORAGE

SM mass matrix (diagonal stored as a vector)
RSM reciprocal of mass matrix
SC damping matrix (only required for diagonal damping, stored as a vector)
U (3 most current values for variable step)
UD (3 most current values for variable step)
UDD (3 most current values for variable step)
W see definition above

Scratch vectors WORKA, WORKB

include 'PRODCD.PCR'

INTEGER NTIME(28)
REAL SM(1)
REAL RSM(1)
REAL SC(1)
REAL U(1), UD(1), UDD(1)
REAL W(1)
REAL WORKA(1), WORKB(1)

*** INITIAL VALUES

NSOLV = 0
IRST = 0
ILAST = 0
IDTMX = 0
INCTRY = 0
IDEC = 0
INCRS = .FALSE.
DECRS = .FALSE.
ERR = 0.0
RN = 1.

*** INITIALIZE TIME STEP OCCURRENCE ARRAY
DO 10 I=1,28
 NTIME(I) = 0
10 CONTINUE

*** FORM INVERSE OF DIAGONAL MASS MATRIX SM

*** NOTE IF SM=0.0 DOF IS CONSTRAINED TO 0.0
DO 20 I=1,MAXDEG
 IF(SM(I) .EQ. 0.0) GO TO 20
 RSM(I) = 1./SM(I)
20 CONTINUE

*** STEP SIZES

30 CONTINUE
IF(IRST.EQ.0) HN = 5.*DTMIN
IF(HN.GT. (0.5*DTMAX)) HN = 0.5*DTMAX
IF(FIXSTP) HN = 0.5*DTMAX
HN11 = HN
*** STARTING PROCEDURE

INITIALIZE WORK SPACE
DO 100 I=1,MAXDEG
WORKA(I) = 0.0
WORKB(I) = 0.0
W = 1 FOR DIAGONAL DAMPING INITIAL SET UP (IF IDAMP FALSE)
W(I) = 1.0

COMPUTE APPLIED FORCE IN WORKA
IF(IFORCE) CALL FORCE(MAXDEG,TIME,WORKA)

COMPUTE TOTAL SPRING FORCE (IN WORKB)
CALL SFORCE(MAXDEG,U,WORKB)

PRINT OUT INITIAL CONDITIONS
IF(IRST.EQ.0) CALL OUTPUT(IPRT,MAXDEG,TIME,U,UD)

FOR DIAGONAL DAMPING PUT DAMPING COEFFICIENTS INTO SC
IF((IDAMPDG).AND.(.NOT.IDAMP)) CALL DFORCE(MAXDEG,W,SC)

COMPUTE DAMPING FORCE (IN W)
IF((IDAMP).AND.(.NOT.IDAMPDG)) CALL DFORCE(MAXDEG,UD,W)

FORM -F+D*DU+K*U IN WORKA
DO 110 I=1,MAXDEG
IF(.NOT.IDAMP) W(I) = 0.0
IF(IDAMPDG) W(I) = SC(I)*UD(I)
WORKA(I) = -WORKA(I) + WORKB(I) + W(I)

FORWARDpass
CALL OUTPUT(IPRT,MAXDEG,TIME,U,UD)

BEGIN TIME LOOP
NSTEPS = NSTEP-1
200 NSTEPS = NSTEPS+1

ARRAY POINTERS
I1 = UPNTR(1)*MAXDEG
II1 = I1+1
I2 = UPNTR(2)*MAXDEG
I3 = UPNTR(3)*MAXDEG
CENTRAL DIFFERENCE TIME INTEGRATOR

C *** UPDATE TIME
300 TIME = TIME + 2.*HN
NSOLV = NSOLV + 1
IF(NSTEPS .EQ. NSTEP) GO TO 340
C
C *** UPDATE VELOCITY AND DISPLACEMENT
C *** (VELOCITY AT N-HALF, DISPLACEMENT AT N)
C
DO 330 I=1,MAXDEG
 J=I1+I
 K=I2+I
 L=I3+I
 IF(RN .LE. 1.0) GO TO 310
 D = ABS(UDD(K))
 IF(D .EQ. 0.0) GO TO 310
 DEM = ABS(UDD(K)-UDD(L))/D
 IF(DEM .GT. 1.E-02) GO TO 310
 C * ALMOST CONSTANT ACCELERATION
 UD(J) = UD(K) - 0.25*(HN-HNM1)*((3.-RN)*UDD(K)+(1.+RN)*UDD(L))
 UD(J) = UD(J) + 2.0*HN*UDD(K)
GO TO 320
310 UD(J) = UD(K) + (HN-HNM1)*UDD(K)
320 U(J) = U(K) + 2.0*HN*UD(J)
330 CONTINUE
340 CONTINUE
C
C *** COMPUTE ACCELERATION
C
CALL ACLTN(RSM,SC,U,UD,UDD,W,WORKA,IORKB)
C
C *** ERROR COMPUTATION
C
IF(FIXSTP) GO TO 430
CALL ERROR(SM, U, UDD, ETRNH, ETRDF, WORKA, WORKB)
C
C *** STEP SIZE CONTROL SECTION
C
CALL STEPSZ(ETRNM,ETRDF,U,UD,UDD,KGO)
GO TO (400,30,500,300),KGO
C
C *** OUTPUT SECTION
C
400 CONTINUE
IDEC = 0
C
C *** TIME STEP DISTRIBUTION DETERMINATION
DT = 2.0*HNMI
TLIM = 0.0
TFAC = 10.0
TLIMA = 1.0
DO 410 INT=1,128
 IF(INT .GT. 10) TFAC = 100.0
 IF(INT .GT. 19) TFAC = 1000.0
 TLIM = TLIM + TFAC
 IF((DT .GE. TLIMA*DTMIN) .AND. (DT .LT. TLIM*DTMIN))
 GO TO 420
TLIMA = TLIM
410 CONTINUE
420 NTIME(INT) = NTIME(INT) + 1
430 CONTINUE
IPRT = 0

C *** SET TIME STEP TO END AT Tmax
IF(TIME .GE. Tmax) ILast=1
IF((TIME+2.0*HN) .GT. Tmax) HN = 0.5*(TMAX-TIME)

C *** PRINTING OUTPUT
C *** COMPUTE VELOCITY AT N-STEP FOR PRINTOUT PURPOSES
DO 440 I=1,MAXDEG
 J=I+1
 WORKB(I) = UD(J) + HN*UDD(J)
440 CONTINUE
IF(ILAST .EQ. 1) IPRT=10
CALL OUTPUT(IPRT,MAXDEG,TIME,U(II1),WORKB)
IF(ILAST .EQ. 1) GO TO 500

C *** SET POINTERS FOR NEXT TIME STEP
CALL ROTATE(MAXVEC,UPNTR)

C

C *** END TIME LOOP
C
IF(NSTEPS .LT. MAXSTP) GO TO 200

C *** SUMMARY PRINT OUT OF TIME INTEGRATOR PERFORMANCE
500 IF(FIXSTP) GO TO 520
 TAVE = TIME/(NSTEPS-1)
 WRITE(6,1000)
 1000 FORMAT(' average time step ',E12.5/)
 WRITE(6,1010) TAVE,NDOUBL,NCUTS,NFACTS,NSTEPS,NSOLV
 1010 FORMAT(' number of step increases ',I5/,' number of step decreases ',I5/,'
 number of factorizations ',I5/,' number of time steps ',I5/,' number of solutions ',I5)
 WRITE(6,1020)
 1020 FORMAT(' dt occurrences in the ranges indicated',/)
 TLIM = 0.0
 TFAC = 10.0
 TLIMA = 1.0
 DO 510 INTIM=1,28
 IF(INTIM .GT. 10) TFAC = 100.
 IF(INTIM .GT. 19) TFAC = 1000.
 TLIM = TLIM + TFAC
 510 CONTINUE
 IF(NTI .NE. 0) WRITE(6,1030) TLIMA,TLIM,NTI
 1030 FORMAT(' from ',F8.1,' to ',F8.1,' times dtmin, dt occurrence was ',I5)
 TLIMA = TLIM
 510 CONTINUE
SUBROUTINE ACLTN(RSM, SC, U, UD, UDD, W, WORKA, WORKB)

*** PURPOSE
TO COMPUTE THE ACCELERATION AT THE N-TH STEP

*** INPUT
HN HALF OF CURRENT TIME STEP (COMMON CENTDF)
HN1 HALF OF PAST TIME STEP (COMMON CENTDF)
TIME CURRENT TIME (COMMON CENTDF)
RSM RECIPROCAL MASS MATRIX ARRAY
SC DIAGONAL DAMPING MATRIX ARRAY
U DISPLACEMENT ARRAY
UD VELOCITY ARRAY

*** SCRATCH
W ARRAY FOR DAMPING
WORKA, WORKB

*** OUTPUT
UDD ACCELERATION ARRAY

INCLUDE 'PRODCD.PCR'

REAL RSM(1), SC(1)
REAL U(1), UD(1), UDD(1)
REAL W(1)
REAL WORKA(1), WORKB(1)

II1 = II+1

*** INITIALIZE WORKING ARRAYS (PREPARING TO COMPUTE ACCELERATION AT N-TH STEP)
DO 10 I=1, MAXDEG
 WORKA(I) = 0.0
 WORKB(I) = 0.0
10 CONTINUE

*** COMPUTE APPLIED FORCE IN WORKA
IF (IFORCE) CALL FORCE(MAXDEG, TIME, WORKA)

*** COMPUTE TOTAL SPRING FORCE IN WORKB
CALL SFORCE(MAXDEG, U(II1), WORKB)

*** FORM -F+K*U (-WORKA+WORKB) AND FORM DV (IN WORKA)
DO 20 I=1, MAXDEG
 WORKA(I) = -RSM(I)*(-WORKA(I)+WORKB(I))
20 CONTINUE

IF (IDMPDG) GO TO 120
IF (.NOT. IDAMP) GO TO 100

*** COMPUTE DAMPING FORCE IN WORKB
CALL DFORCE(MAXDEG, UD(II1), WORKB)

*** FORM W
DO 30 I=1, MAXDEG
 J=II+I
 W(I) = RSM(I)*WORKB(I)
 W(I) = UD(J) + BTA*(HN+HN1)*(WORKA(I)-W(I))
30 CONTINUE
30 CONTINUE
C *** COMPUTE DAMPING AS UPDATED
CALL DFORCE(MAXDEG,W,WORKB)
C
GO TO 150
C
30 CONTINUE
C *** COMPUTE ACCELERATION AT N
C
C*** NO DAMPING
100 DO 110 I=1,MAXDEG
 J=II+I
 UDD(J) = WORKA(I)
110 CONTINUE
GO TO 200
C
C*** DIAGONAL DAMPING
120 DO 130 I=1,MAXDEG
 J=II+I
 F1 = 1. + HN*RSM(I)*SC(I)
 F2 = RSM(I)*SC(I)
 WORKB(I) = WORKA(I) - F2*UD(J)
 WORKB(I) = UD(J) + HN*WORKB(I)/F1
130 CONTINUE
C
C*** DETERMINE ACCELERATION
CALL DFORCE(MAXDEG,WORKB,W)
DO 140 I=1,MAXDEG
 J=II+I
 UDD(J) = WORKA(I) - RSM(I)*W(I)
140 CONTINUE
GO TO 200
C
C*** NONDIAGONAL DAMPING
150 DO 160 I=1,MAXDEG
 J=II+I
 UDD(J) = WORKA(I) - RSM(I)*WORKB(I)
160 CONTINUE
C
200 RETURN
C
END
C
SUBROUTINE ERRORE(SM, U, UDD, ETRNM, ETRDF, WORKA, WORKB)
C
C *** PURPOSE
TO COMPUTE THE ERROR BASED ON THE HIGHEST
APPARENT FREQUENCY CONCEPT AND THE
DOMINANT FREQUENCY

C *** INPUT
HN HALF OF CURRENT TIME STEP (COMMON CENTDF)
SM MASS MATRIX
U DISPLACEMENT ARRAY
UDD ACCELERATION ARRAY
COMMON /CENTDF/

C *** OUTPUT
ETRNM THE ERROR (MAX LOCAL FREQUENCY)
ERTDF THE ERROR (DOMINANT FREQUENCY)

C *** SCRATCH
WORKA, WORKB
C INCLUDE 'PRODCD.PCR'
C
REAL SM(1),U(1),UDD(1),WORKA(1),WORKB(1)
C
APPROPRIATE VALUES OF EPSMAC FOR VARIOUS COMPUTERS ARE
C CDC 6000/7000 SERIES 7.11E-15 (SINGLE PRECISION)
C IBM 360/370 SERIES 9.54E-07 (REAL*4 PRECISION)
C IBM 360/370 SERIES 2.22E-16 (REAL*8 PRECISION)
C UNIVAC 1108/1110, IBM 7094 1.49E-08 (SINGLE PRECISION)
C
DATA EPSMAC /9.54E-07/
C
HT24 = HN*HN
ETRNM = 0.0
C *** FIND MAXIMUM LOCAL FREQUENCY
DO 30 I=1,MAXDEG
 J=I+I
 K=I+I
 L=I+I
 WORKA(I) = U(J) - U(K)
 WORKB(I) = SM(I)*(UDD(J) - UDD(K))
 DEM = ABS(U(J) - U(K))
 IF(DEM .EQ. 0.0) GO TO 30
 IF((U(J) .NE. 0.0) .AND. (DEM/ABS(U(J)) .LE. EPSMAC))
 1 GO TO 30
 IF(KBAND .EQ. 0) GO TO 20
 KBEG = I-KBAND
 IF(KBEG .LE. 0) KBEG = 1
 KEND = I+KBAND
 IF(KEND .GT. MAXDEG) KEND = MAXDEG
 DO 10 KBE=KBEG,KEND
 JJ = I+KBE
 KK = I+KBE
 D = ABS(U(JJ) - U(KK))
 DEM = AMAX1(DEM,D)
 10 CONTINUE
 CONTINUE
 ERR = HT24*(UDD(J) - UDD(K))/DEM
 IF(ABS(ERR) .GT. ABS(ETRNM)) ETRNM = ERR
30 CONTINUE
C *** FIND DOMINANT FREQUENCY
 BOT2 = VIPDA(WORKA,WORKA,MAXDEG)
 TOP = VIPDA(WORKA,WORKB,MAXDEG)
 DO 40 I=1,MAXDEG
 WORKB(I) = SM(I)*WORKA(I)
40 CONTINUE
 BOT = VIPDA(WORKA,WORKB,MAXDEG)
 IF(BOT2 .EQ. 0.0) BOT = 0.0
 IF(BOT2 .EQ. 0.0) BOT2 = 1.0
 IF((ABS(BOT)/BOT2) .LT. (FLOAT(MAXDEG)*EPSMAC)) BOT = 0.0
 ALAMS = 0.0
 IF(BOT .NE. 0.0) ALAMS = TOP/BOT
 ETRDF = HT24*SQR(ABS(ALAMS))
30 CONTINUE
C *** COMPUTE DAMPING AS UPDATED
CALL DFORCE(MAXDEGU,W,WORKB) GO TO 150
C
C *** COMPUTE ACCELERATION AT N
C
C *** NO DAMPING
100 DO 110 I=1,MAXDEG
 J=I+I
 UDD(J) = WORKA(I)
110 CONTINUE GO TO 200
C
C *** DIAGONAL DAMPING
120 DO 130 I=1,MAXDEG
 J=I+I
 F1 = 1. + HN*RSR(I)*SC(I)
 F2 = RSH(I)*SC(I)
 WORKB(I) = WORKA(I) - F2*UD(J)
 WORKB(I) = UD(J) + HN*WORKB(I)/F1
130 CONTINUE
C
C *** DETERMINE ACCELERATION
CALL DFORCE(MAXDEGU,WORKB,W)
DO 140 I=1,MAXDEG
 J=I+I
 UDD(J) = WORKA(I) - RSM(I)*W(I)
140 CONTINUE GO TO 200
C
C *** NONDIAGONAL DAMPING
150 DO 160 I=1,MAXDEG
 J=I+I
 UDD(J) = WORKA(I) - RSM(I)*WORKB(I)
160 CONTINUE
C
200 RETURN
END

SUBROUTINE ERRORE(SM,U,UDD,ETRNM,ETRDF,WORKA,WORKB)
C
C *** PURPOSE TO COMPUTE THE ERROR BASED ON THE HIGHEST
C APPARENT FREQUENCY CONCEPT AND THE
C DOMINANT FREQUENCY
C
C *** INPUT HN HALF OF CURRENT TIME STEP (COMMON CENTDF)
C SM MASS MATRIX
C U DISPLACEMENT ARRAY
C UDD ACCELERATION ARRAY
C COMMON /CENTDF/
C
C *** OUTPUT ETRNM THE ERROR (MAX LOCAL FREQUENCY)
C ETRDF THE ERROR (DOMINANT FREQUENCY)
C
C *** SCRATCH WORKA,WORKB
SUBROUTINE STEPSZ(ETRNM,EYDF,U,UD,UDD,KGO)

C *** PURPOSE
STEPSIZE SELECTION
C *** INPUT
HNMI HALF OF PAST TIME STEP (COMMON CENTDF)
TIME CURRENT TIME (COMMON CENTDF)
ETRNM CURRENT ERROR (HIGH FREQUENCY)
ETRDF CURRENT ERROR (DOMINANT FREQ)
U DISPLACEMENT ARRAY
UD VELOCITY ARRAY
UDD ACCELERATION ARRAY
COMMON /CENTDF/
C *** OUTPUT
HN HALF OF NEW TIME STEP (COMMON CENTDF)
RN HN/HNMI (COMMON CENTDF)
KGO COMPUTED GOTO CONTROL
C
INCLUDE 'PRODCD.PCR'
C
REAL U(1),UD(1),UDD(1)
C
TERM = ABS(ETRNM)/EPShFQ
TERM2 = ABS(ETRDF)/EPsDFQ
TERM = AMAX1(TERM,TERM2)
C *** POSSIBLE STEP SIZE INCREASE CHECK
IF(TERM .LT. 0.1) GO TO 10
C *** STEP SIZE DECREASE CHECK
IF(TERM .GT. 1.0) GO TO 20
HNMI = HN
RN = 1.0
INCTRY = 0
IDEC = 0
INCRS = .FALSE.
DECRS = .FALSE.
GO TO 50
C *** STEP SIZE INCREASE
10 HNMI = HN
INCTRY = INCTRY + 1
IDEC = 0
IF(NSTEPS .LE. 6) INCTRY = 0
C *** MUST TRY TO INCREASE FOR 5 CONSECUTIVE STEPS BEFORE INCREASING
IF(INCTRY .LE. 4) GO TO 50
INCTRY = 0
NDOUBL = NDOUBL + 1
INCRS = .TRUE.
DECRS = .FALSE.
IF(TERM .EQ. 0.0) TERM = 0.001
RATIO = (1.0/(4.*TERM))**0.25
RATIO = AMIN1(RATIO,1.5)
CENTRAL DIFFERENCE TIME INTEGRATOR

HH = RATIO*HN
RN = HN/HNM1
DTN = 2.*HN
IF(DTN .GT. DTMAX) HN = 0.5*DTMAX
IF(DTN .GT. DTMAX) IDTMX = IDTMX+1
IF(IDTMX .GT. 5) GO TO 50
DTN = 2.*HN
WRITE(6,200) DTN,TIME
200 FORMAT(6,200) DTN,TIME

C *** STEP SIZE INCREASED TO ',E10.4, AT ',E10.4)
GO TO 50

C *** STEP SIZE DECREASE
20 TIME = TIME - 2.0*HN
INCTR = 0
INCRS = .FALSE.
DECRS = .TRUE.
IDTMX = 0
IDEC = IDEC + 1

C *** IF DECREASE MORE THAN 4 TIMES AT ONE TIME POINT, RESTART
IF(IDEC .GT. 4) GO TO 30
RATIO = (1.0/(5.*TERM))**0.2
IF(RATIO .LT. 0.66666667) RATIO = 0.66666667
IF(RATIO .GT. 0.9) RATIO = 0.9
HN = RATIO*HN
RN = HN/HNM1
DTN = 2.*HN
NCUTS = NCUTS + 1
WRITE(6,210) DTN,TIME
210 FORMAT(6,210) DTN,TIME

C *** STEP SIZE DECREASED TO ',E10.4, AT ',E10.4)
IF(DTN .LT. DTMIN) GO TO 70
IF(NSTEPS .NE. NSTEP) GO TO 80

C *** FIRST TIME STEP SO WE ARE GOING TO RESTART
UPNTR(1) = 0
UPNTR(2) = 1
UPNTR(3) = 2
HNM1 = HN
IRST = 1
RN = 1.0
WRITE(6,220)
220 FORMAT(6,220)
CONTINUE

C *** LOAD U AND UD FOR A RESTART AT TIME = TIME
DO 40 I=1,MAXDEG
 K=12+I
 U(I) = U(K)
 UD(I) = UD(K) + HNM1*UDD(K)
40 CONTINUE

C *** INITIALIZE POINTERS
UPNTR(1) = 0
UPNTR(2) = 1
UPNTR(3) = 2
WRITE(6,230) TIME
230 FORMAT(6,230) TIME

CONTINUE
ERR = 0.0
NSTEP = NSTEPS
RN = 1.0
HN = 0.1*HN
DTN = 2.0*HN

IF(DTN .LT. DTMIN) HN = 0.5*DTMIN

GO TO 60

C 50 KGO = 1 ! STEP UNCHANGED OR INCREASED
 ! STEP UNCHANGED OR INCREASED
 GO TO 90

60 KGO = 2 ! RESTART
 ! RESTART
 GO TO 90

70 KGO = 3 ! DT < DTMIN (ERROR)
 ! DT < DTMIN (ERROR)
 GO TO 90

80 KGO = 4 ! STEP DECREASE

90 RETURN
END

SUBROUTINE ROTATE(N, INDEX)

C *** PURPOSE ROTATE STACK POINTERS
C
C *** INPUT N NUMBER OF SUBVECTORS
C INDEX ARRAY OF CURRENT POINTERS
C
C *** OUTPUT INDEX NEW POINTERS
C
INTEGER INDEX(1)

IF(N-2) 30,10,20
10 ITEMP = INDEX(2)
 INDEX(2) = INDEX(1)
 INDEX(1) = ITEMP
 RETURN
20 ITEMP = INDEX(3)
 INDEX(3) = INDEX(2)
 INDEX(2) = INDEX(1)
 INDEX(1) = ITEMP

30 RETURN
END

FUNCTION VIPDA(A, B, N)

C *** REAL FUNCTION VIPDA = A DOT B, A AND B OF LENGTH N
C DOUBLE PRECISION ACCUMULATION
C RESULT RETURNED IN SINGLE PRECISION
C
DOUBLE PRECISION ACCUM
REAL A(1), B(1)

C
CENTRAL DIFFERENCE TIME INTEGRATOR

```
ACCUM = 0.0
DO 10 I=1,N
     ACCUM = ACCUM + DBLE(A(I))*DBLE(B(I))
10 CONTINUE
VIPDA = SNGL(ACCUM)
C
RETURN
END

CC
PARAMETERS ASSOCIATED WITH CENTRAL DIFFERENCE INTEGRATOR

COMMON /CENTDF/
B  BTA,
D  DECRS,DTMAX,DTMIN,
E  EPSDFQ,EPShFQ,ERR,
F  FIXSTP,
H  HN,HNM1,
I  IDEC,IDAMP,IDMPDG,DTMX,IFORCE,INCRS,INCTRY,IRST,
2  I1,I2,I3,
K  KBAND,
M  MAXD,MAXSTP,MAXVEC,
N  NCUTS,NDOUBL,NFACTS,NSTEP,NSTEPS,
R  RN,
T  TIME,TMAX,
U  UPNTR
C
INTEGER UPNTR(3)
LOGICAL DECRS,FIXSTP,IDAMP,IDMPDG,IFORCE,INCRS
C
Appendix B
User Written Subroutines with Sample Problem

SUBROUTINE DRIVER IN THIS EXAMPLE DRIVER IS THE MAIN PROGRAM
--- PURPOSE TO PROVIDE THE DATA NEEDED TO CALL STINTC (ELEMENT STINT/CENDIF) FOR CENTRAL DIFFERENCE TIME INTEGRATOR
--- INPUT USER SUPPLIED, SEE LIST NEEDED BELOW
--- OUTPUT THE ARRAYS LOGIC(20) INTGR(20)
C
REALN(20)
C (ICORE)

WHERE

LOGIC(1) = IGASP, IF .TRUE. DMGASP I/O USED
.FALSE. UNFORMATTED FORTRAN I/O
LOGIC(2) = IFORCE, IF .TRUE. A FORCING FUNCTION IS USED
.FALSE. NO FORCING FUNCTION
LOGIC(3) = IDISP, IF .TRUE. INITIAL DISPLACEMENTS
.FALSE. NO INITIAL DISPLACEMENTS
LOGIC(4) = IVEL, IF .TRUE. INITIAL VELOCITIES
.FALSE. NO INITIAL VELOCITIES
LOGIC(5) = FIXSTP, IF .TRUE. USE A FIXED TIME STEP
.FALSE. VARIABLE STEP WILL BE USED
LOGIC(6) = IDAMP, IF .TRUE. PROBLEM HAS DAMPING
.FALSE. NO DAMPING
LOGIC(7) = IDMPDG, IF .TRUE. DAMPING MATRIX IS DIAGONAL
.FALSE. DAMPING MATRIX NONDIAGONAL

NOTE IF IDMPDG = .TRUE., THEN IDAMP HAS THE FOLLOWING MEANING
1) IF IDAMP = .TRUE. USER WILL SUPPLY DAMPING MATRIX AS
A VECTOR, TO BE READ IN BY STINT
2) IF IDAMP = .FALSE. DAMPING IS SUPPLIED BY A USER ROUTINE
THAT COMPUTES D*UD AS IN THE NONDIAGONAL DAMPING CASE

INTGR(1) = MAXDEG, THE NUMBER OF DEGREES OF FREEDOM
INTGR(2) = IUNIT, THE EXTERNAL MASS STORAGE UNIT NUMBER
THAT CONTAINS THE MASS MATRIX, DAMPING
MATRIX (IF IDMPDG AND IDAMP ARE .TRUE.),
INITIAL DISPLACEMENT AND VELOCITY (IF
PRESENT). ALL QUANTITIES ARE VECTORS OF
LENGTH MAXDEG.
INTGR(3) = KBAND, THE WIDTH OF THE CONNECTIVITY BAND OF
THE STIFFNESS MATRIX (OPERATOR) OVER WHICH
THE ERROR IS TO BE NORMALIZED.
NOTE KBAND = 1 IMPLIES EACH DOF IS TREATED
EQUALLY
KBAND = MAXDEG/10 + 2, RECOMMENDED
(WHERE MAXDEG/10 IS INTEGER ARITHMETIC)

REALN(1) = TIME, THE STARTING VALUE OF TIME FOR THIS RUN
REALN(2) = TMAX, THE VALUE OF TIME AT WHICH THE INTEGRATOR
WILL STOP
REALN(3) = DTMIN, THE MINIMUM TIME STEP
REALN(4) = DTMAX, THE MAXIMUM TIME STEP
(NOTE, IF FIXSTP = .TRUE. STINTC WILL USE
TIME STEP = DTMIN AND SET DTMAX=DTMIN)
REALN(5) = SAMPLES/CYCLE, THE NUMBER OF SAMPLES/CYCLE
FOR THE DOMINANT FREQUENCY COMPONENT,
MUST BE PI OR GREATER FOR STABILITY.
10 TO 20 SAMPLES IS SUGGESTED
4.0 IS DEFAULT, IF REALN(5) .LT. PI
REALN(6) = SAMPLES/CYCLE, THE NUMBER OF SAMPLES/CYCLE
FOR THE HIGHEST APPARENT FREQUENCY
COMPONENT, MUST BE PI OR GREATER
FOR STABILITY.
4PI IS INCREDIBLY STABLE
4.0 IS DEFAULT, IF REALN(6) .LT. PI

REALN(7) = ALFA, WHERE THE VALUE OF ALFA LIES BETWEEN 0.0
AND 1.0. SUGGEST ALFA NEAR 1.0 FOR LIGHT DAMPING
AND NEAR 0.20 FOR CRITICAL DAMPING (SEE
REFERENCES 3 & 4). ONLY USED
FOR NONDIAGONAL DAMPING

ICORE IS THE SIZE OF THE DATA ARRAY C THAT STINTC NEEDS
TO DO ITS THING. THE USER MUST INSURE THAT THIS
ALLOCATION IS AVAILABLE.

ICORE = (3 + 3*L1 + L2 + L3 + L4)*MAXDEG
WHERE
L1 = 3 FOR VARIABLE STEP, 1 FOR FIXED STEP
L2 = 1 FOR DAMPING, 0 OTHERWISE
L3 = 1 FOR DIAGONAL DAMPING, 0 OTHERWISE
L4 = 1 FOR VARIABLE STEP, 0 OTHERWISE

LOGICAL LOGIC(20)
INTEGER INTGR(20)
REAL REALN(20)
COHON C(100)

REAL SM(2),VZ(2)
LOGIC(1) = .FALSE. I UNFORMATTED FORTRAN I/O
LOGIC(2) = .TRUE. I FORCING FUNCTION
LOGIC(3) = .FALSE. I NO INITIAL DISPLACEMENT
LOGIC(4) = .TRUE. I INITIAL VELOCITY
LOGIC(5) = .FALSE. I VARIABLE TIME INCREMENT
LOGIC(6) = .TRUE. I DAMPING PRESENT
LOGIC(7) = .FALSE. I NONDIAGONAL DAMPING

INTGR(1) = 2 I 2 D.O.F.
INTGR(2) = 1 I DATA ON UNIT 1
INTGR(3) = 1 I KBAND = 1

REALN(1) = 0.0 I START TIME
REALN(2) = 1.0 I FINISH TIME
REALN(3) = 0.00001 I MINIMUM TIME INCREMENT
REALN(4) = 1.0 I MAXIMUM TIME INCREMENT
REALN(5) = 50.0 I SAMPLE/CYCLE DOMINANT FREQ.
REALN(6) = 4.0 I SAMPLE/CYCLE HIGHEST FREQ.
REALN(7) = 1.0 I ALFA - DAMPING PARAMETER

VZ(1) = 100.0 I INITIAL VELOCITY D.O.F. 1
VZ(2) = 0.0 I INITIAL VELOCITY D.O.F. 2

SM(1) = 1.0 I MASS D.O.F. 1
SM(2) = 1.0 I MASS D.O.F. 2

OPEN(UNIT=1, FORM='UNFORMATTED', TYPE='SCRATCH')
WRITE (1) (SM(I),I=1,2) I UNFORMATTED OUTPUT TO UNIT 1
WRITE (1) (VZ(I),I=1,2)  ! UNFORMATTED OUTPUT TO UNIT 1
REWIND 1
CALL STINTC(LOGIC,INTGR,REALN,C)
WRITE(6,1)
1 FORMAT('///',' *** THAT'S ALL FOLKS ***')
END

SUBROUTINE FORCE(MAXDEG,TIME,F)
C --- PURPOSE TO PROVIDE THE USER SUPPLIED FORCING FUNCTION, F
C --- INPUT    MAXDEG,TIME
C --- OUTPUT   F
C --- DECLARATIONS INTEGER MAXDEG
                  REAL  TIME,F(1)
C --- DEFINITIONS
                  MAXDEG = NUMBER OF DEGREES OF FREEDOM (LENGTH OF F ARRAY)
                  TIME = THE TIME AT WHICH THE FORCE IS TO BE CALCULATED
                  F = THE VECTOR CONTAINING THE FORCE AT TIME. F IS OF
                  LENGTH MAXDEG.
C --- EXAMPLE
C --- D.O.F. 2 SQUARE FORCE = 3000. 0.5<TIME<0.55
C --- FORCE = 0.0  OTHERWISE
C
                  REAL F(1)
                  F(1) = 0.0
                  F(2) = 0.0
                  IF(TIME .LT. 0.5) GO TO 10
                  IF(TIME .GT. 0.55) GO TO 10
                  F(2) = 3000.
C
10 RETURN
END

SUBROUTINE SFORCE(MAXDEG,U,FS)
C --- PURPOSE TO PROVIDE THE USER SUPPLIED STIFFNESS FORCES, (FS),
       I.E. (FS) = [K]*(U)
C --- INPUT    MAXDEG,U
CENTRAL DIFFERENCE TIME INTEGRATOR

C --- OUTPUT FS
C --- DECLARATIONS INTEGER MAXDEG
C REAL U(1), FS(1)
C --- DEFINITIONS
C MAXDEG = NUMBER OF DEGREES-OF-FREEDOM (LENGTH OF U AND ARRAYS)
C U = THE VECTOR CONTAINING THE DISPLACEMENTS
C FS = THE VECTOR CONTAINING THE STIFFNESS FORCES
C --- EXAMPLE
C REAL U(1), FS(1)
C --- SPRING RATE COEFFICIENTS
C DATA SK1/1000./, SKC/100./, SK2/1000./
C --- SPRING (STIFFNESS) FORCES FOR D.O.F. 1 AND D.O.F. 2
C FS(1) = SK1*TANH(U(1)) + SKC*(U(1)-U(2))
C FS(2) = SK2*SINH(U(2)) + SKC*(U(2)-U(1))
C RETURN
END

SUBROUTINE DFORCE(MAXDEG, UD, FD)
C --- PURPOSE TO PROVIDE THE USER SUPPLIED DAMPING FORCES, (FD), I.E. (FD) = [D]*(UD)
C --- INPUT MAXDEG, UD
C --- OUTPUT FD
C --- DECLARATIONS INTEGER MAXDEG
C REAL UD(1), FD(1)
C --- DEFINITIONS
C MAXDEG = NUMBER OF DEGREES-OF-FREEDOM (LENGTH OF UD AND ARRAYS)
C UD = THE VECTOR CONTAINING THE VELOCITIES
C FD = THE VECTOR CONTAINING THE DAMPING FORCES
C --- EXAMPLE
C REAL UD(1), FD(1)
DATA D /5.0/ 1 DAMPING VALUE

FD(1) = D*(UD(1) - UD(2)) 1 D.O.F. 1 DAMPING FORCE
FD(2) = D*(UD(2) - UD(1)) 1 D.O.F. 2 DAMPING FORCE

RETURN
END

SUBROUTINE OUTPUT(IPRT,MAXDEG,TIME,U,UD)

C --- PURPOSE TO SUPPLY THE DISPLACEMENT AND VELOCITY AT EACH TIME
C     STEP. THE USER CAN THEN USE THIS DATA FOR PRINTING
C     OR PLOTTING OUTPUT

C --- INPUT     IPRT,MAXDEG,TIME,U,UD
C --- OUTPUT    NONE
C --- DECLARATIONS INTEGER IPRT,MAXDEG
C                     REAL TIME,U(1),UD(1)
C --- DEFINITIONS
C     IPRT = -2 STINT HAS ERRORED OFF NO MORE OUTPUT
C     = 0 AT ALL TIMES OTHER THAN BEGINNING TIME
C     = 2 AT TIME = BEGINNING TIME
C     = 10 AT THE LAST TIME (PROBLEM IS FINISHED)
C     NOTE, THE IPRT=2 FLAG CAN BE USED TO INITIALIZE
C     AND/OR SET UP PRINTING AND/OR PLOTTING
C     BUFFERS,I/O,ETC.
C     MAXDEG = NUMBER OF DEGREES OF FREEDOM
C     (LENGTH OF U AND UD ARRAYS)
C     TIME = THE VALUE OF THE CURRENT TIME
C     U = THE CURRENT DISPLACEMENT VECTOR (MAXDEG VALUES)
C     UD = THE CURRENT VELOCITY VECTOR (MAXDEG VALUES)
C --- EXAMPLE
C
REAL U(1),UD(1)
DATA ICONT/0/

C IF(IPRT .EQ. -2) GO TO 30
C --- OUTPUT RESPONSE TO UNIT 10 FOR POST PROCESSOR PLOTS
C IF(IPRT .EQ. 2) OPEN(UNIT=10, FORM='UNFORMATTED', TYPE='SCRATCH')
C WRITE(10) TIME,(U(I),I,' ',MAXDEG),(UD(I),I,' ',MAXDEG)
C --- PRINT INITIAL CONDITIONS
C IF(IPRT .EQ. 2) WRITE(6,1)
   1 FORMAT(1H1)
      IF(IPRT .EQ. 2) GO TO 10
      IF(IPRT .EQ. 10) GO TO 10
CENTRAL DIFFERENCE TIME INTEGRATOR

ICONT = ICONT + 1
C --- PRINT AT EVERY 100-TH TIME INCREMENT
IF(MOD(ICONT,100).NE.0) GO TO 20
C
10 WRITE(6,2) TIME,(I,U(I),UD(I),I=1,MAXDEG)
   2 FORMAT(/,
      1 ' TIME =',E10.3,/, 
      2 ' D.O.F. DISPLACEMENT VELOCITY',/, 
      3 (7X,I1,6X,E10.3,6X,E10.3))
   WRITE(6,3)
   3 FORMAT(/)
C
20 RETURN
C --- ERROR EXIT
30 WRITE(6,4)
   4 FORMAT(/,' ***** CENDIF HAS ERRORRED OFF *****')
   STOP
END

Appendix C
Sample Problem Results

WELCOME TO STINTC THE STAND-ALONE CENTRAL DIFFERENCE TIME INTEGRATOR
STINTC REQUIRES 28 WORDS OF STORAGE
6 DECEMBER 1979 VERSION

TIME = 0.000E+00
D.O.F. DISPLACEMENT VELOCITY
1 0.000E+00 0.100E+03
2 0.000E+00 0.000E+00

$$$ STEP SIZE INCREASED TO 0.1500E-03 AT 0.1100E-02
$$$ STEP SIZE INCREASED TO 0.2250E-03 AT 0.1850E-02
$$$ STEP SIZE INCREASED TO 0.3375E-03 AT 0.2975E-02
$$$ STEP SIZE INCREASED TO 0.5063E-03 AT 0.4663E-02
$$$ STEP SIZE INCREASED TO 0.7594E-03 AT 0.7194E-02
$$$ STEP SIZE INCREASED TO 0.1139E-02 AT 0.1099E-01
$$$ STEP SIZE INCREASED TO 0.1709E-02 AT 0.1669E-01
$$$ STEP SIZE INCREASED TO 0.2563E-02 AT 0.2523E-01
$$$ STEP SIZE INCREASED TO 0.3844E-02 AT 0.3804E-01
$$$ STEP SIZE INCREASED TO 0.5767E-02 AT 0.5727E-01
$$$ STEP SIZE INCREASED TO 0.8650E-02 AT 0.1149E+00

TIME = 0.409E+00
CENTRAL DIFFERENCE TIME INTEGRATOR

D.O.F.  DISPLACEMENT     VELOCITY
1     0.739E+00  -0.516E+02
2     -0.295E+00 -0.862E+01

$$$ STEP SIZE DECREASED TO 0.6107E-02 AT 0.7723E+00
$$$ STEP SIZE INCREASED TO 0.8145E-02 AT 0.8273E+00
$$$ STEP SIZE DECREASED TO 0.5430E-02 AT 0.8517E+00
$$$ STEP SIZE INCREASED TO 0.7701E-02 AT 0.9169E+00

TIME = 0.100E+01
D.O.F.  DISPLACEMENT     VELOCITY
1     -0.199E-01  0.103E+02
2     0.271E+00  0.312E+02

AVERAGE TIME STEP 0.56818E-02
NUMBER OF STEP INCREASES 13
NUMBER OF STEP DECREASES 2
NUMBER OF FACTORIZATIONS 0
NUMBER OF TIME STEPS 177
NUMBER OF SOLUTIONS 179

DT OCCURRENCES IN THE RANGES INDICATED
FROM  10.0 TO  20.0 TIMES DTMIN, DT OCCURRENCES WAS   16
FROM  20.0 TO  30.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM  30.0 TO  40.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM  50.0 TO  60.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM  70.0 TO  80.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM 100.0 TO 200.0 TIMES DTMIN, DT OCCURRENCES WAS   10
FROM 200.0 TO 300.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM 300.0 TO 400.0 TIMES DTMIN, DT OCCURRENCES WAS    5
FROM 500.0 TO 600.0 TIMES DTMIN, DT OCCURRENCES WAS  22
FROM 600.0 TO 700.0 TIMES DTMIN, DT OCCURRENCES WAS   10
FROM 700.0 TO 800.0 TIMES DTMIN, DT OCCURRENCES WAS   10
FROM 800.0 TO 900.0 TIMES DTMIN, DT OCCURRENCES WAS   79

*** THAT'S ALL FOLKS ***
Figure 1. Overview of Structural Dynamic Response Analysis
Figure 2. Time Integrator Functional Outline
\[ \dot{u}_1(0) = 100.0 \quad \dot{u}_2(0) = 0.0 \]

\[ u_1(0) = u_2(0) = 0.0 \]

\[ P_1(t) = 0.0 \]

\[ P_2(t) = 0.0 \quad t < 0.5; \ t > 0.55 \]

\[ P_2(t) = 3000.0 \quad 0.5 \leq t \leq 0.55 \]

*Figure 3. Sample Problem Model*
Figure 4. Sample Problem - Time Increment History
Figure 5. Sample Problem - D.O.F. 1 Displacement History
Figure 6. Sample Problem - D.O.F. 2 Displacement History
Figure 7. Sample Problem - D.O.F. 1 Velocity History
Figure 8. Sample Problem - D.O.F. 2 Velocity History