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- An 'analytical fomulation, based on the method of moments (MM) is
"described for solving electromagnetic problems associated with finite-
length cylinders of arbitrary cross seciton, denoted in this report as
bodies of translation (BOT). This class of bodies can be used to model
structures with noncircular cross sections such as wings, fins, and

aircraft fuselages. 'The theoretical development parallels in part the
MM formulation developed earlier by Mautz and Harrington for bodies of
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érmlution (BOR). Like the latter approach, a modal expansion is used

to describe the unknown surface currents on the BOT. The present
analysis has been developed to treat the far-field radiation and
scattering from a BOT excited by active antennas or illuminated by
a plane wave of arbitrary polarization and angle of incidence. In E
addition, the electric and magnetic near-field components are determined !
in the vicinity of active and passive apertures (slots). Using the
Schelkunoff equivalence theorem, the aperture-coupled fields within a
BOT are also obtained. The formulation has been implemented by a i :

computer algorithm and validated using accepted data in the literature.
A user/systems manual (Volume II) provides a detailed description of
the use of the codes and example problems. Program listings are given
in Volume III.
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EVALUATION

This report documents an electromagnetic (EM) fields analysis technique that
was developed for a class of bodies that can be modeled-as rectangular cylinders
with an arbitrary cross sectional geometry, and are referred to as "Bodies of
Translation" (BOT). This technique has the ability to model EM scattering,
radiation with multiple antennas, aperture coupling, near and far electric and
magnetic fields as well as surface current distribution.

This technique is presently limited to modeling BOT's which have open ends
and slot antennas. A subsequent effort will address these limitations and develop
procedures for modeling the ends of the BOT's and off-surface radiations such as
monopoles and loops. Emphasis will also be placed on techniques which will allow
one to hybrid this method with other EM analysis techniques in order to model the
behavior of more complex structures as well as to economize computer resources.

DANIEL E. WARREN
Project Engineer
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1. INTRODUCTION AND BACKGROUND

Modern aircraft and missiles require complex electromagnetic (EM)
systems to perform their roles effectively, To characterize the behavior of
these systems, analytical techniques have been developed to predict the EM
‘ radiation generated and scattered by aerospace vehicles. Recently, predic-

tive techniques based on the method of moments (MM) have been developed to
solve a variety of antenna, coupling, and field penetration problens.l In
these analyses, the radiating or scattering structures are represented by
wires, surf;ce patches, and wire grids. Because of the computational re-
quirements of the method to date, application of these methods has been
limited to bodies with surface areas on the order of Az. Larger surfaces
(of Vv 45 Az) can be analyzed via the MM technique if the vehicle body has
some degree of symmetry, such as in the case of bodies of revolution (BOR) .

To treat complex-shaped bodies, such as parts of wing sections and non-
circular aircraft fuselages, a generalized theoretical formulation called

the method of moments for bodies of translation, abbreviated here as MM/BOT,

2,3

has been developed.”’ This formulation treats the radiation and scattering

v L

from bodies with active and passive apertures. In addition, the technique
has been extended to compute the fields in the immediate vicinity of a slot
antenna as well as fields coupled interiorly through rectangular apertures
U in the BOT surface. The MM/BOT technique combines many of the cost-

‘ ' effective features of the MM/BOR analysis“ with some of the shape flexibil-
ity of the wire-grid approach and retains the ability to treat difficult
boundary conditions associated with realistic radiating aﬂd scattering

geometries,




2, SUMMARY OF COMPLETED EFFORT

The principal results of the completed effort are enumerated below.,
Detailed discussion of the individual topics is given in the sections indi-

cated.
o

The MM/BOT formulation was developed for a generalized BOT configu-
ration to treat the radiation from asymmetric aperture (slot)
antennas or arrays (Sections 4 and 5). The results are in agreement
with the predictions of the MM/BOR technique for asymmetric slots
embedded in a BOR surface (Section 8).

The MM/BOT formulation was extended to compute all the electric and
magnetic near-field components at an arbitrary point in the vicinity
of a radiating or scattering surface, For radiating apertures, an
arbitrary polarization and antenna excitation can be specified
(Section 6).

An analysis was implemented to determine the aperture~coupled fields
(both electric and magnetic) produced by EM illumination of the BOT
from an arbitrary angle of incidence and polarization (Section 7).

A computer algorithm was developed to implement all aspects of the
MM/BOT formulation in a hierarchy of user-oriented computer codes.
The codes, written in FORTRAN IV, are modular and machine indepen-
dent., All parts of the codes were tested and installed on the RADC
computer gsystem. A user/systems manual (Volume II of this report)
was developed for the MM/BOT algorithm. A series of example prob-
lems was provided to illustrate the technique for the prospective
user.

The entire computer algorithm was tested for a series of EM problems
and validated with results using classical boundary value solutions
and the MM/BOR codes (Section 8).




3. SUMMARY OF PREVIOUS WORK

The original formulation of the method of moments (MM) was applied
initially to treat the radiation and scattering from thin wire structuresl’s
and later to bodies of revolution.“ As shown in the subsequent discussion,
the MM theory can be extended to treat finite cylindrical bodies of arbi-
trary cross section, denoted here as bodies of translation (BOT). Examples

of such configurations are shown in Figure 1. 1In this report, the cylinders
are assumed to be uncapped (i.e., open at the ends). The theoretical
development for this class of bodies parallels in patt the MM/BOR formula-
t:ion4 and retains the modal expansion concept developed in the latter theory.
Earlier, Andreasen6, Wallenberg and Harrington7. and Wilton and Mittras,
among others, have treated the case of cylinders of arbitrary cross section »
but of infini;e length, The case of finite-length cylinders of arbitrary ]

cross sections has not been treated previously., Several investigators

examined the special case of finite-length, right-circular cylinders for
10

; various limiting cases. For example, Ufimtsevg, Kieburtz™, and

£ Fialkovskiill developed solutions for thin cylinders with ka << 1; while
Adeyl2 considered long cylinders with ka = 1, where ka = 27a/A and a is the
cylinder radius, w1lliam913 studied the diffraction from finite-length

hollow cylinders where the open ends did not materially influence the dif-
14,15

fracted waves. A complete study of tubular cylinders was made by Kao
5ﬁ% ) for arbitrary length and ka, but restricted to broadside illumination. His

formulation resulted in a pair of decoupled integral equations that were
solved to yield the axial and the circumferential currents on the cylinder.

Recently, Davis and Hittral6 examined the current distribution on an open

cylinder of 1 A length and ka = 1 using a hybrid formulation incorporating

the electric and magnetic field integral equation representations of
Maxwell's equations (i.e., EFIE and MFIE, respectively). The present MM/BOT

formulation treats the foregoing problems as special subcases.
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Figure 1. Body of transistion (BOT) configurations.
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4, DEVELOPMENT OF MM/BOT FORMULATION

4.1 Electric Field Integral Equation for BOT
In a given radiation or scattering problem, the total electric field is

given as

=+, (1)

where i and s refer to the incident and scattered fields, respectively. The
scattered field in turn is defined in terms of the vector potential, K, and
scalar potential, &, yielding

ES = - juh - VO, (2)
-ij _
o, [ 15w
-jkR
1 e
d’--e—-ffO'TI-R—ds, (4)
%
o= %V-j. (5)

The field at the surface of the conductor can be expressed in terms of the

incident and scattered electric fields Ei and Es, respectively, i.e,,

8 i -+ > > - >,
B = - i:~’tan = - kD + D1, =L, (6)

where J 1s the unknown current density on the surface and L(°*) is a linear
integro-differential operator over 3. Writing out Equation (6) explicitly
yields

-JkR >
o T e =
8- jwuo[/:[J T 48+ - v'”(v H ‘mR da] =tH. o
s tan
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4.2 Expansion of Surface Currents
Restricting the discussion to a BOT, Equation (7) 1is solved for 3 by

subdividing the domain of the integro-differential equation by segmenting
the BOT surface S into leng;h-wiae strips as shown in Figure 2, On the con~-
ducting surface S of the scatterer (Figure 2), the unknown current density 3
is expanded in a double sum of basis functions spanning S, described by the
orthonormal coordinates (t,z), so that

- - > _t .t >z .2
¥ 3"- + J jz'; {utrnjfj(r) + uzlnjfj(‘l‘)} v, (8, (8)

Figure 2 Segmented BOT configuration.

where [ = z/L, T = t/I', and vn(;) is to be defined later, (L is the half-
length of the scattering body along z, and T is the girth of S along t
divided by the number of strips chosen to represent S.) Equation (8) implies
a modal expansion of J along 7. The terms f;(r) and f;(T) can be chosen as

pulse, piecewise sinusoidal, or, as in this case, triangle functiomns, 1i.e.,

1-|t',]t'] <1
f“(r)- -T'-T-‘l‘j,a-tor z. (9
3 o,|t'| >1




o
where vn g0

For a nonclosed BOT (i.e., the slit cylinder in Figure 1), a half-triangle
function 18 used to expand the currents along an edge parallel to z. The

choice of triangle functions allows compact, computer-coefficient expres-
sions to be obtained for the MM impedance expressions. Substituting Equation
(8) into Equation (7) and forming the inner products via the Galerkin pro-
cedure with respect to a set of trial functions W:i (= 3:1). witha =t or gz,
yielda the matrix equation,

v 1 M,

v - (10)
Yo Zgor I, -

Vn - b - bIn

In Equation (10), the column vectors V and I refer to the equivalent voltages
and currents on S, respectively, and where the i-th element of V in terms of

the inner product for the n-th mode is defined as:

1" -I%L— <E:an' ﬁ:):i>

(11)

21 2 > 0
= Jds Etan ' W;i fds Etan Yy, fi(T) Vn(C).
S

7]

with a = t or z, denotes the a-directed voltage on the BOT.
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Figure 3. General structure of impedance matrix for MM/BOT snalysis.
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3 4.3 Derivation of the Impedance Matrix, Zpgr -

The structure of Z is given in Figure 3, where each Z-n is a full

BOT

i submatrix, The foregoing matrix equation bears a canonic similarity to the
h MM/BOR result., However, in general, the expansion functions in Equation (8)
. : are not orthonormal with respect to the integral operator L(°) over the sur-

face of the BOT as in the BOR case. Thus, in principle, all the zmn matrices

are present in 2 T since there is no modal decoupling. The elements of the

BO
partitioned submatrices of zmn can be computed from the general expression:

(zaB) f,/ d’f/“" [3“’“0 C Jnj( 8) *"‘" (V' - (s'>)(v- b (s))] 4

(12) 1
! ‘ . o 4
’ 4R ° .
1
where [
(@, B=torz) and R = \[(x-X')2+(y-y')2+(z-z')z.
3
i ; Using the expansion for ] [Equation (8)] and the fact that ﬁgi - 3*

(* denotes a conjugate) and noting that for any vector X, Vek = P'PfaAtlar) +
L'I(BAZ/BC), Equation (8) becomes:

tt -
(“) - jKﬂ5/d9 j ds' (cos(\) v') £ (‘l’) fj (t")
Ch (13)

621( (t") f (r)) v;(c') vn(c) ¢,

ct z * o :
(i;) -jn—deS./" ds' fi(-tr) fj(T) vm(c') Vn(C) ¢, (14) R
S S |




and
(“)m = JKné f ds f ds’ (v &V, () - —v * @y (c))
s’ (15)
. fi(t) fj(r ) ¢
where
’[o I o . L
ds = dtdg; n = E:;s._-f’x 21!()‘)
and
I Ns%? + (@ - o0’
¢ = L
4w
Vs2o? + (¢ - o2
(16)
2
o-—}.- \[(x-x")2+ vy-y"D"»
and vV and V' are the angles between the t-curve and the x-axis at points x,y ’
and x',y' on the BOT, respectively. The expression for (z:;)lnn is identical

to that given in Equation (14), with m and n, and i and j interchanged. For
evaluation of Equations (13-15), the functional form of va (7)) = exp(jnny) was
chosen. The triangle function fj( ), [Equation (9)1, and its derivative fj( )
are approximated by four pulses, denoted as Tp and Tp, respectively, with
p=1, 2, 3, 4 where

The expressions for the (i,j)-th elements of the submatrices of zw:,,r are
obtained by carrying out the surface integrals in Equations (13-15). The
corresponding triangle functions are depicted graphically imn Figure 4, Thus,

4
tt) Z t3c

= j2Kné [? T cos(v -v) - ] G an
(13 praelt P 4 q 2,(2 Tp"ad Cmn

10
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( >
tz 2Tn ot 2z
3 ===n TT. G (18)
1 ) K
] mn Pyq=l Pq m
( >
2t 2mm zot
Z ) = -=n T°T. G : (19)
i K
3/mm pqml PO
- 2
zz z mnw
Z - - ——
(13)1-11 12Kné Z TPT: ( 3 ) G * (20)
Psq=l K
vhere following the convention in Reference 4, (i,j) correspond to the
indexes p,q, respectively. The term vp is the angle between the t-curve and +

the x-axis at point xp. yb on the BOT, The function Gmn is the Green's
function integrated over ds and ds', where these integrations can be carried

out quasi-analytically, as discussed below.




4.4 Evaluation of Gyp Functions

The evaluation of Gm encompasses two surface integrals, written

explicitly as:

Gm(:l.,j) -fd‘t'fd'rfldc fld;'
P q

A | anV82 o + (2 - "

IRVEE o 4 (g - T’
2

(21)
47(ng - wi')
o @ ]
where the 1' and T integrations are carried out over the p and q-th subseg-

ments (strips) associated with the i~th and j-th strips (see Figure 4).
letting £ = - 7', the two integrations over { and Z' reduce to

2 e-jKR
Can(ts) = [ € @ [ [ g @2)
0 P q

where

%(1 --g-) cos nM{; m = n
um(E) - m-n+l (23)

1 (-1 _(ntm
T (o) sin (E-E-E) nE cos(—z—)ﬂi; m¥n

and

R = déz p2 + 52 and r)2 = -!'2- [(x - x')2 + (y ~ y')z].
T
The integral over T' using the centroid approximation over the interval A‘tp'

yields

-JKRp

P

2 Y o J
G (1r9) = [ 4 ugg(® 1) [ Ter S, 26)
0 T
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- -2
‘1'3"(1'2'1)- ‘z‘i"(Lz—)'
The integration over T can be carried out analytically using a Taylor expan-

sion of the integrand about qu and completing the square in the integrand.
Using only one term in this expansion yields

T2 e-jKR" KR 2
f dt R ox e / dt
P
‘l'l Tl
1-3K [\I&z(t + -ro)2 + dz - Vg pm2 + Ez] (25)
' dsi(r + ro)z + d?
-JKR 2
e P —jK(‘rz-'rl)+(1+jl(Rp)%-[ —ds__ 1
: 8, Jsz + d2
where
1
s = 61, TO T [(xq - xp) coqu + (yq - yp) sin Vv ] .
T
1 -1 - N2 o 24 g2
p2 B am——

1 2 N
pa " 72 [(xq %)+ (g -~y ]

2 2 2.2
d“ =R =61
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f
.E
|
g,
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F
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The approximation in Equation (25) implies the condition that

LA BN
R - < = {s).
Klp qu—Z‘(l)

The integration over s in Equation (25) is carried out analytically. Then
approximating the integral over £ in Equation (24) by a series,

M-1
2
Con " ¥ uz-% “m(ﬁ“)f(iu): | (26)
where
-3JKR
£(g) = e M (1 + jKqu) 1n X (27)
'sz + qsi + d2 X
X = 1%, (28)
sl + Jsi + cl2
and

- e 2u + 1
G(TO + 1/4), Eu = -—M-—-—-.

For the self-terms (i.e., qu = 0), Equation (24) reduces to the form,

2

- 2
G, - %fd& s ®e -k S @+ gxe) [m (%+ \"i's'* 52)- 1n5] :

0




The integral over £ can be evaluated numerically via Gaussian quadrature or
a Simpson integration routine after an integration by parts to soften the
1ln £ singularity at the lower limit. Thus,

2 _ 2
GIm'%deejKE um(E)[-jK-z-+(1+jK§)ln(%+ ils-g»fgz)
0

(29)
- JKE (1n& - 1) - jKEInE|- Eu;m(é:) (In§ - 1) 1.

This completes the evaluation of the elements of the Z matrix. The

BOT
analytical and computational complexity involved in this analysis is approxi-
Thus, the
matrix fill tiwes for each impedance element in MM/BOR and MM/BOT are about

the same., Furthermore, detailed examination of the Gmn(i.j) function shows

mately equivalent to that encountered in the MM/BOR formulationm.

that it is maximum when m = n and { = j, i.e., the largest values occur on

the main diagonal of the Z matrix, and the self-terms contribute the most,

BOT
These properties lead to a diagonally strong overall matrix that is inter-
coupled significantly only for the neighboring modes, Computer simulations

.have confirmed this feature.

4.5 General Structure of the Impedance Matrix

Using the results obtained for the individual members of the partitioned
submatrices in Equations (17-20), the overall impedance matrix for a BOT can
In general, this matrix is full since

be constructed as shown in Figure 3.

there 18 no modal decoupling. (In the MM/BOR analysis, only the matrices me

along the principal diagonal are present.) However, certain symmetries exist
for the Gmn and Zmn that reduce the fill time of the ZBOT matrix, Specifi-

cally,
Gmn t(Gmn)

tt tt
AL €y
(30)

mt(z:;) L n(Z:;)

zzz

2z
2,

e LR EL

"
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where t(Gmn) denotes the transpose of Gmn' In the implementation of the
analysis, only the lower triangular quadrant of the ZBOT matrix is computed,
i.e., the partitioned submatrices are filled for 0 < m < NMODE, and

-m < n < m, vhere NMODE is the total number of axial modes (including m = 0)

H used in this analysis. To compute the inverse of Z » the entire 2

BOT BOT
matrix must be filled, which can be accomplished from the following symmetry

relationships:

(n,m) -m,-n -0,-m
St o gtt - gtt - gt
n,m ‘m,n m,n m,n
zt tz zt tz
Zym "~ T t(zm,n) Za,n t(im,n)
(31)
1 tz zt - _ ot2 - zt
zn,m - t(?m,n) zm,n t(zm,n)
22 2z o 2% o 22
zn,m = zm,n Zp,n Za,n

These relations are exploited in the MM/BOT computer algorithm to minimize
the fill-time and aid in the solution of the matrix equations arising in the
formulation, If the BOT has several (physical) planes of symmetry, addi-
tional relationships can be established within each of the partitioned sub-
matrices, again allowing savings to be made in the computational requirements,
In summary, the MM/BOT formulation yields an overall network representation
composed of diagonally strong matrices, possessing certain symmetries and
appearing to be intercoupled significantly only for neighboring modes.
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5. FAR-FIELD RADIATION AND SCATTERING ANALYSIS

; Having obtained the expressions for the zBOT matrix, the currents on ;
' the body can be obtained by solving the network matrix equation for the o
1 current vector I. In turn, knowing I, the radiated or scattered fields can

be obtained as in the MM/BOR analysis if the radiation transfer matrices
t6 _z6 _t

R.n s Rh . Rh¢' and R:¢ are given. Formally, the i-th element of the trans-

fer matrices is defined as

o, - < B> o |

where the superscript o denotes t or z, and u denotes the 6 or ¢ polariza-
tion of the radiated field E:. In spherical coordinates,

N

jk(psinb ’cos¢ + z cosb )

*u
u
r

where the field point of measurement is at er, ¢r’ and p is the distance to

f a point on the BOT surface, measured from the origin (see Figure 5). Expres-
v :
3 sing the inner product in Equation (32) explicitly, the transfer matrices are
gliven as:

1 -+
@9, = fdrf @, -« ug) 5 v IV (38

‘:.?.;'"“Ti 1 a

“ 1

o 0

S @, = f [ a@, 8 Em @S o

1 1

o T,

% @&, - n.def aT@, - T €30 v_(p) oI (36)

L F O |

i, 26y 37) ¢
5 @ -0, ( :

Y= pa:lner cos¢r +z coser

&
17 ;

g SRR RV

'f__vq -
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Figure 5. Coordinate geometry for transfer matrix evaluation.

Referring to Figure 5, the unit vectors for the BOT geometry are given by:

ﬂa +

> >
=y cosV +u sinv
x y

¥

u¢ = - ‘_:x sing + Ky cos¢
and
»>r

> > ->
ug = u coser c<>s<1>r + uy cosBr s:l.nd)r -u, siner

<D

oY

> >
=-u sin(br + uy cosd:r.
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Using a centroid approximation for the t-integration, a pulse approximation
for the triangle functions f1(°) and letting vn(c) = exp(jnny) in Equations
(34-36), the expressions for the i-th element of the transfer matrices

become
k (Rttle) =-Q cose 21 c:os(\)q - 4>r) (38)
q.
i
(R:e):l = .q siner i Aq '1'q (39) =
q=1 "
td
(RE% -aZA r sta(v_ - ¢,) (40)
q=1
zpy o :
(R, )y=0, (41) |
where
3 ki -
b | R e:l pqsiner <:os(¢q )
. q -
‘ o = 2 I'L sinc(€) :‘
E=(n+ -2%- coser)'n.

Using the R-matrices above, the far-field power radiation patterns and the

T PRI AT i - it o

scattering cross sections can be computed.

5.1 Far Fields
L ] The total radiated far-field in u-polarization can be computed from
-jkr t
-doy e su . =
Ba = n r g:,n (Ry) [Ym’n] (v, u=d¢ore (42) _
»

where the sum is taken over all modes m,n used in the analysis. In general,
the far-field power radiated by a BOT, excited by an arbitrary antenna con-
figuration, 1is given by

19




2 2
kN au
5, " T, mz n; oy, 1V 1| (43)

] where | '
E B mZ; Re {[Gml (v, ,11v;] }; n -‘/-Ef (44)

where the caret indicates a row vector. The matrix Ynn denotes the parti-
tioned submatrix corresponding to the (m,n)-th modes in the inverted ZBOT
matrix. The form of the excitation voltage vector Vn depends upon the type
and location of the antenna on the BOT. As an example, consider a series of
K aperture (slot) antennas embedded in the BOT surface and centered at

(‘rk, Ck), k=1, 2. .. K. Assuning that the apertures are rectangular,
then if the aperture at the i-th axial strip subtends one triangle function
fi('r) and an axial width of (2;1 - l;o),

"31 = 'I‘IT <i?;‘1, E1>

51
-fd'r fi(t)/ dg Ka . Ei(T.C) e-jnm;' a=torz (45)
%0

. . >
i In general, the aperture excitation function Ei('r.c) can be specified to be
‘} of any form. For this discussion, let the slot be uniformly excited by
I
' Ei(V/m) in the a-polarization, so that

1, le) < Igy - gl
20 ’ -—
E -K Ei{ 1 0 . (46)

0 , otherwise

Then

et

Ty :

p ¢ AR S
e LRI e T

v o-a U‘:. 47)

. il SR
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where

U: -ffi(T) dt (48)

i

and

(Cl - Co) Ei’ n=90

a1 " L (-jnﬂ;l -jang (49)

Jom e -e ) E,,n $0

In the above expressions, it is assumed that the i-th slot is excited
uniformly in the t and/or z polarization by an electric field, El' which may
be a complex quantity. In the program if Vzi ¥ 0, then (Un)i is represented
by an array of the form

U=|2— (50)

If the slots are excited solely in the t-polarization, then ui = 0. For
simplicity, U; and Ui can be set equal to unity. By obvious extension, these

results can be generalized for a BOT containing a series of slots at a given

axial strip, as in the case of two-dimensional antenna arrays.




5.2 Scattered Fields

In general, the cross section in terms of the scattering geometry shown
in Figure 6 is given as

2
oP4 k2n? ~p q
TZ_(ei’ 0y es’ ¢s) - ;ﬁf nE,n [Rn] [Ym,n] [R-n] ’ (1)
tp
Py .| B
CARY I I
m

where q and p denote the polarization of the incident and scattered fields;
(e 4 ¢i) and (0 , ¢8) are the incident and scattering angles, and the trans-
fer matrices R:(: (o= t,z; B = p,q) express the relationships between the
current on S and an observation point in free space. Examples of cross

sections computed from this expression are given in Section 8.

Figure 6. Coordinate geometry for scattering analysis.
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6. NEAR-FIELD ANALYSIS

In the foregoing sections, the radiated and scattered fields were com-
puted at field points sufficiently far from the BOT so that the wave fronts
were planar and the field components trangverse. Thus, the magnetic fields

TR N AVCIGES . Y SN )

could be obtained from the computed electric fields via the free-space wave
impedance, n = 377 Q. In this section, the MM/BOT formulation is extended
to permit the electric and magnetic fields to be computed at points < A

distant from the BOT surface. First, the near-field expressions for the :

i
electric field will be derived, followed by the corresponding results for i
the magnetic field. Qj

6.1 E-Near-Field Formulation
In general, the electric field at a free-space point r', resulting from

a surface current density 3 on a surface S, is given by

Ex") = 1P, (52)

afsadics .
P SRS Y W R SR VPP PO

where L(*) is the integro-differential operator defined in Equation (7). In
this discussion, the current density can be induced by an incident wave

illuminating the body aas in a scattering problem or by an active aperture on
A S as in a radiation problem. The second term of L(?) in Equation (7) can be j
B A rewritten using the relationship that ’

B v'ff(v e 3) 8(c - £') ds -ff(v e B @ - odr - 1Y) ds,
I .“ AN .
: : ) s S

vhere 01(r -r') = [(1/R2) + J(k/R)] &(r - r') and & (r -r') 1s the free-space
Green's function. If S corresponds to a BOT, the electric field at r' can

be rewritten in terms of the t and z directed components of 3. Using the
modﬁl expansion for 3 [Equation (8)] in Equation (52),

T




o

1
E(r') = jun IL zj f dz f ar 3™ o(r ~ 1) [Ktl:jf;:(‘t) + :zI:jf;('t)]
n. _1 j '

Jue

1
Z f .14 fd'l’ oInTe o (r - B - &) (53)
n, 1 j

ft(r)
it 23 z (jam) _z
[Inj r + In;| (ll.._) fj (T)]’

vhere
JIKR
(r ~ r') = T : (54)
o (r - t') = fz"(fz'*’ %) o(r - ), (55)

B(r - r') = (x -x") + 'Jy(y - y') +u_(z - 2'), and R is the distance
between field and source points defined earlier. The evaluation of the
integrals in the foregoing expression follows the schema used in determining
the integrals in the impedance expressions [see Equations (13-15)]. Using a
pulse approximation for the fi(') triangle functions, two generic integrals
result with integrands containing &(r - g') and ¢1(r - r'). These are eval-
uated next, Denoting the field point r' with (Tp, z"),

1l
I1 -fdcfd'c ejn‘n; ¢(r - ')

(56)
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vhere np = Y6 pp + Ez with § and pp defined as before (Section 4.4). The
T integration is carried out analytically after the integrand is expanded in

a Taylor series about R . Then,,ll becomes

Pq
4 1-z' -JKR
' Pq
I, - L Z f dg o107 & = ;- IK(T, = 1))
q=1 -1-z'
+ (1 + JRR_) %—jgz—g—i (57
Pq (7.2
8y 32+d2
4
jnnz’
- -~ Z G_(a)s
q=1
where
M-1
2
(@ =2 é u (6 £, (58)
eJnﬂiu ‘
w B = =7 (59)
2+l .
B = -1-%h (60)

and £(§ ) and its associated parameters are as defined before in Equations
(27-28) . Note the evaluation of 11 is similar to that of Gmn(p,q), except in
the present case there is only one surface integral to evaluate ingtead of

two.
The evaluation of the integrals containing Ql(r - r') parallels the

steps followed above. Specifically,




K _rmaiib

O T

1l
1) -f dcfdr ™ (2 -1 0 - )

- (1)
I’ i/ EYdEdeImLR (2+-15),Y-Oor1 .

R

where § = [ - 7', Expanding the integrand again about R qQ’ the T integration
can be performed as before,

The resulting expression for IZ(Y) becomes

Jamz!
I (Y) = Z ﬂ (Q)o

L q=1 ‘ €2
where
M-1
Y 2 Y
i =2 MZ_(:) wl(€) heE, 63)
) ejnTrgu
un(Eu) = (64)
u, (E ) = Eu un(Eu). (65)
and
i
-3KR 2
o (3)- (3]
(66)
(1 + JKR_)) 8 8 :
+ _TP.L[ 2__ 1 ] .
d ‘J;§7+ a? 'd;i +d

vhere X and all the other parameters have been defined befofe.

The expres-
sions for 11 and I2 have no self-terms since the point of observation
L

' (= rp) is assumed to be different than r, i.e., R ¥ 0,




Using the results for I1 and 12, the expression for the electric field
in terms of the G and H functions become

ﬁ(r') = 2jkn ejn"c' u [Z E (T cosv G (q) + - 1 It (x - x') H:(q))
q-l I‘K

q=1

+ 21 (“")Zr(x - x") H:(q)]
n,]

' L gt 'y B
+u I'[nz’;l ; (Tq sin\)q G (q) + I‘K T (y -y") Hn(q)) 67)

+ I:j(“")z:'r(y-y)u(q)]

n,J I'K q=1 1

ey

+

4
z z Jnm t n
fE[n B o) e B AR

6.2 H-Near-Field Formulation
In general, the magnetic field is given in terms of the vector poten-
tial A and the incident field ﬁ"(r') as

H(r') = B (") + V' x A("), (68)

where the primed coordinate is at an arbitrary test point where the field is
to be sampled. Letting H (r') = 0, since there is no field at r', except
that caused by currents induced on the scattering or radiating surface S,

Equation (68) becomes




B(x') = ¥ xff'j(r) o(r - r') ds
S

- -ff?(r) x V' &(r - r') ds.
S

Expanding the gradient over the unprimed coordinates,

(69)

Ve -r') = (F -1 & -1,
vhere ¢(r - r') and d>1(r - r') were defined before in the E-near-field analy~-

sig. Noting that the surface current dengity on the BOT may be decomposed
‘into t and z components, Equation (69) can be written explicitly as

ﬁ(r') = -{f,-!:x [(z - z")sinv Jt - (y - y')Jz]

+u [(x - x')Jz - (z - z2")cosv Jt] + .I:z [(y = y')cosv Jt

(70)

y

- (x - x")sinv J‘]i <l>l.

Using the modal expansion of the current components [Equation (8)] and
evaluating the surface integrals in the same manner as in the E-npear-field

analysis, yields the following expression for ﬁ(r'):

4
> jnrwz' )
H(r') =-2e {ux [6 > (I:j or

sinv Hl(q) - I'Gz I
n,} q=1 n

t z
q nj

4

4
z 1y © > 1. t t 1
E Tq(yq -y )Hn(q))] + uy [ 6 é (Inj E- TqCOSVq nn(Q) (71)

4

4
2
+ 8t I:j z T:(xq - x')H:(q))] +u [I‘6 > I:j Z

q=1 n,} q=1

T:((yq - yl)cos\)q - (xq - x')aitl\)q) Bg(q)]} .
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The spherical field components at r'(= p', ¢', 6') for the E and H fields
can be formed by combining the cartesian components in Equations (67) or
(71). Thus, letting 2 denote the E or X fields, the appropriate spherical
field components are given by:

Ae. = A.x cosb' cosd' + A.y cosf' sin¢' - Az 8ind’ (72)
A¢, = - A.x sing' + Ay cos¢" (73)
Ap' = A.x cosd' + Ay sing’'. (74)

In the foregoing discussion, the electric and magnetic near-fields were
sampled at a point, An alternate approach was also considered in which the
fields were sampled and averaged over a rectangular patch. This latter for-
mulation was a generalization of that given in Reference (17), The predic-
tions from the patch and point near-field analyses were compared for a
number of BOT configurations. Numerical simulation showed that in regions
vhere the electromagnetic wave departs significantly from being planar (i.e.,
in the vicinity of active or passive apertures), the point-sampled fields
were more accurate, particularly for aperture-coupled fields. Actual com-

parison of these formulations is detailed in Section 8,

29
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7. APERTURE COUPLED FIELDS

The problem of electromagnetic fields penetrating through small aper-
tures has been treated previously using the Bethe small hole t:heory.la-21

Recently, the MM technique has been applied to symmetric and asymmetric

22,24 22

apertures in BOR. A computer program has been developed by Schuman
to treat the former class of problems. Here, the MM technique is applied

to the case of rectangular asymmetric apertures embedded in the BOT. The
analysis uses the Schelkunoff equivalence theorem, which replaces the exter-
nal sources illuminating a body with apertures with an equivalent problem
having only aperture current sources. From the aperture currents, the near
fields inside the body can be computed. In the present discussion, the
aperture is assumed to lie anywhere on the BOT surface; however, an aperture
near the ends of the BOT can lead to anomalous unphysical results. The
aperture edges are taken to lie parallel to the z and t coordinates of the
BOT, a restriction that can be relaxed at a cost of greater amalytical com
plexity. The subsequent discussion assumes a single aperture. The extension
of the analysis to several apertures is straightforward. The Schelkunoff

25

equivalence theorem”™~ 1is discussed next for a general scattering surface,

followed by its application to a BOT.

7.1 Schelkunoff Equivalence Theorem

A graphical statement of this theorem is shown in Figure 7. The orig-
inal problem of external fields E and H illuminating a body with an aperture

is depicted in Figure 7a. The internal (aperture coupled) fields are Ez and

ﬁz. With the aperture covered (Figure 7b), a current Kid is induced in the

region of the covered aperture as a result of the external fields E: and ﬁ;
(J

In Figure 7c, the equivalent current in the aperture region is shown as (-J

)

because of the composite external electric and magnetic fields, i.e.,

(E - ﬁo) and (ﬁ - ﬁo), respectively. A simple superposition of the problem
1 1 1 17

depicted in Figures 7b and 7c¢ yields the original problem in Figure 7a. The

results of the Schelkunoff theorem will be applied to a BOT geometry in the

following section.
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Figurs 7.  Schelkunoff's equivalence theorem.

7.2 Expansion of the Aperture Voltage

Assume that a rectangular aperture is centered at Ty and Ca on the BOT
(Figure 8). (The normalization of the coordinates adopted in Section 4.1 is
again used.) Let the BOT surface be illuminated by a plane wave (ﬁl, ﬁl)
eminating from an angle (61, ¢1). Then the field in V/m at the q-th strip

spanned by the j-th triangle function f j (t) subtending the aperture is

= _f{> ,t_t + .z Z A
Eq (ut Aq Xq('r) + u, Aq Xq(‘r)) U(|C - T,al i'f‘) s (75)

wvhere

AL = |5, =g,

and A: and A: are the t and z-polarized field components induced across thg
aperture are due to the incident fields. These components will be determined

31




:
rt ,
BOT It“ ~— Aperture X )
top view ' ] .
z, -1 {
l | ¢ = z/L
& T =l 1
2I'= base of triangle g
—_— function
L
2
v

BOT /-\ ~—

side view

GP79-0481-9

Figure 8. BOT geometry for aperture analysis.

in terms of the illuminating plane-wave incident on the entire BOT surface.
In Equation (75), U(-) is the unit pulse function and x:(r), (a =t or z) is
the sampling function of the fields in the aperture. In this formulationm,

these components are defined to be pulse functions (Figure 9) and are similar

to those used by Schuman in the MM/BOR analysiszz. Note the X:(-) functions
are modified near the ends of the aperture to approximate the edge behavior
of the t- and z-directed currents. If the aperture subtends N strips, then
Equation (75) is generalized so that the total averture field is
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The induced voltage at the aperture [Equation (75)] can be expanded in terms

of the expansion functions used previously on the BOT, i.e.,

£ - Yo vt et h jnmg
E, :g:{ut Voy £4(D +u, vgj fj(T)} e ] an

Equating Equations (75) and (77),

Q - -+
v, - oy f‘j"(r) el 3, A X:('r) ()
(78)

a (o}
=A*D F
Q. n 3,q°
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where

=jnnzg :
Dn = Az e a s:l.nc(‘-—;-nwzA ) (79)
and
'['+‘
o
¥ q -/: dt fg‘m x‘;(r) ) (80)
T

The limits of integration T+ and T span the opening of the aperture in the
T direction. 1If the pulse function x:(-) also overlaps the (j + 1)-th
triangle functions, then Equation (80) also yields F;‘:tl,q°
For a given illuminating field'f, in either 6 or ¢ polarization, the
voltage vector Vn is specified so that the currents on the BOT can be com-

puted on the surface with the aperture covered over (i.e., Figure 7b) from

- ™ ‘1 -1 V_nJW
9 Zaor v.] (A/m) , (81)
In] - L - L \' ] -
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- 7.3 Derivation of the Aperture Admittance
§
o Equation (81) yields a relationship between the modal current components

on the BOT corresponding to the i~-th triangle function (i.e., Ini’ n=0,
41, ...) because of a voltage sampled by the j-th triangle function (1.e.,
V“j). Writing out Equation (81) exvlicitly with only the i-th rows and
j-th columns retained,

v
T e e e g
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1
i Y14 Yij
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For the subsequent discussion, it is convenient to adopt the following short-
hand notation for Equation (84). The m-th row of Equation (84) can be written

t t
Imi E( ) vnj
= Y 1] - [ XN ] » 85
) (%5 Gl ] e @
nj

where (Yij)mn denotes the individual part;tioned submatrices in Equation (84).
The admittance matrix in Equation (84) is a full matrix with all m,n modes
included. If the sampling points p and q lie within the aperture boundary,
then the above admittance matrix of the apertureless BOT can be related to
the admittance of the aperture. This case is considered next.

Formally, the currents cap in the region corresponding to the p-th
sampling function xp in the covered aperture region can be expressed as

t tt | tz t
et | [69),.0 (), ] [

| 16 6] @
ap a a
pq | Pq q
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I
Jmmg mi
- - P
‘p ¥ © =z | (86a)
mi

where the currents Cap are expanded in terms of modal components and triangle
functions, where the aperture admittance (Ya)pq is determined in terms of
(Yij)mn' and where A; and A: are the t- and z-polarized field components
across the aperture (see Equation 75). The negative sign in Equation (86a)
is due to the Schelkunoff theorem, i.e., the equivalent aperture currents are
the negative of the currents induced on the apertureless body in the vicinity
of the aperture resulting from the illuminating fields (i.e., Figure 7¢).
Substituting Equation (85) into Equation (86a) and using the results of
Equation (83),

t
t
ap jumg v
s [T 2 pE(Yi) .
CaP n n 1 mn V:q (87
Jmmg
= - f e P D (GB) B
p; nE n ) \"y) . Fie1,q
t
A
+Ya6) 8 (aB 8 1
( 130 a * Y13 on Fj+1’p KK (87a)
q

where Ygg)m a is the (k,1)-th element of the entire inverted Z matrix for
]

BOT
mode pair (m,n), and a,Bf denotes tt, tz, zt, or zz. The bracketed terms in
Equation (87a) constitute a matrix partitioned like Ya in Equation (86). The
expression for the individual elements of the admittance matrix is obtained

by equating the right sides of Equations (86) and (87a), i.e.,
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aB 8 af 8
¥ (Yi.j)m RN (Y1.1+1)m Fj+1.q}’

(88)

where Dn and F® are given in Equations (79) and (80), respectively. Thus,
the individual elements of the aperture admittance are composed of a triplet

of matrix elements from the inverted Z modified by the integral of the

BOT
aperture sampling functions, represented by the F functions. The above

expression is the admittance of an asymmetric aperture and is generically
similar to the BOR results given in Reference 22 for the circumferentially

symmetric aperture problem.

7.4 Equivalent Aperture Excitation Voltage

To compute the aperture coupled fields (i.e., Ez and ﬁz in Figure 7c¢),
the voltage induced in the aperture as a result of the illuminating fields
must be computed. This voltage is the equivalent aperture excitation voltage
which can be obtained from the aperture admittance and the currents in the

aperture region. For the p-th current C:

» (a = t or z), the equivalent

aperture voltage EVZ, sampled by X:(') is given by
| -1
t ytt i (¥tE t
EV a c
\ _‘pa | M 'Mq ap
EVZ = ¥t | v22% c? Pl ...k, (89)
q a ‘ a ap

where K denotes the number of pulse-sampling functions xp(°) used to describe
the current in the aperture region., Having determined Ev: qQ=1, . . . K),
the voltage excitation V:j corresponding to the j~th triangle function on the
original BOT spanning Xp(*) can be obtained from
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EV- (F +F F )
mj p " i-1 , +1,
" -;:T'"p“r‘i‘g“i“p‘ : %0
mj E P (Fj‘ltp + j.p Fj+1tp)

Then the effective currents on the BOT in the presence of the aperture for

the m-th mode and the i-th triangle function are given by:

| -1
tt tz
t Z | (z) t
R CRECAN
z |~ v zt 2z z (91)
Cag | ™3 (Zij)ml| (zij)mn Ving

where the indexes m and j run over all the modes and triangle functions on
the BOT, respectively. The resulting total currents on the BOT with an
aperture is reconstructed from the modal coefficients so that at the i-th

sample point Ti’ the current is

t

t
Ci C
DI TR
CZ n i Cz ‘ (92)
i ni

The axial distribution of the currents is obtained by evaluating Equation
(92) for |g] < 1. At the edge |z| = 1, theoretically, an infinite number
of modes is required to obtain an accurate representation of the current.
Since only a finite number of modes can be used in practical application
of the MM/BOT formulation, care must be taken to interpret the current dis-

tribution near an edge.

7.5 Computation of Aperture-Coupled Fields

The electric and magnetic fields penetrating an aperture (i.e., §2 and
ﬁé in Figure 7c) can be determined using the near-field formalism described

K 4 PP

oo,




in Section 6. The aperture-coupled electric and magnetic fields are given
by Equations (67) and (71), respectively, where the current coefficients I:j
are replaced by cn I given by Equation (91), and the observation point r' is
within the BOT. The three components p, ¢, 6 for the electric and magnetic
fields are again obtained from Equations (72-74).




8. VALIDATION OF TH BOT FORMULATION

The MM/BOT analysis was applied to compute the far fields radiated and
scattered by a BOT as well as the near fields and aperture-coupled fields
for various antenna, aperture, and body configurations. The results were
compared with data obtained using accepted experimental or other theoretical
methods. In the subsequent examples, the results for the scattering cross

sections, near fields, and aperture-coupled fields are not normalized.

8.1 Validation of Far-Field Analysis

Because of the availability of computer codes for the MM/BOR formula-
tion,17 the far-field radiation patterns were computed for antennas embedded
in a BOR. The results from the MM/BOR and MM/BOT formulations were compared.
As an example, a slot antenna embedded in a right cylinder of radius 0.216 A
and length 2.76 A is depicted in Figure 10. The ¢-polarized slot subtends an
angle of 45° and is 2.06 A long. The pitch (vertical) and roll plane power

radiation patterns are plotted in linear power, normalized to the MM/BOR

results. There is excellent agreement between the MM/BOR and MM/BOT results,
with seven circumferential and four axial modes being used in the respective
calculations. The sensitivity of the MM/BOT calculated pitch and roll plane
patterns for the above slotted cylinder as a function of modal sparsing is
shown in Figures 11 and 12, respectively. The calculations show that use of
only diagonal modes (i.e., m = n) in the MM/BOT results in an approximate 102
deviation from the MM/BOR patterns. The power distribution, normalized to an
isotropic radiator, versus mode number is shown in Figure 13 for this problem.
(The numbers in parentheses are exponents. ‘Negative" powers arise from com-
puter round-off errors and are insignificantly small. Negative powers are
often also obtained for certain modes in the MM/BOR analysis of Mautz and

Harrington.) The maximum powers occur in the self-modes (i.e., m = n),

———————
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Figure 10. Comperison of MM/BOR and MM/BOT computed power radistion petterns
for a siotted cylinder (¢-polarized slot).

Y '
s - !
1
g .
s ;
5 ‘
« '

R
B

L AR
i s ‘. fo.

A AN

42

T . e




[
MM/BOT, 4 modes ]
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Figure 11. Sensitivity of radiation patterns to modal sparsing: vertical plane (¢-fed axial slot).
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Figure 12, Sensitivity of radiation patterns to modal sparsing: roll plane (¢-fed axial slot).

44




n
m
| -3
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0 |-48(-8)[-13(-a)|-2.2-2) 3.4(-3) 1
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2 | 11-8 | 34(-8) | 16(-8) [-1.3-4)| 31(-8) | 7(-8) ]
A
¥
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: i

GP79-0481-13

Figure 13. Power distribution as a function of mode number (MM/BOT analysis for open cylinder
2.76 X length, 0.216\ radius with ¢ - fed slot). :

Examples validating the scattering analysis in Section 5.2 are considered
next. In Figure 14, the bistatic scattering cross section for an open
cylinder of radius 0.216 A and length 2.16 A is given. The cylinder is
illuminated broadside (6 = 90°) with a TE wave. The absolute cross sections
predicted by the MM/BOR and MM/BOT formulations are in close agreement. The
monostatic cross section for a square cross-sectioned cylinder when illumi-
nﬁted by a TM (6-polarized) field is shown in Figure 15. The MM/BOT results
are computed for a 2.76 A long cylinder; the Wilton-Mittra data (Reference 8)

Al R tooN
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are for the corresponding infinitely long cylinder.
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The applicability of the present analysis is to degenerate BOT surfaces
is demonstrated in Figures 16 and 17, where the monostatic scattering cross
sections for a flat plate (2 A on a side) and the bistatic cross section for
a parabolic cylinder of 2.76 A length are depicted. In both cases, the sur-
faces are illuminated broadside (i.e., ¢i =0, Oi = 90). For these calcula-
tions, 4 modes and 16 triangle functions were used. The MM/BOT results in
Figure 16 are in good agreement with the experimental results of Roas.26
Similarly, the TM polarized results for the finite-length parabolic cylinder

in Figure 17 are in good agreement with the analytical predictions of

Andreasen.
' 2.76 \ |
| ) {
:E).4327&
A s
g OF
) ¢
10 T T T T T ] T
MM/BOT
opF - - = MM/BOR —
.
—{dB)
)\2 -10 -
~20 | 1 N | | | 1 |
90 80 70 60 50 40 30 20 10 0
Broadside 0, (deg) End-on
QP70-0481-14

Figure 14. Comparison of MM/BOR and MM/BOT computed bistatic cross section for open cylinder.
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Figure 15. Bistatic scattering calculations for a square cylinder.
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Figure 17. Bistatic scattering cross section for parabolic cylinder; broadside incidence (6; = 90°, ¢; =0°).
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8.2 Validation of Near Field and Aperture Analysis

Validation of the near-field formulation for the electric and magnetic
fields is shown in the subsequent examples. In this phase of the invest iga-
tion, the fields were computed by the MM/BOT technique for points at
distances << A from the radiating or scattering surfaces. As a benchmark,
the exact boundary value solution for an infinite right-circular cylinder fed
with a ¢-polarized slit was used (Figure 18).27 The slit subtended an angle
of ¢° degrees and was excited with a uniform field. If the field is sampled
near the cylinder, the predictions of the MM/BOT analysis for a finite
cylinder can be compared with the exact (classical) solution obtained for

Slit aperture

Ey 161 <0,
jeld:
Aperture field 0, W>¢°
E B b H_(2 (ﬂp)eiw,p._zl
¢ nn A
we
n=-00

bn Hn( 2 8 p,eimﬁ

NI
it

E, no .
Ep .-:_1— iH—z- re bﬂ -ie. _2 sin —20- ; aP79-0401-19
jwpe 3¢ n Hn(z) (Ba)

Figure 18. Classical solution for tlit cylinder (¢ - excited slit).




the infinite cylinder. A comparison of these solutions for a cylinder with
ka = 1.35 and a slit of 45° is shown in Figure 19. For the MM/BOT analysis,
the cylinder length was 2.76 A long and the slit length was 2 A. The near
fields are sampled along a line bisecting the aperture, resulting in Ep = 0.
E The closest field sampling was at 1.2a which corresponds to 0.2a (= 0.04 A)
from the plane of the aperture. The calculations using four and seven modes
produced practically the same results. Also shown in Figure 19 are the
fields obtained from a patch near-field formulation in which the sampled
fields are averaged over a flat strip. The large discrepancy of the patch !
results from the exact solution at points near the body is due to the fact
that in this region the EM wave departs significantly from being planar. At
distances Vv 10 A, the patch and point formulations coalesce. (As expected,

at these distances, the classical solution for the infinite cylinder and the
BOT results for the finite cylinder diverge.)

In Figure 20, the three near-field components sampled at a radial line
at ¢ = 45° to the aperture center are given. Again, the results of the exact
ﬁ and the MM/BOT solutions are in excellent agreement. The corresponding
results for field points sampled at ¢ = 90° are shown in Figure 21. At
sampling distances >> A from the BOT, Ep decreases and the EM wave front tends
to approach being planar. Finally, the near fields for a slit subtending
22.5° are shown in Figure 22. In these calculations, 4 modes were used and 33
points defined the circumference of the cylinder. Again there was close
agreement between the exact and MM/BOT solutions.

An application of the aperture-coupled field analysis of Section 7 is
depicted in Figure 23. The internal fields, sampled along a radial line
bisecting the aperture, are induced by a broadside TM 1llumination of a right
circular cylinder. In the BOT calculations, the cylinder length was 5.52 A,
with the aperture subtending 22.5° and an axial length of 4.96 A, Seniot28
;f considered the infinitely long cylinder with a 20° infinite slit and computed
only the axial electric field, Ez. As can be seen, the BOT analysis is in
good agreement with this result.

R

am 2

-

30

N
L R L S




: >
1
1
' 0 1} i I | 1
o
1094— —l
) ¢ - fed slit cylinder (ka = 1.35)
10— T o Classical analysis
z cylinder length = oo
£ antenna aperture - infinite 45° slit
§ o MM/BOT: patch near-field analysis
% & MM/BOT: paint near-field analysis
i NP =17
NMODES =4 and 7
102} —1{ cylinder length = 2.76)\
antenna aperture = 2\ x 45°
103— —‘
{ Field sampling line
: Ep‘ 0
Y
LT
iy 104 I RN N R
WY 1.22 22  10a 5A 100
' = Sampling points or7.0081-1

e Figure 19. Computation of near fiskds for slit cylinder st ¢ = O (slit angle = 459)
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Figure 20. Computation of near fields for slit cylinder at ¢ = 46° (slit angle = 45°)
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9. COMPUTER IMPLEMENTATION

The MM/BOT formulation described in the preceding sections was

implemented with a computer algorithm which is described in detail in
Volume II of this report. The overall structure of the program flow compares
with that of the MM/BOR codes. The computational complexity is approxi-
mately equivalent for both MM/BOT and MM/BOR for a given size body. The
matrix fill-times are comparable. The major differences lie in the fact
that the modes in the present analysis do not decouple as in the MM/BOR,
although, in general, the resulting network matrices remain diagonally strong
and have certain symmetries [i.e., Equations (30-31)]. For sufficient
accuracy, the off-diagonal submatrices for m ¥ n can sometimes be deleted
from the computation without excessive error penalty (i.e., Figures 11-12),

Adequate computational accuracy is achieved when the BOT surface is
segmented into strips ¥ 0.15 A in width. The number of axial modes chosen
is dependent upon the spatial accuracy desired for the surface currents.
While the examples shown in the validation section involved mostly right-
circular cylinders, the present formalism is capable of treating any asym-~
metric BOT, such as a wing section. An example of this case is given in
Volume II,
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