ANOTHER GENERALIZATION OF CARATHÉODORY'S THEOREM (U)

MAY G0 V KLEE

UNCLASSIFIED TR-67-392

WASHINGTON UNIV SEATTLE DEPT OF MATHEMATICS

F76 827

NL
ANOTHER GENERALIZATION OF CARATHÉODORY'S THEOREM

by

Victor Klee

Technical Report No. 67

May 1980

Contract N00014-67-01034-003
Project Number NRO44 353

Department of Mathematics
University of Washington
Seattle, Washington 98195

This research was supported in part by the Office of Naval Research.
Reproduction in whole or part is permitted for any purpose of the
United States Government.
Another Generalization of Carathéodory's Theorem

Victor Klee

May 1980

Technical Report No. 67

1. Abstract

When \(P \) is a \(d \)-dimensional convex polytope with vertex-set \(V \), we use the term \(V \)-simplex to denote a \(d \)-simplex whose vertices all belong to \(V \). A slight variant of Carathéodory's theorem asserts that for each \(v \in V \) there is a collection \(\mathcal{S} \) of \(V \)-simplices such that \(P = \cup \mathcal{S} \) and \(v \in \mathcal{S} \). In connection with some constructions in ring theory, Kenneth Goodearl has conjectured there is a collection \(\mathcal{S} \) of \(V \)-simplices such that \(P = \operatorname{con}_n u \mathcal{S} \) and \(\dim \mathcal{S} = d \). For \(0 \leq k < d \) the present note establishes a theorem concerning the generation of \(P \) by \(V \)-simplices in conjunction with the operation \(\operatorname{con}_{k+1} \), where \(\operatorname{con}_n X \) is the set of all convex combinations of \(n \) or fewer points of \(X \). When \(k = 0 \) the theorem is Carathéodory's and when \(k = d-1 \) it is a slight sharpening of Goodearl's conjecture.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caratheodory</td>
</tr>
<tr>
<td>convex</td>
</tr>
<tr>
<td>convex combination</td>
</tr>
<tr>
<td>polytope</td>
</tr>
<tr>
<td>simplex</td>
</tr>
<tr>
<td>vertex</td>
</tr>
</tbody>
</table>

Accession For

NTIS Order
DDC TAB
Unsolicited
Justification

By

Distributor:

Availability Codes

Dist

Available or
special

A
When P is a d-dimensional convex polytope with vertex-set V, we use the term V-simplex to denote a d-simplex whose vertices all belong to V. A slight variant of Carathéodory's theorem [2] asserts that for each $v \in V$ there is a collection \mathcal{S} of V-simplices such that $P = u\mathcal{S}$ and $v \in n\mathcal{S}$. In connection with some constructions in ring theory, Kenneth Goodearl has conjectured there is a collection \mathcal{S} of V-simplices such that $P = \text{con } u\mathcal{S}$ and $\dim n\mathcal{S} = d$. (This result is used in [4].) For $0 \leq k < d$ the present note establishes a theorem concerning the generation of P by V-simplices in conjunction with the operation con_{k+1}, where con_X is the set of all convex combinations of n or fewer points of X. When $k = 0$ the theorem is Carathéodory's and when $k = d-1$ it is a slight sharpening of Goodearl's conjecture.

THEOREM Suppose that P is a d-dimensional convex polytope with vertex-set V, $0 \leq k < d$, and F is a k-face of P. Then there is a collection \mathcal{S} of V-simplices such that

$$P = \text{con}_{k+1} u\mathcal{S} \quad \text{and} \quad \dim (P \cap (n\mathcal{S})) = k.$$

When $k = d-1$ the intersection $n\mathcal{S}$ is d-dimensional. If V is in general position then con_{k+1} may be replaced by $\text{con}_{[d/(d-k)]}$.

Proof. Observe first that if H is a $(j-1)$-flat in a j-flat G, Q is one of the two closed halfspaces into which H divides G, and \mathcal{B} is a finite collection of j-dimensional convex subsets of Q such that the set $C = \cap_{B \in \mathcal{B}}$ is $(j-1)$-dimensional, then $n\mathcal{B}$ is j-dimensional. Indeed, choose points c and q in the relative interiors of C and Q respectively, and note that for each $B \in \mathcal{B}$ there exists $\lambda_B > 0$ such that $(1-\lambda_B)c + \lambda_Bq$. With $e = \min \{\lambda_B : B \in \mathcal{B}\} > 0$, $n\mathcal{B}$ contains the j-dimensional set $\text{con } (C \cup ((1-e)c + eq))$.

Whenever P is a d-polytope with vertex-set V, $0 \leq k \leq d$, and $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ is a sequence of faces of P with $\dim F_i = i$ for each i, let $\mathcal{S}_P(F_0, \ldots, F_k)$ denote the collection of all sets of the form $\con \{v_0, \ldots, v_d\}$ such that

(i) for $0 \leq i \leq k$, $v_i \in F_i$

(ii) for $1 \leq i \leq d$, $v_i \in \con \{v_0, \ldots, v_{i-1}\}$.

Plainly each member of $\mathcal{S}_P(F_0, \ldots, F_k)$ is a V-simplex. A straightforward induction on i, based on the observation of the preceding paragraph, shows that for $0 \leq i \leq k$,

$$\dim \cap_{F_i} \mathcal{S}_P(F_0, \ldots, F_i) = i.$$

To construct the \mathcal{S} whose existence is claimed by the theorem, simply set $\mathcal{S} = \mathcal{S}_P(F_0, \ldots, F_k)$ for an arbitrary sequence of faces $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ with $F_k = F$ and $\dim F_i = i$ for all i. Plainly $\dim (F \cap \mathcal{S}) = k$, for $\mathcal{S} \supseteq \mathcal{S}_{F_k}(F_0, \ldots, F_k)$.

And since

$$\mathcal{S}_P(F_0, \ldots, F_{d-1}) = \mathcal{S}_P(F_0, \ldots, F_{d-1}, P),$$

\mathcal{S} is d-dimensional when $k = d-1$.

It remains to show that $P = \con \cup \mathcal{S}$ with $r = k+1$ in general and $r = \lceil d/(d-k) \rceil$ (the smallest integer $\geq d/(d-k)$) when V is in general position. With $v_0 \in F_0$, consider an arbitrary point $p \in P \setminus \{v_0\}$ and let q be the last point of the ray from v_0 through p that belongs to P. If $q \in \con \cup \mathcal{S}$ then $p \in \con \cup \mathcal{S}$ because $p \in \{v_0, q\}$ and each member of \mathcal{S} is a convex set that contains v_0.

Let j denote the dimension of the smallest face G of P that contains q. By Carathéodory's theorem, $q \in \con X$ for an affinely independent set X consisting of $j+1$ points of $V \cap G$. If $G \subseteq F_k$ then $j < k$ and for each $x \in X$ there is a member S_x of \mathcal{S} which contains x. Hence $q \in \con \cup \mathcal{S}$.

Suppose, on the other hand that $G \not\subseteq F_k$, and let W be the vertex-set of an arbitrary member of $\mathcal{S}_{F_k}(F_0, \ldots, F_k)$. Let \mathcal{W} denote the cardinality of \mathcal{S}.
maximal affinely independent subsets of \(W \cup X \). From the facts that \(W \cap G \) and \(X \cap F_k \) it follows that \(m > k \) and \(m < j \). Since \(W \) is affinely independent, there is a set \(Y < X \) such that the set \(W \cup Y \) is affinely independent and of cardinality \(m+1 \), whence \(|Y| = m-k \). Plainly \(W \cup Y \) lies in a member of \(\mathcal{S}_a \) as does each of the \((j+1)-(m-k) \) remaining points of \(X \). Hence \(p \in \text{con}_{r+1} W \) with \(r = (j+1)-(m-k) \leq k \).

Now suppose, finally, that the vertex-set \(V \) of \(P \) is in general position, meaning that each set of \(d+1 \) points of \(V \) is affinely independent. Then all proper faces of \(P \) are simplices, and \(\mathcal{S}_a \) consists merely of all \(V \)-simplices that contain \(F_k \). Consider \(v_0, p, q, G, X, W \) as described earlier. Then \(W \cup Y \) is affinely independent for each set \(Y < X \) with \(|Y| \leq d-k \). Hence \(X \cup W \) can be covered by \(\lceil (j+1)/(d-k) \rceil \) members of \(\mathcal{S}_a \), and since \(j < d \) it follows that \(q \) (and hence \(p \)) belongs to \(\text{con}_{d/(d-k)} W \). That completes the proof.

To see that the theorem cannot be improved by reducing the subscripts \(k+1 \) and \(d/(d-k) \), consider a \(d \)-polytope \(P = \text{con} V \) where \(V \) is the union of the vertex-set \(W \cup F_k \)-simplices \(F \) and the vertex-set \(X \) of a \((d-l)\)-simplex. Let \(\mathcal{S}_a \) be the collection of all \(V \)-simplices \(S \) such that
\[
\text{dim}(P \cap S) = k
\]
for each \(S \in \mathcal{S}_a \), whence the centroid of \(\text{con} X \) does not belong to \(\text{con}_{d/(d-k)} W \). If a translate \(W' \) of \(W \) is contained in \(X \) then \(|W' \cap S| = 1 \) for each \(S \in \mathcal{S}_a \), whence the centroid of \(\text{con} W' \) does not belong to \(\text{con}_{k} W \).
y other generalizations of Carathéodory's theorem appear in the
re. Some of them can be found in the references below.

REFERENCES

Bonnice and V. Klee, The generation of convex hulls. Math. Ann
(1963) 1-29.

Carathéodory, Über den Variabilitätsbereich der Koeffizienten von
enzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64 (1907)
115.

Denzer, B. Grünbaum and V. Klee, Helly’s theorem and its relatives.
962) 101-180.

Goodearl and R. Warfield, State spaces of K_0 of Noetherian rings.
appear.

, Motzkin, Polyhedra as unions of simplices. Proceedings of the
loquium on Convexity, Copenhagen, 1965 (W. Fenchel ed.), 202-204.
itute of Mathematics, University of Copenhagen, 1967.

:. No. 54. 1965.