" AD=A087 372

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE=-~ETC F/6 9/2
LOOP ITERATION MACROr(U)
JUL 80 & BURKEs D MOON NODOI'-‘H-C-OGBI
UNCLASSIFIED IIIT/LCS/‘I'H-169

[F

—;

Iml |0 @l pa
= I
e C R

= fle
L2 Jis e

MICROCOPY RESOLUTION TEST CHART
NATIGNAL HUREAID i TaNT T P

_ ' o e o — R —— S —
: Y | : E i
*) N X
-‘:r | “l f
N
AR

LABORATORY FOR ¢ ¥, MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

AL k)
O, AUGO 41980 * 7%

July 1980

11133. report describes research done st the Laboratory for Computer Science of the Massach sote
Institute of Technology. Support for this research was provided in part by National Institutes
Health grant number 1 P41 RR 01096-04 from the Division of Research Resources, and 1}

Advanced Research Projects Agency of the Department of Defense under Offics of Naval
Research Conmcti number N00O14-75-C-0661.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

ISTRIBUTICN STATEMENT A
Approved for public release;
Distribution Unlimited 8 0 7 2 9 O

R .

REPORT DOCUMENTATION PAGE BEF O oL et RM

2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMSER

RENPE

(and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

e e A N
“

[
LOOP Iteration Macro 1
‘ 6 :E_) ! 6. PERFORMING ORG. REPORT NUMBER
&

SRR A MIT/1CS/TM-169

7 AUTHOR(.) 9. CONTRACT OR GRANT NUMBER(s)

lenrf Burke amb / Noboia- ' N
(e i C5 b,

B 9. PERFORMING ORGANIZATION NM! AND ADDRESS L ERT' TASK
x MIT [I EhD]?al :1.-:’ for 0: 1 . & ///‘ - AREA & WORK UNI NU“. S

: 545 Technology Square (/ \) Ho—

Cambridge, MA 02139 g

11, CONTROLLING OFFICE NAME AND ADDRESS 5
. ONR/Department of the Navy C /| ! Julgmeesg’ 3

Information Systems Program €S
24

Arlmgton, VA 22217
N ESS(if ditferent from Cmml-llnl Office) 18. SECURITY CLASS. (of this report)

Unclassified
[(Sa, DEC&.AS‘I'ICATION/DO'NGiADmG
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl.jkopon)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the sbatract enterad in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side i/ necessary and identily by block number)

Iteration
Lisp \
Macro

[

20. ABSTRACT (Continue on reverse side If necessary and identity by block number)

LOOP is a Lisp macro which provides a programmable iteration facility. The
same LOOP module operates compatibly in both Lisp Machine Lisp and Maclisp
(PDP-10 and Multics). LOOP was inspired by the "FOR" facility of CLISP in
InterLisp; however, it is not campatible and differs in several details.

DD ,"0%", 1473 woiTion OF 1 NOV 88 13 OBSOLETE

llCUlITY CI.AIII'ICATION or TNI’ PAGE (When Date € (When Dats Entered)

6/(/(

e

w0 AR gt T

[T S

MYy €

PICA

OF THIS P4

Date Bntored)

R T

e e

S e At bt st i e

MM

SECURITY CLASIIFICATION OF THIS PASE(Mhen Date Rntere)

LOOP Iteration Macro

| Accession For

NTIS GhA&l
DDC TAB
July 1880 . Uncrnsuanced

Ju..ilic.tion

By

gisgr}_@}‘ion/
Glenan Burke _2ritede t*ty Codes
Da Moon hvailand/or

Dist special

A

This report describes research done st the Lsborstory for Computer Science of the Massachusetts
Institute of Technology. Support for this research wes provided in pert by National Institutes of
Health grant number 1 P41 RR 01096-04 from the Division of Resserch Resources, and the

Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research Contract number N00014-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

T e

Abstrect

LOOP is s Lisp macro which provides s programmasble iterstion facility. The same LOOP
module operates compstibly in both Lisp Machine Lisp and Maclisp (PDP-10 end Multics).
LOOP was inspired by the “POR" facility of CLISP in InterLisp; however, it is not competible
and differs in severs! details.

Any comments, suggestions, or criticisms will be weicomed. The suthors cen be reeched by
any of the following communication pathy:

ARPA Network mail to BUG-LOOP@MIT-ML

US. Mail to
Glenn S. Burke or David A. Moon
Laborstory for Computer Science
545 Technology Square
Cambridge, Mass, 02139

There is also sn ARPA Network mail distribution list for snnouncements pertsining to
LOOP. Conmtduwﬂwp.mwhplwdonit

Acknowledgements

Thanks goes to Peter Szolovits, who implemented FOR, the predecessor of LOOP, and to Lowel!
Hawkinson, for helping in the design process. The people of the Clinical Decision Msking, Lisp
Machine, snd Knowledge Based Systems groups all dessrve note for their use of LOOP eerly in
its development, thus siding both design and debugging: especielly helpful were Joha Kulp,
Willism Long, Willism Mertin, and Remesh Patil.

Koy Worde Iterstion, Lisp, Macro

(c) the Massachusetts Institute of T
N ﬂ'::"ﬂlhb! ochnology; Cambridge, Mass. 02139

(i Mg

LOOP Iterstion Macro | Table of Contents

Table of Contents

lo ll‘ltl’OdUcﬁOll ® & 6 9 4 e s e 6 » e & & a2 e 4 & & 8 8+ O o o v e o . o o .
2. cl.um L] . L] L] . . . * . L] . L] . . L) L] L] . . L L] L] L] * . L . . 2
2-‘ l‘Ql’lﬁOl'l-Pfodllcin' CIm o & & 5 & 0 s o s » o s e o 2 e © o & o o o 3
2-2 Billdinp ooooo & ¢ & o ¢ ¢ o ¢ o e s o e 0 9 o o e o o o ¢ & o ‘
2.3 Entl’lnc‘ !lld Elit ® 5 & 6 6 5 e 6 ¢+ 6 o & e 6 9 * o ¢ o & 4 e 0 s o o . 3
2.‘ sid. B“‘c“ € 6 % 8 e 8 ¢ 6 & 8 5 2 s & 6 o s o % 2 s e s s o s e s 0 s
2-5 v.lll” 3 . . . * & o @ & ¢ e % ¢ 9 e & & O 9 ¢ o O 0o o b+ » L 4 . . . s
206 End‘”‘s e @ & o e * e & o 2 0 2 s ¢ 2 * 4 ® & * ¢ 8 s o2 s 0 v o 0 s s o 1
2.1 A“t.““d BOO".II Tm © ¢ 6 8 6 6 6 2 8 e 8 6 6 6 s s 0 0 ae e o s s @ 7
2.8 COﬂditionlliuﬁOﬂ ooooo ® & s & & e o 6 4 8 8 &t s & o s o v o '
Jo pr s’nonm e ¢ o o e ¢ e e * 6 & 2 B 8 0 s 6 ¢ 0 2 o s s o s * s 0+ 9
‘- Dm T’”’ oooooooo " e 8 6 o 4 o & 8 o ¢ e % 5 o 4 s ° s 2 e s 9

5- D.ﬂm‘llfiﬂ' ooooooooo ® 2 ¢ o e S e *°5 0 2 s 8 s & 8 5 s s s » lo

6clt.t“ionp'tb0'0000000000.¢0l000000000looc0ll
GQanin‘P“boco..noo.onclooococoooo00000c.3

10 Complﬁbi“t’ 'i‘h mk S & 8 e 8 o & & s 6 & & B 4 & 0 2 6 > ° s o o+ ¢ & 0 ‘ 6
s- MM‘” oooooooo ® o & o o & & o & s ° 5 s 0o B P s s s & s @ l 1
lm @ & ¢ 8 & 8 e & & ¢ 6 e & 9 & & P 6 s s O & & S o 0 & * o O o & s o ' .

LOOP lteration Macro | Introduction

1. Introduction

LOOP is s Lisp macro which provides s programmable iterstion facility. The same LOOP
module operates compatibly in both Lisp Machine Lisp and Maclisp (PDP-10 and Multics).
LOOP was inspired by the "FOR" facility of CLISP in InterLisp; however, it is not compatible
and differs in several details.

The general spprosch is that s form introduced by the word loop generstes s single
program loop, into which a large variety of festures can be incorporated. The loop consists of
some initislizstion (prologwe) code, a body which may be executed severs! times, and some exit
(epilogue) code. Varisbles may be declared local to the loop. The festures are concerned with
loop variables, deciding when to end the iterstion, putting user-written code into the loop,
returning s value frem the construct, and itersting a veriable through various resl or virtual sets
of values,

The loop form consists of a series of clsuses, esch introduced by a keyword symbol. Forms
appearing in or implied by the clauses of a loop form are classed es those to be executed as
initialization code, body code, and/or exit code, but sside from that they sre executed strictly
in the order implied by the originsl composition, Thus, just s in ordinary Lisp code, side-
effects may be used, and one piece of code may depend on following another for its proper
operation. This is the principsl philosophy difference from InterLisp’s "FOR" facility.

Note that loop forms are intended to look like stylized English rather than Lisp code.
There is a notably low density of parentheses, and many of the keywords are accepted in
several synonymous forms to allow writing of more euphonious and grammatics! English. Some
find this notation verbose and distasteful, while others find it flexible and convenient. The
former are invited to stick to do.

(defun print-elements-of-1ist (1ist-of-elements)
(loop for element in list-of-elements
do (print element)))

The sbove function prints each element in its srgument, which should be s list. It returns
nil.

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value
when (interesting-p number) collect number))

The sbove function takes two srguments, which should be fixnums, and returns s list of all
the numbers in thet range (inclusive) which satisfy the predicste interesting-p.

(defun find-maximum-elonent (array)
(loop for {1 from 0 below (cadr (srraydims array))
maxinize (funcall array 1)))

Find-maximum-element returns the maximum of the elements of its srgument, s one-
dimensional array.

(defun remove (object 1ist)
(loop for element in list
unless (equal object element) collect element))

Remove is like the Lisp function delete, except thet it copies the list rather than
destructively splicing out slements.

(defun find-frob (11ist)
(Yoop for slement in Vist
when (frobp element) return element
finally (error /|Frob not found in 1ist] list)))

This returns the first element of its list argument which satisies the predicate frobp. If
none is found, sn error is genersted.

3. Clauses

internally, LOOP constructs s prog which includes varisble bindings, pre-iteration
(initialization) code, post-iterstion (exit) code, the body of the iterstion, and stepping of
varisbles of iterstion to their next values (which hsppens on every iterstion sfter executing
the body). '

A clmae consists of the keyword symbol snd any other Lisp forms and keywords which

it deals with. For example,
(loop for x in 1 do (print x)),

contains two clauses, "for x in 1" and "do (print x)°. Certsin of the parts of the clsuse
will be described as being expressions, e.g. “(print x)° in the sbove. An expression can be 8
single Lisp form, or a series of forms implicitly collected with progn. An expression is
terminated by the next following stom, which is taken to be a keyword. Thus, syntax
allows only the first form in sn expression to be stomic, but mekes misspelied keywords
more easily detectable,

Bindings snd iteration varisble steppings may be performed either sequentially or in
parsliel, which affects how the stepping of one iteration varisble may depend on the vsluve
of snother. The syntax for distinguishing the two will be described with the corresponding
cleuses. When & set of things is “in parailel’, all of the bindings produced will be performed
in parsliel by s single lsmbda binding. Subsequent bindings will be performed inside of that
binding environment.

RN ge:u-ét.-w .

RN Ry, .

LOOP Iteration Macro 3 Iteration-Producing Clauses

21 Iteration-Producing Clauses

These clauses all creste s variable of iteration, which is bound locally to the loop and tskes
on 8 new value on esch successive iteration. Note that if more than one iterstion-producing
clsuse is used in the same loop, several varisbles sre crested which all step together through
their values; when any of the iterations terminates, the entire 10op terminstes. Nested iterations
are not genersted; for those, you need a second loop form in the body of the loop.

All of the iteration-producing clauses initially defined are introduced with the keyword for
(or as, which is synonomous). For clsuses may be clustered into groups, the varisbles of
iteration of which are to be stepped in parallel, by introducing the sdditional clsuses with and
instead of for or as. For example, the following iterates over the elements in a list, and also
has a varisble for the element from the previous iteration:

(1oop for item in 1ist and previous-item = “foo then item
do ...)
During the first iteration, previous-item has the value f00; in subsequent iterations, it has the
value of item from the previous iteration. Note that this would not work if the stepping were
not performed in parallel.

The order of evaluation in iteration-producing clauses is thst those expressions which are
only evslusted once are evalusted in order at the beginning of the form, during the varisble-
binding phase, while those expressions which sre evalusted esch time sround the loop sre
evsluated in order in the body.

These are the iterstion-producing clauses. Optionsl parts are enclosed in curly brackets.

for var {data-type} in expri {by expr}
This iterates over each of the elements in the list exprl. If the by subclsuse is
present, expr2 is evaluated once on entry to the loop to supply the function to be
used to fetch successive sublists, instead of cdr.

for varon exprl {by expr2}
This is like the previous for formst, ompttlm ver is set to successive tsils of the
list instead of succesmive elements.

for vor {data-type} = expr
On each iteration, expr is evalusted and »ar is set to the result,

for var {data-type} * expri then expr2
Var is bound to exprl when the loop is entered, snd set to &xpr2 on nll succeeding
iterations.

for ver {data-type} (rom expri {to exprd} {by expr3)
This performs numeric iterstion. Var is initislized to eprl/, and on esxch
succeeding iterstion is incremented by expr3 (default 1). If the to phrase is given,
the iterstion terminstes when wer becomes grester than epr2, Esch of the
expressions is evalusted only once, and the to and by phrases may be written in
either order. Downto may be used instesd of to, in which case ver bs
decremented by the step value, and the endtest is sdjusted sccordingly. If below is
used instesd of to, or above insteed of downto, the iteration will be terminated

B e

P W

vt g e

&
"5;
£

' ';-;".;.".;1'1&

Bindings 4 LOOP lterstion Macro

before expr2 is resched, rsther than sfter. Note thst the to varient appropriste
for the direction of stepping must be used for the endtest to be formed '3
correctly, i.e. the code will not work if exprd is negative or zero. If no limit
specifying clause is given, then the direction of the stepping may be specified as i
being decreasing by wsing downfrom instead of from. Upfrom may also be
used instesd of from; it forces the stepping direction to be increming. The
data-type defaults 10 fixnum., '
for ver {dava-type} being expr and its poth ..
for ver {data-type} being {each} porh .. e
‘This provides s user-definable iteration facility. Peth names the manner in which
the iterstion is to be performed. The ellipsis indicstes where vsrious psth 'S
dependent preposition/expression pairs may sppesr. Ses the section on Iterstion
Paths (page 1) for complete documentation.

22 Bindings

o s o ST

The with keyword msay be used to esteblish initial bindings, that is, varisbles which are
! local to the loop but are only set once, rether than on each iterstion. The with clause
! looks like: (opd { ,
. with war! { dota- = exprl
{and var2 {dota-type} (= exprd)}..
if no expr is given, the varisble is initislized to the sppropriste value for its dsts type,
usually nil.

iy =7
ey T e

With bindings linked by and are performed in paraliel; those not linked sre performed
soquentially, That is,
(Voop with a = (foo) and b = (bar) ...)
binds the variables like
((Vambda (a D) ...)
(foo) (bar))
wheress
(loop with a = (foo) with b = (barprime a) ...)
binds the variables like
((Yambda (a)
((lambda (b) ...)
(barprime a)))
(foo))
All expr’s in with clsuses are evaluated in the order they are written, upon entrance to the

loop rather than where they sppear in the body. Thus good style suggests thet with clsuses
be placed first in the loop.

B ln 0y il Sanbie
N R A —— YL 42 T2

For binding more than one varisble with no perticuler initislizstion, one may use the
construct

with varieble-fist { dete-type-hst) {and ..}
- in :

g

!
ii

Gl i 08 o gty :

LOOP Iterstion Macro L] Entrance and Exit

with (1 J k t1 t2) (fixnum fixnum fixnum) ...
which is a useful special case of destrucruring (page 10).

2.3 Entrance and Exit

initially expression
This puts expression into the profogwe of the iterstion. It will be evalusted before
any other initialization code other than the initial bindings. For the sske of good
E‘ style, the initially clause should therefore be placed sfter eny with clauses but
f before the main body of the loop.

finally expression
This puts expression into the epilogue of the loop, which is evalusted when the B
iteration terminates (other than by an explicit return). For stylistic ressons, then, ~.
this clause should appear last in the loop body. Note that certsin clauses may H
generate code which terminates the iterstion without running the epilogue code; this)
behaviour is noted with those clauses. B

24 Side Effects

do expression _ :
doing expression
Expression is evalusted esch time through the loop.

2S5 Values

_ The following clauses sccumulste s return value for the iterstion in some manner. The
i general form is
type-of-collection expr { data-type} {into ver}
| where type-of-collection is s loop keyword, and expr is the thing being “sccumulsted” somehow.
. If no into is specified, then the sccumulstion will be returned when the loop terminstes. If
there is sn into, then when the epilogue of the loop is reached, »ar (s varisble sutomstically
bound locally in the loop) will have besn set to the sccumulsted result and may be used by the
epilogue code. In this wsy, s user masy sccumulste and somehow paw back multiple values
from s single loop, or use them during the loop. It is sefe 10 reference these varisbles during
tho loop, but they should not be modified until the epilogue code of the loop is resched. For
example,
(loop for x in Vist
collect (foo x) into foo-list
] collect (bar x) into bar-1ist ;
collect (baz x) into baz-1ist
‘ finally (return (Vist foo-11st bar-1ist baz-11st)))
which hes the same effect &

g
\w

Values 6 LOOP lterstion Macro

{(do ((g0001 1 (cdr g0001)) (x) (foo-11st) (bar-1ist) (baz-11st))
{(nul) g0001) 4
(11st (nreverse foo-11st) ‘
{nreverse bar-1ist)
(nreverse baz-1ist)))
(setq x (car g0001))
(setq foo-11st (cons (foo x) foo-1ist))
(setq bar-1ist (cons (bar x) bar-1ist)) ;
(setq baz-1ist (cons (baz x) baz-1ist))) .

collect expr {into var) .
collecting - ¥
This causes the values of expr on each iterstion 10 be collected into s list.

nconc expr {into var}

nconcing -

append ..

appending -
These are like collect, but the results are nconced or appended together ss
sppropriste. collecting : mapcar : nconcing : mapesn.

R

count expr {into var}

counting ..
If expr evalustes non-nil, 8 counter is incremented. The dota-type is always
fixnum,

o sum expr {data-type} {into var}
' summing ..
Evaluates expr on esch iterstion, and sccumulstes the sum of all the values.
Dota-type defsults to number, which for all practical purposes is notype.

maximize expr {data-type} {into var}

minimize .. :
Computes the maximum (or minimum) of expr over all iterstions. Dara-type
defaults to number.

Not only may there be multiple accumulations in s loop, but s single eccumwlation may
come from multiple places within rhe same loop form. Obviously, the types of the
collection must be compstible. Collect, ncone, and append may all be mixed, s msy sum
snd count, and maximize and minimize. For example,

(Yoop for x in “(abc) for y in 2((1 2) (3 4) (5 6))
collect x
append y)
s> (al12b34c5S6)

e o A

LOOP Iteration Macro ? Endtests

The following computes the sverage of the entries in the list kist-of-frobs:
(Yoop for x in list-of-frobs
count t {nto count-var
sum X into sum-var
finally (return (quotient sum-var count-var)))

26 Endtests
The following clauses msy be used to provide sdditionsl control over when the iteretion ;
gets terminated, possibly csusing exit code (due to finally) to be performed and pomibly ¢

returning a value (e.g., from collect). 4
while expr Rk

If expr evalustes to nil, the loop is exited, performing exit code (if any), and |

returning any sccumulsted value, The test is placed in the body of the loop where ;

it is written. It may appear between sequential for clsuses. :

until expr
Identical to while (not expr).

This msy be needed, for example, to step through s strange dats structure, & in
(loop for concept = eapr then (superior-concept concept)
until (eq concept [summum-genus])
LI S) .

27 Aggregated Boolean Tests

always expr
If expr evalustes to nil, the iteration is terminsted and nil returned; otherwise, ¢
will be returned when the loop finishes, after the epilogue code (if any, as specified
with the finally clsuse) hes been run,

never expr
This is like always (not expr),

thereis expr
If expr evalustes non-nil, then the iterstion is terminsted and thet value is returned,
without running the epilogue code.

A ol i ik . G psl i "WM“

Conditionslizstion] LOOP lterstion Macro

28 Conditionalization

These clauses may be used to "conditionalize” the following clsuse. They may precede
any of the side-effecting or value-producing clsuses, such s do, collect, or slways.

when epr
if epr

If expr ovaluates to nil, the following clawse will be skipped, otherwise not.
unless epr

This is equivalent to when (not expr)).

Multiple conditionslization clsuses may appear in sequence. If one test fails, then any
following tests in the immediste sequence, and the clsuse being conditionalized, are skipped.

Multiple clauses msy be conditionalized under the same test by joining them with and,
® in

(loop for { froma to b
when (zerop (remainder 1 3))
collect 1 snd do (print 1))
which returns s list of all multiples of 3 from @ to (inclusive) and prints them as they are
being collected.

Conditionals may be nested. For example,
(loop for { froma to b
when (zerop (remainder {1 3))
do (print 1)
and when (zerop (remainder 1 2))
collect 1)
returns s list of sll multiples of 6 from @ to &, and prints all multiples of 3 from @ to b.

Useful with the conditionalizstion clauses is the return clause, which cswses an explicit
return of its "argument” as the value of the iteration, bypesing sny epilogue code. Thet is,
when exprl return expr2
is equivalent to
when expri do (return expr2)

Conditionalization of one of the “aggregated boolean value® clsuses simply csuses the test
which would cause the iteration to terminste early not t0 be performed uniess the condition
succeeds. For example,

(loop for x in 1
when (significant-p x)
do (print x) (princ "1s significant.”)
and thereis (extra-special-significant-p x))

b

e

j
¥

LOOP Iteration Macro 9 LOOP Synonyms

The format of a conditionalization and following clause is typically something like

when expri keyword expr2
If expr2 is the keyword it, then s varisble is gonersted to hold the value of eprl, and that
varisble gets substituted for expr2. Thus, the composition

when expr return it
is equivalent to the clause

thereis expr
and one may collect all non-null values in an iteration by ssying

when expression collect it
If multiple clsuses are joined with and, the it keyword may only be used in the first. If
multiple whens, unlesses, and/or ifs occur in nquonu. the value substituted for it will be
that of the last test performed.

8. LOOP Synonyms

define-loop-macro Macro
(def ine-loop-macro keyword)
may be used to make keyword, s loop keyword (such s for), into a LISP macro which
may introduce a loop form. For example, sfter evalusting
{def ine-1oop-macro for),
one may now write an iteration &
(for 1 from] below n do ...)

4. Data Types

In many of the clsuse descriptions, an optional dara-fype is shown. A deve-fype in this
sense is an atomic symbol, and is recognizsble as such by LOOP. LOOP interfaces to
which defines how declarations and initislizstions sre 10 be performed for various data types.
However, it recognizes several types specially so thet that module need not order
for them to be used:

fixnum
An implementation-dependent limited range integer.
flonum
An implementation-dependent limited precision flosting point number.
integer
Any integer (no range restriction),
number
Any number.

notype
Unspecified type (i.0., anything else).

Destructuring 10 LOOP Iterstion Macro

8. Destruoturing

Destructuring provides one with the sbility to “simultaneously” sssign or bind multiple
varisbles to components of some data structure. Typically this is used with list structure
(which is the only mode currently supported). For example,

(desetq (foo . bar) “(a b c))
has the effect of setting foo to a and bar to (b c). LOOP only requires destructuring
support when one of these patterns is supplied in place of a verisble. In sddition, the
“binding” of s pattern to a constant nil is so trested thet it requires no specisl support code;
this allows the case

with (a b ¢)
to work without destructuring support code.

One may specify the data types of the components of & by using s corresponding
pattern of the data type keywords in place of s single dats type keyword. i
remains unambiguous becsuse wherever a dsta type keyword is powible, s loop keyword is
the only other possibility. Thus, if one wants to do

(loop for x in 1
as {1 fixnum = (car x)
and J fixnum = (cadr x)
and k fixnum = (cddr x)
ees)
snd no reference to x is needed, one may instead write
(Yoop for (1 J . k) (fixnum fixnum . fixnum) in V1 ...)
To sllow some sbbrevistion of the data type pattern, sn stomic dsta type component of the
pattern is considered to state that all components of the corresponding part of the varisble
pattern are of that type. Thast is, the previous form could be written s
(loop for (1 J . k) fixnum In 1 ...)
This generality allows binding of multiple typed varisbles in s ressonsbly concise manner, s
in
(loop with (a b c) and (1 J k) Tixnum ...) .
which binds a, b, and ¢ to nil and i, j, snd k 10 0 for use as temporaries during the
iteration, and decleres i, j, snd k 10 be fixnums for the benefit of the compiler.

(defun map-over-properties (fn symbol)
{Yoop for (propname propval) on (plist symbol) by ‘cddr
do (funcall fn symbol propname propval)))

See slso section 8, psge 17, which discusses support code needed in various
implementations,

a3 T T

B 0 o A

X
i
1

o L TN, Sn - ST

{
|
!

LOOP Iteration Macro i Iterstion Paths

6. Iteration Paths .

Iteration paths provide s mechanism for user extension of iteration-producing clauses. The
interface is constrained so that the definition of a psth need not depend on much of the
internals of LOOP. In general, a path iterstion has one of the forms

for var {data-type} being exprO and 1ts pethname
{ preposition] exprl}...
for var {data-type} being {each} pathname of expr0
{prepositionl exprl)
The difference between the two is this: in the first, ver will tske on the value of expr0 the first
time through the loop: but in the second, it will be the “first step along the path”. Pathname is
sn atomic symbol which is defined as a loop path function. The usage and defaulting of dara-
type is up to the path function. Any number of preposition/expression psirs may be present;
the prepositions allowable for any particular path are defined by that psth. The of preposition
has specisl mesning in that it specifies the sterting point of the peth; thus, the first varistion
shown implicitly uses an of expr0 “prepositions! phrase’. To enhance resdsbility, psthnames are
ususlly defined in both the singular and plurel forms. To satisfy the anthropomorphic among
you, his, her, or their may be substituted for the its keyword. Egocentricity is not condoned.

One pre-defined psth is cars; it simply iterates over successive cars of its starting srgument,
terminating after an atom is reached. For example,
(Yoop for x being cars of “((a b) c) collect x)
=> ((a b) a)
(loop for x being “((a b) c) and its cars collect x)
=> (((a b) c) (ab) a)
The sbove forms sre equivalent to
(Yoop for x = (car “((a b) c)) then (cer x)
collect x
until (atom x))
and
(loop for x = “((a b) c) then (car x)
collect x
until (atom x))
respectively. (Note that the atom check following the body of this loop is pert of the
definition of the cars psth, and is not a property of psths in gonersl.)

Kt 0 45 Lyl

- - Tr e

DT T e LT T

Tteration Pathe 12 LOOP lteration Mecro

By special dispensation, if a pethneme is not recognized, then the attachments
path will be invoked upon s syntactic transformstion of the original input. This name
detives historically from its original usage in XLMS. Essentislly, the loop fragment

for var being s-r of opr ...
is taken as if it were
for ver being attachments in e-r-* of opr ...
and
for var being epr and its e-r ...
is taken a3 if it were
for ver being expr and its attachments in o-r-*
Thus, this “undefined pathname hook only works if the attachments peth is defined. Note
also; .

loop-attachment-transformer Varisble
The value of this is s function of one argument which will be called on
transform it into @-»-®, If it is nil, then s quote is listed around the ex
effectively causing the special attachments syntsx t0 be an unevalusted form of
attachments path. This is initislly nil except in sn LMS eavironment, in
cme it is s function which simply returns e-7.

a
8

-p

Be

LOOP lwrstion Macro 13 Delining Patls

61 Defining Paths
This section will probebly be of interest oaly to those interested in defining their owa peths.
For the purposes of discussion, the general templete form of an iterstion may be assumed to

(Vot verisble-bindings
(prog ()

be

next-loop

When more than one for clause is grouped together with and, the endiests and steps are
arranged to occur together in persilel. Sequentislly arrenged for clewsss couse mukliple endiests
and steps to occur one afer enother, s shown in the sbove templete.

A function to generste code for & path may be declered %
path function:

defline-loop-path porhneme-or-names poth-function Not-of-allowabie-prepositions
(any-number-of deve)
This defines perA-function 10 be the handier for the peth(s) pesheame-er-neme,
may be either a symbol or s list of symbols. Such o hendler should follow the
conventions described below.

;
4
o

The handler will be calied with the following arguments:
poth-neme
The name of the peth which coused the peth function 10 be invobed.

varisble
The “leerstion varisble”.

The deta type supplied with the leration verisble, o nil f none was supplied.

e —— s oar

1
§

Defining Patis 14 LOOP Iterstion Macro

prepositional-phreses
This is 8 list with entries of the form (preposition expression), in the order in
which they were collected. This may slso include some supplied implicitly (e.g.
of phrases, snd in phrases for sttachment relstions); the ordering will show the
order of evalustion which should be followed for the expressions.

inclusive?
This is ¢ if verieble should have the starting point of the peth s its value on the
first iterstion, nil otherwise.

allowed-prepositions
This is the list of allowable prepositions declared for the psthname that csused
the path function to be invoked. It and date (immedistely below) may be used
by the psth function such that s single function msy handle similer peths.

date This is the list of "dats” declared for the psthname that caused the path function
to be invoked. It may, for instance, contsin s cenonicalized psthname, or s set
of functions or flags t0 aid the path function in determining what to do. In this
wsy, the same path function mey be able to handle different peths.

The handler should return s list with the following elements:

variable-bindings
This is 8 list of varisbles which need to be bound. The entries in it may be of
the form variable, (variable expression), or (vaviable expression data-type). Note
that it is the responsibility of the handler to make sure the iterstion varisble gets
bound. All of these varisbles will be bound in parsllel; thus, if initislization of
one depends on others, it should be done with a sety in the prologue-forms.
prologue-forms
This is 8 list of forms which should be included in the loop prologue.

pre-body-endiest
This is & single form,

pre-body-steps
This should be an alternating list of varisbies and expressions to step them. They
will be stepped in parallel. (This is like the arguments to setq; in fact, it will
be used & the arguments to psetq.)

post-body-endiest
Like pre-body-endtest, but done sher the body, just before sterting the next
iterstion,

post-body-steps
Like pre-body-steps.
If snyone finds that they need to modify the mein body or the epilogue code, we would
like to hesr sbout it

A qudlificstion is in order with respect 10 stepping. In order t0 make persilel stepping
work properly, loop must be sble 10 coerce the swepping code for different for clsuses to

act in persllel. Thus, the canonical place for stepping 10 occur is in the pesr-bedy-srepe; the

tpteazy

T AGPIRY

AR A S Rt

- g

&
3
¥
L
]

LOOP Iteration Macro 15 Defining Pathe

pre-body-steps is mainly useful when the iterstion varisble needs to be set to some function of
whatever is sctually being itersted over. For example, the LOOP clause

for varin fist
effectively returns the following elements for the template (where tew is reelly a gensymed
varisble name):

variable-bindings
“(var (tem Bst))

prologue-forms
nil

pre-body-endtest
(null rem)

pre-body-steps

(var (car tem))
post-body-endtest

nil
post-body-steps

(tem (cdv tem))

loop-tequal roken symbol-or-string
This is the LOOP token compaerison function. Teken is any Lisp object; symbel-or-string
is the keyword it is to be compared agsinst. It returns ¢ if they represent the same
token, compering in s menner sppropriste for the implementstion. In certain
implementstions loop-tequal may be s macro.

Competibility with FOR 16 LOOP Iterstion Macro

7. Compatibility with FOR

LOOP is not truly compatible with FOR (s similar Maclisp iterstion peckage). The
reseon for this is that LOOP has certain “ideas” sbout how it should hendle such things as
order of evalustion and repeated evalustion, which sre quite different from FOR's simpler N
template spprosch. Many of the keywords, and hopefully all of the functionality, have been '
preserved. In many ceses, code written with FOR will work with LOOP, slthough it
sometimes may not behave identically. For convenience, here is s (non-exhsustive) summsry
of the major differences.

One major difference is thet LOOP is more fastidious sbout how it orders the
sssignments and endtests. Tske, for example
(loop for n in 1ist as z = (= n n) collect 2) .l
In FOR, n would be sssigned to the car of the list, then 3 would be stepped, and then the
null check would be made on the iteration list. This means that on the lest iterstion z will
1 be assigned to (% nil nil), which might csuse some consternstion to the Lisp interpreter. In - B
1 LOOP, first s null check is made on the list, then n is set to the car of the list, then ¢ is A
1 stepped.

Explicit endtests (while and until) are placed “where they appear® in the iteration
4 sequence. This obvistes the repeat-while and repeat-until keywords of FOR. For
example, the FOR construct
(for x in 1 collect x repeat-while (< x 259.))
: may be replsced by the LOOP construct
‘ (loop for x 1n 1 collect x while (< x 259.))
' Note thst in the FOR case, the ordering of the clauses typically doss not matter, but in the
LOOP case it typically does. Thus, the ordering in
(loop for data = (generate-some-data)
collect (f data)
while (test data))
causes the result to be a list with st least one element.

t LOOP sttempts to suppress repested evalustion where possible. Which expressions get
repestedly evslusted is documented with the corresponding clauses. One significant exsmple
: where LOOP and FOR differ is in the case
(Voop for 1 from 0 to expression ...)
in which FOR evalustes expression st every iteration, wheress LOOP ssves the value st the
start of the iteration.

It should be noted that the conditionalization clauses (when, until, and if) affect only o !
the following clause rather than the whole of the “body" of the iterstion, s would be the
camee in FOR.

i Because it is difficult for it to work in all cases, the trailing cleuse hes been eliminsted.
_ Its offect msy be schieved, howsver, by tacking %
. and vor = initial-valve then var-te-be-trailed i
‘ ahver the for clsuse which steps rer-so-be-rralied,

LOOP Ilteration Macro

8. Dependencies

The LOOP package may require the existence of other routines in some implementstions.
For efficiency reasons, LOOP avoids producing let in the code it generstes unless it is
necessary for destructuring bindings.

In the PDP-10 Maclisp implementation, LOOP uses ferror to generste error messsges;
ferror is part of the FORMAT package, and is sssumed to be sutoloadsble from there. Let,
which is used to produce destructuring bindings, snd the destructuring version of sety called
desetq, which is used only when destructuring is used, are both sutolosdsble. The “peraliel
setq” mechanism is simulated so that psetq is not needed. Macro memoizing is performed using
the same facilities which defmacro uses, and are sutoloadsble (snd typicelly present in most
environments).

In Multics Maclisp, LOOP does not presently call ferror, which does not exist. There is s
let macro availsble with destructuring capability; it is non-stendard (not pert of the Multics Lisp
system) — for further informstion contsct the suthors. Currently, mscro memoizing is
performed by rplaca/rplacd splicing, unconditionally.

In Lisp Machine lisp, ferror is used to generste errors. This is part of the basic Lisp
Mschine environment. At this time, destructuring support is not part of the besic environment,
although it is available;: contact either the suthors or the Lisp Machine group if you need this,
Macro memoizing is performed using displace, with the same effect s in Multics Maclisp.

ot

Index

slways keyword 000 0.
sppend keyword . . .
sppending keyword . . .
collectmri......-.......
collecting keyword
conditionslizingclsuse(s)
count keyword,
counting keyword
datatypekeywords ¢ 4 0 ..
define-loopmsecro e o e s e e
doing keyword
finslly keyword
for keyword 0 00w e
if keyword . . v s s e e e
mmallykeynrd.............
loop-sttachment-transformer
looptequal ¢t 00 e e e
maximize keyword,
minimize keyword
multiple sccumulations
nconc keyword s e s e e
nconcing keyword .
mvorkcyword.... ..

® ¢ 6 & ¢ ¢ o 0 ¢ o o

¢ ¢ o o ¢

® & o ¢ & o

¢ ¢ & o o o & 0 s o

* L] s ® LI 1

* & 9 s o o
* o 0 ¢ o »
e o o o o o
¢ o o o o o
e o o o o o
. ¢ s o o
LI * o ®
e & & o o o
* o * .
o s o . o

s o & o o @

« & o & e

parsiiel vs. sequential iterstion stepping

sequentisl vs parsilel bindin;ndmhidlﬂiou . e e
sum Reyword
summing keyword . . .

. order of evaluation in iterstion clsuses . . I I RPN

terminating the iterstion

thereis kgyword
unless keyword 0000 0. .
until keyword
varisble bindings

e 9 o o ¢ 2 e 8 0+ o

. * . LI 4

*

*

® & e 8 ° 46 o s s+ s » ¢

® o & 2 & & & s e & o ¢ o

* s @
L] . L]
o 5 o o o o
. o 0

a & o ¢ e s o

e e o ®© o ® €6 a2 @ e e o o o o o *» e o & & 8 o

“0 e o

-
BNBEAABAAOONGWARNCORANUNGE LWL

ANOBAINRON

Office of Naval Research
Information Systems Program
Code 437
Arlington, Va 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway - 5th floor.
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research

Code 200

Arlington, VA 22217

1 copy

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

12 copies

Office of Naval Research
Code 455
Arlington, VA 22217

1 oopy
Dr. A. L. Slafkosky

Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380
1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center, Code 91
Headquarters-Computer Sciences &
Simulation Department
San Diego, CA 92152
Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Camputation & Math Department
Bethesda, MD 20084
1 ocopy

Captain Grace M. Hopper, USNR
NAVDAC~OOH

Department of the Navy
wWashingon, D. C. 20374

1 copy

