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EFFICIENT COMPUTATIONAL TECHNIQUES FOR THE ANALYSIS OF

SOME PROBLEMS OF FRACTURE IN PRESSURE VESSELS AND PIPING

T. Nishioka and Satya N. Atluri
Center for the Advancement of Computational Mechanics

School of Civil Engineering
Georgia Institute of Technology

Atlanta, GA 30332

Abstact

'-7Results of (i) a numerical investigation, based on an energy consistent

moving-singularity dynamic finite element procedure, of fast crack propagation

in a finite plate; (ii) numerical simulation of experimental data on fast

crack propagation and arrest in a double-cantilever-beam specimen; and (iii)

stress-intensity factor solutions in a thermally shocked cylindrical vessel

containing an inner surface (meridional) elliptical flaw, are presented.

Comparison of these results with other available solutions, and pertinent

discussions, are included.

Introduction

Concise summaries of the current status of the subject of dynamic crack

propagation can be found in recent review articles by Achenbach [1] and Freund

[2]. In Refs. 1 and 2 several analytical solutions of linear elasto-dynamic

equations for crack propagation in plane bodies with infinite domains have

been reviewed. For finite bodies containing cracks and subjected to time-

dependent loading, the interactior with a crack-tip of stress-waves reflected

from the boundaries and/or emanated by the other moving crack-tip play an

important role in determing the intensity of the dynamic singular stress-field

at the considered crack-tip. Because of the analytical intractability of

such elasto-dynamic problems for finite domains, computational techniques are
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mandatory. A critical appraisal of several different numerical (finite element

and finite difference) techniques was made by Kanninen (3] in 1978. Most of

the finite element methods reviewed in [3) use conventional assumed-displacement

finite elements near the crack-tip and hence do not accout for the known

crack-tip singularity. Moreover in these methods, crack-propagation is

simulated by the well-known "node-release" technique, which was argued in

[3] to be not sufficiently accurate. The literature an dynamic finite element

methods for simulation of fast fracture, since the appearance of [31, has

been reviewed in [4,5,6].

In Refs. [4,5,6] the authors have presented a "moving-singularity"

finite element procedure for the analysis of dynamic crack propagation in

arbitrarily shaped finite bodies. In this procedure a singular crack-tip

element, within which a large number of analytical eigen-functions correspond-

ing to a propagating crack [4,7] are used as basis functions for displacements,

translates by an arbitrary amount AE in each time-increment At of the numerical

time-integration procedure. The moving crack-tip singular-element, within

which the crack-tip always has a fixed location, retains its shape at all

times, but the mesh of conventional (isoparametric) finite elements, surrounding

the moving singular-element, deforms accordingly. An energy-consistent

variational statement was developed in [4,5,6] as a basis for the above moving

singularity procedure. It was also shown in [4,5,6] that the procedure there

in lead to a direct evaluation of the dynamic stress-intensity factors for

propagating cracks. Several numerical studies were presented in [4,6] to

illustrate the relative efficiency of the above procedure as compared to the

"node-release" techniques reviewed in [3,4].

In the present paper we present further numerical results for the

problem of dynamic propagation, at different constant velocities, of a cen-

trally located crack in a square panel. These results augment the pre-



liminary conclusions reached in [4,6] concerning the effects of interactions

of stress-waves emanated from a moving crack-tip and those reflected from the

boundaries of the panel on the dynamic stress-intensity factor at the con-

sidered crack-tip. These results are also shown to lead to a simple formula

for estimating the dynamic K factor in similar situations. Also presented

are the results of simulation of data on the crack-tip velocity history in an

experiment on a double-cantilever-beam specimen reported by Kalthoff et al

[8]. The dynamic stress-intensity factors, for this specimen, computed from

the present procedure are compared with the experimentally determined data of

[8], and independent numerical results of Kobayashi et al [9] and Popelar et

al [10], and pertinent discussions are presented.

In the second part of the paper, results of an investigation of the

stress-intensity factors near the border of a meridional semi-elliptical

surface flaw at the inner surface of a cylindrical pressure vessel which is

subjected to a thermal shock, are presented. The presently reported results

are obtained by using "three-dimensional hybrid crack-elements" near the

crack front, the development of which was reported eariler by the authors

[11,12,131. The present-results are compared with those reported earlier

by Kobayashi et al [14].

Part I. Dynamic Crack Propagation Analysis

Synopsis of the Analysis Procedure: In the procedure adopted in the

paper, the basis functions used for displacement, velocity, and acceleration

in the crack-tip "singular element" are:

uQ (,x 2 ,t) = u ( ,x2 ,v)j(t) [%=1, 2 ; j=l ....N] ()

u = u - v u j (2)a J J u j,
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uaj (3)

where u j correspond to the "steady-state" ie., which are invariant to an

observer moving with the crack-tip) eigen-function solutions for the elasto--

dynamic wave equations (with independent variables &, and x2) for crack propaga-

tion at constant velocity v in a plane domain. Note that x (a=1,2) are fixed

coordinates, with x2 = 0 defining the crack plane and E = x - vt. It is noted

that the first term, viz., Ual, leads to the appropriate (r- /2) type singularity

in strains and stresses. The singular element in the present procedure is

surrounded by the usual isoparametric [8-noded, in the present case] elements.

The displacement compatibility between the singular element and the surrounding

isoparametric elements is satisfied in the present analysis through a least-

square technique.

Consider two instants of time, t1 and t2 = tI + At. Assume that in a

mode I crack propagation problem, the crack-lengths art I and t2 are, respec-

tively, E1 and E1 + AE. Let the displacements, strains, and stresses at t1

1 1 1
be denoted by u., CiV'and aijV respectively, while those at t2 are denoted

by a superscript two for each variable. The variables at time t1 are pressumed

to be known. It has been shown in [4,5] that the variational principle

governing the dynamic crack propagation between times t1 and t2 can be written as:

2 1 2 1 2 2
ij + a i j E i + CC(' + u u. dV

V2

f (Tl + T2)6u2 ds + f ( + (u2)+
+ i 1 + + -

02 1

.TI + Ijj v . ...u .. .ds" ...

j i;
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where V is the domain of the body, and S is the boundary of V2 where tractions
22

are prescribed, at time t2 . Ti are the prescribed tractions at time tI at

S -S )and T2 are the prescribed tractions at S as well as at the newly
1 21 2

created crack surface AE at time t 2. It is seen that 0ij Vj at AE are the

cohesive forces holding the crack-faces together at time t . In the above,

mode I conditions are assumed; hence, only the upper half of the domain with

the crack face E+ is considered.

In the variational principle in Eq. (4), the varialbes ui, and oij are

2 2 2 2
pressumed known; while oij , Eij , and u. are the variables. The variables u.JJ

are assumed according to Eq. (1), with the velocity v2 appearing in them.

Further, the variational principle in Eq. (4) is used to develop a discrete

(finite element) approximation for a (finite element) mesh at time t2. Note

that at time t2 , in the present problem, the crack-tip is located at x = E1

+ AE and hence the present crack-element is centered at x1 = El + AE. In

developing the equations for the finite element mesh at t2, it is seen from

Eq. (4), that the variation of 0.. and u. must be known in the finite element

mesh at time t2 . However, i. and u., and u. were solved for, in the finite

element mesh at tI. In the mesh at tI the crack-tip is located at x= and

hence the crack-element is centered at El" Thus, between t and t (= t +
1' 1 2 1

At) the crack-element is translated by an amount AE. While the crack-element

is translated, only the elements immediately surrounding the moving crack-tip

are distorted. Thus the finite element meshes at times tI and t2 differ only

in the location of crack-tip (and hence the crack-element) and the shapes

of the immediately surrounding isoparametric elements. Thus, the known data
1 1

for ai and uj in the mesh at t 1 is interpolated easily into corresponding

data in the mesh at t 2 . Based on these concepts, the development of the finite-r2
element equations from the principle in Eq. (4), and the numerical integration

of these equations follows the well-established procedures. Further details



can be found in [4,5] where it is shown that the dynamic k-factors can be

computed directly in the present analysis procedure.

Propagation of a Central Crack in a Square Panel

In Ref. [6], the problem of a centrally cracked square panel (L=W=4Omm)

[with material properties: W(shear modulus) = 2.94 x 10 N/mm 2; v(Poisson

ratio) = 0.286; and p(mass density) = 2.45 x 103 Kg/m3 1, which was subject to

time-independent tensile stress at the edges of the specimen parrellel to the

crack axis, was considered. The crack was assumed to start propagating from

an initial length, E /W = 0.2, and to grow symmetrically with a constant

velocity v. Four different cases of v, namely, (v/Cs ) = 0.2, 0.4, 0.6 and

0.8, respectively (where C is the shear wave speed) were considered. Theses

limited results appeared to suggest a simple formula to estimate the dynamic

stress-intensity factor in such problems. Until the time (t=R c ) taken by

the Rayliegh waves emanating one crack-tip to interact with the other moving

crack-tip, the dynamic stress intensity factor was noted in [6] to be given

approximately by the equation:

Kd = F(Eo ) K (E) k(v) t < Rc  (5)

where F(0 ) is the finite size correction factor in the static stress intensity

*00
factor K for the given geometry and loading at a crack length E ; K is

s o

the static factor (which, in general, is not equal to the static stress-intensity

factor K s ) for an infinite body subjected to uniform stress normal to crack

*00
axis; and k(v) is a universal velocity factor. The expressions for K and

k(v) were given by Eshelby (151, and Broberg 1161 respectively. After the time

t = R , the dynamic stress-intensity factor was found in [6] to be given by
c

the approximate relation:



Kd= Kf () K(v) t > R (6)

f
where = [F(Z0 ) K (E)J/[K (E)] at Z = ZRC

f
where K is the static stress-intensity factor for the present finite domain

s

and ZRC is the current crack length at t = Rc. It is seen that

ZRC = E + v (2Eo)/(CR-v) (7)
0

where CR is the Rayleigh wave speed.

Here we present further results for the case when a central crack in a

square panel starts from an initial length of (Eo/W) = 0.1 and propagates with

a constant velocity v. Two cases of v, namely, (v/C ) 0.1 and 0.2, respective-

ly, are considered.

The finite element mesh at the initial crack length Eo, for a quadrant

of the panel (which only is modelled due to symmetry), is shown in Fig. 1.

This mesh has 262 nodes and 564 degrees of freedom before the imposition of

the appropriate symmetry conditions at the boundaries. The computed results

for the normalized dynamic stress-intensity factor (normalized by GV7E, E

being the current crack length) are shown in Fig. 2.

For the present material, (CR/CS) = 0.9238. Thus it is seen from Eq.

(7) that for the present cases of (E /W) = 0.1, and (v/C.) = 0.1 and 0.2, one

obtains (ERc/W) - .12, and .15, respectively. Shown in Fig. (2) are the

curves: i) the normalized static-stress-intensity factor Kf; (ii) the

presently computed normalized dynamic stress-intensity factor; and (iii) the

approximations for the dynamic-stress intensity factor as given by Eqs. (h)

and (7).

It is seen that the correlation between the directly computed dynamic

K-factor and that obtained from the simple approximations in Eqs. (6) and (7)

is very good. Approximate formulae similar to those given in Eq. (6) and (7)
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for the more common dynamic fracture test specimens such as the double

cantilever specimen, wedge-loaded single edge notch specimen, and modified

compact tension specimen would greatly aid in the estimation of dynamic K-

factors from the experimentally obtained data for E(t) and/or dE/dt. Such

studies are currently underway and will be reported elsewhere.

Rectangular Double Cantilever Specimen

The geometry of one-half of the specimen is shown in Fig. 3 along with

the details of the finite element mesh used in the present analysis. Only

the static material properties E = 3380 MN/m2 and v = 0.33 for the present

Araldite B material are used in the present analysis, partly due to the

reason of comparing the present results with those of Kobayashi [9]. The

presently used boundary conditions are similar to those in [9]. The experi-

mental data for crack-length (E) versus time history that is simulated in

the present analysis corresponds to specimen No. 4 reported by Kalthoff

et al [8]. In reference [8], the crack-initiation stress-intensity factor,

Klq, which was computed fom the experimentally measured deflection 26 at the

3/2loading points by using the formula of Kanninen [17], was quoted as 2.32 MN/nj

However, the value of 6 was not quoted in [8]. By using the formula in [17],

the load point deflection to create an initiation K-factor of 2.32 is calculated

to be 6 k However, in the present finite element method, a load point deflectionkt

of (1.1) 6 k was found necessary to impose the Klq value of 2.32 11N/m 3 12 on the

model. This discrepancy may be due to the approximate nature of the analysis

in (17].

The crack-length versus time history (Z vs. t) for specimen :1o. 4 reported

in [8] shown is Fig. 4. The crack-tip-velocity versus time [ vs. tl curve,

obtained by numerically differentcating the (E vs. t) curve is also shown in

Fig. 4, and is seen to be in good agreement with that shown in Fig. 6 of [8].



Kalthoff et al [81 measure the dynamic stress-intensity factors by applying

the method of caustics. However in [8], the relation between the diameter D

of the caustic and the stress-intensity factor, is based on the static soluticn

for the stress-strain field around the tip of the crack. However, Beinert

et al [18] show that if the above relation is derived from a dynamic solution

for the stress-strain field around the crack, the thus computed K-factors

may defer from those in [8] by a factor [1/F]. It is noted that only the basic

singular dynamic plane stress solution is used in developing the relation

between KI and D. It was estimated in [18] that F = 1.095 for v = 500 m/s, and F =

1.028 for v = 300 m/s, where v is crack-tip velocity. Further it is noted that

the epoxy resin Araldite B is a viscoelastic material whose properties are

rate-dependent. However, in the present analysis as well as in [18] the

material is modeled as linear elastic through out.

It is seen from Fig. 4 that the presently computed dynamic K-factor, Kd,

agrees well with the experimental data [roughly to within the above discussed

factor (/F)] until the time when the crack-tip begins to decelerate as per

the i(t) curve (which is obtained by numerical differentiation of the the

experimental data for E(t)). In the time interval between the beginning of

crack-tip deceleration and its' eventual arrest, significant differences are

noted between the present results for Kd and those reported in [8].

To understand the above descrepancies in the results of Fig. 4, and to

study the effect of small changes in the assumed E versus t curve, the analysis

was repeated for three different cases of assumed E(t) curves as shown in

Fig. (5). It is seen that the curves in Fig. (5) represent minor deviations

from the "experimental" data renorrd in 181. It is also noted that the Z(t)

curve marked as "Data 3" is identical to the one used by Kobayashi et al (9]

in their "generation" [9] calculation. The presently computed Kd curves,



for each of the three assumed Data for Z(t) in Fig. (5), are shown in Fig. (6).

Also shown in Fig. (6) are the (t) curves corresponding to each of the assumed

E(t) curves, with the curve for 'Data 3' being similar to that in [9]. The

results for Kd computed by Kobayashi in his "generation" calculation [9] and

the experimental results of [8] are also shown in Fig. (6). It is seen that

significant differences exist between the present results for each of the

three E(t) data cases, and those in [8], during roughly the last third of the

crack-propagation history. Each of the three curves, for present results,

shown in Fig. (6) exhibit a pronounced maximum during the later third of

crack-propagation history. The results of Kobayashi [9] also exhibit a

pronounced maximum for Kd, which however is seen to occur earlier than in

each of the present three cases.

Such differences, compared to the experimental data, as in Fig. 6, were

also noted even in the "propagation" calculations (in the sense defined in

[9]) by Kobayashi [9], and Popelar et al [10].

It is seen from Fig. (6) that the maximum value of the presently computed

Kd is the largest for "Data 3" while it is smallest for Data 1. Note that the

rate of crack-tip deceleration is the most severe for Data 3, while for Data

1, the deceleration is zero, ie., the crack-tip is still propagating with a

constant velocity of 295 m/sec. Thus, the more severe the crack-tip deceleration

is, the more higher is the maximum in the computed K To understand the

reasons for the peak in Kd for Data 1, the times for various waves, reflected

from the boundaries, to interact with the propagating crack-tip are computed

and shown in Fig. (6). With A, B, and C denoting the three boundaries as

marked in Fig. 3, DA, DB and DC are the times when the dilatational waves

reflected from the boundaries A. B, and C, respectively, interact with the

propagating crack-tip. Likewise, SA and SB are the times for the shear waves



reflected from boundaries A and B, respectively, to interact with the moving

crack-tip. It is interesting to note that the computed Kd, for the Data 1

case, begins to peak at the instant SB. Further, the present analysis proce-

dure has been found to yield excellent correlations in several constant as well

as non-constant velocity propagation problems, such as those of Broberg,

Freund, and Nillson, in [6]. Thus it appears reasonable to conclude that

the results in Fig. 6 for Data 1 may be accurate.

To further understand the validity of the results for the most severe case

of Data 3, the variations of strain energy (U), the kinetic energy (T), the

fracture energy (F) and the total input energy (W) were studied for the case

of Data 3 (which as seen in Fig. 6, results in the most serious descrepancy

with the cited experimental results). It is noted that in the present analysis

procedure, the dynamic stress-intensity factor K is calculated directly as a
d

variable in the finite element equations [4,5]. The fracture energy is computed

from this directly computed Kd factor, using the relations;

F =f GdZ (8)

0

SI(1-S2 ) Kd2
where G = 2 d

4SS2 (1+S 2 2p
12 2

S. = [I-(v/C) 2 1 2

In Eq. (8), CI and C2 are the dilatational and shear wave speeds respectively.

The strain energy U is calculated from the presently computed stress and strain

data, while the kinetic energy is calculated from the computed data for velocitics.

Since the input energy to the specimen, W, is a constant in the present casc,

the above computed F, U, and T should add up to a constant. It is seen that

the error in (F + U + T) as compared 1 increases almost linearly from 0.0% to

I?"



about 4.5% towards the end of the computation. Since the present calculation

was carried out in 165 time-steps, it is reasonable to presume that the error

in each time step is thus, roughly 0.0003%. This appears to give enough

credence to the presently computed Kd for the case of Data 3, as in Fig. 6.

The results in Fig. 4 and 6 indicate the sensitivity of computed Kd, in

a generation calculation (in the sense defined in (91), to the input data for

the crack-tip time history, E vs. t. This in turn points to the extreme

precision with which the history E(t) should be determined in an experimental

measurement. Also, the validity of using only the basic singular dynamic

plane-stress solution in developing the relation between K and the caustic-

diameter as in [18] appears to need further study.

The reason for the descrepancies in the presently computed results and

the experimental ones for Kd, as in Figs. (4) and (6) may be explained, in

part, by the fact that only the elastic strain energy, kinetic energy, and

fracture energy are considered in an energy balance relation, of the type

shown in Fig. 7, in the present procedure based on a linear-elastic rate-

independent material. However for viscoelastic resins of the type of Araldite

B used in the experiments [8], the viscous dissipation of energy may also

play an important role in the determination of K . This may distort the

comparison of such experimental results, and the computational results

based on a linear elastic material behaviour.

Part II. Thermally Shocked Cylinder with Meridional Inner Surface Flaw

Synopsis of the Method of Approach: Special three-dimensional hybrid

crack elements are used to model the immediate vicinity of the three-

dimensional crack front, and the conventional 20-noded isoparametric brick

elements are used to model the remainder of the cylinder. The special crack

elements are developed through a hybrid displacement finite element procedure.



Thus, the development of the hybrid crack elements is based on a three field

variational principle [11,12] with the arbitrary displacements in the interior

of the element, a displacement field at the boundary of the element, and a

Lagrange multiplier field which can be identified as the traction field at

the boundary of the element, as the three variables. The analytical asymptotic

solutions for the displacement field, under mixed mode (KI, KII, KI1 1)

conditions, is embedded in the assumed interior displacement field of the

crack-element. The boundary displacement field for the crack element is

assumed such that it is inherently compatible with that of the surrounding

conventional element. The third field, namely, the boundary traction field

of the crack element, which is the Lagrange multiplier to enforce the equality

of the boundary-value of the assumed interior displacement field and the

independently assumed boundary-displacement field of the crack element, is

assumed such that it includes the proper (1/ r) singularities near the crack

front. From the details of the present finite element procedure [11,12,131

it can be seen that the mixed mode stress-intensity factors (KI, KIII and K II)

at various points along the crack front (which are denoted by a master vector

ks) can be solved for directly from the final finite element equations:

* +T * = 21 (9)

K q+ K k =Q(10)
Z 2 Z 3 _s = 92 (0

where K (i=l... 3) are the corresponding global stiffnesses and Q (=1,2) are

the corresponding nodal iorces.

Results

The above described hybrid crack element procedure was applied to analyse

a thermally shocked cylindrical vessel, of commerical geometry with outer to

inner radii ratio of (R /Ri ) = (10/9), and containing an inner surface elliptical



flaw. The flaw parameters are: (a/c) = 0.2; a/(-R) = 0.6; where the

parameters are defined in Fig. 8. The initial temparature of the vessel is

T. and inner surface of the vessel is assumed to be instantaneously reduced
I

to a temparature of T . The transient temparature distribution in the cylinder

is obtained from [14] as:

T-TE -Kx2t J (Ri a m)J (R m )U (ra) ln(r/R)

TmTE1 2 2 + l(R /R)ClTi-T E  m--1 J 0(Ri am ) - J (Ro0a m )  iRoRi

where U (ra m) = J0 (rm )Y (Ro a) - J (R0a )YoCram); J and Y are Bessel func-o 0 m o 0omo o

tions of the first and second kind, respectively; m are the roots of U (Ri a)

= 0; K is the thermal diffusivity; and t is the time. For purposes of

normalizing the final solution stress-intensity factors, the maximum value of

non-dimensional hoop stress o = [a ) m /i'7aCT -T E] is taken from (14]o ( )max]/ (i-rE)] ae rm[4

to be 5.1755 (where E and a are the modulus of elasticity, and the coefficient

of thermal expansion, respectively).

One fourth of the vessel is modeled, and the finite element breakdown,

which is shown in Fig. 9, consists of 380 elements and about 5600 degrees

of freedom. The solution for stress-intensity factors for a semielliptical

surface flaw, with (a/c) = 0.2 and a/(Ro-R i) = 0.6, is shown in Fig. 10 along
01

with the comparison results from [14]. In the normalization of the stress-

intensity factors, the normalizing factor cot which is defined earlier, is

used. Thus the results presented in Fig. 10 would have a unit of stress.

Further, the ratio (Kt/R ) is assumed to be 0.0001 in the present problem.
i

The present solution is seen to differ from that in [14] by about 10% at

the free surface (0 = 0) of the flaw.

However, this correlation can be considered to be good for purposes of practical

application of an engineering fracture theory. From the present results,

as well as the additional results present in [13], it is concluded that the



approximate "alternating-technique" solution presented in [14] may be

adequate for an engineering analysis of thermally shocked, flawed, cylindrical

pressure vessels.

Closure

Novel numerical techniques for the analysis of two-dimensional fast

fracture situations, and three-dimensional static analysis of surface-flawed

pressure vessels, have been presented and illustrated through solutions of

certain important problems in both problem areas. The present numerical

simulation of experimental data on a double-cantilever-beam specimen pointed

to the need for highly sophisticated experimental measurement of crack-tip

velocity history, as well as the need for the incorporation of more realistic

material property data (for experimentally used viscoelastic resins such as

Araldite B) in a computational scheme. Despite the tremondons advances made

both in numerical as well as experimental techniques, much needs to be per-

fected in both the areas!
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Figure Captions

Fig. 1 Finite element model for a center-cracked panel.
Propagating singularity element is shown my hatched markings.

Fig. 2 Normalized dynamic stress intensity factor variation with E(t).

Fig. 3 Finite Element Model for a Double-Cantilever-Beam Specimen.

Fig. 4 Normalized dynamic stress-intensity factor as a function of time,
with Kalthoffs E(t) curve as input.

Fig. 5 Three different E(t) curves assumed in the analysis.

Fig. 6 Normalized dynamic stress-intensity factor as a function of time,
for each of the three assumed E(t) curves.

Fig. 7 The variation with time of different energies in the specimen.

Fig. 8 Nomenclature for a thermally shocked, internally crdcked cylinder.

Fig. 9 Finite element breakdown for the crack cylinder.

Fig. 10 Stress-intensity factor variation along the flaw-border for a
thermally shocked cylinder.
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