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SUMMARY

This paper addresses the problem of computing the steady

inviscid supersonic flows about thin wings having sharp sub-

sonic leading edges and leading-edge separation. For such

wings the flow on the suction side tends to spiral into a vor-

tex. Both wings alone or wings in the presence of the body are

considered.

Previous analytical studies to solve these flow fields

have used the leading-edge suction analogy, linear slender-wing

theory, or detached flow methods. These studies are basically

inviscid. Viscous effects have been included by Vigneron,

et al. in a numerical study of supersonic flows over delta

wings with sharp subsonic leading edges using the Navier-

Stokes equations. To obtain a more efficient procedure than

Vigneron's et al., we use the steady Euler equations as the

basic governing equations as opposed to the more complicated

Navier-Stokes equation. The viscous effects, important near

the sharp leading edges, are simulated by a Kutta condition
applied at the leading edges of the wings. The rest of the

flow field is essentially controlled by the inviscid equations.

The equations are written in conservation form in generalized

curvilinear coordinates. The equations are approximated by

MacCormack's second-order accurate predictor-corrector

algorithm. The flow tangency conditions at the body surface

are satisfied by Abbett's scheme and the outer bow-shock

position by the Rankine-Hugoniot jump relations. Any internal

shock waves or tangentially discontinuities are captured by the

scheme. It was found that the slip surface emanating from the

leading edge of the sharp wing excited nonlinear instabilities

in the MacCormack's scheme. The addition of special flow

dependent fourth-order damping terms stabilized the scheme.
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Comparisons have been made between predicted pressure
distributions and measured pressure distribution for an AR- 1

delta wing at a = 100 at M. = 3.0. Good agreement is obtained.
A solution was also obtained for the same wing mounted on a

body of revolution at the same angle of attack and Mach number.
Large losses of favorable wing-body interference were predicted

which are in good agreement with experiment.
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1. INTRODUCTION AND BACKGROUND

As a result of past work (ref. 1) done at Nielsen

Engineering & Research, Inc. (NEAR) for the Office of Naval

Research (ONR) to produce engineering prediction methods for

missiles up to angle of attack of 50* and Mach numbers up to

3.0, several important problems in high angle of attack aero-

dynamics have emerged. It is the purpose of this report to

describe these problems and to attempt their solution using

the Euler equations. While these problems have arisen in

connection with missile aerodynamics, they are equally impor-

tant for airplanes.

The present work is a logical extension of the work NEAR

has carried out for ONR over the past four years. During the

first two years, paneling (inviscid) methods together with

vortex theory were used to develop pressure predictive tech-

niques for complete missiles at supersonic speeds and angles

of attack to 200. In the third and fourth years engineering

methods were developed to predict forces and moments acting

on canard cruciform missile to 500 angle of attack. These

methods, based on data base and rational modeling, produced

useful methods of reasonable accuracy, but also uncovered

important aerodynamic effects which need more study in their

own right. In order to extend the range of the engineering

design codes and to improve the rational modeling approach,

it is necessary to undertake further work. It is believed

that such work should utilize recent advances in viscous and

inviscid numerical computation techniques supplemented by

further experimental work.

Two of the major problems which have been uncovered are

the adverse effect of wing-body interference on wing lift at

high angles of attack and the special behavior of body vortices
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at supercritical crossflow Mach numbers. This report addresses

the first problem only.

On a wing-body combination at subsonic and moderately

supersonic speed, the effect of the body on the wing is to

increase the wing lift so long as the angle of attack is small.

As an example, consider the upwash in a crossflow plane normal

to the body. As it goes around the body, the air speeds up and

produces an angle of attack equal to 2a at the side of the body.

V
2 q,,sin a

v,

qsin a

Putting the wing panels in this field causes an increased lift

over what they would develop if the panels were made into a
wing at angle of attack . The wing-body interference factor

KW is a measure of this interference.

Lift of wing panel attached to fuselage (at a)
K = Lift of wing panel in wing alone (at a)

According to potential flow theory, KW runs from 1 for no

fuselage up to 2 for a small fin on a large fuselage (ref. 2).

In the previous work, we have determined K from experi-

mental data for a series of wings and Mach numbers up to 450

angle of attack. Figure 1 shows these experimental results

for a delta fin of aspect ratio 1 mounted on a body whose

8



diameter is one-half the total span of the wing-body. As the

angle of attack is increased, the value of KW decreases sharply,

indicating less favorable interference of the body on the wing.

At high Mach numbers the adverse interference is substantially

increased.

It is of interest to examine the environment in which a

fin or wing might operate at high angles of attack. We are in

a position to calculate the inviscid flow in which such a fin

or wing might operate using a computer program (refs. 3 and 4)

for solving the Euler equations developed at NASA/Ames Research

Center. Figure 2 shows such a flow for a supersonic crossflow

Mach number with the computer program operating in the shock-

capturing mode. Within the bow shock from the nose of the body,

the flow in the crossflow plane is mostly subsonic. However

there are embedded supersonic flow regions bounded by M = 1

lines and crossflow shocks. The flow as shown represents an

inviscid flow with rotation caused by the bow shock curvature.

The vortical singularity line exhibited by the flow is charac-

teristic of such solutions. In the real fluid case, the wake

of the body will modify the flow and may eliminate the
"vortical singularity".

It is clear that inserting a fin in the body flow which

is shown in figure 2 can cause significant changes in the fin

aerodynamic force and moment over what they would be for low-

speed crossflow past the body. In fact this altered flow field

accounts in the main for the considerable reduction in Kw for

this condition as shown by figure 1.

This report addresses the problem of computing the steady

inviscid supersonic flows about wings having subsonic leading

edges with leading-edge separation. For such wings the flow on
the suction side tends to spiral into a vortex above the wing.

This vortex provides for lift augmentation at low supersonic

speeds. Previous analytical studies to solve these flow fields

9



have used the leading-edge suction analogy, linear slender-wing

theory, or detached flow methods (ref. 5). These studies are

basically inviscid. Viscous effects have been included by

Vigneron, et al. (ref. 6) in a numerical study of supersonic

flows over delta wings with sharp subsonic leading edges using

the Navier-Stokes equations.

Here we wish to calculate flows around wings and wing-body

combinations with sharp leading edges. To obtain a more effi-

cient procedure than Vigneron's et al., we use the inviscid

steady Euler equations as the basic governing equations as

opposed to the more complicated Navier-Stokes equation. The

viscous effects, important near the sharp leading edges, are

simulated by a Kutta condition applied at the leading edges of

the wings. The rest of the flow field is essentially controlled

by the inviscid equations. To further simplify the calculations,

we consider cases for which the axial Mach number is supersonic.

A brief outline of the general approach of studying the

wing-body interference problem for steady supersonic flows is

now given.

The steady Euler equations are written in conservation

form in generalized curvilinear coordinates. The general coor-

dinate system is fitted between the body and the outer bow

shock. The coordinate system is fitted to the body by a con-

formal transformation which transforms the wing-body or wing

alone to a unit circle. To fit the outer shock to the coordi-

nate system, the radial distance is normalized with respect to

the distance between the outer shock and the body. A typical

mesh is shown in figures 3(a) and (b) for the planar delta wing.

The equations are approximated by MacCormack's second-order

accurate predictor-corrector algorithm (refs. 3 and 4). The

* flow tangency conditions at the body surface are satisfied by

Abbett's scheme (ref. 7) and the outer bow-shock position by

the Rankine-Hugoniot jump relations. Any internal shock waves
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or tangentially discontinuities are captured by the scheme. It

was found that the slip surface emanating from the leading edge

of the sharp wing excited nonlinear instabilities in the

MacCormack's scheme. The addition of special flow dependent

fourth-order damping terms stabilized the scheme.

Because of the singularity of the conformal transformation,

the transformed Euler equations become indeterminate as the wing

tip is approached. A separate specification of the primitive

flow variables at the wing tip is required. This is done by

satisfying the Kutta condition. that is, the flow at the wing

tip is tangent to the wing surface. The pressure, entropy, and

flow direction (in the plane of the wing) are obtained by

averaging the values obtained numerically just above and below

the wing tip. Constant total enthalpy completes the specifica-

tion of the wing tip flow variables. For the wing-alone

results, no wing thickness is used. The singularity of the

transformation at the wing-body juncture is avoided by moving

a distance 6 off the unit circle.

In the following four sections, the governing transformed

equations, the body geometry, the numerical scheme and the

boundary and initial conditions are described. The numerical

results are presented and discussed in the sixth section. In

the seventh section conclusions and recommendations are made.

The final section, an appendix, describes briefly the graphics

required to obtain the crossflow particle trajectories and the

conical streamlines.

2. STEADY EULER EQUATIONS

The conservation-law form of the fluid dynamic equation

for steady, inviscid, three-dimensional compressible flow of

an ideal gas (steady Euler equations) in Cartesian form are

.1
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x ay 9 z

where E, , and are defined as

Pu Pu Pw

A ma + kp APuV A PUw i
uF2 G=

puv pv + kp pvw

puw pvw pw2 + pk i

Equation (1) represents the conservation of mass and

momentum. The pressure and density are normalized with respect

to the stagnation conditions and the Cartesian velocity com-

ponents (u,v,w) with respect to the maximum adiabatic velocity

where k = 2y/(Y-l) and Y is the ratio of the specific heats.

The system of equations is closed by the integrated form of

the steady energy equation which in nondimensional form is

2 2 2
p= p(l-U - V -v _ ) (2)

For a given free-stream Mach number and angle of attack a,

the remaining free-stream variables in nondimensional form are

given by

p. = {1 + [(Y-l)/2]M}

2 -l/(Y-l)
p. = {1 + [(Y-I)/2]M.

U =0

v= q0 sin a

W= q cos a
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where

2 2 2 1 _M~/2q. (u,+V0 + wC) 12 + L-1M2J'

To obtain a surface-oriented coordinate system, the system

(1) is transformed from the Cartesian space (x,y,z) into another

arbitrary curvilinear system (z,r,o) where r = 1 defines the

body surface. The general transformation is (the particular

transformations considered are given in section 3)

z z

r =r(xy,z) (3)

fl*x,y,z)

The transformed equation, obtained by Viviand's (ref. 8)

procedure, are in slightly rearranged form

-ZE + +0(4)

where

PU PV pW

-1pwU +pk 1 pwV + rpk 1PwW + Opk

PvU pvV +r ypk PVW + 0ypk

L_ puU _jpuV +r xpk PUW + 0pk

and

U w

V rx u+ry V+rzW(5

W x u + y v+ z w

13



where U, V, and W are the contravariant velocities written

without the metric normalization. The metric terms are obtained
from the chain rule expansion of xr, Yr' etc. and solved for

rx , ry, etc. to give

ZX = 0 rx = Jy. Ox -r

= 0 ry = -Jx y =JXr (6)Zyy

Zz = 1 rz = J(yX -x y) * z = J(xzYr XrYz)

and
j-= X1Y _ X Yr

where J is the Jacobian of the transformation from the arbitrary
curvilinear space (z,r,o) to the Cartesian space (x,y,z),
figure 4. It should be pointed out that both coordinate

systems are left-handed, the reason being that the parent

code (refs. 3 and 4) used for this study was written for a

left-handed system.

To fit the outer bow shock wave, the outer mesh boundary

must coincide with the bow shock. Since this bow shock is a

variable three-dimensional surface it is necessary to introduce

another transformation which normalizes the distance between

the body boundary and the bow shock surface. The location of

the bow shock surface is determined by the Rankine-Hugoniot

conditions during the couzse of the numerical computation

described in a later section. At the same time it is desirable

to have arbitrary clustering functions in the transformation so

that mesh points can be concentrated near the body surface,

wing tip, or wing-body juncture for increased resolution in

J areas of rapid changes of the flow variables or the previously

mentioned transformation metrics.

14



The equations of the independent variable transformation

are

T= h( ) (7)

1)= f( )

where h and f are clustering functions

= (r - rb)/(rs - rb)

rb = rb(z, ), the body surface radius

and

rS = r s(Z,O), the outer shock radius

to be determined as part of the numerical solution procedure.
The derivatives are

r E (8)

The system (1) is now in weakly conservative form (i.e. no

longer strongly conservative in the spirit of Viviand)

-y E + - - F + G + H = 0 (9)
aT n

where

E=

F = T ( z + r F + EG

G G

15



and

H = - E +r + - - {zr + G }

nI

We also have

T= dh( ) T = h(

r= l/(rs - rb)

EZ = -{rbz +  (rz - r bz)} " r (10)

S= -{r bo + C(r so - r b)} " r

=  f(o) and ) d 2 2f(o)Sdo 00€ = d 2

The functions h and f are the clustering transformations
in the r and o directions, respectively. The normalization

between the body surface and the shock is given by the variable

The equation is no longer in strongly conservative form

(i.e. H = 0) to simplify the decoding of the dependent E vector.
The finite difference form of eq. (9) is integrated with re-

spect to the hyperbolic coordinate ; to yield values of E.
The physical flow variables p, p, u, v, w must be decoded from

the components ei of E. Explicit expressions are possible for

the physical flow variables if the system is weakly conservative.

16



This is not possible in the strongly conservative form since

the E vector would have a form similar to F in eq. (9).

The physical flow variables are obtained by the solution

of five simultaneous nonlinear equations consisting of the four

components e. and the integrated energy equation (eq. (2)).

The velocity components u and v are given by

u e
u= e43/e 1 (11)
v = e3/e1

The e. along with eqs. (11) and the Jacobian are used to
1

obtain an implicit relation in w from eq. (2).

2 2

e 2  ( e3 + e4

(1-k)w2 _ e w + k 2  4= 0 (12)
e1

The decoding procedure is reduced to finding the roots of

the quadratic eq. (12). Two roots exists corresponding to a

subsonic and a supersonic flow in the z-direction. The root

corresponding to supersonic flow is the desired solution.

W~ [e + e2 _41kke2 _e2 _e2)}1/2] (3
2e1 (1-k) + e - 4(l-k)k(e e 3  e 4 )} (13)

The density is obtained from

p = e1 * J/w (14)

and the pressure from eq. (2).

This decoding procedure gives explicit expressions for

the physical flow variables. For the strongly conservative

form of the governing equations a Newton-Raphson procedure is

necessary to determine the flow variables. The additional

17



computing time was not thought to be worthwhile simply to

maintain the strongly conservative form. Apparently the cor-

rect jump conditions are still obtained with the equations in

weakly conservative form (ref. 3).

3. BODY GEOMETRY

In this study two types of body geometries are considered:

a planar wing alone and a planar mid-wing on a cylindrical body.

The latter configuration is shown in figure 4. The wing lies

in the x-z plane. Both the body radius and wing semispan are

arbitrary functions of the axial coordinate z. By a conformal

transformation the wing-body configuration is transformed into

a cylinder of unit radius. The transformation is given more

conveniently in the terms of the transformed space variables

(z,r, ). The mapping between the transformed space and the

physical space (x,y,z) is given by

g R Z + -(Z + 1) 2 16B2/R (15)

z=z

where

g = x + iy

RS Rw(Z) =B2 (z)/Rw (z) R w >_= R()= 2R>B

Z = re =re i e

and the positive (negative) sign in front of radical applies

to the upper (lower) half plane.

This single transformation covers all the configurations

considered in this report. Circular bodies alone, planar wings

18



alone, and planar mid-wing, circular-body combinations are ob-

tained simply by setting R =B, B= 0, and RW>B, respectively.

The transformation metrics are easily obtainable by dif-

ferentiation of the above mapping.

4 R I  B 
9= g + R

± Z 12 2 2+ g) -16B/R

1

ar 4r) (+ (16)
2 2 2/Z+ .1) -16B2/R 2

z

~ i Z 1 __ _ __ _ _/Z-E + 16B 2/R 2

z

Separating real and imaginary parts of gz' gr and g obtains

xz'y z , XrYr, and x,,y., respectively

Substituting these into eq. (6) obtains the requisite metrics

for eq. (4).

The transformation is well behaved (i.e. J-1 # 0 or , o)

everywhere except at the wing tip and at the wing-body juncture.

At the wing tip all the metrics and the Jacobian vanish, leav-

ing eq. (4) indeterminate. This requires special procedures at

the wing tip as discussed in section 5. At the wing-body

juncture, the inverse of the radical of eqs. (16) becomes

infinite. This singular behavior is due to the abrupt jump of

19



the surface slope between the body and wing. If the analytic

expressions (eq. (16)) for the metrics are replaced by their

finite difference equivalent, the singularity is automatically

avoided and no special treatment is required at these points.

However a different procedure is used here as described in

section 5.E.

4. FINITE DIFFERENCE EQUATION

The flow equations, eq. (9), are approximated by

MacCormack's second-order, predictor-corrector scheme. Since

the outer bow shock wave is fitted and the internal shock waves

or tangential discontinuities are captured, it is essential

that an efficient numerical scheme be used. Kutler has found

(ref. 9) MacCormack's scheme to be one of the most efficient

and easily implementable schemes available.

The numerical algorithm can be written for the field

points (4 e j K NT2-1; 3 k < NPHI, see fig. 5) as

En+ En Fn n n n+l Gn
j,k j,k AT j+l,k j,k) A ( j,KPL j,KPR

-n+ln + AE A k (17a)- ~ k Jt Im + A k Ir

for the predictor step and as

n+ 1
En+l 1 En  +En+l An (F n+ F n+
j,k j k -T ( j,k -Fj-l,k)

Cn+l n- nn i

yn (j,KCL j,KCR j,k

nI En+l I+AE n + l  + A ~l

+ j,km j,k (17b)

20



for the corrector step, where

KPL = k + NFLIP

KPR = k-i1 + NFLIP

KCL = k + 1- NFLIP

KCR = k -NFLIP

En = (~,JAT, kArj)
j,k

n ~n nF ~ F(E.jT kn
j,k j ,k'"n jtkn
n~ln+l n ,n+l *

Fj+k =F(Ek +A , jAT,, kAn)

and nn=

0 e~

The value of NFLIP alternates cyclically between one and

zero with the integration steps to obtain unbiased results.

The increments AT and An are the mesh spacings in the radial

and meridional directions and, AC? is the marching step size

between the n-l and nth computational planes. The terms
nAE. and A0n+1 are fourth-order damping terms intro-
j,kjm,r j,k m,r

duced to control the severe nonlinear instabilities experiencedI near the leading edge of the wing. The damping terms are given
by

AE. L = L j,k+l j,k+ l 2 j,k - i ,k + Ej,k-1 i 1jk m ~j,k S
(18a)

UE I=L ( E,+lk i j+l,k -
2 E jk * ij,k + E Jl1k i J-l,'

i'klr "r\ j,k

(18b)
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where

L Cm Pj,k++l - 2j,k+ + Pjk+t-1i
m 2 j,k++l + 2 pj,k+L + Pj,k+-I

and

L Cr lpjj+l,k 2pjj,k + Pjj-l,kPr
2 IPjj+l,k + 2pjj,k + Pjj-l,kl

where L = n or n+l, t = 0 or l-2.NFLIP, and jj = j or j+l,

depending on whether the damping terms apply for the predictor

step, eq. (17a), or the corrector step, eq. (17b). These

damping terms are similar to those used by Baldwin and

MacCormack (ref. 11). The pressure terms that they originally

used have here been replaced with the densities. It was found

that the tangential discontinuity emanating from the leading

edge of the wing forced large oscillations in the densities

and very little in the pressures. Thus the original damping

did not adequately control the nonlinear instability near the

wing leading edges. The arbitrary coefficients Cr and Cm range
from 0 for no damping to 1 for the maximum allowable damping.
Typical values were Cr = 0.1 and Cm = 0.5, for the radial and

meridional damping, respectively.

The above finite-difference equations are applied only to

the field points. At the body (j = 3, 3 k < NPHI) Abbett's

scheme is used to satisfy surface tangency as discussed later.

It requires information provided by the finite difference

algorithm. The algorithm used for the field points, however,

cannot be used on the surface since it requires points on both

sides of the point being advanced and thus data at a set of

points that would lie inside the body. Therefore, a second-

order accurate algorithm is used requiring data only on or

22



outside the body. This scheme uses the predictor step of

MacCormack's method, eq. (17a), without the fourth-order damping

terms, followed by the corrector step given by

En+l =1 En En+ A n + l F n+l F n---jj,k = 2 ,k + j,k AT Fj+l,k j,kJ

A n+l G j l G n-1 A n+l Hn+l

A j,KCL j,KCR) j,k

~+ l Fn -2F n  + F n (19

+ nT j+2 ,k j+lk ,k] (19)

where j = 3. After MacCormack's predictor and eq. (19) have

been used to advance the data at the body, Abbett's scheme is

used as a final corrector. This scheme is described in a later

section.

At the shock wave, a predictor-corrector sequence is

again used and requires data at the shock and one point below

it. The algorithm is as follows:

Predictor:

n+l n A (F~l n n
j,k j,k AT 1,k jl,k

A nl (Gf n GjR -C An+1 H n (20a)- r An , KPL j,KPR) j'k (2)

Corrector:
n+l 1 [n n+l A n + l  in+4l n- l

Lj,k 2 j,k +  J,k AT F j,k j-l,kJ

A n~ 0+1- G Gnl -A n+l Hn(20b
Al (j,KCL j,KCR)" A j k (205)

where j = NT2. Equations (20a) and (20b) are used in conjunc-

tion with the Rankine-Hugoniot relations, described later, to

J determine the peripheral shock shape. It should be noted that
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the damping terms are not used for the boundary finite-differ-

ence equations.

The integration stepsize is determined by the stability

bound of the numerical scheme. The stepsize must be small

enough to satisfy the stability requirement of the scheme but

large enough to finish the computation with a minimum of time.

The use of the largest possible stepsize for hyperbolic equa-

tions insures that the finite-difference scheme is as nearly
compatible with the method of characteristics as possible.
The bound on the stepsize value is obtained by the amplifica-

tion matrix theory. This method is based on a locally linear

(frozen coefficient) analysis of the governing partial differ-

ential equations coupled with a discrete harmonic analysis of

the linear difference scheme. The partial differential equa-

tion system, eq. (9), is rewritten in primitive variable,

nonconservative form as
_u+_ au a

a- M + - + N - + H = 0 (21)

T
where U = (u,v,w,p,p) , and M and N are the coefficient matrices

given below. The amplification matrix theory for the two-

dimensional r,T space requires that

C < i (a (22)
At l M)max

and

(aM) = IO(M)I local max

where aM is the local maximum modulus of the eigenvalues of the

matrix M for a given grid point in the field. The maximum of

the local maximum of the eigenvalues in a particular t con-

stant plane is what is needed in the above equation. A similar

condition is obtained in the z,n space= ) (23)

A N max• aN IaN) 'local max
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This planar analysis has been shown to give a good bound on the

stepsize in multidimensional problems if eqs. (22) and (23) are

replaced by

-CFL/(
( =M)max (24a)

A4 = CFL/( (24b)
A n N max

where CFL is the Courant-Friedricks-Lewy number. The CFL

number < 1 can be varied during the computation and is usually

assigned a value of 0.9 or less. When applying eq. (24) to

determine At, the mesh spacing AT and An are given. It is

therefore necessary to determine the minimum A predicted by

the two relations. This minimum AC, which is recalculated

after every few (typically five or less) integration steps, is

the one used for the succeeding steps in the integration pro-

cedure.

The values GM and aN required in eq. (24) are determined

from the matrices M and N. The coefficient matrix M is given

by
M -T I + -T + 2Ta1+ -(A-B) A3rc (25a)

and N is given by

N - (A-lc) (25b)

where I is the identity matrix and (A B) is given by

25
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UV-rza2  -r a2  -rxa2  k(rzU-V)

U2-a2 U2-a U2-a2 p(U2-a)

0v 0 -y- 0
u pU

(AIB) rxk
(A B---U 0 (26a)

2 2 22a p(rzU-V) a pr U a prxU UV-rza2 _

2_2 U2 2 U22) U22k(U2-a) k(U -a) k(U-a) U2-a

p(rzU-V) r ypU rxPU k(V-rzU) V

U2 a2  U2_a 2 2_a 2 2 2 UU-aU-a U(U-a)

and (A C) by

UW-F _a_-x k(4 U-W)

2_ 2 2_ 2 2 _ 2 2 _ 2 )

U-a U-a U-a (U-a)
0 0

W x k  (26b)A-c C 0 0 U P

a2p( zU-W) a2pyU a2poxU UW-a2 z 0

k(U2-a 2) k(U-a) k(U2-a 2) U2-a 2

p(oz U-W) 0 pU x PU k(W-0z U) W

22 ' 22 u
U2-a2  a U2-a U(U -a)
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where a is the speed of sound and is equal to Yp/(kp) in terms

of the nondimensional variables used in this report. The five

eigenvalues of M are

QMa2 a U/(2 -a 2 )(m 2+m 2  + (Q-m U) 2

M T lcm~ z
1,2 2 2 (a)

and
CYM _T aE +0 3,4,5~3 +-- T (27b)

where

Q V. + a W aj

z ar

M= +

D r y 0 ac

x~ larx + 2a x) aT

The five eigenvalues of N are

0 _ W- a a2 ± a/(U2 - 2 ) (12+4 ) + (W-cO U) 2  (8)

01,2 U_ -a

and

aN a3l W
03,4,5 aT *U (28b)

Equations (27a) and (28a) are the slopes of the charac-

teristics in the ? ,r and , planes, respectively, while eqs.

(27b) and (28b) are the slopes of the streamlines in their

respective planes. The maximum modulus of eigenvalues used
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* I

in eq. (24) is then obtained from eqs. (27a) and (28a)

M  I (M)jlocai max 1max(Ho1 , I I) (29a)

SN Ia(N)iocai max = max(1a I No2 (29b)

5. BOUNDARY AND INITIAL CONDITIONS

Several types of boundary conditions must be satisfied for

the wing-body problem considered in this report. These include

solid surfaces such as the wing-body surface, permeable sur-

faces such as the fitted outer bow shock wave, symmetry planes,

and initial planes from which the computation can be started.

Another type of boundary to consider is at points on the body

where the transformation becomes singular; points such as the

wing tip or wing-body juncture. In both of these locations the

transformation metrics vanish or become infinite and the numer-
ical procedure breaks down. The separate procedure devised to

obtain the flow variables at these points is described below.

A. Body Surface

The success of the numerical scheme depends in a large

part on the proper treatment of the surface boundary condition.

For the inviscid flows considered in this report, the fluid

velocity vectors on the body lie in the surface tangent planes.

The scheme devised by Abbett, reference 7, is used to satisfy

the surface tangency condition. The scheme which combines

simplicity with accuracy is only applicable for steady super-

sonic flows. It treats the computation at the body in the same

predictor-corrector fashion as the interior points and is,

therefore, compatible with the rest of the calculations.

Abbett's scheme is a predictor-corrector procedure in

which the values of the flow variables (u,v,w,p,p) are first
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predicted at C = n + A; using the MacCormack scheme and

then these values are corrected using simple expansion or com-

pression waves to enforce the surface tangency condition

exactly. By restricting the flows to be steady and supersonic,

Abbett is able to use the analytical solution of Prandtl-Meyer

expansion.

The flow variables at n+l = n + A; are predicted numer-

ically by using eq. (17a) without the additional dissipation

terms for the predictor step and eq. (19) for the corrector

step. Decoding the conservative variables, call them EM from
e q ( 9 y e l s ( i) ( i) ( i) ( i) _ ( I) a n + 1

eq. (19) yields u 3 kf v 3 k w3,k' P3,k' and p3,k at

The body surface is given by

fb(z,r,) = r - rb(z,) = 0 (30)
-r-i =0

The unit outward normal vector is in the left-handed Cartesian

coordinate system

grad fb --rxi - r j - rxk (31)

nb grd= 2 2 2 1/2
b i  (r + r + r)

The surface tangency condition to be satisfied on the body is

q , nb = 0

or
urx + vry + wr z = 0 (32)

with the velocity vector given by its Cartesian components.

The velocity vector at the surface

*(1) t 43  (33)
q3,k= u3,k + v3 ,k

j + w 3 , (33)

predicted by the numerical scheme eqs. (17a) and (19) will not

satisfy the tangency condition and will be rotated out of the
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tangency plane by
A9 = sin -I  n + (1)'S3,k "n/3,k 34

where (1) is the modulus of q(1) andq3,k q3,k

-(1) r x _ v (1) r _w(1)r+() =-3,k x 3,k y 3,k z (35)
3,k b jr 2 -+ r2 + 2

3,3,

x y z

and the subscripts 3,k refer to the body surface. The flow can

now be rotated according to the Prandtl-Meyer expansion or

compression given the A6. If A6 is positive, an expansion is

necessary to rotate k(1) into the surface tangent plane and

if AB is negative a compression is necessary.

If the rotation angle AG is small (under 50), the following

asymptotic expansion of the Prandtl-Meyer expansion, reference

10, gives the final corrected pressure at the surface

(1 y(M(1) 2n+l Yi (Mrk A

3,k 3,k J- A3j+0(A 3-
) 36

A 3,k) _3,k 1

where

(1) (1) 1/23,k a(l 3,k) 1 2l)
3,k 0 2_ 11

3,

whr

(1) 1/2



Assuming the entropy to remain constant during the rotation

of the velocity vector, the density n+ can be determined from
P3,k

n+l = n+l K /Y (37)

P3,k (P3 ,k/K3

with K = (1)E(p(1)ly
P3,k' 3,kJ

The velocity magnitude is obtained from the energy equa-

tion, eq. (2),

n+l n+l n+l 1/2
q3,k U P3,k/P3,k )

It remains to find the individual Cartesian velocity com-n+l
ponents of q3,k" Since the predicted velocity vector was

rotated in the plane of itself and the surface normal vector,

the direction of the final velocity vector is nt , that is,

n+l n+lq 3,k q q3,k n nt

where

4. q3,k- (q3,k n nb (38)n t = 3,k- 3,k b b

The components are now easily obtained as

n+l n+lM
3,k 3,k [R2 + R2 + E2]1/2

n+l qn+l N
3,k= 3,k (R2 + 92 + 12]1/2 (39)

n+l n+l U
w 3 ,k q,k [2 + -2 + -2]i/2
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where

u (1) r + v(1 ) . r + w(1)r )r
(1) 3,k x 3,?k r 3,k z x
3,k I 12

(u(1). v(1) (1+ wr) r
= V(1) - k 3,k *r +V 3 kry 3 , k zrz)ry

3,k 1 12

- (1) (u ( I ) " +rv (1 ) r + w()
w31k 3,k rx 3,k Y 3,k rz rz3,.k I 2

and

a2 2 2 2
j x +ry + rz

This completes the boundary procedure for the body surface.

It is essentially similar to the procedure described by Kutler,

et al., reference 3. The most important difference, other than
the different geometries considered and the generalized coor-
dinate system, is the means by which the constant, K, eq. (37),

is computed. In Kutler, et al.'s work K is assumed to be

constant. For the configurations considered by them a single

stagnation streamline wetted the entire body, hence the entropy

on the body is fixed. However the assumption of constant

entropy at the body is violated if crossflow shocks appear

which intersect the body. They argue however that these cross-

flow shocks are weak and will not significantly effect the

solutions. Thus once the stagnation streamline is located,

the body surface entropy and thus K is known immediately from

the flow variables on any point on that streamline. Their work

is restricted to nonseparated crossflows. In the present work

the crossflow must separate, and, hence, the body is no longer

wetted by a single stagnation streamline. The "constant", K,

is no longer constant over the entire body since the entropy
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is not constant. K must thus be determined numerically at

each point on the body surface.

B. Shock Surface

The boundary condition at the shock surface is similarly

treated as at the body surface except that the Rankine-Hugoniot

conditions must be satisfied instead of the flow tangency con-

dition. Specifically we need to determine the shock surface.

Let the shock surface be given by

f (z,r,O) = r-r (z,O) = 0 (40)

The outward unit normal is given in terms of the left-handed

Cartesian unit vectors by (see fig. 6)

n x- vf- (rx_rSOX). + (ry_r Soy + (rzr-sz rsOz) (41)

where

IVfsl = [(rx-rs x)2 + ryrs y) 2 + (rz-rs-rs~ )2]I/2

The metrics r x ry r ,co ,x , and 0z are known once r and 4 of

the shock surface are known. The preshock velocity vectors

normal and tangential to the shock surface are

1 O us (42)Ui - (o ")ns

and
V, = qm - Ul, respectively (43)

The notation used in this section is as follows: Subscript 1

or - denotes preshock condition, subscript 2 - postshock,

superscript tildas on u and v denote the velocity vectors
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normal and tangential to the shock surface, respectively. The

magnitude of the normal preshock velocity vector is

= (q-n)/ /s 7 7

_ 2 I (rxrs x )u + (r Y-r sy )vI~f 5 I ... 4,.y.s4,

+ (rz-rsz-r r so Oz)w 1Vfs1 (44)

Squaring and cancelling obtains

2 ~If 3 2  2fr- ~u ysyvS
llVfs [  = (r x- r sox) + (r Y-r S4, + (rz-rrsz rsz )w 2

Solve now for rsz to obtain
2Sj + / 2 .

rsz= (r z-r s z ) + w.Q + uA 1w I) (45)

where
(rx - rs 4 x)u. + (r- r s#¢)V.
Q x2 -2 y '

w. - uI  :

2 2
(rx - r so x ) + (ry - r s4,Y

The shock wave is moved according to the following Euler

predictor and modified Euler corrector:

Predictor: rn +  = rn + rn zAn+l (46)S S SZ

Corrector: rn+l = rn + 1 r n + r(n+l)) An+l (47)S =S 2 r sz sz
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where is the integration stepsize. The quantities rs are

evaluated by simple one-sided differencing

n+ =rn n (48)" = r SNT2,KPL rSNT 2,KPRJNT2,KPL -NT2,KPRJ

and

n+l (nI- n+l
" = NIrn l - rn  /(ONT2,KCL - ONT2,KCR) (49)rs [ NT2,KCL SNT2,KCRI

The subscript indices have been previously defined. The pro-

cedure for determining the shock slope is as follows: the

postshock conditions are predicted using eq. (20a) and eq. (46).

Decoding obtains a predicted postshock pressure, P2' from which

the normal preshock velocity is given for a perfect gas by

-2 p_ [ 2 (0
u _1 L-2-+ (Y-1 50

Forming the metrics from the predicted r n+  and rnI- from

eq. (48) gives sufficient information to solve for the shock

slope using eq. (45). The postshock velocity vector can now

be determined from

4. 4. 4.
q 2  u 2 + -v2  (51)

where u2 and v2 are the postshock normal and tangential velocity

components. The tangential component remains unchanged across

the shock, thus

v2 = V1 (52)

and the normal component is determined by use of the con-

tinuity equation

a 2  ;Il/0 2  (53)
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and p2 is given by the Rankine-Hugoniot condition

2 , Y-1p., y+l~i

P2(P2 ; P0 P.) = .Y (54)
+Y-1 P2

y+l p

The normal postshock velocity is given by

4. 4 . 4

q2 = u2i + v2j + w 2k

4. p10- 1-- (55)
i ) is

which can be broken into the requisite Cartesian postshock

velocity components u2 ,v2 ,w2. This completes the predictor

step. The entire procedure is repeated for the corrector step

except that the appropriate equations to be used are now

(20b), (47), and (49).

C. Symmetry Plane

The flow fields of interest in this report have a plane

of bilateral symmetry since no yaw angles are considered and

the configurations considered are bilaterally symmetric. This

allowed us to reduce the number of mesh points required. The

symmetry conditions are imposed by simple reflection of the

flow variables and the outer bow shock location about the two

planes of symmetry 0 = 00 and 0 = 1800. Since MacCormack's

scheme is a noncentered predictor-corrector scheme, it is not

possible to apply the symmetry conditions after the predictor

step. The predicted values of the flow variables are obtained

directly by applying the predictor step eq. (17a), to the point

beyond the symmetry planes, i.e. * = 0° - AO and 0 = 180 ° + AO.
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The symmetry conditions are imposed only after the corrector

step to provide sufficient information for the predictor step

for the next marching step.

Treating the symmetry planes in this manner avoids the r
spurious oscillations emanating from the symmetry planes.

These oscillations occur when MacCormack's scheme is employed

with a generalized curvilinear coordinate system and symmetry

is imposed after both the predictor and corrector steps.

D. Wing-Tip Condition

At the wing-tip the transformed Euler equations, eq. (6)

are indeterminate. This can be snown as follows: the basic

equations are eqs. (4) along with the contravariant velocity

components, eqs. (5). The appropriate metrics are given by

eqs. (6). If we now consider the region near the wing tip

r 1 + e jj <<1

and (56)

e e lel << I

where n - /2 = 6, we can write the metrics in asymptotic form

as

r (57)
Xr =ac Xe =E

where
R ).± 1 - 12 (58)

"" - 4B2/R2

and the Jacobian is

J- a (E2 + 0 2) (59)
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With these metrics, the asymptotic form of the governing

equations becomes

PCV + P0W + pC + pD = 0

(Pu) V + (Pu)oW + pu(C+D) = 0

(pv) EV + (Pv) OW + pv(C+D) = 0

(pw) EV + (pw) e + pW(C+D) + %zkp + ezkp =0

where the overbar (-) stands for J-1

C = 5[Eu + Ov + w (-Qyz + ex z)]

and
D = c [-ua + Eve + w8 (Xze - yzE )

All of the overbarred quantities vanish as c,e 0. Thus as
the wing tip is approached, the basic equations are always
satisfied provided the flow variables are continuous. Thus
the Euler equations can be satisfied by any continuous values
of the primitive variables at the wing tip.

If we now allow for discontinuous solutions of the Euler

equations at the wing tip we have

[ ] cos(n,z) + [F] cos(n,r) + [G] cos(n,O) = 0

where the cos(n,z), cos(n,r), and cos(n,O) are direction
cosines between the coordinates and the surface of discontin-
uity. From the previous asymptotic forms of the metrics, the
jump relations to the lowest order become
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[pV] cos(n,r) + [pW] cos(n,O) = 0

[puV + yskp] cos(n,r) + [puW- YrkP] cos(n,o) = 0

[pvV - xskp] cos(n,r) + [pvW + x rkP] cos(n,O) = 0 r
[pwW + Cz kp] cos(n,r) + [pwW + zkP] cos(nO) = 0

Since all the metrics and the overbarred quantities vanish at

the tip, it follows that the jump relations are identically

satisfied there.

Thus for both discontinuous and continuous flows, the

Euler equations are indeterminate at the wing tip. In other

words arbitrary values can be set for p,u,v,w at the wing tip.

Since we are free to pick the primitive flow variables

at the wing tip, we can be guided by the actual physics of the

flow. We will model the flow of a vortex sheet coming off

tangentially to the wing at the tip. It is well known that

for compressible flows that tangency cannot be satisfied for

positive pressures and densities if the flow must turn 1800

as at the wing tip. Thus we require the flow to separate.

Even though the equations are indeterminate at the wing tip,

the primitive variables must satisfy the jump relations for

the untransformed Euler equations and these are for a tangen-

tial vortex sheet

(i) p is continuous

(ii) v = 0 (i.e. the sheet is a streamline)

(iii) total enthalpy is constant

The jump in the tangential velocity u + w2 ) across the sheet

is arbitrary. The jump in density is then determined from the

constancy of total enthalpy.
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Two more conditions are required before all the flow

variables are determined at the wing tip.

The two additional conditions that we have used with

partial success are:

(iv) u/w = tan( -0
)

(v) p/p = constant

where i is the leading-edge sweep angle. In particular we set

Eo = 4m' i.e. the flow at the tip follows the mean flow direc-

tion obtained by averaging the flow directions just inboard of

the tip on the upper and lower surfaces. These five conditions

are similar to those utilized by Minailos (ref. 12) except that

he set o so as to obtain good agreement with experimental data.

These conditions are implemented into the code as follows:

a) po 0.5(pl + p-i) b) Po - 0. 5 (pl + p- 1 )

c) v° =0 d) *0 = 0.5(iip + -i)

e) total enthalpy is constant

where subscript "o" designates the wing tip, "I" the first point

on the upper surface inboard of the tip and "-l" the first point

on the lower surface inboard of the wing tip. In other words

the pressure, density, and flow angle at the wing tip are

obtained by averaging over the nearest surface neighboring

values. The reason for averaging the density instead of using

condition (v) is that the latter condition requires an accurate

evaluation of.the surface entropy. This was not possible with

the present code. An alternate boundary condition for deter-

mining the densities on each side of the vortex sheet would be

to specify the rate of vortex shedding from the leading edge.

From this information the velocity on each side of the sheet

j would be given and the densities could then be calculated.

This is unlike two-dimensional airfoil theory where conditions

40



(i), (ii) and (iii) fix the strength of the vortex sheet. The

reason for this is that in two-dimensional flows the wake con-

sists of a single split streamline whereas for three-dimensions

the vortex sheet consists of separate streamlines from the top

and bottom surfaces which may be of different entropies.

E. Wing-Body Juncture

At the wing-body juncture, the transformation metrics

(eq. (16)) become singular since the term under the radical

sign vanishes.

This singular behavior is due to the abrupt jump of the

surface slope between the body and the wing. As mentioned in

section 3, this singular behavior can be automatically avoided

if the analytical expressions, eq. (16), for the metrics are

replaced by their finite difference equivalent. No special

treatment will then be required at these points as was re-

quired for the singularity at the wing-tip.

However to replace the analytic expressions by their

finite difference expression is impractical in context of the

existing Space Shuttle code, refs. 3 and 4. In that code the
transformation of the physical body to a unit radius cylinder

as given by eq. (16) and the normalization of the distance

between the body surface and shock surface as given by eq. (7)

are treated as two separate transformations. The mesh point

coordinates from which the finite differences would be com-

puted are determined only as the net result of both transforma-

tions. Thus there is no straightforward procedure for comput-

ing the metrics, eq. (16), numerically.

The procedure used in this report is to avoid the wing-

body juncture singularity. This is done by filleting the

juncture to eliminate the abrupt change in surface slope. The

simplest method of achieving this is to add a small perturbation
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to the transformed body radius, so that instead of rb(z,4) = 1,

we have rb(z,f) = 1 + e. The perturbation, e, used herein is

0.025. With this perturbation the wing-body configuration

shown in figure 5a is obtained.

F. Initial Starting Plane Conditions

The starting solution or initial data plane can be obtained

by one of two ways. The Space Shuttle code has the capability

to generate internally the solution for a pointed cone at angle

of attack using the shock-fitting procedure. To start that

solution all the grid points in the initial plane are initial-

ized using the analytical solution for a pointed cone at zero

degree angle-of-attack and the given free-stream Mach number.

The integration is started and the angle of attack is incremented

over 100 marching steps to its final value. Thereafter the

integration is continued until the calculation has converged

to a conical flow field solution. Since the flow is conical,

the axial coordinate is stepped back to its original starting

value to give the starting plane flow field for apointed cone at

angle-of-attack. This procedure was used to provide the initial

*data for the wing-body configurations studied in this report.

For the delta wing alone, a slightly different procedure

is required. Starting with a given wing-body solution of the

desired sweep angle, angle-of-attack, and free-stream Mach

number, the integration procedure is continued while the

physical body radius is gradually forced to vanish over twenty

to thirty marching steps. Thereafter the transformed body

radius, rb(z,O), is forced slowly to unity over another twenty

steps. The integration continues until again a conical flow

field is obtained. If solutions are required for planar wings

other than delta wings, then the conical planar delta wing

solution is used as a starting solution and the sweep angle can

vary arbitrarily with the axial coordinate, z.
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6. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations have been obtained for two cases:

a planar delta wing alone of aspect ratio 1.0 at free-stream

Mach number 3 and angle of attack a = 100, and a delta

wing in the presence of a circular body at M. = 3 and a = 100.

A. Wing Alone

The first numerical results are for delta wing alone at

M = 3 and a = 100. The closest available experimental data,

reference 13, are for a configuration shown in figure 7(a).

This experimental configuration has a finite thickness delta

wing with the edges beveled to obtain sharp leading and trail-

ing edges. The experimental free-stream Mach number is 2.86.

The pressure coefficients are shown in figure 7(b). The

effects of thickness have been subtracted out of the experi-

mental results shown. The present Euler code results and the

experimental data compare quite well except near the tip. The

effects of the bevel at the tip of the experimental configura-

tion cause some scatter in the data. The cause of the spikes

in the numerical pressure coefficients is not clear. It is

suspected that they are a result of the nonlinear instability

of MacCormack's scheme at the tangential discontinuity at the

wing tip. The lift coefficients are 0.222 and 0.215 for the

Euler code and experimental results, respectively.

The conical streamline plot, figure 8, shows the location

of the two vortical singularities and the stagnation stream

surface. Vortical singularities occur at the windward plane

of symmetry and above the upper surface 30% of the span inboard

of the leading edge. The stagnation stream surface is on the

lower surface about 1% span inboard of the wing tip. These

results show that the Kutta condition imposed at the wing lead-

ing edge cause the flow to separate from the tip tangentially

to the surface. There are no experimental data such as vapor
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screen data for this angle of attack and Mach number to verify

the location of the leading-edge vortex for a thin delta wing.

Figure 9 shows the particle paths obtained by the numerical

results as would be seen by a vapor-screen visualization. The

flow field for the delta wing are shown in figure 10. Shown

are the Cartesian crossflow velocity vectors.

B. Wing-Body

The results for the wing-body calculation are shown in

figures 11(a) to (c), in terms of pressure coefficients at

stations just before the wing, at the wing trailing edge, and

midway between these two. Figure 11(a) shows the rapid

expansion around the windward side of the cylinder terminating

with a strong crossflow shock wave followed by some isentropic

compression on the leeside. Figure 11(b) shows that the cross-

flow initially expands around the body but then must recompress

to meet the wing-body juncture. The flow continues to compress

as the crossflow stagnation point is reached on the windward

side of the wing just inboard of the leading edge. Rapid

expansion around the leading edge follows and then gradual

recompression on the leeside of the wing and body. Figure 11(c)

showing the pressure distribution at the trailing edge of the

wing shows a continuation of these events. The lift coefficient

based on the wing planform area of the wing panel alone in the

presence of the body is 0.237.

The large oscillations of the pressure coefficient seen

near the juncture of the wing and body seem disturbing at first.

However their origin can be pinpointed to the poor mesh resolu-

tion at the juncture. This is a basic fault of any type of

conformal transformations such as those used in this report.

Coordinate lines are quite strongly concentrated at convex

J corners such as the wing tip and quite dispersed at concave

corners. This can be readily observed in figure 5. This

problem can be easily solved by obtaining the mesh points by
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some other means than the conformal transformation. However

this will require writing essentially a new computer code so

that the transformation metrics may be computed numerically.

As mentioned previously this is incompatible with the present
code.

The particle paths as would be seen by vapor screen visu-

alization is shown in figure 12. Again the flow is seen to be

leaving the leading edge tangentially to the lower surface.

C. Wing-Body Interference

The final figure shows the wing-body interference factor,

Kw, obtained experimentally (ref. 1) and by the present results.

This factor is the ratio of the lift on the wing panels mounted

on the body to the lift of the wing alone for the same angles

of attack. Slender-body theory idicates that a favorable

interference factor of Kw = 1.45 is obtained on the wing lift

by the presence of the body. Compressibility effects reduce

this favorable interference to 1.07 obtained by the present

Euler code and Kutta condition compared to 0.98 experimentally.

Although the airfoil section differ for the numerical and

experimental results, the adverse effect of compressibility

on wing-body interference is predicted fairly well.

7. CONCLUSIONS AND RECOMMENDATIONS

The specific results obtained in this study are as

follows:

a) The lifting coefficients and flow field data of a

M = 3 planar delta wing at an angle-of-attack

a = 100 have been obtained. The normal-force coef-

ficient compares well with the experimental

coefficient (at M. =2.86 and finite thickness wing)

of 0.215.
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b) The normal-force coefficient, flow field data, and the

interference coefficient have been obtained for a

delta wing in the presence of a circular body at

M = 3.0 and a = 10. The normal-force coefficient

based on the wing panel planform area is 0.237. The

interference coefficient Kw = 1.07 as compared to the

experimental Kw = 0.98 for a wing-body configuration

with slightly different airfoil sections for the wing

panel.

A number of conclusions may be drawn from this study.

Good flow field and surface pressure results are obtainable

for wings alone and wing-body configurations with sharp leading

edges by combining an Euler equation solver with a Kutta con-

dition to simulate the viscous effects at the leading edges.

The separation and leading-edge vortex seem to be properly

predicted. However no flow field comparisons with experimental

data were made due to the lack of experimental flow field data.

Presently the speed of the code is controlled by the fine mesh

at the tip and the accuracy by the coarse mesh at the juncture.

Thus the numerical procedure can be considerably speeded up and

the accuracy substantially improved by a better distribution of

mesh points. The additional dissipation appended to MacCormack's

scheme to control the severe nonlinear instability near the wing

leading edge is sufficient to stabilize the scheme. But it is

not known whether it may be too dissipative and diffuse the

vorticity too rapidly. It should be noted that the application

of the Kutta condition is also possible for flows with subsonic

axial Mach numbers.

Two recommendations seem appropriate. The code should be

revised so that the metrics are obtained numerically to allow

for a more arbitrary clustering of mesh points where necessary,

i.e., more at the wing-body juncture and fewer at the wing tip.

The conformal transformation presently used clusters too much
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at the tip and disperses too much at the juncture. Also a more
careful and thorough study is required to determine the best

stabilizing terms to be added to MacCormack's scheme. This
dissipation should be localized to the region where needed.

I

ii
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APPENDIX A

CARTESIAN AND CONICAL PARTICLE PATHS

A detailed discussion is given in this appendix on the

method of obtaining the Cartesian and conical particle paths

projected on a constant z-plane.

Cartesian Streamline/Particle Path Plots

The Cartesian crossflow velocity vectors projected on the

constant z-plane trace out "pseudo" streamlines. These stream-

lines represent steady state path lines of fluid particles.

The path lines are determined by solving the differential

equation

d- = u (x,y) (A-l)

dt v(x,y) (A-2)

A modified Euler-Cauchy method is used to solve these

equations in the form

t+At

Ax = x* - xjk = u(x,y)dt (A-3)

t

t+At

6y = y* - Yj,k f v(x,y)dt (A-4)

t

where x* and y* are the projected locations of the next point

on the streamline curve. The integration is started after an

incremental time step, At, has been defined and the initial

position of the fluid particles at arbitrarily selected point

have been established.
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The numerical integration is started by initially assuming

that u and v at (j,k) are constant over the interval

xj, k  x -< xj+l,k+1 and Yj,k -
y < Yj+l,k+l This results in

a preliminary estimate of x* and y* of

x* = xj, k + uAt (A-5)

Y* = Yj,k + vAt (A-6)

The velocity components at (j*,k*) are determined by linear

interpolation as illustrated in the sketch below. We need to

Ir

j+l, k+l
j, k+l

,Ix b

c d

jk\ Ax a j-il, k

determine Ax and A which are defined by any of eqs. (A-9)
x y

and (A-10), respectively. We have

x* xa  Y* - Ya
a- * (A-7)

Xb - Xa Yb - Ya

and
x* -x Y* -Ycc y(A-8)

Xd Xc Yd Yc

where
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x =U Ax x j,k + x xj+l,k

Ya~~ =( A yj,k + x Yj+1,k
(A-9)

Xb= (1 - A )xj.~ + A xx lkl

Yb~~ =U-Ayj,k+l + x Yj+l,k+1

(1 U- A y)yxj,k + A x j,k+

Yc Yy j,k + y Yj,k+1

(A-10)

x d= l Ay )j+l,k + Ayx j+lk+l

(1= - AYyj+l,k + y Yj+l,k+1

Solving eqs. (A-7) and (A-9) for A x obtains

-~+ -4a Y
A x (A-11)x 2

where

ax (x j+lk - xjk)(Y~~ --jlkl

-x~~ - xj+lk+l)(Yj+lk - jk

x -(x j+l,k -xj,k)(Yj,k+l (xY*xk(Y~~ j,k +

+ (y~~ Yjk (xj k+l xj,k) (A-12)

- (Yj*,k* Yj,k)(xj+l,k Xj,k xj+l,k+l +xjkl

-(Yj*,k* Yj k(xj,k+1 xjk)J
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Similarly eqs. (A-8) and (A-10) are solved for A to obtain
Y

_-By + / -47

A Y Y Y V (A-13)
y 2ay

where ay Iy, and y are the same as a ax' Yx with the points

(j,k+l) and (j+l,k) interchanged.

The interpolated velocity components are now easily

obtained as

Uj*,k* = (1 - Ax ) (i - Ay )uj, k + Ax (l - A y)Uj+l, k

(A-14)
+ AxAy Uj+l,k+l + (1 A x)Ay Uj,k+l

and

vj,,k . -- (i - Ax ) (1 - Ay)vj, k + Ax (1 - Ay )vj+l, k

(A-15)
+Ax y +,k+l y vj,k+l

By averaging the appropriate velocity components at
(j*,k*) with those at (j,k), an improved estimate of x* and

y* is obtained. This improved estimate is

X* = x j,k + f(ujk + Uj*,k*) At (A-16)

Y*= Yj,k + 2(vj,k + vj*,k*)At (A-17)

The velocities at the new (j*,k*) are recomputed, as above,

and then the new location and velocity vector are used as the

initial conditions for calculating the next point. The process

is repeated until the maximum number of time steps is reached.

I
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Conical Streamline/Particle Path Plot

For conical bodies such as delta wings it is more conven-

ient to use conical streamlines than the Cartesian crossflow

streamlines as developed above. It is a simple matter to

modify the above procedure to obtain the conical streamline

plot. The procedure detailed below will not give a strictly

correct streamline crossflow but the error is negligible.

Suppose the vertex of the conical body is at Z and that
0

the crossflow data are available at Z as shown in the sketch
p

below.

yy

go x

At each point (x,y) in the Z -plane the three Cartesian

velocity components are given. We do not have the data given
on a constant R surface as required for a true conical projec-

tion. However the errors will be small for Z - > r. Thep o
required relations for r, 0, and $ are given by

r = .'x' + yZ

=tan I [x/y]
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We require the (x,y) components of the conical crossflow
velocity components so that the procedure of the previous
section can be employed. These components are derived by
resolving the w component into a component, call it uco r
along the conical ray R and a component, qc' in the Z p-plane
as shown in the sketch below.

uc

" 
9c

R w

ri1e I
zo z

These components are given by

uc w/cos8 (A-19)

and

qc= w tan 0 (A-20)

The (x,y) components of q are qiven by (see sketch below)
c v

q x sin ~ y

andU

qcy = - cos 
r r

A x
Adding these components to the Cartesian crossflow veloc-

ity components obtains the Cartesian components of the conical
crossflow velocity vector projected on the constant Z -plane,
i.e., p
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Uc = u - q c sin (A- 21)

vc = v - jc Cos

These velocity components are to be used in place of u,v of

the previous section to obtain the conical streamline path,

an example of which is shown in figure 8.

5.

J!
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LIST OF SYMBOLS

Aaspect ratio

A-IB matrix defined by eq. (26a)

A C matrix defined by eq. (26b)

a speed of sound, /yp/kp

parameter defined by eq. (58)

B body radius in Cartesian space

C,D parameters defined following eq. (59)

CmCv damping coefficients, defined following eq. (18)

CFL Courant-Friedricks-Lewy number

9,Pd column vectors in Cartesian space (eq. (1))

E,F,G column vectors in transformed space (eq. (4))

(E,F,G,H) column vectors in computational space (eq. (9))

e. components of E

f clustering function in meridional direction (eq. (7))

fb function describing the transformed body surface

f function describing the transformed shock surfaces

g =x+iy

h clustering function in radial direction (eq. (7))

i

i,j,k Cartesian unit vectors

I identity matrix

J Jacobian

j,k indices in the computational mesh system (fig. 5)

K constant defined by eq. (37)
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K interference factorw
KCL,KCR index parameters, defined by eq. (17)

KPL,KPR index parameters, defined by eq. (17)

k = 2Y/(Y-1); or index in computational space

L,M,N parameters defined by eq. (39)

M coefficient matrix, eq. (25a)

M free-stream Mach number

m ,m ,m intermediate variables defined by eq. (27)

N coefficient matrix, eq. (25b)

NFLIP switching parameter defined following eq. (17)

NPHI number of meridional points (fig. 5)

NT2 number of radial points (fig. 5)

n index in marching direction

n unit normal vector

p pressure

Q intermediate variable defined by eq. (27)

q velocity, (/u2 + v2 + w2)
R =Rw + B2/R

Rw wing semispan in Cartesian space

rb body radius in transformed space

" sshock radius in transformed space

U = (u,v,w,p,p)T

U,V,W contravariant velocity components (eq. (5))

(u,v,w) Cartesian velocity components nondimensionalized
by maximum flow velocity

(x,y,z) Cartesian coordinates
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Z =r exp i( - w/2)

(z,r,O) coordinates in transformed space (eq. (3))

a angle of attack

p density

Y ratio of specific heats

*meridional coordinate (fig. 4)

normalized radial distance, (r - r )/(r - rb)
b s b

damping coefficient, eq. (18)

oM eigenvalues of matrix M

aN  eigenvalues of matrix N

AO turning angle defined by eq. (34)

V gradient operator

A difference operator

8= - 2

E: small increment

wing leading edge sweep angle

( ,T,n) coordinates in computational space, eq. (7)

Subscripts

r,m radial, meridional direction

1,2 pre and post shock conditions

Superscripts

L,t,jj dummy parameters defined following eq. (18)

T transpose operator
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S lender-body theory M
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Figure 1.- Effect of angle of attack and free-stream
Mach number on interference of body on wing.

62



A
M = 2.96

- 280

L - 20

D 3

Approximate r
vortical
singularity
location

z

M Msin a= 1. 11

A

Bow shock

Mcf < I

Vortical
.ingularity -- N

Crossflow Mcf > 1
shock

i -/ Sonic line

Section A -A

z - 10.04

Figure 2.- Flow in crossflow plane of body of revolution
with supersonic crossflow Mach number as obtained

from Euler equations.
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GRID PLOT

Wing only M,,. 3, a =10, Sweep -75.964

x 0 28.5

Figure 3a. - Mesh for delta wing alone.
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GRID PLOT

Wing only M = 3, a = 10, Sweep = 75.964

3.0

2.5 -

2.0

1.5

y

1. 0

0.5

0L

~-0.5
27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5

x

Figure 3b.- Detail of mesh near wing leading edge.
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Transformed Space K
(z ,r,)

d d
Physical Space 2

z2(x,y, z)

e l R (Z ) _ f 2
g -, x / / +/ /

g y

a l 
a 2

Figure 4.- The transformation between the physical space
and the arbitrary curvilinear space.
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(a) Discretized flow region.

Figure 5.- Mesh description.
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Figure 5.- Continued.
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Shock surface
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k-I

Figure 6.- Steady shock for three-dimensional

supersonic flow in generalized curvilinear
coordinates (:,rl)
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x
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z

Aspect ratio: 1.0

Thickness: 0.5

Root chord: 12 in

Bevel half angle: 150

Figure 7a.- Pressure wing geometry.
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NASA Langley Data M - 2. 86

o Pressure on flat a- 100

o Pressure on bevel MR- 1.0r

-0.16-

-0.12

-0.08e

-0.04Upper Surface

0

0

0.0

0 .0 a = 100

o; J - 1.0

0.16 - Lower Surface

0 .0.04 0.08 0.12 0.16 0.20 0.24 0.28

x/4S

Figure 7b. - Comparison of delta wing pressure distributions
as measured and as calculated using an Euler code

with a Kutta condition.
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2.-Angle of attack: 100r
Aspect ratio: 1.0

y/S

Vortical
singularity

Vortical 0 Leading edge
singularity
(vinig root)

Stagnation
stream
surface

-0.5

00.5 1.0 1.5
x /S

Figure 8.- Conical streamlines for delta wing alone
computed by Euler code with Kutta condition.
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PARTICLE PATHS

Wing only M CO 3, a 10, Sweep = 75.964

42.0

35.0

28.0

21.0

y

14.0-

7.0

0

-7.0 1 1 1
0 7.0 14.0 21.0 28.0 35.0 42.0 49.0

x

M = 3 a "i0 Re - 0 Z - 120

Figure 9.- Particle paths obtained by present results
as seen by a vapor screen visualization.
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VELOCITY VECTORS

Wing only M - 3, a 1 10, Sweep 75. 964

3.0-

2.5

2.01 /

0.5

0 - -

-027.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5

1o, 3 a - 1 Z 120 x

Wing leading

edge

Figure 10.- Cross flow velocity vectors near leading
edge for delta wing alone.
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--- Windward side
pressure
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C
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y/S

0.20J0 0.2 0.4 X 0.6 0.8 1.0

Figure lla. - Pressure on body at a station just
prior to start of wing.
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-0. 20

-O.<--Leeside pressure

-h-Windward side
pressurer

Body-wing

0.5 -0.10

c
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0 0.2 0.4 X 0.6 0.8 1.0

Figure lib. - Pressure on wing-body at midchord.
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Figure llc.- Pressure on wing-body at the trailing edge.
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PARTICLE PATHS

Wing body M = 3, a 10, Sweep =75.964
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Figure 12.- Particle paths of a wing-body configuration
in a crossflow plane at the trailing edge

of the wing.
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Figure 13.- Effect of angle of attack and free-stream
Mach number on interference of body on wing.
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