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CHAPTER I

INTRODUCTION TO REACTION--DIFFUSION EQUATIONS

Motivation for the Study of Reaction-Diffusion Equations

This thesis studies certain problems connected with reaction-

diffusion equations which are systems of partial differential equations

of the form

u + F(u)+K V (1.1)

NN

where u is an N-dimensional vector, K is a nonnegative-definite

diffusion matrix, and F(u) is a vector reaction function. It will

usually be assumed that K is diagonal, which is usually the case in

application (but not always, see the Keller and Segel work described

later in this section). If K is positive-definite, of course, a

linear transformaion of u exists such that the diffusion matrix in the
IV

new variables is diagonal. The kinetic equations of (1.1) are the

equations without the spatial terms:

ut = ~) (1.2)

The kinetic system (1.2) will generally be assumed to possess a stable

limit cycle solution U(t) with period T, which is then a solution of

(1.1) also. This thesis is basically a study of the limit cycle as a

solution of (1.1) with related results arising in the course of the

study.

immlm...w. 1



The first three sections of this chapter are introductory. The

first section is a discussion of results from biology and chemistry

involving kinetic processes or diffusion processes or both. This

section concerns both experimental work and mathematical models.

Although its main purpose is to provide background for the thesis

research, I have included material at the end which is not related to

the research here but which rounds off the discussion.

The second section discusses three papers on the mathematics of

reaction-diffusion systems, which I consider classics for their com-

bination of breadth and rigor. This section goes into more detail

mathematically than the first. In these two sections, points arise

which have been pursued in this thesis and these points are mentioned as

they occur. The third section is a summary of the thesis itself.

The fourth section begins the thesis research proper with the

study of certain reaction-diffusion equations processing explicit solu-

tions. The study of these equations illustrates the various types of

behavior which can occur as well as ideas from the papers of the second

section.

Systems of the form (1.2) arise in chemistry and in population dy-

namics. In population dynamics, u represents a vector of popula-
/V

tions, e.g., of predator and prey. Both actual populations and solu-

tions of proposed model equations exhibit rich dynamical behavior, e.g.,

periodic oscillations. For example, Solomon (1969) mentions oscilla-

tions with a period of 30-40 days in laboratory populations of the

Australian sheep blowfly raised under limited food supplies (a small

4Rimmm,-i--



3

number of flies lays many eggs, the resulting population exceeds the

food supply, reduces to a small population, which in turn lays many

eggs, etc.), and also gives examples of laboratory prey-predator systems

showing oscillations (predators eat almost all the prey, the predators

die off, the prey builds up because there is almost no predation, then

the predators increase, etc.). One of the earliest attempts to give a

mathematical model of periodic oscillations in a prey-predator system is

the Lotka-Volterra model (Lotka, 1956, Chapter 8)

duu= ru -uv,dt

dv d- dv + uv, r, d,o(, p> 0. (1.3)

Here u and v correspond to the prey and predator populations, re-

spectively, and the uv-terms represent a decrease (increase) in prey

(predator) population resulting from their random meetings. The system

(1.3) is integrable and has a 1-parameter family of periodic solutions.

However, this is too much of a good thing--the random effects of any

biological environment would cause the population to wander from one

period solution to another. The oscillations observed in practice,

however, are more or less fixed and resemble stable limit cycles, since

such dynamics would keep pushing a population, continually disturbed by

noise, back to a fixed period solution. Bazykin (1975) gives a

hierarchy of successively more complicated model equations, involving

reasonable assumptions on prey-predator interactions, many of which show

stable limit cycles as well as stable critical points.
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In chemistry (1.2) represents the kinetic equations for a chemical

system. The vector u gives concentrations of various chemical species
As

and F(u), generally nonlinear, is determined from the chemical reac-

tions by the law of mass action. As a simple example of this law, if

the chemical radicals A,B unite to form C according to

mA + nB C,

then the associated kinetic equations, where a,b,c represent mole-

concentrations of A,B,C, are

da . -k ambn + k2 c,
dt

db a _ k ambn + k4 c, (1.4)dt 34

dc _
dt k5 ambn - k6 c,

the rate constants k1, ..., k6 are empirical but various relations

exist between them (for instance, at equilibrium, amb n/c k f

k2/k - k4 /k3 - k6/k5 ; also see Fermi, 1956, Chapter 6 for

the classic thermodynamical derivation of the dependence of the ki

on temperature).

(Lotka was very iteavily influenced by ideas and methods of physi-

cal chemistry in his approach to biological systems. Tyson and Light

(1973) note that (1.3), aside from being used as a population model, was



also presented by Lotka in 1920 as the kinetics for the hypothetical

chemical system

A + U -> 2U,

U + V -> 2V, (1.5)

V 4

Note that these kinetics differ from those leading to (1.4) in that

there are no back reactions. In (1.3) u,v correspond to mole con-

centrations of U,V. In the first reaction, A is assumed to be a

substance in great excess, hence of essentially constant concentration,

and the reaction, in which the presence of U stimulates the production

of more U, is termed autocatalytic.)

Prigogine and Lefever (1968) proposed a simple model for a hypo-

thetical chemical system with a stable limit cycle solution. The reac-

tions for this model are (the ki are rate constants):

A -U U, (k1 )

2U + V -- 3U, (k2 ) (1.6)

B + U - V + D, (k3 )

U-- E (k4).

If a,b,u,v are mole concentrations of A,B,U,V and the substances

A,B are present in such large quantity as to stay essentially constant

in concentration, then the kinetic equations corresponding to (1.6) are
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d A 2-U- k1 a-k 3 b u- 4 u +k, u vdt

(1.7)
AA

dt k bu

A A ~A
Appropriate rescaling of ab, uv,t to ab, U,:,t reduces the

number of parameters, yielding the system known as the Brusselator for

its place of origin:

du = a - (b+l)u + u2v,

(1.8)
dv

dv f bu- u2v.dt

Although Prigogine and Lefever (1968) note that the trimolecular auto-

catalysis (second reaction in (1.6)) may be physically unrealistic (and

in fact no actual chemical example is known for these kinetics), the re-

actions are still possible and the system is one of the simplest mathe-

matical models yielding limit cycle solutions. The unique critical

point is at u = a, v = b/a and this point becomes unstable for

b > a + 1, yielding a stable limit cycle by a Hopf bifur(ation. The

system has been intensively studied: numerical calLulations and a rough

asymptotic study are done in Lavenda, Nicolis, and Hershkowitz-Kaufman

(1971), an asymptotic expression for the limit cycle period as b -# +

Is obtained in Boa (1976), and Tyson and Light (1973) show -- assuming a

2-component chemical system with at most trimolecular reactions -- that

stable limit cycles apparently can occur only for reactions involving an
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autocatalytic step of the form 2U + V -- 3U and that the resulting

kinetic equations are all very similar to the system (1.7).

Interest in chemical oscillations increased when Belousov (1958)

discovered a fairly simple mixture (malonic and sulfuric acids, bromate

and cerous ions, with the indicator ferroin) that oscillates in color

with a period of about half a minute; if kept stirred, the oscillations

will go on for hours. (Spatial changes discovered by Zaikin and Zhabo-

tinskii (1970) are discussed below.) Although the full series of reac-

tions involved is quite complicated, apparently involving 11 substances

(Noyes, Field, and KIr6s, 1972a,b), a model based on 3 major components

(Field and Noyes, 1974) yields a limit cycle solution. The reaction can

be studied quantitatively in considerable detail using electrodes

sensitive to specific ions--see Noyes, Field, and K6r~s (1972a) or, for

graphs of concentration vs. time without a description of the

experimental method, see Kasparek and Bruice (1971). The existence of

periodic solutions for the three-dimensional Field-Noyes model was

proven by Hastings and Murray (1975). Their proof is an excellent

example of a useful idea from the qualitative theory of differential

equations. They began by constructing a box with the three-dimensional

flow of the system entering every side, so that solutions necessarily

remained bounded, and containing a single critical point r 0  with one

real negative elgenvalue and two complex eigenvalues with positive real

parts. They then split the box into 8 sub-boxes, centered at rO,

and showed that once an orbit entered one of a chain of 6 boxes, it

remained in and cycled through those 6 boxes. Finally, to show the

circuit of 6 boxes contained a limit cycle, they found a portion of the



surface of one box was mapped into itself by the Poincare map (sending a

point in the surface to its image point in the surface under the kinetic

flow). This gives a continuous mapping of a portion of the plane into

itself and the Brouwer Fixed Point Theorem implies a fixed point. The

solution corresponding to a fixed point under the Poincare map is the

limit cycle.

In addition to this oscillatory inorganic reaction, a number of

organic oscillatory reactions are known (three examples with model

equations are mentioned in Prigogine, Lefever, Goldbeter, and

Herschkowitz-Kaufman (1969)). Of particular interest here is the case

of the synchronous fireflies (Buck and Buck (1976)). Certain fireflies

of the Far East (especially Thailand and Borneo) flash their lights

periodically with great regularity (period of .560 seconds at ambient

temperature of 250 C.). If a stimulus light--flashing at a different

frequency than the firefly--is applied to the firefly, the firefly's

frequency changes to that of the stimulus but with a precisely defined

phase shift. Furthermore, a treeful of these fireflies, initially

flashing at random, will gradually synchronize so that the whole tree

flashes on and off twice a second. Some rough modeling has been done on

this phenomenon (although the underlying reactions are unknown) and

there seems plenty of room for further study.

Winfree (1974) has discussed a very interesting way of using the

presence of a stable limit cycle to investigate the state space of a

kinetic system. Let U(t) be the stable limit cycle in Rn with
N

period T and U(O) be specified, so the limit cycle is uniquely
N

determined. If a point P close to the limit cycle is the initial
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point of a trajectory, then as t -4 + -, the trajectory - U(t+O) for

some p, 0 < < T. The constant / is the asymptotic phase of P.

For a given /, one expects an (N-l)-dimensional surface, consisting

of all points with the same asymptotic phase / and crossing the limit

cycle at U(s), to exist; these surfaces are called isochrons by

Winfree. Notice the experimental simplicity of the isochron structure:

for each initial point, simply measure one number, the asymptotic phase.

Winfree (1974) mentions several experiments in which the idea has been

used (although the experiments have generally involved mixtures of

cells, hence introducing diffusion across cell walls and complicating

the results). He also explores certain experimental consequences of the

existence of isochrons. Asymptotic phase is an old idea in the theory

of differential equations, but results concerning it are more along the

lines of existence theorems than practical computational methods.

Winfree (1978) proposed the computation of isochrons (or asymptotic

phase) as a research problem, and this problem is studied in Chapter

III.

Having discussed the origin of kinetic systems (1.2) in population

dynamics and chemistry and the importance of stable critical points and

limit cycl(s in physical situations, we now consider systems involving

kinetics plus diffusion (1.1). Diffusion arises here because of the

tendancy of a high concentration (whether of ions or animals) to spread

into areas of low concentration.

We shall first consider the effects of diffusion on the stationary

states of (1.1), which are just the stationary states of the kinetic

system. Turing (1952) was the first to recognize the importance of
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including the diffusion terms with the kinetic equations. Naively, one

expects the addition of diffusion to a system to dampen solutions, hence

increasing the stability of any stationary states. Turing showed,

however, that a stationary state, stable as a solution of the kinetic

system, could become linearly unstable as a solution of the reaction-

diffusion system (see the next section for examples). The diffusion-

induced instability became the basis of Turing's diffusion model of

pattern formation in biological organisms. Roughly speaking, Turing

proposed the existence of morphogens, substances inducing growth, which

would tend to concentrate themselves in certain areas and cause

developmental growth in those areas. His key point is that chemical

kinetics coupled with diffusion is sufficient to explain the existence

of discrete areas of concentration. For example, a morphogen (or

activator of growth) might be chemically changed by another substance

(an inhibitor, since it destroys the growth stimulating morphogen).

From kinetics alone, the two substances would tend to a steady state.

However, diffusion may act to destabilize that steady state, leading to

for example -- alternating patches of high inhibitor and high

activator concentrations, i.e., alternating patches of no growth and

growth.

Turing advanced his model as a theory and did not attempt any

analysis of actual cases, although he did mention a number of relatively

simple biological examples which strongly suggested the sort of insta-

bility he proposed. For example, the Hydra is a tiny, transparent,

sacklike creature whose mouth -- the mouth of the sack -- is fringed

with tentacles. For simplicity, Turing had solved his equations on the
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circle. Applying separation of variables to his linearized equations

gave him an infinite set of periodic eigenfunctions, a finite subset of

which could be unstable. An unstable eigenfunction would lead to

alternating patches of tentacle-producing morphogen with inhibitor

between, hence the Hydra's tentacles.

The aggregation of slime mold amoebae and the creation of poly-

clones in the imaginal disc of Drosophila melano&aster provide two

remarkable examples of Turing's theory of morphogensis.

In the absence of food (bacteria), slim mold amoebae first tend

to spread into a homogeneous layer over a surface and then begin aggre-

gation at a number of points (called "centers"). At each center the

resulting clump of cells forms into a multicellular fruiting body,

generating spores. It is known that aggregation is mediated by acrasin:

amoebae follow increasing concentrations of acrasin. Keller and Segel

(1970) proposed a reaction-diffusion model for the aggregation of the

amoebae. Briefly, the simplified form of the model consists of two

components, amoebae density and acrasin density, and aggregation occurs

when the stationary state becomes unstable. The model predicts quali-

tatively what is observed and, since all quantities are experimentally

measurable, quantitative comparison is possible. Interestingly, the

diffusion matrix is nondiagonal. Since the amoebae are assumed to move

away from high concentrations of amoebae and towards high concentrations

of acrasin, the flow of amoebae is a linear combination of the gradients

of amoebae and acrasin, leading to =a - (D 7a - D1 7f)at 2

where a - amoebae density and p - acrasin density.



12

The concept of polyclones requires some explanation. The

following description is based on Carcia-Bellido, Lawrence, and Htorata

(1979), Crick and Lawrence (1975), and Kaufmann, Shymko, and Trabert

(1979). The egg of the fruit fly Drosophila melanogaster hatches, the

animal goes through three larval stages, and then becomes the adult.

The adult is formed from the histoblast and the imaginal discs, collec-

tions of cells which remain intact during the larval stages and which

take little part in laval development. There are 19 imaginal discs - 9

pairs and a single genital disc. Each pair generates a certain part of

the fly, the left and right members of the disc forming the left and

right members of that part. The wing disc, for instance, is associated

with the wings; the left wing disc produces the left wing and a portion

of the thorax at its base. It is estimated that only 15-30 cells form

the wing disc at the beginning fo the first larval stage; these cells

increase to about 50,000 in the wing disc at metamorphosis.

If a cell from the left wing disc is picked at some point before

metamorphosis, then the descendents of that cell form a patch on the

left wing. If the cell is chosen early, the eventual patch is large

because there is time for the cell to have many descendents; if the cell

is chosen late, the patch is small. Ingenious experiments have shown

that, at a certain point in the growth of the left wing disc, a boundary

line has formed so that cells on one side yield patches at the front of

the wing and cells on the other yield patches at the rear of the wing.

There is a well-defined boundary line, the same in all wings, separating

the patches. This boundary line separates the wing into 2 halves,

called compartments. The cells of one compartment form a polyclone,

-4
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a group of cells comprising all descendants of some original group of a

few cells (just as a clone consists of all the descendents of a single

cell).

In short, at a certain stage in its development, the left wing

disc has 2 compartments formed within it. One compartment becomes the

front of the wing, the other the rear. (It should be emphasized that

the boundary is an invisible one and can only be inferred by deter-

mining in which part of the wing the descendents of a given cell lie.)

As the wing disc grows, further boundary lines -- separating top from

bottom of the wing, etc. - form. Figure la shows a sketch of the

development of 5 compartments in the left wing disc. Again, the

boundaries of these compartments are invisible -- there is no mechanical

basis for the separation.

It might seem necessary at first glance to assume a different

chemical basis for each boundary line formed. However, Kaufman, Shymko,

and Trabert (1978) have proposed a model explaining the successive ap-

pearance of the boundaries and giving their approximate shape using a

single 2-component reaction-diffusion system.

To illustrate their idea, consider a scalar diffusion equation

with no-flux boundary conditions on an interval of length 1:

-M + u - u 3 , 0 < x < g, ux (Ot) - u (9,t) - 0. (1.8)

3

All solutions will be bounded in time by the -u term. The

linearized equation about the stationary state u - 0 is
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V + w with solutions w~ exp (Ant) cos (MlJ X)

1 NIT) 
2  , n-01,,.

(1.9)

If . is small, only the "wave number" n=0 is unstable; but as

increases, more values of n become unstable. These unstable solutions

of linearized equations can be expected to grow into stable, bounded,

spatially inhomogeneous, steady-state solutions of (1.8). In other

words, as the interval grows larger, (1.8) can be expected to pick up

new stable steady-state solutions, referred to as stable eigenfunctions

of (1.8).

In the same way, as the wing disc grows, stable eigenfunctions of

a hypothetical 2-component system are expected to arise, and their nodal

lines are assumed to furnish the boundaries of the compartments.

Kaufman, Shymko, and Trabert did calculations to find the eigenfunctions

and their nodal lines for the (linearized) 2-component system on an

ellipse, which should approximate the nodal lines of the nonlinear

eigenfunctions. The sequence of nodal lines for the first 6 eigenfunc-

tions is given in Figure Ib; the superposition of the nodal lines is

also given -- note the remarkable resemblance to the actual wing disc!

Incidentally, Kaufman, Shymko, and Trabert used the ellipse as an

approximation to the (left) wing disc because it was the most compli-

cated geometry for which the (linearized) equations could be solved

exactly. Another reason for using the ellipse instead of the mathe-

matically simpler circle has been mentioned by Hiernaux and Erneux

(1979): in going from the circle to the ellipse, symmetry lessens and a

richer family of eigenfunctions and nodal line patterns appears.
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We now move on to further remarkable behavior in connection with

the Belousov-Zhabotinskii reaction. Zaikin and Zhabotinskii (1970) re-

ported that when the Belousov reagent is observed in a thin layer

( Il-1/2 mm) concentric outward-moving bands of color appear. Speci-

fically, let the Belousov reagent be chosen so that the color oscilla-

tions are between blue and red. If the red mixture is poured into a

thin layer, it will spontaneously develop small blue spots which grow,

each of which then develops a red spot at its center, which grows and

develops a central blue spot, etc., eventually forming an expanding

series of red and blue rings, or target patterns, in Howard and Kopell's

terminology. Winfree (1972, 1974) discovered the existence of spiral

waves spontaneously generated by the Belousov-Zhabotinskii reagent and

demonstrated that the initiation of the patterns was due to dust on the

surface of the solution or irregularities on the surface of the

container.

The basic question in these pattern developments concerns the

mechanism by which the patterns sustain themselves. Does the inter-

action of chemical kinetics and diffusion alone suffice for an explana-

tion, or is some further mechanism at work? Kopell and Howard (1973)

made the first rigorous investigation of this problem. Since the wave

fronts for both circular and spiral waves are almost parallel at large

distances from the center of the pattern, they considered the question

of the existence of periodic traveling wave solutions (wave fronts

exactly parallel), that is, solutions of the form U(bt - k.x), to

(1.1). The kinetic equations of (1.1) were assumed to have an unstable

(spiral) critical point and a stable limit cycle. They found that
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traveling waves could arise as perturbations of the critical point--

these could be shown to be linearly unstable as solutions of (1.1).

They also found traveling waves arising as perturbations from the limit

cycle-stability in general could not be shown for these, but linear

stability in a special class of cases could be shown. Their results

indicated circular and spiral waves arose from the limit cycle solution.

Many suggestive calculations to show the existence of circular and

spiral waves have been done (Ortoleva and Ross, 1974; Kuramoto and

Yamada, 1976; Yamada and Kuramoto, 1976). Greenberg (by formal calcu-

lations in (1976) and with a rigorous proof in (1978)) proved the

existance of circular waves for reaction-diffusion equations. Cohen,

Neu, and Rosales (1978) gave a rigorous proof of the existence of spiral

waves for reaction-diffusion equations. In both these proofs the

circular and spiral waves were constructed from the limit cycle solu-

tion, showing it to be the source (modified by diffusion) of these

remarkable waves, that is, the kinetics and diffusion alone suffice to

explain their existence.

In this section we have considered--from both the physical and the

theoretical sides--a hierarchy of situations. Kinetics alone give

equations of the form (1.2); the main solutions are the stable critical

points and the stable limit cycles. When diffusion terms are added (as

Turing showed they should be) to form (1.1), the stable critical points

and stable limit cycles give rise to new types of solutions, which

appear to be adequate to reproduce the pattern formations observed in

biological and chemical systems. It should be emphasized that few of
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the systems which have been mathematically studied are claimed to be

models of a specific biologial or chemical system.

Before continuing with the more detailed discussion in the next

section, I would like to round off this discussion of reaction-diffusion

equations by mentioning other types of "simple" solutions, namely,

fronts and pulses.

Traveling waves in general for (1.1) are bounded solutions of the

form U(S), = bt - k-x, which converts (1.1) into a system of

ordinary differential equations (ODEs) of order 2N:

U' = F(U) + KU". (1.10)

Periodic waves with U(5) periodic have already been discussed. Two

other important types of waves occur when lim U( ) exist: fronts,

when U(--) U(+o), and pulses, when U(-co) = U(+(4). Note that for

these wave solutions to exist, U(+o) must he critical points in the

2N-dimensional phase space for (1.10). A trajectory connecting two

different critical points is called heteroclinic and a trajectory which

leaves from and returns to the same critical point is called homoclinic.

The equatiun

ut =Uxx + f(u), f(O) = f(1) = 0, f(u) > 0

and concave on (0,1),

f'(0) = 0 > 0, f'(1) -A< 0, (1.11)
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occurs in a simple model for the spread of favorable genes and was

studied by Kolmogorov, Petrovsky, and Piskunov (KPP) in 1937. Their

work is discussed in Sattinger (1976). They showed (1.11) possesses a

traveling front solution, U(S), 5 = x + ct, U(-M = 0, U(+a)) - 1, U(S)

monotone, for c > 2/(, and obtained some stability results for these

wave solutions.

Huxley's equation,

u t  Uxx u(1-u)(u-a) (1.12)

has traveling fronts given exactly by U(S) = 1/(l + exp(- /2!)),

c - 2 (4 - a). It arises in connection with the FitzHugh-Nagumo equa-

tions discussed below; Fife and McLeod (1975) obtained stability results

for these waves.

In 1952 (the same year as Turing's paper) Hodgkin and Huxley

published a quantitative theory of the action potential for the squid

giant axon. Roughly speaking, the external parts of the nerve cell are

the cell body, small short fibers called dendrites, and an especially

long fiber called the axon. At rest, the nerve cell maintains a certain

negative potential across its cell membrane, negative inside relative to

the outside. Small inputs of current are received over the surfaces of

the dendrites and the cell body, increasing or decreasing the membrane

potential (in particular, the potential at the base of the axon, called

the trigger zone) until a threshold value is crossed, at which time an

action potential--a sharp spike of high positive potential--is generated

at the cell body and travels down the axon.
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Hodgkin and Huxley (1952) modeled the action potential in terms of 4

components governed by a system of equations of the form:

Vt  V +f(VW)
XX (1.13)

t g(VW),

where V(x,t) is the membrane potential and W is a 3-component vector

for quantities determining the conductance of the membrane to sodium and

potassium ions. The components of W are identified with "potassium

activation, sodium activiation, and sodium inactivation" (the physical

mechanisms governing them are currently under study by numerous inves-

tigators). Hodgkin and Huxley were able to determine experimentally the

forms of f and g and, integrating the equations on a desk calcu-

lator, obtained pulse solutions corresponding to the action potential.

They received the 1963 Nobel Prize for their work.

The 4 variables of the Hodgkin-Huxley system make it extremely

difficult to investigate mathematically. Fitzllugh (1961) derived a

2-component model for the kinetic part of the Hodgkin-Huxley equations,

and Nagumo, Arimoto, and Yoshizawa (1962) added spatial terms and

devised an electrical circuit as a representation of the system (the

representation was possible because the nonlinear part of the

2-component system corresponded to van der Pol's equation, which models

the triode oscillator). The resulting FitzHugh-Nagumo equation is
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• u + u(i-u)(u-a) vu UXX (1.14)

V t M bu,

where b > 0 is very small. (Huxley's equation arises from b = 0,

v = 0.) Hastings (1975) and FitzHugh (1969) review work on the

FitzHugh-Nagumo and Hodgkin-Huxley equations. (General surveys on

reattion-diffusion systems are Cohen (1971) and Fife (1978a, 1979).)

Hastings (1974) and Carpenter (1974) have shown the existence of

periodic waves to the FitzHugh-Nagumo equations; this does not follow

from the general results of Kopell and Howard (1973) since the diffusion

matrix is singular. Hastings (1976a), besides giving material on the

periodic waves, proves the existence of pulse solutions for the

FitzHugh-Nagumo equations--numerical work had indicated such pulse

solutions existed. Hastings (1976b) proves the existence of pulse wave

solutions to the Hodgkin-Huxley equations.

The existence of traveling fronts and pulses is far harder to show

generally than the existence of periodic waves. Typically, fronts and

pulses do not arise as any sort of small amplitude perturbation (in

contrast to periodic waves arising by a Hopf bifurcation) nor do they

arise as perturbations off some easily studied large amplitude solution

(as in the case of large amplitude waves arising by perturbation off a

limit cycle). To illustrate the difficulties, consider the problem of

proving the existence of a front by showing the existence of a trajec-

tory connecting two critical points in the 2N-dimensional phase space

associated with (1.10). The linearization near each critical point
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yields the beginning and end of the trajectory, but joining the two

segments requires some difficult work (assuming it is possible in the

first place). Shooting methods can sometimes be used, but these are

generally only for the scalar case--see the discussion of the KPP

equation in Sattinger (1976). A curious aspect of fronts and pulses

(the stable ones, at least) is that they can be calculated more easily

by solving the full PDE system numerically than by calculating the

corresponding trajectory as the solution of a system of ODEs. Initial

data is almost sure to evolve to the traveling wave for the PDE solu-

tions. However, trajectories initially close to the wave trajectory in

the phase space for (1.10) usually diverge exponentially, so that

extremely small numerical errors ruin the calculation. The quantitative

study of fronts and pulses has been mostly namerical; a notable excep-

tion is the work by Casten, Cohen, and Lagerstrom (1975), who construct

an approximation to the pulse wave for the FitzHugh-Nagumo equations.

Rinzel and Keller (1973) give a very interesting approach: the non-

linear part of the FitzHugh-Nagumo is replaced by a (discontinuous)

piecewise linear approximation. The traveling waves can then be found

explicitly and their stability studied. This is a very powerful idea

for obtaining information about the qualitative behavior of solutions

and it should be used more frequently.

Evans has written a series of papers aimed towards the study of

the pulse solution of the Hodgkin-Hluxley equations. He studies (1.13)

with W an (N-l)-component vector. Evans and Shenk (1970) prove the
/V

existence of solutions to (1.13) using a Picard iteration argument; a

boundedness result is also given, see the remarks on the Chueh, Conley,
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and Smoller paper in the next section. Evans (1972a) proves a stability

result for the traveling wave solutions i(x+ct) of (1.13). The result

is especially interesting since it involves the concept of asymptotic

phase for solutions of (1.13). To explain this idea, it is more con--

venient to use the notation of (1.1), with K = Ko - diag(1,0,...,O),

so that uIl corresponds to V and u2, ... , uN to W.

If u =/(x+ct) is a solution of (1.1), then #(x+ct+h) is also

a solution for all h. Let (x+ct) be some fixed traveling wave solu-

tion and switch to moving coordinates by setting y = x + ct. The

system (1.1) now becomes (v(y,t) = u(x,t))

v + cv = F(v) + K v (1.15a)^it y /% IV o^'yy

with the solutions (y+h) - v. Now the most that can be expected so

far as stability is concerned is that initial data of the form

(y) + ff(y), E small, will evolve to /(y+ch) as t-> +0 in

(1.15a), where eh is the asymptotic phase resulting from cf(y).

Furthermore, the linearized system about /(y) obtained by setting

v(y,t) = (y) + w(y,t) in (1.15a) and dropping nonlinear terms is

w +cW VF ( (y))+KW , (1.15b)
^0t 'Y /- ^d o-yy

which has '(y) as a solution, corresponding to a O-eigenvalue of this

linear operator. Thus, even if the remaining spectrum has negative real

part, initial data w(y,o) will not decay to 0, but to some

h (y).

~Y
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Consequently, Evans is forced to define stability in the following

way. The linearized system (1.15b) is exponentially stable at ' if

solutions decay expoentially to h '(y) for some constant h, and the

full system (1.15a) is exponentially stable at.N if initial data /(y) +

e f(y) decays exponentially fast to 9%(y+Eh) for some h. Evans' main

theorem is that (1.15a) is exponentially stable at iN if (1.15b) is

exponentially stable at 9', i.e., the linearized system determines the

stability of the nonlinear system. A constant solution is trivially a

traveling wave and Evans (1972b) applies the stability result to

constant solutions of (1.13), since the linearized system has constant

coefficients and is relatively easy to study. Evans (1972c) returns to

the full traveling wave and considers the linearized system further,

investigating ways of calculating the spectrum. Evans and Feroe (1977?)

apply the results of (1972c) to numerical calculations for traveling

waves in the actual Hodgkin-Huxley equations.

Sattinger (1976) proves results analogous to Evans for other

systems of the form (1.1). Roughly speaking, for systems (1.1) with K

a positive-definite diagonal matrix and possessing traveling waves

u =/(x+ct), Sattinger shows that if the spectrum of the linearized

system (except for the eigenvalue 0 resulting from the solution

lies in the left-half-plane and can be bounded strictly away from the

imaginary axis by a parabola x = -ay2 + b, a,b > 0, then in the full

system (1.1) initial data of the form d(y)+Ff(y) (y = x + ct) converges

exponentially to 9(y+eh) for some constant h.

A second aspect of Sattinger's work of importance equal to his

stability result is his Introduction of weighted sup norms (both Evans

and Sattinger use sup norms for their stability results), for instance,

WIN".
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Iu(Y)H I sup I exp(cy) u(y).
- < y < +Go

The basic reason for introducing such a new norm is that the hypotheses

of the stability theorem may not apply if the usual sup norm is used

because it may not be possible to bound the spectrum away from the

imaginary axis; the spectrum is shifted under the weighted norm and the

hypotheses may then apply. The weight function is chosen to relate

solutions of the linearized system to the adjoint system to help in

calculating the spectrum (Sattinger, 1977).

Basic Ideas Illustrated by Three Classic Papers

The purpose of this section is to study three classic papers on

reaction-diffusion equations by discussing their content, illustrating

their content by explicit calculations, and discussing related work. In

approaching the very broad class of partial differential equations

represented by (1.1), it is useful to keep some basic questions in mind

to aid in fitting together pieces of results from different papers. I

shall mention three such basic questions and then proceed with the

detailed discussion of the papers.

Question 1. Do "simple" solutions of (1.1) exist?

"Simple" here means possessing "notable" qualitative features and

does not refer to ease of calculation. Examples of what we mean by

simple solutions are described below.
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I. Stationary states of the kinetic equations (1.2) are spatially

homogeneous solutions of (1.1). Limit cycle solutions of

(1.2) are spatially homogeneous, time-periodic solutions of

(1.1).

2. It can be shown (see Kopell and Howard below) that traveling

wave solutions of (1.1) exist under fairly general conditions.

These solutions are found by assuming u = u(bt - k .x)
IV /V d P

where b is a constant scalar and k is a constant vector

which reduces the system (1.1) to a system of ordinary

differential equations. (The same assumption, of course, can

lead to wave fronts or pulse solutions, or pulse trains.)

3. As mentioned in the first section, circular and spiral wave

solutions can be shown to exist for certain cases of (1.1).

Although more complicated than periodic waves, their

construction (at least in some cases) reduces to the solution

of a system of ODEs.

Notice that only solutions on the whole space (Rn) are men-

tioned. On a finite domain with boundary conditions the existence of

simple solutions is a much more complicated problem.

Question 2. Are these simple solutions stable as solutions of (1.1)?

Basically, this question is concerned with the long-time behavior

of solutions of (1.1). The experimentalist hopes that messy initial

data will evolve into some well-defined easily-observed data that are

close to a simple solution. A necessary condition for a simple
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solution to occur as the limit in the long-time behavior is stability.

Question 2 brings up the definition of stability. A precise dis-

cussion of stability involves the various types (for instance, uoCt)

is stable if solutions initially close to u0(O) remain close as

t4+.; u0(t) is asymptotically stable if solutions initially close

converge to u0 (t); uo(t) is orbitally stable if solutions ini-

tially close converge to U0 (t+&)) in the context of spatially de-

pendent systems, the choice of a norm (for instance, L2 or L,), the

problem of whether stability in one norm implies stability in another,

the question of when linear stability implies "actual" stability, and so

on. I shall avoid extensive discussion by simply noting that in prac-

tice stability usually means linear stability (which is still extremely

difficult to handle in many cases) and that further results are avail-

able (the results of Evans (1972a,b,c) and Sattinger (1976, 1977) men-

tioned in the first section, of Chueh, Conley, and Smoller (1977)

below).

If the simple solutions are unstable (in some sense), they cannot

be candidates for the long-time behavior of the system and are usually

of no further interest. (But not always! Turing's theory (Turing,

1952) of morphogenesis is based on the loss of stability of stationary

states as solutions of (1.1).)

All three papers discussed here are concerned with various aspects

of stability: Turing (1952) gives implications of instability, Kopell

and Howard (1973) obtain two important linear stability results, and

Chueh, Conley, and Smoller (1977) consider the related question of

boundedness of solutions.
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Question 3. If a simple solution exists and is stable (in some sense),

how can its notable characteristics be calculated?

The point here is to obtain mathematical information on any

properties an experimentalist may find measurable, for example,

amplitude, wavelength, frequency, wave speed, asymptotic phase.

Of the three papers, only Kopell and Howard give results related

to Question 3: the explicit solutions of the A- w systems and the

numerical solution of an integral equation for periodic traveling waves

(discussed in Chapter VI). This bias towards qualitative results is

typical of the whole field of reaction-diffusion equations because the

rich qualitative behavior of the systems is still being vigorously

investigated and powerful methods are available for qualitative results

(for example, geometric arguments for boundedness and the qualitative

theory of dynamical systems for obtaining special solutions).

These three questions concerning the existence, stability, and

calculation of "simple solutions" describe major activities in investi-

gating the reaction-diffusion equations (1.1).

The papers discussed in this section are classics because they

derive broad, basic results with full mathematical rigor. These papers

are:

I. Turing (1952), as mentioned in the first section, shows that

the addition of diffusion terms to a kinetic system may make

(kinetically stable) stationary states linearly unstable.

2. Kopell and Howard (1973) prove the existence of periodic

traveling waves for reaction-diffusion equations under certain

conditions. One type of traveling wave arises from a
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(kinetically unstable) stationary state by a Hopf

bifurcation--these are shown to be linearly unstable as

solutions of (1.1). The second type occurs as a type of

perturbation of the kinetically stable limit cycle--there is

some evidence that these are stable.

3. Chueh, Conley, and Smoller (1977) give a remarkably simple

geometric criterion for showing boundedness of solutions of

certain reaction-diffusion systems, leading to stability

results.

Beginning with Turing's paper, consider the two-component

reaction-diffusion system

ut  = F(u,v) + I Q 72U( .1
(2.1)

vt = G(u,v) + (1-%)V 2v, <1.

(Any two-component system (1.1) can be placed in this form by rescaling

the space variables.) Let (u,v) = (0,0) be a stationary state of the

system and linearize about this solution. Keeping the same letters u,v

for the dependent variable in the linearized system, it can be written

as

ut  W Au + Bv + (1+2)V u (2.2)

. Cu + Dv + (I-¢)V 2 v, I__,
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where A = Fu(0,0), etc., define the constants A,B,C,D. Separating

variables by setting (u,v) = ( (t)exp(-ik x), (t)exp(-ik.x))

(equivalently, Fourier transforming) yields the system

A 2
u t  A u + B - (l+)k (2.3)

A - + - 2^
Vt Cu + DV - (1-c)k v, <1.

The general solution of (2.3) has the form (, ) = (A0 exp(+,\t),

vo exp(+At)), where A satisfies the characteristic equation

A2 - (A + D - 2k 2 ) A + (AD - BC - ((I-4)A + (1+ )D)k 2

+ (1-02 )k4) = 0. (2.4)

The stationary state is linearly unstable as a solution of (2.1) if the

characteristic equation has roots 1 with positive real part. Turing

assumes the stationary state is stable as a solution of the kinetic

system (that is, when k2 = 0):

A + D < 0 (the sum of the roots is nonnegative)

AD - BC > 0 (the product of roots is nonnegative) (2.5)

Since A + D - 2k2 < 0 for k2 > 0 follows from (2.5), the sum of

the characteristic roots in (2.4) is always negative for k2 > 0.

However, the product need not stay positive, in which case a positive

characteristic root (i.e., instability) occurs.
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Specifically, positive roots of (2.4) occur for

= + I (singular diffusion matrix), 0l -)A + (1 +)D

E, > 0 and k2 > (AD - BC)/E1 ; (2.6a)

2

- 4(l -o)2 (AD - BC) = E2 > 0 (E2 > 0), and (2.6b)

2 2 2

(E1 - E 2 )/2(l o2 ) < k 2 < (E1 + E 2 )/2( -o( 2).*

These 2 cases, dependent on the nature of the diffusion matrix,

are typical in studying reaction-diffusion equations: many general

results require the assumption of a nonsingular diffusion matrix, and

either the proof does not carry over or the result actually does not

hold in the singular case. From (2.6), for example, the (kinetically

stable) stationary state is always linearly stable to perturbations with

large wave number k2 when the diffusion matrix is nonsingular; when

the matrix is singular, it may be unstable for all sufficiently large

k2 .

Turing (1952) used this diffusive destabilization of a steady

state solution as the basis of his theory of morphogenesis, discussed in

the first section. His stability results were extended by Othmer and

Scriven (1969), who did a thorough study of the effects of diffusion on

stationary states of all types of kinetic stability and instability.

They gave a complete linearized analysis of two component systems with

some results for three-component and higher dimensional systems.

*This condition can be vacuous If El + E2 ( 0.



32

After the work of Turing (1952) and Othmer and Scriven (1969), the

next natural step would be to looh at the stability of limit cycle solu-

tions of (1.1). The complication, of course, is that even for linear-

ized stability, the resultng variational equation is a Floquet system

with coefficients independent of space variables, but periodic in time.

This step, however, has been passed over in the literature - although

the lack of work on it has been mentioned in Kopell and Howard (1973)

and Othmer (1977) - probably because attention has been focused on

traveling waves and more complicated solutions. Chapter II of this

thesis studies the linear stability of the (kinetically stable) limit

cycle as a solution of (1.1); chapter IV discusses perturbations of the

limit cycle as solutions of (1.1).

The second classic paper, Kopell and Howard (1973), was intended

as a first step in studying the circular waves (or "target patterns" in

Kopell and Howard's terminology) occurring in the Belousov-Zhabotinskii

reaction. In their original announcement of the occurrence of circular

waves, Zaikin and Zhabotinskii (1970) presented a rough model to explain

the occurrence of the circular waves. The assumptions of this model,

however, were rather ad hoc - for instance, points were assumed to exist

in the solution at which the underlying periodic reaction proceeded with

frequencies different from the bulk reaction, with no explanation of how

such a difference could be maintained. Kopell and Howard wished to show

that diffusion, added to the kinetics, sufficed to produce the waves.

Since circular and spiral waves at great distances from their centers

|lave al n- l r -.L .ave fronts, Kopell and lOward decided to
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investigate the existence of traveling wave solutions U(bt - k • x)

(i.e., perfectly parallel wave fronts) to (1.1).

They were aided in their studies by a remarkable set of equations,

the A-w systems,

Futi [A(R) -w(R) Fu 1
vj+ { (2.7a)

v t  w(R) A(R)] v V 2v j

Using the transform (u,v) = (R cos J, R sin ) yields

= + .(2.7b)

1wJ(R) j + L v+721

Setting = bt - k-x, R = Ro constant, gives the explicit

solution

u = R cos(bt - kx) (R ) = k 2
o r, "I with 0 (2.8)

v = R sin(bt - k'x) W(R ) = b.
O o

The usual assumption on the system is A(R) > 0 on [0, R), A(R) 0,

and (R) < 0 for some range R > R. Under these assumptions the

kinetic equations of (2.8) have an unstable spiral point at (uv) =

(0,0) and a stable limit cycle (U,V) = (R cos(wt), R sin(wt)) with

w £a(R), and periodic traveling waves exist for all amplitudes 0 <

(O R.
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For the A-w systems with their traveling waves of all amplitudes

Ro , 0 < Ro . R, it seems equally plausible that the waves

"originated" as a perturbation from the unstable stationary state or as

a perturbation off the stable limit cycle. Consequently, Kopell and

Howard considered the general problems of waves arising in the system

(1.1), with the assumption that the kinetic equations either (a) possess

an unstable spiral point (for an n-component system, a critical point

with a pair of conjugate complex eigenvalues with positve real part) or

(b) possess a stable limit cycle. In other words, substituting u

u(bt - k'x) into (1.1) gives the system
N (NN

bu' = F(u) + k 2K u". (2.9)

Kopell and Howard considered whether this system possesses periodic

solutions given that the kinetic system u' = F(u) has either (a) an
/VN Jf

unstable spiral point or (b) a stable limit cycle.

The Hopf Bifurcation Theorem (Hopf (1942), translated by Kopell

and Howard in Marsden and McCracken (1976)) was used to prove existence

of periodic traveling waves for (2.9). Roughly, the Hopf theorem says

the following: Suppose a 2-component kinetic system has a stable spiral

point, so all trajectories over some region in the plane flow into that

point. Let the system contain a parameter and suppose that as the

parameter varies, the real part of the complex conjugate eigenvalues

changes from negative to positive - the critical point changes to an

unstable spiral. Then, for some small range of parameter values just

after the instability appears, the flow far away from the critical point

remains inwardly directed because it is little affected over the small

range of paramter values. Near the critical point, however, a drastic
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change in behavior has taken place - the ingoing flow has changed to an

outgoing flow. The outgoing flow at the critical point meets the in-

coming flow still present in outlying regions, and a periodic solution

appears where they meet. This periodic solution is the Hopf bifurca-

tion, a periodic solution appearing when complex-conjugate eigenvalues

at a critical point change their real part from negative to positive.

The same geometric picture holds for multi-component systems; it is only

necessary to consider the flow on the 2-dimensional manifold

corresponding to the two conjugate roots.

Kopell and Howard showed that (2.9) in the 2-component case, under

mild assumptions, possesses 2 pairs of complex-conjugate roots, and that

for a certain relation between b and k2, a pair of these roots

crosses the imaginary axis. When This crossing takes place, the Hopf

Theorem applies to give the existence of small amplitude periodic

solutions to (2.9), i.e., small amplitude period traveling waves. The

proof extends to the n-component case.

Kopell and Howard also showed that traveling waves originate as

perturbations off the limit cycle solution. In this case, k2 / 0

and b - I In (2.9), which is rewritten as an integral equation. An

iterative argument, with the limit cycle U as starting function, then

constructs a periodic solution to (2.9) and a frequency b(k2), where

k2 is considered fixed.

The integral equation used by Kopell and Howard is not the most

obvious choice, and I was long puzzled why they chose it. Some digging

in the literature has clarified this point. Briefly, the problem they

considered could be described as the persistence of periodic solutions
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in autonomous systems under singular perturbation (since k2 ' 0

multiplies the higher derivatives in (2.9)). Although several closely

related problems (such as the case for nonautonomous systems) had been

dealt with - and these will be discussed in some detail in chapter VI -

the closest result appears to be a series expansion for the perturbed

periodic solutions due to Wasow (1976). Wasow's series, however, is

only asymptotic - he was not able to prove convergence (and, strictly

speaking, did not prove the existence of the perturbed periodic solu-

tions). In other words, Kopell and Howard's result was not merely the

construction of periodic traveling waves but also a contribution to the

theory of singular systems of differential equations. Their proof

became all the more interesting, and a careful study of It eventually

led to a second proof based on a series expansion instead of an integral

equation. This series is convergent, in contrast to Wasow's asymptotic

result; the essential trick is to match two powers of the small param-

eter instead of one and use a curious property of Floquet systems found

by Kopell and Howard. The background on related problems, the construc-

tion of this series, and proof of its convergence from the subject

matter of chapter VI.

Kopell and Howard showed that, in general systems of the form

(2.9) as well as in )_ systems, small amplitude traveling waves (near

the unstable stationary state) and large amplitude waves (near the limit

cycle) both occurred. They next considered the linear stability of the

traveling waves.

Again, A-i systems played an important role. The variational

equation of (2.7b) around the solution R = R., J bt - k'x with
/V IV
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with b - W(Ro), k2 = A(Ro) turns out to be an equation with

constant coefficients. The variational equations can therefore be

solved explicitly. Assuming A(R) > 0 on 0 < R < R, A(R) 0, it can

be shown that the traveling wave (2.8) with amplitrde Ro,

0 < R < R, is linearly stable iff

4A(R0) + ,(Ro) + Ro Af(R 0j< 0. (2.10)

In particular, with A'(R) < 0, it follows that the waves are linearly

unstable as Ro--) 0+ and linearly stable as Ro--R-, that is,

small amplitude waves are unstable and large amplitude waves stable.

Kopell and Howard were actually able to show that waves of

sufficiently small amplitudes arising from the unstable stationary state

must be linearly unstable. The essence of their proof is to first note

that the linearization of (1.1) about the stationary state has exponen-

tially increasing solutions simply because the stationary state is

kinetically unstable. The linearization of (1.1) about a wave, which

itself is a small amplitude perturbation of the stationary state, leads

to a linear system with coefficients which are nearly the same as those

of the linearization of (1.1) about the stationary state. Consequently,

the spectrum of the known unstable operator is only slightly perturbed

and instability persists.

However, they were unable to obtain any general results on

stability of large amplitude traveling waves. By default, it appears

that these large amplitude solutions are the source of the circular and

spiral waves observed experimentally.
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As a sort of limiting case for traveling wave stability, Kopell

and Howard briefly considered the question of whether the limit cycle

solution, stable as a solution of the kinetic equations (1.2), remains

stable as a solution of (1.1). They showed that if the diffusion matrix

is scalar, then the limit cycle is linearly stable as a solution of

(1.1) to all wave numbers k2. No results were obtained for the non-

scalar diffusion matrix case, which is a further motivation for the

study of limit cycle stability in chapter II.

Howard and Kopell (1977) contains further work on traveling waves;

specifically, a description of "slowly-varying" waves in which the phase

bt - k'x = e is generalized to e(t,x) with et, 7 changing on

very slow time- and space-scales (Ott VE9 correspond to b,k), and a

discussion of "shock structures" - the small region where two traveling

waves meet. Ortoleva and Ross (1973) and Kuramoto and Yamada (1976)

give some formal constructions related to circular and spiral waves, but

they have difficulties with singularities at the centers. Yamada and

Kuramoto (1976) found spiral waves in a system whose diffusion matrix

has complex eigenvalues. Greenberg (1976) gave a formal expansion for

calculating circular waves which does not contain the difficulties with

singularities mentioned above. Greenberg (1978) later proved that the

construction was convergent for 4-&' systems. Cohen, Neu, and Rosales

(1978) proved the existence of spiral wave solutions for J-wsystems.

Before discussing the third classic paper in detail, it will be

useful to give some perspective on the results. Chueh, Conley, and

Smoller (1977) give a simple geometric criterion for boundedness of
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solutions of systems of reaction-diffusion equations. Basically, they

show that, under certain conditions on the kinetic equations, there

exist "boxes" in u-space such that any solution of (1.1) which is con-

tained in the box at t - 0 remains in the box, i.e., remains bounded

for all time.

Such boundedness theorems, although interesting for their own

sake, do not lead directly to stability results for particular solu-

tions--a perturbed traveling wave may transform into another wave or

even a stationary state without violating the boundedness conclusion.

Of course, boundedness is an important property for solutions of realis-

tic model systems, and it can be used indirectly to obtain stability

results (see reference to Conway, Hoff, and Smoller (1978) below).

(Sattinger (1976) gives actual stability results for traveling wave

solutions of reaction-diffusion systems; specifically, he gives

conditions under which linear stability of a traveling wave implies

stability with respect to the full nonlinear system.)

It is interesting to contrast the results of Chueh, Conley, and

Smoller (1977) with various maximum principles, a traditional form of

boundedness theorem. As described in Protter and Weinberger (1967), a

maximum principle is a theorem to the effect that a function, satis-

fying some differential inequality (which may be expressed as an ODE or

PDE) in a domain, has a maximum on the boundary of that domain. (A weak

maximum principle asserts a maximum lies on the boundary; a strong

maximum principle asserts the maximum lies only on the boundary, unless

the function is constant.) Protter and Weinberger (1967, chapter 2)

have some results for nonlinear parabolic scalar equations and parabolic
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systems. Chueh, Conley, and Smoller (1977) introduce fixed bounds

independent of initial and/or boundary conditions.

The results of Chueh, Conley, and Smoller (1977) will be discussed

in a simplified form. The reaction-diffusion system will be (1.1) with

K a constant positive-definite diagonal matrix. It is assumed that:

If the initial data for (1.1) satis fies either

or (2.11)

u(x,O) is periodic in each component of x,

then a solution u(x,t) exists for some interval 0 < t < 6, and for

these values of t either

u(x,t)-) u . as IIx -I
N J_ V

or
u(x,t) is periodic in each component of x.

Setting u = (uj, ..., uN), F(u) = (Fl(u), ... FN(u)), define

a "box" B by (ai < bi )

B = {(u, ... , UN) a, < ui _ b,, i = 1, ... , N). (2.12)

Let n be the outward unit normal to the surface of B. The kinetic
IV

equations (1.2) for (1.1) are said to define flow into B if n I F(u)

< 0 on the boundary of B. Equivalently, the kinetic flow is into B if
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F i *(ul, al, ... , u) > 0 and Fi(u, ... , bi, ... , uN) < 0 on the

sides of B. The following theorem is then a special case of more

general results of Chueh, Conley, Smoller (1977):

THEOREM 1. If solutions of (1.1) satisfy (2.11) and if there exists a

set B defined by (2.12) such that the kinetic flow is into B, then

initial data u(x,O) satisfying (2.11) and contained in B yields a

solution u(x,t) that remains in B. (Since solutions initially in B
IV r

remain in B for t > 0, B is referred to as a positively invariant

set.)

The essential idea of the proof is geometric. Suppose the

solution is about to escape the box across the side u, = bi . Then

a maximum ui(x , to) = bi will exist for some point Lo and

time to, with ui (x,t) < bi  for t < to • But

uit = Fi(u, ..., bi , ..., uN ) + dV 2u

at the point x , to, whre F < 0 (by hypothesis) and V2u. < 0

(since u (x,, to ) is a maximum). Hence uit (X, to) < 0, con-

dicting aflow out of box B.

The actual results of Chueh, Conley, and Smoller are much more

general than Theorem 1 (which is adequate for all purposes of this

thesis). The diffusion matrix need not be diagonal or constant; the

entries may depend on u and it is only necessary that the matrix have

real, nonnegative eignevalues--in this case the positively-invariant set

is to be a region bounded by surfaces normal to the (u-dependent) left-

IV

eigenvectors of K and be "quasi-convex". (In particular, if K is
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scalar, any quasi-convex surface will do for a boundary of the

positively-invariant set!) Furthermore, first derivative terms may

appear in (1.1), although this further restricts the

positively invariant sets.

Chueh, Conley, and Smoller show the full set of conditions

eventually derived for a positively invariant set to be a characteriza-

tion: if a set is positively invariant, then it almost satisfies the

above conditions. (The precise meaning "almost" can be found in their

paper.) They also derive bounds on the first spatial derivative of

solutions for certain reaction-diffusion systems and show how to derive

bounds on the solution of certain first-order PDE's using a viscosity

method (i.e., adding terms of the form EV 2u, deriving bounds, and

letting E -- 0).

As an illustration of the use of a priori bounds on solutions to

derive further results, a slightly simplified version of Chueh, Conley,

and Smoller's result on boundedness of spatial derivatives will be

given.

Consider (1.1) with

u . F(u) + Ku u =u, uN)
/t/t IV 1XX IV

K - diag (d, ..., dN) di > 0; (2.13a)

u(x,O) satisfies periodic B.C. on 0 < x < L; (2.13b)

Athere exist constants mi, m1  such that

m < u i (x,O) < mil 1, ... , N imply

mi. ui(xt) < M, i 1, ... , N, for t > 0. (2.13c)
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The existence of a positively invariant set for F(u) would, of course,

be sufficient to give (2.13c). Set ux  v, giving the system

utMF(U) + Ku

v 'F(u)v + K v. (2.14)

Introduce the functions

1 2Gi = u + v - k

^ 1 2
G i  - - vi - k, 1 2, ... , N. (2.15)

It will be shown that if k is chosen sufficiently large, then Gir

A 1 2 1 2
C < 0 for all I when t > 0, so that -k + - u, < u < k - - ui .

(Notice that di > 0 for all i is essential in the proof, another

example of an argument which does not carry over to a singular diffusion

matrix.)

Assume k is sufficiently large that Gi , Gi < 0 for all i

at t = 0. If Gi, CG < 0 for all t, we are finished, so let

to be the time at which some component first equals 0. First assume

some Gi 
= 0. Then the precise meaning of to is

for t < to, we have Gi, Gi < 0 for all i, all x;

A
for t - toi we have Gi, GI < 0 for all i, all x,

and some Gj 0 at x - x • (2.16)j 0
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At (xoto), Gj is nondecreasing in the t-direction and has a

local maximum in the x-direction, 3o

G _L u12 + V - k = 0; (2.17a)
j 2 j j

(G ) t  u (d u + Fj(u)) + (d ;' +
jt j j jxx j'. i jxx

(VF(u)v) ) > 0; (2.17b)

2
(G )xx Ujx U ujx x  v jx x < 0. (2.17c)

Substitution of (2.17c) and (2.17a) into the expression for (C) t gives

(C )tI u 2.)2 u F (U)
() t  -d i (k -- 2 j + ./

N 3

+ N (u) v (2.18)

Now, all ui's are bounded by (2 .13c) and vi's are linearly bounded

in k by (2.16), so if we had initially chosen k sufficiently large that

the quadratic term -dIk 2 dominated in (2.18), then (C) t < 0

would result, contradicting (Gj)t > 0 in (2.17b).

Therefore, the assumption some Gi = 0 - to is false. The

same argument, however, goes through to show Gi = 0 at to  is

also impossible, so v stays bounded.

The boundary conditions in Chueh, Conley, and Smoller are

basically that the values u(x,t), x on the boundary of the spati-l1

domain, be bounded within the interior of the invariant set for u.

Conway and Smoller (1977) have extended the boundedness results to

Inclide Neumann boundary conditions. Conway, H1off, and Smoller (1978)



45

showed that, for reaction-diffusion systems possessing positively-

invariant sets (so solutions remain bounded) and with Neumann boundary

conditions on sufficiently small domains (so diffusion is strongly felt

over the domain), solutions decay to spatially homogeneous functions

(necessarily solutions of the kinetic system, such as constants or limit

cycles). The paper illustrates how a general boundedness result can

lead to estimates of decay rates and eventually to stability results for

particular solutions. Incidentally, their proof is to use the bounded-

ness of solutions plus Neuman boundary conditions to show that--on

sufficiently small spatial domains D-

D ItuIt2 dx < c I exp(-c 2 t). (2.19)
D

By rather intricate arguments and certain results from the literature,

this L2-bound is converted to a simia.r result for L,:

.sup IiVxul I  - c3 exp(-c 4 t),
D

which definitely forces u to converge to a spatially homogeneous solu-
A;

tion. Their derivation of (2.19) easily carries over to the system with

periodic boundary conditions (2.13), and (2.19) together with the

boundedness of 1f141 immediately gives l1 l -> 0 as t-4+3,

forcing a spatially homogeneous solution.

A simple form of this type of geometric boundedness argument was

also used by Evans and Shenk (1970). For systems of the form
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V -V f (V,

W - g(VW)

where V is a scalar function and W is a vector function, they showed
IV

that, for E < E2, f(E1 ,W) > 0 and f(E2 , W) < 0 and E1 < V(x,0) <

E2  implies EI < V(x,t) < E2  for t > 0.

Problems Considered in this Thesis

In discussing reaction-diffusion systems in the first two sec-

tions, I have occasionally pointed out certain questions, arising either

explicitly in the literature or as natural questions to ask, which are

studied in this thesis. This section will discuss the contents of this

thesis directly.

The literature of reaction-diffusion systems contains much work on

stationary states (both spatially homogeneous and inhomogeneous) and

traveling waves (periodic waves, traveling fronts, solitary waves).

This thesis is basically concerned with the limiL cycle of the kinetic

system as a spatially homogeneous, time-periodic solution of the

reaction-diffusion system (1.1); relatively little work has appeared in

the literature on this topic. Other results arising in the course of

the limit cycle study are also given.

The next section of this first chapter studies classes of

reaction-diffusion systems for which explicit transient solutions occur,

solutions representing transitions between stationary states and

periodic traveling waves. Some of the general results of the second
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section will be used to derive properties of these classes of equations,

which have appeared in Cope (1979).

The second chapter studies the linear stability of the limit cycle

as a solution of the reaction-diffusion system. The study is motivated

by Turing's result that a kinetically stable stationary state can become

unstable when diffusion i idded; we ask: can a kinetically stable

limit cycle become unstable when diffusion is added? (The question has

also been brought up by Othmer (1977) and Kopell and Howard (1973)).

The variational equation about the limit cycle reduces to a Floquet

system with wave number k2 appearing as a parameter. Perturbations

based on the Floquet representation of the solutions give solutions for

small k2 and large k2 . The limit cycle can become unstable to

small k2, and explicit examples of such systems are constructed and

examined numerically (using Lees' method, discussed in chapter V). If

the diffusion matrix is singular, the limit cycle can become unstable to

large k2 also (when the diffusion matrix is nonsingular, it is

well-known that the limit cycle is stable to all large k2 ). These

results have appeared in Cope (1980).

A point near i stable limit cycle U(t) (U(0) specified) gives a
IV IV

trajectory - U(t 4- /) as t->+ ; is the asymptotic phase of the

point. Winfree has named - surface of points with the same asymptotic

phase an isochron. Constructive existence proofs have been given for

isochrons, but they are based on contractive mappings, specifically the

iterative solution of nonlinear integral equations on [0,-), and are

quite awkward for actual computation. Winfree (1978) has suggested com-

putation of isochrons as a research problem. This problem is studied
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In chapter 111. The computation is by a series .n ion -c:J o

Liapunov's construction of trajectories near a -t;Ie , r)tii pant-

the linearized system has exponentially-decaying :,olutions a , the 1I

tual solution is a power series in these exponent ils. The I lieari,

system near the limit cycle has I periodic solution and the rest

exponentially-decaying, and trajectories near the limit cycle can be

expressed as a power series in these exponentials. The coefficient, of

the series are T-periodic functions and each has to be calculated b'

quadrature of preceeding coefficients. A particularly accurate and

efficient means of carrying out such integrations, based on extrapuln-

tion formulas and the periodicity of all functions concerned, Is Riven,

Numerical calculations are shown to illustrate results. Convergence of

the expansion is proven.

The fourth chapter considers the calculation of asymptotic. phase

for a reaction-diffusion syst em. Here initial 1a- a is taken to have ,l-.

1crm 1J(O) + f(x), ,*.here f(x) is i small poriodic trturbation, and if

tht% Iimit (J v I- t ;t l ,, ution of tle diffusion .system, t-is

l:lLiKil data oui d evolve t;m 11(t + ), / onstant as t- . Iho

problem considctei ,, to t i ,d , given the I initiI Vrtir b, tIcr t(x

A formal milti-e;al n,, i ,<;von Is derived for oi t-ase of Iong spat al

scales (1.e., perturbations (orrespondi ng to smoa ! .ave nutuLer) . ] his

expansion, or at least its first term, has also fenr used in Howard ano?

Kopell (1977) and in Nc;u (1979) with regard to other behavior In

reaction-diffusion system.;.) It Is shown that the exponisIon leads to

exactly t-h same charaeterization of instability to small wave numbers

k 2 as obtained in the line.ar Stability study it: e-hapter I , that the
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txpanas.[o,, I~s ~e-eie to all orders, ann rnat. a. simple expree;sioa

-the firfrc- crder term of 4 in terms o.- (x) can bce obt~liced.

in- 1'--fh chapter compares the Predi..ed ro suits of, -he f-1m.1

lin -xpansion of chapter IV with numerical resuins fc!- to

specific equations, a AWsystem and a system occurring in Cohen,

Ropoanstrindf, and Miura (1977). The vIUMCrieal work Is based on Lees,

Mel 1,C , Cpocially efficient finite t'iff[erence scheme for parabolic

e qn .- t r:, T method itself is described and particular problem.1s

i\~~v i h ese calculations are discussed. 71hese prohiis are that

on. meis wtvith a small perturbaticii (0(E)) of tile limit cycle,

~.t( r ati] this initial perturbation dies away to a constant phase

shit ttue decay rate is like exp(0(6)t)), and then measure that

pha - 'h.which is itself 0(E). These problems can, however, be

--d the numerically found phase shifts are In good agreement

0% !rc dicted ones.

rV is actually in two parts. The first part is simply the

ick if thle results of chapter lV, as just descriL-Cd. The

4 one with a quiest ion of numerical analv sisj the

om It of finite dif foreuTCe schemes for parabolic:

'Ce -c-homes are general ty rated as ( nuIMeriCa lv) , ta:ble

* gto their behavior -in pp1 i c to 1 mooar sytv ems wit

-f f (ients , because the resulting differenrce equiations can lo,

and analyzed. Very little is known abOUt Tn111,'101 lSta-

:::: :1-c difference schemes applied to nonlineai P'VEs. I became

Jirrvr: iii this question (after It arose In a numerical analysis

;iecnl by J. Virah) because the houndedness arguments of Chueh,
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Conley, and Smoller (1977) seemed to carry over directly to the finite

difference equations. They did, but the resulting restrictions for

nonlinear numerical stability were generally of the form bt = O(Ax2),

even for Lees' method, which seemed overly restrictive considering how

well Lees' method worked in practice. Further work, concentrating on

direct estimates, eventually led to a nonlinear numerical stability

restriction of At = O(Ax) on Lees' method.

Finally, in the sixth chapter, the construction of periodic

traveling waves as perturbations off the limit cycle is studied. A

series expansion, based on a direct substitution into the equation" for

the traveling wave, has been given by Wasow (1976); he only claimed the

expansion asymptotic to the true solution. Kopell and Howard (1973)

used a rather curious change of variable on the equations for the

traveling wave, then rewrote the equations as an integral equation and

proved the integral equation possessed a periodic solution by a contrac-

tive mapping. The basic question of chapter VI is: why should a series

expansion, such as Wasow's, be only asymptotic when the integral equa-

tion formulation can be shown convergent? The answer is that a conver-

gent series expansion can be found, but the proof involves regrouping

the terms of the series in an unexpected fashion and using an inter-

esting property, due to Kopell and Howard, of the solutions of Floquet

systems. In other words, chapter VI gives an alternate proof of the

existence of periodic traveling waves, using a series expansion instead

of the integral equation of Kopell and Howard.

In short, this thesis is basically a study of the limit cycle as a

solution of (1.1) (Chapters II, IV, first half of V, VI), together
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with related results which arose in the course of the study (last half

of chapters I and V, chapter 1II). Appendix I gives Lemmas A,BC, and

D, which are used throughout the thesis. Appendix II is a convergence

proof for the expansion developed in Chapter III. Appendices III and IV

contain further work on the expansion developed in Chapter IV.

Reaction-Diffusion Equations with Explicit

Traveling Wave and Transient Solutions

The A-w systems (2.7) with explicit traveling wave solutions

have been quite important in the study of reaction-diffusion equations.

Considerable insight results from examining ideas within this simple

tlass of equations with its explicit traveling waves. For example,

Kopell and Howard (1973) solved exactly the linear stability problem for

the traveling waves of the )-tv systems, thereby giving evidence for

the stability of large amplitude traveling waves (see last section).

Greenberg's proof (1978) of the existence of circular wave solutions is

for )-L systems, not reaction-diffusion systems in general. Simi-

larly, Cohen, Neu, and Rosales (1978) proved the existence of spiral

wave solutions only for )-a systems. (The extension of these results

to more general systems is still an open problem, although Greenberg

(1976) gave a carefully done formal expansion for circular waves for

reaction-diffusion equations in general.)

This section shows various types of behavior of solutions in

reaction-diffusion equations by giving explicit solutions to two classes

of equations.
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The first class of equations differs from A-w systems in

permitting nonscalar diffusion matrices and kinetic terms which are not

of J-1o form. These systems possess an explicit periodic traveling wave

solution of the form (u,v) - (Ro cos ), R. sin 4), 4 = bt - k'x

where k is a constant vector. A new type of solution, transition

from (or to) a stationary state to (or from) the periodic traveling

wave, also occurs; its form is (u,v) = (R( ) cos 4, R() sin '),

l= bt - k'x, with 0 < R(4) < Ro .

To illustrate the use of material in the previous section, a sub-

class of these equations will be studied in detail. It will be shown

(using the Poincare-Bendixson Theorem) that these systems possess a

stable limit cycle for the kinetic equations. From the results of

Kopell and Howard (1973), discussed in the last section, it follows that

a family of periodic traveling waves exists for the full reaction-

diffusion equations. The same properties used to show the existence of

the limit cycle solution enable the results of Chueh, Conley, and

Smoller (1977), discussed in the second section, to be applied so that

appropriately bounded initial data produce solutions remaining bounded

for all time.

The second class of equations is a special set of )-&j systems.

This class also possesses solutions representing a transition between a

stationary state and a periodic traveling wave, but these transients

have the form (u,v) = (R(41 ) cos 42' R(+l) sin'4' 2), 4i. bit - k 'x,

i - 1,2 where k and k are constant vectors. The amplitude R()

and phase 2 propagate in different directions!

T 2 . . . F'... .... i I " L ". . l
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It is interesting to connect these transient solutions with the

linear stability analysis of periodic traveling waves for A-W systems

discussed in the second section. (This second class of equations

satisfies the mild assumptions made in that analysis.) Kopell and

Howard derived an exact condition (2.10) for the linear stability of

traveling waves in 1-W systems. The transient solutions, as developed

here, represent transitions between the unstable stationary state (0,0)

and periodic traveling waves of various amplitudes. I would have ex-

pected in the case of a stable traveling wave that transitions were

always from (0,0) to the wave, while the transition could go either way

betwenn (0,0) and unstable traveling waves. Surprisingly, this is not

the case. The second class of equations contains solutions representing

a transition from linearly stable traveling waves to the linearly un-

stable solution (0,0).

Finally, analogies can be drawn between these explicit solutions

and circular and spiral wave solutions. If one considers circular waves

propagating out from a point, then at large distances from the point the

circular waveis asymptotic to a plane wave propagating in the radial

direction. At the edge of the circular wave, the behavior in the direc-

tion of propagation may be a transition from a stationary state to peri-

odic behavior, corresponding to the transients of the first class of

equations. The transients of the second class of equations with their

amplitude and phase propagating in different directions suggests the

behavior at the edge of a spiral wave: the phase may be propagating

along a radial line with a transition from a stationary state to peri-

odic behavior, but the "spiralness" is due to the amplitude propagating

in a slightly off-radial direction.
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The first class of equations can be generated as follows. The

substitution (u,v) (R cos R sin y) into (2.1) yields

fR t] R A (R,JI) + otcos 2f~ - a(R sin 21

-I+ C(LVt [ w(R,~)J L- sin 2 1 - o( cos 2~{ 2R *? Id < 1 , (4.1a)

R

where AO are related to F,G by

G(u,v) v u A(R, P) U 1

(4.1Ib)

Assume solutions of the form = bt - k'x, R = R(I) so that (4.1)

gives two ODE's for R. Without loss of generality, k2 = I can be

assumed. The two ODE's are (R' dR )

bRA I + 4cos 2q - o R sin 2 R" - R ,

{b -j sin 2i 1 -ocos 2 R7

(4.2)
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The function R() must satisfy two second-order ODE's simul-

taneously so it will necessarily satisfy a first order ODE, which will

be written as

R' - -R P(R,4). (4.3)

The idea is to define /I , I in terms of P so that the two equations of

(4.2) do in fact have a common solution. Substitution of (4.3) into

(4.2) gives this consistency condition on At. as

A -bP1  I+ ocos 2 - o(R sin(4

b - -sin 2 1 -q cos 2

I + P, RP RP - p 2

2P j (4.4)

The results are summed up as

LEIMA 1. Let R() be any solution of (4.3). Then the system

u t  -bP + (I + q)Q -b- 2 (1 +c=) u (1 +()72u 7
vt  Lb+ 2(1 - ooP -bP + (1 -o)Qj v (1- 4()72v

(4.5a)

2
with Q 1+ P-*_RP RP -P , has the solution
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(u,v) (R(ij) cos4~ R(4J) sin') with bt -k. x, k 1. (4.5b)

The systems (4.5a) are generated by choosing the arbitrary

function P. They differ from A-&' systems in the nonscalar diffusion

matrix and in permitting more general kinetic terms. For instance, if

P - P(R), then Q depends only on R and the kinetic terms will have

A-w form; if P is any polynomial in u,v, then Q is also a

polynomial (because P o-VP + uPv  and RP, = uPu + vP ) and systems

not of 4- w form can occur.

If P = P(R) and c( = 0, then (4.5a) becomes a A-w system and

it is instructive to compare the results of Lemma 1 with the usual

solutions. Choosing P(R,4) = a - R, a > 0, 0( = 0 and b = -3a

reduces (4 .5a) to the following special case

K = La 2(a2 _R a+ 2R J[ +L u. (4.6)

v t  -a -2R 1 + 2(a2 R2 v 2v

From (2.8), the usual ,-w solutions are

u = R cos (- (a + 2R )t kx) (4.7)

v-Rsin (-(a + 2R )t - k*x) *with k 2  1 + 2(a2 R
o 0o
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From Lemma 1, we have the solutions (from R' -R(a - R))

(U,v) - (R(Y) cos R(Q) sin ) (4.8a) j.

-- 3a -kx, k 2  1 I (4. 1b)

I

a or

R(=) - (4.8c)
1 + exp (a( + o)) +0 arbitrary constant.

Of these latter solutions, one is a standard traveling wave of

A-. type (amplitude R0 = a In (4.7)), and the others are transient

solutions representing a transition from the 0-solution to the traveling

wave R0 = a (since exp(-3a
2t) occurs in (4.8c)). Incidentally, if

the stability criterion (2.10) is applied to the wave R0 = a, then

the wave is linearly stable if

1 2

1+- -a <0.
4a

2

The transition from 0 to the traveling wave is therefore a transition

from one linearly unstable solution to another for small a, and from

a linearly unstable solution to a linearly stable one for large a.

The kinetic equations for a )-a' system have a rather simple

phase plane: the origin is the only critical point (except for the

degenerate case of a circle of critical points) and the occurrence of

limit cycles is trivial to check. The kinetic equations for systems
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(4.5a) are not quite so transparent, and it will now be shown that they

do show interesting behavior, such as limit cycles.

Notice that if the kinetic equations have the origin as an

unstable critical point, if the origin is the only critical point, and

if all solutions are bounded as t-*+co, then the Poincare-Bendixson

Theorem (Coddington and Levinson, 1955) gives a stable limit cycle.

These three conditions will be used to prove the following lemma giving

sufficient conditions on P for the kinetic equations of (4.5a) to

possess limit cycles.

LEMMA 2. Let P(u,v) be polynomial in u,v, and b j 0, iHd # I

in the kinetic equations of (4.5a).

(a) If P(0,0) is sufficiently close to 0, then the origin is

an unstable critical point (in particular, an unstable

spiral if d2 > b2).

(b) If 10bI < I - 2 and either

(1) b > 0 and P(u,v) > - b(I -0)/2(1 -_v(2 + ]b ) or

(2) b < 0 and P(u,v) < - b(l - Q()/2(I - c 2i4 ),

then the origin is the unique critical point.

(c) If P(u,v) is nonzero for all sufficiently large R, then

all solutions of the kinetic equations of (4.5a) are bounded

as t-*+ - .

(d) If the hypotheses of (a), (b), (c) hold, then the kinetic

equations of (4.5a) possess at least one stable limit

cycle.

PROOF. (a) Since P is polynomial in u,v and P = -VP + uPv, RpR

upu + vP sthen Q(0,O) = I - P2(0,0), where Q(u,v) is defined fromU~u+Vv
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P(u,v) by Lemma 1. If P(0,0) 0, then the linearized kinetic equa-

tions (4.5a) about the origin have the coefficient matrix

+ 1- ]

with eigenvalues 1 + (o( 2 - b2) Since b2 > 0 by hypothesis and

0(2 < 1 , these eigenvalues are either strictly positive (if 0 2 > b2

or complex with positive real part ((2 < b 2). By continuity the in-

stability persists if P(0,0) is close to 0. (b) Assume (uovo) #

(0,0) is a critical point for the kinetic equations of (4.5a). Elim-

inating Q(u0,v0 ) from the two rest state equations u' = 0, v' = 0

gives the necessary condition on P0  P(u0,v0):

2 [(i -c2)(u2 + v ) 2 c< b u v I P

22

=-b[(1 +c'() u+ (12cx 0

Setting (uo,V o) = (R° cos &o , Ro sin (9o), the resulting equation is

2[1 -'C - b sin 26 ] P = -b I + ccos 2 U
0 0
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and the assumption jabf < 1 2 insures the coefficient of P0

is positive. Since

1 + o cos 2e
0< <____ < +2+ - 1 2 ---_

1 -0 I o-c b sin 20 0 1 o

then at this critical point (uo,vO )

-b(1 -4, )_ > p > -b( 1 + 0O

2(1 - 02 + jaI ) - o - 2(1 -g2 _ 14 if b > 0,

and if b < 0 the inequalities reverse. But these inequalities contra-

dict the assumption on P(u,v). (c) P(u,v) is nonzero for all

sufficiently large R iff the homogeneous polynomial consisting of the

highest degree terms of P is positive-definite (or negative-definite).

This definiteness can occur only if the polynomial has even degree, so

P(u,v) = H2n(u,v) + A(u,v), where A(u,v) has degree < 2n and

%u,v) is a positive- (negative-) definite homogeneous polynomial of

degree 2n. Noting RW2n,R = 2n It2n and letting R-+ + in the

kinetic equations of (4.5a) gives

{ N (2n + 1) H1
2  K (4.9)

G 2n L -0()V
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Since I14 # 1, this vector field always points inwards for suffi-

ciently large R and all kinetic solutions must be bounded as t- +.

(d) It is only necessary to note that (a), (b), (c) are all compatible

conditions, in particular P(O,O) close to 0 is compatible with the

bound on P in (b). Q.E.D.

The proof of boundedness for solutions to the kinetic system

(Lemma 2c) immediately gives a proof of boundedness of solutions of the

reaction-diffusion system using the results of Chueh, Conley, and

Smoller discussed in the last section.

LEMMA 3. in (4.5a), let P(u,v) be polynomial in u and v, ji 1 1.

and P(u,v) be nonzero for all sufficiently large R. Then, for any

smooth initial data u(x,o), v(x,o) of (4.5a), there exists a constant

B such that i u(x,t)l ,i v(x,t)l < B for t > 0.

PROOF. Under these assumptions, equation (4.9) holds. Hence any box

with sides parallel to the (u,v)-axes is an invariant set if it is

sufficiently large, since (4.9) shows the kinetic vector field must

point inwards on the perimeter of any sufficiently large box. Given

initial data u(x,o), v(x,o), in the (u,v)-plane pick a 2B x 2B square

centered at the origin with sides parallel to the axes such that

I u(x,o)l , I v(x,o)l < B, then the square forms an invariant set. By

Theorem I the solution satisfies the same bound for all time. Q.E.D.

As an example of (4.5a) with the equations not of 1-w fZm,

consider P(u,v) = c - t2n(u,v), where c is a positive constant and

H2 n(u,v) is a positive-definite, homogeneous polynomial in u,v of

degree 2n. This choice for P leods to systems which are not of 1-41

form unless H2n reduces to a function of R alone.
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If c is sufficiently small and c(,b are appropriately related

in (4.5a), then Lemma 2 applies and the kinetic equations of (4.5a)

possess a stable limit cycle.

By the results of Kopell and Howard (1973), discussed in the last

section, a family of periodic traveling waves exists.

By Lemma 3, this choice of P implies that initially bounded

solutions of (4 .5a) are bounded for all time.

Equation (4.5b) for the amplitude R(4) of the traveling wave

becomes a Bernoulli equation with solution

R 2n = exp(2nc') jj - 2n exp (-2ncs) H2n Cos sin s)ds

c arbitrary constant. (4.10)

The behavior of this solution can be found using Lemma A in Appendix 1;

the lemma gives the results of integrating an exponential against a

periodic function. By Lemma A.2, we have

exp(-2ncs) 112n (cos s, sin s)ds = exp(-2ncy)h(lp) - h(O),
0

where h(Y) is a 21-periodic function and, by Lemma A.4 and H2n(Cos s,

sin s) > 0, it follows that h('P) < 0. Consequently,

R- 2 n exp(+ 2nct) [8 + 2n h(0)] - 2n h( ). (4.11)
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The exponential pirt of the expression is always positive, and so is

-2n h(y). Therefore R('j) is finite for all '4 and varies from a

purely periodic function as '- - to 0 as w - +. The limiting

periodic wave is given by choosing c so that the coefficient of the

exponential term is 0.

The corresponding solutions (u,v) = (R(9) cos +, R(f) sin Y) with

bt - klx, k2 = I represent transient solutions changing from 0

to a purely periodic wave (for b < 0; for b > 0 the transition is from

the periodic wave to 0). In contrast to A-W systems, the amplitude

R( ) of this periodic wave is not constant. There is a 1-parameter

family of transients; the parameter c represents a phase shift between

the periodic solution and the exponential part.

The second class of equations will now be constructed and

studied.

In the preceding examples, only a single periodic wave is found

explicitly, together with a corresponding family of transient solutions.

It is natural to look for examples where transient solutions can be

calculated for a family of periodic waves. The trick in getting such

solutions is to let the amplitude and phase portions of the solution

correspond to traveling waves propagating in different directions with

different velocities. (In this sense, the solutions u,v correspond to

a nonlinear superposition of traveling waves.)

The second class of equations of A-W systems (2.7a,b) with:
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(a) A(R) =- (Rn - a) (Rn - b), n > 0;

(b) w(R) - d(Rn - c);
(4.12)

(c) lI < b and b positive;

d 2 (n + 1) (b - a) 2

(d) 4 < 4 max A(R).

The usual traveling wave solutions are given by (2.8). We look for

solutions of the form (u,v) = (R(6) cos I, R(e) sin i), with

2
bft - b W(R ), k A(R as in the usual solution

0 0 0 0

with amplitude R -- and set e = blt - x *", to be determined:
01

(a) 0 = R(0(R) - A(R)) -b 1 R' + k12 R"

(4.13)

(b) 0 =w u(R) -w(Ro) + 2 k'k Rt

If k "k. i 0, the equations reduce to the usual traveling waves

2
(2.8). Assume k 'k # 0; without loss of generality, kI = 1 can

be assumed since this simply fixes a space scale for (4.13). At this

point we have chosen bo, but not b, and the lengths of k and kP but

not their directions. Repeated substitution of (4.13b) into (4.13a)

until all derivatives dR/de are eliminated and the use of (4.12)

eventually yields as a consistency condition the following polynomial

equation for R:
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(n + Od2 - (2ko.k2 R2n + (2k.k) (a + b) + 2k° k, dbl

-(n + 2)d2Rn Rn  + [((2ko.kl)2 + d 2)Rn

- (2k. k) 2(a + b) - 2k- k db, ] R = 0.i Jo
2n n two

Setting the coefficients of R 2n , R, and R°  to zero gives conditions

determining kom k, and b1. Specifically,

(2 kok)2 = (n + 1) d ,  (4.14a)

and by condition (4.12d)

( kk 2 (nD 2tk ; ) =.(n + I)d 2

Ik: 1 44 A(R)

so the cosine of the angle between k and k is well-defined. Next,

2ko k, n + 2 Rn

b' d a + b -R (4.14b)

These conditions automatically make the coefficient of R' equal to

zero, so the third condition is redundant. Summarizing these results

as a lemma:
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LEMMA 4. For the A-w system with A(R), W(R) given by (4-12),

assume:

(a) R > 0 is an arbitrary constant;

(b) =bt -,k x with bo = w(Ro) , k an arbitrary vector

with k 2  = A(Ro);
0 0

(c) 0= b t - k-x with k a unit vector satisfying (4.14a)

and b1  satisfying (4.14b);

(d) R(O) satisfies

dR - -d R (Rn -Rn).
dO 2ko. k o".o -1

Then (u,v) = (R(e) cos 4, R(e) sin -) is a solution of the \-w

system defined by (4.12).

The equation in Lemma 4d is an easily solvable Bernoulli equa-

tion, and it is clear from its form alone that (bounded) solutions of

R(O) represent a transition between amplitudes 0 and Ro . If the

position x is assumed fixed, so d6 = b, dt in Lemma 4c, and

(4.12b) is combined with Lemma 4d, we have

dR = R (Rn - Rn) (a + b -n + 2 dt.
0n+ 0
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Since 0 < R(e) < Ro, the direction of the transition depends on

Ro (note a + b > 0 by (4.12c)):

Set o [(n + )(a + b)/(n + 2)]

If Ro >/o, then the solution given in Lemma 4 is a transition from 0

to a solution with amplitude Ro; if Ro < /o , then the transition

is from amplitude Ro to 0. Roughly, for large Ro  the transition

in amplitude is from 0 to Ro, and for small Ro  the transition is

from Ro to 0 - a conclusion consistent with Kopell and Howard's

results of linearly stable large amplitude waves and unstable small

amplitude waves.

However, the value of RO  separating the two types of

transition does not quite match up with Kopell and Howard's result.

Defining (by (4.12))

F() 4/\(R) I + + RA'(R)

-4 (Rn - a)(Rn - b) 1 + d \

n n
n - a - bi

-nR (2R -a-b), (4.16)

Kopell and Howard found that the /1-W traveling wave with amplitude

Ro > 0 is linearly stable iff F(Ro ) < 0. Examining Ro  /0, we

find
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F(0) 4b a +b a +bl Id n)2
n + 2) n +12 + a +b n- 2[+ 2a b + /

2

(n-i+ 2)2 ab

As n-+w, then 4-* 1 and F(p)s- n(a + b)2 < 0. Conse-

quently, there is an E > 0, independent of n, such that

(a) for Ro in the interval I -E < Ro < 1 +E, F(Ro ) < 0

and the traveling waves of amplitude Ro  are linearly

stable by Kopell and Howard's criterion, and

(b) the interval 1 - < Ro < 1 + E contains values of

Ro </O and Ro >/o, so the transitions given by the

explicit solutions of Lemma 4 are from the linearly stable

waves of amplitude Ro t_o the linearly unstable

0-solution.

Strange as it may be, of course, the behavior does not contradict

the linear stability of the traveling wave since that stability is

derived on the basis of a small perturbation of the solution, while the

transient is a small perturbation in one region of space but 0(l) in

another.



CHAPTER II

STABILITY OF LIMIT CYCLE SOLUTIONS OF

REACTION-DIFFUSION EQUATIONS

Introduction

Consider the general reaction-diffusion system in two dependent

variables, written in normalized form as

u t  F(u,v) I+ C 2 V 2 2

+ L;II 
1 1; 0<(2 + 1 2I

v t  G(u 'v ) - 0( 2 v

Acky two-component syste'm with constant diffusion matrix possessing

Leal, nonnegativ( elgenvalues and nonnegative diagonal entries can be

placed in the form of (1.1) by rescaling the space variables; the

2
:1ondition on 4 4 , ' is equivalent to real, nonnegative elgenvalues

2

for the matrix. The reason for this choice of diagonal coefficients is

viven below. The -i,ietic_ equations are assumed to possess an

(.xponentlally) stable limit cycle (U(t), V(t)) with period T; the

,-,Int (U(O), V(O)) is also assumed given so that U(t), V(t) has a

A..Ique meaning.

69
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The limit cycle is a spatially homogeneous, oscillatory solution

of the reaction-diffusion system (1.1). The linear stability problem

for this solution is formulated by substituting u = U(t) +. -U, v - V(t)

+Ev into (1.1) to obtain the linear variational equation

(1.2)

At F u(U(t), V(t)) F(U(t), V(t)) u + 2

v t  G u(U(t), V(t)) G VOW, V(t)) v 1-I L v

AA

Separating variables (or Fourier transforming) by u 
= p(t)

exp (-i k x), v = q(t) exp (-i k x) yields the Floquet system (with
PA /V A , A

the obvious definitions of F i(t), G (t) as T-periodic functions)

p' F() -19) F 2 -t (1.3)

(1~~)k~~q~ C'I < 1; O<Cf- +t <I

qI GI(t) - k2  G2 (t) - ( 2k 2  1q2

The limit cycle is linearly unstable for wave number k2 as a solution

of the original system (1.1) iff (1.3) has an exponentially growing

solution for that value k2.

This chapter studies the linear stability of the limit cycle

solutions to (1.1). Kopell and Howard (1973) and Othmer (1977) have

mentioned the scarcity of results in this area, which seems a natural

Loud
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next step after stability studies of the spatially homogeneous, sta-

tionary solutions corresponding to critical points of the kinetic

equations.

The stability of the stationary solutions was first considered by

Turing (1952), who was the first to observe that a stable critical

point of the kinetic system could be unstable when consldc red a: a

solution of the reaction-diffusion system. Specifically, he gave

examples with the stationary state linearly stable to perturbations

2with small and large wave numbers k , but unstable to intermediate k2 "

His work, together with subsequent work on the stability of stationary

states, has been discussed in some detail in Chapter I.

The linear stability problem for spatially homogeneous, station-

ary states is fully solvable for a given system because the linearized

equations have constant coefficients, i.e., the system corresponding to

(1.3) has constant terms in place of the Fi(t), Gi(t), and the full

solution can be written in terms of the coefficient matrix. (The

general classification of behavior, however, is still quite

complicated--see Othmer and Scriven (1969).) For spatiallv ho:nc, i

oscillatory states the linear stability analysis yields the Fl-b, -r

system (1.3) and no s;uch general solution is possible.

The problem has attracted some attention, however. Kopell arid

Howard (1973) showed the limit cycle to remain linearly stable as :i

solution of the reaction-diffusion system when the diffusion 7iatr x it:

scalar. Othmer (1977) considered the linear stability of the lim.:t

cycle solution on a finite domain with Neumann boundary condItIr,. .
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Interpreted in our context of a spatially periodic perturbation, he

showed the limit cycle to be stable to all large wave numbers k2 and

gave a sufficient condition for the linear stability of the limit cycle

to perturbations for all wave numbers k2 (see below). Conway, Hoff,

and Smoller (1978) proved, under a basic assumption of a positively-

invariant region for the solutions of the reaction-diffusion system,

that solutions on finite spatial regions with Neumann boundary condi-

tions decay to spatially homogeneous solutions of the kinetic equa-

tions if the regions are sufficiently small. (Their work deals

with the solutions of the fully nonlinear system and not a linearized

simplification.) For spatially periodic perturbations, their work also

shows the limit cycle solution of (1.1) is stable to perturbations for

all large wave numbers k (/k 2 corresponds to the size of the region).

Cohen (1973) gave a singular perturbation approach for a class of

reaction-diffusion equations of the form (1.1) arising in chemical

reactor theory. These equations are on a finite spatial domain with

particular boundary conditions and with diffusion coefficients 0(I/e),

E small. His calculations show that, in a time interval of O(E),

solutions decay to the spatially homogeneous limit cycle. Roughly

speaking, this result corresponds to saying the limit cycle is stable

to perturbations with large wave number k 2'/E.

All these results require at least a nonsingular diffusion

matrix, refer only to perturbations analogous to large wave numbers

2k , and show stability only. In this chapter stability for small

•A
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wave numbers k2 is studied, as well as for large wave numbers k2 in the

case of a singular diffusion matrix, and examples of limit cycles which

are unstable--as solutions of the reaction-diffusion system--to small

wave numbers k2 are given.

This section closes with a direct proof that the limit cycle is

linearly stable, as a solution to (1.1) with nonsingular diffusion ma-

2
trix, to perturbations with large wave number k . A partial classifi-

cation of the Floquet multipliers for (1.3), similar to that for Hill's

equation (see Eastham, 1973, Chapter 1), is also given.

The second section gives a perturbation expansion calculating

2
the Floquet exponents for (1.3) for small k , consequently determining

linear stability of the limit cycle as a solution of (1.1). A simple

characterization is obtained for stability and explicitly solvable

examples are studied.

The third section constructs examples of the form (1.1) with

limit cycles which are linearly unstable for small k2 perturbations.

Numerical results are presented in the fourth section pertaining to the

examples of these unstable limit cycles. The numerical method used is

Lees' Method for paraholic equations; It is discussed in detail, to-

gether with the program used, in Chapter V.

The fifth section uses a modification of a perturbation method

for systems of differential equations with a large parameter (Codding-

ton and Levinson, 1955, Chapter 6) to characterize linear stability of

2
the limit cycle to large wave numbers k . An advantage of this
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approach over others in the literature is its handling of singular

diffusion matrices. Examples are studied.

The characterization of limit cycle stability to small k2

also occurs in the multi-scaling method for perturbing the limit cycle

studied in Chapter IV. The derivation of this one characterization by

two completely different approaches and all the material of this

chapter are from Cope (1979), which also contains some minor results,

omitted here, on the linear stability of the limit cycle to

intermediate wave numbers--a very intriguing open problem.

To see that (1.3) has only exponentially decaying solutions for

large k2 and a nonsingular diffusion matrix, set

Z . max s p e c t r a l radius of [FI
t(t) F2 (t )

w =smalereigenvalue of [+i± S *2j1>0

Then from (1.3) follows

Id 2 2 A 2 2 2

(p +q ) < (O-Wk ) (p +q)

2 A

forcing exponentially decaying solutions for k > /lw. (This calcu-

lation fails when the diffusion matrix is singular, another example of

the essential difference between the cases of singular and nonsingular

diffusion matrices mentioned in Chapter 1.) So the limit cycle is
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linearly stable a solution of (1.1) to all- ; "

the diffusion anvtirx is nonsingular.

Othmer (1977) gave a sufficient condition ,c

wave numbers k His restilr is for general ncoffF -

preted for the case of (1.1) witli S =  ( , 1: 3 W. Ini' x<.

is linearly stable as a soixtion of (1.1) if

M-1 < M1 -,< - l-i

where M = maN IIE- (t) II 6(t)

HAre, e(t) is any fundamental- nitrix for (1.3) wit!; k

I le(t) I means Eu, I idean norm. The Lesult 1?Sialsay saVs that t I!,

diffusion matrix is sufficiently close to the identity, cOi, I LI t :

Is stable.

In the f.)lowing, the fundamental matrix of (I.3 ir

L ik~n a; known -Iiielyv

V'(r) exp (- t) ,t

U', V' (deri v,:i ; of the limlt cycle) and ji, V a 1

Atuns as In iY., , in Appendix I. Lemma C, ,[ Cd o , , tlo- :..'

I,|ndamental rw rib. can be calculat, d from the imit cv.',' hN 'i 1"

u~ v tar
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The choice of I + o( as a normalized form for the diagonal dif-

fusion coefficients in (1.1) was deliberate -a simplification of the

behavior of the Floquet multipliers in (1.3) results. Set

p

exp (-(1t .5a)

q

so (1.3) becomes

r F 1r -ck F 2(t) - 12k
0(t)-~ k 2 ,(1.5b)

y k 2 G 2(t0 + c~k2

and note that (1.3) has exponentially increasing solutions iff (1.5b)

has solutions with growth rate greater than exp (+ k 2 0.

Define the fundamental matrix

X(t) =,X(0) =identity

The Floquet multipliers 141, 32 are the eigenvalues of X(T) (Easthan,

1977, Chapter 1), and they determine the exponential growth of the

solution: if~o = exp (-/,,T), then the solutions of (1.5b) grow like

exp (-pit). Consequently,

102 x I(T) +y 2(T)I,o +[x(T )y2 (T) x2 (T)y1 (T)] 0

(1.6)

equivalently, ,j2 _ D(k 2 )/0 + exp (A)=0



.... -N P ;:W

77

The last term exp (-/,T) follows from using Lemma B.2 (Abel's idenitly)

to evaluate the determinantz, noting that the trace of the coetficienr

matrix in (1.4b) is independent of k2 , and at k 0 the deteru'.iiat is

exp (-AT) (product of the Floquet multipliers I and exp "-,,T.). 2A,-

two Floquet multipliers for (1.5b) are therefore determined by a single

quantity D(k2 ), the discriminant in the terminology of Hill's ijuotion,

and a description of the behavior of the multipliers can he given by

2
breaking down the possibilities for D(k2):

(a) D(k2 ) 1 2 exp ( -Xk T). The roots are real and both have the
- same sign as D

(1.7)

(b) ID'k 2 ) 1=2 e xp ( - V. Both roots = exp T), or both
= - exp(- /T)- T)

kc) ID(k 2) ( 2 exp f 4 T). '3oth roots are complex conjugate and

have modulus exip (- , T).'2

2
At k = 0, the roots are I and exp (-/-T), so case (a) holds. As

k2 increases, the two roots may go further apart (both necessarily re-

mal otng psiti.,') rr o si together it xlp (-; T). !iey Ia,' - i t1 c o

.ri); at i- p o ,[,) ,r .split into the complox plaiie, rernil niti c on

tho :irc!. of ridies exp(- L T). Thev may reach tht: negative real as

on thi , circle Or :a<tio to the positiv ry-il axis.

In partickilair- a linearly unstable limit cycle, wiich can occur

onl y when same i > exp (k 2T), can only occur for two real Floquet

rm1ltilpliter s.
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A Perturbation Expansion for Small Wave Numbers 
k2

2
Since the solution of (1.3) is known for k = 0, it is natural to

try an expansion in powers of k 2 . For k2 = 0 in (1.3), one solution

decays like exp (-It) and it is unlikely to be perturbed to a growing

solution, so we consider the other periodic solution. It may be

perturbed by O(k2) - terms to a growth rate like exp (Bk 2t), which

will grow or decay depenuing on the sign of B . The Floquet represen-

tation suggests a solution of (1.3) of the form

[p1 2)p(t) 2
exp B k2 t) k2  (2.1)F n 'L .1

n = 1 n = 0

Fnn

where are T - periodic functions and

Lqn (t)j qo(t) V(t)

Substitution into (1.3) yields as the coefficient of k2n, n > I

(2.2)

Fl(t) F2(t) P + 2 _Pn- n Cn -mp

[qnJ G 1(t) G2(t) q 1 q1 n-1 M n Bm
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t, n =1., the c-iition becomes

1 ~ (2.3)
p 1 WF(t F2 () P 1+

I GI(t) G2(t)f , i I K' IC
-- IL

From Lemma D in Appendix I, this equation has a T-periodir

solution iff

-(T (U 'V + V ' ) - U 'U 4 , "2.4)

I -- T 4 ds,v' - v'0

+= -1 (A0 X + A I  +A 2 2 )

where A, AP A2 are the definite integrals forming the coefficicnts,

of ( 2

1hving dctermined B1 , Lemma D says the periodic solution p,, q, is

determined up to an arbitrary constant. (One possible choice is to

r ~ q [cL) q ;atisfy

/ ]

/ (Pn U "n V') dt = 0 for n > 1 .)

Notice the seces is well. defined to all orders the oniy unknown is

2ntc coe fic.lent. oF k is B, n which is determi ned uniquely by he

ml W.It tot tht P i be T-period ic, using Lemma D.
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Summarizing (2.4)

THEOREM 1. The limit cycle is linearly unstable as a solution of

(1.1) to small wave numbers k iff A 0 + I A1 + S 2 A2 > 1
o 1 2

(as defined in (2.4).

In particular, if 6 = 2 = 0 , the limit cycle is unstable for

all small k2 if A0  > 1 . It may seem to violate continuity for the

limit cycle to be stable at k2 = 0 and unstable for all small k2 > 0

However, an analogous case occurs for critical points: if the (kinet-

ically) stable critical point has eigenvalues 0 , -/ with respect to

the kinetic equation, then the constant solution corresponding to the

0-elgenvalue can be made unstable by the addition of diffusion terms.

The (kinetically) stable limit cycle has Floquet exponents 0 , &with

respect to the kinetic equation and the periodic solution corresponding

to the 0-Floquet exponent can be made unstable by the diffusion terms.

As examples, we consider two classes of equations for which the

limit cycle and related functions can be calculated explicitly.

Let (1.1) be a /i-w system with full diffusion matrix (R 2=u 2+v 2):

(2.5)

t  A(R) A(R) u (l+ C) 2  V2 u

v t  U)(R) A(R) v) Co - V2 v

1I10; O< 2 + 2 <1
_ _ 1 2-

The kinetic equations have the limit cycle solution U(t) = R0cos(W0t)

V(t) = R0sin(w 0 t) , with A(RO ) = 0 , w = W(R0) . The analogue of

(1.3) is
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(2.6)

p R S 0Cos(L 0 t)cOs( 0 t+ -0)-k 2(1+) R S sin(0 t)cos(w 0t + 0- 0

R S 0cos(u 0t)sin(w0 t+,0 )+0 -k2 1 R0S0 sin(/w0t)sin(W0 t +a)

W-k 2s~
2 q

-k 2 (1-) q

where S cos ' = A'(R , sin- = (R S > 0 , and -= R0 /\'(R 0)

with the assumption -/<0 to insure stability of the limit cycle.

The fundamental matrix, found by Lemma C, is

(2.7)

cos(Wt+)1
FU ^ -exp( -1t )R00ob

U'(t) exp (-t)UJ(t) -R0 O0sin(j 0 t) 0 0  0

V'(t) exp (-/t)V(t) 0O oCS(ot sin((Wot+0-0)

"J -exp( -/,t) Ro o O0

R OWOco s cr0

Substi t i t i,"to (2.4) gives;

(a) A0  0 (2.8)

(c) A2  to.
1 22 21

In Theore, I, tOierefore, A0  +f A +A2 = 2 2 tan .

In particular, for I,= 2 = 0 , the limit cycle of any -Wsystem

(2.5) is linearly stable to perturbations for small wave numbers k2

since IAO I = 0 < I

0.J
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Next, consider the system

(2.9)

2 2

=t a( 1-u 2 ) u-v (1+cQ)V u

L Vtj u+a(l-bu2)v 0 -a)[2v

This system occurs as a model in the study of chemical reactors (Cohen

(1973) and Cohen, Hoppensteadt, and Miura (1977) - (2.9) is a rescaled

form of equations In these papers). We have found an exact solution in

the case b = +1, used 'ere as a second sample.

The substitution u = R cos , v = Rsin 1 changes the kinetic

equations of (2.9) to

(2.10)

R'= aR(l - (R cos )2) + a(i-b)R 3(cos sin )

= + a(1-b)R2 (cos k) sin fJ

For b + I , these equations reduce to a Bernoulli equation for R

with solution

(2.11)

1 1 1 a 2cos24 + a sin 2 + C exp (-2a )

R2 = 2 2 a +1 +-2a

Setting C1, C2 = 0 gives the limit cycle (U(t), V(t)) = (R0(t)

cos t, R0 (t) sin t) , and the analogue of (1.3) is
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(2.13)

F A
U 't) e X;) .0.tU(t) R '"') t-R 0 sin t exp(-2at)R' 0 Cn t

3
V'(t) c:p(-, t)V(t) R' sin t+PO cos t exp(-2at)R sin t

(Incident 'Il.y, sincw the full sol tion is known, the easiest way to

obtain tl:e s:econd solution is to differentiate (2.11) with respect to

C at C2 - 0 , as suggested in I.efschetz, 1977, Chapter 3.)

2

The Vro Iij o (2.13) is - exp( - 2at ) , ind (2.4) gives

' 2
0/ dt ( )

/ a +1+a c- , a - 1in

T h i,-il,, , u ,d by tLo substitutioii z ox,(t-it) , ' "

2( a + I ) z ' ; 4 :_< a } ) :

i, at

: . .. ') + a2 . ,j/)

- -('1
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with one pair inside the unit circle and one pair outside for all

0 < a < + 00 . Evaluating the residues at z = 0 and at the pair of

roots inside the unit circle gives

(a2 +1)/2-
A0 (a2+)1/2 0 < a < + 00. (2.15)

Since 0 < A0 < 1 for all a > 0 , Theorem I shows the limit cycles of

(2.9) (with b 1 1) to be stable to perturbations of small wave numbers

k2  for all c , j I 1

These examples show only stable behavior when the diffusion

matrix is diagonal. Explicitly solvable examples of systems with

diagonal diffusion matrices showing unstable behavior will be con-

structed in the next section.
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9

Explicit ExamT)les of Instability for Small k2

In this section we construct examples of explicitly solvable

systems of the form (1.1) with cross terms S= 2 = 0 for which

A I > I (A0  defined in (2.4)). By Theorem 1, it follows that as the

parameter c in the diffusion matrix varies past I/A0 , the limit

cycle suddenly switches from being stable to being unstable for all
2

perturbations of small wave numbers k . A numerical examination of

this behavior is given In the last section of this chapter.

We wish to construct examples of (1.1) with diagonal diffusion

matrix such that (a) the limit cycle and associated functions can be

found explicitly, (b) A0 can be evaluated explicitly, and (c)

A 01 > 1 . As shown in the second section, all I-W systems have

A 0 . Also, the explicitly solvable case of (2.9) has 0 < A < I
0 O

for all values of the parameter a . This difficulty in finding

suitable examples is overcome by the following systematic procedure:

(1) Consider systems (1.1) with almost solvable kinetic

equati.ons: see (3.1);

(Z) for kinetic equations of the form (3.1), the value of A0

can be written1 In a simplified form: see le1ma 1;

(3) to make the equaitions more nt-arly solvable a further

restriction Is made: see (3.6);

(4) under tLe new restriction, Lermna I simplifies further: see

(3.9);

(5) finally, the expression for A0 in (3.9) is sufficiently

simple that exDllicitly solvable examples with IA > 1 can

be constructed by guessing.
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To begin, notice that the kinetic equations of (1.1) are reduced

by the substitution u = R cos (, v - R sin ( to

Ry uR v/R F(u,v) RA(R,' )

I '-v/R 2 u/R'2  G(u,v) w(R, )

where prime means derivative with respect to t and Aw are

21-periodic functions of . First restrict attention to kinetic

equations with the polar form:

(a) R' = RA(R), (3.1)

(b) )(R) 0 for some R0 > 0 and A RR ) < 0

(c) W(R0 ,) > 0 for all 1 L

(d) V(R,?i+21r) = w(R,J)

Conditions (a), (b), and (c) say that R = R0 is a stable limit cycle

and (d) is the obvious periodicity required of a polar transformation.

This is step (1).

To calculate AO, the limit cycle and the solution of the

variational equation must be known. The limit cycle is (U,V) =

(R0 Cos (QO(t)), R0 sin(Io(t)) , where

(a) To = W) ( '1 0) with 40(0) = 0 , (3.2)

21T

(b) T=
0 (Ro , 9 )

of-
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It is convenient to retain the polar form for finding solutions of the

variational equations. Setting R = Ro+ E, +' 6 + in ( 3 . 1a)

(corresponding to u + E ("o Cos - RO sin 0€ v + (posin X0

+ R 0 eos ¢)) leads to the variational equations

RR(R0/ (3.3)

S R(RO) (R

One solution is clearly /o = 0, = , corr..sponding to the periodic

solution (U', V'). Setting R O R 0O ) and /,o(0) = 1 a second

solution for p is /o = exp(-,t) To obtain / a convenient substitu-

tion is = exp(>t)(Oe ; using (3.2a), the equation for C reduces to

' = (RO , . 0 ) (3.4a)

and the desired solution is the unique T-periodic solution (see Lemma A

In Appendix I). Actually, e as a function of will be more useful, so

that , (f) is the unique 2W-periodic solution to

&_O =_ w_ R, = R (3.4b)

dT :(R 0 ,) ((R 0 ,))

The solutions to the variational equation can now be written as

1 '(t) exp(-7 t)u(t) -Rosin Y1010  exp(-At) (cos O-R sino 0  )0 K

V'(t) exp(-kt)V(t) R0cos 0 0 exp(/.t) (sin J0 +RocoSq 0+0
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Substitution of these expressions into (2.4) yields an expression for

A . Summarizing to finish Step 2:

0

Lemma 1. For the system (1.1) with kinetic equations (in polar form)

given by (3.1),

I /T

A = [cos(2T 0 (t) _ R0 sin(2q 0(t))y0(t)e(t)]dtA0 T

0

i f 2Tr cs(y
I cos(2 ) Rsi( 2 )()]l dU

T 0 W(R0 ,)R

where T0 (t),T are given by (3.2) and (t) (or @(y)) is the unique

T-periodic (or 27-periodic) solution to (3.4).

We now try to pick W(R,p) so that 0 and e can be found.

Some experimentation suggests the additional constraint (n = arbitrary

constant)

(a) w(R) h(R) -n f() + g(R)J ; (3.6)

(b) f(y) is positive and 21-periodic;

(c) h(R0 ) = +1 and g(R) is such that w (R,b) > 0 for all

R > 0 and all d.

(Although w(R0 ,) > 0 is sufficient, (3 .6c) is chosen to give a

simpler phase plane - the origin is the only possible critical point.)

Such an W is still sufficiently general that some choice of f, g, h

can be expected to force IA > 1 . This ends Step 3.
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The restrictions (3.6) give simple expressions for Y0 "

Substitution into (3.2) gives
(3.7)

(a) t({) =  [g(R 0 ) - n f(0) defining p 0 (t)

g(R)
(b) T 

= 2r

Substitution into (3.4b) gives
(3.8)

(a) &( ) = [_F(Ro ,  ') (R0 ) (f())- + h' (RO)

where F(R 0 ,) is the unique periodic (in I') function (Lemma A.2) de-

fined by

(b) F(Ro,t) exp(g(Ro)'1 )[C(R O) + exp(-g(Ro)s)(f(s)) nds].

00

Therefore, assuming oi(R,+) is given by (3.6) and substituting (3.6) -

(3.8) into Lemma I yields

A -1 1/1 2V -n cos(2t+ \) (3.9)
0 2ng(R 0 ) /

L/0

+ Rog'(Ro)sn(2)(f())-nF(Ro,, )d

This finishes Step (4).

Although the expression for A0  would simplify considerably if

we required g'(R 0 ) = 0 , this will not give the desired examplcs

bucause IA 0 < I since 1w(R0 ,) > 0 , clearly
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2ff 2 T

cos(2) d(R 0< )

The integral on the right is 2 g(R0)/ . Substituting (3.6a) into the

integral on the right and assuming g'(R 0 ) - 0 in (3.9) , the left

side becomes (2TTg(R 0)/ ) IA0 I , or 1A0 1 < I

We are now ready to carry out Step (5). Explicit choices will be

made for n,h(R) , f(%) and the appropriate conditions on g(R)

deduced.

(3.10)

(a) n = + 1; h(R) = +1; f() = 1 + ecos2* with IJe < I

Since

f'max - 2 esin2l _ 2161max I max + f cos2TI (_e2)1/2

(3.6c) can be satisfied by

21-91
(b) g(R) > 21/2 for all R

(-c )

Calculation of F(R0,M) and substitution into (3.9) gives

2 r R g i T) s n 2'
1 f-2 e cos2 0 s in2'+ R 0(R)i2

A 0  2Trg(R 0) 1+ 6 cos2 + I+E cos2

0 f

I- e(-g(R0 )cos2' + 2sin2Od)j
g(R0 ) (g(R0) + 4
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This integral simplifies, due to perfect derivatives, to

R~'10 f 22v31+ cs~

A o "Tg(R)((g(R 0 ))2 + 4 0 1 + a cos 2  "

The substitution z - exp(+1) and use of the Residue Theorem gives

(c) Ao [I _ (_21,/21 ,_0)_2 (3.10)
Cc g(Ro)[s(g )) + 4(

Therefore, for each f , -0 I e I < I , any function s(R) with

I < I A0l in (3.10c) and satisfying. (3.10b) can be used to construct

an example of (1.1) with limit cycle unstable to small wave numbers

2
k The kinetic equations are constructed using (3.1a), (3.6a), and

(3.10 ab,c), in which case all other conditions (3.1 b,c,d), (3.6 bc)

are automatically satisfieO. Instability occurs as Q( varies post

I/AO , I 0( 1 increasing.

A specific system, constructed according to this prescription, is

studied numerically in the next sectioa of this chapter.
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Numerical Results for an Unstable Limit Cycle

In the previous section, examples of (1.1) with diagonal diffu-

sion matrices were constructed whose limit cycles become linearly un-

stable to all small wave numbers k2  as the diffusion parameter

passes a critical value o(0 " The linear analysis gives 0 . 1/A0

+ O(k2) . In this section a specific example of such a system is

selected and small wave number perturbations of the limit cycle are

examined numerically for various values of A .

First, following the instructions at the end of the previous

section, the kinetic system of (1.1) is assumed to have the polar form

R' - R(1-R 2

(4. lj(a)

. w(R, ) with 1 3sin2' +. g(R)
W(RY) 5 + 3cos2 + 2

This choice satisfies (3.1a) with limit cycle radius R0  1 1 and

Floquet exponent -Ja + R0 A'(R O ) 
= -2 , and satisfies (3.6a)

3
(3.10a) with E =  

. We choose

(4.1)(b)

g(R) + tanh(a(R 2 -1)) -

3

which satisfies the lower bound of (3.10b) with 1 = . . From

(3.10c) follows

256a .0419a (4. 1)(c)
A0  6105

The limit cycle period is (from (3.2b))

T -! - 8.64 (4.1)(d)
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In terms of the original variables, the system under (4.2)

consideration is

ut  u(l-u 2-v ) - vW+ (I+ )uW

vt v(1-u2-v) + um + (1-O)Vxx

8u2 + 2v
2

where w = 8II
6uv + (4u2+v 2) (11 + tanh(a(u2+v2 -1)))

For a > 0 , the limit cycle should go unstable to all small wave

numbers k2 as o( increase past 4 0. 1/A0 - 23.9/a . The large

value of a required to make c0 < I makes w nearly discontinuous

across the limit cycle.

Lees' method (Lees 1969, Varah 1978) was used for the numerical

solution of (4.2). This difference scheme is an extrapolated variation

of the Crank-Nicolson method; it will be discussed in more detail in

Chapter V. Lees' method is easily programmed, has accuracy 0((Ax)2 +

2
(t) 2 ) and is stable. (In the actual implementation of the program,

initial data and the diffusion coefficients were rescaled to obtain the

equivalent system for the fixed interval 0 < x < I; the step sizes

were

Ax - .02 and At = T/500 - .017)

It is useful to consider the spatially periodic solutions as time

dependent curves in the phase plane. For periodic boundary conditions,

(u(x,t), v(x,t)) at each value of t is a closed curve. A perturba-

tion of the limit cycle at t - 0 corresponds to a small closed curve

near some point on the limit cycle - for instance, the initial data of

our computer runs (before scaling to 0 < x < 1) consisted of
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u(xO) - 1 (4.3)

v(x,O) - .1 cos(.2x),

2
corresponding to wave number k .04 . To represent the results of

the calculations, polar coordinates are especially useful: for

u - Rcos, v Rsinf, define

AR = max R(x,t) - min R(x,t)
x x

max (xt) - mn (x,t)
x x

These two quantities give a t-dependent annular segment in which the

solution lies. For example, the initial data (4.3) gives AR -.005 and

AfLA.2 at t - 0 .

One expects that AR,L-40 as t-i+W for a stable limit cycle

and other behavior for an unstable one, but difficulties arise in

attempting to observe this behavior. First, AR becomes very small

(that is, R(x,t) 1) in all computer runs, both for stable and

unstable cases, and growth or decay is most easily observed in A .

Two problems occur in observing A' . From the second section, the

growth (or decay) rate for the larger Floquet exponent is approximately

22
exp ((-l+A o)k 0 . Using k2 = .04 and (4.1c) with a > 0, the

maximum growth rate occurs for f = +1. This maximum is exp (.044t)

for a - 50 (the value used in the calculations), a rather mild growth

rate. To observe growth, then, one must integrate the equations over

quite long time intervals. Furthermore, Ali undergoes oscillations over

each period of the limit cycle, typically varying by a factor of about

3 (for instance, for (4.2) with a = 50 , initial data (4.3), and
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*1- .9 ,AIJ va ies between .085 and .230 on (O,T), between .079 and

.215 on (T,2T1, etc.) These fluctuations mean growth or decay cannot be

determined by observing Af at some arbitrary sequence of times. As a

measure of growth or decay, we give maximum values of AtE over the

intervals (0,T], (T,2T], (2T,3T), etc. For a - 50 and various values

of c( the successive maxima of 4A are (see Figure 2 also):

0 - .70 .256, .233, .214, .197,

.182, .168, .156, .145,

.134, .125, .116, .108,

C .80 .243, .225, .211, .197,

.184, .173, .162, .151,

.142, .133, .125, .117.

C( .90 .230, .215, .202, .190,

.176, .169, .427, .598.

-( .99 .218) .204, .330, .527,

.613, .676, .674, .674.

Experimentation with different step sizes suggests the above values for

4 are accurate. The linearized analysis shows instability for

.478< d'< I . For C - .99 , growth begins to show at t 3T ; for

a(- .90 , at t 7T . Presumably growth would appear for .( - .80 and
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.70 if the calculations had been extended beyond 12T.* (As mentioned

above, the maximum growth rate here is exp .044t) for = 1 and

decreases with o( .) Of course tje data for C( = .90 and - .99 con-

firm that a (kinetically) stable limit cycle can become unstable as a

solution of the fully nonlinear system.

The system (4.2) was also considered with a - 30 , in which case

the linearized result gives instability occurring for 1 /A0 - .796

using (4.1c)). However, numerical solutions for ( - .999 , initial

data (4.3), and k = .04 show no instability. In this case the full

nonlinearity appears to have completely damped out the linear growth.

*The time interval 12T is already 6000 time steps, and it is quite

possible that the extremely slow growth of the instability is

overwhelmed by numerical hash.

I.I



98

A Perturbation Expansion for Large

Wave Numbers k
2

As k2-+ in (1.3), we obtain a system of differential equations

containing a large parameter and a well-developed asymptotic theory

exists. For instance, systems of the form (1.3) are treated in Chapter

6 of Coddington and Levinson (1955). Notice that the matrix coeffi-

clent of k2 is
(5.lIn)

+ (1+c) 
-'5

2

with eigenvalues -1 + S, ( + SIS2)

-1 + & has the eigenvector [: , -1 - 8 has[tJ (5. ib)

If the elgenvalues are assumed distinct (6 0), then Theorem 2.1 of

that chapter states that a fundamental matrix

P(k ,t)exp(k 2Q0(t) + Ql(t))

can be formally constructed such that
(5.2a)

p(k2t) P n (t) with each matrix Pn(t) independent of k
n-0

(5.2b)
%;(t) - I 01

and Q0(t), Ql(t) are diagonal matrices.

L 0- -
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Furthermore, Theorem 3.1 of that chapter also holds and the formal

solution given by (4.2) on [O,T] is asymptotic to the real solution on

[O,T] as k2 4+ .

As it stands, (5.2) is sufficient to give the desired leading

order behavior. However, since it was derived for quite general

systems, it does not represent the solution in Floquet normal form

2(P(k ,t) will not necessarily be periodic even for Floquet systems).

We give here an alternate expansion, based on the Floquet representa-

tion, which yields another form of the solution.

Using the eigendata defined in (5.1), we show that the solution

corresponding to the larger Floquet multiplier can be written as

(assuming & 0 to avoid a multtple eigenvalue):

(5.3a)

p aa

= exp (1+6)k2t + k 2 n Cn(t) + F k- B (t)

Sn=0 n=O n i

Lq b b]

C'(t), B (t) are T-periodic functions, C (0) = 0 (5.3b)n n n

The C (t), of course, grow like O(t) and provide the exponential

growth of the solution; C (0) is arbitrary since it merely scales then

solution, so we pick C n(0) = 0 . The coefficients P n(t) in (5.2)

will generally contain polynomial terms in t as a consequence of

restricting the exponential part to a finite series in k2 ; the
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restriction of the solution to [0,T] is therefore essential. In con-

trast (5.3) retains the form of an exponential multiplying a periodic

function, and it should be valid over large t-regions - for instance,

the periodic part should be asymptotic in k2 to the real solution

for all t .

To obtain the Cn, B , first define the T-periodic functions

A A
H, K, H, K:

Fl(t) F2(t)

=H(t)[3 + K(t)f

G(t) G2(t b b

F1(t) F2(t) aj r a

A a
= H(t) + K(t) . (5.4)

G1(t) G2(t) b b

Substitution of (5.3a) Into (1.3) gives O(k 2)-terms which cancel,

0(l)-terms implying

C6(t) = H(t), C0(O) 0 (5.5a)

1
B0 (t) =- -S- K(t)

and 0(k-2n )-terms, n > 1 , with
A

C'(t) = H Bni, C (0) 0 , (5.5b)
n n-'n

[A n-i
B (t) -- KB -B' L> c' B I
n n-1 n-I '= m nmJ-1
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All quantities in (5.5) are uniquely determined with the correct

properties, so (5.3) is well-defined.

The growth rates for solutions of (1.3) should be like

exp((-1+S)k 2t) as k2 -+-, and the expansion (5.3) gives the solution

corresponding to the larger growth rate. If 0 < S< 1, then the

solution given by (5.3) decays exponentially: the limit cycle is

linearly stable as a solution of (1.1), in agreement with the rough

estimate at the end of the first section for nonsingular diffusion

matrices. However, the expansion also includes the case = + I , in

which case the diffusion matrix is singular. This case has not been

treated in the literature, so we assume 0( + = + 1 and consider

this case in more detail. The growth rate of the solution correspond-

ing to the larger Floquet multiplier is then exp[C 0 (t)+0( 2 )t]. From
k

(5.5a), C0(t) 
= ht + (periodic function of t ), where

T

h =H(t)dt

0

Therefore, if c2 + I S2 = + 1 and h is negative (positive), the

limit cycle is linearly stable (unstable) as a solution of (1.1) to all

2
sufficiently large wave numbers k

In particular, consider (1.1) with 1 = = 0 and 0( = + 1

These values in (5.1) show the eigenvalue - I + has the eigenvectors
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' if = +1 and If of I

Consequently,

H(t) F(t) if Q( = + I , and H(t) = G2(t) if 0 (= - I

The stability implications are summarized as

Theorem 2. Define, for F (t) and G2 (t) as given in (1.3),

T T

F-1 T FI(t)dt and G2  G2(t)dt (5.6)

0 0

Then (a) if X = + 1 = 2 = 0 in (1.1) and T 1 is negative

(positive), then the limit cycle is linearly stable

(unstable) as a solution of (1.1) with respect to all

sufficiently large wave numbers 
k2

(b) if -'= -1 , =2 0 in (1.1) and G2  is negative

(postive), then the limit cycle is linearly stable (unstable)

as a solution of (1.1) with respect to all sufficiently large

wave numbers k2

As noted in Lemma C.2, F1 + = the negative Floquet exponent,

so at most one of F, G2 is positive.



103

For example, if v( + 1 and 8 2 = 0 in the general A-w

system (2.5), we obtain (referring to (2.6) with k2 = 0):

T

F 1 RoS0 cos(w 0t) cos(U 0 t + T0 )dt R A'(R 0 )1 T/ 0 0~
0

(5.7)

T

= R0S0 sin(w 0 t) sin(w0 t+T0 )dt = 2 ROA,(R 0 )

0

Kinetic stability of the limit cycle required A'(R 0 ) < 0 , so the

limit cycle is linearly stable as a solution of the reaction-diffusion

2
equations to all large wave numbers k

For the system (2.9) with c( + 1 and b = + 1 , reference to

(2.12) with k2 = 0 gives

T~ 1f 2F =- a(1 - 3(U(t)) dt (5.8a)

0

32 = J a(l WO (Ut))dt.

C62  T

0

Here T = 2T, U(t) = first component of the limit cycle R0 (t) cos t,

so from (2.11),

2 (a2 + 1) (1 + cos 2t)

aU~tY = 2 2
a + 1 + a cos 2t + a sin 2t

d=I
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and (U(t))2dt 27T , independent of a!
0

Therefore,

F -2a (5.8b)

For 4 - + I , Theorem 2 shows the limit cycle is linearly stable as a

solution of (2.9), but for K = - 1 , the exponential growth is given

by

exp[CW(t) + 1 C(t) + o(--)l
k '

where Co(t) is periodic; the limit cycle is linearly stable

(unstable) if the mean value of C'(t) is negative (positive). Using

t A 1
(5.5b), C(t) = H(t)B 0(t) and H(t) - G(t) , B0(t) = - F2(t)

Using (2.12) (with k2 = 0) for F2, G1 gives

27T
mean value of C1(t) = 1 (-I + 2a U(t)V(t)dt (5.9)

0i

1I ~a(a 2 + 1) sin 2t
2rr-T I + (a2+ 1) + a2 cos 2t + a sin 2tj

2 + 1)1/2+- (a2

2

This quantity is always negative and the limit cycle is linearly stable

as a solution of (2.9) with a = - 1



CHAPTER III

AN ANALYTIC CONSTRUCTION FOR WINFREE'S ISOCHRONS

Introduction

Let U(t) be an orbitally stable limit cycle solution for an
N

autonomous system of differential equations (u is an N-vector)
N

I ~ u F(u),(l)

A(1.1)

and let U(O) be given so the limit cycle is uniquely specified. An

Initial point close to the limit cycle yields a trajectory "-U(t + $)
IV.

as t-- + c where 0 < T = period of the limit cycle. The constant

is called the asymptotic phase of the initial point and the surface

of all points with the same asymptotic phase (which intersects the

limit cycle at the point U()) has been called an isochron by
At

A. Winfree (1974).

If a physical system possesses a stable limit cycle, then

isochrons provide an especially simple way of experimentally describing

the state space. The asmptotic phase of a point in the state space is a

single number defined by the longtime behavior of the system, which

settles into the limit cycle oscillation. Measuring the asymptotic

phase of various points gives a picture of the isochron structure.

Winfree (1974) develops the idea of isochrons from the point of view of

105



106

the experimentalist and discusses certain experiments on glycolysis and

mitosis In terms of isochrons.

Asymptotic phase is a well-known concept in the theory of ordinary

differential equations. Coddington and Levinson (1955, Chapter 14) set

u - U(t) + z, so that (1.1) can be rewritten as
N N

Z' -F'(U(t))z + f(t,z), (1.2)
AO Ml N N AO AO

where If(tz) = 0( 4z 2) uniformly in t for small I z and smooth

F. The linear part of (1.2) is the variational equation of (1.1) about

the limit cycle U(t):

Z' - F'(U(t))z, (1.3)

a Floquet system with U'(t) as a periodic solution (so 0 always occurs

at least once as a characteristic exponent). In Theorem 2.2 of Chapter

14, Coddington and Levinson have shown that if N-I characteristic

exponents of (1.3) have negative real part, then through each point U(s)

of the limit cycle there is an (N-l)-dimensional surface S (an

analytic surface if F(u) is analytic) such that each trajectory with

initial point on S is asymptotic to U(t + $) as t--+ -. (That is,

S is an isochron with asymptotic phase 4.) The proof uses the

fundamental matrix of (1.3) to rewrite (1.2) as an integral equation on

(t, +Oo1. Without loss of generality, ,i is taken to be 0, and it is

shown that -- for initial conditions u(O) = U(0) + z(0), tz(O)i small

-- only exponentially decaying solutions z(t) occur for (1.2)
p.,
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(that is, u(t) - U(t)) if z(O) satisfies a certain condition (the

equation for a surface S).

Guckenheimer (1974) listed several results on isochrons related to

questions raised by Winfree (1974). Fenichel (1974, 1977) gave general

results on existence and smoothness of asymptotic phase (as a function

of the initial point) for invariant manifolds.

These results are existence theorems with constructive proofs, but

the constructions (integral equations on (t, + w) or Poincare maps,

for example) are quite awkward for actual computation. Winfree (1978)

suggested that further work on the calculation of isochrons would be of

interest, which is the motivation for this chapter.

A series expansion for solutions of (1.1) close to the limit cycle

will be constructed. This expansion is the analogue for a stable limit

cycle of Liapunov's expansion for solutions near a stable critical point

and it yields a series expansion for the isochrons.

Liapunov proved that, if u0is a critical point of (1.1) such

that all characteristic exponents of the linearized system at uO

have negative real part (with other minor conditions), the solutions of

(1.1) could be expressed as convergent series in the

exponentially-decaying solutions of the linearized system. Lefschetz

(1977, Chapter 5) presents this theorem in a slightly more general form,

using systems (u0 = 0)

U' Au + g(tu), A constant matrix, egt,U)i = ul 2)

uniformly in t. (1.4)
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Here g(t,u) is assumed to have a series expansion about u - 0 whose

coefficients are functions of t with the series uniformly convergent

on t > 0. The characteristic exponents for z' - Az are assumed to
- dv

have negative real parts.

Lefschetz shows the solutions of (1.4) can be expressed as a con-

vergent series in the exponentially-decaying solutions of the linearized

system. Because (1.4) is nonautonomous, the coefficients in the series

become indefinite integrals over (t, +oo) of quantities involving the

coefficients of the expansion of g(t,u).

The expansion here is based on that of Lefschetz for (1.4). Two

new points arise, however. First, the presence of a periodic solution

in (1.2) implies that the matrix A in (1.4) has a O-eigenvalue (and the

remaining N-i eigenvalues are taken to have negative real parts).

Second, because of the underlying periodicity in the problem the t-

dependent coefficients can be simplified to T-periodic functions ex-

pressed as indefinite integrals over [0,T].

The main emphasis of this chapter is on two-component systems be-

cause the variational equation (1.3) is relatively easy to solve (Lemma

C in Appendix I). The full solution of an N-component Floquet system

can be difficult to compute numerically because the exponential behavior

of the solutions can cause ill-conditioning problems. If N - 2 and

the (easily computed) limit cycle U(t) is taken as known, then one

solution of the Floquet system is U'(t) and finding the second reduces

to solving a first-order system, which is no problem. This procedure

has been summed up in Lemma B.
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The second section gives the series expansion for the solutions of

(1.1) near the limit cycle in a 2-component system. (Convergence

follows from the results of Appendix II.) The series is a power series

of exponential functionswith coefficients which are periodic functions

of t. The expansion for the isochrons is an immediate result of this

series. The third section is concerned with the computation of the

periodic coefficients. A numerical procedure Is given that requires

minimal use of memory while yielding high accuracy in the computation of

these functions. The procedure uses extrapolation formulas for

integration (and it is essential here that all functions involved be

periodic).

The fourth section describes computation of isochrons (using the

first four terms of the series expansion) and numerical checks on them.

Briefly, if the limit cycle is fairly smooth, the first four terms of

the expansion give a good approximation to the isochron in a

neighborhood of the limit cycle, as expected. If the limit cycle begins

to develop discontinuities, however, the region of validity appears to

drastically shrink in the neighborhood of the discontinuity.

Appendix II gives the formal construction and proof of convergence

for N-component systtm. It begins by introducing some notation for

multiple power series, then makes the formal construction, obtains an

iterative bound on the terms, and uses Lapunov's Lemma to show the

iterative bound leads to a majorant series for the expansion, thus

proving convergence.
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Expansion for the Two-Component System

The two-component case of (1.1) will be written as

u- " F(u,v),

v G - G(u,v), (2.1)

with limit cycle (U(t), V(t)) of period T and (U(O), V(O))

specified. The variational equation of (2.1) about the limit cycle is

the Floquet system

[Wj (U~t), V(t)) F v(U(t), V(t)) Ur1
W , (2.2)[ a'] - L uC(U(t), V(t)) v(t))

with fundamental matrix given by Lemma C:

FU'(t) U(t) exp(-/At)lA
U',V',U,V T-periodic functions. (2.3)

vI(t) V(t) exp(-/t)

A series expansion

00

L n n (2.4)

is assumed for u,v and is substituted into (2.1). Our choice below of

(uov o ) as the limit cycle gives E the interpretation of a

measure of the derivation of the solution from the limit cycle. Notice



that the formal result of such a substitution yields (with similar

results for G(u,v)):

F(u,v) = F(u ,v ) + (F uUvo)U1 + I v(Uo )v )E

+ F u o ,v)u + F (U v )v

n=2 V 00)n

+ n (U'"' n-l' Vo' "' n-l)

Fn(Uo' "'. un-1' Vo, ... , V n- 1 ) is a polynomial in the variables

UP ... , U 1 , Vi, ... , Vni and satisfies the homogeneity

property,

n-i n-l
Fn(uo, kuI , k~u 2 .. ,k un_ vo , ... ,k v )

k I F ( U , , .. l,u Vo v., ... , v n-) (2.5b)n] UOn i' V 0

(It Is assumed that F, G are analytic -- it is sufficient that they be

analytic at each ,olnt of the limit cycle.)

Substitution of (2.4) into (2.1) and applying the notation of

(2.5a) give

Fu F(u)v) [] [Ut+
[u = J(Uo° with solution u
Vo (;(ti .v o Wt +

t (2.6a)
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u Fu(U(t + ) V(t +) F (U(t + ), V(t + )1 ul

i G uMt + 0) (t + G1%(ut + / V<t + 1 V

(2.6b)

U'n F MuUt + €1, V(t + 0) Fv(U(t + , V( t +1 un

vt GuMt + V(t +#)) G (U(t + ) V(t +) vn

n nu n

+ Fnn-(u o Un-i° (2.6c)
G u o ,  ...,I U n l ,  Vo l ... n -l

The idea of the substitution is to pick uo,v o as the limit

cycle (as above) and then require all subsequent UnV n  to decay

exponentially. Obviously we should choose

u  U(t + 0)

exp (-/(t + )) V(t (2.7)

(It will be notationally convenient to write solutions as functions of

t +/; the factor exp(-A/) will eventually be absorbed into E .)

We now show that all terms un,vn in the expansion can be

written in the form

n exp (-n/(t +n)t
vn V n(t+)

Un Vn T-periodic functions. (2.8)



113

The argument is by induction; notice (2.8) already holds for n - 0, 1.

Given n > 2, assuming (2.8) holds for um,vm with m < n,

and using the homegenity property of FnGn in (2.5b), (2.6c)

becomes:

vn  G(U(t +t), V(t +/)) FG(U(t +;6), V(t +/>)j vj

{Fn(Uo(t +9 ), ... , Un 1 (Ct + 9 ),
+ exp(-n (t + 9))

n(Uo( t +/), .- , UnM + (t + )

Vo(t +)) ... , Vn 1 (t +i))1

V 0(t +) ., n-I(t +/)) . (2.9)

Referring to Lemma D for the solution of (2.9), we are led to

A A

define two T-periodic function Fn(t), Gn(t) by:

[cn + exp(-n,t) F n(t) t V(s) -U(s)n /

d + exp(-(n - 1)/,t)n do -exp(/,s)V'(s) exp, s)U'(s)

Sn (U o .(S), , U n-(S), ... , V n(s))
G ( o(S, nI S) Vn-I (s)

exp(-,.s) ds
S V'(s)U(s) > 2. (2.10)

U'(s)V(s) 'SU)
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(The form of the expression on the left follows from Lemma A.) Then the

solution of (2.9) can be written as

(J =V(t 

+ exp (-3t + ))(t +

V.(+exp (-n/L(t +#) n( +))V

exp (t + ))F n(t+

exp(-(n - 1 )(t +)) C n (t

=exp (-n/f(t + )) [V(t +;j (2.11)

as claimed.

If we combine e exp(-/,/) together as a single quantity 6, the

results can be summarized as

THEOREM 1. The solution of (2.1) can be written formally as

nT E t)p [V (t +# (2.12a)

where Un(t), Vn(t) are T-periodic functions given by

(U0 (t),V 0(t)) = (U(t),V(t)) (the limit cycle); (2.12b)

A A

(UI(t),V 1 (t)) = (U(t),V(t)) (given by Lemma C, which also

gives/'); (2.12c)
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U n Mt U' (t) U(t)

F n(t) + G n(t)

(F t G given by (2.10), n> 2). (2.12d)

(NOTE: convergence of the expansion for small 1E is proven in

Appendix II).

Notice that a solution given by (2.12) is asymptotic to U(t +yD,

V(t +!) with asymptotic phase /, so the initial points lie on the

isochron corresponding to /. The initial points are found by setting

t = 0, giving

COROLLARY 1. The isochron corresponding to asymptotic phase I is the

curve (ue), v(W)) given by

SU(e) 1 = i n

v(E)l = n=0 [Vn() (2.13)

It is instructive to compare these expansions (2.12) and (2.13)

for the trajectories and isochrons with explicit solutions. The system

(R2 _ u 2 + v 2 )

2 1I + 2 )

(2.14a)

v( L (R R2) 1 R2 F v

transforms using u = R cosp , v R sine to
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R' - R(1 - R )

1 R2
M I (I + R ). (2.14b)

These two equations can be integrated exactly, introducing 2 constants

of integration, written as ', in the following results for the

trajectories:

R- [1 + 2 e exp(-2t)]
-1/2

tk- (t + ) + - )n i + 2 C-exp(-2t)I (2.14c)

Expanding as a series in powers of e exp(-2t) yields a series like

that of Theorem 1:

U Cos(t + + - cos(t + - 2 sin(t +
=+ exp(-2t)2

VJ sin(t + /)J I cos(t + ) sin(t + )

+2 exp'-4t) [ c +St+) 8 sin(t +)j

+ E2 exp(.-6t) -L- cos(t + - sin(t +

- cos(t + 17 sin(t +

+ O21 exp(-8t)). sin(t.
484

+ O(C expC-8t)). C(2.*14d)
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The Isochron for asymptotic phase / is given exactly by

FI in Ii
u(e) (1 + 2e) - t /2 cos( +" ln 11 +

v(E)20 (1 + 2 s)i/2 (+ n 2+I)I (2.14e)

with a series expansion given by setting t = 0 in (2.14d).

This example and the van der Pol oscillator will be used as test

cases for the numerical work in the next few sections, The question to

be considered next is an efficient way of calculating the periodic

coefficients Un(t), Vn(t).

The Numerical Method for the Periodic Coefficients

The calculation of the T-periodic coefficients U n(t), V n(t) in

(2.12) or (2.13) requires the calculation of the T-periodic functions

Fn (t), Gn(t) in (2.10). Basically, the problem is a recursion of the

form

f (t) is a given T-periodic function;

fn(t) = exp(+n~pt) exp(-nrs) An(fo(S), f1(s),

f n-(s))ds - cnJ

with cn such that f n(t) is T-periodic. ( .)nn
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Here f0 (t) corresponds to the limit cycle (U(t), V(t)), i.e., (U0,Vo);

the calculation of f1 (t) corresponds to the calculation required in

(A 
1

Lemma C.5, determining (U,V), i.e., (U,VI); and the calculation of

fn(t) corresponds to the recursion in (2.10). Certain points have

already been made following Lemma A in Appendix I about the evaluation

of integrals of the form (3.1), for instance, that cn is easily

calculated (Lemma A.2b) and that if 1>O (as it is here) backwards

integration in t is helpful to avoid ill-conditioning problems, as

described in (App. 1.3). The discussion in Appendix I refers to the

evaluation of a single integral of the form (3.1). Here the problem

involves a sequence of such evaluations and the necessity of retaining

all the functions fop fi' f2' "'" raises a storage problem (if high

accuracy is sought).

Suppose we wish to calculate fol f1l f2 ' f3  so that f3(t) is

tabulated at N points over the interval [0,T], that is, at steps of

length h = T/N. Using (App. 1.3) to evaluate the integral in (3.1), we

still have to choose a means of evaulating an integral over one step

[(n-l)h, nh]. Consider the following rules (Birkhoff and Rota, 1969,

Chapter 7)

f a+h
p(t) dt = h [p(a) + p(a+h)l + O(h3  (3.2a)

a,
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hh56 [p(a) + 4 p(a + ) + p(a + h)] + O(h ) (3.2b)

h [p(a) + 3 p(a + ) + 3 p(a + 2h) + p(a + h)]

+ O(h 7 ) (3.2c)

The relative error in applying these functions over the interval

2 4 6
[0,T] will be O(h ), O(h ), O(h ) respectively.

In using (3.2a), only 4N memory locations are needed to retain

the tabulated points for f0 ' f1, f2, f3; the errors in f1, f2, f

will be O(h 2).

In using the more accurate (3.2b), however, 15N memory spaces will

be necessary because f0  must be tabulated at 8N points to give f1  at

4N points (since midpoints disappear in the process), which gives f2 at

2N points, which gives f3 at N points. The error for each f here is

0(h
4).

For the still more accurate formula (3.2c), 40N memory spaces are

6
needed to give O(h ) accuracy. In general, to obtain a relative error

0(h 2 k ) for coefficients f0 fit ... ' fm, with fm to be tabulated at

N points, requires an interpolation scheme using (k + 1) points on each

h-interval (so fm- must be tabulated at kN points, ... , f0 at kN

points). That is, using interpolation formulas,
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0(h 2 ) accuracy for f1, f2 9 .'.' f and fm to be tabulated at

km+1l

N points requires k - 1 N memory spaces. (3.3)
k-i

In short, in using normal interpolation formulas such as (3.2) in

calculating a fixed number m of coefficients, the memory required in-

creases like Nkm, where 2k is the order of accuracy.

We now give a method of tabulating the coefficients f0, ... ' f

with relative error O(h2k) which requires only (m+l)N memory spaces

independent of k.

The idea is to derive extrapolation formulas to express an

integral over [(n-l)h, nh] by points outside the interval. This leads

to, for example

Ta+h
p(t)dt = -F [- p(a-h) + 13 p(a) + 13 p(a+h) - p(a+2h)]

+ 0(h ) (3.4)

with the coefficients derived in the usual way (Birkhoff and Rota,

Chapter 7) by expanding in Taylor series (around a + h/2, for instance)

and canceling powers of h. Such an exterior formula would cause trouble

near endpoints, where p(a + 2h) might run outside tabulated values,

but since all functions here are periodic on (0,T], there are no

endpoints.
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Using (3.4) to evaluate the integral in (3.1) permits the

calculation of fo, f f2' f 3 with accuracy O(h4) for each function

using only 4N memory spaces instead of 15N. Similarly, such extra-

polation formulas with higher orders of accuracy require no increase

in memory storage, as long as the number of points used, which is 2k for

O(hk), is small compared with N. This is no problem in practice since

N will be > 100 and accuracy of O(h10 0) is seldom required.

Numerical Calculations

In this section the first four terms of the isochron expansion

(2.13) in Corollary I will be calculated numerically for two examples.

The first example is

u' - (1 R 2)u (I + R2)v

v1 - I + R 2)u + (I - R 2)v, (4.1)

which has already been mentioned at the end of the second section. It

provides a useful check because its isochrons and the coefficients

U( ), Vn() in (2.13) can be found explicitly from (2.14e).
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The second example is the van der Pol oscillator

u '= Au(l - u2/3) - v, A > 0

v1 u (4.2)

which is chosen to examine the expansion for smooth limit cycles

(small A ) and "discontinuous" ones (large A). In this case the

isochrons are checked by taking points on the approximation and finding

their asymptotic phase by direct integration.

The numerical work used two Fortran programs. The first program

simply found a point u > 0, v = 0 on the limit cycle (to be used as a

starting point for the second program) and the limit cycle period T. It

worked as follows:

1. An initial guess (u,v) = (u0, 0) with u0 > 0 is made for a

point on the limit cycle.

2. Runge-Kutta integration is applied until the trajectory

crosses the positive u-axis. (It is assumed that the limit

cycle encircles the origin.)

3. As soon as the positive u-axis is crossed, the program backs

up to the point of crossing along a tangent line approxima-

tion. The result is a new starting point (u,v) = (u,, 0)

with u1 > 0 and an approximate period T.

4. Steps (1)-(3) are now repeated to obtain a sequence of

starting points (u,v) - (un, 0) with un > 0 and approximate

periods T .n
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5. From stability of the limit cycles, we expect the points

(Uno 0) to converge to a point on the limit cycle and the

T n- T, so the interation stops when u n, Uni are very

close (typically, within 106).

The second program uses the final values (un, 0), T from then

first program as (U(O), V(0)), T -- that is, a starting point and period

for the limit cycle -- and then calculates Un(t), Vn(t) for n - 0, 1,

2, 3. It proceeds as:

1. (U(t), V(t)), i.e., (U 0 (t), V0 (t)), is tabulated at intervals

of h = T/N using a Runge-Kutta method; (U'(t), V'(t)) is

tabulated directly from (U,V) using the kinetic system. (As

shown in the third section, the use of an extrapolation

formula for the integration permits all relevant functions to

be tabulated at the same intervals.)

2. The Floquet exponent h' is found using Lemma C.2.

3. The coefficients A(t), B(t) in Lemma C.4-5 are tabulated;

then (U(t), V(t)), i.e., (U1 (t), V1 (t)) is found from

Lemma C.3.

4. The periodic functions F2 (t), C2(W are calculated from

(2.10) using the results of Lemma A; these functions then

give (U 2 (t), V2 (t)) using (2.11).

5. F 3 (t), G3 (t), (U3(t), V3(t)) are found as in (4).
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Steps (4) and (5) required the following explicit expressions for the

functions in the expansion (2.5):

F2 (uu;VV 1) - Fu(.V0)u2 + 2 Fu(uv0)u v
2 O I R 1 uuOR 1 v 0 0 1 1

+ Fvv(u0Vo)v 2 ] '

F3(uO,ulu 2 ; voV 1,v2) = Fuu(uOv 0 )uIu2 + Fuv(uOV O ) (ulv 2 + u2v1 )

1 I  3+ 2

+F(u ,v )v v2 + F u- ) + 3 F (uv )u 2 v1vv( 0o)V 2 0 0uuu(ORVoU1 uuv(OVo)1 1

+3F (uv)uV+ F (U V)v , (4.3)

with corresponding expressions for G2 ,G3.

The results for the first example (4.1) are shown in Table 1,

which compares the coefficients U n(t),V n(t) as calculated numerically

with the exact values obtained by expanding (2.14e)--the agreement is

excellent. Figure 3 shows an exact isochron drawn from (2.14e) and an

approximate isochron drawn using the first four terms (through O(E 3)) of

the expansion (2.13); again, the two curves are in excellent agreement

for leI small (points close to the limit cycle).

The next calculations are for the van der Pol oscillator (4.2)

with A - .5, 1.0. These small values of A give fairly smooth limit

cycles shown in Figure 4. The coefficients, given at intervals
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of .IT, for the first four terms of the isochron expansion (2.13) are

given in Tables 2A, 2B. Using the coefficients, the cubic

approximation

u(-E) 3 U nv(E) v (#

is found; these approximate isochrons have been sketched for the values

0' 0, .3T in Figure 4.

As a check of these isochrons,' points on the approximate curves

u(C-),v(e) for i .5, 1.0 and j = 0, .3T were chosen by picking vari-

ous values of E . These points were integrated to t = + m (in prac-

tice, to t = 5T) where they were practically on the limit cycle, thereby

determining their asymptotic phase for the approximate points u(e),v(e)

and the intended asymptotic phase (either 0 or .3T) is found and given

in Table 3--the difference should be close to 0 and it is. (The "abso-

lute distance" in Table 3 is the distance between the computed point at

t - 5T and the ideal point at (U(O),V(0)) or (U(.3T),V(.3T));

2 2 1/2dividing this (small) distance by ((u') + (v') ) gives the phase

difference.)

For larger values of 1 the limit cycle in (4.2) begins to

develop corners and one expects something curious to happen in the

expansion. Tables 2C, 2D give the coefficients for ) - 2,4; notice the

enormous size of the coefficients for = .3T and .8T (points near the
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TABLE 2

THE COEFFICIENTS U V) v(t), n -0, 1, 2, 3, IN THE
EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER

IN THE VAN DER POL EQUATION
2

u -v + A (1

v u

TIME/T UO Ul U2 U3
VO V1 V2 V3

0.0 0.19762E+01 -0.50780E+00 0.20129E+00 -0.89280E-01
0.0 0.11687E-01 -0.13274E-01 0.75555E-02

0.1 0.15437E+01 -0.26998E+00 0.76494E-01 -0.24351E-01
0.11458E+01 -0.26305E+00 0.91137E-01 -0.36292E-01

0.2 0.729952+00 -0.57201E-01 -0.14687E-01 0.22414E-01

0.18915E+01 -0.48756E+00 0.20725E+00 -0.10383F+00
0.3 -0.50794E+00 0.39066E+00 -0.30636E+00 0.2'5065E+00

0.19847E+01 -0.57921E+00 0.28998E+00 -0.17418E+00

0.4 -0.17322E+01 0.75178E+00 -0.48406E+00 0.345812+-00
0.12358E+01 -0.35648E+00 0.16791E+00 -0.89995E-01

0.5 -0.19762E+01 0.507527-+00 -0.20176E+00 0.90092E-01
0.10967E-03 -0.99720E-02 0.12079E-01 -0.68069E-02

0. -0.15438E+01 0.26996E+00 -0.76488E-01 0.24350E-01
-0.11457E+01 0.26303E+00 -0.91130E-01 0.36289E-01

0.7 -0.73003E+00 0.57201E-01 0.146862-01 -0.22409E-01
-0. 18914E+01 0.48752E+00 -0.20723E+00 0.10383E+00

0.8 0.50781E+00 -0.39062E+00 0.30633E+00 -0.25063E+00
-0.19847E+01 0.57916E+00 -0.289962+00 0.17417E+00

0.9 0.17321E1-01 -0.75175E+00 0.48408E+00 -0.34586E+00
-0.12359E+01 0.35644E+00 -0.167862+100 0.89974E-01

1.0 0.19762E+01 -0.50776E+00 0.20126E+00 -0.89274E-01
-0.21875E-03 0.11712E-01 -0.13281E-01 0.75589E-02

Table 2A Parameter 0.50000 = A
Period = 6.38057 = T
Floquet Exponent = 0.50768 =

Step Size = Period/- 200
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TABLE 2 (Continued)

THE COEFFICIENTS U (t), V (t), n = 0, 1, 2, 3, IN THE
n n

EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARMIETER
IN THE VAN4 DER POL EQUATION

2
u=-V + X u ( 1 - -1

Vu

TIME/T UO Ul U2 U3
VO Vi V2 V3

0.0 0.19193E+01 -0.52851E+00 0.23850E+00 -0.12049E+00
0.0 0.32829E-01 -0.25402E-01 0.12788E-01

0.1 0.15050E+01 -0.22479E+00 O.69028E-bl -0.25312E-01
0.11532E+01 -0.24555E+00 O.89357E-Ol -0.39361E-01

0.2 0.83313E+00 -0.48770E-02 -0.70484E-01 0.94490E-01
0.19512E+01 -0.59608E+00 0.39381E+00 -0.32756F+00

0.3 -0.41537E+00 0.10781E+01 -0.18418E+01 0.34467E+01
0.21370E+01 -0.88997E+00 0.94868E+00 -0.13525E+01

0.4 -0.18707E+0-1 0.15550E+01 -0.18960E+01 0.25420E+0-1
0.13137F+01 -0.47182E+00 0.32350E+00 -0.28634r+00

0.5 -0.19193E+0-1 0.52863E+00 -0.24073E+00 0.124151-+00
0.6967*8E-04 -0.33509E-01 0.24558E-01 -0.11833E-01

0.6 -0.15050E+01 0.22477E+00 -0.69019E-01 0.25308E-01
-0.11531E+0-1 0.24551E+00 -0.89332E-01 O.39345E-Ol

0.7 -0.83318E+00 0.49026E-02 0.70447E-01 -0.94437E-0O1
-0.19511E+01 0.59598E+00 -0.39371E+00 0.32743E+00

0.8 0.41528E+00 -0.10778E+01 0.18412E+01 -0.34452E+01
-0.21370E+01 0.889881+OO0 -0.94851E+00 0.13521E+01

0.9 0.18707E+01 -0.15549E+01 O.18960L+ol -0.25430E+01
-0.13138E+01 0.47181E+0O -0.314350E+00 0.28637E+00

1.0 0.19193E+01 -0.52845E+00 0.23844E+00 -0.12048E+00
-0.13685E-03 0.32849E-01 -0.25409E-01 0.12792E-01

Table 2B Parameter =1.00000 = A
Period =6.66321 =T

Floquet Exponent = 1.05931 4

Step Size = Period/ 200
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TABLE 2 (Continued)

THE COEFFICIENTS U (c), V (t), n = 0, 1, 2, 3, IN THE

EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER
IN THE VAN DER POL EQUATION

2

'.-v +A u ( 1)

vu

TIME/T UO Ul U2 U3
VO V1 V2 V3

0.0 0.18171E+01 -0.56831E+00 0.30829E+00 -0.18306E+O00
0.0 0.89378E-01 -0.35797E-01 0.15225E-01

0.1 0.14927E+01 -O.217451E'+OO 0.11268E+00 -0.65164E-01
0.12691E+01 -0.17074E+00 0.65832E-01 -0.32648E-01

0.2 0.99168E+00 0.77857E-01 -0.20069E+00 0.95404E+00

0.22354F+01 -0.11644F+01 0.2A448E+01 -O.86358E+O1
0.3 -0.33267E+00 0.11730E,+02 -0.18713E+03 0.36096E+04

0.25967E+01 -0.36895E+01 0.51369E+02 -0.85019E+.)3

0.4 -0.20197E+01 0.54060E+01 -0.20738E+02 0.88074r-i02
0.14787E+01 -0.1062517+01 0.19792E+01 -0.54636F+01

0.5 -0.18172E+01 0.56951E+00 -0.3165017+b0 0.19840E+00
0.13256E-03 -0.95624E-01 0.37060E-01 -0.14981E-01

0.6 -0.14927E+01 0.21741E+00 -0.11261E+00 0.65103E-01
-0.12689E+01 0.17066E+00 -0.65770E-0O1 0.32603E-01

0.7 -0.99174L+00 -0.77739F-01 0.200311>+00 -0.95217E+00
-0.22354E+01 0.11639E+01 -0.28424E+01 0.86246E+01

0.8 0.33244E+00 -0.11722E+02 0.18694r,+03 -0.36046E+04
-0.25967E-01 0.3688717+01 -0.51338E+02 O.84934E+n3

0.9 0.20197E+01 -0.54059E+01 0.20739T,"02 -0.88088E+02
-0.14789E+01 0.10627E+01 -0.19794E+01 0.54646E+01

1.0 0.18172E-01 -0.56819E+00 0.30818E+00 -0.183021,+O00
-0.26613E-03 0.8940717-01 -0.35807E-01 0.15234r-01

Table 2C Parameter =2.00000 =A
Period = 7.62973 = T
Floquet Ex~ponent = 2.33245 =
Step Size =Period! 200

- A4
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TABLE 2 (Continued)

THE COEFFICIENTS Un(t), Vn(t), n - 0, 1, 2, 3, IN THE

EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER
IN THE VAN DER POL EQUATION

2

u= -v +Au (

TIME/T UO U1 U2 U3
VO VI V2 V3

0.0 0.17572E+01 -0.57722E+00 0.29671E+00 -0.16810E+00
0.0 0.69474E-01 -0.18288E-01 0.69732E-02

0.1 0.15186E+01 -0.19318E+00 0.65358E-01 -0.22850E-01

0.16768E+01 0.26823E-02 -0.34531E-02 0.10564E-02

0.2 0. 11566E+01 -0.28349E+00 0.32962E+02 -0.83993E+03
0.30598E+01 -0.50499E+01 0.11999E+03 -0.32753E+04

0.3 -0.52209E+00 0.54159E+04 -0.35752E+08 0.28486E+12
0.37352E+O1 -0.21692E+03 0.34843E+07 -0.26968E+1I

0.4 -0.19481E+01 0.36367E+02 -0.94882E+03 0.27602F+05
0.18934E+01 -0.46555E+01 0.61528E+02 -0.12112E+04

0.5 -0.17572E+01 0.57707E+00 -0.30418E+00 0.18354E+00
0.20627E-03 -0.73095E-01 0.19259E-01 -0.72312E-02

0.6 -0.15186E+01 0.19292E+00 -0.65168E-01 0.22749E-01
-0.16766E+01 -0.26903E-02 O.34441E-02 -0.10517E-02

0.7 -0.11566E+01 0.28352E+O0 -0.32850E+02 0.83549E+03
-0.30597E+01 0.50401E+O1 -0.11952E+03 0.32561E+04

0.8 0.52144E+00 -0.54030E+04 0.35603E+08 -0.28319E+12
-0.37353E+01 0.21716E+03 -0.34752E+07 0.26836E+11

0.9 0.19481E+01 -0.36342E+02 0.94753E+03 -0.27546E+05
-0.18936E+01 0.46523E+01 -0.61444E+02 0.12087E+04

1.0 0.17572E+01 -0.57609E+00 0.29610E+00 -0.16776E+00
-0.41096E-03 0.69606E-01 -0.18352E-01 0.70108E-02

Table 2D Parameter = 4.00000 = A
Period = 10.20329 = T
Floquet Exponent 5.61746 =
Step Size = Period/ 400
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TABLE 3

NUMERICAL EVALUATION OF ASYMPTOTIC PHASE FOR POINTS
ON THE APPROXIMATE ISOCHRONS CALCULATED FOR

3
-- v +Au (0 - )

vu
(The phase difference at t = 5T would be almost 0

if the isochrons were exact.)

Ischron Point
Phase difference (after 5T) Absolute

E U(E) v(6) in units of T Distance

-1.0 2.7780 - .3250 .00261 .033
- .5 2.2950 - .0101 .00128 .016

0 + .5 1.7649 .0035 .00117 .015
.5 +1.0 1.5838 .0060 .00227 .029

-1.0 -1.4556 3.0281 .00392 .057
- .5 - .8112 2.3686 .00150 .022

.3T + .5 - .3579 .7458 .00222 .032
+1.0 - .1730 1.5213 .01151 .167
-1.0 2.8068 - .0710 .00410 .054
- .5 2.2582 - .0244 .00214 .028

0 + .5 1.6996 .0117 .00207 .027
1.0 +1.0 1.5088 .0202 .00432 .057

-0.4 -1.3619 2.7314 .00197 .034
-0.2 - .7322 2.3633 .00311 .053

.3T +0.2 - .2459 1.9862 .00314 .054
+0.4 - .0582 1.8463 .01081 .184
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corners of the limit cycle). Since the expansion is convergent in

(as sh.. in Appendix II), these larger coefficients sho , the radi- K.

conv'crgence is dropping rapidly to 0 near the corners. (In fact, for

A= 10, alues of the fourth coefficients UV at

30
.3T,.ST are r- 100.)

Thi s numerical work indicates the expansion (?.3) gl',os a

reasooable approximation to the isochron near a 5moocti:it cvcih hut

that tOe radius of convergence (in 6) of the expans ..-

impractically small for "discontinuous" limit cycles.



CHAPTER IV

PERTURBATION OF THE LIMIT CYCLE SOLUTION TO
REACTION-DIFFUSION EQUATIONS

Introduction

This chapter and the next study in detail the spatially perturbed

limit cycle (U(t),V(t)) as a solution of the reaction-diffusion system

ut =F(u,v) + (I + 0t 2 U, (1.)

V G(u,v) + (I v,

where V is the gradient with respect to space variables x. The
VX A

limit cycle is assumed to be kinetically stable and to have period T.

This chapter is concerned with a perturbation approach using the idea of

multiple scales: a spatial perturbation with a long space scale will be

introduced with length dependent on a parameter E , 0 < e << 1. It is

natural to couple this long spatial scale with changes ococurring on a

slow time scale compared with the normal time scale T-periodic

oscillation of the limit cycle. It is convenient to write the sparial

scaling as - x; choosing the slow time scale as r -ct, the

O(E)-term of the perturbation contains both time and space effects.

The basic result is a formal solution

135
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U U(t + o(.r,S) + o(a)) + o(e),

v - V(t + io( ,s) + o(o)) + o(e).

where U(t), V(t) is the limit cycle.

This approach has been used by Neu (1979) in the case of a scalar

diffusion matrix (0 - 0). Essentially, he obtained equation (2.2b.1)

below for 0 and pointed out the existence of (unbounded) traveling

wave solutions for 0, which he related to chemical waves propagating

through a tube connecting two chemically oscillating solutions. Howard

and Kopell (1977) have also obtained equation (2.2b.1) and the same

(unbounded) traveling wave solution for h in the context of "weak

shocks," transitions from one periodic traveling wave to a second one.

Here we are only concerned with cases in which the initial data

for 0 (and all other functions) are bounded, in fact, periodic. The

basic result is the determination of an "asymptotic phase" for the

perturbed limit cycle solution.

Multiple scaling approaches (involving a slow time scale = et)

are typically expected to be valid only over periods of time such that

T remains 0(1), that is, for normal time intervals tvO(I/e). It may

seem surprising in this context to speak of an "asymptotic phase," which

can only refer to behavior occurring as t + . However, it happens

that the perturbed solutions considered here tend to decay to a

spatially homogeneous solution as t- +o . If the perturbation is dying
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away, there is no reason for the multi-scaling description to become

less valid as time increases. (In fact, the numerical work of Chapter V

shows it to represent the qualitative and quantitative behavior of the

solutions as t4-.) Both Neu (1979) and Howard and Kopell (1977)

were concerned with spatial dependence which persisted in time and the

usual O(1/e) restriction is to be expected in such cases.

Section 2 discusses the multiple scaling procedure and gives the

expansion used, summarizes the results obtained in Section 2 and in

Appendix III on the terms of the expansion, and also gives the traveling

wave solution obtained by Neu (1979) and by Howard and Kopell (1977).

The terms of the expansion through O(e) are completely obtained (which

requires that the O(e 2) terms be almost completely obtained). Appendix

II gives a recursion procedure for obtaining higher-order terms and

shows that the expansion can be defined in such a way that the general

terms have a reasonably simple form (given in (2.2c)). The original

motivation for this detailed study was the hope of obtaining rigorous

results on the asymptoticity (or convergence) of the expansion for small

E. Unfortunately, no such rigorous results could be obtained;

remainder terms were always extremely complicated and no bounds could be

derived. Instead, the validity of the expansion was studied by finding

the behavior of the leading-order terms and making detailed predictions

for the behavior of the actual solution.

Section 3 studies the leading-order terms of the expansion and

makes such predictions. For the expansion through 0(46) (here 5 is a

single space variable),

Lii
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U- U(t + rI+ r's)0( + o()) + eu + o(e2),

V V(t + o(, S) + (T, ) + 0(E2 )) + E + oC(2)

it is found that with periodic initial data, and l converge

to constants and uI  and v I converge to 0 as t4+oo. From the be-

haior of the leading terms, the solution can be expected to evolve to a

spatially homogeneous oscillation:

u = U(t +),

A A
v V(t +P), , constant.

Three predictions--concerning the independence of on certain initial

data, the rate of decay to the spatially homogeneous solution, and the

value of '--are made. These predictions are checked in Chapter V

against numerical solutions for two specific reaction-diffusion

systems.

Appendix IV gives an alternative multiple scaling approach. It is

only partially studied because the equation governing the O(E) behavior

((App. IV.ld) for Al) cannot be solved explicitly as can the

corresponding equation in section 2 ((2.2b.1) for .
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A Formal Expansion Based on Multiple Scales

We wish to investigate solutions which correspond to perturbed

limit cycle solutions of the reaction-diffusion system (1.1). It seems

reasonable to consider effects involving three scales: a normal time

scale (6) for oscillations of the limit cycle, a slow time scale (r) for

effects occurring over many oscillations, and a long spatial scale (S)

for slow spatial changes that do not represent an abrupt change from the

spatially homogeneous limit cycle.

The method of multiple scales writes solutions in terms of these

new variables u - u(e,V,1), v = v(9,T,5), and constructs e ,,' as

functions of t,x so that u,v satisfy the original reaction-diffusion

system (1.1). The relations between 0,T,S are usually found by an

expansion in 6. Let 0 < e << I be a measure of slowness (of time or

spatial change) and set

OD

t, f = 4'F, t +/(,T,) =t + n (nrS) n .N n-0

Here T, are related to t,x in a very simple way; the problem is to

determine /(E,IT,1). The scalings have been chosen so that the scaled

temporal and spatial derivative terms -- E , = E are of
at lrPV

the same order. If only x is scaled, then (1.1) becomes

ut F(u,v) + ( +) C 2 U,

vt - G(u,v) + (1 -,) E 2 V,
t3
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which can be interpreted as O(e)-diffusion coefficients and 0(1)

changes in 3-space. (This form of the reaction-diffusion system is that

used in the numerical calculations of Chapter V).

The u,v functions are expanded in terms of F:

-~ ( Inr,  )n0 n

L E n (2.1b)

The equations (1.1) become (here and for the rest of the chapter

-" V 3 ):

(+ qeT) u + [u, [(,(2.1Ic)

S1 +.)(V 2 u + u V2  + 2v/-Vu + !IVj 2 uV1 - 2)(72v + , V2# + 27p + IT/1 2 v,,,

To expand the equation as a power series in E , it is necessary to

expand F(u,v), G(u,v) as power series in E. This procedure has already

been used in Chapter III, so the notation and properties in (III.2.5a-c)

are used here.
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0 u ruv) 0 F (u ,vo) F (u IV ) U
nn

" 0 vne G(uoV) n-1 G u(U ,V ) G v(U ,v ) j

n F2 0nu ,  
n-l' Vo' V n- 0

+ + n (2.ld)

n 2 u +( (u + 1 +)V 2 )n - k+t-n k

+k T
n = O2+ ( IV 2

-Vn+ ( q V) 2 +1k+1 =n k6

+ 2(1 +a)Vuk'7 ) + 2- (1 +c.)uk V 1  m

n.

+2(l -4)7v 7ed + ( l -V V .k+).+m=n e v

Equating the coefficients of the O(En) - terms in (2.1d)

generates an infinite family of equations for un vn' n" Each 0(, n

term yields only a pair of equations, which determine the 6-dependence
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of u V but leave the T,S dependence only partially determined.
nn

The n are determined by boundedness conditions on the un, v, and

other conditions are imposed to completely specify the T, dependence

of un n V n "

Since the calculations of this section and Appendix III are

messy it will be helpful to state at this point precisely what results

are obtained and the order in which they arise. The main problem is to

obtain equations and initial conditions for all terms un' Vns n'

specifying these variables in a reasonable way. The structure of the

terms unvn will be considered first; the relevant initial conditions

are then more easily described.

First, it is obvious that the 0(1)-term in (2.1d) has the

solution

u 0 6 
(2.2a)

vVW.

which is a reasonable choice since we are perturbing the limit cycle.

To obtain the higher-order terms, we need the solutions of the

variational equation of the kinetic system about the limit cycle, given

in Lemma C of Appendix I; the fundamental matrix is written as

U'(t) exp(-/,t)V(t)

W'(t) exp(-/ t) MO
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where U', V', U, V are T-periodic functions and is the negative

Floquet exponent. From a consideration of the O(E)-term, it will be

shown below that u, v1  will contain terms growing like O(e) unless

Ao satisfies a certain equation. Deleting these O(e)-terms gives:

(1) (1 + q h) V2
1$ + ( +O MAV002

(2) the constants h, II m1  are given by (2.5) below; (2.2b)

(3) u!  Po,, U)

J = + exp(-t/) (B('T,T) + f(T,')L

(4) PlO( , ,e), Q( ,, ) are linear combinations of T-periodic

functions of e with coefficients which are polynomials in

S-derivatives of yo(T,S) and functions of /f(T,)

is a linear combination of E-derivatives of o(1,5); in

particular, if the ,-derivatives of (r, ) go to 0 as

Iri+ then P10, Q101 f- 0 as I?-r + Q;

(5) B ('r,S) is a function arising from the solution of an ODE in

for u1 ,v I (and determined from O(E 2) terms).

The equation for o is a form of Burgers' equation and can be solved

exactly by a transformation to the heat equation--this solution is

discussed in Section 3.

-!=91I 7
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The solution for u2 ,v2 will be given in detail, partly because

the detail is necessary in obtaining the equation for B1  and partly

because the calculations are slightly different from those for u nvn

n > 3. In the solution for u2 ,v2, two notable types of terms occur.

The first type of term grows like ( and their elimination gives a

condition on l. The second type contains the product eexp(-/,6).

The O(G) terms are eliminated to retain bounded solutions, but this

reason does not apply to terms containing 6 exp(-/A&) since these

remain bounded as e->+60. However, since all terms occurring are

either periodic in 6 or a product of exp(-/ 8) or 6exp(-4) and a

periodic function of , and since the 6 exp(-t6) terms will lead to

terms involving 6n exp(-/1 &) at higher orders if left in, it seems

obvious we should eliminate the texp(-/It) quantities. In fact, this

procedure yields an equation for B1 , which is exactly what is needed.

The material in (2.2a,b) and (2.2c) with n=2 is derived in this

section. In Appendix III we use an induction argument to study the

coefficients of En for n > 3. Altogether (for n>2),

(1) deleting terms in U nvn containing 6 leads to a linear

inhomogeneous equation for in-1

= Oh i)2  + 2( .+( (m+hA, F) ;

(2) hn_1(' ,) is a polynomial in the i-derivatives of o(*,),

•.., /n_2(,) and functions of /o(0, ); in particular, if

the s-derivatives of o, ) ., _2('r, go to 0 as

t-*+4i, then h (Q) - 0 as 'r - + o,;
n-I
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(3) deleting terms in u nv n containing Oexp(-/ e) leads to a

linear inhomogeneous equation for B ni>3,

Bn-lr = (I -dh1)V
2 B 1  + 2(121 + C22 1 -- hl))V7o" VBn_

A

+f 1 ('r -1B n-1

adforl(n=2)nd B hn 1Q(,)+fT,

A

and for n=2 and B = B + fr, ),

Br" 4 (-hl)1 B + 2(j 2 1 + C1 2 2

-/ 1 - hl)V~ o V; + fj( , )A .

(4) fn (T )  is a polynomial in S-derivatives of

and functions of such that fn--- as

q--- + M if the S -derivatives of o " . --) 0;iv, 0n-2

A

h (,S) depends on o "'" and B1 , B
n-i 0~ o'n-2 1'n-2*

n B n( ) exp((r 
)1

n -/P nk v ,

+ E exp(-k/r ) 5nk 5-'

.k-0 Q n
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(6) each Pnk'Qnk is a linear combination of T-periodic func-

tions of e9 such that each coefficient is a polynomial in

B1 , ..., B 1 and their s-derivatives, the '-derivatives of

(, ') nl('@,), and functions of o(O,); in

particular, the coefficients in Pn0' Qn0  do not contain

Bi, ..., B n_ 1 or their derivatives, but depend on the

-derivatives of o(TI), 1 ):• n( ') and if these gofo n-1

to zero as 1 - + 0, then Pno' Qno - 0  as ' -++O.

(7) B ('r,s) is a function arising from the solution of an ODE inn A

6 for unv n (and determined from the O(C n+ ) term). We

note that the equation for 9n-i can be transformed into the

heat equation. The detailed behavior of i and B1 are

studied in section 3.

Initial conditions are taken as

90(0,S) arbitrary, (O,S) S 0 for n>1,

(2.3)

B (O,) arbitrary, B (O,S) 0 for n>2,
1%.n A,
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corresponding to initial data for u,v of the form

1VM(oS) V( o(O + B10(o,) exp(-/&o(Os))

V( yo(Oe))

In connection with the initial conditions the experience of

Chapter III should be noted. There an exceptionally simple form

(III.2.8) of the terms in the expansion for solutions near the limit

cycle was found. That simple form, however, forced a particular choice

of initial conditions for each term (111.2.13). This fact suggests that

an expansion simpler than (2.2) may arise but at the cost of more

complex initial conditions. Unfortunately, considerable search and

experimentation has not produced any particular simplification in (2.2),

so the simple initial conditions (2.3) have been kept.

Both Neu (1979) and Howard and Kopell (1977) point out the

existence of a "weak shock" solution for 110. Specifically, if equation

(2.2b.1) is written in the form ( = single space variable)

k 2
is . P ,
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then pD ole Burgers' equation

q1. q~j - k q q

with traveling wave solutions (q1, q 2 constants)4

q - q, + q2 q

1+ exp ( .(q2 - q 1 ) (~-~ (q 1 +q

"q, q 2  as + -+oo.

Consequently, a "weak shock" solution of the form

1u (t + ( (q 2 + 1j'r
v V(t + P(S k~ +q ql)r)

(qq2

PMs (q + 2)q ds

0 1+ exp(- (q2  q1)s)

~' qjS q2 S as +_o
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is assumed to exist. The resulting solution is essentially one

traveling wave with spatial wavelength T/q1IF attached to another

traveling wave with wavelength Tq 2W re and the two moving together

with speed (in xt coordinates) k (q2 + qj)

Here we are only concerned with bounded functions 9o and will

assume io is periodic in .

We now proceed with the proof of (2.2b-c). To calcuate UlVl,

the coefficient of 6 in (2.1d) is

[u 1l F F (U,V) F (U,V) f (2.41

LI~ LG01 1 (U,V) G v(U,V) v 1.

,+ ( + V~ 2o)U'() + (I + )Is/I 2u..(e)1

Dixr + (1 th g)ver() + (1 ion. Dvefin

Leusa D of Appendix I gives the general solution. Define
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V(S) -U(s) UrlI(S) U, (S) U"($) -U"(s)

ds P,(2.5)
U'(S) v(S) _ V'(S) U(S)

h 16 1e)+H 1(6) 1+lem16fI()
AA

[0 h I+ex Al. r)Hy9 ep 811"- +x e)m1(

AA A
where HP Lis MP, His Lis M 1 are all T-periodic functions of 0 by

Leima A. The general solutiu' can now be written as:

[u] U'(8) [U(e)

v A1(,J +Ie B1 T()xp-/s

U'(s) exp9.s)U(s) Fs+1J - + V2 )J (2.6a)
[V(s) exp5&s)V(s) Olt 0 J

h S + ) Cs) s + L I(S)

2 [mS + M (S)

m+ exp L SN(Sj )
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where the initial value B = o(0,S) is obtained from (2.3). The

(2.2b.1,2) for / follows by requiring the O(e) terms to cancel out.

We set A (r,S) - 0* -- this requirement could lead to trouble by

introducing secular behavior in higher-order terms, but it will be shown

below and in Appendix III that no such difficulty occurs. The solution

reduces to

r B 1 (,S) exp(-e) 
(2.6b)

vi  [ s(e)

+ 2io H (S) + 2 (L,(s) +, M (S)))

+4V2 Ho A(S) + V~o 2( (S)A + N,(s)))

(s)[*(()J

U(S)

2 ^ 2 A/0 0

*The possibility of keeping A1  and deriving an equation for it (in

place of 1) is explored in Appendix IV.
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The definitions of P10, QI f and (2.2b.3, 4, 5) follow immediately

by inspection (the terms evaluated at 6 - o(O,S) are included in the

periodic term).
2

For the calculation of u2, V2 1 the coefficient of 2 is

U,20 rF u (U,V) F (UV)1 U F 21Il (2.7)
[v29j G U(U,V) G (UV) IV 2

+ -F:':+:I + ::::2:1::':: + 2(1 +oOV70f& "(G
(-01 + I - 0072, v.() + 2(1- V.()

Ul,-€oT16 + (1 +'()(72u I + 7 2 ou1  + 2V 7 7ul

2- 2T1D 1

+ - v ie- €v + (1 -0> (V2v + V2 o,, + 21707v, le

(term # 1)

[F2 (u ,u1 IV0 v1

+ GF2(U 'v°I (term #2),

G2 (uouI ,v o v)

where F2  - [Fu(UV)U + 2 Fuv(uovo)ulv + Fvv(Uo

and similarly for G2.
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First expand terms #1 and #2 into powers of exp(-/,e) and then
A A

expand further to obtain the B-dependence (B -B (QV,-) + f(T,5) giving:

~R R( .T,1)1
(Term #1) + (Term #2) 10+ exp(-2 )B2

S10(r128

B B 3+ (I + )(VB -,V B -2/ # VB1

+f2 v0 2-) L + ((V ( ~

+2VV ~I ~2A)) A, + )I 2A A

A

+ exp(- /0) +R(,E)B

A A

(1 -+)IV B , (1 -X (~) (2.8)
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where RIk (T.1,6), Slk(r, ,8), k = 0, 1, 2, are linear combinations of

T-periodic functions of e with coefficients which are polynomials in

S-derivatives of (r,S) and functions of o(, ); these polynomials

are such that Rik, S k4 0 as 'r-+ao if the S-derivatives of

0 as - +

Again, Lemma D of Appendix I will be used to express u2,v 2

Define

A

V(S) -U(s)

exp4s)V'(s) exp s)U'(s 1

0

U(s) U(s) U'(s) U'(s) U (s) U"(s)1

V(S) -(s) V'(s) -V'(s) V"(s) - '(s)

exp (-As)ds

U'(s)V(s)- V'(s)U(s) (2.9)

0k + exp(-/A)K + exp(-t4)L 21( )

1 1h 21 2(9

-h1e - HI(o) I210 + t21(e)

+ exp(- 6)L 2 2 (O) m2 1 + exp(-46)M2 1 (6)

1220 + L2 2 (0) m2 1 6 + H2 1(6)

AA 1
m + exp(- 1)22

m2 2 2 (E) J
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where K1,L 21' L 21, '121' N 21, L 22 ' L 22, N 22, 2 2 are T-periodic func-

tions of 19 (using Lemmia A). The general solution for u 2 v 2 can be

written as:

2] 2Q~i + B 2 (T,S) exp(- e)

(-.+ (1 + ch )V 2 1 + 2(1 1 +,(m 1 )7 0 V/ 1 + l'r3)

+ f1 (',) exp(-)

20 1.T Ir E) 21 (,t"S,

Q O(r, 3, 8) +Qx(-e 'r ~ ,

20 2221

+ exp(-2f0) p 22(, (2.10)

[22Qr,

where
AA

T R 1 , ,S)V(S) - S , ,S)(s)d,
h1T)=T 0o U'(s)V(s) - V'(s)U(s)

T U'(s)R11 (,,,s) -V'(S)S ('T ~S)ds

f T U'(S)V(S) -V'(S)O(s)
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As before we set A 0 (the next section shows this leads to no

difficulties in the higher-order terms). The results (2.2.c) for n=2

are obtained as follows. The coefficient of 8 is required to be 0 --

this yields (2.2c.1,2). The coefficient of e exp(-te) is required to be

0 -- this yields (2.2c.3,4). The remaining terms, together with the

properties of Rlk(r, ,8), Slk(T,E,e) mentioned in connection with

(2.8), yield (2.2c.5,6 ,7).

We have obtained (2.2a,b) and (2.2.c) for n=2; the remaining

results in (2.2c) for n>3 are obtained by induction in Appendix III.

Three Predictions of Solution Behavior

The multiple scaling expansion of Section 2 and Appendix III has

been derived as a purely formal expansion--no proofs of convergence or

asymptoticity have been obtained. Consequently we can only study its

validity indirectly by making predictions of solution behavior based on

the expansion and comparing these predictions with real (numerical)

solutions. This section studies the behavior of the first two terms of

the expansion:

[: N (0) (3.1)

and makes predictions about the behavior of u,v which can be checked

numerically. These checks are carried out in Chapter V.

One point on consistency with previous results should be mentioned

first. Chapter II gives a condition for linear stability (instability)

of the limit cycle to perturbations with small wave number k2. Small

wave numbers correspond to long wavelengths, which is the type of
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of spatial behavior considered in Section 2, so a relation between the

expansion and Chapter II is to be expected. In fact, by Theorem II.1

the limit cycle is linearly stable (unstable) to small wave number

perturbations if

0 T U'SA(S VSA

-AU'(s)V(s) + V'(s)U(s) ds > 0 (<0).
0 T 0 U'(s)V(s) - V'(s)U(s)

But 1-A0= 1+4h I by (2.5), so the limit cycle is linearly stable or
ut -1

unstable depending on whether the coefficient of V2o is positive or

negative in (2.2b.1): O = (l+cdhI)V 2 
0 + ... (Incidentally, the

equation (2.2c.3) for B = B + f(*,T) has the form B 1 B

+ ... , and it is possible that 1+4h I > 0 and 1-Ah I < 0. This situa-

tion has not been investigated here; 1+ch I > 0 in the cases solved

numerically in Chpater V.)

The work of this section will result in three predictions on the

behavior of perturbed limit cycle solutions of (1.1):

Prediction I. Periodic initial data (period - P) in (2.3) should

evolve to a spatially homogeneous solution of the
A

form (U(t + ),V(t + )), where (the asymptotic

phase) is a constant that is independent of

B (0,).
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Prediction I. The amplitude of the perturbation to the limit cycle

should decay like exp(-(l+gh I) I-f-) E t).

Prediction III. The asymptotic phase can be approximated as

= (+) + O(e)

1+0h ~ P +4Jn (Ig ed +h, (  ' ) d/+ 0(&).

Q1 +im1 I n P 0 ( h I)) 
)

In particular, if (0,S) = Asin-2kr) then

1 +4hi +m

where 10(x) is the modified Bessel function.

These predictions result fron the following study of the behavior of the

leading-order terms (3.1) of the expansion.

We first show that equations (2.2b.1), (2 .2c.1) for in n > 0, can

be transformed to the heat equation. If " +Gm 1 
= 0, each nalready

satisfies the heat equation; if +Cm 0, the following trans-

formation, based on the Hopf-Cole transformation, can be made:
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it-(1+dh )?2l 0 + a21+IM,1 1V J and PO exp h1

then Oj = (1+(h 1 )V 
2 %

if =(1+0h ) 2
1 n + 2(.1l+dm,)Y7/O. nf + h (T, ) and n %n

then =(1+,(h 1 )2~ + h Ol ).

For simplicity we consider only periodic initial data in one space

variable 5 ; period -P. Lemma I gives the behavior of solutions to the

heat equation required for the analysis of (3.1).

Lemma 1.

If (a) a 2 - 2 +

(b) '(O, ) and h(Ir,S) are C 0and P-periodic in ~

(c) there exist constants b, 0 < b <(!a (-)2, and c such

that - ', '<c h(t~) for n > 0,
n n_
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then there exist constants d., n > 0, such that

(d) - TI p(O d rrI 'h(r,'t)drd-3 ( d exp(-b1)

(e) for n > 1, (,) d exp(-bT).I a3n - n

Proof: Setting

1f(T, ) = V-AC) x 2T In
__ An ( r ) exp +-p- ,

h( , ) =  __. B (17) exp +2i

i - O n P

the exact solution for the A (T) isn

21Tna) 2 T (+ 2nira 2 s ds

(T) exp ) An(O) + exp p 2 B (s )d

where An (0) is determined by the Fourier expansion of P0,5).
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For n -0, notice

0) I00

and since h(,T,S) decays exponentially in "r, A0Qr)--) A0(+,) constant as

+--~ 00~

In fact,

)- A 0(+) P f(s,3)dsd3< exp(-b)

For n #0, using jh(T, ,)I< c oexpC-br) gives

IA ( Ir A() 0 Ix(b-)
Combining the results for n=0 and n00 gives

C

-' A(+.)I < - - exp(-bT)

SL L IA(0)I + 0 jexp(-bT)
nO ( nI a b

and inequality (d) follows with
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d 0  + 2 IAn(0) 2+

C +O ( --Co
-~ (2nira))

(convergence of the JAn (0)1 follows from smoothness of V(0, )). To

obtain (e) for the higher derivatives, apply (d) to the equation

N
The same arguments go through with

,(T) replaced by (i-a An(T)

n p

BI()replaced by (2lif)N B(1r)

c 0 repaced by CN

J N dS + N - dsd= 0 by periodicity.
0SN  I O aj0 N

Then (e) follows with

I'I

CN +03 nr N c N
d N  b -+ Z- - "- n '.l Q D

nO0 -na b ,
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Lemma 1 is now applied to r0(T,I), that is, Lemma 1 is applied

2

with f'= *0' a . I + ohl, h(¢, ) 0, where 0 is related to /0 by

(4.2). From Lemma 1.d it folows that

o *, o( ° ,S)d =To (3.3a)
0

exponentially fast. In fact, from the most slowly decaying mode of

in the proof of Lemma 1, we know that

0(T,-S 0 and all S-derivatives of 0 decay to 0 at the rate of

Consequently, as -.+a*

= 1 + Om I n 1e x p + h 1 I

all -derivatives of /0--0, and the decay rate in both cases is (3.3c)

(ex
(exp (-(l+dhl ) (" e 0).

I .... .
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To obtain a similar result for y('r,.), notice that h (, )
n n

in (3.2) is, by (2.2c.2), a polynomial in T-derivativps of (, ), ....

$) and functions of /o(O,) such that h -)0 if the >--derivatives

of 0' "'' n-l -+ 0. Consequently, if the s-derivatives of .:

2
-I individually decay like exp(-bT) for 0 < b < , then so does

hn('T,5) and all its -derivatives (in particular, h iTi

2
bounded by c exp(-br) for any b, 0 < b < ( -I-) , by thc decay rate

given in (3.3c)). The decay rate of the s-derivatives of , n

can be assumed by induction, so the hypotheses of Lemma I are

satisified. It follows that, as '1-+0),

Sn( , -- constant, (3.4)

all S-derivatives of /- > 0,

and the decay rate in both cases is faster than

O (exp(-(l+S)(0+ahl) )2E t)) , where 8 > 0.

To determine the behavior of u1 ,v, it is necessary to know some-

thing about Bl(7,3). Assuming I-Oh1 > 0, we show that B1 has a bounded
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A

L2 -norm as T4+tv. It is sufficient to consider B = B1 ('Ti.) +

since f(T,J) consists of 3-derivatives of /0 and decays exponentially

in 'r to 0. Equation (2.2c.3) for B can be written as (b2 = l-h 1)

A 2 fA A A
B t- b B + g, BS1 + gl('r,%) B, (3.5a)

where g, g, are combinations of 5-derivatives of 4 that is, they are

P-periodic functions of S and decay exponentially in r to 0. Equation

(3.5a) can be simplified by a change of variables:

A

C(r, ) = exp(g)B,

K(Tr, ) g'r - b2 (g 5 + g + g 1 9 (3.5b)

C. = b2 C S + K(1,S) C,

so K(0,g) is P-periodic in 3 and decays exponentially fast in 'T to 0.

From (3.5b) follows

_I2/ (C2 ) d I b2/ C0 2 d5 + K(T,5)C 2 dN.

Using I K(r, ) I k exp(-dT) for some k, d > 0, we have

fP , oP
C ' k exp(-d'r) C d.
K1  0

J ' ,-waft
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Gronwall's inequality can now be applipd (the following form is

sufficient; see Coddington and Levinson (Chapter 1, 1955)).

Lemma 2. (Gronwall)

tt

If u(t), v(t), C > 0 and u(t) < C + v(s)u(s)ds,

0

then u(t) < C exp ( v(s)ds )
Equation (3 .5e) now gives

IL S<.[j 203)S exp(. 0 - exp(-dT)) (3.5d)

A 2
so B(T, ) is bounded in the L -norm.

To derive the predictions, we first list expected behavior. From

the results (3.3c) and (3.4) on the long tine behavior of the individual

terms fn it seems reasonable to expect

e~- t +, - (+ 05) + E (+o0) +.. (3.6a)

as t- +00, and that

^ ~2t decays to at a rate O2exp(-(+qh E t). (3.6b)

The initial conditions in (2.3) for n(0, ), n > 0, are certainly

independent of B1 (0,5). Also, the equation for 0 is obviously



.......... Y___ - 7-- w

167

independent of B , so we expect to be independent of the initial con-

ditions for B (O,), at least through O(E). (In fact, the obtaining of

equations (2.2c.1) for /_' n > 1, shows these equations depend only on

the terms which are T-periodic in 0 , and these terms are all

independent of Bn(T,S) for all n > 1, so every n is independent of

every B .) Since B 1(T,) remains bounded in the L2-norm, it certainly

seems reasonable to expect

B I (T, ) exp(- e)->O (3.6c)

as t -4+ , for small e, and the decay rate should be about exp(-t).

Therefore, using (2.2c) for the structure of u1 ,v 1 , we expect the

P10,Q10 portion, consisting of T-periodic functions of 6 and

5-derivattves of YO, to decay 'o 0 at a rate like

0 (exp (-(0+4h 1 ) -- ) 2 C t , and the exp(-/,8) portion to decay to

0 like O(exp(- /t)); that is, we expect

UIv 140 at a rate Oexp(-(l+ah1 )(27r/P) 2t)]. (3.6d)

Prediction I now follows directly from applying (3.6a) and (3.6d)

to (3.1) and adding the expected independence of from B
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Prediction 11 follows from the decay rates in (3.6b), (3.6d).

The first half of Prediction III follows from (3.6a) together with

the expresion for /0(+O) in (3.3c). The second half of Prediction III,

for initial data of the form /,(0,I) = A sin(2k-) follows from Lemma 3,

P

a generalization of Bessel's integral representation for Bessel

functions.

Lemma 3.

(a) Set y(A) = f A sin(k L) .d , k = 1,2,...

If f(x) is a smooth function satisfying f"(x) -oxf'(x) -

of(x) = 0, then y(A) is smooth, y(O) = f(0), and

d'y + 1 - cA dy _
dA2  A dA

(b) - exp A sin( 2jrk S) dS = I (A).

Proof: Simplify by

y(A) - f A sin(- P ) dS f f(A sin 2TkS)d,
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so only the latter integral need be considered. If f is continuous,

obviously f(O) = y(O). Now notice

d..z 'f"(A sin 2TkM)d
dA 2  k

cos(2tk) f"(A sin 2,kS) 21rkA cos(2rkS) d2,rkA

dy' 1 1y
1 f"(A sin 2TikS)&- - V(A sin 2iik ) sin 271k~d

fo *A

dA A'+y - A dA

For (b), pick ( = 0, p= 1, f(x) = exp(x), and the equation for y is a

modified Bessel equation. The initial condition y(O) = exp(0) gives

y(A) = I (A). QED
0



CHAPTER V

NUMERICAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS

Introduction

This chapter is concerned with the numerical solutions of two-

component reaction-diffusion systems of the form

u t = F(u,v) + (1+4) E uS

(1.1a)

Vt -G(u,v) + (1-co)E v s < !  ,

with initial data periodic in 5 with period P 1.

The chapter contains two separate topics. The first topic

(Sections 2, 3, 4) concerns the numerical check of the predictions made

in Chapter IV on the behavior of solutions of reaction-diffusion

equations. The second topic (Sections 5, 6, 7) concerns the numerical

stability of finite difference schemes for nonlinear diffusion

equations.

Lees' method was used for the numerical work of Sections 2, 3, 4.

Section 2 gives a brief discussion of this finite difference scheme and

a detailed discussion of numerical problems in validating Predictions

I-III of Chapter IV.

Section 3 checks the predictions for a A-W system; Section 4 for a

case of the solvable chemical reactor system mentioned in Chapter III.

It is necessary to write the initial data in the form used in Chapter IV:

170
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v(0,5)) V(o(0.)l

EA1
+ B (0,5) exp(-#/,o(O, ))

where (U, V) is the T-periodic limit cycle solution of the kinetic

systems and -/. , V are related to solutions of the variational equa-

tion about the limit cycle (see Lemma C). The three predictions to be

AA

checked concern the evolution of solutions to U(t + 9¢), V(t + ), the

rate at which the evolution takes place, and the dependence of on the

initial data. To test these, it is necessary to know certain functions

A A

(U, V, U', V', U, V) and certain constants, such as the Floquet

exponent -/ and

1 T , + /T A,.^hV VU dt ,V - V" dt, (1.2)
1 T 0 u'v-v'I 0 U'V-v'U

T U.A A

MC T u" + v"U
O ,-V' dt.

IT A
0 U'V -V'U

Sections 3 and 4 calculate these quantities for their respective -;\'stems

and proceed with the numerical checks. Briefly, all three predictions

hold for the ,\-w system of Section 3; the first two clearly hkold for the

chemical reactor system of Section 4 and the third prediction appears
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hold. In this last case, however, only indirect evidence is available:

the results of the third prediction appear to hold when the numerical

results for small F are extrapolated to very small E, but it is not

numerically feasible to directly check the cases with those very small

values.

The remainder of the chapter is concerned with numerical questions

only.

Information on numerical methods for diffusion equations is

somewhat scattered. As general references, Carnahan, Luther, and Wilkes

(1969) and Carrier and Pearson (1976) should be mentioned--Carrier and

Pearson give a particularly excellent discussion of numerical stability.

More specific references are Rinzel (1977, especially concerned with

calculating traveling fronts), Varah (1978, concerned with numerical

stability), and Fornberg (1973, which gives some discussion of numerical

stability in nonlinear cases). Lees' Method originally appeared in Lees

(1969).

Section 4 gives i brief survey of finite difference methods for

solving diffusion equations: the explicit, Crank-Nicolson, Lees', and

modified Lees' metlods. The concept of numerical stability is defined,

and the stability properties of the methods are derived for linear

equations wit' constant coefficients. The programming of Lees' method

for periodic initial data is also discussed.

Numerical stability of a finite difference scheme is usually

determined by how the method works for a PDE with constant coefficients.

For such simple PDEs the finite difference solution can usually be found

explicitly and the boundedness of solutions determined directly.
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However, very little is known about the stability of difference schemes

applied to nonlinear systems, and Sections 5 and 6 are concerned with

nonlinear numerical stability.

My interest in this problem originated in a seminar on finite

difference methods for PDEs given by Dr. James Varah of the University

of British Columbia. It seemed that the geometric arguments of Chueh,

Conley, and Smoller (1977, discussed in Chapter I) would carry over to

the discrete equations and provide stability results for finite

difference methods applied to nonlinear diffusion systems. This work is

carried out in Section 6. The proofs suggest an essential difference

I3 between numerical stability for linear and nonlinear cases: for linear

problems, stability is usually a matter of wavelength alone, but in

nonlinear problems both wavelength and amplitude may be involved. An

example is given at the end of Section 6; it gives an explicit finite

difference solution to a nonlinear, scalar diffusion equation (whose

continuous soutions all decay to 0 as t-+c). The explicit solution

also goes to 0 if the initial amplitude is small but blows up if the

amplitude is O(1/VP-").

The geometric proofs only yield a conditional stability require-

ment At = 0(6x 2 ) for all methods in Section 5; since some of these are

unconditionally stable for linear systems, stronger results appeared

possible. Section 7 obtains direct estimates which show that the Lees'

and modified Lees' metho,ls re iu,,1,1I oilly A, stable. (Incidentally,

Lemma 1, a key step in the proof, is of interest in its own right.)

.4
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Numerical Procedures

The numerical problems occurring in calculating the predicted

asymptotic phase / are rather awkward. First, the decay rate to a

spatially homogeneous solution is exp(-Cet), where C is some constant

and E is small. Consequently, it is not economically possible to obtain

the asymptotic phase / for exceptionally small E --to validate the

predictions of Chapter IV it must be possible to choose E small, but at

the same time it must be sufLiciently large that decay to a spatially

homogeneous solution takes place in a computable amount of time.

Second, in spite of the long period of time necessary for a spatially

A A

homogeneous solution U(t+ ), V(t+ ) to form, the numerically obtained

asymptotic phase (called ob here) must yield an accurate value for %

in order to check Prediction III. This section discusses how these

problems were solved in practice.

Section 5 discusses three numerical algorithms for diffusion

equations: the explicit method, the Crank-Nicolson method, and Lees'

method. The explicit method requires tt = O(Ax 2 ) as a numerical

stability restriction, which makes it very expensive for integration

over long time periods. The Crank-Nicolson method is numerically stable

but requires the solution of a large system of nonlinear equations for

each time step when applied to a nonlinear diffusion system (as here).

Lees' method is an extrapolated version of Crank-Nicolson using 3 time

levels. It has the same accuracy and stability as Crank-Nicolson but

only requires the solution of a large linear system at each time step,
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even if the diffusion system is nonlinear. Lees' method was used in the

calculations and worked quite well.

In connection with the difficulty of choosing E small but not so

small that the decay rate is impracticably slow, another difficulty,

which limited C-values to e < .01, should be mentioned. All initial

data were taken on 0 < I with periodic initial conditions; the

standard step size was A= .02 (except for certain accuracy checks with

A5= .01). This step size and boundary conditions meant a 50x50 linear

system had to be solved at each time step (fortunately, it was nearly

tridiagonal). Values of 6; larger than about .01 led to "exponential

underflow" error messages during the inversion; hcwever, no attempt was

made to root out the difficulty since only small values of E were

relevant in the calculations.

Fortunately, for the examples studied in Sections 3 and 4,

E - .01 gave decay rates resulting in spatially homogeneous solutions by

t 87T, and this time interval (together with the relatively large time

steps made possible by the procedure discussed next) was economically

feasible. Cutting C by a factor of 10 would require a time interval 10

times longer for the solution to decay to a spatially homogeneous

solution, so no runs with 6 = .001 (and a necessary time interval 80)

were made.

The most serious problem was the accumulated numerical error in

obs' the numerically calculated asymptotic phase. For instance, one

of the larger phase shifts predicted was .12, and this shift had to be

accurately measured over a time interval of 8T ' 26. In principle,
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once the time interval required was known to be 81r, so integration takes

place over the rectangle 0 < < 1, 0 < t < 81T, the accuracy could be

improved by decreasing A5,At. In practice, of course, sufficiently

small step sizes were not economically possible-- the high cost limited

their use to occasional checks of accuracy.

However, the following idea retains accuracy while permitting

relatively large time steps. Since we are concerned with solutions

which perturb the limit cycle solution, the numerical error involved

should be nearly the same as the numerical error for the limit cycle

alone. (This is not necessarily the case if abrupt spatial changes

occur, but here only mild spatial changes occur.) When Lees' method is

applied to the limit cycle alone, the spatial terms cancel out and the

method reduces to a discrete method for solving a system of ODE's;

calculations can then be carried out on a programmable pocket

calculator.

For ex-:.'Ie, consider a reaction-diffusion system with kinetic

equations (this system is the example used in Section 3)

Hu = [-R
2  R j u=R cos v=R sin, (2.1a)

with limit cycle solution

L U(t) rcost1I = C , period T = 2r. (2.1b)
V(t) Lsin t
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Table 4A shows the results obtained when we begin at the point

(u0,v0) (1,0) on the limit cycle and integrate using step sizes

At = 2f/100 and At = 2r/600. In both cases the error in R2 is

negligible. The error in , is negligible for At - 21/600; however for

At = 21T/100 it is large enough to affect calculations of the asymptotic

phase /. The phase error in solving the kinetic equations will be

called the Kinetic Phase Error (KPE).

Table 4B gives results for the reaction-diffusion system with

kinetic equations (used as an example in Section 4)

S 2(-u2) u V

Li=2 (2.2a)[u + (1-u2)v j (.a

with limit cycle

U(t) R 0(t) cos t 
( . b101'(2.2b)

V(t R t) sin t

R (t) = 2(1+a 2  period T 21.o I+a2 + a cos 2t + a sin 2t

The KPE can be used to improve accuracy in the following way: let

initial data be given for either (2.1) or (2.2) and compute the

solutions up to t = 2nTr, at which point they are found to be spatially

homogeneous with the form
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TABLE 4A

Kinetic Phase Error (KPE) for (2.1)

time R2 R2 calc.

steps exact calc. exact (- 2nu + KPE)

At = 2Tr/100 0 1.00 -- 0 --

100 1.00 .99710 2v 2 + .01215

200 1.00 .99710 4w 4 + .02271

300 1.00 .99710 61 6 + .03326

400 1.00 .99710 8w 8 + .04382

800 1.00 .99710 161 16 + .08605

At 2T/600 0 1.00 -- 0

600 1.00 .99992 2w 2 + .00034

1,200 1.00 .99992 41T 4 + .00062

1,800 1.00 .99992 6r 6 + .00091

2,400 1.00 .99992 8w 8 + .00112

TABLE 4B

Kinetic Phase Error (KPE) for (2.2)

time steps exact calc. (= 2nr + KPE)

At 2Tr/100 0 0 --

100 2v 2 - .00115

200 4w 4 - .00359

300 61T 6 - .00602

400 81T 8 - .00846

600 121t 12 - .01333

800 161T 16 - .01820

1,600 321 32 - .03767
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{uJ = LU(2n T + b 1
V(2nTr + obs)

Then the calculated asymptotic phase is Yobs =  + error. We expect

this (phase) error for the perturbed limit cycle solution and the KPE

for the limit cycle solution alone to be about the same, since the

solutions are nearly equal and the same finite difference method is

applied in each case. Consequently, /num, defined by

num - obs - KPE (2.3)

should give a more accurate estimate of /. This is, in fact, the

case--Section 3 and 4 both compare num obtained for At = 2-7/100

against /bs for At = 2T/600 and the agreement is excellent. This pro-

cedure allows us to make standard use of the relatively large time steps

at = 2Tr/100.

As a specific example, consider a calculation actually carried out

in obtaining results at the beginning of Section 3. The

reaction-diffusion system is

t  
2  2

V [+R- 1-R )j [I7 +k f v::
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A solution is found using At 29/100 with initial data

[u(0, )1 [cos (sin(2Tr)) 1
v(0, sin (sin(2Qr))

At t = 87, the solution is found to be essentially spatially homogeneous

and is found to have the form

Eu] [cos MTn - .085)1
v sin (8r - . 0 8 5 )J

Then robs = -.085 and the improved estimate of A is /nur sobs - KPE

= -.085 -(.044) = -.129. (When the solution was rerun using the much

smaller time steps At = 2/600, then obs = -.129 actually occurred!)

Check of Predictions: I-to Systems

Relevant information on 1-W systems, in general, is summarized

first (from Chapter III, equations (2.5ff)). Then the specific system

studied numerically is given, and the three predictions are worked out

in detail and compared with the numerical results.

By definition, a A-4a system has the form (1.la) with

(u = Rcos , v = Rsinp)

[F(u,v)1 A(R) -A(R)1 [u
(3. 1a)

G(u,v) W(R) w(R)J v
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and a stable limit cycle

U(t) Rcos (w t)

V(t) [ sin(wot)

A(Ro ) = 0, A'(R ) < 0, wo w(Ro - . (3.1b)

0 0 0 0

The fundamental. matrix of the variational equation about the limit cycle

is

A

U'(t) exp (-/.t) U(t)

VW(t) exP(7/.t) VW~t

-Ro % sin(w t) - exp(-.t) cos(W t+d)
00R 0R cos O- 0 0

0 0 0

(3.1c)

R w~ cos~ t) exp(-_t) - sin(4vt+o)0o~ 0 oRSo OSot0)o a RNo cos a-0o

- - ROA'(Ro) , with S cos 0 \ X'(R ), S sin T 
=  '(Ro)"

-<R'R,0 0 0 0 0 0

Using (1.2), the basic constants become

w o j'(Ro)
h =0, l = '0 )' 0 m 0. (3.1d)
I 0 0



T specic systemused in the numerical calculations is

with stable limit cycle

Lt) i, W = 1, T = 2T. (3.2b)

The fundamental matrix of the variational equation about the limit cycle

is

FU(t) exp(-At) U(t)1
A (3.2c)

V'(t) exp(-At) V(t)J

S- exp(-2t) (t+
0 co /5COS o , cos ro = -2

Cos t - exp(-2t) sin (t+q)j = 2.6774 rad.Cos 0 0

The basic constants are

h - 0, 0 =- 3 ,m I =O. (3.2d)

We are now ready to being checking the three predictions of Section 4,

Chapter IV.
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Check I. The period in is taken to be P 1. Initial data are

[u(0S)1 [cos (sin(2i))
= (3.3)

v(O,3)J = sin (sin(27r ))

+ B( cos (sin(2-,S) + 2.677945)1

I sin (sin(2rT3) + 2.677945)

that is, o(0, ) sin(2Trr)

1(0 exp(+ 2 sin(2i)) B(0, ).

Prediction I say the solution should evolve to a spatially homogeneous

A 
. A

solution (U(t+ ), V(t+$)) and that is independent of B1 (O, ), that is,

of B(O, ). This prediction was checked by using several pairs of values

Al and for each pair solutions for EB( 0,.) 0 , F .1 were carried to

t - 4T = 87T. Each solution evolved to a spatially homogeneous on- with

amplitude (u2 + v 2) 1. The values of Ibs' /num are given in Table

SA. Notice B(O,S) in these runs are .1/.006= 16.7 and .1/.01 = 10.

Clearly the asymptotic phase is independent of B(0,5) for small B(0,').

Runs were also made with EB(O, ) = .5 (or B(O,) = 83.3, 50), but in

these cases the result differed from the case with B(0, ) 0 0,

indicating the perturbation was too large.
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TABLE 5A

Check of Prediction I for (3.2)
A- .02, At 21r/100, = o - .044, carried to t - 87r.

num obs

_B(0,5) .0 B(O, ) .1

O fobs hnum sobs um

.006 2/3 -.123 + .003* -.167 + .003 -.123 + .003 -.167 + .003

.010 0 -.085 -.129 -.083 -.127

.006 -2/3 -.075 + .003 - .119 + .003 -.072 + .003 -.116 + .003

TABLE 5B

Check of Prediction I with small time steps for (3.2)
,65= .02, At = 2,T/600, 0 = - .001, carried to t = 8T.

num obs

eB(0, ) S .0 CB(O,t) - .1

E sobs Anum %obs mnum

.006 2/3 -.167 + .003 -.168 + .003 -.166 + .003 -.167 + .003

.010 0 -.129 -.130 -.127 -.128

.006 -2/3 -.119 + .003 -.120 + .003 -.115 + .003 -.116 + .003

*The notation -.123 + .003 means the minimum and maximum values observed
were -.123 - .003 and -.123 + .003, respectively.
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This situation was also used to make a check of the accuracy of

the num-formula (2.3). Exactly the same runs as above were made, but

with At 227/600 instead of 2T/100. The results are shown in Table 5L.

Since there is excellent agreement between I in the At = 27/100,

21/600 cases, we take the -formula (2.3) as a valid means of correc-
,num-

tion and in the remaining tables of data only iur will be given.

Check II. Prediction II deals with the rate of decay to a spatially

homogeneous solution, so some measure of the perturbation amplitude is

needed. Notice that solutions periodic in ) become closed curves when

sketeched in the phase plane as a function of with t fixed (Figure 5).

As t increases, the curve shrinks to a (moving) point on the limit cycle

because a function constant with respect to is just a point.

Therefore, a reasonable measure of amplitude for functions with period I

in is

A(t) = max Arctan (v/u) - min Arctan (v/u). 3.L.

Equation (3.3) with B(0, ) 1 0 is taken as initial data. The

amplitude A(t) ii measured at regular intervals t = 0, 21T, 4nT...

According to Prediction Ii, the decay rate should be exp(-147"2C t tha

is, the ratio A(2(r,+I)IrT)/A(2n;T) - txp(- 8n3c). The results shwn in

Table 6 clearly confirm this prediction.



rAD-A067 1141 CENTER FOR NAVAL ANALYSES ALEXANDRIA VA OPERATIONS EV--ETC F/6 7/4i
LIMIT CYCLE SOLUTIONS OF REACTION-DIFFUSION EQUATIONS. (U)

WICLASSIFIEO CANG-PP-28RT

-EEEENEEE



186

7- TIME

l CR 5q 71-ic 4N6V!WL-111'fCr7, eZ(62)



187

TABLE 6

Check oE Prediction II (predicted ratio - exp(-8T3e)) for (3.2).
Al- .02, At - 2 /100

- .006, c ; 2/3 e - .010, G( - .0 6 - .006, 4 = -2/3
predicted ratio = .226 predicted ratio .084 predicted ratio - .226

t A(t) ratio A(t) ratio A(t) ratio

0 2.000 -- 2.000 -- 2.000 --

2w .476 .24 .173 .09 .478 .24

4T .110 .23 .014 .08 .112 .23

6Tr .026 .24 .001 .07 .026 .24

8w .006 .23 .000 --- .006 .23

'S
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Check III. For Prediction III, the initial data is taken as

ru(OA)] cos(A sin(2-rs))1W (3.5)
[v(OS ] [sin(A sin(2,rS))J

or o(0,5) - A sin(2w%, B1 (0.) 0 0.

and A - .5, 1.0 will be used. Prediction III then gives the values ofA

as (since 1o(x) is an even function):

I
= - 2 In (I( A)) + 0(c). (3.6)

The results are shown in Tables 7A, B for A- .5, 1.0, respectively.

For A - .5 the values are excellent. For A = 1, they are excellent for

4<0 but begin to differ noticeably as 0(-*+I.

Two possible reasons for the increased error as (1+1 are

(a) numerical error due to values of Af,At which are too large,

(b) or the O(G)-term is significant (that is, F is not

sufficiently small).

The first possibility is easily checked. The solution for

E- .0060, 4 = 2/3, A - I is calculated using smaller step sizes

A3 - .01, At 21/600. At t - 8T1 = 4T, num - -.167 .003 in exact

agreement with Table 7B. The discrepancy as a(->+1 is definitely not

numerical error.



189

The second possibility is the size of C. The simplest way to run

a check is to reduce 6 and see if the discrepancy reduces. The two

worst cases (e - .010, c( - 9/10; e - .006, 4 - 2/3) of Table 7B were

rerun with the same A5,st values, but with 6 cut in half; .005, .003.

(It was necessary to run the solution twice as long to smooth it out.)

The results are shown in Table 7C. Cutting & in half cut the

discrepancy in half and therefore the discrepancy is clearly due to an

0(e) contribution.

The numerical solutions verify the predictions of Chapter IV of

convergence to a spatially uniform solution, the rate of convergence,

and the asymptotic phase resulting from that convergence.

Check of Predictions: the Solvable Chemical Reactor System

The calculations of the last section will be repeated for the

system with kinetics

[F(u,v) 
[a(1_u2 )u-vI.+. ~2)v J (4. Ia)

G(u,v) I+a(l-u )v

This system, which arises in connection with chemical reactors, has

already been studied in Chapter III. The limit cycle can be given

explicitly as

[U(t) (t) cos t1
0 (4. 1b)

LV(t)J [R0(t) sin t

2( + a2)
Ro(t) a 2 , T - 1r.0I + a2+ a 2cos 2t + a sin 2t
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TABLE 7A

Check of Prediction III for (3.2); ,o(0,) = sin (2TrS) (A- 1

AS- .02, At - 2w/100, carried to t - 87r

C( £num -2 In (I (.25)) discrepancy

.0060 2/3 -.043 + .002 -.031 .012

.0075 1/3 -.037 -.031 .006

.0100 0 -.031 -.031 .000

.0075 - 1/3 -.027 -.031 .004

.0060 - 2/3 -.026 + .002 -.031 .005

TABLE 7B

Check of Prediction III for (3.2); 0 (0,,) = sin(2-,) (A = 1)
0

A5 .02, At - 21/100, carried to t 87

0o(+w)=
V( -num 2In (I (.5)) discrepancy

.0200 9/0 -.225 -.123 .102

.0060 2/3 -.167 + .003 -.123 .044

.0075 1/3 "-,147 + .001 -.123 .024

.0100 0 -.129 -.123 .006

.0075 - 1/3 -.118 + .001 -.123 .005

.0060 - 2/3 -.119 + .003 -.123 .004

.0100 - 9/10 .118 -.123 .005

TABLE 7C

Decrease in discrepancy when E is decreased (Oo(0,S) sin 21TS)
Al- .02, At = 27t/100, carried to t f 8T

( )num - 2 In (Io(.5)) discrepancy

.005 9/10 -.181 -.123 .058

.003 2/3 -.148 + .003 -.123 .025
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The fundamental matrix of the variational equation about the limit cycle

is

U'(t) exp(-/rt)U~t R' cos t - R sin t exp(-2at)R Cos t1. 0 0 0
V:(t) exp(-t)V(t) R' sin t + R cos t exp(-2at) R sin t

(4.1b)

with Wronskian = exp(-2at)R 4

0

Using (1.2), the constants are defined by integrals so:

h = r (--R sin 2t - cos 2t dt,

S2R dt,

1I= sin 2t - -- cos 2t dt.

1 211

0 0 0

* Notice that integration by parts and periodicity of R0 gives

J 21r -R" /27 ( 2 RI sin 2t
o sin 2t dt RI 2 cos 2t 0 Jt.

R-- o o R0 Rt
0
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The integrals simplify to

I 02Tr R'
h- - J 0 sin 2t dt,

0

0

m 2rJ _a sin 2t dt.

The evaluation of the first can be done as follows:

2 R'
set I I  t sin 2t dt

0 0

S a2 sin2t-acos2t sin 2t dt

2 2

/1r a 2 sin t - a cost sintdt
a2  2 sostasdt0 + a+ a cos t + a sint

27r sin (t - A) sin t a
b + cos (t - A) dt, where cos A

-jo a +1

sbn A a > ,

b "1 a- > 1 for a > 0.
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2 sin t sin (t + A)
snt ( + dt by periodicity in t,b + cos t

(cos A) / s21dt0 since the odd parts of the
integrand integrate to 0,

21 1- [(b + cos t) - 2
, (cos A) b + cos t b dt

- (cos A) 2b + (1 b + cos t

The last integral can be evaluated by the Residue Theorem,

2 dt - 2 b > 1,
b+cost Z

so I, 2i(cos A) b -Vb

I
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Similarly, set

12 = sin 2t dt
-0

27r( a 2sin 2t - a cos 2t 2

o + a2 a2 cos 2t + a sin 2t dt

(sin (sin t)2 cst
(sin A) Cos t dt with b, A as above,if. (b + cos 0)

- (sin A) (sin t dt - b (sin t)2  dtos0 (b + cos t)2

(sin A) dt +b L-si dt]fj/'2ir~~si (sn02d ____b + cos t db b+ cos t

Converting I, 12 back to functionsof a gives:

hI 0 - (awl)a 2 + 2

2
a +2 - 2 al - .121 (a- 1).
17'7 T7 a
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In selecting one of the systems (4 .1a), that is, fixing a value

of the parameter a, it should be noted that the (kidney-shaped) limit

cycles show greater and greater fluctuations in velocity as a increases.

Figure 6 shows the limit cycles for a = i and a = 5 with points marked

at .IT intervals to give some indication of velocity. Experience with

the (analytic) expansion for solutions of the kinetic system near the

limit cycle suggests that irregular behavior, such as large fluctuations

in velocity, decreases the range of validity of 6. Consequently, we fix

a -I in the following numerical work. (Even in this case, values of

on the order of .001 appear necessary to make /(+-) a good approxima-

A

tion to the asymptotic phase /.)

Check I. The period in I is taken to be P = 1. Initial data are

u(O, ) R (sin 29',) cos (sin 2q)
- .01

v(O R (sin 2itT) sin (sin 2zi)

+E R3 (sin 27yS) cos (sin 2Tr )1

[R3 (sin 2rrT) sin (sin 2Tr)J

00

that is, o(0,V) = sin(21T ), BI(0, ) =-exp (+2a sin (2vrj)) B(O, )

Prediction I says the solution should evolve to a spatially homogeneous
A AA

solution (Ut + P), V(t + )) and that is independent of B1 (0,5). The

solutions do in fact converge to a spatially homogeneous solution.
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Comparison of for initial conditions B(O,') 0, .1 are given in Tabje

8A using At = 21/00. The values are nearly the same in the two cases,

as predicted. Table 8B shows the results when At = 21/600. Notice that

these uncorrected results for 0b ire practically tho. ila

with At = 27/100. As in Section 3, the correction formula s

KPE (2.3) checks out.

Check II. Prediction II gives the approximate decay rnt., of 'he per-

211 2
turbation as exp(-(l+IhI)(-p--) c t), so over eacl 2 i-intErval "a t, the

amplitude of the perturbation should be cut by ap!proximately

exp(-(1 - .2934) 8-, 3  ).

The same initial data is used as in Check 1. Defining the perturbation

amplitude A(t) as in (3.4), Table 9 ,uws up the observed amplitudes.

The agreement with the predicted decay rate is excellent.

Check ill. Now lor Prediction IT. The initial data are the sane as in

Check 1, so the expected first-order .ipproxifmation to ' is

I-- 2 9 3, in .12 1x
= .121, .n1

The values of 0(+&,) and / are given in Table IOA. 'nfortia tkl y,

the discrepancies are rather large (although still comprable to E).
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TABLE 8A

Check of Prediction I for (4.1)
AS- .02, At -2r/100, Onu 4b +.008, carried to t 8 BiT

E B(0,'j) 0 eB(0,) .

6 1 obs num Oobs 'onum

.01 .9 .084 .092 .092 .100

.01 .0 .058 .064 .064 - .072

.01 - .9 - .011 - .003 -. 005 + .003

TABLE 8B

Check of Prediction I for (4.1) with smaller time steps
A5= .02, At =2ti/600, carried to t 8';

OJ 
A'CEB(0 M) 0 E(,) .1

6 obs s"ob~s

.01 .9 .090 .098

.01l .0 .064 .070

.01 -. 9 -. 005 .000
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TABLE 10A

Check of Prediction III for (4.1)
Al- .02, At 21t/100, carried to t - 8W

0num o(+') discrepancy

.01 .9 .093 .037 .056

.01 .5 .085 .018 .067

.01 .0 .066 .000 .066

.01 - .5 .034 - .013 .047

.01 - .9 - .003 - .023 .020

TABLE OB

Check of Prediction III for (4.1)
A= .02, At = 2w/00, carried to t = 161

0 num 00(+-) discrepancy

.005 .9 .073 .037 .036

.005 .5 .064 .018 .046

.005 .0 .045 .000 .045

.005 - .5 .019 - .013 .032

.005 - .9 - .007 - .023 .016

TABLE IOC

Check of Prediction III for (4.1)
A6= .02, At = 2w/100, carried to t - 32TF.

num o ( + ) discrepancy

.0025 .9 .061 .037 .024

.0025 .5 .047 .018 .029

.0025 .0 .028 .000 .028

.0025 - .5 .007 - .013 .020

.0025 - .9 - .010 - .023 .013
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The experience with discrepancies in the A-w system case suggests

that this system may have a relatively large O(e)-term, which is the

source of the discrepancies. To test this hypothesis, runs with smaller

values of 6 (from 6 = .01 to .005 to .0025) are given in Tables lOB, C.

Notice that cutting E in half forces carrying the solution twice as far

in t, because it evolves to a spatially homogeneous solution only half

as fast. Each time E is reduced by half, the discrepancy is reduced to

roughly 2/3 its previous value. The reason the discrepancy is not cut

to 1/2 its previous value is most likely numerical error accumulating

over the longer and longer integration times required.

The numerical results clearly show l/num - (+m) 1= 0(a), which

agrees with Prediction III. The trends in Tables 1OA-C indicate that

o(+w) will be a good approximation to for 6 < .001. No attempt was

made to investigate n_ for such small values of E: for E = .0025,

integration to t = 32n was necessary for a spatially homogeneous

solution and at least 807T would be necessary for E = .001).

The numerical results in this case have directly confirmed

Predictions I and II and indirectly confirmed Prediction III.

Numerical Methods for Reaction-Diffusion Equations

This section discusses numerical methods of solving the (vector)

reaction-diffusion equations

0t" F(u) + Ku xx, K positive-definite matrix. (5.1)
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For simplicity, only one space variable Is considered. Periodic

boundary conditions (on 0 < x < 1) will be used when boundary conditions

are relevant. The three methods to be considered are

m(u , u(MAx, nat))
n

Explicit L (um -u) -m K Cum - 2 um + un ) + F(u ); (5.2a)
t (n+l-n) x 2  n nn

Crank-Nicholson -L (un-u 2m x K [un+I - " + r-i (5.2b)
Ait n+i n 2Ax2 n+1 n+1 +

m+ in-i 1 in i+ (u - 2u 11 + u -)] + F(- (un+1 + un));

1 n i in+i _ n rn-I

Lees' u i K f(un+I 2 um + u (5.2c)Lees nU+1 Un) 2,x 2  n+ U~j n+1)

+ um+l u u n-1 F3 m I m i)

+ - 2urn + rni +3]n 1i
+ n n + u -1

m~l 2u+ I + -I
[1n+ Un (5.2d)

Modified Lees' - (u uI K Eu - 20 + u (5.2d)
At n+1- n 2 n+1 n+i n+1

2Ax

+ (um
+1 _2um + un- ]

n n n

+3 F(un) -m F(u )

... .. ......... .. ~ ~ n 2.... . . . . n" "[' ' : I " a ] ' . . . , . . . . .. II ll[ .. . . . i Tl
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The standard results on accuracy and numerical stability for these

methods and some comments on their programming will be given in this

section. The rnext section discusses results obtained on the nonlinear

stability of these finite difference methods.

First, consider accuracy. For the explicit method, expanding the

difference equation around (x,t) - (mAx, nAt) gives (u - u n)

ut U Kxx + F(u) + u At +- K u Ax + O(At 2 , Ax M.
K -x )+ -2~ t 12 xxxx

(5.3a)

Roughly speaking, solutions of the finite difference equations solve

this nonhomogencous form of (5.1). On a fixed, bounded (x,t)-domain, we

expect the solution of the finite difference equations to differ from

the actual solution (5.1) by an amount proportional to the

nonhomogeneous terms, so the accuracy of the explicit method is

O(At, Ax2)

For the Crank-Nicolson, Lees', and modified Lees' methods,

expansions of (5.2b,c,d) around x,t -mAx, (n + -)At give

2 2

Ku + F(u) + O(t ,x) (5.3b)
UtmKxx

2 2
and these three methods have accuracy O(At , A x).

A very curious phenomenon occurs in the application of finite

difference schemes to real problems. A finite difference equation in
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ALx, At is consistent with a PDE if the difference formula converges to

the PDE as Ax, At->O (for instance, the equations (5.2a-d) are all con-

sistent with (5.1)). One would expect that if (1) a given finite dif-

ference equation is consistent with a PDE and (2) solutions (for fixed

initial data) of the difference equation are generated as Ax, At-+O,

then those solutions would approach a solution of the PDE. But this is

not necessarily true: the finite difference solutions may not even

remain bounded, let alone converge to the continuous solutions!

If the solutions of a finite difference equation remain bounded

as Ax, At 40, then the scheme is said to be (numerically) stable. The

impcrtance of this property is shown by a theorem of Lax: for a PDE and

a consistent finite difference equation (and certain conditions),

solutions of the finite difference equation converge to solutions of the

PDE if and only if the difference scheme is stable (see Richtmeyer and

Morton, 1967).

Generally, a finite difference scheme is said to be stable if it

is stable when applied to a linear PDE with constant coefficients. The

finite difference solutions can be found exactly in such cases by the

finite analogue of Fourier analysis, and boundedness determined

directly. Some results are known for linear systems with variable

coefficients, but very little is known about numerical stability of

finite difference schemes applied to nonlinear equations.

The idea of numerical stability for the linear case will be

illustrated here for scalar u. Some of this material will be used in

deriving the nonlinear stability results of the next two sections.
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In the following, (5.1) is taken as a scalar equation for

simplicity and F(u) - -gu, g constant. Integration is over a finite

x~t-domain 0 < x < 1, 0 < t < T; the finite difference steps are Ax -

I/M, dt - T/N; u"m corresponds to u(mAx, nAt), 0 < m < M, 0 < n < N.
n

0 H
Periodic boundary conditions mean un = un, all n. Variables uk refer

0 1
to the whole vector (uk, Uk, ... ); sometimes u will be used to refer to

0 1 2
refer to the vector (u , u , ... ). Setting A = KAt/Ax , the four

methods in (5.2) reduce to:

Explicit u m um+ - 2urn + u -1 gAt Un, u given. (5.4a)

n+1 n n n n rn

Crank-Nicolson u+i U + (Un+1 - 2u m + u M) (5.4b)
2+ u n+1 n-I- n+1

rn-Il un r-I

+ (U -2u m+ u )]1
n n n

- - gAt (u,+1 + u
m ), u given.

Lees' and Modified Lees' (5.4c)

m m 1 , n+l 2um ~r+m-1 um+1 m m-lUn+l n  n - -n- + u 2un + u n

-oAt (3 u -u), u, U given.2 n n_1 0
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Notice that Lees' and the modified Lees' methods reduce to the same

scheme for linear F(u).

These equations can be solved by a discrete analog of Fourier

series. A vector u, considered as a function of m - 0, 1, ..., M-i, is

expanded in terms of the functions

exp (+ 2wi M), p - 0, 1, 2, ... , M-i, (5.5a)

and these are orthogonal in the sense that

M-1 fi if p - q
2- A exp (+ 27ri -P-) exp(-2Tri R ) =4 .

m=0 H if p Aq, O<p, q<M-1.
(5.5b)

The expansion has the form

M-1
m 1 ppu _ - exp (+2i E (5. 5c)

heM-1 m 1 exp(-2gi -m).where o(- / u -M M

It is interesting to obtain these results from another point of

view. Notice the operator
u (u - 2u + (E - 21 + E )) u occurs in both

Hi 0

equations of (5.4) (E is the shift operator, EuM - 1 = u by periodicity).

This operator corresponds to a symmetric (almost tridiagonal) matrix.

The eigenvectors v are
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M m

P Mr exp (+ 2,1i PM), p 0, 1, ... , N-1, (5.6a)

(I - (E -21 + E- ))Vp = [i + 2/(sin (P!)) 2 v. (5.6b)
2 M p

It follows immediately from matrix theory for symmetric matrices that

the elgenvectors are orthogonal with respect to the inner product and

corresponding norm:

M-1

m

I(uIv)- ( _ u1/2.7
m=O

The orthogonality of the eigenvectors is then (5.5b).

Direct solutions of (5.4) can be obtained by the finite

difference form of separation of variables. Set

M-1

urn - 0P vHm  (5.8a)n E n p

and substitute into (5.4a) to obtain a recursion formula for the Fourier

coefficients

P - [1 - (sin PI)2 Pgt (5.8b)n+l - gt n.
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Substitution into (5.4b,c) gives recursion formulas for the Fourier

coefficients

I - 2 X (sin P.T)2 g At

n+l I + 2 A(sin2i~.) 2 + (5.8c)
it 2- ~ 9

P M f 0-(gAt
n+l I + 2A(sin PIT)2 n

1M
1 + 2A(sin )2 3

-ggAt

+ 2 X t P (5.8d)

I + 2 A (sin TVM) 2  n-

In (5.8b), notice that if the coefficient of o(P has magnitude
n

greater than 1 (which can happen if I 1 - 4A- gAt > 1 +E, C > 0),

then the cP will blow up as At -> 0 because the final coefficient is

TN p
.P =( - 4Asin j j)2  TN

- ) C( and N -->+ c¢

The gAt term may introduce some mild growth over 0 < t < T, but does

not lead to unboundedness if (10 - 4\)> 1. The result is the condi-

tional stability restriction for the explicit method

Ii - 4A1( I or 'At< (5.9)

- Ax' -2
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In (5.8c), the coefficient of OP is always smaller than I inn

magnitude as long as the relatively minor condition I + g At.> 0 holds,

so the Crank-Nicolson method is said to be unconditionally stable.

In (5.8d), notice the recursion formula for g 0 becomes

pr 2

2 (sin-P.T p
p  M_ 0 M (5.10)

I + 2 A(sin )2 nn

and the coefficient of 4P always has magnitude < I (since
n

(1 - 2Ax)/(1 + 2Ax) I < 1 for 0 < x <00), so solutions in this case

never blow up. For g 00, this growth factor is only perturbed by gAt,

which may add some exponential growth in t but does not lead to

unbounded solutions as N- 40. Consequently, the Lees' and modified

Lees' methods are unconditionally stable.

It should be pointed out that for linear equations stability seems

to be related only to the wave length of the Fourier components--

amplitude is unimportant. In the nonlinear case amplitude and

wavelength both are involved in stability. Some basis for this can be

seen in the gu-term in (5.4) by the above analysis; the stability

results assume gAt is small. For the nonlinear case g will be a

function of u, and for a fixed small 6t, g(u)At may be small (with

stability expected) for small amplitude u, and g(u)At may become large

(with instability expected) for large amplitude u (At,Ax held fixed).

Such an example will be given in the next section.
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The basic numerical problem of the first half of this chapter was

the solution ofL!
ut - F(u,v) + I Uxx

(5.11)

vt U G(u,v) +E 2 Vxx

with periodic boundary conditions on 0 < x < 1, and F, G nonlinear. The

explicit method is undesirable because the stability restriction (5.9)

forces At to be extremely small. (The method is usable, however;

Fitzhugh used it to compute traveling wave solutions of the

Fitzhugh-Nagumo equations, a reaction-diffusion system arising in

modeling the nerve impulse (Rinzel, 1977).) The Crank-Nicolson method

requires the solution of a nonlinear system of equations because of the

F( (un+ + um)) term. Lees' and the modified Lees' methods are

equivalent in accuracy and stability; Lees' method was used in the

calculations of the first half of this chapter.

In using Lees' method expressions for F(u,v), G(u,v), u(x,0),

v(x,O) were needed as well as specifications of El. E2' At, Ax. The

usual values taken were Ax = .02 (sometimes .01), At = 27/100 or 21/600,

and 6I. E2 in the range .0025-.0100. The usual run had 400-800 time

steps, although some runs went to 4800 time steps. Trial runs com-

paring numerical and exact solutions (specifically, .- w traveling waves)

2 2
were compatible with the theoretical e~rror 0(Ax , At ). No signs of



211

numerical instability ever occurred. When the runs concerned spatial

perturbations of the limit cycle, the major part of the error occurred

as a phase shift--the procedure for eliminating a considerable portion

of this error by applying the finite difference method to the kinetic

equations alone has been discussed in detail in Section 2 (which made

possible the rather large time steps At = 2a/I00).

Since Lees' and the modified Lees' methods are implicit it is

necessary to solve an MxM linear system at each time step. For periodic

boundary conditions, the coefficient matrix has the form

14c _c 0 0 0 -:ic
1~ 1

1 1
0i - 0 0 0

1 1i 2-0 ---ci  1+c i  ici = x2

o o

o o 1+c -
1 A A1

1 0 0 ... I+ (5.12)

1his matrix has the same form as the operator considered in (5.6)

cd) and its eigenvalues are between 1 and I + 2c It can be solved

by Gaussian elimination almost as efficiently as a tridiagonal system;

the idea is to take advantage of sparseness of the matrix and use only
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the 3 main diagonals, the last row, and the last column.* For some

reason this Inversion routine (in double precision) for the 50x50 system

gives exponential underflow errors for E above .01. No investigation
i

of this was carried out since multiple checks showed no programming

error and only small Ei-values were of interest.

Runs of the same initial data for Lees' and the modified Lees'

methods agreed to 3 significant digits, in accord with the error.

Nonlinear Numerical Stability: Geometric Approach

In this section we adapt the geometric proofs of boundedness for

solutions of reaction-diffusion equations (Chueh, Conley, and Smoller

(1977), discussed in Chapter I) to the finite difference schemes (5.2).

For simplicity only the scalar case is considered, but some comments on

systems will be made at the end of the section. The basic assumption

is

there exist A,A 2,AI<A2, such that F(AI)>O and F(A2)<O. (6.1)

This assumption makes the interval A<U_<A a positively-invariant re8ion

-- 2

for the equation (5.1), that is, if F(u) has this property, then the

results of Chueh, Conley, and Smoller (1977) show that Al<u(x,O)_<A 2

initially implies A1<u(x,t)<A2 for all t0 (or as long as the solution2!
remains smooth).

*Although the eigenvectors and hence an explicit inverse can be

calculated from (5.6), 1 think elimination is quicker because the
inverse is a full matrix.
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This section shows that if initial data u0 (or uo, u1) for the

finite difference methods (5.2) start in the region [A,, A2] and that

At - O(Ax ) and (6.1) holds, then the finite difference solution stays

in the region [A, A2] for all n. (The At = O(Ax 2) condition is the

best that can be expected for the explicit method, but one hopes for

something better for the other three implicit methods. Stronger results

can, in fact, be derived by direct estimates given in the next section,

but considerably wore work is required.)

The geometric approach is nicely illustrated in the following

theorem on stability of the explicit method.

Theorem 1. Assume (a) F(u) in the explicit method (5.2a) satisfies

(6.1I),

(b) the periodic initial data u0 satisfy

A1 < u < A2 ,

Ax
2

(c) At < , where-- 2K + B Ax 2

F(u) F(u)
B > sup A- U sup A -

A <_u<A2 I A u(A 2

Then A< um < A2 for all n.

Proof: First notice that a finite B exists because F(u)/A -u)-->->

as u-)AI by (6.1); similarly for F(u)/(A 2-u).

-. _ _ _
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Let A be that value of n such that A< u < A2 for all m, but there

m 
A

exists m such that A2 < Ua+I; without loss of generality AI 1 is a

m
maximum over Ai . From (5.2),

it+f I

A A 
A

m m K A ;x+l m Mi-1 m
Uf+ uA (un ^  - 2 Un + uA + F( U)bt.

n fl n n n nI

A

Replacing u by u, notice that
n

A Am m
u1  %> A 2 -u,

A A A

u? - 2 u + (I < - 2u + A2 ,

consequently,

A u < 2AxK- t (A - u) + F(u)At,
2 AX2 2

or I<At 
2K + F

-
u )

Ax 2 A2-u

But this inequality contradicts hypothesis (c) on At, 
by the definition

of B.

A
m

if UAl < Al, a similar argument applies. QED.
n+
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To attempt a similar result for the Crank-Nicolson, Lees', and

modified Lees' methods, notice all three can be written in the form

um um .Kt~t r[ m+l m + m- I u M+l -2u 
m +u m-1U:+i-u -n

=  CU -2u +u )+( -2u + )

2 nI-I-i-- n+1 n n2Ax+l n+l

+ (Un , u, U n )At. (6.2)

AA
A t S ini

Again take n such that u + I is a maximum over ua+i, that u 1+, > A 2, and
AA

M m m m

that A I A for all m. Writing u,v for u^ , uj,_I and using
1- uA, <2 n in7

A A
m m

u+ I - U^ > A - u,
n 2

A_ A AA

uft - 2 ufl + uAl < A2  2u + A2  (6.3)

m+I m + rn-i _
u + 2 uA+ 1 + uA+1 < 0 (since uaql is a maximum),

we conclude from (6.2) that

(K G(A 2' u' v)

I < (t + . (6.4a)

A A

Similarly, if u + < A1  and u + is a minimum, then

K + (AI' U, 2)

I < + at (6.4b)
AX 2 A I u
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For Crank-Nicolson, notice that G F((A 2 + u)) or F(-!(A + u)),

3 1 u <3A1 < u< A2 ; for Lees', G = F( u - - v) with A, < u, v < A2; for

3 1
modified Lees', G = F(u) -- F(v) with A I1 < u, v < A2 . Both (6.4 a)

and (6.4b) would be impossible if there existed a finite B such that

G(A2 ,u,v) G(A1 ,u,v)
B > sup A-u , sup A . (6.5)

Al<uv<A2  2 A 1<u,v<A 2  AI-U

and At, Ax satisfied

1> At (K + B). (6.6)
Ax

The basic problem is whether a finite B satisfying (6.5) exists, and we

consider conditions under which it would exist for the different

definitions of G in the 3 methods.

In the Crank-Nicolson case, (6.1) alone is sufficient to insure

the existence of an upper bound B(as u-4A 2, F(-A 2+u))/(A2-u)4-o and as

u-+A, F(-(A,+u))/(A -u) -+ -o0 also).

The case for Lees' method is a little more complicated. Obviously

assumptions must be put on F(w) for w outside the invariant region

A, < w < A2, for instance,
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F(w) < 0 for A2 <w <A 2 + (A2 -A,) (6.7)

F(w) > 0 for A, --j(A2 -A,) <w <A.

Consequently, for each v with A _< v < A2 , F(-! u - - v)/(A 2 - u) - -o

as u--A 2 in (6.5) and a finite upper bound exists; similarly for

+

For the modified Lees' method no condition outside the region is

necessary. Instead a "flatness" condition on F(w) for w in (Al, A2] is

sufficient (together with (6.1)):

3F(A) > F > 3F(A 2) for A1  w < A 2 .  (6.8)

Then for each v, A1 < v < A2, (--2(u) - 1F(v))/(A2 - u)'- -o* as u--A2

and a finite upper bound exists; similarly for the other case with

uf1.

Summarizing the results for these three cases gives:
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Theorem 2. Let F(u) satisfy (6.1) and initial data u0 (and uI for

Lees', modified Lees' methods) satisfy A, _ u0, um, < A2 . Then:

(a) there exists a finite constant B such that when Ax, At

satisfy (6.6), then Crank-Nicolson solutions satisfy

A1 < u
m < A2 for all n;n-2

(b) if F(u) satisfies (6.7), there exists a finite constant B

such that when Ax, At satisfy (6.6), then Lees' method

solutions satisfy A1 - um < A2 for all n;

(c) if F(u) satisfies (6.8), there exists a finite constant B

such that when Ax, At satisfy (6.6), then modified Lees'

method solutions satisfy A Un < A for all n.
1- - 2

2The restriction At = O(Ax ) here is rather restrictive in

comparison with the unconditional stability of these methods for the

linear case; on the other hand, a stronger result (that the solutions

are actually bounded by a constant) is obtained. Something better than

At - O(Ax 2 ) should be obtainable if one goes to direct estimates, and

this approach is used in the next section.

Generalization of these arguments to systems should be relatively

straightforward. For K positive-definite, Chueh, Conley, and Smoller

(1977) show the positively-invariant region to be a "box" with sides

which are hyperplanes orthogonal to the eigenvectors of K. The
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condition on the (vector) function F(u) is that the direction field for

F point strictly inwards on the surface of the box-the direct

generalization of (6.1). See Chapter I for a more detailed discussion

of their results.

The quantity B in Theorems 1 and 2 measures, roughly speaking, the

strength of the nonlinearity--the larger B, the smaller At (or Ax) must

be. We shall end this section with an example showing how the nonlinear

term can act to make solutions obtained using Lees' method blow up.

Take the equation

3
ut  KU - u (6.9)

xx

and notice that any solution should decay to 0 and that any interval

[Al, A21 with A1 < 0 < A2 is a positively-invariant region. Lees'

method has the form (A K4t/2Ax 2)

m M m+1 um m-I um+ um  um-I 1

U+ 1  nn Jn+1 2 +I +I n - n

3um Inu 3
-At (3- u - - 1 ) (6.10)

This difference equation has a solution of the form

m = ( ) n+ A ,(6.11a)Un no

- (-1 An~ 6. ha

'I
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4A - I a t 3 13

An ~ - A + A+ -1 3A (6. llb)n+l 4X+ I An 4A + 1 ( n 2 An-

with A0 , A1 given.

Notice that if A , An-I are small, the nonlinear term is very small and
n n-1

solutions A --> 0 as n-->-4 . But, if the initial amplitude is in-
n

creased, the solution A -> +o as n-i +4. Specifically, assume
n

0 < A0 < A1 and that

27 2 > 2. (6.12)
8t - 1  2)

Then in the nonlinear term,

3 1 )3 3 3

At (fA + A°  > At (-f A1 ) 3 > 2AI,

4) - 1 2
so A > ---- 1- A + A Al.

2 4A + 1 1 4A + 1 1 1

Since A2 > A1 , then A2 also satisfies (6.12), so A3 > A etc. Ob-

viously the process accelerates once started and A Increases to +0 as
n

n -* +D, .

Here At, Ax are assumed fixed. The example shows that when

amplitudes are small compared to At, solutions decay to 0 as n

Increases, but when amplitudes are large compared to At, solutions blow

up as n increases. The comparison between the amplitude and At is given

by (6.12).
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Nonlinear Numerical Stability: Direct Estimates

This section considers the nonlinear stability of Lees' and the

modified Lees' methods by obtaining explicit bounds on the solutions.

For simplicity, only the scalar case--with periodic boundary

conditions--of (5.1) is considered. That is, we are solving
23 1 3 1

(A - AtK/Ax2; G(u,v) = F(- u - 1 v) or - F(u) - Fv)):

m (u m+l 2 um + m-) um + (u - um +1 In+l 2 n+ - n+l n+) n 2 n+1 n+l n+I

+ At C(um, un 1). (7.1)

with u0, u, given. The main result of this section is to give condi-

tions on the initial data uo, uI which insure that solutions of the

difference scheme (7.1) remain bounded as Ax, At-O->0 (unconditionally)

on the given domain.

First, pick some large A > 0 which will serve as the bound on our

solutions (eventually). Given A, define B1 and B2 as follows:

Ia b, Ib < A implies IG(a,b) I< B1 , (7.2)

1a;l, I bj < A implies I G(al,b ) - G(a2,b2A

2 1/2
( o-o
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We estimate the "drift" of a solution by observing its mean. Given a

vector u, define its mean value ' by

M-1

u . , urn (7.3)
min0

M 0
By summing (7.1) over all m and using the periodicity condition u = u

we get an equation for the mean value:

A A 1 --I
U U G(U I Um i) At, (7.4)

m n -=O

so I n+l '. n I+ B At.

We can now state the main result:

Theorem 3. Let the domain be 0 < x < 1, 0 < t < T with Ax I/H and

At = T/N; let u be the solution of the finite difference scheme (7.1)

on this domain. Let A > 0 be given and B, B2 defined by A as in (7.2).

Assume there exist A0 , AI > 0 be such that

1

A + exp ( r B2T)A + B T < A. (7.5)

if 1 u I 1 , Iu 1 I11. < A0 and I D.0 12 I11 ll1 12 < A1/ V7 , then

fUn 10 < A for all sufficiently large M, N.
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NOTE: (I) The positive constants A0 ,AI exist if and only if B T < A.

(2) Du represents the difference vector with components

um+l - u . The condition on I Du0 11,, J I Du, 1I, may look

restrictive at first glance, but notice

IIDu 1 ( u+I - ui 2

N ((M~l x))2 x2) 1/2 1 u2 d 1 -- I

\m=0 "7R-

or A I u (x,0)' 12"

PROOF: The proof is by induction on n. Precisely stated, there is a

double induction hypothesis:

AI
(#1) IDLnH 2  < -T (I + V B1 At) n,

(#2) lu_ 11 <A +B nAt+-A (1 + V2 B .t) n

n0 1 2 1 1

for 0 < n < N. Clearly both hypotheses hold for n = 0,1.

First, to prove (#1) for 11 Du n+11 2: by induction,

Hu I 1 I , , ,nt+IA(I + 12 B n)
n- n A + Bnt+ A 1  2At

by (#2),

< A0 + B T + -A exp (I + T) < A by (7.5).
2 r2 1I
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An equation for Du follows from (7.1):

1 m+l

(I - A (E - 21 + E-1)) (un+ 1 - um (7.6b)

(I + A- (E - 21 + E-1)) (um+i - um )

n n

un+1 rnfi. ( m' )
+ At (G (u n U1 n) - G (( Un i) .

nn

Write

m+ I m pUn+ I UI m -1 Jn+i 7exp (+ 2Tii 2m (7.6c)

M- u

un  - u m 1 I exp (+ 2fi 2

m +l (, m M-1
n ' U p=O Hexp (+ 21TI.

and substitute (7.6c) into (7.6b) to obtain (using (5.6))

I - 2 A(sin PI)
2

P M 13 + A (7.6d)
n+I I + 2 A(sin T-")2 'n)  I + 2 A (sin -

H H
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Consequently, writing <0(P> for the vector <c( , .C4

/I - 2 A (sin 21)2

lt~~ i 12 ~1 +2A(sin E2h) 2 2

+ a~tK

1 + 2 A (sin P)2 ) 2

so H <P+I> 11 2 --< I <16p> i 2 + t II<> I2 (7.6e)

Since the expansions (7 .6c) are norm-preserving in that

' m+1 - m p 2
IUn+1 n+ = n+1 , etc. (7.6f)

m p

which follows from the orthogonality mentioned in connection with (5.7),

we have from (7.6e):

I DUn+ 1112 -< ulD Uni2 + At <PA 2 (7.6g)

u1 ) m n' 2'1/2
.II = + ) - G (um um )1

an 1<0 12 \ n Un-1 n n-I

SB2 n I I Du 112 + I I Du 1 2 1/2 by (7.2),
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so I I Du III I. HDun I + B 2 ( Du nH12 + Dun_ 2 )1/2n~lu+l2 -2 lun2+2 (ID12 2 at

< (1 + VT B2 At) I (I + Y'7 82 At) n

using (#1).

This proves (#1) for IIDu n+1 2" Now to prove ( #2) for I un+ 1  . Lo

Write Iu U +I - where the mean value un -11- 1 'n1+IUn+ 1  U n11n+ ,

is defined in (7.3). Notice that for any k, k = 2, 3, ..., n+1,

Uk = U + G(uk_, At. (7.6h)
m=0

Using 11 uk_111, I 1k_2111 < A and (7.2), there follows

A

or un+1I < A0 + (n+1) B At. (7.6i)

Interestingly, the bound on- m ^ I follows from the 12-bound on
Un+l -n+ 1

on Du+1 alone. By Lemma I below, there exists a constant C( -1/2 (-3)

such that

M Afun+1 - n+1I C V ' D, n%+ 1112 ( 7.6j)
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and using (#l) for n+I as proven above,

~u 1 n+ _ c~ C FM' ~ I + 'T B2 At) (7.6k)

A I
< - exp( /' B2 (n+') At),

I
and I , < A0 + B1 (n+l) At +-- A1 exp ( V7 B2 (n+l) At) < A.

QED.

The key idea in the above proof involved relating the 2 -bound on

a first difference Du to an D-bound on u (actually, to I um 
- I ). This

relation, used here for finite-dimensional vector spaces, is actually

based on a clever trick for proving convergence of the Fourier series of

a C -function (Courant-ililbert, vol. 1). This proof will be given here

as motivation for Lemma 1 below, the statement for finite-dimensional

vector spaces.

Let f(x) be continuous and periodic on (0,11 with f'(x) L2 on

(0,I]. Let the formal Fourier series for f(x), f'(x) be, respectively,

+00 +_)

a exp(+2ninx), j b exp(+2Trinx). (7.7a)
n - n
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Then, for n#O,

a f(x) exp(-21inx)dx= f (x) exp(-21inx)dxan 0o 0

b (7.7b)
2 rin n

Now use Bessel's inequality

+ 12 < I f,(x)l 2 (7.7c)

-00

Notice

If(x)- aoj < jala 2-n I bn.
-nOO n#O 2n

--/2 n  
1 O(7.7d)

and using

a f(x) dx = T, the mean value of f, (7.7e)
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I_2Tr 2 (7.7f)
nAO n

yields

f f(x) I i I f (X)l 1 (7.8)

2 VT

Lemma 1 gives the finite dimensional form of this result.

0 1 M-1
Lemma 1. Let u be a vector with components u , u , ... , u ; mean

A
value u defined in (7.3); and first difference

(uI  0 2 I M u-1 ) 0Du=( -u ,,-u U *..sU - ), u = U

1 _ _ 11/
Then (a) - 2 - (sinu Z72 I I Dul 2' (7.9)

(b) ar(M) = M1 (si 1 asM 1 as.
MM 2 =

Proof: Using (5.5), set

M-1
u Z c(P exp(+2iPiE) 1 (7.10a)

p=O M
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M-1

where o _ u- zpm where z = exp (--). (7.Ob)
m-0 VM H

Folowing (7.7b), we want to apply integration by parts to the sum for

4p; this is equivalent to applying Abel's summation formula:

M-1

F (ambm + sm( b m - b)) = bM SM-1 s m  a 0 + aI + ... + am

(7. 1oc)

S M-1 I H-i m+1 1 I - (zP)M H

S o C
1 - z p  - z p  u

if p 0. (7.1o)

0 M zM
Since u = u and z = 1 and, by periodicity,

M-I (u M+ l - uM ) = 0, 
(7.10e)

77 1 - zp

we get

P M-I zp (ur+1 - IpC( 7- (n-U u)zpm (7.1Of)

m=0 I - z p

z p- P exp(+2Ti Pm)iz p nsM

defines Sp.



231

Notice (7.1Of) is the analogue of (7.7b) (for p 0).

Finally,

M ( M-1 p - p  I-rJUm )C z ~ 1~ p (7.10~g)

iZP --pm

1 1

< =I I i z 
2  1

=- 1 1/ p--I 2"/

0 1 M-1

Since I Z- 2 sin (PI) andC( u
M=0

it follows that

- 2 M p (Iin12) /2 11Dull 2' (7.10h)

proving (7 .9a).

To obtain (7.9b), note that for large M, the major contributions

to the sum are for pTr/N closes to 0 and close to 7r, that is, for p small

compared to M and p nearly equal to M. So

M - 1 I i+ +

E 2 + 2 )2 "
p-1 (sin P) Orw/x M2T J31

2M I M2

2 +  + "2 (7.1oi)
2 3
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So 61(m) ..- 12 1/2,V - as M o QED.
m~ (7.l10j)

The following values indicate how rapidly or(M) -~1/2 F3:

M - 5 (M) - .28284 (7.11)

10 .28723

20 .28831

30 .28851

1/2 /T= .28868.



CHAPTER VI

TRAVELING WAVES IN REACTION-DIFFUSION SYSTEMS

INTRODUCTION

This chapter discusses periodic traveling wave solutions of

t= F(u) +Ku, (1.l)

where u is an N-vector and K is a positive-definite matrix. The

usual traveling wave substitution converts this system to a system of

ordinary differential equations of order 2N. There are two natural ways

for traveling waves to arise in such a system. Small amplitude waves

may arise as the result of a Hopf bifurcation. This possibility was

investigated by Howard and Kopell and their results are discussed in

Chapter 1, Section 2. Briefly, they found such small amplitude waves to

exist under very general conditions, but the waves are linearly

unstable. A second case arises by substitution A + 'E , +

A - unit vector, in which case the reaction-diffusion equations become
IV

u' = F(u) + eKu"' (1.2)

for u(S). For E = 0 (and 6 = 1) the reduced system u' = F(u) is

assuned to have a limit cycle U(S) with period T. Kopell and Howard

(1973) have shown that a periodic solution to (1.2) for E # 0 can be

233



234

formed as a perturbation off the limit cycle solution; this solution

yields large amplitude traveling waves for (1.1).

Kopell and Howard proved the existence of periodic solutions to

(1.2) for E A 0 by an integral equation construction. The main

result of this chapter is to give a second proof of this result by a

series expansion. Previous work along this line has been given by Wasow

(1976); the series expansions there, however, were at best asymptotic --

in particular, they were not shown to converge. The expansion con-

structed in this chapter will be shown to be convergent. Furthermore,

it is constructed in a rather unusual way: instead of simply matching

terms of o(.En), the essential factor in obtaining -OLIveLgence is to

mix O(- n -1 ) and O(Cn ) terms.

The remainder of this section gives a number of related results

from the literature for background and then summarizes Kopell and

Howard's proof.

The second section discusses in detail the related work by Wasow

on series expansions.

The third section contains the main results of this chapter: the

construction of a formal expansion for periodic solutions of (1.2) when

6 0 0 and the proof of convergence of that expansion.
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In discussing general results on the perturbation of periodic

solutions, it is necessary to distinguish two basic cases: the

autonomous and nonautonomous systems, respectively,

vi = F(v; e) (1.3a)
I,- AI

v' = F(v,t; e) , where F has period T in t. (1.3b)

Both systems are assumed regular in E and to have stable periodic

solutions v = V(t) with period T at E = 0, and the basic question

is whether they continue to possess periodic solutions for E j0.

Notice that the new periodic solutions V(t; 6) for the nonautonomous

case, if they exist, necessarily continue to have period T. For the

autonomous systems, however, the periodic solutions V(t; E) usually

have new periods T(E) with T(0) = T. The dependence of the period on

F makes the autonomous systems more awkward to work with. Although

some results on the nonautonomous case will be mentioned, the autonomous

case is of primary interest here. (It is also assumed that the periodic

solution at E = 0 is nonconstant. In a Hopf bifurcation, for

instance, 6 may measure amplitude so that V(t; E)--'constant and the

period T(E) 4T j 0 as E 40.) The persistence of periodic solutions

for both systems of (1.3) for 6 # 0 is shown in Coddington and

Levinson (1955, Chapter 14).

The cases in (1.3) have "singular perturbation" counterparts:

v' F(, v 2 E ) .

,2 F F2(v-,' v2; C
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V1  F(vi v t; E ) (I.4b)

v F (v , v t;o ) , F and F have period T in t;
".2 2F 2( 1  1 2

where again the reduced systems (formed by setting e = 0) are assumed

to have T-period solutions (v 1 ,v 2 ) (V (t),V 2 (t)); the. basic

question is still the persistence of periodic solutions for 6 # 0.

As Wasow (1976, Chapter 10) points out, no boundary layer phenomena

occur in this context and the equations (1.4) should only be considered

a singular perturbation problem in a formal sense.

Before discussing results for the singular case, something should

be said about methods of proof. Three basic types of proofs used to

show the persistence of periodic solutions for E # 0 are

(1) To show existence of a Poincare map;

(2) To reformulate the problem as an integral equation and

prove existence of solutions;

(3) To construct a series expansion and prove convergence.

A Poincare map is a mapping from a region in phase space into

itself generated by the trajectories of a system of differential

equations: if the trajectories leave the region and after a finite time

T enter it again, then a continuous mapping of the region Into itself

is generated, the Brower Fixed Point Theorem is applied, and the

existence of a periodic trajectory (a trajectory meeting itself after

finite time) follows.
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For example, the proofs of persistence of a periodic solution for

the regular cases (1.3a,b) in Coddington and Levinson (1955) are closely

related to the idea of a Poincare map, although the proofs are not

expressed in such geometrical language. They construct a mapping

similar to the Poincare map such that a periodic solution will exist if

the Jacobian of the mapping does not vanish; the Jacobian is shown to be

nonzero at E = 0 , and smoothness shows that it does not vanish for

E00 .

For the singular cises (1.4a,b), Flatto and Levinson (1955) prove

the existence of periodic solutions for E # 0 in the nonautonomous

case by reformulating the system as an integral equation. They do not

consider the autonomous case cirectly but do remark that their results

can be modified "in a familiar way" to give a proof for the autonomous

case. They refer, apparently to illustrate this familiar way, to

Friedrichs and Wasow (1946), who prove the existence of periodic

solutions for the autonomous case (1.3a) with v2  scalar. The

Friedrichs and Wa'sew proof, however, is a Poincare map construction.

Wasow (1976) considers both cases (1.4a,b) in a somewhat indirect

fashion so far as a definite proof of existence of periodic solutions

for i A 0 is concerned. For exa.ple, in the nonautonomous case

(1.3b), he sets:

1 V (t) CIO

n=1

{x2J L~ 2(t)=
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and shows that the Yn's can be recursively solved for as periodic

functions, so that a formal solution exists (Wasow, 1976, p.317). Then,

instead of proving convergence of the infinite series z , he assumes

the existence of an analytic periodic function z(t,E) which is

"asymptotically represented" by the series z as 6-O+. Setting

z Az + w(t,E), he then proves that w(t,E) -0 as E40+, and

therefore his main result on this expansion (Theorem(45.1), p.319) is an

asymptotic one:

[V] [V1(t)- +1+ Y n(t) n as -40

v2  Lv2(t)I n --1

In particular, the convergence of this infinite series is not shown.

Wasow's formal expansion for the autonomous case is given in

detail in the next section, and we only note here that he claims the

expansion at most to be asymptotic to the true solution as C-->O.

In short, the literature appears to give no general results for

the persistence of periodic solutions to the autonomous case (1.4a),

which explains why Kopell and Howard had to construct their own proof

for the persistence of periodic solutions to (1.2).

Kopell and Howard's proof is based on rewriting the system (1.2)

as an integral equation and proving convergence of an iterative solution
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procedure. To obtain that integral equation, they rewrite (1.2) in a

very unusual way. (It should be mentioned that the results of this

chapter -- the convergence proof of a series expansion in section 3

did not result from a direct attempt to obtain such a proof.

Originally, the desire was sim .y to understand why their unusual

reformulation of the system worked at all, and as that understanding

grew, its relation to a series expansion becaome clearer.)

It seems worthwhile, therefore, to discuss Kopell and Howard's

approach to (1.2) in some detail before moving to series approaches in

the next section. First, notice that the natural reformulation of (1.2)

would be to set v = u' (or Ku') , obtaining:

u? v

Ev' = K-Iv - KI F(u)
AA,

However, Kopell and Hward set v = Ku'' , obtaining an equation for

v' by differentiating (1.2) to get
A'

= F(u) +v (1.5)

v' K -K v - F'(u)(F(u) +v)

(Some minor changes in their fomulation have been made here to keep a

notation consistent with (1.2).) Introducing u = U(s) + w(3), where U

A

is the limit cycle, and rewriting the equations with 3 1 + /3 gives
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K F(U + w) v F(U+w)F(U + w) (1.6)

dw _ F'(U)w -F(U) + + R(

The idea is to determine /3 so that this sytem has a T-periodic

solution. The recursive procedure can be written as

vni -l 1 F'(U+w ) v F - F

n /sn- _ n-l -n n-,

w = F'(U)w - ,nF(U) + + R(w (1.7a),n, n nv 1n-1 ,,,n R(n- ,n-

Starting with w0 = 0, (1.7a) is solved for a T-periodic solution

vl, then (1.7b) is solved for a T-periodic solution w, (which
AA

determines A1;/3o = 0); then (1.7a) is solved for v2 , etc. The

integral equation part of the proof comes from the fact that each step

is just solving a linear, nonhomogeneous system of ODE's with the usual

inversion formula (Lemma B in Appendix I).

The brilliant part of their proof is the reformulation (1.5) with

the term IK- . At first glance, one might be tempted to say the

right side of (1.5) could not lead to any hound on the iterations as

->0. Nevertheless, due to their key lemma (given here as Lemma 1 in

section 3), usable bounds do in fact occur.
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WASOW'S EXANSION PROCEDURE

This section gives a detailed discussion of Wasow's series

expansion (Wasow, 1976, Chapter 10) for periodic solutions of (1.2) with

,'0.

Wasow only claims the expansion to be asymptotic in 6 . To give

some idea of the essential difficulty in proving convergence of a

reasonable formal expansion, we first give a quick calculation in which

(1.2) is expanded in the simplest possible way. That is, set
oO0

5(e) = n n
, u = " Un()en , (2.1)

n=0 n=O

and expand (1.2) using
00

F(u) = F(u 0 ) + ZI [F'(u 0 )u + F (u 0 ,u,.. (2.2)

where F'(u 0 ) is the Jacobian matrix of F at u0(F1(uo)=0).

The resulting equations for un are

0 0 = F(u0) 
(2.3a)

for n > 1,

n
A o-" ' K u ' ' + ( 2 . 3 b )

= F'(u0 )n+FnU 0 "'Un-1) - 1%Un-_ m + . (n2-1b
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Choosing /30  I and u0(S) = UM,) the stable limit cycle with

period T, the resulting equations (2.3b) become nonhomogeneous cases of

the linear variational equation of the reduced system (E = 0). The

variational equation is assumed to have one periodic solution (namely,

U'(S)) with the rest decaying exponentially. Then (2.3b) always has a

periodic solution provided the nonhomogeneous terms satisfy a certain

orthogonality relation, which determines /3n" In short, the expansion

(2.1), (2.3) formally makes perfect sense. However, a problem turns up

when a proof of convergence is attempted. Bounds on u, u' can

only be expressed in terms of bounds on the nonhomogeneous term in

(2.3b); the nonhomogeneous term depends on u'' consequently, anNn-i osqunla

induction procedure must obtain a bound on u'', and apparently we
"n

can only get such a bound by differentiating (2.3b), which leads to the

need for a bound on u''' etc. This infinite regress must be, n-1 '

avoided if a convergence proof is to be constructed.

Wasow's formal expansion will now be given. Although he does not

explicitly prove that it is asymptotic in E to the true solution, he

gives some discussion of how such a proof might be devised as based on

the nonautonomous case.

For clarity, his calculations (part (a) of each nmibered equation

below) will be given in their original notation with their original

L ... .. ........ . . ... ... ... .... ...... .... -. . ... .. . .Ii E ]l l .. i " . .i l
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ntimbering from Wasow, 1976, Chapter 10, with some minor simplifications,

and the corresponding equations with the direct substitution v = u'

(part (b)) and the Kopell and Howard substitution v = Ku''(part (c))

will be studied also. Since Wasow does not introduce a period

correction immediately, we first derive the ODE form (1.1) by setting

- A. x + t, A = unit vector.

The original system has the form:

el 0
dy f(yE) (45.21) (2.4a)

vv K-lv- K-IF(u) (using v = u') (2.4b)d

du
d3

dv K-v - F'(u)(F(u) +ev) (using v = Ku'') (2.4c)ds

dud = F(u) + ev

Here in (2.4a), the identity matrices I are assumed NxN and y is a

2N-vector; u,v are N-vectors. The reduced system

E: : = f(Y0 , 0) (45.22) (2.5a)
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0 K'v 0 -7F~ 0) (2. 5b)

du 
0

dS v 0

0 K-'v 0 - V'(u 0 )F(u 0 ) (2.5c)

d5 0

is assumed to have a T-periodic solution yo(t) (or UMs, V(M), and

the Jacobian matrix

A(3,E = (2.6b)

K-1- '(U) -(F'F)'(u)-

fK1SFE(U= (2. 6c)

is to satisfy Assumption I (Wasow, p. 289, with s =2), which means in

this context that the first N rows and N columns of A(t,O) have a

nonvanishing determinant for all t-values in question (in (2.6b,c), this

means K-1 is to be nonsingular, which it certainly is). Since the

period of the perturbed solutions generally depend on E , a change of

variables

t (or S) V (e)T (1/5, J7) (2. 7)

-.-- T
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is made, with 7(e) to be chosen so that all solutions are to have

period T with respect to 1 . The new equation in T is then

: I ft)(2.8a)

dv = '( K - Iv - K2 F(u (2.8b)
= T v

d' T

dv Tr(e) I F-

dr = T-) K-v - (u)(F(u) + v)j (2.8c)

d_!u _ n() [F(u) + v).
de T

(Incidentally, for actual computation t or = /Trr(e) would be

better, since 11(E) would then occur on the left side of the equation,

multiplying fewer terms.)

Introducing y = yo('r) + z(-T) (or (u,v) = (U(r) + w, V(T) + z))

an equation for z (or w,z) results:

F1 0- dy0  rrE

dz +Y . [n( -E)

L 0  = '{ f ( Yo , E ) f ( Y o , O ) L jT f  ( y O ')

+--EfyY,)z + f(yo+z,.E)-f(yo,-f Ywz
T Oy I O Y/

1 (,)(! j ) f (y,e) + "'C f (y 0,Ez + 7()g(r,z)

(45. 30) (2.9a)
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61 0l dz/d'j [-dz/dj { j - FU

0 1 w/dl 0 + -T K 1 v(2.9b)

[0 0 0 w/

EI 0. ld/dlr F-F(U){K1VF(U)(F(U)EV)L~j~j~ -'U)j -F+)~ (2. 9c)

0F wd 0F(~)FU~)~z )F(U)(U+EV)

+K F'(U)+ (F'F)' (U)EV '(U) 1'
F7(U) w

IF(U+w)-FCU)-F"(U)wj
Substituting

00

T n-In
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into (2.7) gives a sequence of linear equations for the Yn. The

coefficient matrix for these linear systems is given by (using the

notation of Assumption (B), p. 314):

A(l,0) = J (2.11a)

A2 10 (,r) Ao220(T)

A(.t,0) = (2.llb)
1 0

K71 -(F'F)' (U)

A(T, 0) =(2.11c)

0F' (U) .

The linear equations .for the Yn are (splitting Yn into two

N-vectors yn = (y(nl) y n)):

0 = AO()y n+A (r)y2+ 1) (2.12)
110 n 120 n n

(2)dyn - A( 1)y n +A220 (2)+ 2) + (2)

d 21200 2n (Y0 (0)n)
nhr 1,2,...,

where the /n represent preceding known terms.



248

Wasow notes that, assuming the homogeneous linear system has a

single periodic solution, Pn is uniquely determined by the require-

ment of periodicity for Yn, and that a formal series solution can be

generated. As to the validity of the formal series as a representation

of the real solution, Wasow says (p.324);

"It remains to show that there exists a true periodic

solution z and a corresponding period VE(e) that

have these series as asymptotic expansions. We shall

omit these arguments. The proof can be patterned

after the nonautonomous case by ...

Roughly speaking, the proof would be to treat (2.9) as a nonautonomous

equation (containing the initially unknown function 77()) and proceed

as in the nonautonomous case. (It would be necessary to use assumption

(B*) of p.322:

(a) As E-40+, the angles of the unbounded eigenvalues of

[EI 1 jA, E) do not tend to +1T/2

(b) The Floquet system - [A220 (,r)-A 210 (r)A- 0()A 120(r) x

has exactly one characteristic exponent which is an integral

multiple of 27i .)
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As already noted, however, Wasow only claims the formal expansion for

the nonautonomous case to be an asymptotic result. We conclude that

once the details have been supplied for the remainder of the proof in

the autonomous case, the result is only the asymptotic validity of the

expansion (2.10) as E 0+, and in particular, the convergence of the

series (2.10) is not claimed.
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DIRECT EXPANSION WITH PROOF FOR PERIODIC TRAVELING WAVES

This section constructs a convergent series expansion for periodic

traveling waves of (1.1), thereby giving a new proof of their existence

(originally shown by Kopell and Howard's iterative construction). The

formal expansion is given first to motivate as much as possible

assumptions and lemmas. In this section, u,vun,vn,... will be N-

dimensional vectors with components u = (u) (2) (N)).
( U ,u ,..,)U

F,G,... will be used for both vector or matrix functions. Exceptions

to this rule will be obvious from context.

Substitution of f =FA.x + t, A = unit vector, and u = u(5)

into (1.1) gives

du = F(u) + K d 2u  K = positive-definite matrix. (3.1)dS d5 2'

For 6 = 0, the system has the limit cycle solution u = U(Q) with

period T. Following Kopell and Howard, we introduce v = Ku'' and

rescale the independent variable by = -/= ():

du F(u) +ev (3.2)

,E v = K-Iv- F'(u)(F(u) +Ev)Sdr
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where A() is determined by requiring the solution to have period T

in . Expand:

A n  (3.3a)
n=On

3 = L (ECn 
(3.3b)

n
F(u) - F(uO) + F'(u )(u-u O ) + Fn(UO,UI ....u n-e, (3.3c)

n=l

F'(u) = F'(u 0 ) + V-F'(u0 )(u-u O) + /__. I"'"
n= 1

F'(u)F(u) = F'(u 0 )F(u0 ) + (F'F)'(u 0 )(u-u O) + L Gn(u0 ,U1 ....u n-l)En
n= l

Here un,Vn,F(u),F'(u)F(u) are N-component vectors; F'(u) and

V'F'(u) are NxN matrices. Although F-1 F,-aG 1 -0 , these terms

are retained in the expansions for notational convenience in the formal

manipulations below.

The notation used in (3.3) is simpler than that of the expansions

of N-component systems in Appendix 11. In Appendix II, however, the

expansion was in terms of the N-i expansion parameters

E-(ej,e 2,...,eN-l), while here only one expansion parameter

E is used. Required properties of the terms in the expansion will only
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be briefly given below, since these properties have been discussed in

some detail in the more general expansion of Appendix II.

Substitution of (3.3) into (3.2) gives

nO T"d"n-m = F (u O)  +/ ' (u)u+F n(u 'u ','''Un-1 )En

+ vn+ ;

n=o

dv n 6 n+l= (K1,n)r-n F,(uo0FMu 0)

n=O nn n0

du0
- [ ( = F(U+) (3.4a)

udu n-I du

n > 1.

This equation will deterine un,n from preceding functions in the

usual way -- ,$n by an orthogonality condition and u n to b
du 0--.-
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periodic. To determine vn we mix up the terms of the second system,

defining vn  by:

dv0 - I I[ K- I-F(Uo)]V0  - I F (uo)F Uo) ,  (3.4b)

dvn0  (E K F'(u )v0  I FF)(u 0)u n+Gnb(u6d 1 K-F(o)JV - 1 ) UoC ...un

n-i dv n-i
1-m d'r Z-- (%Z'F'(Uo)Um+i+Fm+I(Uo '  ' uM)v- -m"

This equation determines vn from un,pn and preceding quantities.

At first glance, it seems rather startling because of the presence of

the 0(1/6)-terms, but -- incredibly enough -- the Vn's remain 0(i),

as shown by Lemma 2 below. This particular matching of terms is exactly

the trick necessary to get a convergent series. Notice that this

expansion is completely different from Wasow's expansion, as can be seen

from comparing (3.4a,b) with their 0(I/,E)-terms to (2.12).

The two assumptions required for the proof are essentially the

same as used in Chapter III -- existence of a stable limit cycle and

analyticity:

Assumption I. The kinetic system u'=F(u) has a limit cycle

solution U(r) with period T. The limit cycle is

stable and the variational equation about the limit

cycle has distinct characteristic exponents.
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Assumption II. F(u), hence F'(u), t"(u)F(u), are analytic at

each point u=U(t) of the limit cycle.

The first assumption says the variation equation x'=F'(U(lr))x

about the limit cycle has a fundamental matrix of the form

X(r) = P()exp(Dr), where P(r) is T-periodic,

D - diag(Al,A 2,...,AN) with A, = 0 and (3.5)

Re(A i) < -/4< 0 for i = 2,...,N.

A consequence of Assumption II is that a single majorant series applies

to the totality of components of F(u),F'(u),F'(u)F(u) when expanded

around an arbitrary point of the limit cycle u=U(r). That is,

there exists constant M, R > 0 such that (3.6)

if (1) f(u) is any component of F(u), F'(u), or F'(u)F(u),

(2) u. is any point of the limit cycle U(r),

(3) f(u) is expanded about uO to give

f(u) ( Am_(u (1)u) m  ...(u(N)-U(N ),
n-0 l+.+mNn N 0

then jA <-

Equivalently, all choices for f(u) and u0 have a common majorant

series

N M

i=I R
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The majorant series of (3.6) enables us to obtain bounds on nonlinear

terms in the recursion (3.4). Again let f(u) be any component of

F(u), F'(u), or F'(u)F(u) and u0  be any point on the limit cycle

U(T). Define functions fn(uOul,.... ,un-1) by

U = UnE n 
, (3.7a)

n-0

f(u) = f(u O) + f'(Uo)(u-u O) +2fn(UOU l), n .
n=l .. ,n

(Here fl(uO).O.) Also, for the scalar variable , define

3= n (3.7b)
n-n

-N MN

MO = M + R-+ n=1 R'n '2 .. nl

(And I = 0.) The functions fn satisfy:

each fn (u oul..,un ) is a polynomial in the components of

(3.8a)
U 1,...,UnI with coefficients depending on f and U;

each fn satisfies the homopenelty property

f n (uO,' Ciu 2, ... Po n - u n 0= =nf n (1U0 ' l. un1 (3.8b)

for scalar o( .

Similar properties hold for the 9n- From the definition of the fn

in (3.7a), the majorant series in (3.6), and the definition of /n in

(3.7b), it also follows that

-. --- ---
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for max Imax(i)l=k i Uk '

f(UOUl',''U) < R ,
n u i u21 ) " (3 .8c)

Therefore, if we Introduce the vector norm

I u() U = p sup u() , (3.9a)I<i<N 0<¢t<T

and the compatible matrix norm

N
IlA(T ) =  sup sup 7- 1 A (T (3.9b)1<i<N 0<I<T /- Aij('

then -- with f any component of F(u), F'(u), F'(u)F(u), and u0  any

point of U(r) -- we have

sup I fn(u ) < l In l I I I u21 11 u '_111
O<__T_ n 'ul "' Un-i -- n 'i ' '

(3.10a)

Consequently, if u0  is any point of U(Qr),

SF n (u 0 n-1)I III G n (u 0 ". 'n % n('I u , , "n-i
R

(3.10b)

II F'(u 0 ...,U ) < R n IL ...A, Un1 I )
n 0 n-1Rn



... .. ..."... .. ,. - T - -q ," - ,L- ? .

257

We now give two lemmas relating norms of solutions to norms of

nonhomogeneous terms in the ODE's of (3.4). The first lemma is for

(3.4a); the second for (3.4b).

Lemma 1. Let the matrix A(t) have period T and the Floquet system

u' = A(t)u have a fundamental matrix P(t)exp(Dt) satisfying (3.5).

Let pl(t) be the first column of P(t) (that is, pl(t) is a

periodic solution of u' = Au). Then:

(a) The equation u' = A(t)u+b(t)+cpl(t) with b(t) T-periodic

has a periodic solution for exactly one value of c, and for

this value Ic I<O P-'i IHI ;

(b) For this value of c , a periodic solution u(t) can be

chosen with

11ul < (211P1 II P-l11 ) 11ql,

I- I I (1 + I pI1 l lIP-I I1+ 2T II 4 1 PI P 1 1 ) IIP 1 •

Proof: The general solution can be written as

u(t) P(t)exp(Dt)[a + exp(-Ds)P- (s)(b(s) + cPl(s))ds]
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Setting P l= 29l...,q NI  so the rows of P are the vectors

the integrand becomes

qT s)b(s)+c

exp(-Ds)p- (s)[b(s) + cpl(s)] exp(-A 2s)qTb

exp(--ANs) qTb

A necessary condition for a periodic solution is that the first

component be periodic, which requires

I q T(s)b(s)ds , so Icl I IP-fl I •I

Applying Lemma A of Appendix I to the remaining terms gives

texp(-As)qT (s)b(s)ds = c(i)+ exp(-A t)r(i) (t), i = 2,...,N,

where r M (t) has period T. The constants c(M can be eliminated

by setting a(i)= -c ( ' ) , i 2,...,N. The final result is

a M (qT(s)b(s) + c)ds

u(t) = P(t) r (2)(t)

r (N)(t)
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Choosing a(1)= 0, we have

f(q Ts)b(s)+c)df 2 211 P_'jI INI T

and for each r(i)(t),

Jt

lr,(t) f exp(Ai(t-s))qT(s)b(s)d I II P-) I I I I T,

since Re(A i) < 0. So

lulI 2TIII IIP-II IIb I

and from the equation itself

-u  I I < AII II (2T IIPII I p1j ) + I + lI11 ll II p-11I I H lI

Q.E.D.

Lemma 2. (Kopell and Howard, 1973)

(a) If A(t),b(t) are T-periodic and dl I IK 1/2, where

d = largest elgenvalue of the positive-definite matrix K,

then

du 1 I -1
du K - + A(t))u + b(t)
dt 6

has a unique T-periodic (nontrivial) solution u(t), and

H 4t 2 < 2ed I) bt2
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(b) 2ull _2frd r Ilj;

ldu/dl < (1 + 2 (N'd I IK-+CA(t)II)IlbH

Proof: (a) is simply a restatement of Kopell and Howard's lemma for

functions with period T instead of 2wr. (Incidentally, Kopell and

Howard did not explicitly show existence of a periodic solution in their

proof, only that if one existed, then it was unique. However, existence

is an immediate consequence of their construction for the solution and

the condition on 4 .) Since their results are in terms of the Euclidean

norm II II 2 , (b) is a simple restatement of the results in the norm

(3.9), using the identity

Hu _Iu I _ ' HulI

for N-dimensional vectors.

We now proceed with the proof, assuming that C is sufficiently

small that edfl F'(U('r)) <1 1/2 holds in order to apply Lemma 2 when

needed. Equations (3.4a,b) will be solved recursively for T-periodic

functions Un,Vn while determining An by an orthogonality

condition and simultaneously constructing a majorant series for Il3n 1,

I Iju I, IlvIjI

From (3.4a) we have

0 1 , uo - u,,r). (3.11)
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The equation for v0  in (3.4b) becomes

dv0  I K0- F.U )] 1 U,,(T)

and applying Lemma 2 gives a unique T-periodic solution v0 (T) with

I I vo _< 2dfN l IU I 1 (3.12)

dv o 
U -

I --'t < 1~l + 2d -W IlK +fF'(U(r)) II U' H.

Returning to (3.4a) with n > 1, we assume ii,ui,vi, i=O,l,..,n-l,

to have been appropriately determined. Applying Lemma 1, there is a

unique value of /3n determining a periodic solution un(QT), and

un can be chosen to satisfy:

~,II ~n- 1 du
IPnn <[p11H f1 IFn(uOu 1 un- )!I +IIVn1 +lpmI dT

(3.13a)

HlIUn l < 2T I II IIP-ll {dittol

du n fl(1i+lIIpjI I I1 + 2T II F(U)l JI I I lI P 1lI{it
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From (3.4b) and Lemma 2, we have

vj 217den-i1 i dvM F)()u+IL 1 a-l n°f --IIv.II _< 2j d 2113.Onmi H_ - -ikF' F)'(U)un+tn(UO,..., n_1)fI

n-i
+ E IIV-F'(U)u m+F )(uO..,)Vn_ II
M=O -

dvn I+ 2 fN'd I IK 1  +EF'(U) i) [dittj . (3. 13b)

Now to construct the majorant series. Pick a bound M such that

II P-11 1 1 +I Ipl I I I P-I I + 2T I IF'(U) I I I dtI II P-11 1,  2 'd ,

1 + 2fid IIK-+EF'(U) If, 1I1'-F'(U) if, if (F'F)'(U) 1< M. (3.14)

Assume that constants Ui,Vi, i=0,1,...,n-1, have been

constructed with 1Ail , II uil , I I du1 /d-rl < Ui and II vljI ,

Ildvi/drlI < Vi * Notice U0,V0  are easily chosen from (3.11) and

A

(3.12) (and without loss of generality we can assume U0 ,V0 < M).

For n > 1, define

AIM n-1
U M- M U)+v~ + E U !n ",Rn nn(Ul ... -1) + Vn-1 M n %mj
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A n-I i

V - M LU V +~n+- ~ 1  .. u (3.15b)

M=On-m rMU, + n(n-In-

+ M(U +...+u )+L -i ~)
M=O R i-i

From (3.i10b), (3.13a), and (3.15a), it follows that I/Srj I IunI I

I I du n/drHj < U N' From (3.10b), (3.13b), and (3.15b), it follows that

To show convergence of the series (3.3), it is only necessary to

show convergence of tha majorant series

00

A n-1 AIZ

13(E) = 1  E U n V(r-) Z-- n-l V(.6
n=1 n=l n (.6

for 6 sufficiently small. Multi plying the equations of (3.15) by

£nn > 1, notice that:

I.O A,

T in(l U )n-1 1 - Ik-1 N U(3.17)
n-I R n n-1 'n-I E

Um (nmi n-i A )2

n=1m=



264

n- I A + 'A)

n=l

n 1 +CA ) -N R

S -(U '
. . rn-I n-in = k-

From (3.15), (3.16), (3.17), we have a set of equation relating U,V,E:

A M F eju j e A A . A A2
U = E -) 1-N -R] + M(V0+EV) + MeU (3.18)

A AA A 2A A 1r -N
-= MU(Vo+EV) + + KM-E R 1 N Rj

These two equations have the form

AA A A

P(U,V,) = U - MV 0 + 0(e) = 0

A A

Since P,Q are analytic functions of u,v, at MV0(, 2VO(VO+M),Q

and since the Jacobian of P,Q with respect to U,V does not vanish

at this point, then the Implicit Function Theorem for complex function,
A A%

gives that analytic functions U(6), V(6) exist around E = 0. That is,

the majorants (3.16) converge for E sufficiently small.



APPENDIX I

LEMMAS A, B, C, AND D

The following four lemmas are used repeatedly throughout this

thesis, and it is useful to collect them in one place for easy

reference. Their frequent use also suggests giving them special names -

A, B, C, D - distinct from the numbering system employed in this thesis.

The first lemma is basically concerned with the result of

integrating an exponential against a periodic function.

LEMMA A. Let f(t) be C1, periodic with period T and with mean

value

T

S= r-  f(t)dt;
0

define t

F(t) = exp(1 s)f(s)ds, # complex.
0

265
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Then (n = integer):

(1) if = in then F(t) = ct + g(t), where g has period T

and c is a constant;

(2) if 3 , 27win then
I T

(a) F(t) = exp(pt)g(t)-g(0), where g(t) has period T

and g= f;

T

(b) g() exp(6s)f(s)ds;(b)g(0 =exp( T)-l

( 0,T]J ( 2 2rn 2

2nin

(3) if p 2TI, then x' +ex = f(t) has a unique T-periodic

solution and It is given by g(t) as defined in (2),

(4) if e is real, f(t) > 0, and f(t) # 0 for some t, then

in (2), , < 0 (>0) implies g(t) < 0 (>0) for all t.
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PROOF:

(1) Immediate.

(2) Integrate the (absolutely convergent) Fourier series termwise:

F(t) = jJ 0exp( s)a exp(- 2ins)ds

= 21T- n Fexp T i i

+= a n 2n
-exP(t) 2i in exp T t g(O).

/3 T

Existence of g(t) and g = f follow from this formula.

(2c) follows from

I g(t) j a - < 7 I a 
1 

\ 
2

n 2Trin n F)n

and Parseval's Theorem. (2b) follows from exp(pT)g(T)-g(O)=F(T)

and noting g(T)=g(O).

(3) By direct calculation.

(4) If /6 < 0, notice F(0) 0 and F increases to F(+oo)

positive number = -g(O). So g(0) < 0. If g(tO ) = 0 for
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some to > 0, then F(to) = -g(O), so F(t) = -g(O) for

t > to, forcing the periodic g(t) = 0, contradicting g(0) < 0.

So g(t) < 0 for all t. Similarly for P > 0, using t4-o.

QED.

In practice, some awkwardness can occur in explicit numerical

calculation of the periodic function g(t) from f(t) in Lemma A.2.

Here,

t --

g(t) = exp(-pt) C +f exp(ps) f(s)dsl (1)

where f(t) will be a T-periodic function, usually known only in

tabulated form from other numerical work, and C = g(O) is found

without difficulty from Lemma A.2b.

Equation (1) as it stands involves multiplying exponen. rally large

and exponentially small quantities in t , and as the numerical

integration is carried out over one period [0,T], serious errors can

arise even for moderate values of I Tj , say 13TTI 20. If G > 0, then

a stepwise integration based on 1
t "Aw

g(t) = C exp(-f~t) + f exp(o(s-t))f(s)ds (2)

0

works well; but if 13 < 0 - which is typically the case in almost all

calculations of this sort in the thesis -- this expression is the
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difference of two exponentially growing quantities as t increases and

again large errors occur.

For < 0, these difficulties are overcome by backwards

integration (which is possible because periodicit-- means g(t) on

[-T,0] gives g(t) on [0,T]): specifically, set gn g(-nh) for

some step size h = T/N and use

g = C,

nh

gn = exp(h)gn -f exp(p(nh-s)) f(-s)ds, (3)
-)h

evaluating the integral by any desired scheme (in fact, in Chapter III,

an extrapolation scheme -- for which periodicity is essential -- is used

to give high accuracy and high efficiency in the repeated calculation of

integrals of the form (1)).

For reference, the standard result on solving a non-homogeneous

system of linear differential equations in terms of the homogeneous

solutions is given, as well as associated results of particular use in

this thesis.
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LEMMA B.

(1) Let X(t) be the fundamental matrix for the system of

differential equations x' = A(t)x. Then y' = A(t)y + b(t)

has the general solution

t

C an arbitrary co 3tant vector.

(2) (Abel's Identity) Let X(t) be the fundamental matrix for

x' = A(t)x and W(t) = det(X(t)). Then

to
W(t) = W(t 0 ) exp~f Tr(A(s))d S)

(3) (Floquet's Theorem) Let A(t) be T-periodic for the system

of differential equations x' = A(t)x. Then the fundamental

matrix can be written in the form

X(t) = P(t) exi(tB)

where P(t) has period T and B is a constant (possibly

complex) matrix.

PROOF: (1), (2), and (3) are all standard results; see Coddington and

Levinson (1955, Chapter 3) or lefrchetz (1977, Chapter 3). Q.E.D.
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Notice that if B is reduced to Jordan canonical form by

J - C71BC, then X(t) = P(t)exp(tB) can be rewritten as

X(t)C = P(t)C exp(tJ),

giving a fundamental matrix as a periodic matrix multiplied by an

especially simple exponenuial matrix.

Floquet's Theorem arises in discussing the kinetic system (1.1.2),

which is assumed to possess a stable limit cycle with period T. The

variational equation about the limit cycle is a Floquet system

w1 = F'(U(t))w ; (4)

notice that U'(t) is always a solution, and the assumption of

stability means all other solutions of (4) decay exponentially.

Equivalently, the Floquet exponents (eigenvalues of the matrix B in

Lemma B.2) include 0 once and the other exponents all have negative real

part.

The N-component system (4) occurs in Chapters III and VI; most

work is done on the two-component form of (4). In this case, the

standard notation will be that of the kinetic equations of the two-

component system (1.2.1), namely,

U' = F(u,v)
(5)

v' = G(u,v),
%,



272

which are assumed to possess a stable limit cycle U(t), V(t) with

period T. In this case the variational equation about the limit cycle

is the Floquet system

y' F u (g(t),V(t)) FGv(U(t),V(t))j xI1
(t ) FGm W x

Y I -G U (~t), (t) vMO t)- y G 1(t) G 2(t)

which immediately has the periodic solution (x,y) = (U'(t),V'(t)) and,

by the assumption of stability, an exponentially decaying solution. For

computational purposes these results are summarized in precise form:

LEMMA C. The system (6) has a fundamental matrix

(1) U'(t) exp(-t.t) U(t)

IV'(t) exp(- ,t) (t)

where U',V' is the derivative of the limit cycle and U' ,V',

UV are real, T-periodic functions;

(2) T

- p = (F (S) + G2 (s))ds
0f

(3) U(t)l V(t) U'(t)
1 I =A~t)+ B(t {]

LVWt AI t L '0 '0
where At) is a T-periodic function determined (up to

multiplication by a constant) by

$-.~-.,
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(4 A(t)[(U,(0)2 +CV' (0)2] A(O) U,(0)) 2+(V (0)) 2]

exp (F (s) + G2 (s) +f-)d ,

and B(t) is the unique T-periodic solution to

(5) A(t) L2_ 2
= 2 2 (G1+F9(U') -(v') )+2(G -F )UIV'

[(U'(t))2+(V'(t))
21 2 22 1

PROOF:

(1) U',V' is immediately a solution and the second solution has

the form of an exponential multiplying a periodic function by

Floquet's Theorem.

(2) Follows directly from Abel's Identity.

(3) The periodic part of the second solution is decomposed into a

sun of periodic vector functions tangent to and normal to the

limit cycle, a useful formulation taken from Halanay (1966,

Chapter 3).

(4),(5) These follow by direct substitution of (3) into equation

(6), separating components, and using the fact that A(t) and

B(t) must have period T. Q.E.D.
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In the above Lemma, the Floquet exponents of the system are 0

and -e, and po> 0 must occur because the limit cycle is assumed

stable. Diliberto (1950) has made the solvability (reduction to a

quadrature) of the variational equation of a two-component system the

basis of several stability results on trajectories, and Lemma C appears

in his work in the form of the solutions of the variational equation

about an arbitrary trajectory, while here the trajectory is taken to be

a li it cycle.

The important point of Lemma C is that once the stable limit cycle

-- one of the easiest objects to compute numerically -- is found, all

solutions of the variational equation can be found either directly or by

a simple quadrature. The most awkward function, perhaps, is B(t) in

LVinma C.5, which would be calculated as the periodic solution given by

Lemma A.3.

The preceding Lemma calculates the solution of the variational

equation; the following Lemma gives information in solving the

nonhomogeneous variational equation, 'hich will occur repeatedly in

various series expansions about the l mit cycle.

We consider the following general nonhomogeneous equation:

x, F (t) F (t) t It

= 
+ +A . (7)

yI( ) G2(t) y_ _b2(t) (t2 2
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LEMKA D:

(1) If A = 0 in (7), then the general solution is

'1(t) exp(-Wtl(tl)

[ 1 +2 t)exp (
- d(t)]

c t(s) sU(s) b 2 (s) u'V-v'U[::] + -texp2::V' Cs) expGfrs)U' Cs)] bs dS) 1-
(2) If bl(t),b 2(t) are T-periodic in (7), then there is a

unique value of A such that a T-periodic solution exists.

This T-periodic solution (x(t),y(t)) is unique up to an

additive multiple of (U'(t),V'(t)) (i.e., (x,y) is a

solution implies (x+aU', y+aV') is also a T-periodic

solution for arbitrary constant a).

PROOF:

(1) Is simply Lemma B.1 applied to (7) and using the fundamental

matrix of Lemma C.1. The results in (2) follow by direct

calculation, given here for reference. First, the general

solution (using to = 0) is

x U'(t) exp(-ht)U

[J t(8)
y V'(t) exp(-t t)v
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Using Lemma A, define

t A4 b ( -) ds = h t + h(t) ,(9a)

exp(rs) b I ds = -k(0) + exp(tk(t),(9b)
0 U'V-V'U

where hl, h(t), k(t) are uniquely determined and T-periodic.

Equation (8) then becomes:

L = (C + At + h t + h(t)) + ((C 2- k(O))exp(-yt)+ k(t)).

Consequently, to obtain a T-periodic solution, it is necessary to choose

(using Lemma A)

T A A

A -h T U'--V ds (10a)
1 AJ

T exp(s) b 2U'-b V1

C2  = k(0) ex Jr 1 xUVsV2 U  ds . (0b)
0 U vv U

The T-periodic solution Is then

= (CI + h(t)) + (t + k(t) vt Q.E.D.

V' (tJ vt
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NOTE: One way of uniquely specifying (*,9) would be to require

T

*0 ('(s)U'(s) + -(s)V'(s))ds = 0 (1I)
0

which clearly determines C1  uniquely.

inIm



APPENDIX II

THE EXPANSION AND PROOF OF CONVERGENCE IN THE GENERAL CASE

FOR CHAPTER III

This section discusses the general case of (111..), constructing

the expansion and proving its convergence. For clarity, the construction

is made exactly analogous to the two-component case of the second

section of Chapter III, equations (4)-(7) corresponding to (111.2.1)-

(111.2.4) and (8)-13) to (111.2.6)-(111.2.11). Unfortunately,

however, the proof requires the use of power series in several

variables, with the consequent notational mess. This section will,

therefore, begin with a discussion of notation and certain required

series manipulations.

Small letters a,u,ui,... are used for scalar constants and

functions; capital letters U,E,... for vectors and matrices. Vector

components are indicated by lowering the case of the letter and use of

subscripts: U = (ul,u 2 , ....uN), E = (el,e 2,.... eNI )..... Matrix

components use subscripts and superscripts: P has pi in its i th

row, jth column. (So the subscript convention for vectors is

consistent with column vectors.)

Small Greek letters, , are used for vectors with non-

negative integer corponents; the components are written with subscripts:

-' (2I, ,,M). Associated with such vectors are:

278
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+ = I + P 1 ( 2 + P2  (
(la)

G( 3 ifff 0( i <  for each i,

X = x1 22 xMM

In the monomial X , it is always understood that X and o( have

the same number of components. Notice:

x1X F1= X + , (1b)

00
NY

(~I~i~ U(0X")(,T lOn U(4) V(3 A.

n=I c( n \nO nn n=0 - nV+3=W

The occasional exception to these rules will be explicitly noted.

It will be necessary to form composites of power series, as in

the derivation of (111.2.5). Let f(U) f(ul,u 2,.... uN) be a

scalar function of the vector U, with f analytic. Set

E (ej,e 2, .... eM ) and:

U = Z___ U(O()E , (2)
n=0 c

where U(() are vector coefficients of the monomials E. Substitution

of (2) into f(U) gives the analogue of (111.2.5):
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0() = O()) +Z Vf(U(O)) U(co E (3a)

00

+Z ~vf(u(^O)) -U(c') + y(U00): '3<,A]E' ,

(Homogeneity Property) given K = (kl,k 2 ,... ,kM), then:

f i(A=p: <c K Cf mp <C((3b)

Here 0=(0,0,...,0) (M components;). The term f,(U(p):p~<qY) is a

scalar function of the N-component vectors U(,1) for k"<I

Vf(u(8O)) = f (u(6d)), ... , 2-f (u(5DJ)

We shall actually substitute the series (2) into a vector function

F(U). For such a case, the properties (3) apply to the scalar

components Fi(U) individually.

The formal construction is patterned exactly oil that of the third

section of Chapter III. The N-componient system is

U' = F(U) (4)

with limit cycle Q(t) with period T(scaiar) , Q(O) specified. The

variational equation about the limit cycle is the Floquet system:

W VF(Q(t))W (5)

'The terms fq should he considered as defined by this equantion;

they are the analogues of the fuinctions Fn in (111.2.5).

=mold
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where VF is the matrix of first partial derivatives of the vector

function F. The fundamental matrix is assumed to have the form:

P(t) exp(-Dt) , (6)

where P(t) is a T-periodic matrix, with Q'(t) in the first column and

D = diag(O, Hif2 . with Re( ) > 0

jl It is always possible to write the characteristic matrix as

P(t)exp(Dt) with P(t) periodic and D in Jordan canonical form;

however, the real content of (6) is the assumption that the canonical

form of D be diagonal. The importance of this assumption is that

solutions of (5) can be written as products of exponentials and periodic

functions (so that Lemma A applies) rather than exponentials, periodic

functions, and polynomials.

Introducing the expansion parameters E=(el,e2,...,eN I ),

a series expansion:

U(t) = __ TJ(o(; t) (7)

is assumed and substituted Into (4). The resulting equations for IT(q;t)

(using Lhe notation of (3) are (y is scalar and 00 = (1,0,...,0),

C(2 = (0,1,0,... 0), etc.):

A
U'(0;t) = F(11(0;t)) with solution U(O;t) Q(t+/); (8a)
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U (0(i; t) -VF(Q(t+))U(( I; t), i 1 ,2,...,N-1;, (8b)

U'(cN; t) - VF(Q(t+,))U( ( ; t) + F,((U(Q; t). j3 < Ok2. (8c)

The idea is to pick the limit cycle as the first term, as has been

done, and then require all subsequent solutions to decay exponentially.

Consequently, we pick the N-i functions U(ci;t) to be the N-i

exponentially decaying solutions in (6):

(The colunns of P(t) in (6) are Pi(t), i - 0,1,...,N-1.)

We now show that all terms U(od;t) in the expansion can be written

in the form

U(o(; t) - exp( -4.J-(t+/))P@; t+/) (10)

where P('4;t) is a T-periodic vector function. Here /..is to be the

vector qf'-1..A-1;c/A, is the usual dot product. The

proof Is by induction on 0I' , which is clearly possible even though the

of's are not linearly ordered. Notice that (10) has already been

verified for I I-0,1.

For I-( f.: 2, assuming (10) holds for ~4< o', and using the

homogeneity property of F,, , (3b), (8c) becomes:

U1 (4~;t) -VF(Q(t+ 0)U(-;;t0 + exp(- q- (t+h) F (P(3; t+9): a<00. (11)
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Using the fundamental matrix of (6), the solutions of the general

equation:

WI - VF(Q(t))W + exp(-a(.t)K(t)

can be written as (C - constant vector)

r
W - P(t)exp(-Dt)[C +J exp(D-, 1 I)s)P- (s)K(s)ds

We are led to define (using Lemma A) a T-periodic vector F<(t):

(12)

A ~A -
^FC( ^0)+exp- = .fexp((D- d.I)s)P-1(s)F.,(P,(s)

and note that we must assume Re(fi- .%)OO, i=1,2,...,N-1, hence,

the general assumption: Re(ji)ORe(j. ) for all integer vectors

.Ic > 2.

Use of the general solution together with the definition of (12)

shows that a solution of (11) can be found in the form

U(o(;t) =exp(- (.(t+))P(t+ )?F((t+ ) (13)
-exp(- v(. (t+O))P(a(;t+O

with P(t)FC(t) T-periodic as claimed.

At this point, all necessary notation has been introduced, all

formal calculations are completed, and all necessary assumptions have

been mentioned. Before beginning the work on convergence, we state the

full theorem to be proved in this section.
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THEOREM 1.

Assume:

(1) F(U) is analytic at each point of the limit cycle

U - Q(t), 0 < t < T.

(2) In the Floquet representation P(t)exp(-Bt), P(t) T- periodic,

for a fundamental matrix of the variational equation (5), the

constant matrix B is simple and has eigenvalues:

o,'h;i > 0.

(3) The N-1 nonzero eigenvalues fi satisfy

Re ( Z 0 for i - 1,...,N-1

and all sets 0 I,2,...,dN-i of non-negative

integers with 57 > 2.

Then the solutions U(t) of (4) can be written formally in terms of the

expansion parameters E , (el,e2,...,eNj1) as

U(t) e pI t1 ex( ~) P o; t+ ) E, (14)
n0O I -Kl-

with P(c(;t) T-periodic and given by (12), (13). The series converges

for l ei I, i - 1,...,N-1 sufficiently small.
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Hypothesis (1) on the analyticity of F(U) has only been used so

far in formal calculations; its real importance is in the proof of

convergence. Hypothesis (2) is just a statement of the diagonalization

assumption of (6); hypothesis (3) occurred in connection with (12). The

formal calculation of (14) has been completed; all that is left to

prove of Theorem 1 is the convergence of (14).

The matrix norm

h~il - max ZalA a,

is used in the following discussion; for vector A, of course, it reduces

max Ia,tO i *

The first step in proving convergence of (14) is to obtain a bound

on the periodic coefficients P(c(;t). Consider (12) and set:

G(t) P- I(t)F4 (P(P;t): P<0.) - (g1(t), $0., gN(t)).

In (12) the ith component has the form (i - i,...,N; -0)

oexp(( il -j-ci )s)g(s)ds exp( (h -l - 't) ,i(t)'7 l,i(0)
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Using Lemma A.2 to estimate Fa'i(t):

U oT 1/2

[uP1I ,i(t) < 1gi(s) Fds

F IRe(r1 _...1-o,') I Im(1Vi-u _ Oft) I12

where the key point about the infinite sum on the right side is that the

infinite sum -)0 as I o 1+ vi . Consequently, the infinite sum can be

bounded by a constant an, independent of o. Thus, noting

I gi(t) 1 P-(t)F( I

supa^ sup iP(t)l ~~ I~P~)paI
[0,T] IP4,il S-- ao0,T)

Isup] l- l SUP]

-- o[0T] [0,T] ~(P ):8

Since IIP( ;t)II _ IIP(t)Il IPj(t)lI by (13), we finally have

SUP I I P(-(;t) 1I_ k [,T],I F(P(P;t): p<q) II, (15)

where k-a 0 [0T IP(t) I OT II P-(t)II,

independent of O ,t.
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The second step in proving convergence of (14) is the derivation of

a majorant series for F(U) in a neighborhood of the limit cycle.

For a scalar function f(U), U - (ul,...,uN), analytic at a

A

point U - A, a majorant series for f(U) at A is a function f(U)

analytic at A such that I B(AA < C(.), where B(4),C(of) are the

coefficients in their expansions about A:

f ZiIZ B(c4)(U - A)(, f()C(A)(U - A)
n-0 iin n-0l"(In

An important property of majorant series is connected with

composition: let f(U) have the majorant f(U) at U - A, and let two

series be given, E (el,...,eM),

U A + u(--)E-l V - A +__ V(wEl
n-1 -1I n

such that I ui(co) I< vi(s() for the components of U(oO,V(4),

10(12> 1. Then, in the composites:

f (U) - f (A) +T- Vf A)U00Eo'+ f(AUefUP)P00E

f()- ?(A) 2112 (A (( +[()(O^(() 0
I n=2 10 I nL nm2 c
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we have

If4(U(OW: P <o I ( *f 4(V(): 0("i'), 10 > 2. (16)

The inequality holds because all coefficients in f (U(p): P <0.), which

are only sums of monomials formed from coefficients in f(U), have been

replaced in f.(V(p); p <q) by the corresponding suns of monomials

formed from the nonnegative coefficients in f(U), and because the terms

in U(,z) have been replaced by the nonnegative terms in V(p).

AA
A vector function F(U) has f(U) for a majorant series at U=A

if f(U) is a majorant for each component fi(U) at U-A.

A majorant can always be chosen in a particularly simple form. If

f(U) is analytic at A, then

f(U) - E B(a)(U-A) (A)(U -(17a)n-0o n-O0 n U

where

AI -c(t 1 011 ... 0NI and E Of f

aul IuN
1 2 N

Let Ri  be the radius of convergence of f(U) with respect to

ut and choose 0 < R < Ri , i-l,...,N (R,Ri scalars, of course).
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Then, by Cauchy's Integral Theorem for several variables (Cartan, 1963,

Chaptek 4)

B() l- ( 1 f(Z) dz1 ... dzN
B(,() -- ()=Io~l ~ +

... ,... ,N

consequently,

sup If(z) I (17b)I ( >I pl'lI z,-all --R f(Z

R1 1

It follows that at U=A, f(U) has the majorant

Nr-,!ai
f(U) R

In the convergence proof for Theorem 1, we used a majorant series,

independent of t, for F(U) at each point U - Q(t) of the limit

cycle. To find such a majorant, first note that at each point Q(t),

0 < t < T, there is an open ball within which F(U) is analytic. Since

Q(T) is a smooth mapping, the curve Q(t), 0 < t < T, is compact and

can be covered with finitely many such balls. Therefore, there exists

an R > 0 such that F(U), expanded as a series about a point Q(t)

converges in an open set containing II U-Q(t)l <_ R for arbitrary t,

O < t < T.
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Expanding F(U) around a point U = Q(t), 0 < t < T, gives

F(U) - B( ; t)(U - Q(t)) , (18a)
n-0 I11 =n

where, by (17b),

II B(A; t) 11 sup I F(Z)lIII c ; ~l < RIc(I I zi-Q, t)l =R
i=1,... ,N

Consequently,

B(.(; t) 1 1 sup I I F(z)lI
Rj!"I izi-Qi(t)l =R

i=l,...,N
O<t<T

and the upper bound on the right exists because the supremum is taken

for a continuous function over a compact set. Therefore, there exists a

constant c, independent of t , such that

I I Bo.; tolI < c I (18b)

R"(

equivalently, F(U) has a majorant series at each point Q(t), 0 ( t < T,

of the limit cycle and the majorant

f (U) - cT ( , (18c)

has c,R independent of t.
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These two basic points, the recursive bound (15) and the majorant

(18), will be linked together by Lemma 2 below to give the convergence

result. The proof of Lemma 2, however, will require a slight

generalization of Liapunov's Lemma (which is Lemma 1 with M-i, see

Lefschetz, 1977, Chapter 5):

LEMKA 1. Let f(u) = c(l-u/R)-N, and let u 1 b(QE
n-1 011 wn

E (e1, ... , e) ,so that
A Ao

fAu f'iO) + E... f I(O)b(OO)E

1 1 =1
00 (19)

n=+ -I=n [0to)b(-X) + f (b(): <0 E

If I b(-01_ bko- conv--rg,,

k I f (b(p): 3 <001 , then b(u)E' converges
n=l I1-n

for I1E1 < d , where d depends only on c, k, R, N.

PROOF: From the series expansion (19), notice that

00
A

f(u) - (o) -f'(0)u U f (b(p): je < 00E
n=2 I1 =n

Next, noticing >7 bOE = b iei, where b1-b(1,O,...,O),

b2Ib(0,1,0,...,O), etc., consider

gue ..) , 0.
g~u~1,..,e.I 'E bil ei -u +k ?k(u)--f(O)-^'(O) U]i= 1
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Clearly g is an analytic function of u~e,..e M and at

u~ .. -.0,0,. ..,0, 0. By the implicit function theorem

for complex variables (Lefschetz, 1977, Chapter 1; a proof in the

simplest case f(z,w) = 0 is in Evgrafov, 1978, Chapter 4),

u-u(el,...,eM) exists as an analytic solution of ue .. ,)O

in a neighborhood of the point (0,0,...,0). Substitution of

00

u 'Zi-F- c(aO)E

into g =0 gives

and
c(c() kfc( CP): 3< 40'

from which cQO() > I b(ool for all 0( follows, giving a majorant for

the b('o-series. Q.E.D.

LEMMA 2.

Assume:

(1) F(U) is analytic at each point U =Q(t), 0 < t < T, with a

majorant independent of t,

f (U) c TT (1 R i it)
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(2) 21T_ P(c(;t) E with 0 < t < T and E (el,...,eM)
n-i 10( =I n

is a series whose coefficients satisfy

I P(-(;t 011_ k "OPr I IFX(P(,1; t) : < 0()l I

where the FV arise by setting

U = Q(t) +ZI--iI P(o(;t)E4
n=1 =ol-n

to give

F(U) = F(Q(t)) +E VF(Q(t))P(;t)E

+ VF(Q(t))P( ;t)+F0(P(3;t): P < E'
n=2 =n

Then, P(O(;t)E M  converges absolutely and uniformly
n=l I =n

on 0 < t < T for 11 E fl d, where d depends only on

c,R,k,N.

PROOF:

First, for 101 > 1, let B('o) be n-vectors with identical

components,

bi( ) = b(-() = 'OTp]I 0T 1PO'~
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A

Substitution into the majorant f(U) of

B - Q(t) + ZiZI ()
n=1 JA -n

gives

A A A 4K

f(B) = f(Q(t)) +,21 Vf(Q(t))B(co)E

6(20a)

+ il1 f(Qt))B(oo + f 0( (BQp): p <a( E~
n=2 i- =n

A

The property (16) allows us to compare F, and f.(

A

IIFat(P(P;t): f<II < f <a()

and using hypothesis (2) of the Lemma gives

A

I IF(, ; t)] I k f,(B(p): p0). (20b)

Notice that

00

f(B) - f(Q(t)) - Vf(Q(t))B(cK)E
n=1 I I =n

(20c)

Sc - - 1 R b),

where

b - b( E
1 =n(
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-NIf f(u) -C(l-u/R) , then

f~b) f(O + Z f'(O)b(~o(E

+ ZI I [A'(O)b(4g) + ~(b(p): P t 0
n=2 =n

so,

-N

R R n-'2If-un

Combining (20a), (20c), and (20d), gives

f 4 (~p: < 14) = f 0(b(,G): P < 0)

and inserting this equality into (20b) gives

Applying Lemma 1 to the last inequality gives convergence of

Zb(cC)E' for I I Eli I( d , where d depends only on c,k,R,N, which

is a t-independent majorant for Z1 P(o(;t)E-(. Q.E.D.

Finally, the majorant of (18) satisfies the first hypothesis and

the bounds (15) satisfy the second hypothesis of Lemma 2, and the

absolute convergence of ZIP(o(;t)Eo( forces convergence of (14). This

proves Theorem 1.



APPENDIX III

HIGHER-ORDER TERMS OF THE EXPANSION IN CHAPTER IV

This appendix derives the higher-order terms un,vn,n > 3,

and gives an inductive proof of the properties listed in (IV.2.2c).

The terms Un,Vn are basically determined by the coefficient

of Gn in the expansion (IV.2.1d); this coefficient is

F [Gu(U'v) Gv(UV)2

k+ -- n-iv & G u U V G v ( U[v) J 1 v n + ( 1 -o 2x 7 v -

k+1=n-

+ : (-v~+1 ( V 2 u, +2%7v

+(1-"a)~ ~ ~" v(ea 1. (er#)

k+l=n-1 kbk/Er ke ' ki A))

k+i+m=n-I A

+ o .n O Vn-i (term #2).

296
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The first order of business is to separate out all terms con-

taining the functions in-I' B n-i By induction and (IV.2.2c.6)

the terms UoV0,...Un lVn_1 do not depend on n-l; Bn-l only

occurs in u 1 , v n We split Term #1 in (1) into the following

parts:

(#1) , (#1a) + (#lb) + (#lc) , (2a)

• 11
(-'.n-I ;T + 2n-1 )U ( e )+21 OI+ 'U). -1U9

(#1Ma)
i (- n_. (-,) 2  _I'()+( 0 .. "(e)

(_n ,, O+27 V '( 6V 21-X ')0  Vin- I oG-,

I2

I4-(I+o0
(# b) * =-o 2+ 1 cn- 1 'I ) 2n-1 -. T 'rn- I. + (1-&

(v_ 1e2 O+217vn i. 7'4r'/01 2vn_l,&k0 )

n-1,V O n- I& 'F
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(fic) kIc, ,00

k~"- ~V~+ - cv 2/ +27vkeV )

+(1+c k6t 6V wm '-c)N

L kLm#0

+(l+.() ZI keV/. 74
k+1+m-n-I
k,Q,mO0

Here /'n-l occurs in (#la) only; Bn-l occurs in (#lb)

only; (f/Ic) consists solely of known terms.

To find the explicit dependence of (#lb) on Bn..1, we

substitute un..1,vn.. as given by (IV.2.2c.5) into (f/ic),

obtaining:
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F j (,.. 1+ C. .V ,2 ,B n -C 2 1+ ) , V 6 ,B1  (2b)"1

*(,+(+*)(-72 o+03t7/d 2 ))B ) U(e)

(#lb)
exp(-re) -B n-- 1 +( I )V 2Bnl- 2(1- .)7/6dVn n1

+9 O+(1+O(-V/+ 2  v ':0 ))B)- V(S

0 n-I & I-i

+ l.1o1 Vol B n-_I"¢

+ [Known remainder terms in u n1 ,vn-11

Term #2 in (1) will now be considered. As noted above,

will not occur in Fn,Gn; however, BnI will

occur in the terms containing unl)vn1. The following

lemma gives the dependence of FnGn on Unl,Vn1:

i
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LEMA 1. Given F(u,v), n n _v s ht
n'.0 n-O

f(u,v) - F(u0 9v ) + IF (u0,v)u+ F v(u .vo v.1I

+ IF f(u 0 v)u~ + F (u vV

n-'2

+ F (u09 u3....... n 1. v0,vl,.. 'vn-I ,n

then:

(a) I[uuovu221
F 2(u0,u1,V0,V 1) +2F .[F u0 v )u0+)u I uo1o+FIvl+ (u (Uov 0)v 1

+ F n~o..I -'V 0,...,v n 2) n > 3.

PROOF: For n > 2, notice

(utV)u +F (u )v +F _ A~n(F(u,v)) 0

uOOl 0QnvQ0' n n!T dei

I -A~) n-2 (F u +Fv +F u2 +2F u v+F 2
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If n-2, then (a) follows immediately. If n > 3, then Leibniz' rule

for differentiating products gives:

- )u + F(- 2 ) u v __F
*A{FinFv in ..2L IUu&UvvE un-l +uvue vvv )v n-11

+ ... + 2[F u.u +F (u v 1  u )+F v v +

where only terms containing f-derivatives of order n-i or n have

been kept. Setting E -0 gives (b). Q.E.D.

Using Lemma 1 to obtain the explicit occurrence of Bn1 in

Term #2 gives:

[(Fuu (U, V)u I+Fuv (UV)v1 )U+(Fuv (U,V)u l+Fw(U,V)v1 )V

Term#2 A, 
1B n1exp(-e

TG(U,V)u l+G(U,V)v )U+(G (U,V)u +G (UV)v 1 )Vj n -

+ known remainder terms in u0 ,v 0 , .. . un -Iv n 1

In order to prove statements like (IV.2.2c.6) on the structure of

the terms in un,vn, it is necessary to know something about the

structure of the remainer terms in (#lb), (#1c), and (#2). Using

induction and (IV.2.2c.5,6), we know the structure of the terms

uo,vo,...,Un1,vn_j; and from this information we can

make the following observations about the known remainder terms in each
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of (fib), (#1c), and (#2), and consequently for their sum which will be

represented by (3a):

(3a) The remainder term is a polynomial in the exponential terms

exp(-8) of order n-I, and can be written as:

in-1
Y- j exp(-ke)
k-O S U,,%e)

where each coefficient Rk, Sk is T-periodic in e.

(3b) Each Rk, Sk is a linear combination of T-periodic

terms in G with coefficients depending on the 9-derivatives of

','rS) n2(, , functions of ,o(O,.) , and the

functions Bl ,...,B n _2  and their derivatives.

(3c) In particular, the RO(?, ,L), S0Q(,.,&) term is

independent of the Bl,...,Bn_2 terms and the

coefficients of the T-periodic terms are polynomials in the

derivatives of /0(T, ).... ,n_2(', and functions of

/0(0,;); and these coefficients are such that if the -

derivatives of 0 ,),)0 as T-O+, then

RO, SoO also.

(In regard to (3c), no Bk can appear in RO,SO simply because

each Bk when it first appears is part of the product Bkexp(-e),
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and in all operations - differentiation, multiplication, the integration

below - nothing is ever done to separate such a product.)

Using (3a) to represent the general sum of the known remainder

terms in (#lb), (#lc), and (#2), the equation (1) can now be written,

showing the complete dependence on 9 n-, Bn-I. as:

u ::Z:2V F (U))]un

v n G (UV)G v(U,V) v n

+ [(n~1~cOV)2/0 /V()2l )VI U"V*(e)J

+~+ 1+o ~)+.2O+ v nO -

2(+O VnJV (2B 1 e) 7 'V e

+~$+c1 ~(~?,~3/2l 0I 2) )B ()
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(F (U,v)P10(T, , )+F ( V) Tis)U 1
(G [:(U,V)P O(-), 8)+Guv(UV)Q o.T;%C:e)U(OJ

uuv10 +FUVUv+ F(10(V

"+ ( (U,V)i- (U,,)+F G(U,v)V)2J( 1 fBQx(2

+3 Bkr~~) n-l (-k[&)

T2 A A

F U,(UV)T 2 u (,VU- S0 1,,sU( )

+ (BUI(s))Bsn--lVx(s)2rs)

LGU.(U,V)U +2G 10 ',)UV Guvu ) v)

-((F S1- k ) ((1 S )( 1-FVQ (Tb,) 's

Notice uu reemlac 10 th UV- and 0I emst
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T
1 S 1 ,,s)U'(s)-V'(s)R (,,,s) A
41 1 - ds h S'T)
oU'(s)V(S) - V'(s)U(s) ni A

we f inally have:

[u] [ e 1 [(6)

(-'~+(1+~h)V2 ~+n_ 1--m)/V+h (IT~)?'n-i.r1?'-1~ 1 0 n-i n-i1 i

2+ (B +(i-ch )V B +2(2 +Id -iQ lO ))7d.VB
n1 1 n-I 21 22 1 '0 n-i

+ 2-- exp(-k O).

Setting the coefficients of 6, eexp(-/I,,) to 0 gives (IV.2.2c.i,3).

The structural properties listed in (3) for the coefficients in Ro

* S0 ,R1 ,Sj together with the definitions in (5) give (IV.2.2c.2,4).

Setting An(Ir,I) - 0 gives (IV.2.2c.S,7), and (IV.2.2c.6) follows

from the structural properties listed in (3), which are not changed

under the 15 -integration resulting fromt applying Lemma D. This proves

(IV.2.2c) for n > 3.



APPENDIX IV

AN ALTERNATE APPROACH TO THE EXPANSION OF CHAPTER IV

FINITE SERIES FOR e

In the derivation of the expansion in Section 2 of Chapter IV, it

should be noticed that the original expression for ul,vl (IV.2.6a)

had the form

ri rIMLv= A1Q +) ....J

The function Aj(1r,) was arbitrarily taken to be 0; the equation

(IV.2.2c.1) for I resulting from the solution for u2,v 2 was a

consequence of this choice for Al. It seems plausible that we might

just as well have set = 0 and found an equation for A1 -- this

approach is investigated in this section.

In fact, instead of taking the sequence An('r, ) to be 0 (in

equations (IV.2.10) and (6)) and then obtaining equations for ,we

could take each , to be 0 and obtain an equation for An. In

this way, only the finite series t+A(T,l) would be required for .

However, in return for a simpler &, the higher-order terms are more

complicated. The study of these higher-order terms has not been

pursued; this section will only derive an equation for A1  to

306
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illustrate the idea. Since the equation for A1  is not solvable and

the equation for I Is solvable, the expansion of Section 2 is

preferable.

Briefly, the expansion of this section through O(E) is:

+ t+ 0 (r,S) + o(E2) , (la)

where A still satisfies (IV.2.2b.1);

[2]= (1 b)u0 Iv(e)]

as in (IV.2.2a);

= J,+(B (QT,S)+f(1r, )ex,(-tO) ,

(Ic)

where P10 , QI0, f are the sa-e functio:.s as in (IV.2.2b), and

Aj,B 1 are to be determined by u2 ,v2;

IT, (l+h 1 7 A1 l2 1+qm 1 ) V 67Al+g,(q,r )Al+h(,, , 5) ,(1d)
A 2

where g,h are polynomials in -derivatives of ., such that

g,hi*O if the .-derlvatives of O(QT, ) go to 0 as lr- +00.
J'V

If 0 ('r,S) satisfies periodic initial data, then its

dV d
derivatives decay exponentially fast in '1 to 0, as shown by Lemma 1
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of Section 3 In Chapter IV, so in (Id) g('r,l) and h(T,i) decay

exponentially fast in T to 0. The arguments given for (IV.3.5) could

now be repeated to show that

P  
I A 12 d

remains bounded as T-++0w. In short, the only important difference

between this approach and that of Section 2 appears to be the difference

in solvability of (Id) and (IV.2.2c.1).

To obtain equation (1), all calculations of Section 2 through

equation (IV.2.6a) can be carried out without change. Then (IV.2.2a)

becomes (Ib); (IV.2.6a) becomes (1c) when the 6 -term is eliminated;

eliminating the 0-term shows 0 satisfies (IV.2.2b.l), as mentioned

in (La). It only remains to derive (Id) by considering u2 ,v2.

The coefficient of 6 2  in (IV.2.1d) gives an equation for

u2,v2; if /1 = 0 this coefficient becomes (note (IV.2.7)):

u 20 - Fu (U V) v ( 'V u 2(2a)

v G(U'V) GF(U)V)u126,o u j 2
U~ G (+G( '(7 2 u+Y2/0u1 +27'd~i f71/01 2 ul~

2 2Ue"
+

1 ~ I
GFu(U,V)u I + 2F (,V)u v  + F (UV)v2

G { (U,V)u 2 - 2G (13,V)u v1 + oC (UV)v j



309

Now substitute u1 ,vl as given by (1c). The nonhomogeneous terms

will now contain functions periodic in & and products of exp(-)

and exp(- 2f9) with periodic functions of 9. Rewriting (2) to show

terms relevant to determining A1  gives:

[26 Fu(U,V) F +F(U,V)1[ 21 (2b

v)2Fv )'(UV) GF ,)(UV) v) 2

{-A rV O~irAV*+(1+-X)(V Av'+(V PfAj+27/'46VA )v,.jV01

1

+ A

G u (U,V)UP 10+G U(U,V)(U'Q 10 +VIP 10)+G v(U V)V'Q 10

r Fuu(U,V)(U' )2 +2F uv(U,V)U'V'+ vv (U,V)(V')2A2F2 2 2

G u(UV)(UI) 2+2G (u,V)uV'+ C (UV)(Vt)2
uuuv vv

P10QT~e
+ + terms in exp(-k), exp(- 2 f)i

where PIO, QI0 are known quantities, independent of Aj,BI,

and consisting of linear combinations of T-periodic functions of 6

whose coefficients are polynomials in the -derivatives of /0; in
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particular, if the -derivatives of A0 go to 0 as 1- +v, then

A A A

PI 0 ,Q0 0  also. (This last property of P10  follows from

property (IV.2.2b.4) of P10 ,Q10  and the fact that:

A 1 2 9 A

P1 ( u 10 + 2FuvPIOQ0 + F ; similarly for Q

Before applying Lemma D to (2b), it should first be simplified by

I
noticing the A,-term can be eliminated. Since differentiating the

equation for the limit cycle twice gives:

VITI F F " 7 F (U) 2+ 2F U.'V' + F WV) 2

Fu(U' ) 2  (V ,)2V'' G~ U +uu+UG)(V'u

G G LJ + GU) + 2G U'V' + Gvv

we can rewrite (2b) as

(u I I A2U,.)u 2 u' u Fv  u2- 1
1 6 (U v  v

(v 2  A, U") A2V" )

- 2 2~ A +2V'U-V )If
-A A - 0 rA 1 U"+(1+14)(V A U'+(720 1 ,*0 i'AI )U" 0

F U'P + F (U'Q + V'P + F V'Q
uu 10 uv1 10 vv 10

+

CGUIPl + G (UQ 1  + VP 10  + G VIQIO

rA1
+ A + terms in exp(-1ce), exp(-2,*&).
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In applying Lemma D to (2c), terms of &(e) will occur; these

terms can be eliminated by a condition on Al. To write this

resulting equation, we use hl, 11, ml from (5) and define:

v(s)u'(s) - U(s)VI '(s) r1

T (s)U'''(s) + U(s)V'''(s) ds

A f(q1
( uuU'P 10+uv(UQ 0+VP 0 )+GV'QI 0)-U(V uuU 1 O (U'QI

p 0 101
L 9

The equation for Al is then:

A1  = (1+c(h)V 2A 1 + 2(91+m 1)V/-VA (4)

++ mV 2 O + (r +O S)0V10 2 + fCt')]A1 + h(t,).

From (3) and the properties mentioned for P10 , Qi0, P1 0 ,

AA

Q10, we know f,h are polynomials in O-derivatives of (T,)

and that f,hO if the s-derivatives of /0 go to 0 as r-- O+*.
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