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CHAPTER I

INTRODUCTION TO REACTION--DIFFUSION EQUATIONS

Motivation for the Study of Reaction-Diffusion Equatiomns

This thesis studies certain problems connected with reaction-
diffusion equations which are systems of partial differential equations

of the form

e "j‘(g) + kv u, 1.1)
where u is an N-dimensional vector, K 1is a nonnegative-definite
diffusion matrix, and ‘g(g) is a vector reaction function. It will
usually be assumed that K 1s diagonal, which is usually the case in
application (but not always, see the Keller and Segel work described
later in this section). If K 1is positive-definite, of course, a
linear transformaion of u exists such that the diffusion matrix in the
new variables is diagonal. The kinetic equations of (1.1) are the

equations without the spatial terms:
St = B (1.2)

The kinetic system (1.2) will generally be assumed to possess a stable
1limit cycle solution ‘g(t) with period T, which is then a solution of
(1.1) also. This thesis is basically a study of the limit cycle as a i

solution of (l.1) with related results arising in the course of the

study.
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The first three sections of this chapter are introductory. The
first section is a discussion of results from biology and chemistry
involving kinetic processes or diffusion processes or both. This
gsection concerns both experimental work and mathematical models.
Although its main purpose is to provide background for the thesis
research, I have included material at the end which is not related to
the research here but which rounds off the discussion.

The second section discusses three papers on the mathematics of
reaction-diffusion systems, which I consider classics for their com
bination of breadth and rigor. This section goes into more detail
mathematically than the first. In these two éections, points arise
which have been pursued in this thesis and these points are mentioned as
they occur. The third section is a summary of the thesis itself.

The fourth section begins the thesis research proper with the
study of certaln reaction-diffusion equations processing explicit solu-
tions. The study of these equations illustrates the various types of

behavior which can occur as well as ideas from the papers of the second

section.

e e e g D

Systems of the form (1.2) arise in chemistry and in population dy-
namics. In population dynamics, u represents a vector of popula-
tions, e.g., of predator and prey. Both actual populations and solu-
tions of proposed model equations exhibit rich dynamical behavior, e.g., V :
periodic oscillations. For example, Solomon (1969) mentions oscilla- ‘

tions with a period of 30-40 days in laboratory populations of the

Australian sheep blowfly raised under limited food supplies (a small
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number of flies lays many eggs, the resulting population exceeds the

food supply, reduces to a small population, which in turn lays many i
eggs, etc.), and also gives examples of laboratory prey-predator systems
showing oscillations (predators eat almost all the prey, the predators
die off, the prey builds up because there is almost no predation, then
the predators increase, etc.). One of the earliest attempts to give a
mathematical model of periodic oscillations in a prey-predator system is

the Lotka-Volterra model (Lotka, 1956, Chapter 8)

du

It ru -duv,

dv

-&-E='dV+Puv, r, d,d,p)O. (1.3)

Here u and v correspond to the prey and predator populations, re-
spectively, and the uv-terms represent a decrease (increase) in prey
(predator) population resulting from their random meetings. The system
(1.3) is integrable and has a l-parameter family of periodic solutions.
However, this is too much of a good thing--the random effects of any
biological environment would cause the population to wander from one
period solution to another. The oscillations observed in practice,
however, are more or less fixed and resemble stable limit cycles, since
such dynamics would keep pushing a population, continually disturbed by
noise, back to a fixed period solution. Bazykin (1975) gives a
hierarchy of successively more complicated model equations, involving
reasonable assumptions on prey-predator interactions, many of which show

stable limit cycles as well as stable critical points.
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In chemistry (1.2) represents the kinetic equations for a chemical

system. The vector u gives concentrations of various chemical species
and 15(2), generally nonlinear, is determined from the chemical reac-
tions by the law of mass action. As a simple example of this law, if

the chemical radicals A,B unite to form C according to
mA + nB = C,

then the associated kinetic equations, where a,b,c represent mole-

concentrations of A,B,C, are

da

L2 . -x

m,n
a k
dc 1 2P +X% 6

db

LA

i 3 a4 k, ©, T (1.4)

dc

m, n
E—t' ksab-k

6 <
the rate constants kl’ ey k6 are empirical but various relations
exist between them (for instance, at equilibrium, ambn/c =k =
k2/kl - k4/k3 = k6/k5; also see Fermi, 1956, Chapter 6 for
the classic thermodynamical derivation of the dependence of the k1
on temperature).
(Lotka was very ‘'wavily influenced by ideas and methods of physi-

cal chemistry in his approach to biolegical systems. Tyson and Light

(1973) note that (1.3), aside from being used as a population model, was
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also presented by Lotka in 1920 as the kinetics for the hypothetical

chemical system

A+ U= 2u,
U+v-> 2y, (1.5)

v >

Note that these kinetics differ from those leading to (1.4) in that
there are no back reactions. In (1.3) wu,v correspond to mole con-
centrations of U,V. In the first reaction, A 1s assumed to be a
substance in great excess, hence of éssentially constant concentration,
and the reaction, in which the presence of U stimulates the production

of more U, 1is termed autocatalytic.)

Prigogine and Lefever (1968) proposed a simple model for a hypo-
thetical chemical system with a stable limit cycle solution. The reac-

tions for this model are (the ki are rate constants):

A—>U, (ky)
20 + Vv = 3u, (kz) (1.6)
B+ U—>V +0D, (k3)
U-> E (k).
If 3,%,6,3 are mole concentrations of A,B,U,V and the substances ﬁ

A,B are present in such large quantity as to stay essentially constant

in concentration, then the kinetic equations corresponding to (1.6) are
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(1.7)

A A
Appropriate rescaling of Q,b, G,v,t to a,b, wu,v,t reduces the

number of parameters, ylelding the system known as the Brusselator for

its place of origin:

du 2
qc = 2 (b+l)u + u'v,
(1.8)
dv _ 2
T bu uv,

Although Prigogine and Lefever (1968) note that the trimolecular auto-
catalysis (second teéction in (1.6)) may be physically unrealistic (and
in fact no actual chemical example is known for these kinetics), the re-
actions are still possible and the system is one of the simplest mathe-
matical models ylelding limit cycle solutions. The unique critical
point is at u =a, v =b/a and this point becomes unstable for

b > 32 + 1, yielding a stable limit cycle by a Hopf bifurgation, The
system has been intensively studied: numerical calculations and a rough
asymptotic study are done in Lavenda, Nicolis, and Hershkowitz-Kaufman
(1971), an asymptotic expression for the limit cycle period as b = + oo
1s obtained in Boa (1976), and Tyson and Light (1973) show -— assuming a
2-component chemical system with at most trimolecular reactions =-- that

stable limit cycles apparently can occur only for reactions involving an
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autocatalytic step of the form 2U + V => 3U and that the resulting

kinetic equations are all very similar to the system (l.7).

Interest in chemical oscillations increased when Belousov (1958)
discovered a fairly simple mixture (malonic and sul furic acids, bromate
and cerous ions, with the indicator ferroin) that oscillates in color
with a period of about half a minute; if kept stirred, the oscillations
will go on for hours. (Spatial changes discovered by Zaikin and Zhabo-
tinskii (1970) are discussed below.) Although the full series of reac-
tions involved is quite complicated, apparently involving 11 substances
(Noyes, Field, and K3rds, 1972a,b), a model based on 3 major components
(Field and Noyes, 1974) yields a limit cycle solution. The reaction can
be studied quantitatively in considerable detail using electrodes
sensitive to specific ions--see Noyes, Field, and Kdrds (1972a) or, for
graphs of concentration vs. time without a description of the
experimental method, see Kasparek and Bruice (1971). The existence of
periodic solutions for the three-dimensional Field-Noves model was
proven by Hastings and Murray (1975). Their proof is an excellent
example of a useful idea from the qualitative theory of differential
equations. They began by constructing a box with the three-dimensional
flow of the system entering every side, so that solutions necessarily
remained bounded, and containing a single critical point T4 with one
real negative eigenvalue and two complex eigenvalues with positive real
parts. They then split the box into 8 sub-boxes, centered at ry»
and showed that once an orbit entered one of a chain of 6 boxes, it
remained in and cycled through those 6 boxes. Finally, to show the

circult of 6 boxes contained a 1imit cycle, they found a portion of the
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surface of one box was mapped into itself by the Poincaré map (sending a
point in the surface to its image point in the surface under the kinetic
flow). This gives a continuous mapping of a portion of the plane into
itself and the Brouwer Fixed Point Theorem implies a fixed point. The
solution corresponding to a fixed point under the Poincaré map is the
1imit cycle.

In addition to this oscillatory inorganic reaction, a number of
organic oscillatory reactions are known (three examples with model
equations are mentioned in Prigogine, Lefever, Goldbeter, and
Herschkowitz-Kaufman (1969)). Of particular interest here is the case
of the synchronous fireflies (Buck and Buck (i976)). Certain fireflies
of the Far East (especially Thailand and Borneo) flash their lights
periodically with great regularity (period of .560 seconds at ambient
temperature of 25° C.). If a stimulus light--flashing at a different
frequency than the firefly--is applied to the firefly, the firefly's
frequency changes to that of the stimulus but with a precisely defined
phase shift. Furthermore, a treeful of these fireflies, initially
flashing at random, will gradually synchronize so that the whole tree
flashes on and off twice a second. Some rough modeling has been done on
this phenomenon (although the underlying reactions are unknown) and
there seems plenty of room for further study.

Winfree (1974) has discussed a very interesting way of using the
presence of a stable limit cycle to investigate the state space of a
kinetic system. Let E(t) be the stable limit cycle in R with
period T and 'E(O) be specified, so the limit cycle is uniquely

determined. If a point P close to the limit cycle is the initial
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point of a trajectory, then as t —+ 4+, the trajectory ~ g(t+¢) for

some ;4, 0< ﬂg_ T. The constant % i{s the asymptotic phase of P.
For a given ;5, one expects an (N-1)-dimensional surface, consisting
of all points with the same asymptotic phase ¢ and crossing the limit
cycle at E(%), to exist; these surfaces are called isochrons by
Winfree. Notice the experimental simplicity of the isochron structure:
for each initial point, simply measure one number, the asymptotic phase.
Winfree (1974) mentions several experiments in which the idea has been
used (although the experiments have generally involved mixtures of
cells, hence introducing diffusion across cell walls and complicating
the results). He also explores certéin experimental consequences of the
existence of isochrons. Asymptotic phase is an old idea in the theory
of differential equations, but results concerning it are more along the
lines of existence theorems than practical computational methods.
Winfree (1978) proposed the computation of isochrons (or asymptotic
phase) as a research problem, and this problem is studied in Chapter
I1I.,

Having discussed the origin of kinetic systems (1.2) in population
dynamics and chemistry and the importance of stable critical points and
limit cycles in physical situations, we now consider systems involving
kinetics plus diffusion (1.1). Diffusion arises here because of the
tendancy of a high concentration (whether of ions or animals) to spread
into areas of low concentration.

We shall first consider the effects of diffusion on the stationary

states of (1.1), which are just the stationary states of the kinetic

system. Turing (1952) was the first to recognize the importance of
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{including the diffusion terms with the kinetic equations. Naively, one
expects the addition of diffusion to a system to dampen solutions, hence
increasing the stability of any stationary states. Turing showed,
however, that a stationary state, stable as a solution of the kinetic
system, could become linearly unstable as a solution of the reaction-~
diffusion system (see the next section for examples). The diffusion-

induced instability became the basis of Turing's diffusion model of

pattern formation in biological organisms. Roughly speaking, Turing

proposed the existence of morphogens, substances inducing growth, which
would tend to concentrate themselves in certain areas and cause
developmental growth in those areas. His key point is that chemical
kinetics coupled with diffusion is sufficient to explain the existence
of discrete areas of concentration. For example, a morphogen (or
activator of growth) might be chemically changed by another substance
(an inhibitor, since it destroys the growth stimulating morphogen).
From kinetics alone, the two substances would tend to a steady state.
However, diffusion may act to destabilize that steady state, leading to
~— for example —-- alternating patches of high inhibitor and high

f activator concentrations, i.e., alternating patches of no growth and o

growth.

Turing advanced his model as a theory and did not attempt any
analysis of actual cases, although he did mention a number of relatively
simple blological examples which strongly suggested the sort of insta-
bility he proposed. For example, the Hydra is a tiny, transparent,

sacklike creature whose mouth -- the mouth of the sack -- is fringed

with tentacles. For simplicity, Turing had solved his equations on the
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circle. Applying separation of variables to his linearized equations
gave him an infinite set of periodic eigenfunctions, a finite subset of
which could bz unstable. An unstable eigenfunction would lead to
alternating patches of tentacle-producing morphogen with inhibitor
between, hence the Hydra's tentacles.

The aggregation of slime mold amoebae and the creation of poly-

clones in the imaginal disc of Drosophila melanogaster provide two

remarkable examples of Turing's theory of morphogensis.

In the absence of food (bacteria), slim mold amoebae first tend
to spread into a homogeneous layer over a surface and then begin aggre-
gation at a number of points (called'"centers"). At each center the
resulting clump of cells forms into a multicellular fruiting body,
generating spores. It is known that aggregation is mediated by acrasin:
amoebae follow increasing concentrations of acrasin. Keller and Segel
(1970) proposed a reaction-diffusion model for the aggregation of the
amoebae. Briefly, the simplified form of the model consists of two
components, amoebae density and acrasin density, and aggregation occurs
when the stationary state becomes unstable. The model predicts quali-
tatively what {s observed and, since all quantities are experimentally
measurable, quantitative comparison is possible. Interestingly, the
diffusion matrix is nondiagonal. Since the amoebae are assumed to move
away from high concentrations of amoebae and towards high concentrations
of acrasin, the flow of amoebae is a lincar combination of the gradients

of amoebae and acrasin, leading to g—% = V(DZVa - D1 Vp)

where a = amoebae density and p = acrasin density.
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The concept of polyclones requires some explanation. The
following description is based on Garcia-Bellido, Lawrence, and tforata
(1979), Crick and Lawrence (1975), and Kaufmann, Shymko, and Trabert

(1979). The egg of the fruit fly Drosophila melanogaster hatches, the

animal goes through three larval stages, and then becomes the adult.
The adult is formed from the histoblast and the imaginal discs, collec-
tions of cells which remain intact during the larval stages and which
take little part in laval development. There are 19 imaginal discs — 9
pairs and a single genital disc. Each pair generates a certain part of
the fly, the left and right members of the disc forming the left and
right members of that part. The wing disc, f§r instance, is associated
with the wings; the left wing disc produces the left wing and a portion
of the thorax at its base. It is estimated that only 15-30 cells form
the wing disc at the beginning fo the first larval stage; these cells
increase to about 50;000 in the wing disc at metamorphosis.

If a cell from the left wing disc is picked at some point before
metamorphosis, then the descendents of that cell form a patch on the
left wing. If the cell is chosen early, the eventual patch is large
because there 1is time for the cell to have many descendents; if the cell
is chosen late, the patch is small. Ingenious experiments have shown
that, at a certain point in the growth of the left wing disc, a boundary
line has formed so that cells on one side yield patches at the front of
the wing and cells on the other yield patches at the rear of the wing.
There is a well-defined boundary line, the same in all wings, separating
the patches. This boundary line separates the wing into 2 halves,

called compartments. The cells of one compartment form a polyclone,




a group of cells comprising all descendants of some original group of a

few cells (just as a clone consists of all the descendents of a single
cell).

In short, at a certain stage in its development, the left wing
disc has 2 compartments formed within it. One compartment becomes the
front of the wing, the other the rear. (It should be emphasized that
the boundary is an invisible one and can only be inferred by deter-~-
mining in which part of the wing the descendents of a given cell lie.)
As the wing disc grows, further boundary lines -- separating top from
bottom of the wing, etc. -— form. Figure la shows a sketch of the
development of 5 compartments in the left wing disc. Again, the
boundaries of these compartments are invisible -- there 1is no mechanical
basis for the separation.

It might seem necessary at first glance to assume a different
chemical basis for each boundary line formed. However, Kaufman, Shymko,
and Trabert (1978) have proposed a model explaining the successive ap-
pearance of the boundaries and giving their approximate shape using a
single 2-component reaction-diffusion system.

To illustrate their idea, consider a scalar diffusion equation
with no-flux boundary conditions on an interval of length 1

u, =u__+tuyu - u3, 0<x< gy u, (0,t) = u, (2,t) = 0.

t XX (1.8)

All solutions will be bounded in time by the -u3 term. The

linearized equation about the stationary state u= 0 is
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w, =w__ +w with solutions w_ = exp (\.t) cos(zﬂlx)
t XX n n 2

Ay= 1 -(“T">2 , = 0,1,2,.00 &
(1.9)
If f is small, only the "wave number” n=0 1s unstable; but as
increases, more values of n become unstable. These unstable solutions
of linearized equations can be expected to grow into stable, bounded,
spatially inhomogeneous, steady-state solutions of (l1.8). In other
words, as the interval grows larger, (1.8) can be expected to pick up

new stable steady-state solutions, referred to as stable eigenfunctions

of (1.8).

In the same way, as the wing disc grows, stable eigenfunctions of
a hypothetical 2-component system are expected to arise, and their nodal
lines are assumed to furnish the boundaries of the compartments.
Kaufman, Shymko, and Trabert did calculations to find the eigenfunctions
and thelr nodal lines for the (linearized) 2~component system on an
ellipse, which should approximate the nodal lines of the nonlinear
eigenfunctions. The sequence of nodal lines for the first 6 eigenfunc-
tions is given in Figure 1lb; the superposition of the nodal lines is
also given -- note the remarkable resemblance to the actual wing disc!

Incidentally, Kaufman, Shymko, and Trabert used the ellipse as an
approximation to the (left) wing disc because it was the most compli-
cated geometry for which the (linearized) equations could be solved
exactly. Another reason for using the ellipse instead of the mathe-
matically simpler circle has been mentioned by Hiernaux and Erneux

(1979): in going from the circle to the ellipse, symmetry lessens and a

richer family of eigenfunctions and nodal line patterns appears.




We now move on to further remarkable behavior in connection with

the Belousov~Zhabotinskii reaction. Zaikin and Zhabotinskii (1970) re-
ported that when the Belousov reagent is observed in a thin layer
(~1-1/2 mm) concentric outward-moving bands of color appear. Speci-
fically, let the Belousov reagent be chosen so that the color oscilla-
tions are between blue and red. If the red mixture is poured into a
thin layer, it will spontaneously develop small blue spots which grow,
each of which then develops a red spot at its center, which grows and

develops a central blue spot, etc., eventually forming an expanding

series of red and blue rings, or target patterns, in Howard and Kopell's

terminology. Winfree (1972, 1974) discovered the existence of spiral

waves spontaneously generated by the Belousov-Zhabotinskii reagent and

demonstrated that the initiation of the patterns was due to dust on the
surface of the solution or irregularities on the surface of the
container.

The basic question in these pattern developments concerns the

g

mechanism by which the patterns sustain themselves. Does the inter-
action of chemical kinetics and diffusion alone suffice for an explana-
tion, or is some further mechanism at work? Kopell and Howard (1973)
made the first rigorous investigation of this problem. Since the wave
fronts for both circular and spiral waves are almost parallel at large
distances from the center of the pattern, they considered the question
of the existence of periodic traveling wave solutions (wave fronts
exactly parallel), that 1is, solutions of the form U(bt - 5-5), to
(l.1). The kinetic equations of (l.l) were assumed to have an unstable

(spiral) critical point and a stable limit cycle. They found that
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traveling waves could arise as perturbations of the critical point--
these could be shown to be linearly unstable as solutions of (l.1).
They also found traveling waves arising as perturbations from the limit
cycle—stability in general could not be shown for these, but linear
stability in a special class of cases could be shown. Their results
indicated circular and spiral waves arose from the limit cycle solution.
Many suggestive calculations to show the existence of circular and
spiral waves have been done (Ortoleva and Ross, 1974; Kuramoto and
Yamada, 1976; Yamada and Kuramoto, 1976). Greenberg (by formal calcu-
lations in (1976) and with a rigorous proof in (1978)) proved the
existance of circular waves for reaction-diffusion equations. Cohen,
Neu, and Rosales (1978) gave a rigorous proof of the existence of spiral
waves for reaction-diffusion equations. In both these proofs the
circular and spiral waves were constructed from the limit cycle.solu-
tion, showing it to be the source (modified by diffusion) of these
remarkable waves, that is, the kinetics and diffusion alone suffice to
explain their existence,

In this section we have considered~-from both the physical and the
theoretical sides~—a hierarchy of situations. Kinetics alone give
equations of the form (1.2); the main solutions are the stable critical
points and the stable limit cycles. When diffusion terms are added (as
Turing showed they should be) to form (l.1), the stable critical points
and stable 1limit cycles give rise to new types of solutions, which

appear to be adequate to reproduce the pattern formations observed in

biological and chemical systems. It should be emphasized that few of
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the systems which have been mathematically studied are claimed to be
models of a specific biologial or chemical system.

Before continuing with the more detailed discussion in the next
section, I wculd like to round off this discussion of reaction-diffusion
equations by mentioning other types of “simple” solutions, namely,
fronts and pulses.

Traveling waves in general for (1.1) are bounded solutions of the
form U(5), § = bt - k-x, which converts (1.1) into a system of

ordinary differential equations (ODEs) of order 2N:

u' = F(U) + RU", (1.10)
~ ~ o~ ~
Periodic waves with E(g) periodic have already been discussed. Two

other 1mportant types of waves occur when lim g(;) exist: fronts,
ke )

when H(-m) # E(+aﬁ, and pulses, when H(-aﬂ = E(+m). Note that for
these wave solutions to exist, BQta9 must be critical points in the
2N-dimensional phase space for (l1.10). A trajectory connecting two
different critical points is called heteroclinic and a trajectory which
leaves from and returns to the same critical point is called homoclinic.

The equaticvn

u, = u + f(u), f£(0) = f(1) =0, f(u) >0

and concave on (0,1),

£'(0) =a> 0, £(1) =-6<0, (1.11)
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occurs In a simple model for the spread of favorable genes and was

studied by Kolmogorov, Petrovsky, and Piskunov {KPP) in 1937. Their

T e S e o

work is discussed in Sattinger (1976). They showed (1.11) péssesses a
traveling front solution, U(S), §=x+ct, U(-® =0, UHm) = 1, U(%)
monotone, for ¢ > Z/q’% and obtained some stability results for these
wave solutions.

Huxley's equation,

u, = U + u(l=u)(u-~a) (1.12)

)
has traveling fronts given exactly by U(%) = 1/(1 + exp(- S/Zé)),
c = 2&0% - a). It arises in connection with the FitzHugh-Nagumo equa-

tions discussed below; Fife and McLeod (1975) obtained stability results
for these waves. '

In 1952 (the same year as Turing's paper) Hodgkin and Huxley
published a quantitative theory of the action potential for the squid
glant axon. Roughly speaking, the external parts of the nerve cell are
the cell body, small short fibers called dendrites, and an especially
long fiber called the axon. At rest, the nerve cell maintains a certain
negative potential across its cell membrane, negative inside relative to
the outside. Small inputs of current are received over the surfaces of
the dendrites and the cell body, increasing or decreasing the membrane
potential (in particular, the potential at the base of the axon, called
the trigger zone) until a threshold value is crossed, at which time an

action potential--a sharp spike of high positive potential--is generated

at the cell body and travels down the axon.
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Hodgkin and Huxley (1952) modeled the action potential in terms of 4

components governed by a system of equations of the form:

v =V + f(V,W)
xx ~ (1.13)

e = ,%(V’E)’ )

where V(x,t) 1is the membrane potential and ‘8 is a 3-component vector
for quantities determining the conductance of the membrane to sodium and
potassium ions. The components of W are identified with “"potassium
activation, sodium activiation, and sodium inactivation” (the physical
mechanisms governing them are currently under study by numerous inves-
tigators). Hodgkin and Huxley were able to determine experimentally the
forms of £ and ,% and, Integrating the equations on a desk calcu-
lator, obtained pulse solutions corresponding to the action potential,
They received the 1963 Nobel Prize for their work.

The 4 variables of the Hodgkin-Huxley system make it extremely
difficult to investigate mathematically. Fitzlugh (1961) derived a
2-component model for the kinetic part of the Hodgkin-Huxley equations,
and Nagumo, Arimoto, and Yoshizawa (1962) added spatial terms and
devised an electrical circuit as a representation of the system (the

representation was possible because the nonlinear part of the

2-component system corresponded to van der Pol's equation, which models

the triode oscillator). The resulting FitzHugh-Nagumo equation {is

etyessvag,




u - Y + a(i-u)(u-a) - v

(1.14)
v, = bu,

where b > 0 1is very small, (Huxley's equation arises from b = 0,
v = 0.) Hastings (1975) and FitzHugh (1969) review work on the
FitzHugh-Nagumo and Hodgkin-Huxley equations. (General surveys on
reaction-diffusion systems are Cohen {1971) and Fife (1978a, 1979),)

Hastings (1974) and Carpenter (1974) have shown the existence of
periodic waves to the FitzHugh-Nagumo equations; this does not follow
from the general results of Kopell and Howard (1973) since the diffusion
matrix 1is singular, Hastings (1976a), besides giving material on the
periodic waves, proves the existence of pulse solutions for the
FitzHugh-Nagumo equations——numerical work bad indicated such pulse
solutions existed. lastings (1976b) proves the existence of pulse wave
solutions to the Hodgkin-Huxley equations,

The existence of traveling fronts and pulses is far harder to show
generally than the existence of periodic waves. Typically, fronts and
pulses do not arise as any sort of small amplitude perturbation (in
contrast to perlodic waves arising by a Hopf bifurcation) nor do they
arise as perturbations off some easily studied large amplitude solution
(as in the case of large amplitude waves arising by perturbation off a
limit cycle)., To illustrate the difficulties, consider the problem of
proving the existence of a front by showing the existence of a trajec—

tory connecting two critical points in the 2N-dimensional phase space

associated with (1,10). The linearization neat each critical point




22

yields the beginning and end of the trajectory, but joining the two

P segments requires some difficult work (assuming it 1s possible in the

; first place). Shooting methods can sometimes be used, but these are

generally only for the scalar case-—see the discussion of the KPP
equation in Sattinger (1976). A curious aspect of fronts and pulses
(the stable ones, at least) is that they can be calculated more easily
by solving the full PDE system numerically than by calculating the
corresponding trajectory as the solution of a system of ODEs. Initial
data 1s almost sure to evolve to the traveling wave for the PDE solu-
tions. However, trajectories initially close to the wave trajectory in
the phase space for (1.10) usually diverge e#ponentially, so that
extremely small numerical errors ruin the calculation. The quantitative
study of fronts and pulses has been mostly nuamerical; a notable excep-—
tion is the work by Casten, Cohen, and Lagerstrom (1975), who construct
an approximation to the pulse wave for the FitzHugh-Nagumo equations.
Rinzel and Keller (1973) give a very interesting approach: the non-
linear part of the FitzHugh-Nagumo is replaced by a (discontinuous)
plecewise linear approximation. The traveling waves can then be found
explicitly and their stability studied. This is a very powerful idea
for obtaining information about the qualitative behavior of solutions
and it should be used more frequently.

Evans has written a series of papers aimed towards the study of
the pulse solution of the Hodgkin-Huxley equations. He studies (1.13)
with ,E an (N-1)-component vector. Evans and Shenk (1970) prove the
existence of solutions to (l.13) using a Picard iteration argument; a

boundedness result is also given, see the remarks on the Chueh, Conley,
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and Smoller paper in the next section. Evans (1972a) proves a stability
result for the traveling wave solutions g(x-*ct) of (1.13). The result
1s especlally interesting since it involves the concept of asymptotic
phase for solutions of (l1.13). To explain this idea, it 1s more con-
venient to use the notation of (l.1), with K = K, = diag(1,0,...,0),

so that uj; corresponds to V and up, ..., uy to XJ’.

If u ==)5(x+ct) is a solution of (l.1), then ;f(x+ct+h) is also
~N ‘N~ A
a solution for all h. Let %(xﬁ-ct) be some fixed traveling wave solu-
~
tion and switch to moving coordinates by setting y = x + ct. The
system (1.1) now becomes (v(y,t) = u(x,t))
~ ~

(1.15a)

+ = +
MOV

yy

with the solutions @ (y+h) = v. Now the most that can be expected so
ro

far as stability is concerned is that initizl data of the form

ﬁ(y) + € f(y), € small, will evolve to y/((y+eh) as t - +00 in

'~ ~ int

(1.153), where €h 1is the asymptotic phase resulting from Ez(y).

Furthermore, the linearized system about ,g/(y) obtained by setting

v(y,t) =g(y) + w(y,t) in (l.15a) and dropping nonlinear terms is
~n ~n

we cy, = VF (g(y)) v+ Koﬁyy' (1.15b)

which has é‘(y) as a solution, corresponding to a O-eigenvalue of this
linear operator. Thus, even if the remaining spectrum has negative real

part, initial data x(y,o) will not decay to 0, but to some

~
hg (y).




Consequently, Evans is forced to define stability in the following

way. The linearized system (1.15b) is exponentially stable at @' if

Fa)
solutions decay expoentially to h;d’(y) for some constant ﬁ, and the
n

full system (l.15a) is exponentially stable at # if initial data ;K(y) +
7S N

65()’) decays exponentially fast to g(y+eh) for some h. Evans' main
theorem is that (l.15a) is exponentially stable at 2é if (1.15b) is
exponentially stable at g{', i.e., the linearized system determines the
stability of the nonlinear system. A constant solution is trivially a
traveling wave and Evans (1972b) applies the stability result to
constant solutions of (1.13), since the linearized system has constant
coefficients and is relatively easy to study. Evans (1972c) returns to
the full traveling wave and considers the linearized system further,
investigating ways of calculating the spectrum. Evans and Feroe (1977?)
apply the results of (1972¢) to numerical calculations for traveling
waves in the actual Hodgkin-Huxley equations.

Sattinger (1976) proves results analogous to Evans for other
systems of the form (l.1). Roughly speaking, for systems (l.1) with K
a positive-definite diagonal matrix and possessing traveling waves
u =jé(x+ct), Sattinger shows that if the spectrum of the linearized
system (except for the eigenvalue 0 resulting from the solution g{')
lies in the left-half-plane and can be bounded strictly away from the
imaginary axis by a parabola «x - -ay2 + b, a,b > 0, then in the full
system (1.1) initial data of the form &f(y)+§£(y) (y = x + ct) converges
exponentially to fé(y+éh) for some constant h.

A second aspect of Sattlinger's work of importance equal to his
stability result 1s his introduction of weighted sup norms (both Evans

and Sattinger use sup norms for their stability results), for instance,




————

oty = sup | exp(ey) uty) .
~0l y< +m

The basic reason for introducing such a new norm is that the hypotheses
of the stability theorem may not apply 1f the usual sup nomm 1s used
because it may not be possible to bound the spectrum away from the
imaginary axis; the spectrum is shifted under the weighted norm and the
hypotheses may then apply. The weight function 1s chosen to relate
solutions of the linearized system to the adjoint system to help in

calculating the spectrum (Sattinger, 1977).

Basic Ideas Illustrated by Three Classic Papers

The purpose of this section is to study three classic papers on
reaction—diffusion equations by discussing their content, illuétrating
their content by explicit calculations, and discussing related work. 1In
approaching the very broad class of partial differential equations
represented by (l.1), it is useful to keep some basic questions in mind
to aid in fitting together pieces of results from different papers. 1
shall mention three such basic questions and then proceed with the

detailed discussion of the papers.

Question 1. Do "simple” solutions of (l.l) exist?
“Simple” here means possessing "notable” qualitative features and

does not refer to ease of calculation., Examples of what we mean by

simple solutions are described below.
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l. Stationary states of the kinetic equations (1.2) are spatially
homogeneous solutions of (l.1). Limit cycle solutions of
(1.2) are spatially homogeneous, time-periodic solutions of
(1.1).

2. It can be shown (see Kopell and Howard below) that traveling
wave solutions of (l.1) exist under fairly general conditions.
These solutions are found by assuming u = :(bt - 5 .5)
where b 1s a constant scalar and h is a constant vector
which reduces the system (l.l) to a system of ordinary
differential equations. (The same assumption, of course, can
lead to wave fronts or pulse solutions, or pulse trains.)

3. As mentiloned in the first section, circular and spiral wave
solutions can be shown to exist for certain cases of (1.1).
Although more complicated than periodic waves, their
construction (at least in some cases) reduces to the solution

of a system of ODEs.

Notice that only solutions on the whole space (R") are men-
tioned. On a finite domain with boundary conditions the existence of

simple solutions is a much more complicated problem.

Question 2. Are these simple solutions stable as solutions of (l1.1)?
Basically, this question is concerned with the long~time behavior

of solutions of (l.1). The experimentalist hopes that messy initial

data will evolve into some well-defined easily-observed data that are

close to a simple solution. A necessary condition for a simple
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solution to occur as the 1limit in the long-time behavior is stability.

Question 2 brings up the definition of stability. A precise dis-
cussion of stability involves the various types (for instance, so(t)

18 stable if solutions initially close to 30(0) remain close as

ty+e; go(t) is asymptotically stable if solutions initially close

converge to Bo(t); 30(c) is orbitally stable if solutions ini-

tially close converge to 30(t+5)) in the context of spatially de~
pendent systems, the choice of a norm (for instance, L, oOr Lg), the
problem of whether stability in one norm implies stability in another,
the question of when linear stability implies "actual” stability, and so
on. I shall avoid extensive discussion by simply noting that in prac-
tice stability usually means linear stability (which is still extremely
difficult to handle in many cases) and that further results are avail-
able (the results of Evans (1972a,b,c) and Sattinger (1976, 1977) men-
tioned in the first éection, of Chueh, Conley, and Smoller (1977)
below). .

1f the simple solutions are unstable (in some sense), they cannot
be candidates for the long-time behavior of the system and are usually
of no further interest. (But not always! Turing's theory (Turing,
1952) of morphogenesis is based on the loss of stability of stationary
states as solutions of (1.1).)

All three papers discussed here are concerned with various aspects
of stability: Turing (1952) gives Iimplications of instability, Kopell
and Howard (1973) obtain two important linear stability results, and
Chueh, Conley, and Smoller (1977) consider the related question of

boundedness of solutions.

i s AN s e
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Question 3. 1If a simple solution exists and is stable (in some sense),
how can its notable characteristics be calculated?

The point here is to obtain mathematical information on any
properties an experimentalist may find measurable, for example,
amplitude, wavelength, frequency, wave speed, asymptotic phase.

Of the three papers, only Kopell and Howard give results related
to Question 3: the explicit solutions of the A-w systems and the
numerical solution of an integral equation for periodic traveling waves
(discussed in Chapter VI). This bias towards qualitative results is
typical of the whole field of reaction-diffusion equations because the
rich qualitative behavior of the systems is still being vigorously
investigated and powerful methods are available for qualitative results
(for example, geometric arguments for boundedness and the qualitative
theory of dynamical systems for obtaining special solutions).

These three questions concerning the existence, stability, and
calculation of "simple solutions” describe major activities in investi-
gating the reaction—diffusion equations (1.1).

The papers discussed in this section are classics because they
derive broad, basic results with full mathematical rigor. These papers
are:

1. Turing (1952), as mentioned in the first section, shows that ,‘

the addition of diffusion terms to a kinetic system may make
(kinetically statle) stationary states linearly unstable.
2. Kopell and Howard (1973) prove the existence of periodic

traveling waves for reaction-diffusion equations under certain

conditions. One type of traveling wave arises from a
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(kinetically unstable) stationary state by a Hopf

Ly e —————

bifurcation--these are shown to be linearly unstable as

solutions of (l.l). The second type occurs as a type of
perturbation of the kinetically stable limit cycle--there is
some evidence that these are stable.

3. Chueh, Conley, and Smoller (1977) give a remarkably simple
geometric criterion for showing boundedness of solutions of
certain reaction-diffusion systems, leading to stability
results.

Beginning with Turing's paper, consider the two-component

reaction~diffusion system

u = F(u,v) + (1+a) 72y
(2.1)

v, = Glu,v) + A-07%v, a1

(Any two-component system (l.1) can be placed in this form by rescaling
the space variables.) Let (u,v) = (0,0) be a stationary state of the
system and linearize about this solution. Keeping the same letters u,v

for the dependent variable in the linearized system, it can be written

as h

u, = Au + Bv + (l+d)V2u

(2.2)

v, = Cu + Dv + (1-a) Vzv, ld'ﬁl, ]




where A = Fu(0,0), etc., define the constants A,B,C,D. Separating

variables by setting (u,v) = (ﬁ(t)exp(—ih'b), G(t)exp(-ib-x))

(equivalently, Fourier transforming) yields the system

?’: - AY + B - (a6

(2.3)
’\‘rt - Ch + D% - (1-00k29, laf <1.
The general solution of (2.3) has the form (Q3,9) = (GO exp(+At),
Qo exp(+At)), where A satisfies the characteristic equation
A2 - A+ D - &%) A+ (AD - BC - ((1-4)A + (1+&)D)K?
+ (1-a2*y = 0. (2.4)

The stationary state is linearly unstable as a solution of (2.1) if the
characteristic equation has roots A with positive real part. Turing
assumes the stationary state is stable as a solution of the kinetic

system (that is, when k2 = 0):

A +D <0 (the sum of the roots is nonnegative)

AD - BC >0 (the product of roots 1s nonnegative) (2.5)

Since A+ D - 22 < 0 for K2 > 0 follows from (2.5), the sum of
the characteristic roots in (2.4) is always negative for k2 > o.
However, the product need not stay positive, in which case a positive

characteristic root (i.e., instability) occurs.
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Specifically, positive roots of (2.4) occur for
|d| = + 1 (singular diffusion matrix), (1 - «&)A + (1 +d)D

=E; >0 and K > (AD - BC)/E,; (2.6a)
|“| < 1 (nonsingular diffusion matrix), ((1 =~ d)A + (1 + o()D)2

= 41 =«)? (ap - BC) = E2 > 0 (E, > 0), and (2.6b)

2 2 2
(E1 - Ez)/Z(l -dA7) < k"« (E1 + Ez)/Z(l - o7y, *

These 2 cases, dependent on the nature of the diffusion matrix,
are typical in studying reaction-diffusion equations: many general
results require the assumption of a nonsingular diffusion matrix, and
either the proof does not carry over or the result actually does not
hold in the singular case. From (2.6), for example, the (kinetically
stable) stationary state is always linearly stable to perturbations with

large wave number k2 when the diffusion matrix is nonsingular; when

the matrix is singular, it may be unstable for all sufficiently large
k2,

Turing (1952) used this diffusive destabilization of a steady
state solution as the basis of his theory of morphogenesis, discussed in
the first section. His stability results were extended by Othmer and
Scriven (1969), who did a thorough study of the effects of diffusion on
stationary states of all types of kinetic stability and instability.
They gave a complete linecarized analysis of two component systems with

some results for three-component and higher dimensional systems.

*This condition can be vacuous if E; + E; < O.




After the work of Turing (1952) and Othmer and Scriven (1969), che

next natural step would be to lool at the stability of limit cycle solu-
tions of (l.1). The complication, of course, is that even for linear-
ized stability, the resulting variational equation is a Floquet system
with coefficients independent of space variables, but periodic in time.
This step, however, has been passed over in the literature - although
the lack of work on it has been mentioned in Kopell and Howard (1973)
and Othmer (1977) -~ probably because attention has been focused on
traveling waves and more complicated solutions. Chapter Il of this
thesis studies the linear stability of the (kinetically stable) limit
cycle as a solution of (1.1); chapter IV discusses perturbations of the
limit cycle as solutions of (1l.1).

The second classic paper, Kopell and Howard (1973), was intended
as a first step in studying the circular waves (or "target patterns” in
Kopell and Howard's terminology) occurring in the Belousov-Zhabotinskii
reaction. In their original announcement of the occurrence of circular
waves, Zalkin and Zhabotinskii (1970) presented a rough model to explain
the occurrence of the circular waves., The assumptions of this model,
however, were rather ad hoc - for instance, points were assurned to exist
in the solution at which the underlying periodic reaction proceeded with
frequencies different from the bulk reaction, with no explanation of how
such a difference could be maintained. Kopell and Howard wished to show
that diffusion, added to the kinetics, sufficed to produce the waves.

Since circular and spiral waves at great distances from their centers

have almngl parailei wave fronts, Kopell and Howard decided to
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investigate the existence of traveling wave solutions U(bt - k * x)
N ~ ~
(i.e., perfectly parallel wave fronts) to (l.l).

They were aided in their studies by a remarkable set of equations,

the A-w systems,

u A(R) ~uR)] [u 72y
= + . (2.7a)
v w(R) A(R) v Vv

Using the transform (u,v) = (R cos §, R sin ) ylelds

R, R A (R) V2R - RV 2]

= + . (2.7b)
be w(R) J %VR-VH qu,

Setting q»= bt - k*x, R =R, constant, gives the explicit
NN

solution
2
u = Ro cos(bt - k°x) A(Ro) =k
~o with (2.8)
v = Ro sin(bt - k*x) w(Ro) = b,

The usual assumption on the system is A(R) > O on [0, R), MR) = 0,

and A(R) € 0 for some range R > E. Under these assumptions the
kinetic equations of (2.8) have an unstable spiral point at (u,v) =
(0,0) and a stable limit cycle (U,V) = (R cos(wt), R sin(ot)) with
&=-tv(§), and periodic traveling waves exist for all amplitudes 0 <

< R.

&
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For the A-uw systems with their traveling waves of all amplitudes
Ry 0 < Ry < R, it seems equally plausible that the waves
“originated” as a perturbation from the unstable stationary state or as
a perturbation off the stable limit cycle, Consequently, Kopell and
Howard considered the general problems of waves arising in the system
(1.1), with the assumption that the kinetic equations either (a) possess
an unstable spiral point (for an n-component system, a critical point
with a pair of conjugate complex eigenvalues with positve real part) or
(b) possess a stable limit cycle. In other words, substituting u =

u(bt ~ kex) into (1.1) gives the system
~ ~

bu' = F(u) + k2K u". (2.9)
~ N ~

Kopell and Howard considered whether this system possesses periodic
solutions given that the kinetic system 2' = E(ﬁ) has either (a) an
unstable spiral point or (b) a stable limit cycle,

The Hopf Bifurcation Theorem (Hopf (1942), translated by Kopell
and Howard in Marsden and McCracken (1976)) was used to prove existence
of periodic traveling waves for (2,9). Roughly, the Hopf theorem says
the following: Suppose a 2-component kinetic system has a stable spiral
point, so all trajectories over some region in the plane flow into that
point, Let the system contain a parameter and suppose that as the
parameter varies, the real part of the complex conjugate eigenvalues
changes from negative to positive - the c¢ritical point changes to an
unstable spiral, Then, for some small range of parameter values just
after the instability appears, the flow far away from the critical point
remains inwardly directed because it 1s little affected over the small

range of paramter values, tNear the c¢ritical point, however, a drastic




change in behavior has taken place ~ the ingoing flow has changed to an

outgoing flow. The outgoing flow at the critical point meets the in-
coming flow still present in outlying regions, and a periodic solution
appears where they meet. This periodic solution is the Hopf bifurca-
tion, a periodic solution appearing when complex-conjugate eigenvalues
at a critical point change their real part from negative to positive.
The same geometric picture holds for multi-component systems; it is only
necessary to consider the flow on the 2-dimensional manifold
corresponding to the two conjugate roots.

Kopell and Howard showed that (2.9) in the 2-component case, under
mild assumptions, possesses 2 palrs of complex—conjugate roots, and that
for a certain relation between b and kz, a pair of these roots
crosses the imaginary axis. When i(his crossing takes place, the Hopf
Theorem applies to give the existence of small amplitude periodic
solutions to (2.9), i.e., small amplitude period traveling waves. The
proof extends to the n—component case.

Kopell and Howard also showed that traveling waves originate as
perturbations off the limit cycle solution. In this case, k2~ 0
and b ~ 1 1in (2.9), which is rewritten as an integral equation. An
iterative argument, with the limit cycle R as starting function, then
constructs a periodic solution to (2.9) and a frequency b(kz), vhere
k2 is considered fixed.

The integral equation used by Kopell and Howard 1s not the most
obvious choice, and I was long puzzled why they chose it. Some digging

in the literature has clarified this point. Briefly, the problem they

considered could be described as the persistence of periodic solutions
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in autonomous systems under singular perturbation (since k2 ~ 0
multiplies the higher derivatives in (2.9)). Although several closely
related problems (such as the case for nonautonomous systems) had been
dealt with -~ and these will be discussed in some detail in chapter VI -
the closest result appears to be a series expansion for the perturbed
periodic solutions due to Wasow (1976). Wasow's series, however, is

only asymptotic -~ he was not able to prove convergence (and, strictly

speaking, did not prove the existence of the perturbed periodic solu-
tions). In other words, Kopell and Howard's result was not merely the
construction of periodic traveling waves but also a contribution to the
theory of singular systems of differential eqﬁations. Thelir proof
became all the more interesting, and a careful study of it eventually
led to a second proof based on a series expansion instead of an integral
equation. This series is convergent, in contrast to Wasow's asymptotic
result; the essential trick 1Is to match two powers of the small param-—
eter instead of one and use a curious property of Floquet systems found
by Kopell and Howard. The background on related problems, the construc-—
tion of this series, and proof of 1its convergence from the subject
matter of chapter VI.

Kopell énd Howard showed that, in general systems of the form
(2.9) as well as in A-w systems, small amplitude traveling waves (near
the unstable stationary state) and large amplitude waves (near the limit
cycle) both occurred. They next considered the linear stability of the
traveling waves,

Again, A-w systems plaved an important role. The variational

equation of (2.7b) around the solution R = R, W = bt - k*x with
~ AN




with b = w(R,), k2 = A(Ry) turns out to be an equation with

constant coefficients. The variational equations can therefore be
solved explicitly., Assuming A(R) > 0 on O <RK R, ACR) = 0, it can

be shown that the traveling wave (2.8) with amplitrde R

o'
0 <Ry < R, 1is linearly stable iff
w'(Ro) 2
——— f
4,\(R°) I+ PEEW + R A (R )< 0. (2.10)

In particular, with A'(R) < 0, 1it follows that the waves are linearly
unstable as R, ot and linearly stable as Ro-é-ﬁ‘, that is,
small amplitude waves are unstable and large amplitude waves stable.

Kopell and Howard were actually able to show that waves of
sufficiently small amplitudes arising from the unstable stationary state
must be linearly unstable. The essence of thelr proof is to first note
that the linearization of (l.1) about the stationary state has exponen-
tially increasing solutions simply because the stationary state is
kinetically unstable. The linearization of (1l.1) about a wave, which
itself Is a small amplitude perturbation of the stationary state, leads
to a linear system with coefficients which are nearly the same as those
of the linearization of (l.1) about the stationary state. Consequently,
the spectrum of the known unstable operator is only slightly perturbed
and instability persists,

However, they were unable to obtain any general results on
stability of large amplitude traveling waves. By default, it appears

that these large amplitude solutions are the source of the circular and

spiral waves observed experimentally.
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As a sort of limiting case for traveling wave stability, Kopell
and Howard briefly considered the question of whether the limit cycle
solution, stable as a solution of the kinetic equations (l.2), remains

£ stable as a solution of (l.1)., They showed that if the diffusion matrix

is scalar, then the limit cycle is linearly stable as a solution of
(1.1) to all wave numbers k2, No results were obtained for the non-
scalar diffusfion matrix case, which is a further motivation for the
study of limit cycle stability in chapter II.
Howard and Kopell (1977) contains further work on traveling waves;
specifically, a description of "slowly-varying” waves in which the phase
bt - 5.5 = 6 1is generalized to G(t,i) with 6y, VO changing on
very slow time- and space-scales (et,vn9 correspond to b,b), and a
discussion of “shock structures” -~ the small region where two traveling
waves meet. Ortoleva and Ross (1973) and Kuramoto and Yamada (1976)
give some formal constructions related to circular and spiral waves, but
they have difficulties with singularities at the centers. Yamada and
Kuramoto (1976) found spiral waves in a system whose diffusion matrix
has complex eigenvalues. Greenberg (1976) gave a formal expansion for |
: calculating circular waves which does not contain the difficulties with
singularities mentioned above. Greenberg (1978) later proved that the f
construction was convergent for A-w systems. Cohen, Neu, and Rosales ‘
(1978) proved the existence of spiral wave solutions for /-wsystems.
Before discussing the third classic paper in detail, it will be

useful to give some perspective on the results. Chueh, Conley, and

Smoller (1977) give a simple geometric criterion for boundedness of
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solutions of systems of reaction-diffusion equations. Basically, they
show that, under certain conditions on the kinetic equations, there
exist "boxes"” in u-space such that any solution of (l.1) which is con-

talned in the box at t = 0 remains in the box, i.e., remains bounded

~ w‘hmww i, i

for all time.

Such boundedness theorems, although interesting for their own

et imis? el (= e e fan B b aame 2a o e e Kb

sake, do not lead directly to stability results for particular solu-

tions-~a perturbed traveling wave may transform into another wave or

RO PO

even a stationary state without violating the boundedness conclusion.
O0f course, boundedness is an important property for solutions of realis-
tic model systems, and it can be used indirectly to obtain stability
results (see reference to Conway, Hoff, and Smoller (1978) below).
(Sattinger (1976) gives actual stability results for traveling wave
solutions of reaction-diffusion systems; specifically, he gives
conditions under whiéh linear stability of a traveling wave implies
stability with respect to the full nonlinear system.)

It is interesting to contrast the results of Chueh, Conley, and

Smoller (1977) with various maximum principles, a traditional form of

boundedness theorem. As described in Protter and Weinberger (1967), a J
maxfimum principle is a theorem to the effect that a function, satis-

fying some differential inequality (which may be expressed as an ODE or

PDE) in a domain, has a maximum on the boundary of that domain. (A weak

e .

maximum principle asserts a maximum lies on the boundary; a strong

maximum principle asserts the maximum lies only on the boundary, unless ;

WP

the function {s constant.) Protter and Weinberger (1967, chapter 2)

have some results for nonlinear parabolic scalar equations and parabolic
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systems, Chueh, Conley, and Smoller (1977) introduce fixed bounds

independent of initial and/or boundary conditions.

The results of Chueh, Conley, and Smoller (1977) will be discussed
in a simplified form, The reaction-diffusion system will be (1.1) with
K a coustant positive-definite diagonal matrix, It is assumed that:

If the initial data for (l.1) satis fles either

:(:‘:,0)-) Uy o constant, as HxH > o,

or (2.11)

u(x,0) 1is periodic in each component of x,
~ ~

then a solution 2(x,t) exists for some interval 0 < t < §, and for
X A

these values of t either

,‘j(f»t)% Ug a8 ”x”") o0

or
u(x,t) 1s periodic in each component of x,
~N ~

Setting u = (ups ..o, uy), F(u) = (Fj(u), ..., Fy(w)), define
~ ~~ ~ ~

a "box" B by (aj < bi)

B ={(ul, SRS N REVES TS I T I PP N}. (2.12)

Let n be the outward unit normal to the surface of B, The kinetic

~

equations (1.2) for (1.1) are said to define flow into B if =n * F(u)

< 0 on the boundary of B, Equivalently, the kinetic flow is into B if
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Fi(ul’ sees Byy ene, uN) >0 and Fi(ul’ ceey bi’ ceey uN) < 0 on the
sides of B. The following theorem is then a special case of more
general results of Chueh, Conley, Smoller (1977):

THEOREM 1. 1If solutions of (l.1) satisfy (2.11) and if there exists a

i M . ¥ L BB i i O .
i )

set B defined by (2.12) such that the kinetic flow is into B, then
inftial data u(x,0) satisfying (2.11) and contained in B yields a
~N N~
solution u(x,t) that remains in B. (Since solutions initially in B
~n N

remain in B for t > 0, B is referred to as a positively invariant

set.)

The essential idea of the proof is geometric. Suppose the
solution is about to escape the box across the side uj = by. Then
a maximum “igﬁo’ to) = by will exist for some point %5 and

time t,, with wuy (z,t) <b; for t<ty. But

2
u,, = Fi(ul’ cees bi’ ceny uN) +diV v,

it
at the point x , t , whre F, < 0 (by hypothesis) and Vzu <0
A0 o i i-—

(since ui(zo, to) is a maximum). Hence ug, (ﬁo’ to) < 0, con-
dicting aflow out of box B.

The actual results of Chueh, Conley, and Smoller are much more
general than Theorem 1 (which is adequate for all purposes of this
thesis). The diffusion matrix need not be diagonal or constant; the
entries may depend on : and it 1s only necessary that the matrix have

real, nonnegative eignevalues--in this case the positively-invariant set

is to be a region bounded by surfaces normal to the gg-dependent) left-

eigenvectors of K and be "quasi-convex". (In particular, if K {s




scalar, any quasi-convex surface will do for a boundary of the

positively~invariant set!) Furthermore, first derivative terms may
appear in (1.1), although this further restricts the
positively invariant sets.

Chueh, Conley, and Smoller show the full set of conditions “
eventually derived for a positively invariant set to be a characteriza-
tion: 1f a set 1s positively invariant, then it almost satisfies the
above conditions. (The precise meaning "almost”™ can be found in their
paper.) They also derive bounds on the first spatial derivative of
solutions for certain reaction-diffusion systems and show how to derive

bounds on the solution of certain first-order PDE's using a viscosity

method (i.e., adding terms of the form e¥72u, deriving bounds, and

letting € —0).

As an illustration of the use of a priori bounds on solutions to
derive further resulis, a slightly simplified version of Chueh, Conley,
and Smoller's result on boundedness of spatial derivatives will be
given.

Consider (l.1) with
~t =15(2) +K ~xx® N (ul’ re uN)’

K = diag (dl’ coey dN), d, > 0; (2.13a)

i

g(x,O) satisfies periodic B.C. on 0 { x { L; (2.13b) 1

A
m such that

there exist constants mo, m,

mti uy (x,0) < ﬁi, 1=1, +ee, N imply

o, S}ui(x,t) < 31’ 1 =1, .o, N, for t > 0. (2.13c¢)




The existence of a positively invariant set for Eﬂz) would, of course,

be sufficient to give (2.13c). Set uy = v, giving the system

S " EW Ky
MBS ARG (2.14)

Introduce the functions E

-~ k, 1 = 1, csey N- (2.15)

It will be shown that if k 1s chosen sufficiently large, then Ci’

A 1 2 1 2
Gi <0 for all 1 when t > 0, so that =k + 5 Uy < U <k -5 uy.

(Notice that di >0 for all 1 1is essential in the proof, another

example of an argument which does not carry over to a singular diffusion

matrix.)

N
Assume k is sufficiently large that Gy, Gy < 0 for all i
at t =0, If Gy, 61 <0 for all t, we are finished, so let

t be the time at which some component first equals 0. First assume

o

some Gy = 0. Then the precise meaning of ¢t is

”~
for t < to’ we have G G1 < 0 for all 1, all x;

i’

Fal
for t =t , we have G,, G, < 0 for all 1, all x,
o i

1’

and some G, = 0 at x = xo.

3
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At (xo.to), Gj is nondecreasing in the t—direction and has a

local maxfmum in the x—direction, so0

12 o

Gj - 7Y + vj -k = 0; (2.17a)

(G), = uy(dy up +Fw) + (4 v+ 5.
(VE(WV) ) 2 03 (2.17b) -

2
(Gj)xx = qu + ujujxx + vjxx < o. (2.17¢)

Substitution of (2.17¢) and (2.17a) into the expression fcr (Gj)t gives

1 2.2
G k - = F
( j)tﬁ 'dj( 3 uj) +ouy '*J.(g)
N aF
> 4
+ & an (3) vy (2.18)

Now, all uy's are bounded by (2.13c) and vy's are linearly bounded

in k by (2.16), so if we had initially chosen k sufficiently large that
the quadratic term —djkz dominated in (2.18), then (Gj)t <0

would result, contradicting (Gj)y > 0 in (2.17b).

Therefore, the assumption some Gy = 0 -~* t; 1s false. The

o
el
same argument, however, goes through to show Gy = 0 at ¢t  1is

also fmpossible, so v stays bounded.

The boundary conditions in Chueh, Conley, and Smoller are
basically that the values 2(5,t), x on the boundary of the spatial
domain, be bounded within the interior of the invariant set for u.
Conway and Smoller (1977) have extended the boundedness results to

include Neumann boundary conditions. Conway, Hoff, and Smoller (1978)




showed that, for reaction-diffusion systems possessing positively-

invariant sets (so solutions remain bounded) and with Neumann boundary
conditions on sufficiently small domains (so diffusion 1s strongly felt
over the domain), solutions decay to spatially homogeneous functions
(necessarily solutions of the kinetic system, such as constants or limit
cycles). The paper illustrates how a general boundedness result can
lead to estimates of decay rates and eventually to stability results for
particular solutions. Incidentally, their proof is to use the bounded-
ness of solutions plus Neuman boundary conditions to show that--on

sufficiently small spatial domains D—-

\/1)‘ ”quH 2 4x <o exp(—czt). (2.19)

By rather intricate arguments and certain results from the literature,

this Ly-bound is converted to a similer result for L,:

wup 117, d] < ey exple, 0,
D

which definitely forces U to converge to a spatially homogeneous solu- ﬂ
tion, Their derivation of (2.19) easily carries over to the system with

periodic boundary conditions (2.13), and (2.19) together with the

boundedness of "Exlt immediately gives ||3x||-% 0 as t—>+o9,
forcing a spatially homogeneous solution.

A simple form of this type of geometric boundedness argument was

also used by Evans and Shenk (1970). For systems of the form



V: - vxx = f(V.j;{)

W o= g(V,W)
~rt ~ ~
where V 1is a scalar function and W 1s a vector function, they showed
~

that, for E, <E,, f(E,,W) > 0 and f(E,,W) < 0 and E

1 < V(x,0) <

1

E, implies E, < V(x,t) < E

2 1 2 -~

Problems Considered in this Thesis

In discussing reaction—diffusion systems in the first two sec-
tions, I have occasionally pointed out certain questions, arising either
explicitly in the literature or as natural questions to ask, which are
studied in this thesis. This section will discuss the contents of this
thesis directly.

The literature of reaction-diffusion systems contains much work on
stationary states (both spatialiy homogeneous and inhomogeneous) and
traveling waves (periodic waves, traveling fronts, solitary waves).

This thesis is basically concerned with the limitL cycle of the kinetic
system as a spatially homogeneous, time-periodic solution of the
reaction—diffusion system (l.1); relatively little work has appeared in
the literature on this topic. Other results arising in the course of

the limit cycle study are also given,

The next section of this first chapter studies classes of
reaction—diffusion systems for which explicit transient solutions occur,

solutions representing transitions between stationary states and

perindic traveling waves. Some of the general results of the second




section will be used to derive properties of these classes of equations,
which have appeared in Cope (1979).

The second chapter studies the linear stability of thellimit cycle
as a solution of the reaction-diffusion system. The study is motivated
by Turing's result that a kinetically stable stationary state can become
unstable when diffusion 1 idded; we ask: «can a kinetically stable
limit cycle become unstable when diffusion i1s added? (The question has
also been brought up by Othmer (1977) and Kopell and Howard (1973)).

The variational equation about the limit cycle reduces to a Floquet
system with wave number k2 appearing as a parameter. Perturbations
based on the Floquet representation of the solutions give solutions for
small k2 and large kz. The limit cycle can become unstable to

small kz, and explicit examples of such systems are constructed and
examined numerically (using Lees' method, discussed in chapter V). If
the diffusion matrix.is singular, the limit cycle can become unstable to
large k2 also {when the diffusion matrix is nonsingular, it is
well-known that the limit cycle 1is stable to all large kz). These
results have appeared in Cope (1980).

A point near a1 stable limit cycle U(t) (U(0) specified) gives a
N n

trajectory ~ U(t + #) as t -y +o; % is the asymptotic phase of the
N

polnt. Winfree has named a surface of points with the same asymptotic
phase an isochron. Constructive existence proofs have been given for
isochrons, but they are based on contractive mappings, specifically the
iterative solutlon of nonlinear Integral equations on [0,®), and are
quite awkward for actual computation. Winfree (1978) has suggested com-

putation of isochrons as a research problem. This problem is studied




in chapter 11I, The computation {s by a series c:pinsion based o
Liapunov's construction of trajectories near a stible critfen) pofnt--
the linearized system has exponentially-decaying solutions and the v - b

tual solution is a power series in these exponent?asls. The lireari:. 4

system near the limit cycle has 1 perlodic solutica and the rest
exponentially-decaying, and trajectories near the limit cycle can be
expressed as a power series in these exponentials. The coefficients of
the series are T-periodic functions and each has to be calculated b
quadrature of preceeding coefficlents. A particularly accurate and
efficient means of carrying out such integrations, based on extrapola-
tlon formulas and the periodicity of all functions concerned, s eiven.
Numerical calculations are shown to {llustrate results., Convergence of
the expansion Is proven,

The fourth chapter considers the calculation of asymptotic phase
for a reaction~diffusion system, Here Initial data is taken to have the
form B(O) + ﬁ(i)' where E(g) is a1 small periodic perturbation, and if
the Timit cveie s stable as o solutlon of the diffusion system, this
Inicial data should evolve 1o ,U(t + f), y constant, as ot > 499 The
problem considered s to find 2, given the initisl perturbatien E(z*.
A formal wulti-scaling «xpansion {s derived for the case of Jong spatial
scales ({.e., perturbations corresponding to small wave nunbter). ¢lhis
expansfon, or at least its first term, has alsoc been used in floward and
Kopell (1977) and in Neu (1979) with regard to othler behavior in
reaction-d{iffusfon systems.) It 1s shown that the expansion Jeads to
exactly the same characterization of instabilitv to small wave numbers

k%2 ag obtained in the lincar stability study {1 chapter T[, that the
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expanslon (s w2l '-defined to all orders, and rhat a simple expression
fos the First-osrder term of ¢ In terms of f(x} can be cbtained.
)

‘

The: fifch chapter compares the predi..ied resuits of the formal

3
—
15
ey

;

!

%
[l

'int 2xpansion of chapter IV with numerical resulrs fcr fwo
specific equations, a A-w system and a system occurring 1in Cohen,
Hopoenastradt, and Miura (1977). The uumcrical work 1s based on Lees!'
moehod, 20 cspaclally efficient finite djtfference scheme far parabolic
equiations. The method itself is described and particular problems
arising " these calculations are discussed. These problems arve that
one must wtoct with a small perturbation (0(€)) of the limit cycle,

vatil this initial perturbation dies away to a constant phase

shift {and the decay rate is like exp(0(€)t)), and then measure that
phasc anive, which is itgelf 0(€). These problems can, however, be
aversomt onad the numerically found phase shifts are In good agreement
with the rnrodicted ones.

Chanter ¢ is actually in two parts. The first part s simply the

rheck of the results of chapter 1V, as just descriied. The

nuner i ra

coec o aner ig cancerned with a question of numerical analvsis:  the
aonlrae o =arenility of finite difference schemes for parabolic svstems,

Finite nit oronce schemes are generalily rated as (numerically) stuble .

v iobhte sesarding to their behavior when applied to linear systems wit!

coantant ~{ficients, because the resulting difference equations can i«
solwed o oy and analyzeds  Very little 1s known about numerical sta-
ity “inite difference schemes applied to nonlinear FUlEs. 1 became

srrers cod fu this question (after it arose 1n a numerical analysis

sewdaar wiven by J. Varah) because the boundedness arguments of Chueh,

At o 1o, E gt
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Conley, and Smoller (1977) seemed to carry over directly to the finite
difference equations. They did, but the resulting restrictions for
nonlinear numerical stability were generally of the form At = O(sz),
even for Lees' method, which seemed overly restrictive considering how
well Lees' method worked in practice. Further work, concentrating on
direct estimates, eventually led to a nonlinear numerical stability
restriction of At = 0(Ax) on Lees' method.

Finally, in the sixth chapter, the construction of periodic
traveling waves as perturbations off the limit cycle is studied. A
series expansion, based on a direct substitution into the equations for
the traveling wave, has been given by Wasow (1976); he only claimed the
expansion asymptotic to the true solution. Kopell and Howard (1973)
used a rather curious change of variable on the equations for the
trav;ling wave, then rewrote the equations as an integral equation and
proved the integral equation possessed a periodic solution by a contrac-
tive mapping. The basic question of chapter VI is: why should a series
expansion, such as Wasow's, be only asymptotic when the integral equa-
tion formulation can be shown convergent? The answer 1is that a conver-
gent serles expansion can be found, but the proof involves regrouping
the terms of the series in an unexpected fashion and using an inter-
esting property, due to Kopell and Howard, of the solutions of Floquet
systems. In other words, chapter VI gives an alternate proof of the
existence of periodic traveling waves, using a series expansion instead
of the integral equation of Kopell and Howard.

In short, this thesis is basically a study of the limit cycle as a

solution of (l1.1) (Chapters II, IV, first half of V, VI), together

P D
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with related results which arose in the course of the study (last half
of chapters I and V, chapter III). Appendix I gives Lemmas A,B,C, and
D, which are used throughout the thesis. Appendix II is a convergence
proof for the expansion developed in Chapter III, Appendices IIT and 1V

contain further work on the expansion developed in Chapter 1V.

Reaction-Diffusion Equations with Explicit
Traveling Wave and Transient Solutions

The A-w systems (2.7) with explicit traveling wave solutions
have been quite important in the study of reaction-diffusion equations,
Considerable insight results from exgmining ideas within this simple
tlass of equations with its explicit traveling waves., For example,
Kopell and Howard (1973) solved exactly the linear stability problem for
the traveling waves of the A-w systems, thereby giving evidence for
the stability of large amplitude traveling waves (see last section).
Greenberg's proof (1978) of the existence of circular wave solutions is
for A~w systems, not reaction-diffusion systems in general, Simi-
larly, Cohen, Neu, and Rosales (1978) proved the existence of spiral
wave solutions only for A-w systems. (The extension of these results
to more general systems 1s still an open problem, although Greenberg
(1976) gave a carefully done formal expansion for circular waves for
reaction-diffusion equations in general.)

This section shows various types of behavior of solutions in
reaction-diffusion equations by giving explicit solutions to two classes

of equations,
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The first class of equations differs from A-w systems in
permitting nonscalar diffusion matrices and kinetic terms which are not
of /-w form. These systems possess an explicit periodic traveling wave
solution of the form (u,v) = (R, cos Y, R, sin ¢), ¢ = bt - 5'5
where b is a constant vector. A new type of solution, transition
from (or to) a stationary state to (or from) the periodic traveling
wave, also occurs; its form is {u,v) = (R(y) cos ¢, R(y) sin ),
p=bt - kex, with 0 < R(Y) < Roe

To illustrate the use of material in the previous section, a sub~
class of these equations will be studied in detail. It will be shown
(using the Poincaré~Bendixson Theorem) that these systens possess a
stable limit cycle for the kinetic equations. From the results of
Kopell and Howard (1973), discussed in the last section, it follows that
a family of periodic traveling waves exists for the full reaction-
diffusion equations. The same properties used to show the existence of
the limit cycle solution enable the results of Chueh, Conley, and
Smoller (1977), discussed in the second section, to be applied so that
appropriately bounded initial data produce solutions remaining bounded
for all time.

The secbnd class of equations is a special set of A-w systems.
This class also possesses solutions representing a transition between a
stationary state and a periodic traveling wave, but these transients

have the form (u,v) = (R(¢1) cos ¢2, R(¢1) sin‘{z), ¢i = bit - 51.5’

{1 = 1,2 where k, and b

are constant vectors. The amplitude R(¢ )
~l 1

2

and phase wz propagate 1in different directions!
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It is interesting to connect these transient solutions with the
linear stability analysis of periodic traveling waves for A-w systems
discussed in the second section. (This second class of equations
satisfies the mild assumptions made in that analysis.) Kopell and
Howard derived an exact condition (2.10) for the linear stability of
traveling waves in A-w systems. The transient solutions, as developed
here, represent transitions between the unstable stationary state (0,0)
and periodic traveling waves of various amplitudes. I would have ex—
pected in the case of a stable traveling wave that transitions were
always from (0,0) to the wave, while the transition could go either way
betwenn (0,0) and unstable traveling.waves. Surprisingly, this is not
the case. The second class of equations contains solutions representing
a transition from linearly stable travelirg waves to the linearly un~
stable solution (0,0).

Finally, analogies can be drawn between these explicit solutions
and circular and spiral wave solutions. If one considers circular waves
propagating out from a point, then at large distances from the point the
circular waveis asymptotic to a plane wave propagating inthe radial
direction. At the edge of the circular wave, the behavior in the direc-
tion of propagation may be a transition from a stationary state to peri-
odic behavior, corresponding to the transients of the first class of
equations. The transients of the second class of equations with their
amplitude and phase propagating in different directions suggests the
behavior at the edge of a spiral wave: the phase may be propagating
along a radial line with a transition from a stationary state to peri-~

odic behavior, but the "spiralness” is due to the amplitude propagating

in a slightly off-radfal direction.




The first class of equations can be generated as follows. The

substitution (u,v) = (Rcosy, R sin§) into (2.1) yields

R R A(R, V) 1 + d cos 24 - A R sin 2%
= + o
w(R,{) —y sin 24 1 - o cos 2¢

Ve

V2R - R /W/2 -,

2 [ 'a(' __<_1 ’ (lhla)
2 YR 'V'y + VY
R
where /l,w are related to F,G by
F(u,v) u =v |l A AR, 1 u v J|F
= N = -—2 -
G(u,v) v u ]l w MR, ) -v ul{G
(4.1b)

Assume solutions of the form i{f= bt - ,‘3.75’ R = R(l[:) so that (4.1)

glves two ODE's for R. Without loss of generality, k%2 = 1 can be

dR/

dy)’

assumed., The two ODE's are (R' =
bR' [Rt\] I-l+dcos2¢ ~a(Rsin2(}'rR"
= +

{_ <« -
b [ w Esin an 1 o cos ZW

-

(4.2)
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The function R(W) must satisfy two second-order ODE's simul-

taneously so it will necessarily satisfy a first order ODE, which will

be written as
R' = -R P(R,{). (4.3)

The fdea 1is to define A,AJ in terms of P so that the two equations of
(4.2) do in fact have a common solution. Substitution of (4.3) into

(4.2) gives this consistency condition on A,w as

A [ -bP | 1 + d cos 2y ~ o R sin 2¢
- +
w { b -Lsin 2§ 1 -acos 2y
2P . (6'4)

The results are summed up as

LEMMA 1. Let R(§y) be any solution of (4.3). Then the system

u, -bP + (1 +)Q —b-2(1+q)7ru (1 + )7
= +
v, b+ 2(1 -d)P -bP + (1 - <)Q [ VJ (1 -d)Vzv
(4.5a)

with Q=1 + PW— RPRP - P2 » has the solution




(u,v) = (R(}) cos ¢, R(P) sinyp ) with 4;: bt - b-x, k2 = 1. (4.5b)

The systems (4.5a) are generated by choosing the arbitrary

function P. They differ from A-w systems in the nonscalar diffusion
matrix and in permitting more general kinetic terms. For instance, if

P = P(R), then Q depends only on R and the kinetic terms will have
A-« form; if P 1is any polynomial in u,v, then Q {is also a

olynomial (because Py =~vP + uP_ and RP_, = uP_ + vP ) and systems
P ¥ u v R u v y

not of J-w form can occur.

If P=P(R) and o« = 0, then (4.5a) becomes a A-w system and
it is instructive to compare the results of Lemma 1 with the usual
solutions. Choosing P(R,?) =a-R,ad>0, =0 and b= -3a

reduces (4.5a) to the following special case

2 2

u 1+ Z(a2 - R7) a+ 2R w Vo

v ~a -2R 1+ 2(a2 - Rz) v §72v

From (2,8), the usual A-w solutions are

ul={R_ cos (- (a + 2R )t - k°*x) (4.7)
[»] [¢] ~N o~

vl=lR sin (- (a + 2R )t - kex)|with k% = 1 + 2¢a® - R).
(o) o ~an o
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From Lemma 1, we have the solutions (from R' = -R(a ~ R))

(u,v) = (R(Y) cos §, R(Y) siny); (4.8a)
b= -3a - k*x, 2= (4.8b)
a or
= (A.BC)
R(Y) a

= arbltrary constant.

1 + exp (a(4+gb)) T

Of these latter solutions, one is a standard traveling wave of
A-w type (amplitude Rg =& 1n (4.7)), and the others are transient
solutions representing a transition from the O-solution to the traveling
wave Ry = a (since exp(~3a2t) occurs in (4.8¢c)). Incidentally, if
the stability criterion (2.10) is applied to the wave Ry = a, then

the wave is linearly stable if

1 2
1+———i' a_SO.

4a

The transition from 0 to the traveling wave is therefore a transition
from one linearly unstable solution to another for small a, and from
a linearly unstable solution to a linearly stable one for large a.
The kinetic equations for a A-w system have a rather simple
phase plane: the origin is the only critical point (except for the

degenerate case of a circle of critical points) and the occurrence of

limit cycles is trivial to check. The kinetic equations for systems




(4.5a) are not quite so transpareant, and it will now be shown that they

do show interesting behavior, such as limit cycles.

Notice that if the kinetic equations have the origin as an

unstable critical point, if the origin is the only critical point, and
1f all solutions are bounded as t-=>+w, then the Poincaré-Bendixson
Theorem (Coddington and Levinson, 1955) gives a stable limit cycle,
These three conditions will be used to prove the following lemma giving
sufficient conditions on P for the kinetic equations of (4.5a) to

possess limit cycles,

LEMMA 2, Let P(u,v) be polynomial in wu,v, and b # O, |d| £ 1
in the kinetic equations of (4,5a). |

(a) I1f P(0,0) is sufficiently close to 0, then the origin is
an unstable critical point (in particular, an unstable
spiral if o2 > b2).

() 1f labl <1 -2 and either
(1) b> 0 and P(u,v) > - b(1 -d)/2(1 ~a + |ay}) or
(2) b <0 and P(u,v) < - b(1 -a)/2(1 -~ a2 +|ab]),
then the origin is the unique critical point,

(¢) If pP(u,v) 1is nonzero for all sufficiently large R, then
all solutions of the kinetic equations of (4.5a) are bounded
as t— +w,

(d) 1f the hypotheses of (a), (b), (c¢) hold, then the kinetic
equations of (4.5a) possess at least one stable limit
cycle,

PROOF. (a) Since P is polynomial in u,v and P, = —qu + uP_, RPR =

uPu + vPv, then Q(0,0) = 1 - PZ(O,O), where Q(u,v) is defined from
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P(u,v) by Lemma 1. If P(0,0) = 0, then the linearized kinetic equa-

tions (4.5a) about the origin have the coefficlent matrix

2

with eigenvalues 1 + (dz - b") . Since b2 > 0 by hypothesis and

42 < 1, these elgenvalues are either strictly positive (if CXZ > bz)

or complex with positive real part (qz < bz). By continuity the in-

stability persists if P(0,0) 1is close to 0. (b) Assume (uo,vo) #

(0,0) 1is a critical point for the kinetic equations of (4.5a). Elim-

inating Q(uO,vo) from the two rest state equations u' =0, v' =20

gives the necessary condition on PO = P(uo,vo):

2 2 2
2 [(1 -« )(uo + vﬂ) ~2&b ug vo] Po

= =b[(1 +«) ug + (1 -o) vg] )

Setting (uo,vo) = (Ro cos 60 . R0 sin 90), the resulting equation is

9
2[{1 - «” - b sin 260] Po=-b(l+o(cos 2601,




and the assumption [dbl <1 = d2 insures the coefficient of P0

is positive. Since

o < 1 - o 1 + A cos 290 1+ d
1 -a? +]at] = 1 -a? —qb sin 2~ 1 = d? a|ay
then at this critical point (ug,vq)
-b(1 - ) -b(1 + o)
7 2 P2 2 if b>0
2(1 =& + |ab| ) 21 - o° - |ert) ’

and if b < 0 the inequalities reverse. But these inequalities contra-~
dict the assumption on P(u,v). (c) P(u,v) 1is nonzero for all
sufficiently large R iff the homogeneous polynomial consisting of the
highest degree terms of P 1is positive-definite (or negative-definite).
This definiteness can occur only if the polynomial has even degree, so
P(u,v) = Hzn(u,v) + A(u,v), where A(u,v) has degree < 2n and

QSu,v) is a positive- (negative~) definite homogeneous polynomial of .
degree 2n. Noting RH = 2n H and letting R —=>+ o0 in the

2n,R 2n

kinetic equations of (4.5a) gives

F 2 { (1 + o)

~ - (2n + 1) HZn ! . (4.9)

G [(1—c«)VJ
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Since |d| # 1, this vector field always points inwards for suffi-

clently large R and all kinetic solutions must be bounded as t —> +eo,
(d) 1t is only necessary to note that (a), (b), (c¢) are all compatible |
conditions, in particular P(0,0) close to 0 is compatible with the '

bound on P in (b). OQ,E.D.

The proof of boundedness for solutions to the kinetic system

(Lemma 2¢) immediately gives a proof of boundedness of solutions of the
reaction-diffusion system using the results of Chueh, Conley, and
Smoller discussed in the last section.
LEMMA 3, 1In (4.5a), let P(u,v) be polynomial in u and v, ‘d' # 1.
and P(u,v) be nonzero for all sufficiently large R. Then, for any
smooth initial data u(z,o), v(z,o) of (4.5a), there exists a constant
B such that 'u(z,t)‘ , iv(z,t)‘.s B for t > 0.
PROOF. Under these assumptions, equation (4.9) holds. Hence any box
with sides parallel éo the (u,v)—-axes 1is an invariant set if it is
sufficiently large, since (4.9) shows the kinetic vector fileld wust
point inwards on the perimeter of any sufficiently large box. Given
initial data u(x,o), V(E,O), in the (u,v)-plane pick a 2B x 2B square
centered at the origin with sides parallel to the axes such that
'u(},o)l , lv(5,0)| < B, then the square forms an invariant set. By
Theorem 1 the solution satisfies the same bound for all time. Q.E.D,
As an example of (4,5a) with the equations not of A-w foim,

consider P(u,v) =¢ - Hzn(n,v), where ¢ 1s a positive constant and
Hzn(u,v) is a postitive-definite, homogeneous polynomial in wu,v of

degree 2n, This cholce for P leeds to systems which are not of A-w

form unless HZn reduces to a function of R alomne,
]
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If ¢ 1s sufficiently small and &,b are appropriately related
in (4.5a), then Lemma 2 applies and the kinetic equations of (4.5a)

possess a stable limit cycle.

By the results of Kopell and Howard (1973), discussed in the last
section, a family of periodic traveling waves exists.
By Lemma 3, this choice of P implies that initially bounded

solutions of (4.5a) are bounded for all time.

Equation (4.5b) for the amplitude R(Y) of the traveling wave

f becomes a Bernoulli equation with solution

]
R-Zn = exp(2nc}) e - Zn‘//p exp (-2nes) HZn (cos s, sin s)ds | ,
0
¢ arbitrary constant. (4.10) g

The behavior of this solution can be found using Lemma A in Appendix 1;
the lemma gives the results of integrating an exponential against a

periodic function. By Lemma A.2, we have

t

exp(-2ncs) HZn (cos s, sin s)ds = exp(-2Znc § )h(y) - h(0),
0

where h(Yy) 1is a 2T-periodic function and, by Lemma A.4 and Hzn(cos s,

sin s) > 0, it follows that h(}) < 0. Consequently,

R0 . exp(+ 2ncy) (& + 2n h(0)] - 2a h(y). (4.11) 3
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The exponential part of the expression is always positive, and so 1is
-2n h(y). Therefore R(%) 1is finite for all Y and varies from a
purely periodic function as § > -« to 0 as P ->+w. The limiting
periodic wave is given by choosing T so that the coefficient of the
exponential term is O.

The corresponding solutions (u,v) = (R(§) cos ¢, R(*) siny) with
q1= bt - h'ﬁ’ k2 =1 represent transient solutions changing from 0
to a purely periodic wave (for b < 0; for b > O the transition is from
the periodic wave to 0). In contrast to A-ﬁu systems, the amplitude
R(%) of this periodic wave is not constant. There is a l-parameter
family of transients; the parameter e represents a phase shift between
the periodic solution and the exponential part.

The second class of equations will now be constructed and
studied.

In the precediﬁg examples, only a single periodic wave is found
explicitly, together with a corresponding family of transient solutions.
It is natural to look for examples where transient solutions can be
calculated for a family of periodic waves. The trick in getting such
solutions is to let the amplitude and phase portions of the solution
correspond to traveling waves propagating in different directions with
different velocities. (In this sense, the solutions u,v correspond to
a nonlinear superposition of traveling waves.)

The second class of equations of A-w systems (2.7a,b) with:




() MR) =- (R" -a) R" -b), n> 0;

(b) w(R) = dR" - c);
(4.12)
(c) |4 <b and b positive;

2 2
@ Lot G hw.

The usual traveling wave solutions are given by (2.8). We look for

solutions of the form (u,v) = (R(6) cosy, R(8) sin§), with

Y= bot - 30'5, bo =(D(Ro), kg = A(Ro) -- as in the usual solution
with amplitude g -- and set B = blt -'$ X, to be determined:
(a) 0 =ROAR) - A(R))) - b, R' + K R"
(4.13)
= - ,g . 1
(b) 0 =w(R) —w(R)+ ¢ k- k R

I1f bo.bl = 0, the equations reduce to the usual traveling waves

(2.8). Assume ko‘k # 0; without loss of generality, kf = 1 can
~nU o~

be assumed since this simply fixes a space scale for (4.13). At this

point we have chosen b , but not b,, and the lengths of k and k but
(o] 1 ~0 %

1,
not their directions. Repecated substitution of (4.13b) into (4.13a)
until all derivatives dR/d® are eliminated and the use of (4.12)

eventually yilelds as a consistency condition the following polynomial

equation for R:
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2 2 2n 2
- 2k o - .
[(n + 1)d (~b° hl) R + (%50 hl) (a +b) + 250 bl db1

2. n{ _n 2 2,.n
~ (n+ 2)4 Ro J R™ + [((250-/51) +d )Ro

2 n _
(2}50 kl) (a +b) 250 51 dbl] Ro 0.

Setting the coefficients of RZn’ Rn, and R° to zero gives conditions

determining bo.k and bl' Specifically,

(2 k ~k1)2 = @+ 1 &, (4.14a)

~O AN

and ty condition (4.12d)

2
50.)51\ - (n+l)d2 < 1
k [Tk, 4A(R) =
0 Al / o

k and k is well-defined. MNext,

so the cosine of the angle between
~ 0 ~l
2k - k
~o ~l n+ 2 n
bI = i a+b 1 Ro . (4.14b)

These conditions automatically make the coefficient of R° equal to

zero, so the third condition is redundant. Summarizing these results

as a lemma:
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LEMMA 4, For the A-w system with A(R), w(R) given by (4-12),

assume:

(a) R, > 0 1is an arbitrary constant;

(b) y¢= bot - Eo.i with bo = w(Ro), 150 an arbitrary vector
with k2 = A(R);
(o) o’?

(¢c) 6= blt - k,*x with hl a unit vector satisfying (4.14a)

~l ~

and b1 satisfying (4.14b);

(d) R(8) satisfiles

dR -d n_.n
@ T 7.k R(R"-R) .

Then (u,v) = (R(8) cos ¢, R(€) siny}) 1is a solution of the N-w
system defined by (4.12).

The equation in Lemma 4d 1is an easily solvable Bernoulli equa-
tion, and it is clear from its form alone that (bounded) solutions of
R(6) represent a transition between amplitudes O and Ro. If the
position x 1s assumed fixed, so d& = b; dt in Lemma 4¢, and

(4,12b) is combined with Lemma 4d, we have

n+ 2
n+ 1

dR = R (R" - Rg) (a+b-

n
Ro) dt.
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Since 0 < R(9) < R,, the direction of the transition depends on

R, (note a+b > 0 by (4.12¢)):

Set o = [(n+ I(a+b)/(n+ 21",

If R, >p, then the solution given in Lemma 4 is a transition from 0

to a solution with amplitude Ro;

1f Ry < L » then the transition
i1s from amplitude R, to O. Roughly, for large R, the transition
in amplitude is from 0 to Ry, and for small R, the transition {is
from R, to 0 — a conclusion consistent with Kopell and Howard's
results of linearly stable large amplitude waves and unstable small
amplitude waves.

However, the value of Ro Separating the two types of

transition does not quite match up with Kopell and Howard's result.

Defining (by (4.12))

' \ 2
F(R) = \(R) | 1 + <§;%%%/ + RA'(R)
/ d \2

= ~4R" - )R -b) [ 1+
- nR" (28" - a - b), (4.16)
Kopell and Howard found that the A-w traveling wave with amplitude

R, > 0 is linearly stable iff F(Ry) < O. Examining R, =, we

find




(a)

(b)

another.

ey s

a+b a+b ( / d n 2
F‘P“‘"(b‘“z)(a'm) S P m)

nz(n + 1)

: (a + b)2 .
(n + 2)

As n—>+®, then o > 1 and F(F)N - n(a + b)2 < 0. Conse-

quently, there is an € > 0, independent of n, such that

for R, in the interval 1 -€ <R, <1+€, F(R) <O

and the traveling waves of amplitude R, are linearly
stable by Kopell and Howard's criterion, and

the interval 1 -€ < Ry <1 + € contains values of

Ry <,o and R, >/O, so the transitions given by the
explicit solutions of Lewmma 4 are from the linearly stable
waves of amplitude R, to the linearly unstable

O—solucién.

Strange as it may be, of course, the behavior does not contradict
the linear stability of the traveling wave since that stability is
derived on the basis of a small perturbation of the solution, while the

transient is a small perturbation in one region of space but 0(l) in
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CHAPTER II

STABILITY OF LIMIT CYCLE SOLUTIONS OF

REACTION-DIFFUSION EQUATIONS

Introduction
Consider the general reaction~diffusion system in two dependent
variables, written in normalized form as

(1.1)

u F(u,v)‘l r1+0( ) V2
= + slal < 1 o< + §,8,41.

G(u,v) b 1-o v2,

oL ! L7

Aay two-component system with constant diffusion matrix possessing
teal, nonnegative efgenvalues and nonnegative diagonal entries can be

placed in the form of (l.1) by rescaling the space variables; the

-

2 ; .
sondition on a ¢ 0142 is equivalent to real, nonnegative eligenvalues

for the matrix. The reason for this choice of diagonal coefficlents is
given below, The Finetic equations are assumed to possess an
(exponentially) stable limlt cyele (U(t), V(t)) with period T; the
soint (U(0), V(0)) is also assumed given so that U(t), V(t) has a

vnique meaning.

aliid,




The limit cycle is a spatially homogeneous, oscillatory solution
of the reaction-diffusion system (l1.1). The linear stability problem
for this solution is formulated by substituting u = U(t) +- 0, v = V(t)

+ €7V into (1.1) to obtain the linear variational equation

o 1 -— ’. )

3 F(UCR), V(E))  F (UCe), V()

>

>

1+ 82 -} V u
= + 2 .
v G (U(e), V(£)) G (U(e), V() || v § 1-d{| Vv

] i

Separating variables (or Fourier transforming) by U = p(t)
exp (-1 k « x), 7= q(t) exp (-1 k . x) yields the Floquet system (with
~n ~ a4 ~N

the obvious definitions of Fi(t)’ Ci(t) as T-periodic functions)

ir
o1 | R (o) - el om0 - 2 |[p | -3

q" 6 () -8 12 o, (0) - (1-wK’

q
b !

The limit cycle is linearly unstable for wave number k2 as a solution
of the original system (1.1) iff (1.3) has an exponentially growing
solution for that value kz.

This chapter studies the linear stability of the limit cycle

solutions to (l1.1). Kopell and Howard (1973) and Othmer (1977) have

mentioned the scarcity of results in this area, which seems a natural
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next step after stability studies of the spatially homogeneous, sta-
tionary solutions corresponding to critical points of the kinetic
equations.

The stability of the stationary solutions was first considered by
Turing (1952), who was the first to observe that a stable critical
point of the kinetic system could be unstable when cons{dcred a: a
solution of the reaction-diffusjon system. Specifically, he gave

examples with the statlonary state linearly stable to perturbations

with small and large wave numbers k2, but unstable to intermediate kz.
His work, together with subsequent work on the stability of stationary
states, has been discussed in some detail in Chapter I.

The linear stability problem for spatially homogeneous, station-—
ary states is fully solvable for a given system because the linearized
equations have constant coefficients, i.e., the system corresponding to

(1.3) has constant terms in place of the Fi(t), Gi(t)’ and the full

solution can be written in terms of the coefficient matrix. (The
general classification of behavior, however, is still quite
complicated--see Othmer and Scriven (1969).) For spatially homsone
oscillatory states the linear stability analysis yields the Flo uor
system (1.3) and no such general solution is possible,

The problem has attracted some attention, however, Xopell and
Howard (1973) showed the limit cycle to remain linearly stable as a
solution of the reaction-diffusion system when the diffusion matrix i:

scalar, Othmer (1977) considered the linear stability of the limit

cycle solution on a finite domain with Neumann boundary conditiorn-.. ¥
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Interpreted in our context of a spatially perlodic perturbation, he

showed the limit cycle to be stable to all large wave numbers k2 and

gave a sufficient condition for the linear stability of the limit cycle

to perturbations for all wave numbers k2 {see below). Conway, Hoff,
and Smoller (1978) proved, under a basic assumption of a positively-~
invariant region for the solutions of the reaction-diffusion system,
that solutions on finite spatial reglons with Neumann boundary condi-
tions decay to spatially homogeneous solutions of the kinetic equa-
tions if the reglons are sufficiently small, (Their work deals

with the solutions of the fully nonlinear system and not a linearized
simplification.) For spatially periodic perturbations, their work also

shows the limit cycle solution of (l.1) is stable to perturbations for

all large wave numbers k2 (1/k2 corresponds to the size of the region).
Cohen (1973) gave a singular perturbation approach for a class of
reaction—diffusion equations of the form (l.1) arising in chemical
reactor theory. These equations are on a finite spatial domain with
particular boundary conditions and with diffusion coefficients 0(l/€),
€ small. His calculations show that, in a time interval of 0(¢),
solutions decay to the spatially homogeneous limit cycle. Roughly

speaking, this result corresponds to saying the limit cycle is stable

to perturbations with large wave number kgwl/e.
All these results require at least a nonsingular diffusion

matrix, refer only to perturbations analogous to large wave numbers

k2, and show stabf{lity only. In this chapter stability for small




wave numbers kz is studied, as well as for large wave numbers k2 in the
case of a singular diffusfon matrix, and examples of limit cycles which

are unstable~—as solutions of the reaction-diffusion system--to small

wave numbers k2 are given.
This section closes with a direct proof that the limit cycle is

linearly stable, as a solution to (1.1) with nonsingular diffusion ma-

trix, to perturbations with large wave number kz. A partial classifi-
cation of the Floquet multipliers for (1.3), similar to that for Hill's
equation (see Eastham, 1973, Chapter 1), is also given.

The second section gives a perturbation expansion calculating

the Floquet exponents for (1,3) for small kz, consequently determining
linear stability of the limit cycle as a solution of (l.1). A simple
characterization is obtained for stability and explicitly solvable
examples are studled.

The third section constructs examples of the form (l.1) with

limit cycles which are linearly unstable for small k2 perturbations,
Numerical results are presented in the fourth section pertaining to the
examples of these unstable limit cycles. The numerical method used is
Lees' Method for parabolic equations; it is discussed in detail, to-
gether with the program used, in Chapter V.

The fifth section uses a modification of a perturbation method
for systems of differential equations with a large parameter {(Codding-

ton and Levinson, 1955, Chapter 6) to characterize linear stability of

the limit cycle to large wave numbers kz . An advantage of this




approach over others in the literature 1s its handling of singular

diffusion matrices. Examples are studied.

The characterization of limit cycle stability to smali k2
also occurs in the multi-scaling method for perturbing the limit cycle
studied in Chapter IV. The derivation of this one characterization by
two completely different approaches and all the material of this
chapter are from Cope (1979), which also contains some minor results,
omitted here, on the linear stability of the limit cycle to
intermediate wave numbers--a very intriguing open problem.

To see that (l.3) has only exponentially decaying solutions for

large k2 and a nonsingular diffusion matrix, set

~

¢ = max spectral radius of Fl(t) Fz(t)
(0,T] G, (t) G, ()

14+ o 62]> 0.
51 1-o

W = smaller eigenvalue of

Then from (1.3) follows

1 4 2, 2 A2 2, 2
7 qt (p™+q”) < (6-wk") (p“+q")

forcing exponentially decaying solutions for k2 > G/m. (This calcu-

lation fails when the diffusion matrix is singular, another example of
the essential difference between the cases of singular and nonsingular

diffusion matrices mentioned in Chapter I.) So the limit cycle is




linearly stable .: a solution of (l1.1) to all ‘ire uve acvabors k: L

the diffusion matrix is nonsingular.

Othmer (1977) gave a sufficient condition .c. svaritic, c,

2 - \
wave numbers k. His result is for general n-comro

preted for the case of (1l.1) with 81 = 59 = 0, v save he T imiv o ovele

is linearly stable as a solutiorn of (l.1) if

M~1 1+« !
R I =
1

where M = max e (et Neoll

{o,1]

J
dere €(t) is any fundamental mateix for (1.3) with k° = O (Leman ();
[1e(e) )] means Fuclidean norm. The tesult tasically save that it 1
diffusion matrix is sufficiently close to the ideantity, the Yiait
is stable.
In the tollowing, the fundamental matrix of (1.3) for &7 - @ is

taken as known, -mely,

grie) Gxp (—Pt) es ]

’

bvr(n) exp (—rt) NCR I
L |
, A -~
U', V' (derivai:ives of the limit cycle) and U, V are . 1.
cluns as In Tersa O in Appendix L. Lemma £, of conrse, shoas o o 10

tundamental miiris can be calculated from the limit cv.io hy o oin ) de

suadirature,




The choice of 1 + o as a normalized form for the diagonal dif-

fusion coefficients in (1.1) was deliberate — a simplification of the

behavior of the Floquet multipliers in (1.3) results. Set

= exp (—kzt) , (1.5a)

so (1.3) becomes
o1 [r(o -«2 Fqo -2 | [«
1 2 2

_ , (1.5b)
2 2

y' G, (t) -8k G.(t) +dk y

L y L 1 1 2 J L J

and note that (i.3) has exponentially increasing solutions iff (1.5b)

has solutions with gfowth rate greater than exp (+ kzt).
Define the fundamental matrix

Xlgt) %, (t)

X(t) = , X(0) = identity
yl(t) yz(t)

The Floquet multipliers pl,/nz are the eigenvalues of X(T) (Eastham,
1977, Chapter 1), and they determine the exponential growth of the

solution: if/oi = exp ("/ﬁT)’ then the solutions of (1.5b) grow like

exp (jﬂit)' Consequently,

P2 = 1x (D) + y,(D] 0 + [x (Dy,(T) = x,(Dy (D] = 0,
(1.6

equivalently, /72 ~ D(kz)/o + exp (7pT) = 0.
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The last term exp (7LT) follows from using lLemma B,2 {(Abel's Ideatity)

to evaluate the determinan:, noting that the trace of the coetficienr

. 2
matrix in (l.4b) is independent of kz, and at k¥ = 0 the deterw'nant 1s

exp (7AT) (product of the Floquel multipliers 1 and exp (TAT)). The

two Floquet multipliers for (1.5b) are therefore determined by a single

2 .
quantity D(k”), the discriminant in the terminology of Hill's cquation,

and a description of the hehavior of the multipliers can bhe piven by

2
breaking down the possibilities for D(k™):

\vg
to

@) 1o cxp (=4 T).

(b) lx){kz)l 2 exp (—,{zz T).

T).

8N
0o

(o) !D<k2>!

s

exp {4

t

At k2 = 0, the roots are |

The roots are real and both have the
same sign as D .

(1.7)
Both roots = exp (—/% T), or both

= - exp(~/% T) .

Soth roots are complex conjugate and

have modulus exp (—,g'T).

and exp (7LT), so case {a) holds. As

2 .
k" increases, the two roots may go further apart (both necessarily re-

maining positive) or come together at exp (-4 1), They ray either

cress at oexp (=4 T) or split into the complex plave, remainine on

the circel of radius uxp(—]% T).

Thev may reach the nepative real axis

on thic circle or veturn to the positive real axis.

In particular, a linearly unstable limit cvele, which can occur

. 2
only when some [/H > exp (7T,

nultipliers.

can only occur for two real Floquet

e
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A Perturbation Expansion for Small Wave Numbers kz

Since the solution of (1.3) is known for k2 = 0, it is natural to

try an expansion in powers of k2 . For kz = 0 in (1.3), one solution

decays like exp (-ut) and it is unlikely to be perturbed to a growing
/»t

solution, so we consider the other periodic solution., It may be

perturbed by 0(k2) - terms to a growth rate like exp (Bkzt), which
will grow or decay depenuing on the sign of B . The Floquet represen-

tation suggests a solution of (1.3) of the form

= exp E Bn k2n t % an , (2.1)
n=1 n=20
q q,(t)
(0) @] Toew
Pa Po
where are T — periodic functions and = .
]
qn(t)J qo(t) v'(t)

Substitution into (1.3) yields as the coefficient of kzn, n>1 ,

(2.2)
W1 . ] i T
Pn r}l(t) bZ(t) rpn P + o 52 pn*lI a Phem
= 1 L
q; Gl(t) GZ(t) 9n 81 1=« 9n-1 L—— 9h-m
8 J {_ L J m=1 ] )
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tvr n = 1, the squation beconmes
. (2.3)
- - - . {2.3
] ] I
LYy | F (e) F,(t) U R T ML A
t’ | L
- - I
| -
{ ', 6, (1) G, () q, g, 1 *d_{ v'( j v
J L L [ 2 1.

From Lemma D in Appendix I, this equation has a T-periodic
solution iff
A A A . A
T «U'V + V'U) - SIU'U + 8,V

-1
B = 1 + T~ dS,
L1 Uy - vt

0

= -1+ (A +A151+A252) R

where A, Al’ A2 are the definite integrals forming the coefficients

of «, 51,52 .
Hoving determined Bl‘ Lemma D says the periodic solution Pys 9 is
detcrmined up to an arbitrary coastant. (One possible choice is to

regiitys P o satisf
1 lnv qn y

S (p U+ q V') dE=0for n2 1)

D

Notice the series is well defined to all orders - the ouly unknown is
2n . .
the coefficlent of k is Bn, which 1is determined uniquely by the

onditlon that Pyr g be T-periodic, using Lemma D.
1
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Summarizing (2.4) :

THEOREM 1. The limit cycle is linearly unstable as a solution of

(1.1) to small wave numbers k2 iff Aod + SlAl + 82A2 > 1
(as defined in (2.4).

In particular, if 51 = 52 = 0 , the limit cycle is unstable for

all small k2 if A0 > 1 . It may seem to violate continuity for the

B )

limit cycle to be stable at k2 = 0 and unstable for all small kz > 0.

LR ]

However, an analogous case occurs for critical points: 1f the (kinet-
ically) stable critical point has eigenvalues O , 7A,with respect to
the kinetic equation, then the constant solution corresponding to the
O-eigenvalue can be made unstable by the addition of diffusion terms.
The (kinetically) stable limit cycle has Floquet exponents O , 7@ with
respect to the kinetic equation and the periodic solution corresponding
to the 0-Floquet exponent can be made unstable by the diffusion terms.
As eramples, we consider two classes of equations for which the

limit cycle and related functions can be calculated explicitly.

Let (1.1) be a A-w system with full diffusion matrix (R2=uzfv2):

(2.5)

u A(R) —w(R)T u (1+a) & VS

[
+

v w(R) A(R) v $ (1-a)|] Vv
I ‘ ]
L 4L

fe[<1; 05«2 + 515251 .

The kinetic equations have the limit cycle solution U(t) = Rocos(wot) ,
V(t) = Rysin(wyt) , with ,\(RO) =0, w
(1.3) 1s

0= w(RO) . The analogue of




g

Homm i Cea

o & ke Tob

-l

A ————— . e+ e o

IO SPE UN E,

81
(2.6)
p' Rosocos(wot)cos(wot+Ub)~k2(1+d) ROSOsin(wot)cos(th + Gb)

2
v 1 ] { ] ' 1
q ROSOCOS(wot)31n(¢Ot+Tb)+a0—k 51 Rososin(wot)sin(woc +73)

2. T
-lvo—k 52 P

—kz(l—Q) L q

-

= [ . = - = v
where §,cos <, A (RO) » SpsinTy = w (RO) » S92 0, and -4 ROA (RO)

with the assumption —/a( 0 to insure stability of the limit cycle.

The fundamental matrix, found by Lemma C, is

(2.7)
r h
cos(wot+db)
I e "I Rgugeossy
Put(e) exp ('/,t)U(t:) { —Rowosin(wot)
1 — S 1‘ 1
v'(t) exp { ﬁt)V(t)J Rowocos(wot) sin(wot+06) I
[ _exP(7“t) Rowocoscb :
Substitution inte (2.4) gives:
(a) &g = 0 (2.8)
{(b) &, - . tand,
] R
() A, =t
c 2 = Anéb .

=1 _
In Theoreuw 1, therefore, Agel + Alsl + A252 =5 (52 51) tan ) .

Ia particular, for 81 = 52 =0 , the limit cycle of any A-w system

(2.5) is linearly stable to perturbations for small wave numbers k

since IAOI =0<1 .




Next, consider the system

;
;
4

-9 - A r -

u a(l—uz)u~v (1+4)V2u

= + ; |4l <1 ;5a,b>0.

v u+a(l-bu2)v (l-a)Vva

. L - o

o VP e g Sy T

This system occurs as a model in the study of chemical reactors (Cohen
(1973) and Cohen, Hoppensteadt, and Miura (1977) - (2.9) is a rescaled
form of equations in these papers;. We have found an exact solution iIn
the case b = +1, used tere as a second sample.

The substitution u =R cosy, v = Rsin} changes the kinetic
equations of (2.9) to

(2.10)

R'

aR(1 - (R cos @)2) + a(l-b)R3(cos w sin Y)Z

1
?' 1+ a(l-b)Rz(cos ¥) sin y o
For b =+ 1 , these equations reduce to a Bernoulli equation for R
with solution
(2.11)
2
1 _ + 1 acos2y + a sin 2§ C, exp (~2a})
2 2 2 2
R a + 1

RO =

+ =t + c1 .

Setting C;, C, = 0 gives the limit cycle (U(t), V(1)) = (Ry(t)

1° 72
cos t, Ro(t) sin t) , and the analogue of (1.3) is




?_ 2
a1l =3UT) k" (1+&) -1

\

A
|
|

2, .2 !

L=2alV 21U (=) | qj

—
o)
e e
|
—

The fundanenta:r matrix for ko o-- U 1s

(

N’

A i
U'(er €xp(7;L)U(t)] {'Rd oS t—RO sin € exp(~2at)RJO cos t

| |
| ol

3
V' (t) cxp(an)v{e) L Ré sin t+R, cos t exp(=2at)K” . sin t

FUDESTR V]

O ¥
(Incidentally, since the full solution is known, the easiest way tn

obtain the uecond solution is to differentiate (2.11) with respect to

C2 at C2 = 0, as suggested in Lefschetz, 1977, Chapter 3.)

z
The Wronskian of (2.13) is - vxp(—ZaL)RS , and (2.4) gives

/"1n \ 9
i ) a“+ (a4 ros Nt
f‘\n - :4{- /1/ ——é"—-—(v‘?_ —V)'-—\‘—_"""“‘"A"» T dt' - (:l,'l")
<« h A . -
./ a +l+a” cos 2t + asin 2t
70
The fat.eral oon b eystuared by the substitution 2z = exp(+it), giving
. g 2 hooo0 2o
R . / (a"+1)z 7 »THeate by
s A SUUURN I :
St (g mai ) 20T )T (T )

The ddoroeloc 0 ha, rants at

2

é 2o 2, 412
LA Pelamem) 4 (a™) ] ,




with one pair inside the unit circle and one pair outside for all

0 <a <+ ®. Evaluating the residues at z = 0 and at the palr of

roots inside the unit circle gives

1/2_

- (a2+1)
1/2 ?

A
(az+l)

0 0<a<+o0, (2.15)

Since 0 < AO <1 for all a > 0 , Theorem 1l shows the limit cycles of
(2.9) (with b = 1) to be stable to perturbations of small wave numbers
k2 for all o, [« <1 .

These examples show only stable behavior when the diffusion
matrix is diagonal. Explicitly solvable examples of systems with
diagonal diffusion matrices showing unstable behavior will be con-

structed in the next section.
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2
Explicit Examnles of Instability for Small k™

In this sect.on we construct examples of explicitly solvable
systems of the form (l.1) with cross terms 51 = 52 = 0 for which
'AWI > 1 (AO defined in (2.4)). By Theorem l, it follows that as the

parameter o 1in the diffusion matrix varies past 1/A the limit

0 b
cycle suddenly switches from being stable to being unstable for all

perturbations of small wave numbers k2 . A numerical examination of
this behavior is given in the last section of this chapter.

We wish to construct examples of (l.1l) with diagonal diffusion
matrix such that (a) the limit cycle and associated functions can be
found explicitly, (b) AO can be evaluated explicitly, and (c¢)

IAOI > 1 . As shown in the second section, all /-& systems have

AO = 0 . Also, the explicitly solvable case of (2.9) has 0 < AO <1

for all values of the parameter a . This difficulty ian finding
suitable examples is overcome by the following systematic procedure:
(1) Consider systems (l.1) with almost solvable kinetic
equations: sce (3.1);

(Zz) for kine.ic equations of the form (3.1), the value of AO

can be writtea in a simplified form: see Temma 1;
(3) to make the equitions more ncarly solvable a further
restriction 1s made: sece (3.6);

(4) under the new restriction, Lemma ! simplifies further: see

(3.9);

(5) finally, the expression for AO in (3.9) is sufficiently

simple that exnlicitly solvable examples with IAOI > 1 can

be constructed by guessing.
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To begin, notice that the kinetic equations of (1.1) are reduced

by the substitution u =R cos §, v =R sin{§ to

R’ u/R v/R F(u,v) RAMR,})
= = >
‘ 2 2
w /R u/R G(u,v) w(R,§)
where prime ' means derivative with respect to t and A,w are

2r-periodic functions of ¥ . First restrict attention to kinetic

equations with the polar form:

(a) R' = RA(R), (3.1)
y' = wR,;

(b) A(RO) = 0 for some RO > 0 and AR(R 0) <0 ;

(¢) IU(R0,¢) >0 for all ¢ ;

(d)  wR,y+2m) = w(R,§) .

Conditions (a), (b), and (c) say that R = Ry is a stable limit cycle

and (d) s the obvious periodicity required of a polar transformation.

This is step (1).

To calculate AO’ the limit cycle and the solution of the
variational equation must be known. The limit cycle is (U,V) =

(Ro cos (§5(0)), R, sin(wo(t)) , where
(a) Yo = w2y, b)) with p(0) = 0, (3.2)

27

() T-= 49 .




It i{s convenient to retain the polar form for finding solutions of the

variational equations. Setting R = RO + €p, 4»= 4‘0 + e)é in (3.1a)

(corresponding to u + € (0 cos 51/0 - Ry sin yzogs, v+ € (/Osin}lo

+ Ry cos{y¢)) leads to the variational equations

PES W NI (3.3) ]

¢, =wR(RO,q)O)/o+w%(RO,¢O)¢ . } ﬁ

One solution is clearly o = 0, p‘ = 4’(‘) , corresponding to the periodic

solution (U', V'), Setting */(u-—— RO/\R(RO) and ©(0) =1, a second

solution for o is 0= exp(—/,t) . To obtain ;f , a convenient substitu-
A

tion 1is F{ = exp(;l,,t)(POe; using (3.2a), the equation for &€ reduces to

wg(Rgothy)

C_LgeoRTOTYOT (3.4a)
6 ~p7 w(RO,\DO) ‘ a

and the desired solution is the unique T-periodic solution (see Lemma A

in Appendix I)., Actually, € as a function of/Cwill be more useful, so i

that €(¢) 1is the unique 27-periodic solution to

e - wp(Rps$)

o~ ATy . (3.4b)
dy @ Ro.$) @Ry, $3)°

The solutions to the variational equation can now be written as

Ut (e) exp(—/Lt)/L\Y(t) ' -Rosin UrIO{P(‘) exp(:/vt) (cos l}JO—Rosin%i% )]

TR

vi(t) exp(~/,t)’{7(t;)-J Rocos {],'OLP(; exp(—/,t) (sin 4!0+ROCOS4’O4“O )
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Substitution of these expressions into (2.4) yields an expression for

Ao « Summarizing to finish Step 2:

Lemma 1. For the system (l.1) with kinetic equations (in polar form)

given by (3.1), -

T
Ay = % [cos(2y,(t) - Rosin(Zwo(t))wé(t)e(t)]dt
0
2
=1 _cos(2y) _ ¥YE( .
T/, [“’(Ror‘?) Rosin(2+)$(4/)] ay

where wo(t),T are given by (3.2) and ©(t) (or €(§)) is the unique

T-periodic (or 2r—-periodic) solution to (3.4).
We now try to pick W(R,¥) so that %O and & can be found.

Some experimentation suggests the additional constraint (n = arbitrary

constant)
1 _ a1 _
(a) w(R,LP) = PJ [ n f(w) +g(R)J y (3-6)

(b) f(§) is positive and 2n-periodic;

(c) h(RO) =+l and g(R) is such that @w (R,§) > 0 for all

R > 0 and all ? .
(Although (U(Ro,w) > 0 1is sufficient, (3.6c) is chosen to give a

simpler phase plane - the origin is the only possible critical point.)

Such an w {s still sufficiently general that some choice of f, g, h

can be expected to force ]AOI > 1 . This ends Step 3.




4
' substitution into (3.2) gilves
1 £0)
i (a) t@)=FQ@&$~nhf&ﬂ
g(RO)
(b) T = 2w .

Substituzion into (3.4b) glves

’4,

(a) ew>=l{—me¢>g%%)(uwf“+h'm@]

defining

¢O(t)

The restrictions (3.6) give simple expressions for lPO’ &,

L

(3.7)

(3.8)

where F(RO,+) is the unique periodic (in ¥) function (Lemma A.2) de-

fined by
¥

(3.9)

(b) F(Ry,p) = exp(a(RYOPICRY) + /  exp(-g(Ry)s)(£(s)) ds].

Thercfore, assuming tU(R,¢) is given by (3.6) and substituting (3.6) -

(3.8) into Lemma 1l yields

Ay = 5
0 "n})(}{o)

//‘ZW
l____ / {m cos(2y) E%%%%
L//O

+ Ryg' (R s1a(2W () TF(RG,P1d b

This finishes Step (4).

Although the expression for AO

(3.9

would simplify counsiderably it

we required g'(RO) = 0 , this will not give the desired exanmples

hocause 'AOI < 1

since tu(Ro,¢) > 0, clearly
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503(2¢) w(RO*) ‘D(Ro *) .

0

The integral on the right is 2ng(Ro)/F.. Substituting (3.6a) into the
integral on the right and assuming g'(Ro) =0 1in (3.9) , the left
gside becomes (ZHg(RO)/r) IAOI , or |A0| <1 .

We are now ready to carry out Step (5). Explicit choices will be
made for n,h(R) , £(§) and the appropriate conditions on g(R)

deduced.
(3.10)

(a) n=+1; h(R) = +1; £(§) = 1 + €cos2y with lel <1 .

Since

2€ gin2p 2|6|
1+ € cos2y (1-€ )1/2

max , 5%%%% l = max

?

(3.6c) can be satisfied by
(3.10)

2)€]

for all R .
(1-¢ )1/2

(b) g(R) >

Calculation of F(Ro,w) and substitution into (3.9) gives

2w i
Y — -2 € cos2y sin2y , RoB (Ry)sin2y
0 an(Ro) o 1+ € cos2 ¢ I+ e COSZI,U
1 6('8(R0)c052¢ + 2s1in2¢) ‘l
+ d .

2(Ry) (8(Ry) )2 + 4 J




This integral simplifies, due to perfect derivatives, to

' 2n
Ao = ot (Bp)¢ (unzg)zd! i
TeR(gRN2 + 4] /¥ <cosd

. The substitution z = exp(+i}) and use of the Residue Theorem gives

2R g'(R))
: (© #ap=— 1 - !

3 . (3.10)
8(R,)[g(R )% + 4]

Therefore, for each € , 0 < | € | <1 , any function g(R) with

1 ¢} AOI in (3.10c) and satisfying €3.10b) can be used to comstruct

an exggple of (1.1) with limit cycle unstable to swall wave numbers

k2 « The kinetic equations are constructed using (3.1a), (3.6a), and

(3.10 a,b,c), in which case all other conditions (3.1 b,c,d), (3.6 b,c)

are autopatically satisfied. Instability occurs as « varies past

1/Aq, |« | increasing.

A specific system, constructed according to this prescription, is

studied numerically in the next section of this chapter.
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Numerical Results for an Unstable Limit Cycle

In the previous section, examples of (1.1) with diagonal diffu-

eion matrices were constructed whose limit cycles become linearly un-
stable to all small wave numbers k2 as the diffusion parameter
passes a critical value CXO . The linear analysis gives “0 = lle
+ 0(k2) o« In this section a specific example of such a system 1is
selected and small wave number perturbations of the 1limit cycle are
examined numerically for various values of « .,

First, following the instructions at the end of the previous

section, the kinetic system of (l.1) is assumed to have the polar form

R' = R(1-R%) ,
(1‘0 ll(a)

1 - 3sin2¢ 1
GR,p) " T+ 3coszp T2 B8R -

V' = w(R,P) with

This choice satisfies (3.la) with limit cycle radius R, = 1 and
Floquet exponent ~-p= + ROA'(RO) = =2 , and satisfies (3.6a) ,

(3.10a) with € =-% . We choose

(4.1)(b)

g(R) = l% + tanh(a(Rz-l)) .

which satisfies the lower bound of (3.10b) with € = %- . From
(3.10¢) follows

Ay = G105 - *041% . (4.1)(e)

The limit cycle period is (from (3.2b))

T = l%l - 8.64 . (4.1)(d)
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In terms of the original variables, the system under (4.2)

congideration is

2 2
u, = wW(lu"=v") - vo+t+ (1+d)uxx,

o 2 2
k v, vilu"=v") + uvo + (l—d)vxx s

) 8u2 + 2v2

where w = 3
6uv + (huitv?) (i{- + tanh(a(u?+vi-1)))

For a > 0, the limit cycle should go unstable to all small wave

numbers k2 as o increase past dg~ I/A0 = 23,9/a . The large 3
1

value of a required to make 40 <1 makes w nearly discontinuous

across the limit cycle.

Lees' method (Lees 1969, Varah 1978) was used for the numerical

solution of (4.2). This difference scheme is an extrapolated variation

of the Crank-Nicolson method; it will be discussed in more detail in

Chapter V. Lees' method is easily programmed, has accuracy 0((Ax)2 + .

-

(At)z) and {s stable. (In the actual implementation of the program, 5

initial data and the diffusion coefficients were rescaled to obtain the

equivalent system for the fixed interval 0 { x < 1 ; the step sizes
were
Ax = ,02 and At = T/500 ~ .017)

It 1s useful to consider the spatially periodic solutions as time
dependeﬂt curves in the phase plane. For perjodic boundary conditions,
(uf{x,t), v(x,t)) at each value of t 1is a closed curve. A perturba-
tion of the limit cycle at t = O corresponds to a small closed curve

near some point on the limit cycle - for instance, the initial data of

our computer runs (before scaling to 0 < x { 1) consisted of
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u(x;O) =1 , (4.3)

v(x,0) = .1 cos(.2x),

corresponding to wave number k2 = .04 . To represent the results of
the calculations, polar coordinates are especially useful: for
u = Rcosy, v = Rsiny, define

AR = max R(x,t) - min R(x,t) ,
x x

AY = max (x,t) ~min (x,t) .
X X

These two quantities give a t-dependent annular segment in which the
solution lies. For example, the initial data (4.3) gives AR+ .005 and
Ap~.2 at t=0.

One expects that AR,ay >0 as t>+w for a stable limit cycle
and other behavior for an unstable one, but difficulties arise in
attempting to observe this behavior. First, AR becomes very small
(that is, R(x,t) ~ 1) in all computer rums, both for stable and
unstable cases, and growth or decay is most easily observed in A} .
Two problems occur in observing Aq,, From the second section, the

growth (or decay) rate for the larger Floquet exponent is approximately

exp ((-1+A0«)k2t) . Using k2 = ,04 and (4.1c) with a > 0, the
maximum growth rate occurs for o = +1. This maximum is exp (.044t)
for a = 50 (the value used in the calculations), a rather mild growth
rate. To observe growth, then, one must integrate the equations over
quite long time intervals. Furthermore, A} undergoes oscillations over
each period of the limit cycle, typically varying by a factor of about

3 (for instance, for (4.2) with a =’50 , initial data (4.3), and

P
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4= .9 ,A) vayries between .085 and .230 on (0,T}, between .079 and
.215 on (T,27], etc.) These fluctuations mean growth or decay cannot be
determined by observing A} at some arbitrary sequence of times. As a

measure of growth or decay, we give maximum values of A} over the

intervals (0,T}, (T,2T), (2T,3T), etc. For a = 50 and various values

of o , the successive maxima of A} are (see Figure 2 also):

o = .70 .25,  .233,  .214,  .197,
.182,  .168,  .156,  .145,

.134, .125, .116, . 108,

o = .80  .263,  .225,  .211,  .197,
J18,  .173,  .162,  .151,

142, .133, 125, .117.

d .9  .230, .215,  .202,  .1%,
176, 169,  .427,  .598.

o= .99  .218,  .204,  .330,  .527,

.613,  .676, 674,  .674,

Experimentation with different step sizes suggests the above values for
A} are accurate. The linearized analysis shows instability for
478 {4 1. For o = .99 , growth begins to show at t ~ 3T ; for

d= .9 , at t ~ 7T . Presumably growth would appear for o = .80 and
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.70 1f the calculations had been extended beyond 12T.* (As wentioned
above, the maximum growth rate here is exp (.044t) for o = 1 and
decreases with o .) Of course the data for & =,9 and = .99 con-
firm that a (kinetically) stable limit cycle can become unstable as a
solution of the fully nonlinear system.

The system (4.2) was also considered with a = 30 , in which case
the linearized result gilves instability occurring for dahllle = ,796

using (4.lc)). However, numerical solutions for o =,999 , initial
data (4.3), and k2 = .04 show no instability. In this case the full

nonlinearity appears to have completely damped out the linear growth.

*The time interval 12T is already 6000 time steps, and it is quite

possible that the extremely slow growth of the instability is

overwhelmed by numerical hash.



At e s s v e o .

98

A Perturbation Expansion for Large

Wave Numbers kz

As k2~>+oo in (1.3), we obtain a system of differential equations
containing a large parameter and a well-developed asymptotic theory
exists. For {nstance, systems of the form {(1.3) are treated in Chapter

6 of Coddington and Levinson (1955). Notice that the matrix coeffi-

clent of k2 is

. (5.1a)
-0 +) -
2
with eigenvalues -1 +§, & = (42 + 5182)1/2 .
| -4 -(1-«)-
A
a a
-1 + § has the eigenvector y -1 ~38 has{; (5.1b)
b
ke

If the eigenvalues are assumed distinct (§ # 0), then Theorem 2.1 of

that chapter states that a fundamental matrix

Pk )exp(k7qy() + @ (e))

can be formally constructed such that

(5.2a)
=
P(kzt) = 2__ k-Zn Pn(t) with each matrix Pn(t) independent of kz, #
n=0 1
- (5.2p)

. )
Qo(t) = -1 +§ 0

and Qo(t), Ql(t) are diagonal matrices.
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Furthermore, Theorem 3.1 of that chapter also holds and the formal

solution given by (4.2) on [0,T] is asymptotic to the real solution on

[0,T] as k2—>+°°.
As it stands, (5.2) is sufficient to give the desired leading
order behavior. However, since it was derived for quite general

systems, it does not represent the solution in Floquet normal form

(P(kz,t) will not necessarily be periodic even for Floquet systems).
We give here an alternate expansion, based on the Floquet representa-
tion, which yields another form of the solution.

Using the eigendata defined in'(S.l), we show that the solution
corresponding to the larger Floquet multiplier can be written as

(assuming §# 0 to avoid a multiple eigenvalue):

(5.3a)
- - AT
fp [a H
oo 00 !
" _ Dy

= exp | (-1+eNCE 4+ 9 k2N ¢ (o) 4y K m % ()| 1,

n=0 n n=0 }

A

q b bJ
C;(t), Bn(t) are T-periodic functions, Cn(O) =0 . (5.3b)

The Cn(t), of course, grow like O0(t) and provide the exponential

growth of the solution; Cn(O) is arbitrary since it merely scales the
solution, so we pick Cn(O) = 0 . The coefficients Pn(t) in (5.2)

will generally contain polynomial terms in t as a consequence of

restricting the exponential part tc a finite series in k2 ; the
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restriction of the solution to [0,T] is therefore essential. In con-

it

trast (5.3) retains the form of an exponential multiplying a periodic

function, and it should be valid over large t-regions - for instance, 1

the periodic part should be asymptotic in k2 to the real solution

for all ¢t .

To obtain the Cn’ Bn , first define the T-periodic functions

H, K, ﬁ, ﬁ: * i
Fi(£)  Fy(t) [ ] 3]
= H(t) + K(t)’ s
hcl(:) Gz(t)J LbJ .bJ .bJ
rFl(t) Fz(t)- (2] [a ] 4]
L = fi(e) + K(t) . (5.4)

A )
G, (t) G, (t) b b b
| 1 27 | » ]

Substitution of (5.3a) into (1.3) gives O(kz)-terms which cancel,

' 0(1)-terms implying

Cd(t) = H(t), CO(O) =0 , (5.5a)

1
Bo(t) ey K(t)

and 0(k—2n)-tetms, n> 1, with

A
] = =
cl(e) =HB _, C(0)=0, (5.5b)
3
1 A E:_l
P, X —B' - A\l .
Bn(t 28 Bn—l n-1 ZL' Cm Bn-m--l

m=0
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All quantities in (5.5) are uniquely determined with the correct
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properties, so (5.3) is well-defined.

The growth rates for solutions of (l1.3) should be like

exp((-l+5)k2t) as k2+-+w, and the expansion (5.3) gives the solution
corresponding to the larger growth rate. If 0 < §< 1, then the
solution given by (5.3) decays exponentially: the limit cycle is
linearly stable as a solution of (1l.1), in agreement with the rough

estimate at the end of the first section for nonsingular diffusion

matrices. However, the expansion also includes the case & = + 1 , in

which case the diffusion matrix is siﬁgular. This case has not been

treated in the literature, so we assume dz + 5152 =+ 1 and consider

this case In more detail. The growth rate of the solution correspond-

ing to the larger Floquet multiplier is then exp[CO(t)+0(12)t]. From
k

{5.5a), Co(t) = ht + (periodic function of t ), where

H(t)dt .

3| —

Therefore, if dz + 5152 =+ 1land h 1s negative (positive), the
1imit cycle is linearly stable (unstable) as a solution of (l.1) to all

sufficiently large wave numbers k2 .

In particular, consider (1.1) with § =8 =0 and o« =+ 1. X

These values in (5.1) show the eigenvalue ~ 1 +% has the eigenvectors
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1 0
if 4=+ 1, and if = -1,
0 1
Consequently, 9

H(t) = Fl(t) 1f o =+1, and H(t) = Gz(t) if of=-1 .

The stability implications are summarized as

Theorem 2. Define, for Fl(t) and Gz(t) as given in (1.3),

gl
1

~T‘- G (t)de . (5.6)

0 0

Fl(t)dt and G2 =

Then (a) 1f o« =+ 1 , 81 = 82 =0 1in (1.1) and .Fl is negative

(positive), then the limit cycle is linearly stable

(unstable) as a solution of (l.1) with respect to all

sufficlently large wave numbers k2 H

(b) if o= -1 , Sl = 82 = 0 in (1.1) and Ez is negative

(postive), then the 1limit cycle i1s linearly stable (unstable)

as a solution of (l.1) with respect to all sufficiently large
2
wave numbers k" .

As noted in Lemma C.Z,?1 +'52 = ‘/o, the negative Floquet exponent, “

so at most one of ?1,'62 is positive.
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For example, if o =+ 1 and 81 = 82 = 0 in the general A-w

system (2.5), we obtain (referring to (2.6) with k2 = 0):

R YOS

o 0 e

T
i _ 1 1
é I-‘l = i‘-/ ROSO COS(wot) cos(wo t +d'0)dt = _2. ROA' (R0)>
! 0
| (5.7)
T
v G = l = _1. ]
G, T R,S, sin(wot) Sin(“bt+°b)dt > ROA (RO) .

0

Kinetic stability of the limit cycle required A'(Ro) < 0, so the

1imit cycle is linearly stable as a solution of the reaction-diffusion
2

equations to all large wave numbers k .

For the system (2.9) with o =+ 1 and b =+ 1, reference to

(2.12) with K2

= 0 gives
.
- 1 2
Fo=3 a(l - 3(u(t))"de , (5.8a)
0 E
T {
g, =3 a(l - (U()Hde |
2T : :
0

Here T = 2T, U(t) = first component of the limit cycle = Ro(t) cos t,

so from (2.11),

(az + 1) (1 + cos 2t)

2
Uee)* = > :
a~ + 1+ a" cos 2t + a sin 2t

S U
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2 2
and (U(t))"dt = 2w, independent of a!
0
Therefore,
'El = -2a (5. 8b)
G2 =0 .,

For & = + 1 | Theorem 2 shows the limit cycle is linearly stable as a

solution of (2.9), but for o« = ~ 1 | the exponential growth is given
by

explC. () + = c (o) + oty
0 k2 1 k4

where Co(t) is periodic; the 1limit cycle is linearly stable
(unstable) if the mean value of Ci(t) is negative (positive). Using

(5.5b), €](t) = H(E)B(t) and A(e) = 6,(e) , By(t) = 3 F(0) .

Using (2.12) (with K2 - 0) for F,, G, gives

2
mean value of cre) = L 11+ 2a uCe)v(e)de (5.9)
1 w 7
2 )
1 1 a(a” + 1) sin 2t

=W "2t 3 2 de
0 (a™+ 1) + a“° cos 2t + a sin 2t

~+3 -Gl DV

This quantity is always negative and the limit cycle is linearly stable

as a solution of (2.9) with o = -1,
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CHAPTER III

AN ANALYTIC CONSTRUCTION FOR WINFREE'S ISOCHRONS

Introduction
Let B(t) be an orbitally stable limit cycle solution for an

autonomous system of differential equations (u is an N-vector)
~N

u' = F(u), (1.1)
~ N o~

and let B(O) be given so the limit cycle is uniquely specified. An
initial point close to the limit cycle yields a trajectory n«E(t + &)

as t—>»+ % where 0 < ¢‘< T = period of the limit cycle. The constant

‘ﬁ is called the asymptotic phase of the initial point and the surface

of all points with the same asymptotic phase ¢ (which intersects the
limit cycle at the point B(¢)) has been called an isochron by
A. Winfree (1974).

If a physical system possesses a stable limit cycle, then
isochrons provide an especially simple way of experimentally describing
the state space. The asmptotic phase of a point in the state space is a
single number defined by the longtime behavior of the system, which
settles into the limit cycle oscillation., Measuring the asymptotic

phase of variocus points gives a picture of the isochron structure.

Winfree (1974) develops the idea of isochrons from the point of view of

e

e i ama




the experimentalist and discusses certain experiments on glycolysis and

mitosis in terms of isochrons.
Asymptotic phase is a well-known concept in the theory of ordinary
differential equations. Coddington and Levinson (1955, Chapter l4) set

u = U(t) + z, so that (l.1) can be rewritten as
N N ~

z!' = F'(U(t))z + £(t,z), (1.2)
~ NN~ ~ N ~;

where |f(t,z)| = 0(|z|2) uniformly in t for small |z| and smooth
~n ~N ~ ~
E. The linear part of (1.2) is the variational equation of (l.1) about

the limit cycle H(t):
z' = F'(U(t))z, (1.3)
~ ~ e ~

a Floquet system wit£ ‘E'(t) as a periodic solution (so 0 always occurs
at least once as a characteristic exponment). In Theorem 2.2 of Chapter
14, Coddington and Levinson have shown that if N-1 characteristic
exponents of (1.3) have negative real part, then through each point‘2(¢)
of the limit cycle there is an (N-1)-dimensional surface S (an
analytic surface if Egg) is analytic) such that each trajectory with {
initial point on S 1is asymptotic to Hﬁt +4) as t->+o, (That is,
S 1s an isochron with asymptotic phase 95.) The proof uses the L
fundamental matrix of (1.3) to rewrite (1.2) as an integral equation on
(t, + ), Without loss of generality, # 1is taken to be 0, and it is

shown that -- for initial conditions u(0) = U(0) + z(0), lz(Oﬂ small
~ ~ ~ e

~- only exponentially decaying solutions ,S(t) occur for (1,2)




(that is, :(t) ~ E(t)) if :(0) satisfies a certain condition (the
equation for a surface §S).

Guckenheimer (1974) listed several results on isochroas related to
questions raised by Winfree (1974). Fenichel (1974, 1977) gave general
results on existence and smoothness of asymptotic phase (as a function
of the initial point) for invariant manifolds.

These results are existence theorems with constructive proofs, but
the constructions (integral equations on (t, +®) or Poincareé maps,
for example) are quite awkward for actual computation. Winfree (1978)
suggested that further work on the calculation of isochrons would be of
interest, which is the motivation for this chapter.

A series expansion for solutions of (1.1) close to the limit cycle
will be constructed. This expansion is the analogue for a stable limit
cycle of Liapunov's expansion for solutions near a stable critical point
and it ylelds a series expansion for the isochrons,

Liapunov proved that, if ) is a critical pouint of (l.1) such
that all characteristic exponents of the linearized system at Yo
have negative real part (with other minor conditions), the solutions of
(1.1) could be expressed as convergent series in the
exponentially-decaying solutions of the linearized system. Lefschetz
(1977, Chapter 5) presents this theorem in a slightly more general form,

using systems (20 = 0)

u' = Au + g(t,u), A constant matrix, Ig(t,u)' = O('u'z)

~

uniformly in ¢, (1.4)
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Here ‘g(t,s) is assumed to have a series expansion about u = 0 whose
coefficients are functions of t with the series uniformly convergent
on t > 0. The characteristic exponents for 5' = Az are aésumed to
have negative real parts.

Lefschetz shows the solutions of (l.4) can be expressed as a con-
vergent series in the cxponentially-decaying solutions of the linearized
system. Because (l.4) is nonautonomous, the coefficients in the series
become indefinite integrals over (t, +™) of quantities involving the
coefficients of the expansion of 5(:,3).

The expansion here is based on that of Lefschetz for (l.4). Two
new points arise, however. First, the presenée of a periodic solution
in (1.2) implies that the matrix A in (1.4) has a O-eigenvalue (and the
remaining N-1 eigenvalues are taken to have negative real parts).
Second, because of the underlying periodicity in the problem the t—-
dependent coefficienis can be simplified to T-periodic functions ex-
pressed as indefinite integrals over [0,T].

The main emphasis of this chapter is on two-component systems be-—
cause the variational equation (1.3) is relatively easy to solve (Lemma
C in Appendix I). The full solution of an N-component Floquet system
can be difficult to compute numerically because the exponential behavior
of the solutions can cause ill-conditioning problems. If N = 2 and
the (easily computed) limit cycle U(t) is taken as known, then one
solution of the Floquet system is U'(t) and finding the second reduces
to solving a first-order system, which is no problem. This procedure

has been summed up in Lemma B.




The second section gives the series expansion for the solutions of
(l.1) near the limit cycle in a 2-component system. (Convergence
follows from the results of Appendix II.) The series is a power series
of exponential functionswith coefficients which are periodic functions
of t. The expansion for the 1sochrons 1s an immediate result of this
series. The third section is concerned with the computation of the
periodic coefficients. A numerical procedure 1s given that requires
minimal use of memory while yielding high accuracy in the computation of

these functions. The procedure uses extrapolation formulas for

integration (and it 1is essential here that all functions involved be
periodic).

The fourth section describes computation of isochrons (using the
first four terms of the series expansion) and numerical checks on them.
Briefly, if the limit cycle is fairly smooth, the first four terms of
the expansion give a.good approximation to the isochron in a
neighborhood of the limit cycle, as expected. If the limit cycle begins
to develop discontinuities, however, the reglon of validity appears to
drastically shrink in the neighborhood of the discontinuity.

Appendix II gives the formal construction and proof of convergence
for N-component systems. It begins by introducing some notation for
multiple power series, then makes the formal construction, obtains an
iterative bound on the terms, and uses Liapunov's Lemma to show the
{iterative bound leads to a majorant series for the expansion, thus

proving convergence.

— e e
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Expansion for the Two-~Component System

The two-component case of (l.1) will be written as

u' = F(U,V),

v' = G(u,v), (2.1)

with limit cycle (U(t), V(t)) of period T and (U(0), V(0))

gpecified. The variational equation of (2.1) about the limit cycle is

the Floquet system

w Fu(U(t), v(t)) FV(U(t), v(t)) w
(2.2)

z' Cu(U(t), v(t)) G (ult), V() z

with fundamental matrix given by Lemma C:

ue)  Gco exP(jpt)l ~a
, U',W' U,V T-periodic functions. (2.3)

HOBR)) exp(-¢t)

A series expansion

00
u :E:: u
- e n (2.4)
v n=0 v

is assumed for u,v and is substituted into (2.1). Our choice below of

(uo.vo) as the limit cycle gives € the interpretation of a

measure of the derivation of the solution from the 1limit cycle. Notice
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that the formal result of such a substitution yields (with similar
results for G(u,v)):
! = F¢ ‘
1 - F(u,v) F\uo,vo) + (Fu(uo,vo)u1 + Fv(uo,vo)vl)e |
B |
a "
' + E [Fu(uo ,vo) u + Fv(uo ,vo)vn
X n=2 :
)
r n
: +F (uo, cees U1 Vs eees vn—l)} € (2.5a)
:
Fn(uo’ seer Upqo Vo ere vn—l) is a polynomial in the variables
Ups eees o gs Vin eees Vo and satisfies the homogeneity
‘ property,
i 2 n-1 n-1
“ Fn(uo, kul, k Uys sees k U1 Vo kvl, eeey K Vn-l)
?
‘ | (T
; =k F (U, U, eeey Uy Vs e, vn_l). (2.5b)
1
‘ (It is assumed that F, G are analytic —— it is sufficient that they be
. analytic at each point of the limit cyclel)
Substitution of (2.4) into (2.,1) and applying the notation of
4 - (2.5a) give
_ u’ Fla_,v ) u u(t +¢)‘!
i °l = °° with solution ° = s
B ] .
v h(uo.vo) v, vit +¢)
(2.6a)
|
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]
u) ) Fu(U(c +¢), Vit +¢)) FV(U(t +¢), V(t +¢)) u
’
v] 6, (UCt +¢), V(e +¢)) G (UCt +4), Vit +4)) \)
(2.6b)
t [ -4
wl F (UCt +¢), V(e +¢)) F (UCt +¢), V(e +g)) u
? ; J
v 6, (Ut +¢), V(t +8)) 6 (U(t +¢), V(t +4)) v, .
F(u,oco,u_’v,.tl,v_)
+| e nol” o L (2.6¢)
Gu(uo’ seer Uppr Voo e vn—l)
The idea of the substitution is to pick wu,,v, 2as the limit
cycle (as above) and then require all subsequent wu,,v, to decay
exponentially, Obviously we should choose
u, u(t + ¢)
= exp ((t +¢)) . (2.7)
vy v(t +¢)

(It will be notationally convenient to write solutions as functions of

t +¢; the factor exp(—/.)l) will eventually be absorbed into € .)

We now show that all terms wu,,v, 1n the expansion can be
written in the form
u ‘ Un(t + ?)
=  exp (—n/v(t +/o))
\A Vn(t + ¢)

(2.8)

Un’ Vn T-periodic functions.




The argument 1is by induction; notice (2.8) already holds for n= 0, 1.

Given n > 2, assuming (2.8) holds for w;,v, with m < n,
and using the homegenity property of F,,G, 1in (2.5b), (2.6c)

becomes:

[u‘; {-Fu(U(t + &), Vit + £)) FV(U(t + £), V(t +;{))]

tv"‘ lcu(u(c +#), V(e + £)) 6 (Ut +¢), V(e +)é))J iV“J

F (U (t + £)s e, U (e + 4,

+ exp(-n (t + ﬁ)) )
G, (U (¢ + )y sy U1t +2),

V(E+8), wee, V(e +4))

Vle +4), weny Ve ) L (2.9)

Referring to Lemma D for the solution of (2.9), we are led to

A A
define two T-periodic function F (t), G, (t) by:

[Cn + exp(—qﬁt) %n(t) t e(s) —ﬁ(s) ‘?

dn + exp(=(n - lbat)an(t) 0 I—expgas)v'(s) exp?&s)U'(s)J

Fn(Uo(s), coe, Un—l(s)’ ceey Vn_l(s))

G (U (S), wery U__ (8), uun, Vn_l(s))J

exp(-nis) ds n> 2. (2.10)

Y YR

UM (s)V(s) - V' (s)U(s)




(The form of the expression on the left follows from Lemma A,) Then the

solution of (2,9) can be written as

u U'(t +¢) exp (-u(t +g)U(t +¢)
v Vi(t +¢) exp (=x (e +ENV(E +4)

A
exp (-np(t +$)) F_(t +4)

exp(~(n = Lt +2)) G, (£ +4)

U (t +4)

= exp (-n.(t + ¢)) , (2.11)
/ v (t+4)

as claimed.
If we combine . € exp(jﬁﬁ) together as a single quantity €, the
results can be summarized as

THEOREM 1. The solution of (2,1) van be written formally as

u = U (t +¢)
= 2{: € exp (—Wpt) n s (2.12a)
v n=0 v (e +¢)

where Un(t), Vn(t) are T-periodic functions given by

(Uo(t) ,Vo(t)) = (U(t),v(t)) (the limit cycle); (2.12b)

(Ul(t),vl(t)) = (G(t),@(t)) (given by Lemma C, which also

glves /u); (2.12¢)

i L

taliioncia
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u_(t) . U (t) . U(e)
- Fn(t) + Gn(t) )
vV (t) v'(t) v(t)
n L L7
(ﬁn, an given by (2.10), n > 2). (2.12d)

(NOTE: convergence of the expansion for small |E| is proven in
Appendix II).

Notice that a solution given by (2.12) is asymptotic to U(t + &),
v(t +‘¢) with asymptotic phase ;f, so the initial points lie on the
isochron corresponding to )5. The initial points are found by setting
t = 0, giving
COROLLARY 1. The isochron corresponding to asymptotic phase f( is the
curve (u(e), v(€)) given by

o | o ]Un(¢)}
|-

v(e)J n=0 Vn(¢) (2.13)

It is instructive to compare these expansions (2.12) and (2.13)
for the trajebtories and isochrons with explicit solutions. The system

(RZ = W + v2)

u' 1 -R —«% (1 + r%) u
= (2.14a)

transforms using u =R cosf, v = R sing to
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R' = R(1 - R%)

y' '% (1 + 5. (2.14b)

These two equations can be integrated exactly, introducing 2 constants
of integration, written as &,# in the following results for the

trajectories:

R=[1+2¢ exp(-?-t)l.ll2

b= (t+g4)+ % Inf1+2e€ exp(—2t)|_ (2.14c)

Expanding as a series in powers of € exp(=2t) yields a series like

that of Theorem 1:

u rcos(t + %)j - cos(t + £) - %-sin(t +4)
= + exp(-2t)

v sin(t + #) 3 cos(t + #) - sin(t + #)

-
+ Ez exp/-4t) é—l cos(t +¢) + sin(t +;a')

- cos(t +)t') + -%—1— sin(t + ¢)

+ 63 exp(-6t) |- —él cos(t + ¢) -Z—é sin(t +,é)

91 ( 17
L+ %8 cos(t + 2) - g sin(t +4)

+ 0(e? exp(-8t)). (2.14d)



The isochron for asymptotic phase ;5 is given exactly by

u(€) (1 + 26)-1/2 cos(y(+% in | 1 + Zel)

v(e) (1 +20 2 sin(grt L+ |, (2.14e)

with a series expansion given by setting t = 0 in (2.144d).

This example and the van der Pol oscillator will be used as test
cases for the numerical work in the next few sections. The question to

be considered next is an efficient way of calculating the periodic

coefficients Un(t), Vn(t).

The Numerical Method for the Periodic Coefficients

The calculation of the T-periodic coefficients Un(t), Vn(t) in

(2.12) or (2.13) requires the calculation of the T-periodic functions

?n(t), an(t) in (2.10). Basically, the problem is a recursion of the

form

fo(t) is a given T-periodic function;
v//’t
fn(t) = exp(+npt) o exp(-nrs) An(fo(s), fl(s), vevsy

fn_l(s))ds - ey ,

(.M

with c such that fn(t) is T-periodic.




ity o3 A AN RPN, s O TR i, A e s ol T e —

118

Here fo(t) corresponds to the limit cycle (U(t), V(t)), i.e., (UO,VO);
the calculation of fl(t) corresponds to the calculation required in
Lemma C.5, determining (6,6), i.e., (Ul'vl); and the calculation of
fn(t) corresponds to the recursion in (2.10). Certain points have

already been made following Lemma A in Appendix I about the evaluation

of integrals of the form (3.1), for instance, that <, is easily

calculated (Lemma A.2b) and that if 244 (as it is here) backwards
integration in t 1s helpful to avoid ill-conditioning problems, as
described in (App. I.3). The discussion in Appendix I refers to the
evaluation of a single integral of the form (3.1). Here the problem
involves a sequence of such evaluations and the necessity of retaining

all the functions fO’ fl’ f2, .«. Taises a storage problem (if high

accuracy is sought).

Suppose we wish to calculate f., £, f,, f. so that f3(t) is

0* "1’ "2* "3

tabulated at N points over the interval [0,T], that is, at steps of
length h = T/N. Using (App. I.3) to evaluate the integral in (3.1), we
sti11l have to choose a means of evaulating an integral over one step

[(n-1)h, nh]. Consider the following rules (Birkhoff and Rota, 1969,

Chapter 7)

a+h h 3
p(t) dt = 5 [p(a) + p(at+h)] + O(h™) (3.2a)
a

A A Ak
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i3 [p(a) + 4 p(a + -2-) + p(a + h)] + o(h7) (3.2b) ‘
]
=2 [p(a) + 3 pa+ ) +3pGa+ 3+ pa + )]
7
+ o(h’) (3.2¢)

The relative error in applying these functions over the interval

[0,T] will be O(hz), 0(h4), 0(h6) respectively,
In using (3.2a), only 4N memory locations are needed to retain

the tabulated points for fO’ fl’ fz, f3; the errors in fl’ f2’ f3

will be O(hz).

In using the more accurate (3.2b), however, 15N memory spaces will

be necessary because fO must be tabulated at 8N points to give fl at i

4N points (since midpoints disappear in the process), which gives f2 at

2N points, which gives f3 at N points. The error for each fi here is

0(n%y.

For the still more accurate formula (3.2c), 40N memory spaces are
needed to give 0(h6) accuracy. In general, to obtain a relative error

O(th) for coefficients £ fl’ ceey fm, with fm to be tabulated at

0’
3 N points, requires an interpolation scheme using (k + 1) points on each

h-{nterval (so fm_1 must be tabulated at kN points, ..., fo at k™N

points). That 1s, using interpolation formulas,
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O(th) accuracy for fl’ fz, ceey fm and fm to be tabulated at

™o
N points requires -1 N memory spaces. (3.3)

In short, in using normal interpolation formulas such as (3.2) in

calculating a fixed number m of coefficients, the memory required in-

creases like Nkm, where 2k is the order of accuracy.

We now give a method of tabulating the coefficients f., ..., £
0 m

with relative error O(th) which requires only (m+1)N memory spaces

independent of k.

The idea is to derive extrapolation formulas to express an

integral over {(n-1)h, nh] by points outside the interval. This leads

to, for example

a+h h
p(t)dt = 5% {- pla=h) + 13 p(a) + 13 p(a+h) - p(a+2h)]
a

+ 0(hd) (3.4)

with the coefficients derived in the usual way (Birkhoff and Rota,
Chapter 7) by expanding in Taylor series (around a + h/2, for instance)
and canceling powers of h. Such an exterior formula would cause trouble
near endpoints, where p(a + 2h) might run outside tabulated values,

but since all functions here are periodic on [0,T], there are no

endpoints.
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Using (3.4) to evaluate the integral in (3.1) permits the
calculation of fo, fl’ fz, f3 with accuracy 0(h4) for each function

using only 4N memory spaces instead of 15N, Similarly, such extra-
polation formulas with higher orders of accuracy require no increase

in memory storage, as long as the number of points used, which is 2k for

0(h2k), is small compared with N. This is no problem in practice since

100

N will be > 100 and accuracy of O(h ) 1s seldom required.

Numerical Calculations

In this section the first four terms of the isochron expansion
(2.13) in Corollary 1 will be calculated numerically for two examples.

The first example is

u' = (1 ~ Rz)u -~ %-(1 + Rz)v

v -% (1 +RYu+ A - Ry, (4.1)

which has already been mentioned at the end of the second section. It

provides a useful check because its isochrons and the coefficients

Un(¢), Vn(p) in (2.13) can be found explicitly from (2.l4e).




The second example is the van der Pol oscillator

u "= Au(l - u2/3) -v, A> 0

v =u (4.2)

which is chosen to examine the expansion for smooth limit cycles

(small A ) and “"discontinuous” ones (large A). In this case the
isochrons are checked by taking points on the approximation and finding
their asymptotic phase by direct integration. .

The numerical work used two Fortran programs. The first program
simply found a point u > 0, v = 0 on the limit cycle (to be used as a
starting point for the second program) and the limit cycle period T, It
worked as follows:

1. An initial guess (u,v) = (uo, 0) with u, > 0 is made for a

0
point on the limit cycle.

2. Runge-Kutta integration is applied until the trajectory
crosses the positive u-axis. (It is assumed that the limit
cycle encircles the origin.)

3. As soon as the positive u-axis is crossed, the program backs
up to the point of crossing along a tangent line approxima-

tion. The result is a new starting point (u,v) = (ul, 0)

with > 0 and an approximate period T.

Y1
4, Steps (1)~(3) are now repeated to obtain a sequence of

starting points (u,v) = (un, 0) with u > 0 and approximate

periods Tn.
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From stability of the limit cycles, we expect the points

(un, 0) to converge to a point on the limit cycle and the

Tn-é T, so the interation stops when u., u _, are very

close (typically, within 10—6).

The second program uses the final values (un, ), Tn from the

first program as (U(0), V(0)), T -- that is, a starting point and period

for the limit cycle -~ and then calculates Un(t), Vn(t) form=0, 1,

2, 3. 1t proceeds as:

i

3

g

1

3

!

i

1

i

|

F

]

:

!
1.
2,
3.

1

f 4,
5.

(u(t), v(t)), i.e., (Uo(t), Vo(t)), is tabulated at intervals

of h = T/N using a Runge-Kutta method; (U'(t), V'(t)) is
tabulated directly from (U,V) using the kinetic system. (As
shown in the third section, the use of an extrapolat}on
formula for the integration permits all relevant functions to
be tabulated at the same Intervals.)

The Floquet exponent pis found using Lemma C.2.

The coefficients A(t), B(t) in Lemma C.4-5 are tabulated;

then (U(t), V(t)), 1i.e., (Ul(t)’ Vl(t)) is found from

Lemma C.3.

" A
The periodic functions Fz(t), Gz(t) are calculated from

(2.10) using the results of Lemma A; these functions then

give (Uz(t), Vz(t)) using (2.11).

?3(t), 63(t), (U3(t), V3(t)) are found as in (4).
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Steps (4) and (5) required the following explicit expressions for the

functions in the expansion (2.5):

_— e L -

1 2
Fylugeupsvgsv)) = 3 [jFuu(UO’VO)ul + 2 Folugavgluyv)
+ F (u.,v v 2
vw 070771 ?
FS(uO’ul’uZ; vo,vl,vz) = Fuu(UO’VO)UIUZ + Fuv(uo,vo) (ulv2 + uzvl)

1 3 2
+ (Vv Vo + 5 Fuuuorvoluy™ + 3 F  (ugevpu, vy

2 3
+3Fuvv(uo‘vo)ulvl + Fvvv(uo,vo)vl } . . (4.3)

with corresponding expressions for 02,03.

f The results for the first example (4.1) are shown in Table 1,

E which compares the coefficients Un(t),Vn(t) as caleulated numerically

with the exact values obtained by expanding (2.l4e)--the agreement is

excellent. Figure 3 shows an exact isochron drawn from (2.l4e) and an

approximate isochron drawn using the first four terms (through 0(63)) of

7 the expansion (2.13); again, the two curves are in excellent agreement

for IEI small (points close to the limit cycle).

P

The next calculations are for the van der Pol oscillator (4.2)

with A = 5, 1.0. These small values of A give fairly smooth iimit r

cycles shown in Figure 4. The coefficients, given at intervals




00Z/L = @215 dais
wy
mu ¢ = 3jusuodxe 3janboyyg 7 = L poyaad
ACY-1) + n( D& = A
4 4 1
AC¥+1DE - D ¥-1) = n
[4 1 [4
8G68°1 0000°1- 0o0s* 0000° 01 9668° 1 6666° - 666%7° 0000° - 0°1
osc1e- 0sLE°T 0000°1- 0000°1 9vel e~ L9Le” 1 6666° - 0000°1
8¢8L°T ¢L19° 1= £C66° 818S5° - 6° 818L°¢C 8919° 1~ 266" 8(8S" - 6°
8%09° - awes” I616° = 0608° 9%09° - AN 1616° = 0608°
§909°¢ L919°1~- 9601°1 1166° = g* 6509°¢ €919°1- 95011 [166° =~ 8-
y9%1°1 96 - 699r1° 060¢€° 09%1°1 097s° - 5991° 060¢ °
[43% A L866° - AT Itee” - Iz Leeycl G866° - €96L° 11567 - L
L66Y°T 0981~ Sw8L’ 060€ " = 686%°¢ JATANE b ST 060t * -
Lvge* - 8000° 1252 0 8/8G° - e 9%8C* - 8000° €ERl0 8.8S6° = 9°
GEE8°2 ¢00L° 1~ 6201°1 0608° - L2€8°C 6669 1~- 8c01°1 0608° -
8S68°1- 0000°1 000S° - 0000° c* %668 1~ 8666° 000s°* - 0000° c*
0s21°¢ 0s/e°1- 0000°T 0000°1~ sHZl°e R A N 6666 0C00° 1~
8c8L T~ cLT9°1 £266° - 8.8S"° ye €L~ 0L19°1 a6 - 886" e
8%09° ¢9¢s” - I161S° 0608° = £%90° §HT6° - 1616° 0608° -~
8909°¢- L919°1 9601° 1~ 1166° € #909° ¢~ 9919°1 SSOT 1~ 1166° c*
%9%1°1- 2926 ” 6991° - 060€°* - 2991° 1~ 19¢6° $991° - 060t "° -~
[4S% A8 & L866° §96¢L° -~ 1156° z° osev 1- 9866 ° g96L" - 1166° z*
L6SY° T~ 09.€°1 S¥8L° - 060¢€"° 76SY°C- 66L€°1 SHBL® - 060¢ °
(%8¢’ 8000° - £e81° - 8/8G"° 1° (8¢’ 8000° - TAR A G 8/8S° -
SE€8°C- ¢00.°1 6201°1- 0608° £E€8 C— 1004°1 6201°1~- 0608°
8568°1 0000°1- 000¢* 0000° 0 8668°1 0000° 1~ 0005 ° 0000° 0°
0ST1° ¢~ 062¢e°1 0000°1- 0000°1 0sz1°2- 0sse°1 0000°1- 0000°1
% % Tn CON Y Ea e 'a 0% u
7 %A Ta (3)°A ! fn ‘n Ty (1)°n ?

SINIVA LOVXd

SNOILNTOS TVOIYIGWAN

u u
(»1°7) WALSAS FHI ¥0d (Z1°Z) NOISNVAXE FKL NI (3) A ‘(3) n

INIIDI4J30D dHL Y04 SIANTVA IOVXI NV SNOILVINDTVO TVOIHIWAN 40 NOSIUVAWOO

1 d19vVl




126

(‘z7Kas o) (¥ A7) F=4 W)y = Y w3LS4S
PHL YoS((e3) P HOI0WHL SWY¥ITL NO OFSHE)
NOILPWI XONSSE QTL K792 TE2 A 7T/ FHAY 4 /L

WLIat NOWHDIOS) LSK¥T NE 0 NOSIVYIWOD £ FYNo/o

e
e e

NOILYHIYOW IS Y 7!\\

/87D

7049
LIMtT

g




- e .

PO L - - UARATIGN —— e e —————— . B el i gL\ o

- e —

127

of .1T, for the first four terms of the isochron expansion (2.13) are

given in Tables 2A, 2B. Using the coefficients, the cubic

approximation
we| 3 un(¢)l o
v(e) B[V (8 J

is found; these approximate isochrons have been sketched for the values
}D’ﬂ 0, .3T in Figure 4.

As a check of these isochrons, points on the approximate curves
u(e),v(e) for A = .5, 1.0 and % = 0, .3T were chosen by picking vari-
ous values of € . These points were integrated to t = + o (in prac~
tice, to t = 5T) where they were practically on the limit cycle, thereby
determining their asymptotic phase for the approximate points u(€),v(e)
and the intended asymptotic phase (either 0 or .3T) is found and given
in Table 3--the difference should be close to 0 and it is. (The "abso-
lute distance” in Table 3 is the distance between the computed point at
t = 5T and the ideal point at (U(0),V(0)) or (U(.3T),V(.3T));

dividing this (small) distance b& ((u')2 + (v')z)l/2

gives the phase
difference.)
For larger values of A the limit cycle in (4.2) begins to

develop corners and one expects something curious to happen in the

expansion. Tables 2C, 2D give the coefficients for A = 2,4; notice the

enormous slze of the coefficients for ;5 = ,3T and .8T (points near the




TABLE 2

IN THE VAN DER POL EQUATION

2
u=-v+Au (1 - %)

128

THE COEFFICIENTS U (t), V (t), n =0, 1, 2, 3, IN THE
EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER

v=au
TIME/T uo Ul U2 U3
Vo vl V2 V3

0.0 0.19762E+01 -0.50780E+00 0.20129E+400 -0.89280E-01
0.0 0.11687E-01 -0.13274E-01 0.75555E-02
0.1 0.15437E+01 -0.269985+00 0.76494E-01 -0.24351E-01
0.11458E+01 -0.26305E+00 0.91137E-01 -0.36292E-01
0.2 0.72995F+00 -0.57201E-01 -0.14687E-01 0.22414E-01
0.18915E+01 -0.48756F+00 0.20725E4+00  -0.10383FE+00
0.3 -0.50794E+00 0.39066E+00 -0.3G636E+00 0.25065E+00
0.19847E+01 ~0.57921E+400 0.28998E+00 -0.17418E+00
0.4 -0.17322E+01 0.75173E+00 -0.48406E+00 0.34581E+00
0.12358E4+01 -0.3564854+00 0.16791E+00 -0.89995E-01
0.5 -0.19762E+01 0.507522400 -0.20176E+00 0.90092E-01
0.10967E-03 -0.99720E-02 0.12079E-01 -0.68069E-02
0.6 -0.15438E+01 0.26996L+00 ~0.76488E-01 0.24350E-01
-0.11457E+01 0.26303E+00 ~0.91130E-01 0.362891-01
0.7 -0.73003E+00 0.57201E-01 0.14686E-01 -0.22409E-01
-0.18914E+01 0.48752E+00 ~0.20723E+00 0.10383E+00
0.8 0.50781E+00 -0.39062E+00 0.30633:+00 -0.25063E+00
-0.19847E+01 0.57916E+00 ~0.28996E4+00 0.17417F400
0.9 0.17321E+01 ~0.75175E+00 0.48408E+00 -0.345861+00
-0.12359E+01 0.35644FE+00 -0.16786E+00 0.89974E-01
1.0 0.19762E+01 -0.50776E+00 0.20126E+00 -0.89274E-01
-0.21875E-03 0.11712E-01 -0.13281E-01 0.75589E-02

Table 2A Parameter = 0.50000 = A

Period = 6.38057 =T

= p

Floquet Exponent
Period/ 200

Step Size =

= 0.50768
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IN THE VAN DER POL EQUATION
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THE COEFFICIENTS U (t), V (t), n = 0, 1, 2, 3, IN THE
EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER

2
u=-~v+iu (1 - %)
v =u
TIME/T Uo Ul U2 U3
Vo vl V2 V3

0.0 0.19193E+01 -0.52851E+00 0.23850E+00  -0.12049E+00
0.0 0.32829E~01 -0.25402E-01 0.12788E~01
0.1 0.15050E+01 -0.22479E+00 0.69028E-0" -0.25312E-01
0.11532E+01 -0.24555E+00 0.89357E-01 -0.39361E-01
0.2 0.83313E+00 ~-0.48770E-02 -0.70484E-01 0.94490E-01
0.19512E+01 -0.59608E+00 0.39381E+00 ~0.32756FE+00
0.3 ~0.41537E+00 0.10781E+01 -0.18418E+01 0.34467E+01
0.21370E+01 ~0.88997E+00 0.94868E+00  -0.13525E+01
0.4 -0.18707E+01 0.15550E+01 ~0.18960E+01 0.25429E+01
0.13137F+01 ~-0.47182E+00 0.32350E4+00  -0.28634E+00
0.5 -0.19193E+01 0,52863E+00 -0.24073E+00 0.12415E+00
0.69678E-04 -0.33509E-01 0.24558E-01 -0.11833E-01
0.6 ~0.15050E+01 0.22477E+00 -0.69019E-01 0.25308E-01
-0.11531E+01 0.24551E+00 ~0.89332E-01 0.39345E-01
0.7 -0.83318E+00 0.49026E-02 0.70447E-01 -0.94437E-01
-0,19511E+01 0.59598E+00 -0.39371E+00 0.32743E+0C
0.8 0.41528E+00 -0.10778E+01 0.18412E+01 -0.34452E+01
-0.21370E+01 0.88988E+00 -0.94851E+00 0.13521E+01
0.9 0.18707E+01 -0.15549E401 0.18960E+01 -0.25430E+01
-0.13138E+01 0.47181E+00 -0.32350E+00 0.28637E+00
1.0 0.19193E+01 -0, 52845E+00 0.23844E4+00 -0.12048E+00
-0.13685E-03 0.32849F-01 -0.25409E~C1 0.12792E-01

Table 2B Parameter = 1.00000 = A

Period = 6.66321 =T

Floquet Exponent =  1.05931 =

Step Size =

Period/ 200
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TABLE 2 (Continued)

THE COEFFICIENTS Un(t), Vn(t), n=20,1, 2, 3, IN THE
EXPANSION (2.12) FOR VARIOUS VALUZS OF THE PARAMETER

IN THE VAN DER PCL EQUATION

2
b= ~v+iu (1 -3
3
ve=u
TIME/T uo Ul U2 U3
Vo Vi v2 V3
0.0 0.18171E+01 ~0.56831E+00 0.30829E+00  -0.18306E+00
0.0 0.89378E-01 -0.35797E-01 0.15225E-01
0.1 0.14927E+01 -0.21745E400 0.11268LE+00 -0.65164E-01
0.12691E+01 -0.17074E+00 0.65832E-01 ~0.32648E-01
0.2 0.99168E+00 0.77857E-01 =0.20069E+00 0.95404E+00
0.22354F+01 -0, 11644F+01 0.284485+01  -0,86358E+01
0.3 -0.33267E+00C 0.11730E+02 -0.18713¥v+03 0.36096E+04
0.25967E+01 -0.36895E+01 0.51369E+02  -0.85019E+23
0.4 -0.20197E+01 0.5406014-01 -0.20738F+02 0.88G741+02
0.14787E+01 -0.106258+01 0.19792E+01 -0, 54636F4+01
0.5 -0.18172E+01 0.56951L+00 -0.31650E+00 0.19840E+00
0.13256E-03 -0.95624E~01 0.37060E-01  -0.14981E-01
0.6 -0.14927E+01 0.21741E+00 -0.11261E+00 0.65103E-01
-0.12689E+01 0.17066E+00 -0.65770FE~01 0.32603E-01
0.7 -0.991741L+00 -0.77739E-01 0.20031E+00 -0.95217E+00
-0.22354E+01 0.11639E+01 -0.28424E+01 0.806246E+01
0.8 0.33244E+00 -0.11722E+02 0.18694F+03  -0.36046E+04
-0.25967F+01 0.36887E+01 -0.51338E+02 0.84934E+03
0.9 0.20197E+01 ~0.54059E+01 0.207391+02 -0.88088E+02
-0.14789E+01 0.10627E+0] -0.19794E+01 0.54646E+01
1.0 0.18172E+01 ~0.56819E+00 0.30818E+00  -0.18302E+00
-0.26613E~-03 0.89407E-01 -0.35807E~-01 0.15234E-01
Table 2C Parameter = 2.00000 = A
Period = 7.62973 = T
Floquet Exponent = 2.38245
Step Size = Perjod/ 200
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TABLE 2 (Continued)

THE OOEFFICIENTS Un(t), Vn(t), n=20,1, 2, 3, IN THE
EXPANSION (2.12) FOR VARIOUS VALUES OF THE PARAMETER
IN THE VAN DER POL EQUATION
2
u=-v+Au (1 -%)
v =y
TIME/T [4{0] Ul Uu2 U3
Vo vl V2 v3

0.0 0.17572E+01 ~0.57722E+00 0.29671E+00 -0.16810E+00
0.0 0.69474E-01 ~0.18288E-01 0.69732E-02
0.1 0.15186E+01 -0.19318E+00 0.65358E-01 -0.22850E~01
0.16768E+01 0.26823E-02 -0.34531E-02 0.10564E-02
0.2 0.11566E+01 -0.,28349E+00 0.32962E+02 -0.83993E+03
0.30598E+01 ~0.50499E+01 0.11999E+03 -0.32753E+04
0.3 -0.52209E+00 0.54159:+04 -0.35752E4+08 0.28486F+12
0.37352E+01 -0.21692E+03 0.34843E4+07 -0.26968E+11
0.4 ~-0.19481¥+01 0.36367E+02 -0.94882E+03 0.27602F4+05
0.18934E+01 -0.46555E+01] 0.61528E4+02 -0.12112E+04
0.5 -0.17572E+01 0.57707E+00 -0.30418E+00 0.18354E+00
0.20627E~03 -0.73095E-01 0.19259E~01 ~0.72312E~02
0.6 ~0.15186E+01 0.19292E+00 ~0.65168E~0] 0.22749E-0]
~0.16766F+01 -0.,26903E~-02 0.34441E~-02 -0.10517E-02
c.7 ~0.115665+01 0.28352E+00 -0.32850E+02 0.83549E+03
~0.30597E+01 0.50401E+01 -0.11952E+03 0.32561E4+04
0.8 0.52144E+00 -0.54030E+04 0.35603E+08 ~0.28319E+12
~0.37353E+01 0.21716F+03 ~0.34752E407 0.26836F+11
0.9 0.19481E+01 -0.36342E4+02 0.94753E+03 ~0.27546E+05
~0.18936E+01 0.46523E+01 ~-0.61444E4+02 0.12087E+04
1.0 0.17572E401 ~0.57609E+00 0.29610E400 ~0.16776E+00
-0.41096E-03 0.69606E-01 ~0.18352E-01 0.70108E-02

Table 2D Paramecter = 4.00000 = A

Period = 10.20329 =71

Floquet Exponent = 5.61746 = |

Step Size =

Period/ 400




NUMERICAL EVALUATION OF ASYMPTOTIC PHASE FOR POINTS

TABLE 3

ON THE APPROXIMATE ISOCHRONS CALCULATED FOR

.
u = -v

v =u

3
+iu (1 -%)

(The phase difference at t = 5T would be almost O
if the isochrons were exact.)

Ischron Point

Phase difference (after 5T) Absolute

A ¢ € u(e) v(e) in units of T Distance
-1.0 2.7780 - .3250 .00261 .033
- .5 2.2950 - .0101 .00128 .016
0 + .5 1.7649 .0035 00117 .015
o5 +1.0 1.5838 . 0060 .00227 .029
-1.0 =-1.4556 3.0281 .00392 .057
- .5 - .8112 2.3686 .0C150 .022
3T + .5 - .3579 1.7458 .00222 .032
+1,0 - .1730 1.5213 .01151 .167
-1.0 2.8068 ~ .0710 .00410 .054
- .5 2.2582 -~ .0244 .00214 .028
g 4.5 1.6996 0117 .00207 .027
1.0 +1.0 1.5088 .0202 .00432 .057
-0.4 -1.3619 2.7314 .00197 .034
-0.2 - .7322 2.3638 . 00311 .053
3T +0.2 - ,2459 1.9862 .00314 054
+0.4 - .0582 1.8463 .01081 .184
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corners of the limit cycle). Since the expansion is convergent in

{as showi in Appendix I1), these larger coefficients show the radius of
convcergence is dropping rapidly to 0O near the cormers, (In fact, for

A= 10, values of the fourth coefficilents U3,V at

3

g~ .37,.87 are ~ 10°0.)

This numerical work indicates the expansioan (2.13) gives a
reasonable approximation to the isochron near a smootir Limit cvels, but
that the radius of convergence (in €) of the expansinu wrones

impractically small for "discontinuous” limit cycles,




CHAPTER IV

PERTURBATION OF THE LIMIT CYCLE SOLUTION TO
REACTION-DIFFUSION EQUATIONS

Introduction
This chapter and the next study in detail the spatially perturbed

limit cyecle (U(t),V(t)) as a solution of the reaction-diffusion system

u, = F(u,v) + (1 + a) Vx?'u, (.1

v, = G(u,v) + (1 - «) szv, ""'5] s

where V; is the gradient with respect to space variables Xe The

limit cycle is assumed to be kinetically stable and to have period T.
This chapter is concerned with a perturbation approach using the idea of

multiple scales: a spatial perturbation with a long space scale will be

introduced with length dependent on a parameter € , 0 < € << 1., 1t is
natural to couple this long spatial scale with changes ococurring on a
8low time scale compared with the normal time scale T-periodic
oscillatfon of the limit cycle. It is convenient to write the spatial
scaling as 5 =("5; choosing the slow time scale as ¥ =€t, the
0(€)~term of the perturbation contains both time and space effects.

The basic result is a formal solution
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u = U(t + 556(7,5) +0(e)) + 0(e),

v = V(t + 4 (1,3) +0(€)) +0(e).

where U(t), V(t) is the limit cycle.

This approach has been used by Neu (1979) in the case of a scalar

diffusion matrix (& = 0). Essentially, he obtained equation (2.2b.1)

below for ¢0 and pointed out the existence of (unbounded) traveling
wave solutions for ¢O’ which he related to chemical waves propagating

through a tube connecting two chemically oscillating solutions. Howard
and Kopell (1977) have also obtained equation (2,2b.1) and the same

(unbounded) traveling wave solution for ﬁb in the context of "weak

shocks,” transitions from one periodic traveling wave to a second one.
Here we are only concerned with cases in which the initial data

for ﬁo (and all other functions) are bounded, in fact, periodic. The

basic result {s the determination of an "asymptotic phase” for the
perturbed limit cycle solution.

Multiple scaling approaches (involving a slow time scale I =é€t)
are typically expected to be valid only over periods of time such that .
T remains 0(l), that is, for normal time intervals t~O0(l/e). It may
seem surprising in this context to speak of an "asymptotic phase,” which
can only refer to behavior occurring as t3+< ., However, it happens

that the perturbed solutions considered here tend to decay to a

spatially homogeneous solution as t->+®, If the perturbation is dying




away, there is no reason for the multi-scaling description to become

less valid as time increases. (In fact, the numerical work of Chapter V
shows it to represent the qualitative and quantitative behavior of the
solutions as t-+w.) Both Neu (1979) and Howard and Kopell (1977)
were concerned with spatial dependence which persisted in time and the
usual O(l/€) restriction is to be expected in such cases.

Section 2 discusses the multiple scaling procedure and gives the
expansion used, summarizes the results obtained in Section 2 and in
Appendix III on the terms of the expansion, and also gives the traveling
wave solution obtained by Neu (1979) and by Howard and Kopell (1977).

The terms of the expansion through 0(g) are completely obtained (which

requires that the 0(62) terms be almost completely obtained). Appendix
1I gives a recursion procedure for obtaining higher-order terms and
shous that the expansion can be defined in such a way that the general
terms have a reasonably simple form (given in (2.2¢)). The original
motivation for this detailed study was the hope of obtaining rigorous
results on the asymptoticity (or convergence) of the expansion for small
€. Unfortunately, no such rigorous results could be obtained;
remainder terms were always extremely complicated and no bounds could be
derived. Instead, the validity of the expansion was studied by finding
the behavior of the leading-order terms and making detailed predictions
for the behavior of the actual solution.

Section 3 studies the leading-order terms of the expansion and

makes such predictions. For the expansion through 0(€) (here 5 is a

single space variable),




+ o(e?y,

wmUCE+ g0T,3) + o€ £(1,5) +o(ed) + eu

1

veV(t+ g (1,5) + eg(1,3)+ o€y + ev, + o(e?y,

1

it is found that with periodic initial data, F% and ‘¢1 converge

to constants and uy and v, converge to 0 as t-+®, From the be-

hawior of the leading terms, the solution can be expected to evolve to a

spatially homogeneous osclllation:
A
u = U(t +¢),
A A
v= V(t +¢), g constant.

Three predictions--concerning the independence of ;'2 on certain initial
data, the rate of decay to the spatially homogeneous solution, and the
value of 2-——are made. These predictions are checked in Chapter V
against numerical solutions for two specific reaction-diffusion
systems.

Appendix IV gives an alternative multiple scaling approach. It is
only partially studied because the equation governing the 0(€¢) behavior

((App. 1V.1d) for A}) cannot be solved explicitly as can the

corresponding equation in section 2 ((2.2b.1) for ﬁl).




A Formal Expansion Based on Multiple Scales

We wish to investigate solutions which correspond to perturbed
limit cycle solutions of the reaction-diffusion system (l.1). It seems
reasonable to consider effects involving three scales: a normal time
scale (&) for oscillations of the limit cycle, a slow time scale (T) for
effects occurring over many oscillations, and a long spatial scale (3)
for slow spatial changes that do not represent an abrupt change from the
spatially homogeneous limit cycle.

The method of multiple scales writes solutions in terms of these
new variables u = u(6,7,§), v = v(B,T,E), and constructs 6,7,5 as
functions of t,x so that u,v satisfy the original reaction-diffusion
system (1l.1). The relations between.G,T,z are usually found by an
expansion in €. Let 0 ¢ € < 1 be a measure of slowness (of time or

spatial change) and set

00

T = €t, 5 = E' x, €=t +/¢{(e,'r,§) =t + Z_— ﬁn('r,S)en'
” ~ ~ n=0 *

Here T;E are related to t,z in a very simple way; the problem is to
determine %(G,T,Z). The scalings have been chosen so that the scaled

temporal and spatial derivative terms -E?—f = € —g;r— , sz = EVSZ are of

the same order. If only x 1is scaled, then (l.1) becomes
P

u, = FQa,v) + (1 +a) « 22 u,

v, = Glu,v) + (1 ~d) € ng v,




which can be interpreted as O(€)-diffusion coefficients and O(l)

changes in §~space. (This form of the reaction-diffusion system is that
ugsed in the numerical calculations of Chapter V).

The u,v functions are expanded in terms of € :

2 Tu(6,7,9
u u (6,7,%
- " ‘ ] €n, (2.1b)
v n=0 v (esrns)
n ~ )
The equations (1.1) become (here and for the rest of the chapter
¢V = VS ):
Ue.‘ u'r-l F(U,V)‘l
(1+¢€g) + € = (2.1c)
v, v,rj C(u,v)J

(U + 0P+ ¥+ 2% oVu +{FH [P u )
+ €
(1 =)@ + v, 7% + 2059y +|7] 2 v )

To expand the equation as a power series in €, it is necessary to
expand F{u,v), G(u,v) as power series in €., This procedure has already

been used in Chapter III, so the notation and properties in (1II.2.5a-c)

are used here.
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o
S| [FCugv,) - FCu ) F (u v ) l'un]
€"a + /[ e”
n=0 Voe G(uo,vo) n=] Lcu(uo’vo) Gv(uo,vo) an
, wa Fn(uo, cees U 1s Vs eees vn—l)
+ ‘ e (2.14)
n=2 Gn(uo, seer U1y Vs s, vn-l)
(-0 + (4o T 2
© nt u + L (uke(‘;{”"- (1 +4)y }‘1 )

n k+1=n
N

n=0
2 2
..t (1 -9)y v+ Z (uke(—¢£‘T+ (1 ""-')Vf&)
k+i=n

—y

+ 201 +a)Vuk'Vﬂ.n ) + Z (1 +~.)uy6r_V¢1 .v¢m
k+4+4n=n T

- . S -
+201 ~a)Vv, - VE )+ o (1 =v, 0 Vﬁl.v¢m
' d

Equating the coefficients of the 0o(€") - terms in (2.14d)

generates an infinite family of equations for Unr Voo ¢n' Each 0(€n)

term yields only a pair of equations, which determine the & -dependence
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of LA but leave the 7,5 dependence only partially determined.
The ¢n are determined by boundedness conditions on the a4 Vo, and

other conditions are imposed to completely specify the T,E' dependence
of U Voo

Since the calculations of this section and Appendix III are
messy it will be helpful to state at this point precisely what results

are obtained and the order in which they arise. The main problem is to

obtain equations and 1initial conditions for all terms Uos Voo ¢n’

specifying these variables in a reasonable way. The structure of the

terms u vy will be considered first; the relevant initial conditions

are then more easily described.
First, it is obvious that the O(l)-term in (2.1d) has the

solution

-
u u(se)

° = ’ (2.26)
v v(e) .

L

which is a reasonable choice since we are perturbing the limit cycle.
To obtain the higher-order terms, we need the solutions of the
variational equation of the kinetic system about the limit cycle, given

in Lemma C of Appendix I; the fundamental matrix is written as

A 7
U'(t) exp(-/ut)U(t)

»

v'(t) exp(—/,t)o(t)}
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A
where U', V', B, V are T-perlodic functions and =f 1s the negative
Floquet exponent. From a consideration of the O(€)-~term, it will be

shown below that ups vy will contain terms growing like O(6) unless

‘J ¢6 satisfies a certain equation. Deleting these 0(®)~terms gives:

2 2
1 (D) g, = Q+an) Vg + (f +an JVg| " ;
i
) (2) the constants hl’ ﬂl’ m, are given by (2.5) below; (2.2b)
i - A -
i (3) v, PlO(T,E,e) u(e)
! = + exp(-/“e) (Bl(fr’f‘;) + f(T)B) A H
] vl Qlo('sj)e) V(e)

(4) P10(¢,§,6), Q10(¢,§,6) are linear combinations of T-periodic
! functions of € with coefficients which are polynomials in

J-derivatives of ﬁ (T,%) and functions of ;f(0,5); £(T,3)
»~ (o] ~ o ~ ~
is a linear combination of % -derivatives of g§(¢,3); in

% ] A
particular, if the é-ﬂerivatives of fi(f,é) go to O as
T3+ 0 , then P Qo2 £20 as T >+,

(5) BI(T,E) is a function arising from the solution of an ODE in

6 for U,y (and determined from 0(62) terms).
The equation for ﬂ% is a form of Burgers' equation and can be solved

exactly by a transformation to the heat equation—-this solution is

discussed in Section 3.

BT YU U U - —— R e o
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The solution for u2

Y will be given 1in detail, partly because

2

the detaill is necessary in obtalning the equation for Bl and partly

because the calculations are slightly different from those for u Vo,
n > 3. In the solution for Uy ,Vy,  tWO notable types of terms occur.

The first type of term grows like @ and their elimination gives a

condition on 9‘1. The second type contalns the product é’exp(—/u ).

The O0(6) terms are eliminated to retain bounded solutions, but this
reason does not apply to terms containing 9exp(—l/‘ &) since these
remain bounded as #~>+®, However, since all terms occurring are
either periodic in & or a product of exp(-/a@) or @exp(-/.e) and a

periodic function of & , and since the 5cxp(-/é) terms will lead to

terms involving 9“ exp(—/»e) at higher orders if left in, it seems
obvious we should eliminate the Eexp(-46) quantities. In fact, this

procedure yields an equation for Bl’ which is exactly what 1is needed.

The material in (2.2a,b) and (2.2c) with n=2 is derived in this

section. In Appendix III we use an induction argument to study the

coefficients of €" for n > 3. Altogether (for n>2),

(1) deleting terms in u vy containing & leads to a linear

(2.2¢)
inhomogeneous equation for /dn-l .

24 Y 7Y,
Pomye = (WHSRDTL )+ 200 +dm) YLTL |+ b (13D

n-1
(2) hn_l(’f',z) is a polynomial in the é—derivatives of ,cg(’l‘,::_\),
...,%n_z(f,g) and functions of /dO(O,E); in particular, 1f

the §-derivatives of £ (1,%), ..., }z{n_z(fr,é) go to O as

T+, then hn_l(’l,z)‘éo as T > +o;
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(3) deleting terms in A containing 9exp(~/o€) leads to a
linear inhomogeneous equation for Bn—l’ w3,
B

2
= (1 -an))V°B _ + 28, +al,, - a(1-ah))VE - VB |

n~1,7 1

b $
+ fn—l('r’E)Bn-l + hn_l('f,~),

and for n=2 and B = Bl("r,S) + £(7,%),
~ ~
A _ _ A '
B, = (1 dhl)VB + 2(1221 +a122
A A
-p (1 -c(hl))Vﬁo'VB + fl(T,E)B.

(4) fn_l(’l‘,é) is a polynomial in §—derivatives of ¢°(’T,§), ooy
¢n_2('1’,§) and functions of ¢O(O,E) such that £ |, >0 as
>+ 1f the 'é—derivatives of ;50, vy ;én_z—) 0;

A

hn—l(’r’,\s,) depends on ¢o’ cens ¢n—2 and Bis eens Bn—2’

) [u U(e)
= B_(1,9) exp(—/.o) R
v ~ V(&)
n
n_ Pnk(’r,ﬁ’,e)
+ 2 exp(-ku€) ~ ;
k=0 an('r,::,e)
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(6) each P is a llnear combination of T-periodic func-

nk* Qnk
tions of & such that each coefficient is a polynomial in

By, «ev, B and their 3 -derivatives, the 5 -derivatives of

n-1

. ¢°(¢,5), cney ﬁn_l(v,z), and functions of FL(O,E); in

particular, the coefficients in PnO’ Qno do not contain

e R PR

Bl’ ey Bn—l or their derivatives, but depend on the

. J =
E ~derivatives of ﬁb(T,é), ceey ¢n-1(1’3) and 1if these go

to zero as T > +®, then P ,Q —>0 as T >+,
no no

&
9
b

(7)) Bn(T,§) is a function arising from the solution of an ODE in
A

8 for ULV (and determined from the 0(6“+1) term). Ve

note that the equation for A¢n-l can be transformed into the

heat equation. The detailed behavior of %l and B, are

studied in section 3.

Initial conditions are taken as

it

;&(0,5) arbitrary, ;&(0,5) 0 for n>l,

(2.3)

BI(O’E) arbitrary, Bn(O,E) 0 for n>2,

A
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corresponding to initial data for wu,v of the form

u(o,§)]. (4 (0,3)) y
= + B,(0,3) exp(- (0)5))
v(0,%) LV(¢°(O"§)) 1777 el 3T

U £,0,5))
| V( £,0,50)

i In connection with the initial conditions the experience of
& Chapter III should be noted. There- -an exceptionally simple form
‘é (111.2.8) of the terms in the expansion for solutions near the limit
.é cycle was found. That simple form, however, forced a particular choice
| of initial conditions for each term (III.2.13). This fact suggests that
an expansion simpler than (2.2) may arise but at the cost of more
complex initial conditions. Unfortunately, considerable search and
experimentation has not produced any particular simplification in (2.2),
so the simple initial conditions (2.3) have been kept.

Both Neu (1979) and Howard and Kopell (1977) point out the

existence of a "weak shock” solution for }%. Specifically, 1f equation

(2.2b.1) is written in the form ( £ = single space variable)

2
3

k
Pa = Pgs =% P




then Py solves Burgers' equation ;

Qy ™ dgy ~ k q qg,

with traveling wave solutions (ql, a, constants) 1

qz - ql

q=gq +
1+ exp ( % (a, = ) (3 -%(q1+q2)'r))

~ Q5 q, as § » tw.

Consequently, a "weak shock"” solution of the form

v UCt + p(S = 5 (a, + a1
LY}
v V(t+p(§--§(q2+q1)’f)’
5 4, - q
p(5) = (a, + s ) ds .
4 1+ exp(%(q2 - ql)s) .

~ qls ’ q25. as 3 > i_ool




is assuméd to exist. The resulting solution is essentially one

traveling wave with spatial wavelength T/qlﬁ? attached to another

traveling wave with wavelength T/qzﬁ? » and the two moving together

with speed (in x,t coordinates) -% (q2 + ql)JE* .
Here we are only concerned with bounded functions ﬁ; and will

assnme f; 1s periodic in E .

We now proceed with the proof of (2.2b-c). To calcuate UV,
the coefficient of € in (2.1d) is
Yie Fu(U,V) FV(U,V) u;
= (2.4)
L"mJ ¢ (U,v) G (L) v,
1

2 .
(~¢o1~+ Q +d)V2¢°)U'(6) + Q1 +d)|V)£o| v (e)

(-, + - 4)V2;zfo)v‘(e) + (1 -a()(V;{J 29" (&)

Lemma D of Appendix I gives the general solution. Define




V(s) -UCs) U'(s) U'(s) U"(s) —U"(s)

° exp(us)V'(s) expys)u'(s) Vi(s) —V'(s) V*(s) —V'(s)

ds
U'(s)¥(s) - v'(s)U(s)

(2.5)

8 h (e)+, (6) Qle+L1(e) mleﬂll(e)

0 Rtexpolfi (8) I+expo)l (€) & +exp(uo)M ()

A A A
M,, H,, L., M; are all T-periodic functions of O by

Lps Mo Hps Lys M

where Hl‘ 1

Lemma A. The general solutionr can now be written as:

| u) u' (8) Fl(e)—
- : f = A (T,5) | + B, (7,3)exp(-48) A
2 g N V'(O)J ’.V(a)
u'(s) expsps)ﬁ(s) s 1
2
+ ) -g,+°8) (2.6a)
V(s) exp{s)V(s) 0
, hys + Hl(s) ) ‘Ql s + Ll(s)
+«V ﬁo R X + IV¢°| X )
h, + expsﬂ-s)ﬂl(s)‘i 11 + expfs)L (s)
(mls M (s \ °
2
+d|V¢o| ) ) ,
m + epr.s)Ml(s) )

/ é
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L dnd?

"y

Fad
where the initial value 8 = ¢;(0,§) is obtained from (2.3). The

gl

(2.2b.1,2) for f; follows by requiring the 0(8) terms to cancel out.

=

We set AI(T,S) = 0* -— this requirement could lead to trouble by
~N

introducing secular behavior in higher-order terms, but it will be shown

below and in Appendix III that no such difficulty occurs. The solution
reduces to

u) UCe)
- B (D) exp(4) | (2.6b)
V(e)

U'(s)
+/(°( Vi () +IVE | (L () +am (s))

\ V'(s)
. 8
[U(s)
+(4vzld° B (s) +]V8 ) AT (s) +aM (s))
[V(s) ]
A e
. U(s)
. + [ exp(-ps) @P2g b+ |VE| 2(h) +am)) .
G(S) @

——

*The possibility of keeping Al and deriving an equation for it (in

place of ﬁl) is explored in Appendix IV.
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1 The definitions of P and (2.2b.3, 4, 5) follow immediately

100 Qo0 f

by inspeétion (the terms evaluated at = ﬁg(O,é) are included in the

periodic term).

For the calculation of Ugs Vs the coefficient of 62 is

Y20 F UV F (U,0)] Ju,
) (2.7)
V2o 6, (U,v) G (U, V) va
(-, + (L +0OTB)HU (@) + 21 +a)VE:Td U"(8)
+
(-¢1'r + (1 —o()V2¢1)Vv(e) + 2(1 ‘“)V%'V?fl v (6)
ulfr orr“le u1 o”le /% ule
+ uleelvﬁo‘ 2) }
2 2 l
+ - v]_T-’di)'lyle + (1 - )V Vl +V ¢ov19 + 2V¢°_Vvle
2
L + vleelvyl)og 3!‘
(term # 1)
Fz(uo,ul,vo,vl)]
* (term #2),
Gz(uo,ul ,VO’VI)J
:
i
|

1 2 2
where F2 5 [Fuu(uo,vo)uI + 2 Fuv(uo,vo)ulv1 + Fvv(uo,vo)vlJ .

and similarly for Cz.
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First expand terms #1 and #2 into powers of exp(-46) and then

expand further to obtain the ’I\s-dependence (’!; = Bl(’r,'i) + f('T,E) giving:

Ro(1:3,8) R;5(1,5,0)

(Term #1) + (Term #2) = + exp(-Z‘,xe)%z
Slo(T’f'e) slz(rr,f,e)
i .

(—ﬁ/madm B+ (1 +a)(VB -/‘széo B~ 24, - VA
2, 2a ~ A 2,4

+p V¢ B)) U+ ('%rB + (1 +) (V4B

+2Vg - VB - %|V¢o| 23)) U+ (ot A 25 o

+ exp(-40) | + R“(T,E\,e)ﬁ

<‘ﬁ¢ +/s{”§ + (1 -«) (7% -/uvzgfo B

- 2/0V}'{)‘V§+/,2 |V¢0| 7—§)> v +<—AT§ + (1 -4)

(Vzp'oﬁ + 2V¢ - V3 - gz.»!V;a’ol 21’3\9'\7' +

_ , 2/\ l\" < A
o a q>|v;ao| BV" +5,,(1,5,0)8 (2.8)

L

e —— i L el



"

z-derivatives of ¢°(’I’,E) and functions of ¢°(0,3); these polynomials

where Riv (r,3,6), Slk(T,S,e), k =0, 1, 2, are linear combinations of

~

T-periodic functions of & with coefficients which are polynomials in

are such that le, Slk—>0 as T >+ o {f the é-—derivatives of

g{(/r,S)-)o as T —> +oo,
(o] ~

Again, Lemma D of Appendix I will be used to express U,,Vy
Define
8
A A
V(s) ~-U(s)
- exp{s)V'(s) expus)U'(s)
| e g
A A A A A A
U(s) U(s) U'(s) U'(s) U”(s) U"(s)
V(s)  -U(s) V'(s) V'(s)  U"(s) -V"(s)

exp(;&s)ds
U (s)¥(s) - V' (s)U(s)

(2.9)

>

A
0 k1 + exp(:ﬁs)Kl(G) an*t exp(:pé)LZI(e)

6 -n6 - H(6) 1216 +1L,,(6)

A ~ A A
922 + exp(-£6)Ly,(8)  my + exp(—46M,, (6)

1226 + L22(0) m216-+ HZl(é)

?122 + exp(—/&é);\izz(e)l
122 J

e + MZZ(G)

i
|
|
i
|
i
\
i




A A N ~
where Kl' L21' LZl' HZI’ MZI’ L22, L22, M22, M22 are T-periodic func-

tions of 8 (using Lemma A). The general solution for uz,v2 can be

written as:

u, u'(e) u(e)
= Az(q,i) + BZ(T,E) exp(=£8) | .

v, ~ v'(e) v(8)

[(-f, + L +anV2 + 20 +an VA -TF, + (1,308

A 2A ~
(-Bp+ (I=ah VB + 200y +al,, -4 (1-4h))VF VB

+ fl(rr,gﬁa)e exp( —8)

! J
P, (7,5,0) P . (1,5,0)
+ 207~ + exp(—/de) 21 ~
on(‘riéye) Qzl(lr’.’é’e)
pzz(fr,i,e)
+ exp(—z/.e) ~ . (2.10)

where
T R, (1,5,5)V(s) =S, (1,5,5)0(s)
h (1,5 = %f 10803 - 10 & as,
* 0 U'(s)V(s) - V'(s)U(s)
T U'(sR,(4,5,5) - V'(s)5 (1,3 ,5)
£,(4,3) = %f 1 e — 11 ds.
0 U'(s)V(s) - V'(s)U(s)
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As before we set A2 = 0 (the next section shows this leads to no
difficulties in the higher-order terms). The results (2.2.c) for n=2
are obtained as follows. The coefficient of 6 is required to be 0 --
this ylelds (2.2¢c.1,2). The coefficient of © exp(jﬁe) is required to be
0 -- this yields (2.2c.3,4). The remaining terms, together with the

properties of le(¢,§,e), Slk(T,E,e) mentioned in connection with

(2.8), yield (2.2¢.5,6,7).
We have obtained (2.2a,b) and (2.2.c¢) for n=2; the remaining

results in (2.2c) for n>3 are obtained by induction in Appendix III.

Three Predictions of Solution Behavior

The multiple scaling expansion of Section 2 and Appendix III has
been derived as a purely formal expansion--no proofs of convergence or
asymptoticity have been obtained. Consequently we can only study its
validity indirectly by making predictions of solution behavior based on
the expansion and comparing these predictions with real (numeriéal)
solutions. This section studies the behavior of the first two terms of

the expansion:

u N uo(B) ‘e [UI(T,§,9)

? (3-1)
v vo(e) {VI(T,E,O)

and makes predictions about the behavior of u,v which can be checked
numerically. These checks are carried out in Chapter V.

One point on consistency with previous results should be mentioned
first., Chapter II gives a condition for linear stability (instability)
of the limit cycle to perturbations with small wave number kz. Small

wave numbers correspond to long wavelengths, which is the type of




of spatial behavior considered in Section 2, so a relation between the

expansion and Chapter 1II is to be expected. In fact, by Theorem II.]
the limit cycle is linearly stable (unstable) to small wave number

perturbations if

1-¢a_ =1 +EfT B()iCe) + V()0() 4o o (o
o TJ o us)¥s) - viis)lcs)

But l-dAo = l+dh1 by (2.5), so the limit cycle is linearly stable or

unstable depending on whether the coefficient of Vzgg is positive or
2
negative in (2.2b.1): ¢b¢ = (l+dh1)V ﬂ% + .4+ « (Incidentally, the

A . A

equation (2.2¢.3) for B = Bl(W,i) + f(W,é) has the form B, = (l-dhl)Vzﬁ
+ ... , and it is possible that 1+0(h1 > 0 and 1--4hl < 0. This situa-
tion has not been investigated here; lighl > 0 in the cases solved

numerically in Chpater V.)
The work of this section will result in three predictions on the
behavior of perturbed limit cycle solutions of (l.1l):
Prediction I. Periodic initial data (period = P) in (2.3) should
evolve to a spatially homogeneous solution of the
form (U(t + 2),V(t + ;)), where (the asymptotic

phase) 2 is a constant that is independent of

B,(0,5).




Prediction 1I. The amplitude of the perturbation to the limit cycle
2m, 2
should decay like exp(-(l+dhl) (T) €t).

A
Prediction IITI. The asymptotic phase }zf can be approximated as

B = fy(+e) + 0(e)

l+dh, ) °p 11+dm1
" a e Ia i\J/o SXP\TT¥an, #4(0,9) di/+ 0(e).

In particular, if %0(0,5) = Asin(—z-%r—'-j , then

A1 tdhy ) {1 (A 01+dm1
.ll'ﬂ(ml L o) & l-Hh1

where Io(x) is the modified Bessel function.

These predictions result from the following study of the behavior of the

leading-order terms (3.1) of the expansion.

We first show that equations (2.2b.1), (2.2¢.l) for ?{n’ n > 0, can
be transformed to the heat equation. If 11 +a(ml = 0, each ;z(n already
satisfies the heat equation; {if .91 +a(m1 # 0, the following trans-

formation, based on the Hopf-Cole transformation, can be made:

s e SRR,




4 2 2 | Hm
' 18 By = (DT B+ (Aram NTE] T and = exp 1+«h ¢0/ :

then ‘LOT = (1+dh1)72¢0 ,
2 .
if ¢m = (1+u¢h1)7 /én + 2(£1+dm1)V¢O-V¢n + hn(T’E) and {ln = ¢O¢n .

then § = (L+ah V74 + b (1,5).

For simpllcity we consider only periodic initial data in one space

variable 5 ; period = P. Lemma ] gives the behavior of solutions to the

heat equation required for the analysis of (3.1).
Lemma 1.
2
If (a) §,=a" fygt n(1,3),

(b) ¢(0,3) and h(7,3) are c” and P-periodic in 5,

(c) there exist constants b, 0 < b < (Z—Eﬂ)z, and <, such

n
2R (e,
a3

that Ley h(1,%) for n > O,
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then there exist constants dn’ n > 0, such that

P P r®
@ |ber,3) - %A $(0,5)d3 —%j;/; h(r,3)dTd3|<d_ exp(-bT)

n
(e) forn> 1, 2—%'(7,3) < d_ exp(-bT).

33
Proof: Setting
2 27in
$(T,5) = é;; A (T) exp (+ 3 ),
t2 2nin
h(’r,ﬁ) = %-Bn(;’) exp (+ P 5))

the exact solution for the An(T) is

pe
An(T) = exp (— (3%33-)2/r) An(O) +L/£\ exp (+ (Zgna) zs) B(s)dij

where An(O) is determined by the Fourier expansion of V(O,i).

e - —m——. . ot 2
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For n = 0, notice

1 P i//Pi//f‘T |
A(T) =3 (0,8)ds += h(s,5)ds ,
o =3/ L/

and since h(7,3) decays exponentially in T, AO(T)—+ AO(+u0 constant as

Tr—> 40,

In fact,

i X gl Bl g

o
P c
Ag(T) - AgF | < %j(;\/; £(s,3)dsd3 | < > exp(-bT).

For n #0, using |h(T,§)L§ c oexp(-bf) gives

|An(7ﬂ < |An(0)| o exp(-bT).

Combining the results for n=0 and n#0 gives

¢ ;
l@(*,?) - AO(+mﬂ < gg exp(-bT) :
t» c
2 |An(0)| + ——— | exp(-bT)
- (Znna) -b
n#0 P

and inequality (d) follows with

s iy PORBIREET T A A I O



O S ROy
d =— + A (0) |+
° b é%; n (ana)
n#0 P

(convergence of the ,An(O)' follows from smoothness of (0,%5)). To

obtain (e) for the higher derivatives, apply (d) to the equation

N N
35/, % )y &

AN EARIPN
N.

The same arguments go through with

N
2%in
An(¢) replaced by (—3——? An(T) N

27in N
Bn(T) replaced by ( P ) Bn(T) s

0 repaced by Cy

i Ny PN,
0o v ds + — dsd§ = 0 by periodicity.
3% 0v0 93

Then (e) follows with

+ o N c
- 2nvw N
=gt L = ‘An(0>l + —~—|.  qEp.

2
n¥0 (2nna[ - b

P




" a Rl o B+ o e veom i ot e = =

163

Lemma 1 is now applied to ;zfo(/r,?), that is, Lemma 1 is applied

with %= %0, a2 =] +«hl, h(7,35) % 0, where ;&0 is related to }‘0 by

(4.2). From Lemma l.d it folows that

1 [P T

exponentially fast. 1In fact, from the most slowly decaying mode of

in the proof of Lemma !, we know that

l{/O(T,S) - EO and all 3-derivatives of IPO decay to 0 at the rate of

!

0|exp (— (Epj—)z)) . (3.3b)

Consequently, as T>+o ,

1+dh P §,+dm \ }
, o) = — L. 1 21 5
Po(Ts ) > i (+o) = ey {n "fo exp(l_i_ahl #,¢0,5) SJ ,

all 3~derivatives of f0—>o, and the decay rate in both cases is (3.3¢)

2
0 (exp (-(l+dhl) (12,—") '3 t))‘ .

Ve ——

.
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To obtain a similar result for ;%(T,E), notice that hn(¢,5)
in (3.2) is, by (2.2¢.2), a polynomial in S-derivatives of ;{O(T,Z), ceny

,dn_l(h?) and functions of %0(0,2) such that hn—)O if the $-derivatives

\ of ¢O’ eney ¢ _19 0. Consequently, if the g—derivatives of %O, oy "
& :
2% Z !
[*%i‘ , then sc does i

¢n-l individually decay like exp(-b7T) for 0 < b <

v

hn(-T,ﬁ) and all its 5-derivatives (in particular, hl(-r,i) i{s certainly

bounded by ¢ exp(-b?) for any b, 0 < b (—2{,—3- , by thae decav rate ]
i

given in (3.3c)). The decay rate of the g—derivatives of ;’(0, ,¢ -1

can be assumed by induction, so the hypotheses of Lemma 1 are

satisified. It follows that, as T2+,

¢n(4,§)~—)constant, (3.4)

all g—derivatives of /n—-> 0,

and the decay rate 1in both cases is faster than

2T 2
0 (exp(—(l+b’)(l+dh1) (—p—) € t)) , where §> 0.

To determine the bchavior of UV it is necessary to know some-

thing about Bl(’r,‘i). Assuming 1—dhl > 0, we show that Bl has a bounded

T s
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Lz-norm as T2+w, It is sufficient to consider % = Bl(T,z) + f(71,%),
since f(7,3) consists of 5~derivatives of ;é and decays exponentially
in ¥ to 0. Equation (2.2c.3) for ﬁ can be written as (b2 = l~th1)

~ 2

2y A - A
By = b [B55 + 85 BSI + gl(W,s) B, (3.5a)

where g, g, are combinations of §-derivatives of g , that is, they are
1 o

P-periodic functions of 5 and decay exponentially in T to 0. Equation

(3.5a) can be simplified by a change of variables:

c(T,3) = exp(g)B,
K(T,3) =g, = b (g + g0) +5), (3.5b)

2 . ]
Cq = b°C,, + K(4,5) C,

so K(1,3) is P-periodic in 3 and decays exponentially fast in 7T to O.
From (3.5b) follows

[P P p
—;/ (cz)T a5 = - b2/ 052 ds +/ K(r,3)c? ds.
JO 0 0

Using lK(7,§) IS

exp(-d7) for some k, d > 0, we have

f P \ P
t /\ Cz d1 <k exp(-dT) Czdi .
! s N 0

ro) =

N ’
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Gronwall's inequality can now be applied (the following form {is

sufficlent; see Coddington and Levinson (Chapter 1, 1955)).

Lemma 2. (Gronwall)

t
If wu(t), v(t), C>0 and u(t) < C +-J[ v(s)u(s)ds,
t

(o)

t
then u(t) < C exp (f v(s)ds . .
t

[o]

Equation (3.5e) now gives

P ( P
/ ctas < / CZ(O,S)dS-’ exp(%.(l —exp(-d-r))) ., (3.5d)
0 [Jo |

A
so B(7,3) is bounded in the Lz-norm.

To derive the predictions, we first list expected behavior. From
the results (3.3c) and (3.4) on the long time behavior of the individual

termslﬁn, it seems reasonable to expect
A N
ort g, 4 =g+ ety + ..., (3.6a)

as t @ 4+®, and that

A

6 ~ t decays to ¢ at a rate O[exp(—(l+«h1) (%E)z € t)]. (3.6b) -

The initial conditions in (2.3) for ¢ (0,%), n > O, are certainly
n Z

independent of 81(0,5). Also, the equation for ;% is obviously




A
independent of Bl’ S0 we expect # to be independent of the initial con-

ditions for Bl(0,§), at least through 0(€)., (In fact, the obtaining of

equations (2.2c¢.1) for %n’ n > 1, shows these equations depend only on

the terms which are T-periodic in @, and these terms are all

independent of Bn(T,§) for all n > 1, so every ¢n is independent of

every Bm') Since BI(T,§) remains bounded in the L, -norm, 1t certainly

2

seems reasonable to expect

31(7,3) exp(-48) >0 | (3.6¢)

as t>+02 for small €, and the decay rate should be about exp(jpt).

Therefore, using (2.2¢) for the structure of u v » we expect the

1’

PIO’QIO portion, consisting of T-periodic functions of € and

Y ~derivatives of %0, to decay to 0 at a rate like

0] (exp (—(1+«‘hl)(%E 26 t)) , and the exp(7L9) portion to decay to

0 like O(Cxp(7bt)); that is, we expect

ulvl‘)O at a rate O[exp(—(l+dhl)(2W/P)zct)]. (3.6d)

Prediction I now follows directly from applying (3.6a) and (3,6d)

Fa)
to (3.1) and adding the expected independence of @ from Bl(O,Z).




Prediction II follows from the decay rates in (3.6b), (3.6d).

The first half of Prediction III follows from (3.6a) together with

the expresion for ﬁ6(+~9 in (3.3¢). The second half of Prediction III,

for initial data of the form ﬁ%(O,S) = A sin(z%gi) follows from Lemma 3,

a generalization of Bessel's integral representation for Bessel

functions.
Lemma 3.

P
(a) Set y(A) =-%b/h £ (A sin(£%E5)>'dS , k=1,2, ...
0

If f(x) 1s a smooth function satisfying £"(x) —-exf'(x) -

pf(x) = 0, then y(A) is smooth, y(0) = £f(0), and ;
d%y | 1-a«a gy J
+ S5 — ey = 0.

dAZ A dA i
]

1 [P 2nk

(b) = exp (A sin(———s)) ds =1 (4a).

P 0 P (o] L

Proof: Simplify by

1 [ F 2nk !
y(A) -F f (A sin(—P— S)) ds = f(A sin 2nk%)ds ,
0 0




For (b), pick o =

go only the latter integral need be considered. If f is continuous,

obviously £(0) = y(0). Now notice

£°(A sin 2rk3)ds§

cos(21ks%)

TvKA £"(A sin 27k3) 2mkA cos(2vk3) d3

1
£°(A sin 2nk5)&§—‘i—\'/\ £'(A sin 2vk%) sin 27k3dS
0

dy _ l
aa tPY T % G-

0,p= 1, f(x) = exp(x), and the equation for y is a

modified Bessel equation. The initial condition y(0) = exp(0) gives

y(A) = IO(A). QED




CHAPTER V

NUMERICAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS

Introduction
This chapter is concerned with the numerical solutions of two~

component reaction-diffusion systems of the form

v, = Flu,v) + (1+a) € ugs

(1.1a)

v, = Gluv) + (lma) € v, fal<,

3%

with initial data periodic in 5 with period P = 1.

The chapter contains two separate topics. The first topic
(Sections 2, 3, 4) concerns the numerical check of the predictiéns made
in Chapter IV on the behavior of solutions of reaction-diffusion
equations. The second topic (Sections 5, 6, 7) concerns the numerical
stability of finite difference schemes for nonlinear diffusion
equations.

Lees' method was used for the numerical work of Sections 2, 3, 4.
Section 2 gives a brief discussion of this finite difference scheme and
a detailed discussion of numerical problems In validating Predictions
I-1I1I of Chapter IV.

Section 3 checks the predictions for a A-w system; Section 4 for a
case of the solvable chemical reactor system mentioned in Chapter 1II.

It 1s necessary to write the initial data in the form used in Chapter IV:
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u(0,%) UC¢ (0,3)) (1.1b)
v(0,5) V(#,(0,5))
U4 (0,5))
+ € 81(0,3) exp(j%ﬁg(o.g)) A
V(¢ €0,7))

where (U, V) is the T-periodic limit cycle solution of the kinetic

A A
systems and 7p, U, V are related to solutlions of the variational equa-~

tion about the limit cycle (see Lemma C). The three predictions to be

A Va)
checked concern the evolution of solutions to U(t + @), V(t + ¢), the
» V)
rate at which the evolution takes place, and the dependence of ¢ on the

initial data. To test these, it is necessary to know certain functions

A A
(U, v, U', V', U, V) and certain constants, such as the Floquet

exponent jﬁ.and

t /T ud + v 1 /T ud - v
hy =3 — e, b -5 — % dt, (1.2)
0 U o~ v 0 UV - vy

Sections 3 and 4 calculate these quantities for their respective svstems

and proceed with the numerical checks. Briefly, all three predictions

hold for the A-w system of Section 3; the first two clearly hold for the

chemical reactor systenm of Section 4 and the third prediction appears
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hold. Iﬁ this last case, however, only indirect evidence is available:
the results of the third prediction appear to hold when the numerical
results for small € are extrapolated to very small €, but it 1s not
numerically feasible to directly check the cases with those very small

values.

The remainder of the chapter 1s concerned with numerical questions
only,

Information on numerical methods for diffusion equations 1is
somewhat scattered, As general references, Carnahan, Luther, and Wilkes
(1969) and Carrier and Pearson (1976) should be mentioned--Carrier and
Pearson give a particularly excellent discussion of numerical stability.
More specific references are Rinzel (1977, especially concerned with
calculating traveling fronts), Varah (1978, concerned with numerical
stability), and Fornberg (1973, which gives some discussion of numerical
stability in nonlinear cases)., Lees' Method originally appeared in Lees
(1969).

Section 4 gives . brief survey of finite difference methods for
solving diffusion equations: the explicit, Crank-Nicolson, Lees', and
modified Lees' mettods. The concept of numerical stability is defined,
and the stability properties of the methods are derived for linear
equations wit' constant coefficients. The programming of Lees' method
for periodic initial data 1is also discussed,

Numerical stability of a finite difference scheme is usually

%
4
1
J
R
i
3
."
&

determined by how the method works for a PDE with constant coefficients,

Tor such simple PDEs the finite difference solution can usually be found

explicitly and the boundedness of solutions determined directly,
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However, very little is known about the stability of difference schemes
applied to nonlinear systems, and Sections 5 and 6 are concerned with
nonlinear numerical stability.

My interest in this problem originated in a seminar on finite
difference methods for PDEs given by Dr. James Varah of the University
of British Columbia. It seemed that the geometric arguments of Chueh,
Conley, and Smoller (1977, discussed in Chapter 1) would carry over to
the discrete equations and provide stability results for finite
difference methods applied to nonlinear diffusion systems. This work is
carried out in Section 6. The proofs suggest an essential difference
between numerical stability for linear and nonlinear cases: for linear
problems, stability is usually a matter of wavelength alone, but in
nonlinear problems both wavelength and amplitude may be involved. An
example is given at the end of Section 6; it gives an explicit finite
difference solution to a nonlinear, scalar diffusion equation (whose
continuous soutions all decay to 0 as t-y+®), The explicit solution
also goes to 0 if the initial amplitude is small but blows up if the
amplitude is O(1/VAt).

The geometric proofs only yield a conditional stability require-

ment At = O(sz) for all methods in Section 5; since some of these are
unconditionally stable for linecar systems, stronger results appcared

possible. Section 7 obtalns direct estimates which show that the Lees'
and modified Lees' methods ars ancondirionally stable. (Incidentally,

Lemma 1, a key step in the proof, 1s of interest in its own right.)




Numerical Procedures

The numerical problems occurring in calculating the predicted -

A
asymptotic phase % are rather awkward. First, the decay rate to a

spatlially homogeneous solution is exp(~Cet), where C is some constant

and € 1is small. Consequently, it 1Is not economically possible to obtain
the asymptotic phase 2 for exceptionally small &€ --to validate the
predictions of Chapter IV it must be possible to choose € small, but at
the same time it must be sufi .ciently large that decay to a spatially
homogeneous solution takes place in a computable amount of time.

Second, in spite of the long period of time necessary for a spatially
homogeneous solution U(t+ﬁ), V(t+ﬁ) to form, tﬁe numerically obtained

A
asymptotic phase (called F%bs here) must yield an accurate value for g

in order to check Prediction III. This section discusses how these
problems were solved in practice.

Section 5 discusses three numerical algorithms for diffusion

equations: the explicit method, the Crank-Nicolson method, and Lees'

method. The explicit method requires At = O(sz) as a numerical :
stability restriction, which makes it very expensive for integration

over long time periods. The Crank-~Nicolson method is numerically stable -
but requires the solution of a large system of nonlinear equations for

each time step when applied to a nonlinear diffusion system (as here). .
Lees' method 1s an extrapolated version of Crank-Nicolson using 3 time

levels. It has the same accuracy and stability as Crank-Nicolson but

only requires the solution of a large linear system at each time step, ‘




even if the diffusion system is nonlirear. lees' method was used in the
calculations and worked quite well.

In connection with the difficulty of choosing € small but not so
small that the decay rate is impracticably slow, another difficulty,
which limited ¢-values to € < .0l, should be mentioned. All initial
data were taken on 0  § { | with periodic initial conditions; the
standard step size was A% = .02 (except for certaln accuracy checks with
A5= .01). This step size and boundary conditions meant a 50x50 linear
system had to be solved at each time step (fortunately, it was nearly
tridiagonal). Values of ¢ larger than about .0l led to "exponential
underflow” error messages during the inversion; hcwever, no attempt was
made to root out the difficulty since only small values of € were
relevant in the calculations.

Fortunately, for the examples studied in Sections 3 and 4,
€ ~ .0l gave decay rates resulting in spatially homogeneous solutions by
t ~ 8W, and this time interval (together with the relatively large time
steps made possible by the procedure discussed next) was economically
feasible, Cutting € by a factor of 10 would require a time interval 10
times longer for the solution to decay to a spatially homogenecous
solution, so no runs with € = ,00l (and a necessary time interval 80W)
were made.

The most serious problem was the accumulated numerical error in

F%bs’ the numerically calculated asymptotic phase. For instance, one

of the larger phase shifts predicted was .12, and this shift had to be

accurately measured over a time interval of 8W ~ 26, In principle,
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once the time interval required was known to be 8T, so integration takes
place over the rectangle 0 < § <1, 0 < t < 8%, the accuracy could be
improved by decreasing 45,4t. In practice, of course, sufficiently
small step sizes were not economically possible-- the high cost limited
their use to occasional checks of accuracy.

However, the following idea retains accuracy while permitting
relatively large time steps. Since we are concerned with solutions
which perturb the limit cycle solution, the numerical error involved
should be nearly the same as the numerical error for the limit cycle
alone. (This is not necessarily the case if abrupt spatial changes
occur, but here only mild spatial changes occur.) When Lees' method is
applied to the limit cycle alone, the spatial terms cancel out and the
methed reduces to a discrete method for solving a system of ODE's;
calculations can then be carried out on a programmable pocket
calculator.

For ex-~:.»le, consider a reaction-diffusion system with kinetic

equations (this system is the example used in Section 3)

u l-R2 —%(1+R2) u
= 1 " p » u=R cos ¢, v=R sin% . (2.1a)
v 7(1+R“) 1-R v
with limit cycle solution
u(e) cos t
= , period T = 2m. (2.1b)

v(t) sin t




At = 2m/100 and At = 2%/ 600,
1 negligible. The error in ﬁ is negligible for At =
k at =

called the Kinetic Phase Error (KPE).

In both cases the error in R2

177

Table 4A shows the results obtained when we begin at the point

(u,,v,) = (1,0) on the limit cycle and integrate using step sizes
0*Yo &

is

2n/600; however for
2n/100 it is large enough to affect calculations of the asymptotic

phase ¢. The phase error in solving the kinetic equations will be

Table 4B gives results for the reaction-diffusion system with

kinetic equations (used as an example in Section 4)

(1-u2) u-v

e

u + (l—uz)v

<.

with limit cycle

u(e) Ro(t) cos t

#

v(t) Ro(t) sin t

1/2
2(1+a%)

cos 2t + a sin 2t

R (t) =(
° 1+a + a?

The KPE can be used to improve accuracy in the following way:

initial data be given for either (2.1) or (2.2) and
solutions up to t =

homogeneous with the form

2nm, at which point they are found to be spatially

(2.2a)

(2.2b)

, period T = 2m.

let

compute the
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TABLE 4A

Kinetic Phase Error (KPE) for (2.1)

time R2 R2 calc.
steps exact calc. exact (= 2ng + KPE)
7 At = 2m/100 0 1.00 -~ 0 -
; 100 1.00 .99710 2w 2 + .01215 )
; 200 1.00 .99710 4 4 + .02271 .
‘ 300 1.00 .99710 6w 6 + .03326 "
400 1.00 .99710 8w 8 + ,04382
800 1.00 .99710 16w 16 + ,08605
At = 21/600 0 1.00 - - 0 —
600 1.00 .99992 2m 2 + .00034
1,200 1.00 . 99992 4 4 + ,00062
1,800 1.00 .99992 6T 6 + .00091
2,400 1.00 .99992 8w 8§ + .00112
TABLE 4B
Kinetic Phase Error (KPE) for (2.2)
time steps exact cale. (= 2n7 + KPE) ;
At = 2w/100 0 0 - ?f
100 27 2 - .00l15
200 4w 4 - .,00359
4 300 6 6 - .00602
; 400 8n 8 - .00846
600 12w 12 - .01333
800 161 16 - ,01820
1,600 zw 32 - .03767




u U(2nm + ¢obs)

v V(2nm + ¢obs)

FaN
Then the calculated asymptotic phase is 7£bs = ¢ + error. We expect

this (phase) error for the perturbed limit cycle solution and the KPE
for the limit cycle solution alone to be about the same, since the
solutions are nearly equal and the same finite difference method is

applied in each case. Consequently, FLum’ defined by

ﬁ&um z }gbs - KPE (2.3)

should give a more accurate estimate of f. This is, in fact, the

case—-Section 3 and 4 both compare y%um obtained for At = 2W/100
against ;gbs for At = 27/600 and the agreement is excellent. This pro~

cedure allows us to make standard use of the relatively large time steps
At = 2w/100.

As a specific example, consider a calculation actually carried out
in obtaining results at the beginning of Section 3. The

reaction-diffusion system 1is

2 1 2
u 1-R 2(1+R ) u (H’a()ﬂtSs

T 2 2
v §(I+R ) 1-R v (l-d)ﬁv§

3
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A solution is found using At = 2n/100 with initial data

u(0,%) cos (sin(2m%))

v(0,%) sin (sin(2w%))

At t = 817, the solution 1s found to be essentially spatially homogeneous

and is found to have the form

u cos (8w - .085)

v sin (8w - .085)

A
Then ;gbs = -.085 and the improved estimate of $ is Fgun = ?ébs - KPE

= ~,085 -(.044) = -,129. (When the solution was rerun using the much

smaller time steps At = 27m/600, then F%bs = -,129 actually occurred!)

Check of Predictions: A-& Systems

Relevant information on A~w systems, in general, is summarized
first (from Chapter III, equations (2.5ff)). Then the specific system
studied numerically is given, and the three predictions are worked out
in detail and compared with the numerical results.

By definition, a A-w system has the form (l.la) with

(u = Recos§, v = Rsinp)

F(u,v) A(R) -A(R) u
- (3.1a)

G(u,v) w(R) w(R) v




and a stable limit cycle

uCe)] [x cos(u t)
V(t) R, stn(w,t) ’
AR) =0, A(R) <0, iy =uw(R), T==22 (3.1b)
o) 2 o » Wy 0’? T ow. " .

4

The fundamental matrix of the variational equation about the limit cycle

is

Ut(e) exp(jﬂt) G(C)

V(L) exp(-ut) (1)

- o __exp(t) ‘
Roug sin(wot) cos(ubt+<g)

R w cos ¢
[o o] o)

. (3.1¢)

exp(=Lt)

;. cos(i in(w t+ ¢
Roub ¢ (wot) Ro“b cos ob sin( (o) o)

~f = ! q = ' = !
/u ROA (Ro), with §, cos Gb A (Ro), So sin 05 A (Ro).

Using (1.2), the basic constants become




The specific A-w system used in the numerical calculations 1is

F(u,v) 1 - R2 - %-(1+R2) u
=1 2 P (3.2a)
G(u,v) ol (14R7) 1 -R v
with stable limit cycle
u(t) cos t
= , Ry=1, w =1, T-=2m (3.2b)
v(t) sin t

The fundamental matrix of the variational equation about the limit cycle

is

U'(t) exp(*/wt) ﬁ(c)

A (3&2C)
v'(t) exp(jpt) v(t)
Sent - SRR cs (14o)) 5
o , cos G = - 2/5,
o
cos t - 5%%&—551 sin (t+0;) 0; = 2,6774 rad.
o
The basic constants are
h,o=0 4 =-1 n =0 (3.2d)
1 > 71 21 * ’

We are now ready to being checking the threc predictions of Section 4,

Chapter 1IV.
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Check I. The period in § is taken to be P = 1. 1Initial data are

u(0,5) cos (sin(2m3))
(3.3)

v(0,5) sin (sin(27%))

~ cos (sin(2m5) + 2.677945)
+ € B(0,3) s
sin (sin{2r5) + 2.677945)

that is, ¢ (0,5) = sin(27$)

B(0,3) = —Z exp(+ 2 sin(279) 5(0,3).
5

Prediction I say: the solution should evolve to a spatially homogeneous

Fal

A ) A
solution (U(t+¢), V(t+¢)) and that # is independent of Bl(O,S), that is,

~
of B(0,%). This prediction was checked by using several pairs of values
~
€,4 and for each pair solutions for €B(0,%) = 0O, = .1 were carried to

t = 4T = 8%, Each solution evolved to a spatially homogeneous onc with

. 2 2, . , . ,
amplitude (u” + v°) = 1. The values of ¢;bs’ %num are given in Table

~N
5A. Notice B(0,%) in these runs are .1/.006= 16.7 and .1/.01 = 10.
Clearly the asymptotic phase is independent of E(O,i) for small g(O,S .

~N
Runs were also made with €B(0,%) = .5 (or B(0,5) = 83.3, 50), but in

0,

Wi

A
these cases the result differed from the case with B(0,%)

indicating the perturbation was too large.
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TABLE 5A
Check of Prediction I for (3.2)
AS= .02, At = 2w%/100, # =g ~ .044, carried to t = 8T.
num obs
a~ »
_€B(0,5) £ .0 €B(0,%) = .1 i
€ Bl ¢obs #num ¢obs ﬁ;um

.006  2/3  -.123 + .003% -.167 + .003 =-.123 + .003 -.167 + .003

.010 0 -.085 -.129 -.083 -.127
.006 -2/3 -.075 + .003 - .119 + .003 -.072 + .003 -.116 + .003
TABLE 5B

Check of Prediction I with small time steps for (3.2)
A5 = .02, At = 27/ 600, & = ¢ - .00}, carried to t = 8.
num obs
~ ~N
€B(0,5) = .0 €B(0,%) = .1
< o ﬁgbs ;%um ﬂgbs F%um
. 006 2/3  -.167 + .003 -.168 + .003 -.166 + .003 -.167 + .003
.010 0 -.129 -.130 -.127 -.128
.006 -2/3 -.119 + .003 -.120 + .003  -.115 + .003 -.116 + .003 .

*The notation =.123 + .002 means the minimum and maximum values obscrved
were -.123 - .003 and -.123 + .003, respectively.




This situation was also used to make a check of the accuracy of

the ﬁ m-formula (2.3). Exactly the same runs as above were made, but

with At = 27/ 600 instead of 27/100., The results are shown in Table SE,

Since there is excellent agreement between y%um in the 4t = 21/100,
21/ 600 cases, we take the }&um—formula (2.3) as a valid means of correc-

tion and {n the remaining tables of data only }iun will be given.

Check II. Prediction Il deals with the rate of decay to a spatially
homogeneous solution, so some measure of the perturbation anmplitude is
needed. Notice that solutions periodic in § become closed curves when
sketeched in the phase plane as a function of g with t fixed (Figure 5).
As t Increases, the curve shrinks to a (moving) point on the limit cvcle
because a function constant with respect to § is just a point.
Therefore, a reasonable mecasuve of amplitude for functions with period 1

in § is

A(t) = max Arctan (v/u) - min Arctan (v/u). (3.4
0<<1 0<s<s

~
Equation (3.3) with B(0,5) = 0 is taken as initial data. The

anplitude A(t) is measured at regular intervals t = 0, 2w, 4m, ...
According to Prediction II, the decay rate should be exp(-47"e¢ t,, tha

bl
18, the ratio A{2(r+DT)/A(2nT) ~ exp(- & ¢). The results shown in
’ p

Table 6 clearly confirm this prediction.
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TABLE 6

Check of Prediction II (predicted ratio = exp(-8n3€)) for (3.2).

€ = ,006, o« » 2/3

predicted ratio = .226

a5= .02, At = 2 /100 :

€= ,010, « = ,0 € = ,006, & = <2/3
predicted ratio = ,084  predicted ratio = .226

t A(t) ratio A(t) ratio A(t) ratio
0 2,000 — 2,000 - 2.000 ——
2n 476 24 .173 .09 478 .24
4w .110 23 .014 .08 112 .23
6w .026 « 24 .001 .07 .026 24
8n .006 .23 .000 ’ - . 006 «23
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Check III. For Prediction III, the initial data is taken as

u(0,%) cos(A sin(2n%))

- (3.5)
v(0,5) sin(A sin(2%%))

or ﬁo(o,S) = A sin(2r$), B (0,5) = 0,

and A = .5, 1.0 will be used. Prediction III then gives the values of’g

as (since Io(x) is an even function):

4 1
£=-2n (1 A) +0C) (3.6)

The results are shown in Tables 7A, B for A = ,5, 1.0, respectively.
For A = .5 the values are excellent. For A = 1, they are excellent for
od<0 but begin to differ noticeably as q>+l.
Two possible reasons for the increased error as >+l are
(a) numerical error due to values of A§,At which are too large,
(b) or the 0(€)-term is significant (that is, € is not
sufficiently small).
The first possibility is easily checked. The solution for
€= ,0060, o = 2/3, A = 1 is calculated using smaller step sizes

A3 = .01, At = 27/600. At t = 87 = 4T, fnum = -.167 + .003 in exact

agreement with Table 7B. The discrepancy as d>+1 is definitely not

numerical error.

y o

a. 8 .
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The second possibility 1s the size of €, The simplest way to run
a check is to reduce € and see 1f the discrepancy reduces. The two
worst cases (€= ,010, « = 9/10; € = ,006, of = 2/3) of Table 7B were
rerun with the same A%,At values, but with € cut in half; ,005, .003.
(It was necessary to run the solution twice as long to smooth it out.)

The results are shown in Table 7C. Cutting € in half cut the
discrepancy in half and therefore the discrepancy is clearly due to an
0(€) contribution,

The numerical solutions verify the predictions of Chapter IV of
convergence to a spatially uniform solution, the rate of convergence,

and the asymptotic phase resulting from that convergence.

Check of Predictions: the Solvable Chemical Reactor System

The calculations of the last section will be repeated for the

system with kinetics

F(u,v) a(l-uz)u—v

= 2 . (4.1a)
G(u,v) I+a(l-u®)v

This system, which arises in conmnection with chemical reactors, has
already been studied in Chapter IIl. The limit cycle can be given

explicitly as

v(t) R (t) cos t
- ° (4.1b)
v(t) Ro(t) sin t

2(1 + a%) /2
+ a
R () = ( , - T = 2.

1 +a° + a2 cos 2t + a sin 2
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TABLE 7A
Check of Prediction III for (3.2); ¢°(0,§) --;— sin (2n8) (A = -;—)
A= ,02, At = 21/100, carried to t = 8W
$ (+2) =
€ o« ¢num = 2 dn (Io(.25)) discrepancy
.0060 2/3 -.043 + .002 -.031 .012
; .0075 1/3 -.037 -.031 .006
.0100 0 -.031 -.031 +000
.0075 - 13 -.027 -.031 004
.0060 -~ 2/3 -.026 + .002 -.031 ' .005
TABLE 7B
Check of Prediction III for (3.2); ¢L(0’S) = sin(2n) (A =1)
_ AS = .02, At = 27/100, carried to t = 8w
g 0o = :
] € « ﬁnum - 24n (Io(.S)) discrepancy ;
; .0100 9/10 -.225 -.123 .102
.0060 2/3 -.167 + .003 -.123 " .044
.0075 1/3 "=,147 + .001 -.123 .024
, .0100 0 -.129 -.123 .006
3 .0075 - 1/3 -.118 + .001 -.123 .005
F . 0060 ~ 2/3 -.119 + .003 -.123 .004
; .0100 ~ 9/10 .118 -.123 .005
f TABLE 7C
5 Decrease in discrepancy when € 1is decreased (¢o(0,'5) = gin 27m3)
3 A3= .02, At = 21/100, carried to t = 87
€ o« 'dnum - 24n (1,(.5)) discrepancy
9/10 -.181 -.123 .058
.003 2/3 -.148 + .003 -.123 .025

T T T TR e e
*
(=]
(=]
w
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The fundamental matrix of the variational equation about the limit cycle

is

A 3
- ' - -
U'(t) exp( fx)U(t) R° cos t Ro sin t exp( Zat)Ro cos t

(4.1b)

with Wronskian = - exp(-Zat)R:.

Using (1.2), the constants are defined by integrals so:

R

i 2 R(',
h1=2—ﬂ: (-——o sin 2t - cos 2t | dt,

1 2r ZRA
=% R de,
o (o)
1 2w R; 2Ré
ml-?ﬁ (l-r) sin 2t°i—— cos 2t dt.
. _ o o o
. Notice that integration by parts and periodicity of Ro gives

2w -R" 2% 2 cos 2t R!' sin 2t
~2 gin 2t dt = R! < -2 ) dt.
R o) R 2
o o o R

o
o




Y

TR T

T

The integrals simplify to

1 7R
hl--ﬁ 'R— sin 2t dt,
o o

1 2w R<'> 2
ml- = (-R— sin 2t dt.
o o

The evaluation of the first can be done as follows:

2n R(')
set Il - r sin 2t dt
o (o)

192

sin 2t dt

_/2“_ a2 sin 2t - a cos 2t
o l+a2+a2c052t+asin2t

2 2
_/ a sint - acos t
2
o I +a +azcost+asint

2w
- sin (t - A) sin t ._a
\/‘o b+ cos (t = A) dt, where cos A _‘/——_-2-—-5 ’

b=
a

sin t dt

a“+1

sinA-qir—.

»
a +1

a“™+l > 1 fora> 0,
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| 2w
! - sin t sin (t + A)
| L/; b ¥ cos t dt by periodicity in t,

2w 2
= (cos 4) o %%%? dt, since the odd parts of the
integrand integrate to O,

’ 20 2
‘ - 1 = [(b+ cos t) - b]
1 (cos A)‘/; b+cos t dt

b+ cos t

2 2 dt
= (cos A) 2tb + (1 = b"%) —_— .
(o]

The last integral can be evaluated by the Residue Theorem,

= ,/2" dt _ 2 oS
1 > ’
’ o b+ cos t '\/bz—l

—)

R . 4

so Il=2n(cos A) (b- bz—l




Similarly, set

2w R(; 2
12 = R sin 2t 4t
o o

2n 2 2
.\/‘ ( a2 sin22t a cos 2t ) sin 2t dt
o 1 +a~ + a” cos 2t + a sin 2t

2w 2
= (sin A)f (sin t)” cos € o\ Lien b, A as above,
0

(b + cos t)2

M (stn £)2 2T (sin t)2
= (sin &) b+cost dF D PR
o o (b + cos t)

2r 2 2 2
- (sin t) d_ (sin t)
(sin A)[\./ b + cos tdt+bdb o b+cost

. 0

= (sin A) [Zﬂ(b—'\/bz-l) + 2mb 1 - 2

b -

Converting Il’ I2 back to functionsof a gives:

y

dt

]




In selecting one of the systems (4.la), that is, fixing a value

of the parameter a, it should be noted that the (kidney-shaped) limit
cycles show greater and greater fluctuations in velocity ag a increases.
Figure 6 shows the limit cycles for a = 1 and a = 5 with points marked
at .1T intervals to give some indication of velocity. Experience with
the (analytic) expansion for solutions of the kinetic system near the
limit cycle suggests that irregular behavior, such as large fluctuations
in velocity, decreases the range of validity of €. Consequently, we fix
a = 1 in the following numerical work. (Even in this case, values of

on the order of .00l appear necessary to make ;g(+00 a good approxima-

Fal
tion to the asymptotic phase ¢.)

Check I. The period in 3 is taken to be P = 1. 1Initial data are

u(O,S)— Ro (sin 27%) cos (sin 27%)
v(0,%) Ro (sin 2w}) sin (sin 27W35)
Rg (sin 215) cos (sin 273)

+€8(0,5)

w

R” (sin 2u%) sin (sin 273)

=]

~r
that is, g%(o,s) = sin(21%), 31(0,3) = - exp (+2a sin (2v%)) B(0,%).

Prediction I says the solution should evolve to a spatially homogeneous

N A N
solution (U(t + ¢), v(t + ¢)) and that ¢ is independent of BI(O,S). The

solutions do in fact converge to a spatially homogeneous solution.
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3
N Comparison of 2 for inltial conditions B(0,5) Z 0O, .l are givern in Tabie
i 8A using At = 2%/100. The values are nearly the same in the two cases,
as predicted. Table 8B shows the results when At = 27/600. Notice that
these uncorrected results for F‘ are practically the sgare as ¢
obs Snum
with At = 27/100. As in Section 3, the correction formula ¢ = -
Tum obs

KPE (2.3) checks out.

Check II. Prediction IL gives the approximate decay riute of the per-

L2, 2
turbation as exp(—(1+dh1)v§-) € t), so over eacht 2F-interval in ¢, the

amplitude of the perturbation should be cut by approximately

exp(-(1 - .293«) 8 e ).

The same initial data is used as in Check 1. Defining the perturbation

amplitude A(t) as ia (3.4), Table 9 suaws up the observed amplitudes.

The agrecment with the predicted decay rate is excellent.

Check II1. Now for Prediction ITI. The iritial data are the same as in
Va)

Check I, so the expected first-order approximation to ﬁyis

SmEee gy (e )
P+ = g An (10 <1 TR

The values of ¥0(+°0 And F;Jm are given in Table 10A.  Tnfortunately,
L

the discrepancies are rather large (although still comparable to €).
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TABLE 8A
Check of Prediction I for (4.l)
AS= .02, At = 2%/100, fum = Pobs * +008, carried to t = 8%
€8(0,5) = 0 €B(0,%) = .1
€ * ¢obs ¢num ¢obs ﬁnum
.01 .9 .084 .092 .092 .100
.01 .0 .058 « 064 .064 - 072
.01 - .9 - 011 - +003 - .005 + .003
TABLE 8B
Check of Prediction I for (4.1) with smaller time steps
AS= .02, At = 20/600, carried to t = 87
€B(0,5) = 0 €B(0,%) = .1
€ i ﬁobs ¢obs
.01 .9 .090 .098
.01 .0 . 064 .070
.01 - .9 - 005 .000

’ ..\' v~
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TABLE 10A

Check of Prediction III for (4.1)
AS= .02, At = 2n/100, carried to t = 8W

- A AN 2 SR SIS D 4o s AL e NGRS g~ § PO e P ol s 8 ok A T b
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€ ad ¢num ﬁg(+00 discrepancy
.01 9 093 .037 056
.01 5 .085 .018 067
.01 .0 066 .000 .066
-Ol .5 0034 - -013 .047
col -9 - 0003 - 0023 0020

TABLE 10B
Check of Prediction III for (4.1)
AS= .02, At = 2%/100, carried to t = 16w

€ o ¢%um ¢%(+ﬂ0 discrepancy
. 005 .9 073 .037 .036
.005 .5 064 .018 .046
.005 .0 + 045 .000 " 045
.005 5 . .019 - .013 .032
0005 09 - ‘007 - -023 -016

TABLE 10C
Check of Prediction III for (4.1)
A3 = .02, At = 25/100, carried to t = 32T.

€ o pnum Q;('Fm) discrepancy
0025 .9 .061 .037 024
0025 5 047 .018 .029
.0025 .0 .028 .000 .028
.0025 5 .007 ~ .013 .020
.0025 09 - 0010 - .023 .013
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| The experience with discrepancies in the A-w system case suggests

é that this system may have a relatively large O(€)-term, which is the

’ source of the discrepancies. To test this hypothesis, runs with smaller

values of € (from € = .01 to .005 to .0025) are given in Tables 10B, C.

i hidieh

Notice that cutting € in half forces carrying the solution twice as far
in t, because it evolves to a spatially homogeneous solution only half
as fast. Each time € is reduced by half, the discrepancy is reduced to
roughly 2/3 its previous value. The reason the discrepancy is not cut

to 1/2 its previous value is most likely mnumerical error accumulating

over the longer and longer integration times required.

The numerical results clearly show If - ¢b(+°0 ’= 0(e), which

num
agrees with Prediction III. The trends in Tables 10A-C indicate that

A
¢°(+«0 will be a good approximation to ¢ for € < .00l. No attempt was
made to investigate ¢num for such small values of €: for € = ,0025,

integration to t = 327 was necessary for a spatially homogeneous
solution and at least 807W would be necessary for € = .001).

The numerical results in this case have directly confirmed 1

Predictions I and II and indirectly confirmed Prediction III.

ol e hsamaie

Numerical Methods for Reaction-Diffusion Equations

- This section discusses numerical methods of solving the (vector)

reaction-diffusion equations

!
- - ¥
u, F(g) + Kgxx’ K positive-definite matrix. (5.1) i
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For simplicity, only one space variable 1s considered. Periodic
boundary conditions (on 0 < x < 1) will be used when boundary conditions

are relevant. The three methods to be considered are

(Caly u(méx, nde))

1 m m 1 mt+l m m-1 m,, .
Explicit X3 (um_1 un) -A-;—Z- X (u“ -2 u + u ) + F(un), (5.2a) »
1 m m 1 m+l m n—~1
Crank-Nicholson At (un_H un) —2-;(—2- K [(uu_'_I 2un_*_1 + un+l) (5.2b)
mtl n m-1 1 ™ m
+ (un 2u“ + un )] + F(-i (un+1 + un)),
Lees' R (um -y = 1 K [(um-H - 24"+ um-l) (5.2¢c)
—— At " ntl n 2 n+1 nt+} n+l ¢
2Ax
m+1 m m-1 3 m_1 m .
+ (un 2un T N+ F(—f Ya T2 un-l)’
1 m n 1 w1 m m—-1 .
] - - -
Modified Lees N3 (un_H un) — K [(un+l 2un+1 + un+1) (5.2d)

3 m 1 m
+ 3 F(un) -3 F(un) .




The standard results on accuracy and numerical stability for these

methods and some comments on their programming will be given in this
section. The next section discusses results obtained on the nénlinear
stability of these finite difference methods.

First, consider accuracy. For the explicit method, expanding the

difference equation around (x,t) = (mAx, nat) gives (u = u:)

1 1 2 2 4
u, = K L + F(u) + [--E Yee At + TE-K U oexx Ax” + 0(At™, Ax )].
(5.3a)

Roughly speaking, solutions of the finite difference equations solve
this nonhomogencous form of (5.1). On a fixed, bounded (x,t)—-domain, we
expect the solution of the finite difference equations to differ from
the actual solution (5.1) by an amount proportional to the |

nonhomogeneous terms, so the accuracy of the explicit method is

0(At, Ax2).

For the Crank-Nicolson, lees', and modified Lees' methods,

expansions of (5.2b,c,d) around x,t = mlx, (n + %)At give

u, = Ku_ + F(u) + 042, ax%) (5.3b)

and these three methods have accuracy O(Atz, sz).
A very curious phenomenon occurs in the application of finite

difference schemes to real problems. A finite difference equation in
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4x, At is consistent with a PDE if the difference formula converges to

the PDE as 4x, At 20 (for instance, the equations (5.2a-d) are all con-
sistent with (5.1)). One would expect that if (1) a given finite dif-
ference equation 1s consistent with a PDE and (2) solutions (for fixed
initial data) of the difference equation are generated as 4x, At—0,
then those solutions'would approach a solution of the PDE, But this is
not necessarily true: the finite difference solutions may not even
remain bounded, let alone converge to the continuous solutions!

If the solutions of a finite difference equation remain bounded

as Ax, At >0, then the scheme is said to be (numerically) stable. The

impertance of this property is shown by a theorem of Lax: for a PDE and
a consistent finite difference equation (and certain conditioms),
solutions of the finite difference equation converge to solutions of the
PDE 1f and only if the difference scheme is stable (see Richtmeyer and
Morton, 1967).

Generally, a finite difference scheme is said to be stable if it
is stable when applied to a linear PDE with constant coefficients. The
finite difference solutions can be found exactly in such cases by the
finite analogue of Fourler analysis, and boundedness determined
directly. Some results are known for linear systems with variable
coefficlents, but very little is known about numerical stability of
finite difference schemes applied to nonlinear equations.

The idea of numerical stability for the linear case will be

illustrated here for scalar u. Some of this material will be used in

deriving the nonlinear stability results of the next two sections.

NNy

P -




In the following, (5.1) is taken as a scalar equation for

simplicity and F(u) = -gu, g constant. Integration is over a finite

x,t-domain 0 { x {1, 0 { t < T; the finite difference steps are Ax =

1/M, &t = T/N; uz corresponds to u(mdx, ndt), 0 < m{ M, 0 < n < N.

Periodic boundary conditions mean u: a u:, all n. Variables v refer

to the whole vector (ug, ui, ees); sometimes u will be used to refer to

refer to the vector (uo, ul, see)e Setting A= KAt/sz, the four

methods in (5.2) reduce to:

m m m+l m m-1 m

Explicit U T Y, + )\(un 2un + u, ) - gét U U given. (5.4a)

m m, A mt+1 m m~1
Crank-Nicolson Uel T U, +-5 [(un+l - 2un+1 + un+1) (5.4b)

u+l m m~1
+(n 2u +u )]

-1 ght (um + um) u_ given

2 nt+l n’’ o *
Lees' and Modified Lees' (5.4¢)

m+l

m
u
n

o1
n+l )]

u
n

m 1 o+l m n-1 m
=u + 7 A [(un+1 2un+1 + un+l) + ( 2un 4+ u

_8 m_ m
5 at (3 u - e

l), uyr Yy given.
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Notice that Lees' and the modified Lees' methods reduce to the same
scheme for linear F(u).

These equations can be solved by a discrete analog of Fourier
series. A vector u, considered as a function of m = 0, 1, ..., M-1, 1is

expanded in terms of the functions
W‘rexp (+ont By, pao, 1,2, i, W, (5.5a)

and these are orthogonal in the sense that

M-1 fl if p=gq
2{: % exp (+ 2wi 2%) exp(-2wi 3%) =4 .
m=0 @ if p #q, 0<p, q<M-1.
(5.5b)
The expansion has the form
S o
u o=/ of exp (+2ni £3) (5.5¢c)
M N
=
M-1 pm
P = m 1 exp(-2ni e
where o = Z u ;rﬂ- M
m=0 "

It {8 interesting to obtain these results from another point of

view. Notice the operator

um-g-’(um+1 - 2um+um_1) z (1-A (- 21 + £}

2 )) u occurs in both

equations of (5.4) (E is the shift operator, l:‘.uM-l = uo by perifodicity).

This operator corresponds to a symmetric (almost tridiagonal) matrix.

The eigenvectors vp are
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| ,,': “{/Ti“ exp (+ 211 B, p =0, 1, w00y M1, (5.6a)
-1 _ Ty 2 |
(1-A(E-21+E Ny, = 1L+ 24 (st CE) v (5.6b) '

It follows immediately from matrix theory for symmetric matrices that f
the eigenvectors are orthogonal with respect to the inner product and

corresponding norm:

(u,v) = Z_ T , . (5.7)
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aly - (2 ef)

The orthogonality of the eigenvectors is then (5.5b).
Direct solutions of (5.4) can be obtained by the finite

difference form of separation of variables. Set ]

M~-1
o _ p m :
. u, §=0 % vp (5.8a)

and substitute into (5.4a) to obtain a recursion formula for the Fourier

== v

coefficients
4
oP, = (1 - 4\ (stn B%)z - gatl«’. (5.8b)

: n+




e s i s b e < b £ P L 20 i A

Substitution into (5.4b,c) gives recursion formulas for the Fourier

coefficients
1 - 2A(sin P-%)z -%_'gAt
dl"::i'.l = T2 1 O‘z ’ (5.8¢)
1 + 2A(sin P—ﬁ) + 5 gbt
1 - 2/\(5111-&')2 --3—gAt
«P = M 2 o P
n+l 1 + 2A(sin p—:;)z n
1
- g At

% _
1 + 2 \(sin le)?- n-l

In (5.8b), notice that if the coefficient of O(z has magnitude
greater than 1 (which can happen if 1 - 4A- gat 21l+e, €>0),

then the 0(: will blow up as At = 0 because the final coefficient is

T

«P = (1 - 4A(stn Pﬁ)z g 4N

«P

0 and N>+ , .

N

The g At term may introduce some mild growth over 0 £t T, but does

not lead to unboundedness if | (1 ~ 4A)|> 1. The result is the condi-

tional stability restriction for the explicit method F

|1 -4A]<1 o

1
SE‘ . (509)




In (5.8¢c), the coefficient of dg is always smaller than 1 in

magnitude as long as the relatively minor condition 1 + g At.> O holds,

so the Crank-Nicolson method is said to be unconditionally stable.

In (5.8d), notice the recursion formula for g = 0 becomes

- pr,2
p 1 2 A (sin M) >
a = o (5.10)

okl 1 + 2A(sin E%)Z

and the coefficient of dﬁ always has magnitude < 1 (since

l(l - 2Ax)/(1 + 2Ax) IS.I for 0 < x <®), so solutions in this case
never blow up. For g #0, this growth factor is only perturbed by gdt,
which may add some exponential growth in t but does not lead to
unbounded solutions as N->® , Consequently, the Lees' and modified

Lees'! methods are unconditionally stable,

It should be pointed out that for linear equations stability seems
to be related only to the wave length of the Fourier components--
amplitude is unimportant. In the nonlinear case amplitude and
wavelength both are involved in stability. Some basis for this can be
seen in the gu-term in (5.4) by the above analysis; the stability
results assume gAt 1s small. For the nonlinear case g will be a
function of u, and for a fixed small At, g(u)dt may be small (with
stability expected) for small amplitude u, and g{u)it may become large

(with instability expected) for large amplitude u (4t,Ax held fixed).

Such an example will be given in the next section.
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The basic numerical problem of the first half of this chapter was

the solution of

1 u, = F(u,v) + € u

1

(5.11)
v, = G(u,v) +-€2 Ve ]
with periodic boundary conditions on 0 < x < 1, and F, G nonlinear. The
explicit method is undesirable because the stability restriction (5.9)
forces At to be extremely small. (The method is usable, however;
Fitzhugh used it to compute traveling wave solutions of the
Fitzhugh-Nagumo equations, a reaction-diffusion system arising in
modeling the nerve impulse (Rinzel, 1977).) The Crank-Nicolson method
requires the solution of a nonlinear system of equations because of the

m

F(%-(un_..l + u:)) term. Lees' and the modified Lees' methods are
equivalent in accuracy and stability; Lees' method was used in the

calculations of the first half of this chapter.

R Ll

In using Lees' method expressions for F(u,v), G(u,v), u(x,0),

v(x,0) were needed as well as specifications of €15 €95 At, Ax. The

usual values taken were 4x = .02 (sometimes .0l), At = 2W/100 or 2W/600,

and €., €. in the range .0025-.0100. The usual run had 400~800 time

1’ "2
steps, although some runs went to 4800 time steps. Trial runs com-

paring numerical and exact solutions (specifically, A-w traveling waves)

were compatible with the theoretical error O(sz,Atz). No signs of
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numerical instability ever occurred. When the runs concerned spatial
perturbations of the limit cycle, the major part of the error occurred
as a phase shift—--the procedure for eliminating a considerable portion
of this error by applying the finite difference method to the kinetic
equations alone has been discussed in detail in Section 2 (which made
possible the rather large time steps At = 24/100).

Since Lees' and the modified Lees' methods are implicit it 1is
necessary to solve an MxM linear system at each time step. For perilodic

boundary conditions, the coefficient matrix has the form

r 1 1]
l+<:i 3ci 0 0 . 0 - ici
L e, - 0 0 0
2% 1T 2%
At
1 €
0 - 5% l-H:i » &4 < 7 .
. Ax
0 0
0 0 1+c .--lc
1~ 7%
1 1
-5, 0 0 - - ooy ey (5.12)
~ -

This matrix has the same form as the operator considered in (5.6)

9b=ci) and its eigenvalues are between 1l and 1 + 2Ci' It can be solved

by Gaussian elimination almost as efficiently as a tridiagonal system;

the idea is to take advantage of sparseness of the matrix and use only




-
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the 3 main diagonals, the last row, and the last column.* For some
reason this inversion routine (in double precision) for the 50x50 system

gives exponeantial underflow errors for €i above .0l. No investigation

of this was carried out since multiple checks showed no programming

error and only small Gi-values were of interest.

Runs of the same initial data for Lees' and the modified Lees'

methods agreed to 3 significant digits, in accord with the error.

Nonlinear Numerical Stability: Geometric Approach

In this section we adapt the geometric proofs of boundedness for
solutions of reaction-diffusion equations (Chueh, Conley, and Smoller
(1977), discussad in Chapter I) to the finite difference schemes (5.2).
For simplicity only the scalar case is considered, but some comments on
systems will be made "at the end of the section. The basic assumption
is

there exist A A2,A1<A2, such that F(Al)>0 and F(A2)<O. (6.1)

1’

This assumption makes the interval AISPSAZ a positively-invariant region

for the equation (5.1), that s, if F(u) has this property, then the

results of Chueh, Conley, and Smoller (1977) show that AISp(x,O)SAz
initially implies Alﬁp(x,t)SAz for all t>0 (or as long as the solution

remains smooth).

*Although the elgenvectors and hence an explicit inverse can be
calculated from (5.6), 1 think elimination is quicker because the
inverse is 4 full matrix.
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This section shows that if initial data uy (or ug» ul) for the

finite difference methods (5.2) start in the region [Al’ A2] and that

it = O(sz) and (6.1) nolds, then the finite difference solution stays

in the region [Al’ A2] for all n. (The At = 0(Ax2) condition is the

best that can be expected for the explicit method, but one hopes for
something better for the other three implicit methods. Stronger results
can, in fact, be derived by direct estimates given in the next section,

but considerably wore work is required.)

The geometric approach is nicely illustrated in the following

theorem on stability of the explicit method.

Theorem 1. Assume (a) F(u) in the explicit method (5.2a) satisfies

(6'1)) "

(b) the periodic initial data ug satisfy

m
Ay < ul <Ay, |
2 ,
() At < ———Al——-—z- , where
2K + B Ax

) ' B > sup Flu) s Sup F(u) . ;
TAucA, ATV A cuca, A2 !

1292 1~12%2

: Then A, < u" < A, for all n.
l 1= "n~"2 ;

]
» Proof: First notice that a finite B exists because F(u)/Al—u)-é - i

as u-)AY by (6.1); similarly for F(u)/(AZ—u). }




Let & be that value of n such that A, < ut < A. for all m, but there
1= 10—"2

A A

A 0 m
exists m such that A2 < Ualis without loss of generality Aﬁ+l is a

m
maximum over Aﬁ+l' From (5.2),

A N A A A
m m KAt m+1 m m-1 m
uﬁ_'_l Uﬁ sz (Uﬁ 2 Uﬁ + Ua ) + F(Uﬁ)Ato

Replacing dg by u, notice that

o n

uapp T UR Ay T

A A A

m+1 m .m—1

ua 2 us + Ua S-AZ 2u + AZ’
consequently,

Ay - u< 2 B2 (a, - w) + F(AE,

Ax

2 A,—u

or 1<At(-2—‘5—+-F—(l’l) .
aAx 2

But this inequality contradicts hypothesis (¢) on At, by the definition

of B,

5 A
! If ur <A , a similar argument applies. QED.

a+1 1




To attempt a similar result for the Crank-Nicolson, lees', and

modiffed Lees' methods, notice all three can be written in the form

m _ =m _ Kit ol _ m m-1 o+l _, @ m-1
Ui~ Y Zsz [(un+1 2u 4t un+1) + (un 2u + u )]
m m m

' + 6 (u 4y usu )4, (6.2)

A f m f
Again take n such that uan is a maximum over Upt s that Usi i > Az, and

A A
that A S_ug, “2—1’-3 A, for all n.

Writing u,v for u?, u?_l and using

n mn
Usiy T oun > A2 - u,
-1 m, -1
Uﬁ -2 Ua + Uﬁ S_ A2 - 2u + A2, (6-3)
a+1 A -1 &
uALL T 2 uALy + “ﬁ+1.£ 0 (since usy is a maximum),
we conclude from (6.2) that
X G(AZ, u, v)
1 < At -3 + e . (6.4a)
Ax 2
A A
Similarly, if un.. < A, and ux
: i+] 1

A+l is a minimum, then

X G(A , v, V) |
1 <At —3 + ——PT-—:—!:I——> . (6.4b) ;
ax 1
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For Crank-Nicolson, notice that G = F(-lz-(A2 + u)) or I-‘(-;-(A1 + u)),

2; for

%
|

3 1
AIS“SAZ; for Lees', G-F(iu--i-v) with Al_g_u,v_<_A

modified Lees', G -% F(u) --;— F(v) with A1 Lu, vg Az. Both (6.4a)

and (6.4b) would be impossible if there existed a finite B such that

G(A2 »u,v) G(Al sU,V)
B > sup Ao+ Sup % (6.5)
Al_<_u ,\rS_A2 2 Al_<_u,v_<_A2 1

and At, Ax satisfied

1> At (55 +B). (6.6)
o |

The basic problem is whether a finite B satisfying (6.5) exists, and we
consider conditions under which it would exist for the different
definitions of G in the 3 methods.

In the Crank-Nicolson case, (6.1) alone is sufficient to insure

the existence of an upper bound B(as u-)A;, F(%(A2+u))/(A2—u)-)-co and as -
+ 1
u->A,, 1:'('2'(1\1‘*u))/(1’\1-u) - -®03ls0).

The case for Lees' method is a little more complicated. Obviously
assumptions must be put on F(w) for w outside the invariant regfon

Al Lwg AZ' for instance,




F(w) > 0 for A -5(A, ~A) <w<AL

Consequently, for each v with Al.ﬁ v S_Az, F(%~u --% v)/(A2 -u)>> -

as u-é-A; in (6.5) and a finite upper bound exists; similarly for

u-%»AT.

For the modified Lees' method no condition outside the region is

necessary. Instead a “"flatness” condition on F(w) for w in [Al’ A2] is

sufficient (together with (6.1)):

3F(A1) > F(w) > 3F(A2) for A1 <w<A (6.8)

20

Then for each v, A, < v ¢ AZ’ (%F(u) - -%F(v))/(A2 - u)—> ~o as u—)A;

1

and a finite upper bound exists; similarly for the other case with

t1'9'A:.

Summarizing the results for these three cases gives:
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Theorem 2. Let F(u) satisfy (6.1) and initial data ug (and u, for

Lees', modified Lees' methods) satisfy A < uo, ul, < Az. Then:

(a) there exists a finite constant B such that when Ax, At

satisfy (6.6), then Crank-Nicolson solutions satisfy

1 S_ < A for all nj

A
(b) if F(u) satisfies (6.7), there exists a finite constant B

such that when Ax, At satisfy (6.6), then Lees' method
solutions satisfy AI-S u: S.Az for all n;

(c) if F(u) satisfies (6.8), there exists a finite constant B

such that when Ax, At satisfy (6.6), then modified Lees'

method solutions satisfy A < un S.Az for all n.

The restriction At = O(sz) here is rather restrictive in
comparison with the unconditional stability of these methods for the
linear case; on the other hand, a stronger result (that the solutions

are actually bounded by a constant) is obtained. Something better than

it = O(sz) should be obtainable if one goes to direct estimates, and
this approach is used in the next section.

Generalization of these arguments to systems should be relatively
straightforward. For K positive-definite, Chueh, Conley, and Smoller

(1977) show the positively-invariant region to be a "box" with sides

which are hyperplanes orthogonal to the eigenvectors of K. The

et o s e g

e e
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condition on the (vector) function F(u) is that the direction field for
F point strictly inwards on the surface of the box~-the direct
generalization of (6.1). See Chapter I for a more detailed discussion
of their results.

The quantity B in Theorems 1 and 2 measures, roughly speaking, the
strength of the nonlinearity--the larger B, the smaller At (or Ax) must
be. Ve shall end this section with an example showing how the nonlinear
term can act to make solutions obtained using Lees' method blow up.

Take the equation
u =Ku -u (6.9)

and notice that any solution should decay to O and that any interval

[A., A)] with A, < 0 < A, is a positively-invariant region. lees’
1 2 1 2

method has the form (A = Kdt/24x%)

m m m+1 m m-1 m+1 m m—-1 ]
un+1 Un T A [(un+1 -2 Yntl + un+1) + (un 2 un + un )J
3 m 1 m 3
- At (—2- u -—z-un_l) (6.10)

This difference equation has a solution of the form

m n+m
u (-1) An, (6.11a)
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4A- 1 At 3 3
A oFT A% Yoo GAYIALD (6.11b)

with AO’ Al glven.

Notice that {f An’ An-l are small, the nonlinear term is very small and
solutions An—? 0 as n~>+«m, But, if the initial amplitude is in-
creased, the solution An—? +o as n— +o, Specifically, assume

0 S_AO'S Al and that

At 3% A2 > 2. (6.12)

Then in the nonlinear term,

3 1, 3 3,43
At (—2- A1 + 2 AO) 2_ At ('2" Al) > ZAI'
41 - 1 2
o ATl At T M T A

Since A, > AL then A2 also satisfies (6.12), so A3 > Az, etc. Ob-
viously the process accelerates once started and An increases to +w as

n->+e,

Here At, Ax are assumed fixed. The example shows that when
amplitudes are small compared to At, solutions decay to 0 as n
increases, but when amplitudes are large compared to At, solutions blow

up as n increases. The comparison betwecen the amplitude and At is given

by (6.12).




Nonlinear Numerical Stability: Direct Estimates

This section considers the nonlinear stability of Lees' and the
modified Lees' methods by obtalning explicit bounds on the solutions.
For simplicity, only the scalar case--with periodic boundary

conditions-—of (5.1) is considered. That is, we are solving

(A = AtK/Ax%; G(u,v) = F(% u - % v) or % F(u) - % F(v)):

m _ ), otl m m=l, _ m A, ol _ m mn-1
T S S N S B D
m m
+ At G(un, un_l)- (7.1)

with Ugs U given. The main result of this section is to give condi-
tions on the initial data Uy Yy which insure that solutions of the

difference scheme (7.1) remain bounded as 4x, At = 0 (unconditionally)

on the given domain.
First, pick some large A > O which will serve as the bound on our f

solutions (eventually). Given A, define B1 and B2 as follows: ]
lal,Ibl<a implies |c(a,b)]< B, (7.2)

Ia;', lb;lﬁ A 1implies 'G(al,bl) - C(angzﬂ

172
<8, (|a2-al|2+|b2-bltz) .
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We estimate the "drift" of a solution by observing its mean. Given a

vector u, define its mean value a by

T
[ ]

o™, (7.3)

e>
[
|
g
[
o

By summing (7.1) over all m and using the periodicity condition uM = uo,

we get an equation for the mean value:

M-1
A A 1 < m m
Yntl T Yn + M 2 G(un' un—l) bt, (7.4)
n=0
A A
so Sy <G [+ 8 ac.

We can now state the main result:
Theorem 3. Let the domain be 0 < x< 1, 0 <t < T with &x = 1/M and

At = T/N; let up be the solution of the finite difference scheme (7.1)
on this domain. Let A > 0 be given and Bl’ Bz defined by A as in (7.2).

Assume there exist AO’ Al > 0 be such that

1
Ay + 5 exp ( V2 B,T)A, + BT < A (7.5)

If”u°,|mb |’ul ,!miAo -‘"‘dHUUOHZ. HDux’,zf_Al/ﬁ » then

"un ,'w < A for all sufficiently large M, N.
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NOTE: (1) The positive constants AO,A1 exist if and only if BIT < A,
(2) Du represents the difference vector with components
. um+1 - u". The condition on ‘lDuO 'E, ilDul |E may look

restrictive at first glance, but notice

=

-1

1/2
Hou ), - ( - )

M=1 1/2 (fl )1/2
2 2 2 1
(u( > d 7R
~ (g;% u (m x)) X ) . u  dx %

or A, ~ l‘ux(x,O)\‘z.

g

PROOF: The proof is by induction on n, Precisely stated, there is a

double inducticn hypothesis:

A
(f1) HDunH2 < —Vl—? (L + {2 81At)n,

1 -—
(#2) {lu Il, <45+ B nat+54 1+ v2 A"

for 0 < n { N, Clearly both hypotheses hold for n= 0,1,

First, to prove (#1) for |‘Du by induction,

n+1” 2

”“n-l'lw’”“n”“i'\o*“l nAt+—;-Al(l+ V?B_?At)“ i

by (#2),

1
S A+ BT+ A

| eXP (1 + 2 BZT) < A by (7.5).
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g An equation for Dun+ follows from (7.1):

1

A -1 mt] n
a-3 (E-2L+E )) (u ) =2 yy) (7.6b)

A ~1 m+1 m
= (1 +-§ (E- 21 +E 7)) (un - un)

m+1 mt+1

m
+ At (G (un » U

m
) G (un, uo_

-

Write

mtl _ m _ D 1 . PO
un+l u +1 Z. ﬁn+1 mexP (+ Z7i M) (7.6c)

and substitute (7.6¢) into (7.6b) to obtain (using (5.6))

1 - 2 (sin R;-;)z At .
aP + -yt (7.6d)

1+ 2/\(sin2—%)2 TR 4 24 (stn By

P .
’°n+l



Consequently, writing <aP> for the vector <do,dl,q2, eee,

_ pry2
1 - 2A (sin 0 p>‘

P >, < .
. ” Pa+1 ”2- I\ + 2 (otn %)2 Bn { )
1+ 2)A (sin E% 2 2
so |l <>l < el + o [l (7.6e)

Since the expansions (7.6c) are norm—-preserving in that

A\ m+1 m 2 2

L~ 'un+l - l“n-i-l‘ = Z |P§+1‘ y etc. (7.6f)
m p

which follows from the orthogonality mentioned in connection with (5.7),

we have from (7.6e):

HDun.’.leSHDunHz"'At H<‘P>”2 ’ (7~6g)
M=1 1/2
and |'<‘pﬂ| 2 = (é%:ﬁ |G (u:+l, u:ii) -G (u:, u2_1)|2)

) S\ 172
B, (llnun||2+lloun_1||2> by (7.2,

IA
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1/2
2 2
so 1 1ou_yf1, < Hoafl, + 0, (Houll 2o _f12)77,,
- A]. n
: <1+ V2 Bzac)w(1+ﬁ“szm)
g using (#1).
i
‘2 This proves (#1) for ”Dun_HH 5+ Now to prove (#2) for Hun+1| L,o.
m A m A
; Write Iun_'__ll < | un_H, + I Ul T un+l| , where the mean value Ul
is defined in (7.3). Notice that for any k, k = 2, 3, ..., nt+l,
k|
g
3
| & =0  +3 gm:‘l Glup_;» Uy _,) A (7.6h)
; Mo T el TH S P k2’ 8 ‘
!
3 Using ”Uk_IHoo , ”uk-ZHN < A and (7.2), there follows
A Fa)
luk‘ S‘uk—ll + B1 at,
1
|
or |8 .| <A, + (a+D) B, At. (7.61) 3
ntl’ =0 1 * 3
L ]
<
A 1
Interestingly, the bound on u:_H L follows from the ﬁz-bound on .
h on Dun+1 alone. By Lemma ! below, there exists a constant C(~1/2 \/_5') ‘
1
such that f
{
m A — E
uny Ul <c VM HDum,_l“ - (7.63%) _‘
ﬂ
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and using (#1) for m+l as proven above,

moo-q I<cV’i‘Al (1 + Y2 B, ap)?*! (7.6k)

Yn+l T Yarl 2 V 2 .

A
< —exp ( {27 B, (ntD) Av),

and Jlu,}| <A +B, (n¥l) At +4 A exp ( Y2 B (ntl) At) < A

b Un+lllee X %0 1 7 7] SXP 2 S A

QED.

The key 1idea in the above proof involved relating the ﬁz-bound on

a first difference Du to an Qm—bound on u (actually, to |um -‘ﬂ ). This

relation, used here for finite-dimensional vector spaces, is actually

based on a clever trick for proving convergence of the Fourier series of

a Cl-function (Courant-Hilbert, vol. I). This proof will be given here
as motivation for Lemma 1 below, the statement for finite-dimensional

vector spaces.

Let f(x) be continuous and periodic on {0,1] with £'(x) L2 on

[0,1]. Let the formal Fourier series for f(x), f'(x) be, respectively,

to0 o
) a_ exp(+2rinx), / b exp(+2minx). (7.7a)
- o) -




Then, for n#0,

1 1
3 = - = .——l— | -
| a ‘j/; £(x) exp(-2winx)dx Sain b//; £'(x) exp(-2rinx)dx

1
Fnin bn. (7.7b)

Now use Bessel's inequality

e 2 1 2 :
2 v _<_/ | £ (x)| “ax- (7.7¢)
0

- 00

Notice

1/2 1/2
% SL(Z %) (Z |an2> , (7.7d)

and using

RNy

1
a = L//‘ £(x) dx = f, the mean value of f, (7.7¢)
0
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— 2
1 2
Z_ -~ =T (7.7€)
nt0 n
yields
1
lee) -8 < el (7.8)
2 V3
Lemma 1 gives the finite dimensional form of this result.
0o 1 M-
Lemma 1. Let u be a vector with components u , u, «¢e, u ; mean
value 4 defined in (7.3); and first difference
Du=(u1-u s Uy = U, seey M-uM_l), uM=uO.
a A 1 ttl 1 1/2
Then (a) |u®" -9 < (7__ ‘“"‘_pﬁ) |l odf,, (7.9)
2 N p=1  (sin _M)
= 1 1/2 1
(b) oM) =+ - as M=) +o0,
M %I (sin p__;r{)Z 2 }/?
Proof: Using (5.5), set
M-1 m )
o - 2 o(p exp(+27i -Eﬁ-) T (7.10a)
p=0 l/—l?
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-1 m 1 2wl
where q" = Z__ u® 2P0 - where z = exp (- T)' (7.10b)
m=0 VM

Folowing (7.7b), we want to apply integration by parts to the sum for

4p; this 1s equivalent to applying Abel's summation formula:

M-1
Zm=0 (ambm + Sm(bm+1 - bm)) = bM Su-1° Sp = 3 + a, + cee + a . :
(7.10c¢)
M-1 pymt+l py\M
1 1 - (29) o+l m 1 1 - (z%) M
So dp=-7—|z —t— (u “u) tomm ———u,
i n=0 l—zp VH l-zp
if p # 0. (7.10d4)
Since uo = uM and zM = 1 and, by periodicity,
M-1
! @™t W™ =, (7.10e)
n= 1 - 2P
we get
] -l 2P m+l m, _pm 1
gt = Z . (u - u )z 7-=. (7.10£)
m=0 1 - ZP M
2P

p Lag m =l p . pm, 1
5 /A s where u -u = Z A5 exp(+2wi M)

1 -2 p=0 W

defines ,Bp.




Notice (7.10f) {s the analogue of (7.7b) (for p # 0).
Finally,

-2 «P 2

_1__,
M Vi

lum a0 — pm

1
-

VM

1 Ll M-1 2 ) 1/2
&z o)

Since ll - zq = 2 sin (B%) and qo =

it follows that

m 1 - 1 1/2
o -d < —= {2 —) [, (7.100)

pn,2
2 M \p=T  (stn B)

proving (7.9a).
To obtain (7.9b), note that for large M, the major contributions
to the sum are for pw/M closes to O and close to W, that is, for p small

compared to M and p nearly equal to M. So

L4 1 + 1 + eae

@t amp?t o amy?

(7.101)
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So

M-1 1 172
GM) = = > —_— ~N ——  as M~-> e,
/E;T (sin -%)2 2 V’?

The following values indicate how rapidly o(M) => 1/2 VEY

M=5 )] = ,28284
10 .28723
20 .28831
30 .28851

1/2 V3 = .28868.
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QED.
(7.103)

(7.11)
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CHAPTER VI

TRAVELING WAVES IN REACTION-DIFFUSION SYSTEMS

INTRODUCTION

This chapter discusses periodic traveling wave solutions of

u = F(u) + KVzu, (1.1)
ant ~ ~

where u is an N-vector and K ié a positive-definite matrix. The
usual traveling wave substitution converts this system to a system of
ordinary differential equations of order 2N. 7There are two natural ways
for traveling waves to arise in such a system, Small amplitude waves
may arise as the result of a Hopf bifurcation. This possibility was

investigated by Howard and Kopell and their results are discussed in

Chapter I, Section 2. Briefly, they found such small amplitude waves to E

exist under very general conditions, but the waves are linearly

5 [yl

unstable. A second case arises by substitution 2 = (¢ A-x +pt,
A N

A = unit vector, in which case the reaction-diffusion equations become
n

p— r. . f
PB' = F(g) +eKy'' (1.2)

for u(5). For € =0 (and p = 1) the reduced system 2' = F(u) {s
~ ~

assumed to have a limit cycle U(S) with period T. Kopell and Howard
"~

o

(1973) have shown that a periodic solutior to (1.2) for € # 0 can be
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formed as a perturbation off the limit cycle solution; this solution

yields large amplitude traveling waves for (l.1).

Kopell and Howard proved the existence of periodic solutions to
(1.2) for € # 0 by an integral equation construction. The main
result of this chapter is to give a second proof of this result by a
series expansion. Previous work along this line has been given by Wasow
(1976); the series expansions there, however, were at best asymptotic --
in particular, they were not shown to converge. The expansion con-
structed in this chapter will be shown to be convergent. Furthermore,
it is constructed in a rather unusual way: instead of simply matching

terms of O0(¢™), the essential factor in obtaining couvergence is to

nix O(Gn—l) and 0O(e") terms.

The remainder of this section gives a number of related results

from the literature for background and then summarizes Kopell and

Howard's proof.

The second section discusses in detail the related work by Wasow

on series expansions.

The third section contalns the main results of thils chapter: the
construction of a formal expansion for periodic solutions of (1.2) when

€% 0 and the proof of convergence of that expansion.

il e
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In discussing general results on the perturbation of periodic
solutions, it 1is necessary to distinguish two basic cases: the

autonomous and nonautonomous systems, respectively,

1] = F(;I; 6) (1.33)

Rq <

' o= F(g,t; €) , where F has perioc T 1in t. (1.3b)

Both systems are assumed regular in € and to have stable periodic
solutions v = X(t) with period T at € = 0, and the basic question
is whether they continue to possess periodic solutions for € #0.

Notice that the new periodic solutions X(t; €) for the nonautonomous
case, 1f they exist, necessarily continue to have period T. For the
autonomous systems, however, the periodic solutions ,E(t;é ) usually
have new periods T(€) with T(0) = T. The dependence of the period on
€ makes the autonomous systems more awkward to work with., Although
some results on the nonautonomous case will be mentioned, the autonomous
case is of primary interest here. (It is also assumed that the periodic
golution at € = 0 1s nonconstant. In a Hopf bifurcation, for
instance, € may measure amplitude so that ‘X(t; € )-» constant and the
period T(€)>»T # 0 as €-0.) The persistence of periocdic solutions
for both systems of (1.3) for € # 0 1is shown in Coddington and

Levinson (1955, Chapter 14).

The cases in (1.3) have "singular perturbation" counterparts:

1 . Id
vi ot Py, vy €) (1.24)

~l

" . .
6;72 Fz(xl: :}/’2’6) H




v! = F (v

v t; €) (1.4Db)

~l 1'wl’ &2
4 .
Y, FZ(XL' ME t;e) , Fl and F2 have perfod T in t;
where again the reduced svstems (formed by setting € = 0) are assumed

to have T-period solutions (vl,xz) = (Vl(t),vz(t)); the basic

question is still the persistence of periodic solutions for € # 0,
As Wasow (1976, Chapter 10) points out, no boundary layer phenomena
occur in this context and the equations (1.4) should only be considered

a singular perturbation problem in a formal sense.

Before discussing results for the singular case, something should
be sald about methods of proof. Three basic types of proofs used to
show the persistence of periodic solutions for € # 0 are

(1) To show existence of a Poincaré map;
(2) To reformulate the problem as an integral equation and
prove existence of solutions;

(3) To construct a series expansion and prove convergence.

A Poincaré map {s a mapping from a region in phaszs space into
itself generated by the trajectories of a system of differential
equations: {f the trajectories leave the region and after a finlte time
T enter it again, then a continuous mapping of the region into itself
is generated, the Brower Fixed Point Theorem is applied, and the

existence of a periodic trajectory {a trajectory meeting itself after

finite time) follows,




For example, the proofs of persistence of a periodic solution for

the regular cases (l.3a,b) in Coddington and Levinson (1955)»are closely
related to the idea of a Poincaré map, although the proofs are not
expressad in such geometrical language. They construct a mapping
gimilar to the Poincaré map such that a periodic solution will exist if
the Jacobian of the mapping does not vanish; the Jacobian is shown to be
nonzero at € = 0 , and smoothness shows that it does not vanish for

€40 .

For the singular cases (l.4a,b), Flatto and Levinson (1955) prove
the existence of periodic solutions for € # 0 1in the nonautonomous
case by reformulating the system as an integral equation. They do not
consider the autonomous case directly but do remark that their results
can be modified "in a familiar way” to give a proof for the autbnomous
case. They refer, apparently to {llustrate this familiar way, to
Friedrichs and Wasow (1946), who prove the existence of periodic
solutions for the autonomous case (l1.3a) with vo scalar. The

Friedrichs and Wasow proof, however, is a Poincare wap construction.

Wasow (1976) considers both cases (l.4a,b) 1in a somewhat indirect
fashion so far as a definite proof of existence of perlodic solutions
for € # 0 is concerned. For exanple, in the ncnautonomous case

(1.3b), he sets:

"gl‘l fv ()] oo
- tz,ozo= Ly (D€ :
. n=1 "
:ZJ v(t)




238

and shows that the y,'s can be recursively solved for as periodic
~
functions, so that a formal solution exists (Wasow, 1976, p.317). Then,
instead of proving convergence of the infinite series =z , he assumes
Fand
the existence of an analytic periodic function Q(t,e) which is
~
"asymptotically represented” by the series z as €-20%, Setting
"N
A
z =2z + w(t,€¢), he then proves that w(t,€)~0 as E->0+, and
~ ~ ~ ~r
therefore his main result on this expansion (Theorem (45.1), p.319) is an

asymptotic one:

v Vl(t)

~ + yn(t)ﬁn as €0,

g

1

n
\f) V()]

In particular, the convergence of this infirnite series is not shown.

Wasow's formal expansion for the autonomous case is given in
detaill in the next section, and we only note here that he claims the

expansion at most to be asymptotic to the true solution as €0,

In short, the literature appears to give no general results for
the persistence of periodic solutions to the autonomous case (l.4a),
which explains why Kopell and Howard had to construct thelr own proof

for the persistence of pericdic solutions to (1.2).

Kopell and Howard's proof 1s based on rewriting the system (1.2)
g

as an integral equation and proving convergence of an iterative solution
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procedure. To obtain that integral equation, they rewrite (1.2) in a
very unusual way. (It should be mentioned that the results of this
chapter -- the convergence proof of a series expansion in section 3 —
did not result from a direct attempt to obtain such a proof.
Originally, the desire was sim; .y to understand why their uwnusual
reformulation of the system worked at all, and as that understanding

grew, its relation to a series expansion becaome clearer.)

It seems worthwhile, therefore, to discuss Kopell and Howard's
approach to (1.2) in some detail before moving to series approaches in
the next section. First, notice that the natural reformulation of (1.2)

would be to set v = u' (or Ku') , obtaining:
~ ~ ~

w = v
»~ ~

€v' = g K~1v —'K_IF(u) .
~ ~

Ku'' , obtaining an equation for

~

However, Kopell and Hward set v

~
v' by differentiating (1.,2) to get
~

pu' = F(E) +v (1.5)

N - SIS

v
{Some minor changes 1in their fomulation have been made here to keep a

notation consistent with (1.2}.) Introducing u = 3(5) + w(3), where U
~

is the limit cycle, and rewriting the equations with 2= 1 +15 glves
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df . Byt 1 Y
a c K g FU+ @ v- 5 F(U+ WU+ w (1.6)

T @y AR + Ly HRWAD

The idea 1s to determine B so that this sytem has a T-periodic

solution., The recursive procedure can be written as

V' = a1 kLo L R ) v - <l by F(UR )
~n € /Sn_l ~ ~n—-1" ~n ,Gn_l ~ ~n—1 ~ M-l

' = ' _ 4 1
a F'(Dy, - A,FD) +ﬁn_1 vt R A L) (1.7a)

Starting with ¥o = 0, (1.7a) is solved for a T-periodic solution
ME then (1.7b) is solved for a T-periodic solution ¥ {which
determines /81;/30 = 0); then (1.7a) is solved for Y2, etc. The
integral equation part of the proof comes from the fact that each step

is just solving a linear, nonhomogeneous system of ODE's with the usual

inversion formula (Lemma B in Appendix I).

The brilliant part of their proof is the reformulation (1.5) with

the term é-K—l. At first glance, one might be tempted to say the

right side of (1.5) could not lead to any bound on the iterations as

€ > 0. Nevertheless, due to their key lemma (given here as Lemma 1 in

section 3), usable bounds do in fact occur.

TR
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WASOW'S EXPANSION PROCEDURE

This section gives a detalled discussion of Wasow's series
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expansion (Wasow, 1976, Chapter 10) for periodic solutions of (1.2) with

€ ¥ 0.

Wasow only claims the expansion to be asymptotic in € .,

some 1dea of the essential difficulty in proving convergence of a

To give

reasonable formal expansion, we first give a quick calculation in which

(1.2) is expanded in the simplest -possible way. That is, set

00 o0
PSS SV IS Slpary
=0 ~ n=0
and expand (1.2) using
o
F(E) F(}JO) + nZ=1 [F (Eo)gn + Fn(EO’Bl""’En—l)]e .

where F'(up) 1s the Jacobian matrix of F at '30(F1(30)=0).

The resulting equations for up are
Aode = Fly)

for n> 1,

n

vV = gt -5 ' 'e
Aotn = FlEolea*Fuleor e a1 7 Lo Gultnm Y Kiony

(2.1)

(2.2)

(2.3a)

(2.3b)

—n




Choosing /,3p = 1 and 20(5) = B(S), the stable limit cycle with

period T, the resulting equations (2.3b) become nonhomogeneous cases of
the linear variational equation of the reduced system (€ = 0), The

variational equation is assumed to have one periodic solution (namely,

B'(S)) with the rest decaying exponentially. Then (2,.3b) always has a
periodic solution provided the nonhomogeneous terms satisfy a certain
orthogonality relation, which determines ,48,. In short, the expansion
(2.1), (2.3) formally makes perfect sense., However, a problem turms up

when a proof of convergence is attempted, Bounds on Uo» y, can

only be expressed in terms of bounds on the nonhomogeneous term in
(2.3b); the nonhomogeneous term depends on u'', ; consequently, an

~n-1

induction procedure must obtain a bound on u;' , and apparently we

can only get such a bound by differentiating (2.3b), which leads to the

need for a bound on lgéli , etc. This infinite regress must be

avoided if a convergence proof is to be constructed,

Wasow's formal expansion will now be given, Although he does not
explicitly prove that it is asymptotic in € to the true solutionm, he
gives some discussion of how such a proof might be devised as based on

the nonautonomous case,

For clarity, his calculations (part (a) of each numbered equation

below) will be given in their original notation with their original




numbering from Wasow, 1976, Chapter 10, with some minor simplifications,

and the corresponding equations with the direct substitution v = u'
(part (b)) and the Kopell and Howard substitution v = Ku''(part (c¢))
will be studied also. Since Wasow does not introduce a period
correction immediately, we first derive the ODE form (l.1) by setting

S.{? Aex+ t, A = unit vector.
~ o~ ~

The original system has the form:

el O
dy _
rri £(y,€) . (45.21) (2.4a)
0 I :
e.:_‘s’ = K1y - K_IF(u) (using v = u') (2.4b)
.d._‘l = .y
d3
e% = Kl - F'(u)(F(u) +ev) (using v = Ku'')  (2.4c)

Here in (2.4a), the 1dentity matrices I are assumed NxN and y 1s a

2N~vector; u,v are N-vectors. The reduced system

0 ©
dyO

dt

f(yo, 0) (45.22) (2.5a)




-1 -1

0 K VO - K F(uo) (2.Sb)
“
ds Yo

0 = K—lvo - F'(uO)F(uo) (2.5¢)
du

0
T Ty

is assumed to have a T-periodic solution yg(t) (or U(£), V(3)), and

the Jacobian matrix

Alt,e) = fy(yo,e) : (2.6a)
U ke

A(3,¢) = (2.6b)
1 0 '
[ ~1
K "= F'(U) -(F'F)' (V)

A(S,€) = (2.6c)
| el F'(V)

is to satisfy Assumption I (Wasow, p. 289, with s = 2), which means in
this context that the first N rows and N columns of A(t,0) have a
nonvanishing determinant for all t-values in question (in (2.6b,c), this
means K1 1s to be nonsingular, which it certainly is). Since the
period of the perturbed solutions generally depend on &€ , a change of

variables

t (or5) = " ¢ (45.27) (2.7)

3 T




18 made, with 7(e) to be chosen so that all solutions are to have

period T with respect to 7 . The new equation in 7 1s then

€1 O
%-tv- = ”—(-%2 f(y,e) (2.83)
0 1
e - "‘———(;) ]_x’lv - K-IF(U)] (2.8b)
du n(€)
a T 7T Vv
€ g{; = "(GT) [x"lv = F'(u)(F(u) + V)] (2.8¢)
%% - "(;) [F(u) + v].

(Incidentally, for actual computation t or 5 = T/Tr(e) would be
better, since W(€) would then occur on the left side of the equation,

multiplying fewer terms.)

Introducing y = yo(¥) + z(¥) (or (u,v) = (U(T) + w, V(1) + z))

an equation for z (or w,z) results:

-

: - €l 0 el 0 dy \
: dz 04{,/n(e)
} Frde f(yo,e) - f(yO,O) - e +K T l/f(yo,é)
0 I 0 1
é N(é) £ ( O’E) (;) (f(y0+z,6)-f(y0,€)—fy(yo,e)z)
.ea('r,e)+("(fr) - 1) f(yo,e) + W(E) f (yo,e)z + "(e) g(7,Z,€)

(45.30) (2.9a)

P N W




! xlrrml] 2 K~ LR CU+w) -F(U) ~F ' (U)w)

ni(e) n(e)
* T T
1 0 W 0
€1 0}]dz/dr —F'(U)V- K’lv-F'(U)(F(U)+eVﬂ
- +(EQ%1 -1 (2.9¢)
0 TI{|dw/ar 0 ' F(U)+ev
K ~eF'(U) —(F'F)" (U)+eVr (D) | 2
+ﬂ(e)
T
€ F'(U) w
d
[ —F ' (Uw) (F(Uw)+ €(V+2) )+E T (U) (F(U)+€V) |
+F' (Dewt(F'F)' (V)w-€V-F'(U)w
n(e)
+ =5 .
F(U+w)~F(U)-F' (U)w J
Substituting

z(t) = 5:: yn<¢)e“ (2.10)
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into (2.7) gives a sequence of linear equations for the Yne The

coefficient matrix for these linear systems is given by (using the

notatfon of Assumption (B), p. 314):

}
-
' . Ay (1) A} 50N
A(T,0) = s (2.11a)
LAzw('r) Azzo('r)
FK-I —K-IF'(U)
A(Y,0) = , (2.11b) _
I 0 j
L J i
KL ~(F'F) " ()] :
A(r,0) = . (2.11¢)
0 F' (D) i

The linear equations for the 1y, are (splitting vy, dinto two

N-vectors y = (yﬁl), in))):

0 = AIIO(T)yil)+A120(¢)yi2)+;§l) (2.12)

: (2)
i dy, (1) (2), £2), ()
ar T ATy ATy +¢é ouf 0,

n= 1,2,...,

where the /Kn represent preceding known terms.




Wasow notes that, assuming the homogeneous linear system has a

single periodic solution, p, 1s uniquely determined by the require-
ment of periodicity for y,, and that a formal series solution can be
generated. As to the validity of the formal series as a representation
of the real solution, Wasow says (p.324);
"It remains to show that there exists a true periodic
solution 2z and a corresponding period 7(€) that - 4
have these series as asymptotic expansions. We shall
omit these arguments. The proof can be patterned

after the nonautonomous case by ... .

Roughly speaking, the proof would be to treat (2.9) as a nonautonomous
equation (containing the initially unknown function 77(€)) and proceed
as 1n the nonautonomous case. (It would be necessary to use assumption
(B*) of p.322:

(a) As €0%, the angles of the unbounded eigenvalues of

€l O
A(r,€) do not tend to +T/2 ;
0 I
dx -1
(b) The Floquet system ar [Azzo(r)-AZIO(T)AllO(T)AIZO(T)]x

has exactly one characteristic exponent which is an integral

multiple of 271 .)
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As already noted, however, Wasow only claims the formal expansion for
the nonautonomous case to be an asymptotic result. We conclude that

. once the details have been supplied for the remainder of the proof in
the autonomous case, the result is only the asymptotic validity of the

expansion (2,1C) as €->0%, and in particular, the convergence of the

series (2.10) is not claimed.

- e -

Y




dimensional vectors with components

T

DIRECT EXPANSION WITH PROOF FOR PERICDIC TRAVELING WAVES

This section constructs a convergent series expansion for periodic
traveling waves of (l.1), thereby giving a new proof of their existence
(originally shown by Kopell and Howard's iterative construction). The

formal expansion is given first to motivate as much as possible

assumptions and lemmas. In this section, wu,v,u;,vg,... will be N-

u = (u(l),u(z) U(N));

pesey

F,G,... will be used for both vector or matrix functions. Exceptions

to this rule will be obvious from context.

Substitution of § =V€A.x + t, A = unit vector, and u = u(s)
~ e

into (1.1) gives

2
-— = F(u) + K du , K = positive-definite matrix. (3.1)

ds a5

For & = 0, the system has the limit cycle solution u = U(§) with
period T. Following Kopell and Howard, we introduce v = Ku'' and

rescale the independent variable by 5 =7/g(€):

pd—; = F(u) +ev (3.2)

e,,ed—v = K-lv— F'(u)(F(u) +€v) ,
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where A(¢) 1s determined by requiring the solution to have period T

in § . Expand:

Ale) = f:,sne“, (3.3a)
n=0
u u
= ZE: { e, (3.3b)
v n=0 !v
( n

yen, (3.3¢)

F(u) = F(uo) + F'(uo)(u-uo) +:éipn("0’“l"‘°’un—l

F'(u) = F'(uy) + VoF'(up)(u-ug) + é;; F;(uo,ul,...,un_l)é“,
F'(u)F(u) = F'(uo)F(uo) + (F'F)'(uo)(u-uo) + 2{: Gn(UO’u1’°"’un-1)En

n=1

Here u,,v,,F(u),F'{u)F(u) are N-component vectors; F'(u) and

V:F'(u) are NxN matrices. Although F, = F!'=G =0, these terms

1771 1
are retained in the expansions for notational convenience in the formal

\ manipulations below.

The notation used in (3.3) is simpler than that of the expansions
of N-component systems 1n Appendix II, In Appendix II, however, the

expansion was in terms of the N-1 expansion parameters

E'(elveZ:---,eN-l), while here only one expansion parameter

€ 1s used. Required properties of the terms in the expansion will only




be briefly given below, since these properties have been discussed in

some detail in the more general expansion of Appendix II.

Substitution of (3.3) into (3.2) gives

T

) n du {2-

2 > A —d-f;l et = Flug) +/_ [F'(updu +F_(up,u),000su _1)15“

n=0 \m=0 n=1 n n i
+ 22; v En+l :

n=0 n

i” a dvn n+1 — -1 n
ZZ: /5n—m dar € =21~(K vn)6 _F'(UO)F(UO)
n=0 \m=0 n=0
- =
_ RN n_ . _n+1
g;;[(F F) (uo)un+Gn(u0,...,un_l)]€ ﬁ:bF (uo)vnc

0 n 2
- E ; ‘7, A ] "I
n=0'(m=0( g (UO)um+l+Fm+1(u0"'"um—l))vn")e .

The first of these equations ylelds

duo
,GC I = F(UO) (3.4a)
du du0 n-1 dun—m

N o - - § DM
ﬁ% gt = F (uo)unﬂ"n(uo,ul,...,un_1)+vn_1 /% T é:iﬂn a

n> 1.

This equation will determine wu,,f, from preceding functions in the

, usual way "'/6n by an orthogonality condition and wu, to be
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periodic. To determine v, we mix up the terms of the second system,

defining v, by:

dvy 1o 1
By —gr = Te & ~F' vy - ZF'(up)Fluy), (3.4b)
dv, 1 -1 1
—_— = - -F1 - = (] v
ﬁ% ar [€ K "-F (uo)]Vn €IF F) (uo)un+Gn(u0,...,un_1)]
n-1 dv n-1
no_5

-2_ B ar

St [
(V-F (uO)um+1+Fm+1(uO""’um))vn—l—m'

]

=0

=]
1

o

8

This equation determines v, from wu,,f;, and preceding quantities.

At first glance, it seems rather startling because of the presence of
the 0(1/€)-terms, but -~ incredibly enough -~ the v,'s remain O0(1),

as shown by Lemma 2 below. This particular matching of terms is exactly
the trick necessary to get a convergent series. Notice that this
expansion is completely different from Wasow's expansion, as can be seen

from comparing (3.4a,b) with their 0(l/&)-terms to (2.12).

The two assumptions required for the proof are essentially the
same as used in Chapter TII -- existence of a stable limit cycle and
analyticity:

Assumption I. The kinetic system u'=F(u) has a limit cycle

solution U(T) with period T. The limit cycle is
stable and the variational equation about the limit

cycle has distinct characteristic exponents.
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Assumption II, F(u), hence F'(u), *'(u)F(u), are analytic at

each point u=U(T) of the limit cycle.

The first assumption says the variation equation x'=F'(U(T))x

about the limit cycle has a fundamental matrix of the form

X(*) = P(M)exp(DT), where P(T) is T-periodic,

D= diag(Al,Az,...,AN) with Al =0 and (3.5)
Re(A;) < =4 <0 for 1= 2,...,N.
A consequence of Assumption IT is that a single majorant series applies

to the totality of components of F(u),F'(u),F'(u)F(u) when expanded

around an arbitrary point of the limit cyecle wu=U(7¥). That is,

there exists constant M, R > 0 such that (3.6)
if \] 1
(1) £f(u) 1s any component of F(u), F'(u), or F'(u)F(u),
(2) u, 1s any point of the limit cycle v,
(3) f(u) 1is expanded about u, to give
[ -]
- m m
o -5 T G ()
n=0 \m.+...+m,=n 1°°°"N
1 N
then ‘Am o ‘ 5_—§ .
1°° T R"

Equivalently, all choices for f(u) and ug have a common majorant

series

N ARONOI
M TT |1 - — .

i=1 R
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The majorant series of (3.6) enables us to obtain bounds on nonlinear
terms In the recursion (3.4). Again let f(u) be any component of
F(u), F'(u), or F'(u)F(u) and ug be any point on the limit cycle

U(T). Define functions f (ug,uy,...,uq-1) by

m .
u = Z,: unen s (3.7a)
n=0

o]
f(u) = f(uo) + f'(uo)(u-uo) + %;%fn(UO’ul""’un*l)en'

(Here f1(ug)z0.) Also, for the scalar variable S, define

S = Z S0 (3.7b)
n=i
-N o
s _ MN M n
M- = M+R"3+Z"—n¢'n(51’x2"“’$n—1) .

n=1 R
(And ‘¢1 = 0.) The functions fy satisfy:

each fn(uo,ul,...,un_ ) is a polynomial in the components of

1
(3.8a)
Upseeasu with coefficients depending on £ and uys
each f, satlsfies the homogeneity property
f (u,,du dzu . dn—lu Y =& (U0, eeesu ) (3.8b)
n 0’1t T2ttt n n 0’1’ *Tn-1

for scalar « .
Similar properties hold for the ¢n- From the definition of the f,
in (3.7a), the majorant series in (3.6), and the definitfon of @ 1in

(3.7b), it also follows that




2o i M -

=

S e g

256
i
for |ul =" o},
M
LE Cugoupeensu ) '525 g ol ful, oon, lu 1) . 3.80)
Therefore, 1f we introduce the vector norm
i
Hu 1= (5% oerer 1uP 1, (3.9a)
and the compatible matrix norm
sup sup éi '
Ham |} = Gy ocrr 2 la 0 I, (3.9b)

then —— with f any component of F(u), F'(u), F'(wWF(u), and uy any

point of U(TY) -- we have

sup M
ocrer | Ealugrupaeesaug ) 1< - g dbo s ety ey Ha 1D
(3.10a)

Consequently, if ug 1s any point of U(T),

||Fn(u0""’un—l)|l’ |‘Gn(u0,...,un_1)ll S-—g ¢g('|ul lL...,llun_l ,b
R

(3.10b)

T O I o A @ L KN A | R | DR
R

SR




We now glve two lemmas relating norms of solutions to norms of
nonhomogeneous terms in the ODE's of (3.4). The first lemma is for

(3.4a); the second for (3.4b).

Lemma 1., Let the matrix A(t) have period T and the Floquet system

u' = A{t)u have a fundamental matrix P(t)exp(Dt) satisfying (3.5).
Let pi(t) be the first column of P(t) (rthat is, p)(t) 1is a

periodic solution of u' = Au). Then:

(a) The equation u' = A(t)u+b(t)+cp;(t) with b(t) T-periodic

257

has a periodic solution for exactly one value of ¢, and for

this value ‘c lg_llP'WI ll H‘ H

{b) For this value of ¢ , a periodic solution wu(t) can be

chosen with

] < el sl 1) 1),
S 1 e a ot 1T7) + 2n Al sl e D 1l

Proof: The general solution can be written as

t
u(t) = P(t)cxp(Dt)[; ﬁjr exp(—Ds)P_l(s)(b(s) + cpl(s))ds] .
0




W gy

o et

T
9> %

Setting P—1= [ql,qz,...,qN]T, so the rows of P-l are the vectors

the integrand becomes

]

qf(s)b(s)+c

exp(—Ds)Phl(s)[b(s) + cpl(s)] exp(-Azs)ng

TN

exp(-ANs)ngJ

A necessary condition for a periodic solution is that the first

component be periodic, which requires

T
= _.lU/P qf(s)b(s)ds , 50 |c| 5_||P—1|| |k]|.
0

¢ T

Applying Lemma A of Appendix I to the remaining terms gives

t
\/f exp(—Ais)qI(s)b(s)ds = c(i)+ exp(-Ait)r(i)(t), i=2,...,N,
0

(i)(t) has period T. The constants c(i) can be eliminated

where r
by setting a(i)= -c(i), i1=2,...,N. The final result {is ‘
[ t 1
2t J\ (qf(s)b(s) + c)ds |
0 4
[ |

w(e) = B(L) Py
5 J
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Choosing a(1)= 0, we have
t
f(qf<s>b<s>+c>d <2127 (Wl T,
0
and for each r(i)(t),
t
|ri(t)|_<_f exp(A, (e=s)ag()b(s)as < I127 | {14 T,
0
since Re(A;) < 0. So
Wall < ariietl [Fe7) 11al)
and from the equation itself
WS 1< cial cnfbel] e+ v flell 112781 111,
Q.E.D,
Lemma 2. (Kopell and Howard, 1973)

(a) If A(t),b(t) are T-periodic and d| Ml 2 < 1/2, where

d = largest eigenvalue of the positive-definite matrix K,

then

g—;—‘ = -61-1('1 + A(t))u + b(t)

and

has a unique T-periodic (nontrivial) solution wu(t),

ol < 2ea |l




o) |ldl <2(Waellv];
Hauwad] < (1 +2{Na|lxtveace) [ 1] .

Proof: (a) is simply a restatement of Kopell and Howard's lemma for
functions with period T instead of 2w, (Incidentally, Kopell and
Howard did not explicitly show existence of a periodic solution in their
proof, only that if one existed, then it was unique. However, existence
is an immediate consequence of their construction for the solution and
the condition on &€ .) Since their results are in terms of the Euclidean
norm || ||2 , (b) 1s a simple restatement of the results in the norm

(3.9), using the identity

Wall < Hull < I8 []ull

for N~dimensional vectors.

We now proceed with the proof, assuming that € 1s sufficiently
small that edIIF’(U(T)) IIS 1/2 holds in order to apply Lemma 2 when
needed. Equations (3.4a,b) will be solved recursively for T-periodic
functions wu,,v, while determining ;Gn by an orthogonality

condition and simultaneously constructing a majorant series for lﬂn L

Hud ] 1 vd ]

From (3.4a) we have

,60 - 1, u = ulr) . (3.11)

by W




The equation for v in (3.4b) becomes

1 -1 ' - l_ "
-d_’[’—- [EK - F (U(’l’))] VO € U (r) ’

and applying Lemma 2 gives a unique T-periodic solution vqu(T) with

vl < 2atw|]u |, (3.12)
il | < (1 + 20 16 verrcenn 1) L 1o 1)
ar < € it 'e— .

Returning to (3.4a) with n > 1, we assume A4,uy,vy, 1=0,1,..,n-1,
to have been appropriately determined. Applying Lemma 1, there is a
unique value of ,8, determining a periodic solution wuny(T), and

u;, can be chosen to satisfy:

-1 n—-1 dun—m
o <IE N E gy O+ Ly 14 L2y |
(3.13a)

-1
[ IREIETRIERT {dmo}

u
-
dr

\

}

IR I R TRIET np“u)famo}

Bedemiah.
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From (3.4b) and Lemma 2, we have

-

dv
’ m

— rn-l
el <2ad >l ) ||

n-m

}f:l_lkF'F)'(U)unﬂ;n(u ,...,,n_l)ll

n-1
+ fé—'o ||V-F'(U)um+l+Fr;+ I

L .

l(uo,...,um)vn_l_1m

dv
_n
|-

< (1 + 2N a ||k +err(u) ll) [ditto} . (3.13b)

Now to construct the majorant series. Pick a bound M such that

L (o T+ 2n ol AT 127 2/,

L+ 2fWa [T er oy 1 H e [ < e (3014)

Assume that constants Uj;,v;, i=0,1,...,n-1, have been

constructed with L61|, ||ui||, |Idui/dT|| S-Ui and ||vi||,

Ildvi/d7|| <V Notice U,,V, are easily chosen from (3.11) and

i
A
(3.12) (and without loss of generality we can assume Up,Vp < M).

For n > 1, define

N n-1 o
U =M o U, e U )+ +§;1 uu_ -




-
-

e n-1 1 (a M 1
Vn = €M Z__Un_mvm 'g +LMUn + —1:1 ¢n(U1,.. .,Un_l) 'e"' (3.15b)
m=0 R
A rl:_l NM
M AR Yy s § LRI RS

e

From (3.10b), (3.13a), and (3.15a), it follows that lﬁnl, "uJ] ,

lldun/d-rH £ Uy From (3.10b), (3.13b), and (3.15b), it follows that

Wl Hav sad] <v .

To show convergence of the series (3.3), it is only necessary to

show convergence of tha majorant series

) )
A A -1 A
ue) = L€, V) = Lo ol (3.16)
n=1 n=1 n’ :
for € sufficiently small. Multiplying the equatious of (3.15) by f
€1, n > 1, notice that: ﬂ
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L n
-1 1 A
Z; ( ”m)€n = 1=V
n=1 \m=
i

o n A -N A9

1 n-1_ 1 il - e_q) 1y €U
ZI(Z = ¢m(U-,...,Um_l)Vn_m>E =z (Vg+ev [( %) 1N RJ
n=]1 \m=1 R

A

From (3.15), (3.16), (3.17), we have a set of equation relating G,V,G:

A ~—N o
A MM €U el 4 T e
) - [(1 __R> 1-N R] + MV teV) + Me (3.18)
A AA A AQA A 1 éﬁ N Efl_‘
= A - - — - - —_—
v MU(VO+eJ) + MU+ MM [( R) 1 - N Rj
A2 : A =N A
M€ A A A eV ey
+ e U+ MMV hev) [( —E) 1 -N TJ .

These two equations have the form

A A A
p(U,V,e) = U - Mvo + 0{e) = O

o

~
e
<
m

~
[]

A A A ~
—M(V0+M)U+V+0(€) = 0.

A A A
Since P,Q are analytic functions of U,V, at MVO,MZVO(VO+M),O
and since the Jacobian of P,Q with respect to U,V does not vanish
at this point, then the Implicit Function Theorem for complex functious

A ol
gives that analytic functions U(€), V(€) exist around € = 0. That Is,

the majorants (3.16) converge for &€ sufficiently small.




APPENDIX 1

LEMMAS A, B, C, AND D

The following four lemmas are used repeatedly throughout this
thesis, and it is useful to collect them in one place for easy
reference. Their frequent use also suggests giving them special names -

A, B, C, D - distinct from the numbering system employed in this thesis,

The first lemma is basically concerned with the result of

integrating an exponential against a periodic function.

LEMMA A. Let f(t) be Cl, periodic with period T and with mean

value

f = = f(t)dt;

= e

S~~n

define

t
F(t) =_/r exp(ps)f(s)ds, p complex.
0
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Then (n = integer):
2rin ‘
(1) 1f p = D then F(t) = ct + g{(t), where g has period T
and c¢ 1is a constant;
(2) 1£ ¢ # 2”;“ , then
(a) F(t) = exp(pt)g(t)-g(0), where g(t) has period T
- 1 -
and g = — f;
p
T
1 .
(b) g(0) = exp(m_/o‘ exp(ps)f(s)ds;
1/2 1/2

T
+ @
sup 1 2
(o, kol < 'Tfé kool %as f\:o) 2 <2rrn >2
(Reg)™+ (~— -Imp

1

(3) if g # 2¥in, then x' +tex = f(t) has a unique T-periodic

solution and it is given by g(t) as defined in (2)3

(4) 1f p is real, f(t) > 0, and f(t) # 0 for some t, then

in (2), [ <0 (>0) implies g(t) <0 (>0) for all t.
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PROOF:

(1) Immediate.

(2) Integrate the (absolutely convergent) Fourier series termwise:

+o [t
I _ 2wins)
F(t) = L_-b/q exp(ps)an exp( -—ﬁf—~)dg
“=aVQ
+ @ a [’
n 2Win\ l
2 -mr_irzf""((p' ) e) - g
£
to a
— 2min
= exp(At) |, *‘**%ﬁ{; Xp ( qln - g(0).
- /5__.1‘__
Existence of g(t) and g = % f follow from this formula.

(2¢c) follows from

lao] < ) 1 f/ﬂ F\m J—1 \1/2
() < a ——5—1| < a ’
8 = 4| 40 2¥1n —t\A n / k l,@_ 2;r1n r/

and Parseval's Theorem. (2b) follows from exp(pT)g(T)-g(0)=F(T)

and noting g(T)=g(0).

(3) By direct calculation,

(4) 1f B < 0, notice F(0) =0 and F 1increases to F(+w =

positive number = -g(0). So g(0) < 0. If g(tg) =0 for
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some tg > 0, then F(tg) = -g(0), so F(t) = -g(0) for
t > tg, forcing the periodic g(t) = 0, contradicting g(0) < O.

So g(t) <0 for all t. Similarly for p > 0, using t3-w.

QED.

In practice, some awkwardness can occur in explicit numerical
calculation of the periodic function g(t) from £(t) in Lemma A.2.

Here,

t
g(t) = exp(-pgt) | C +.)r exp(ps) f(s)ds| , (1)
0

where f{t) will be a T-periodic function, usually known only in
tabulated form from other numerical work, and C = g(0) is found

without difficulty from Lemma A.2b.

Equation (1) as it stands involves multiplying exponen.:ally large
and exponentially small quantities in t , and as the numerical
integration is carried out over one period [0,T), serious errors can
arise even for moderate values of lPT', say lpT|/v 20, If 08 > 0, then
a stepwise Integration based on

t
g(t) = C exp(-pt) + J/-cxp(g(5~t))f(s)ds (2)
0

works well; but if B < 0 — which 1s typically the case in almost all

calculations of this sort in the thesis -~ this expression is the
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difference of two exponentially growing quantities as t increases and

again large errors occur.

For p < 0, these difficulties are overcome by backwards
integration (which is possible because periodicit-— means g(t) on
[-T,0] gives g(t) on [0,T)]): specifically, set gn = g(~-nh) for

some step size h = T/N and use

go = C’

nh

g, = exp(ph)gn_1 -{(-1)heXp<p(nh—s)> f(-s)ds, (3)
n-

evaluating the integral by any desired scheme (in fact, in Chapter III,

an extrapolation scheme -- for which periodicity is essential -- is used

to give high accuracy and high efficiency in the repeated calculation of

integrals of the form (1)),

For reference, the standard result on solving a non-homogeneous
system of linear differential equations in terms of the homogeneous

solutions 1is given, as well as associated results of particular use in

this thesis.

[
; O mr ~ow g
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LEMMA B.
(1) Let X(t) be the fundamental matrix for the system of

differential equations x' = A(t)x. Then y' = A(t)y + b(t)

has the general solution

t

y =X(t)| C +f £ 1(s)b(s)ds ,
‘o

C an arbitrary co stant vector.

(2) (Abel's Identity) Let X(t) be the fundamental matrix for

x' = A(t)x and W(t) = det(X(t)). ‘Then

t

w(t) = W(to) exp'/r Tr(A(s))ds .
t
0

(3) (Floquet's Theorem) Let A(t) be T-periodic for the system

of differential equations x' = A(t)x. Then the fundamental

matrix can be written in the form

X(t) = P(t) exn(tB) ,

where P(t) has period T and B 1s a constant (possibly

complex) matrix.

PROOF: (1), (2), and (3) are all standard results; sce Coddington and

Levinson (1955, Chapter 3) or lefschetz (1977, Chapter 3). Q.E.D.
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Notice that if B is reduced to Jordan canonical form by

J = C1BC, then X(t) = P(t)exp(tB) can be rewritten as

. X(t)C = P(t)C exp(tl]),

giving a fundamental matrix as a periodic matrix multiplied by an

especially simple exponential matrix.

s, i Ut o - oS

Floquet's Theorem arises in discussing the kinetic system (I.1.2),

i

which Is assumed to possess a stable limit cycle with period T. The

variational equation about the limit cycle 1s a Floquet system

2 e W

x' = 3'(2&))3; (&)

21 ¥ 2

notice that U'(t) is always a solution, and the assumption of
~n
stability means all other solutions of (4) decay exponentially.

Equivalently, the Floquet exponents (eigenvalues of the matrix B in

N e ey

Lemma B.2) include O once and the other exponents all have negative real

part.

The N-component system (4) occurs in Chapters III and VI; most
work is done on the two-component form of (4). 1In this case, the
standard notation will be that of the kinetic equations of the two-

component system (I1.2.1), namely,

r——

u' = F(U)V)

(5)

v! = G(u,v),
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which are assumed to possess a stable limit cycle U(t), V(t) with

period T. In this case the variational equation about the limit cycle

is the Floquet system

x! Fu(U(t),V(t)) FV(U(t),V(t)) x Fl(c) Fz(c) X
= (6)

y' Gu(U(t),V(t)) GV(U(t),V(t)) y Gl(t) Gz(t) y

which immediately has the periodic solution (x,y) = (U'(t),v'(t)) and,
by the assumption of stability, an exponentially decaying solution. For

computational purposes these results are summarized in precise form:

LEMMA C. The system {6) has a fundamental matrix
(1) | U'(t) exp(~pt)T(t)

V'(t) exp(-pt)V(t)

where U',V' 1s the derivative of the limit cycle and U',V',

A AN
U,V are real, T-periodic functions;

(2) T
1
- = .T_'é (Fl(s) + Gz(s))ds ;
(3 | o) -V () ut(e)
V(t) u'(e) vt (o)

where A(t) 14s a T-periodic function determined (up to

multiplication by a constant) by




SUENGS [(u'(c>>2+(v'<n>>2] = A(0) [(u'(on2+<v'(0))2]

(5)

PROOF:

(1)

(2)

(3)

4,

t
exp f (F (s) +G,(s) +p)ds ] ,
0

and B(t) 1is the unique T-periodic solution to

At)
[CUt(£)) 2V (L))

| = v 2_ ' 2 - 1yt
B'-pB 2 |:(GI+F2)((U ) 5= (V) )+2(6,~F U v] .

U',v' 1s immediately a solution and the second solution has
the form of an exponential multiplying a periodic function by

Floquet's Theorem.
Follows directly from Abel's Identity.

The periodic part of the second solution is decomposed into a

sum of periodic vector functions tangent to and normal to the

limit cycle, a useful formulation taken from Halanay (1966,

EYOR

Chapter 3).

(5) These follow by direct substitution of {3) into equation

(6), separating components, and using the fact that A(t) and

B(t) must have period T. Q.E.,D. 4




In the above Lemma, the Floquet exponents of the system are O

and ~p and ra> 0 must occur because the limit cycle 1s assumed
stable. Diliberto (1950) has made the solvability (reduction to a
quadrature) of the variational equation of a two-component system the
basis of several stability results on trajectories, and Lemma C appears
in his work in the form of the solutions of the variational equation
about an arbitrary trajectory, while here the trajectory is taken to be

a limit cycle.

The important point of Lemma C is that once the stable limit cycle
—~- one of the easiest objects to compute numerically -- is found, all
solutions of the variational equation can be found either directly or by
a simple quadrature. The most awkward function, perhaps, is B(t) in
Leuma C.5, which would be calculated as the periodic solution given by

Lemma A.3.

The preceding Lemma calculates the solution of the variational
equation; the following Lemma gives information in solving the
nonhomogeneous variational equation, vhich will occur repeatedly in

various serles expansions about the 1l .mit cycle.

We consider the following general nonhomogeneous equation:

-

F](t) Fz(t) X bl(t) ygr(e)
= +
Gl(c) Gz(t) y bz(t) v'(t)

+
>

(7)
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LEMMA D:

(1) 1f A =0 in (7) then the general solution is

* x U'(t) exp(—pt)ﬁ(t)
Ag y vi(t) exp(-Pt)G(t)
i C1 t V(s) -U(s) bl(s)
: +.}f ds .
c, o ~exp(ps)V' (s)  exp(us)U'(s)] | b, (s) utg-v'o

(2) 1f by(t),by(t) are T-periodic in (7), then there is a
unique value of A such that a T-periodic solution exists. :
This T-periodic solution (x(t),y(t)) is unique up to an
additive multiple of (U'(t),v'(t)) (i.e., (x,y) is a
solution implies (x+aU', y+aV') 1is also a T~periodic f

solution for arbitrary constant a).

PROOF:
(1) Is simply Lemma B.1 applied to (7) and using the fundamental
matrix of Lemma C.l. The results in (2) follow by direct

calculation, given here for reference. First, the general

solution (using tg = 0) is
- xT —U'(t) exp(—rt)ﬁ
= (8)
Y| LV'(t) exp(-rt)v |
o R " s
C, t V(s) -U(s) bl(s)+AU'(s) 7
ds *
+ .
C2 0 —exp(rs)v'(s) exp(ps)U’(s) bz(s)+AV'(s) Urv-v'a




e ——— e e e .

Using Lemma A, define

£ Gbl-ﬁbz
f ~—r——x]ds = h1t+h(t) ’ (9a)
0 \u'v-v'y
£ -b V' +b, 0"
-/r exp(ps) ————=— ds = -k(0) + exp(ptik(t), (9b)
0 u'v-y'uy

where hj, h(t), k(t) are uniquely determined and T-periodic.

Equation (8) then becomes:

x u'(e) T(e)
= (C1+ At + hlt + h(t)) + “ «Cz— k(O))exp(*yt)+ k().
y v'(t) v(t)

Consequently, to obtain a T-periodic solution, it is necessary to choose

(using Lemma A)

’I‘ A N
1 bIV"bZU
A = ~h = ———f ———ds . (10a)
T oy
0 u'v-v'u
. o b,U'~b V'
c, = k(0) = T J/. exp(ps) — ds . (10b)
2 exp(PT) 1 0 I uo-v'
The T-periodic solution is then
A ~N
ur(e) u(t)
= (C1 + h(t)) + k(t) . Q.E.D.

V' (t) V()
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NOTE: One way of uniquely specifying (X,¥) would be to require

T
. f (X(s)U'(s) + §(s)V'(s))ds = O , (11)
0

which clearly determines C; uniquely.

PPy ————— ez ——- o ot

~

T o g
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APPENDIX II

THE EXPANSION AND PROOF OF CONVERGENCE IN THE GENERAL CASE
FOR CHAPTER III

This section discusses the general case of (III,l.1), constructing
the expansion and proving its convergence. For clarity, the construction
is made exactly analogous to the two-component case of the second
section of Chapter 1II, equations (4)-(7) corresponding to (IIT.2.1)-
(I11.2.4) and (8)-(13) to (III.2.6)-(111.2.11). Unfortunately,
however, the proof requires the use of power series in several
variables, with the consequent notational mess. This section will,
therefore, begin with a discussion of notation and certain required

series manipulations.

Small letters a,u,uj,... are used for scalar constants and
functions; capital letters U,E,... for vectors and matrices. Vector
components are indicated by lowering the case of the letter and use of

subscripts: U = (ul,uz,...,uN), E = (el,ez,...,eN_l),... . Matrix

components use subscripts and superscripts: P has pi in its 1 th

row, jth column. (So the subscript convention for vectors is

consistent with column vectors.)

Small Greek letters, A, 3,00, are used for vectors with non-—
negative integer corponents; the components are written with subscripts:

q= (d),dy,...,94y). Associated with such vectors are:
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la| = 2
{0
i
A+ P = (c¢1+{a1,42+p2, ces)
(1a)
o« < [ iff di < pi for each 1,
o 1 2 M
X xl x2 cee Xy oo
In the monomial Xd, it is always understood that X and o have
the same number of components. Notice:
x4xP = xR } (1b)

o0 o) \ o0
S \ /
PRPUGREE 1h b WV D WD WD st )
n=0 [« fn Fin=0 |  kn / n=0 [¥ Fn p+i=¥

The occasional exception to these rules will be explicitly noted.

It will be necessary to form composites of power series, as in
the derivation of (III.2.5). Let f£(U) = f(uj,up,...,cy) be a

scalar function of the vector U, with f analytic. Set

E = (ej,e9,...,ey) and:
o0 1

v 2o u(NHE® (2)
n= ld Fn j

o
where U(4) are vector coefficients of the monomials E. Substitution

of (2) into f(U) gives the analogue of (111,2.5):
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A v N o
f£(U) = £(UD)) + £ _ VEUDO)) ¢ UA) E
| k1 (3a)
w e
$ D [Veu®) - v + £ (u(p): p<a)]e” !
=2 1« En
(Homogeneity Property) given K = (kj,kp,...,ky), then:
£ Py pea) = K (u(p): pe, (3b)

Here 0 = (0,0,...,0) (M components). The term f_ (U(p):p<d) 1is a

scalar function of the N-component vectors WD) for ¢ <<,

vEudy) = [g—fl—w(a)), gﬁ; <u<6)>J .
1

We shall actually substitute the series (2) into a vector function
F(U). For such a case, the properties (3) apply to the scalar

components Fy(U) individually,

The formal construction is patterned exactly on that of the third

section of Chapter III. The N-compouent system 1s
u' = FU) (4)

with limit cyrle 0Q(t) with period T(scalar), Q(0) specified. The

variational equation about the limit cycle 1is the Floquet system:

W' o= VFQ(t))W (5)

IThe terms fg should be considered as defined by this equation;
they are the analogues of the functions F, in (II1I.Z2.5).
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where VF 1s the matrix of first partial derivatives of the vector
functicn F. The fundamental matrix is assumed to have the form:

P(t) exp(-Dt) , (6)

where P(t) 1s a T-periodic matrix, with Q'(t) in the first column and

D = diag(O,Pl,}uz, ""l‘”N—l) with Re(h) >0.

It is always possible to write the characteristic matrix as
P(t)exp(Dt) with P(t) periodic and D in Jordan canonical form;
however, the real content of (6) is the assumption that the canonical
form of D be diagonal. The importance of this assumption is that
solutions of (5) can be written as products of exponentials and periodic
functions (so that Lemma A applies) rather than exponentials, periodic

functions, and polynomials.

Introducing the expansion parameters E=(ej,ep,...,eyn-1),

a serles expansion:

2 -
u(e) = 2_ YA Ulet; t) EO( (7)
=0 tﬁ#n

is assumed and substituted Into (4), The resulting equations for U(=;t)

(using .he notation of (3) are (¥ is scalar and ol = (1,0,...,0),

«? = (0,1,0,...,0), ete.):

U'(a;t) = F(U(ﬁ;t)) with solutinn U(0;t) = Q(t+4); (8a)
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ureal; &) = VRQe+ @)UY ©), 1= 1,2,..0,81;5 (8b)

U'(d; t) = VHQ&+&HK«;:)+F4UQ;cn p<a), | 4b2. (8e)

The idea is to pick the limit cycle as the first term, as has been
done, and then require all subsequent solutions to decay exponentially.
Consequently, we pick the N-1 functions U(al;t) to be the N-1

exponentially decaying solutions in (6):
i i
U(el"; t) = P (t)exp(-/uit) , i{i=1,,..,N1, 9)

(The columns of P(t) in (6) are Pi(t), i =0,1,...,N-1.)

We now show that all terms U(9;t) in the expansion can be written

in the form

U(d; £) = exp(-dp(e+HIP(; e+ (10)

where P(d;t) 1is a T-periodic vector function. Here /a is to be the
vector (/‘1’/‘2»“" -1)3 «:po 1s the usual dot produzt. The

proof is by induction on o , which is clearly possible even though the
o 's are not linearly ordered. Notice that (10) has already been

verified for || = 0,1.

For |°(|£ 2, assuming (10) holds for A<, and using the

homogeneity property of Fq s (3b), (8c) Dbecomes:

U'(5t) = VF(QUe+ UG5 E) + exp(= «plt+ HIF(P(3; t+A): a<ed. (11)




Using the fundamental matrix of (6), the solutions of the general

equation:
W = UFRQ(t)IW + exp(- «-pt)K(t)

can be written as (C = constant vector)

t
W = P(t)exp(-Dt) C+f exp(D-o(-r:I)s)P—l(s)K(s)dsJ‘ .
0

We are led to define (using Lemma A) a T-periodic vector ?q(t):

" (12)

—ﬁq(0)+exp(D- o(yI)t)%(t) =J£ exp((D- d-}»I)s)P-l(s)Fd(Pp(s):p(d)ds.

and note that we must assume Re({»i— odw)f0, i=1,2,...,N-1, hence,

the general assumption: ReQui)#Re(d-k) for all integer vectors

A ld|> 2,

Use of the general solution together with the definition of (12)

shows that a solution of (11) can be found in the form

U;t) = exp(- dp(t+ @) (et HRy(t+d) (13)
13
= exp(- dp(t+§))P(d;st+d)

with P(t)f&(t) T-periodic as claimed.

At this point, all necessary notation has been introduced, all
formal calculations are completed, and all necessary assumptions have
been mentioned. Before beginning the work on convergence, we state the

full theorem to be proved in this section.
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THEOREM 1.
Asgsume:

(1) F(U) 1s analytic at each point of the limit cycle

U=q(t), 0 t<T.

(2) In the Floquet representation P(t)exp(-Bt), P(t) T- periodic,
» for a fundamental matrix of the variational equation (5), the
E constant matrix B i{s simple and has eigenvalues:

0,-f15 oeeyPN-1), Re(py) > 0.

(3) The N-1 nonzero eigeavalues P’i satisfy

i N-1
F Re p, -l;;o(j’uj # 0 for 1= 1,...,N1

and all sets 0‘1,“2,...,d -1 of non-negative

integers with Zdi 2 2

TP

Then the solutioms U(t) of (4) can be written formally in terms of the

expansion parameters E = (ej,e2,...,eN-1) as

u(t) = ZZ exp(-d-r.t)?(d;t+¢)£d, (14)

n=0 'ot Fn

with P(d;t) T-periodic and given by (12), (13). The series converges

for |egl, 1 = 1,...,N1 sufficiently small.
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Hypothesis (1) on the analyticity of F(U) _has only been used so
far in formal calculations; 1its real importance is in the proof of
convergence. Hypothesis (2) is just a statement of the diagonalization
assumption of (6); hypothesis (3) occurred in connection with (12). The
formal calculation of (14) has been completed; all that is left to

prove of Theorem 1 is the convergence of (14).

The matrix norm
. max 3i
Haff = =2 Zj:lail.

18 used in the following discussion; for vector A, of course, it reduces

max
to " la1 l .

The first step in proving convergence of (14) 1is to obtain a bound
on the periodic coefficients P(d;t)., Consider (12) and set:

6(t) = PHORR(pst): p<o) = (g (8), ey gy(t)).

In (12) the ith component has the form (4 = 1,...,N; g = 0)

t
‘/ exp((r«i_l- d-r)s)gi(s)ds = exP((r"i-l_ e(-r:)t)?d i(t)-ll-:d 1(0) .
o ’ ?




286

A
Using Lemma A.2 to estimate Fq (t):

T 1/2
sup 1 o 1
[o,'r]I F,(’i(t) | < 'rf; |81(s) lzds

1/2
1

2 7|
| ReCpyy=eopp [+ 1502 = 1oy _y= o) |

where the key point about the infinite sum on the right side is that the

TSI

infinite sum -0 as IO( |-)+ @ , Consequently, the infinite sum can be

'E‘ bounded by a constant ap, independent of o« . Thus, noting

3 legge) | < JPl(e)Fg |,

sup @ sup
(0,1} 'F«,il £ 3 (0,1 by (o)

L3 [8‘,11".'] 1O [8‘,‘;] IF, (o5t ped |

TPy

Since ”P(d;t)l' £ ”P(t)ll |E.((t)” by (13), we finally have

[8‘:51” P;t) |1 <k [8"’$]||F4(P(p;c): p<a) |, (15)

where sup cup .

independent of o, t.




The second step in proving convergence of (14) is the derivation of

a majorant series for F(U) in a neighborhood of the limit cycle.

For a scalar function £(U), U= (uj,...,uy), snalytic at a

A
point U= A, a majorant series for f(U) at A 1is a function £(U)

analytic at A such that |B(a()| £ c(«), where B(d),C(«) are the

coefficients in their expansions about A:

£(0) -ZZ B(=)(U - A) ’ £(v) - ZZ c(«)(U - A) .

n-0°(n n-Odn

An important property of majorant series is connected with
A
composition: let f£(U) have the majorant f(U) at U= A, and let two

series be given, E = (ey,...,ey),

o0
&
U-A+ZZ UOEY Vea+/ v(eE

n=l < n n=1 ﬁl-n

such that | ug(«) | < vi(«) for the components of U(«),V(«),

|°{|2_ 1. Then, in the composites:

£(U) = £(A) + VE(A)YU()E + ZZ [Vf(A)U(e()-tf (u(p): fa<4)]E

|d |- n=2 |°( n
f(v) = T +‘Z_; TECAIV()E+ Z‘Z_: [f(A)v(«)+f (v(g): P<“>]F
3 n=2 | « n

i, dis,
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we have

| £,0(p): pea| < £vep): pad, o> 2 (16)

The inequality holds because all coefficients in £ (U(p): p <o), which
are only sums of monomials formed from coefficients in f(U), have been
replaced in %‘(V(p); p <o) by the corresponding sums of monomials
formed from the nonnegative coefficients in ?(U), and because the terms

in U() have been replaced by the nonnegative terms in v(p).

A
A vector function F(U) has f(U) for a majorant series at U=A

A
1f f£f(U) 1s a majorant for each component £;(U) at U=A.

A majorant can always be chosen in a particularly simple form. If

£f(U) is analytic at A, then

p 0 ,d (178)
f(u)-Z S aow-at - D i SCET A
n=0 | « pn n=0 | & [n au
where
e le}
9 f 9 f
“! = 0{1! d2, see dN! and o = d. o d .
v du 19u 2 du N
l 2 LN ] N

Let Ry be the radius of convergence of f(U) with respect to

ug and choose 0 < R < Ry, i=1,...,N (R,Ry scalars, of course).
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Then, by Cauchy's Integral Theorem for several variables (Cartan, 1963,

Chaptet 4)
| o £(2) dz, ... dz
B(“)BR_}Q <‘f W = —— a<+11 N«+1’
v (me)®l (z,-a,) | ...(zoa) ¥
lzi-ai| =R ‘%179 cestENTN
i.l,ooo,N
consequently, f
I B(a) | < —E;[- |z = ‘_R | £(2) | . (17b)
i‘l’.o.’N

It follows that at U=A, £(U) has the ma jorant

In the convergence proof for Theorem 1, we used a majorant serles,
independent of t, for F(U) at each point U = Q(t) of the limit .
cycle. To find such a majorant, first note that at each point Q(t),

0 t<T, there is an open ball within which F(U) 1s anaiytic. Since
Q(T) 1is a smooth mapping, the curve Q(t), 0 <t T, is compact and
can be covered with finitely many such balls. Therefore, there exists
an R > 0 such that F(U), expanded as a series about a point Q(t)
converges in an open set containing ||U-Q(t)||.$ R for arbitrary t,

0<t<T.
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Expanding F(U) around a point U= Q(t), 0t < T, gives

[
F(U) = ZZ B(«; t)(U - Q(t))“ , (18a)

n=0 |&| =n

where, by (17b),

. 1 sup
HoeGa; ol < —|°‘| | 2,-q,(t) gIF@Ilb .
R
i=1,...,N
Consequently,
Bt )} < —— | 2 _Qs?zﬂ x HF@I
J 14
i=1,...,N
0<{t<T

and the upper bound on the right exists because the supremum is taken

for a continuous function over a compact set. Therefore, there exists a

constant ¢, Iindependent of t , such that

[[BG; O] < —— , (18b)
24

equivalently, F(U) has a majorant series at each point Q(t), 0 <t < T,

of the limit cycle and the majorant

-1
N u,~q,(t)
Ty = <TT <1 ——i—%——) , (18¢)

1=}

has c¢,R 1independent of t.



These two basic points, the recursive bound (15) and the majorant

(18), will be linked together by Lemma 2 below to give the convergence
result, The proof of Lemma 2, however, will require a slight
generalization of Liapunov's Lemma (which is Lemma 1 with M=1l, see

Lefschetz, 1977, Chapter 5):

A
LEMMA 1.  Let £(u) = c(1-w/R)™, and let u = Z bee0)E™,
A| =n
E= (el, cees eM) , so that

£(0) +Z £1(0)b(e)E™
J«] =1

. .
s D2 [f(om«) + £.(b(p): p<ac)]s°‘ .

n=2 °(| =n

(19)

1t | () < k|f (b(p): p <«)|, then ZZ b(a)E® converges

n=1 |d}| =n

for HEH <d, where d depends only on ¢, k, R, N.

PROOF: From the serlies expansion (19), notice that

4 A A
?(u) - £(0) - £'(0)u ZZ £ (b(p) e <d)E .
n=2 °€
Next, noticing Z‘_—_ (o()E'( Z biet’ where b =b(1 0,...,0),
«£) =1 i=]

by=b(0,1,0,...,0), etc., consider

2 N
gluse,eense) =2 |ble, ~u +1[f<u) -£(0)-F" (O)U] = 0.
i=1
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Clearly g 1s an analytic function of wu,e and at

120028y

u,e = 0,0,...,0, %% # 0 . By the implicit function theorem

1208y
for complex variables (Lefschetz, 1977, Chapter 1l; a proof in the
simplest case f(z,w) = 0 1is in Evgrafov, 1978, Chapter 4),

u=u(e1,...,eM) exists as an analytic solution of g(u,el,...,eM)=O

in a neighborhood of the point (0,0,...,0). Substitution of
P

S o
L c(o)E

a1 [4] =

[
it

into g= 0 gives

b, |« =1,

e(d) = kE(e(p): p<d),

c(%)
and

from which c(«) Z_lb(d)| for all o follows, giving a majorant for

the b(«A)-series. Q.E.D.

LEMMA 2.
Assume:
(1) F(U) 1is analytic at each point U= Q(t), 0 <t < T, with a

ma jorant independent of t,

-1
a uy=q, (t)
tw = < [[[1- — .




s A, e Fmeinrel b} g

-

3 il N s

o
(Z)ZZ. P(c(;t)Ed with 0 t<T and E = (el,...,eM)

n=] 'O(I =n

1s a series whose coefficlents satisfy

Weesoll < 5o @ o: pall,

where the Fo arise by setting

o
U = q(t) +Z|Z-_'-_ Pl 3 ) ET

n=1 |&| =n

to give

F(U) = F(Q(t)) +Z. VF(Q(t))P(«;t)E"(

«f =1

o
+ Z:L} [VF(Q(t))P(of;t)+F°((P(fa;t): p<d)] e” .
n=2 |«| =n

o
Then,z : ‘ P(O(;t)E‘( converges absolutely and uniformly
n=1 |9| =n

on 0<t<T for HEH< d, where d depends only on

c¢,R,k,N,

PROOF:
1, 1let B(d) be n-vectors with identical

1A%

First, for |0(‘

components,

b (*) = bld) = [Sl,lgl oeca, ol .
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Substitution into the majorant ?(U) of

B = Q(t)+ZZ B(a)E™

n-l “

ol G gt e b e ot sy Sd g

gives

£8) = FaCe)) +|§|__ v8(Q(£)) Ba)E™
af =1

(20a)

ZZ [vEee)ne + Empr: p <o)]e .

n=2 d =n

’ A
The property (16) allows us to compare Fy and fg, :

p<edl] < ?d(s(p): p<d) ,

7, (pCpse):

and using hypothesis (2) of the Lemma gives

INeesol]l < K, (Bp): p<«). (20b)

Notice that

r(B) - f(Q(t)) -Z;— Vf(Q(t))B(O()E

n~1 4

(20c)

()

where ]

oN
Z |§: bEOEY .

n




A -N
If f(u) = ¢(1-u/R) °, then

A A 2
foo) = f(o)+|Z £ (0)b(x)EX

o| =1

+ ZZ % (0)b(a) + ’f‘,‘(bcp): 0 <«>]z" ,

n=2 o( =n

-N = k
e (1 _g) -1 -N% = Z|Z[fq(b(p): p<diz°‘ . (20d)

n=2 |&| =n

Combining (20a), (20c), and (20d), gives

N
f

FB(p): p <) = E,(b(p): p <)

and inserting this equality into (20b) gives

B() < K (b(R): p <A,

Applying Lemma | to the last inequality gives convergence of
Z b(et)ES for ||E|| <d, where d depends only on ¢,k,R,N, which

is a t-independent majorant for Z P(e(;t)Ed. Q.E.D.

Finally, the majorant of (18) satisfies the first hypothesis and
the bounds (15) satisfy the second hypothesis of Lemma 2, and the
absolute convergence of Z P(O(;t)Eq forces convergence of (l4). This

proves Theorem 1. .




APPENDIX III

HIGHER-ORDER TERMS OF THE EXPANSION IN CHAPTER IV

This appendix derives the higher-order terms wuj,v,,n > 3,

and gives an inductive proof of the properties listed in (IV.2,2¢c).

The terms wu,,v, are basically determined by the coefficient

of €0 in the expansion (IV.2,1d); this coefficilent is

i ] ¥ (u,v) F_(U,V) i - +(1+ Y2
“ne { u ’ v ? ] ' unl Un-1 T Un-1
= +

|

v [cu(u,v) G (U,V) ina L-vn_lq+(l—°()'72vn_l

né ’

2, :
+ Z (_“ke¢i1+(l+ ) (o VY +2v“ke'vf"1))

k+{=n-1

2 ?’ .
+k+lz=:n—1 (—vkeyﬁ o +(1-a) (vk 8\7 hA +2\7ka V/«!l )

o T o)

k+£f+m=n—-1
Z (term #1)
+(1-4) (v,  VE54 ) 1
kHitmen-1 K& %V |
Fn(UO""’un—l’vo""’vn—l)
+ (term #2).

Gn(uo'ooo,un_l,vo,-- . ’vn_l)
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The first order of business is to separate out all terms con-

taining the functions ¢n-1’ Bn-l' By induction and (IV.2.2c.6)

the terms uO’VO""’un-l’vn-l do not depend on ¢“_1; Bn-l only

occurs in 41 Vo-1° We split Term #1 in (1) into the following
parts:
(#1) = (#1a) + (#1b) + (#1c) , (2a)
(=f_, +U+OTS__ U (32(1+ T _ U (e)
(#1a) = )
(-#._1 T+(1—a()v2 gV (©)+2(1-OVFTE _ v (@)
2
_u“_l,,r+(1+es)v un_l—¢0,run_l’6+(1+a)
(#1b) =

. 2
Vo1 P +(1-a)y V-l ¢0'rvn—1 5 +(1-«)

2 K 2
(un-l ,OV /¢0+2Vun__1 6 Vf'oﬂw‘o‘ Yn-1 ,69)

2 2
(Vo1 6V Forilv ,e'V/’o*'V¢o| Vo-1,e6)




s Ta

(#1c) =

-

+ Z (-uko 5511"'( 1+ 0) (“kevz)ét +2VukG~Vfl) )

k+i=n-1
k,t#0

V- - 2 .
+k+‘1%:n-1( Vi e+ D T, 420, T

k,L#0
+(14+ ) Z Ve.-vé
e L Fevé
k,{,m#0
A\
+(1-9) v, V&.7
k+4+m=n~1 keb Fi Q;
k,{,m#0 _‘

Here ..y occurs in (#la) only; Bj.] occurs in (#1b)

only; (#lc) consists solely of known terms.

To find

substitute wu,_j),vy-y

obtaining:

the explicit dependence of (#1b) on B,_), we

as given by (1IV.2.2¢.5) into (#1l¢),
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?
(—Bn_ Pt OV°B__ -2p(1+ q)V)jdVBn_l

+;a}{"+( 14+a)( —r'l";ﬁoﬂfl V;{Oi 2))1;“_1) o)

+Qe| 74| B __ (o)
(#1b) =

2
exp(-’yo) (—B“__1 ,¢+( 1-4)V B-1" Zr.( 1~ o!)V},(dVBn_l

+;L/e(‘)¢+(1+q)(-f-$'2)!0+[~21 V;tol 2))Bn_>?/(s)

+(-0| V4| %B__ V"(6)

-

+ [¥nowm remainder terms in u sV ]
n-1’ n-1

Term #2 in (1) will now be considered. As noted above,
}dn-l will not occur in F,,Gn; however, Bpn-y will
occur in the terms containing uy_)vp-). The following

lemma gives the dependence of F,,G, on up-],vp-i:

(2b)

+Q2O+ QVETB_ +(- ++ D@2 -2d V) D) _ 367 o)

, 24 2742 S e
+HU-DVET__ +H-f +(1- OV H -2 VAT B )V (o)
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2 uet ve v

u€E ,vs= v_€ so that:

LEMMA 1. Given F(u,v), u = o
=0 n=0

-}

F(u,v) = F(uo.vo) + [Fu(uO’VO)ul + Fv(uo,vo)vllé

(-]
+ Z [Fu(UO’VO)un + Fv(uo,vo)vn
n=2
n
+ Fn(“O'ul""’un-l’ vO’vl""’vn-l)]€

then:

(a)
1 2 2
Fo(ugsty»Vps¥y) 'i{%uu(“o’“o)“1+2Fuv(“oVo)“1“1+Fvv(“o’Vo)vl~'

(b)
)

I;‘u(uO'” 81 Vore V-1
= Fuu(uO’VO)ulun-1+Fuv(u0’VO)(ulvn-1+vlun-l)+Fvv(u0’vo)vlvn—l

+ Fn(“o"“"’n—r vo,...,vn_z) , n> 3.

PROOF: For n > 2, notice

1 a\ .
Fu(uo ,vo)un+Fv(u0 ’VO)vn+Fn - (E,‘ (¥F(u,v)) L’o

e=0

-2
1 [ a\" 2 2
1 \de) (Fuue¢+Fvvee +Fuuue+2Fuvue v€+Fth )




If n=2, then (a) follows immediately. If n > 3, then Leibniz' rule

for differentiating products gives:

1
- aT[Fut otEY KGeD) [(F O HF v, )u BULREL IS N 1]

+ .00 Z[F Fuv(uev a-1 % =1 F o Ve Y n- 1] oee e

u_ u
uu € en—l € ¢n vV €

where only terms containing € —~derivatives of order n-1 or n have

been kept. Setting € =0 gives (b). Q.E.D.

Using Lemma 1 to obtain the explicit occurrence of B,.; 1in

Term #2 gives:

!-(Fuu(U,V)UI-PFW(U,V)vl YU+ R (U, W+ (U,V)v, W
Ternf2 = B _,exp(-pb)
[(cuu(u,v)ulmuv(u,V)vl)ﬁ+(cw(u,v)ulmw(u,v)vl)?r

+ known remainder terms in UgsVgseserl_19Vn .

In order to prove statements like (IV.2.2c.6) on the structure of
the terms in wu,,v,, it is necessary to know something about the
structure of the remainer terms in (#1b), (#lc), and (#2). Using
induction and (IV.2.2¢.5,6), we know the structure of the terms
UQsVQseesslUn-1sVn-1; and from this information we can

make the following observations about the known remainder terms in each
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of (#1b), (#1c), and (#2), and consequently for their sum which will be

represented by (3a):

(3a) The remainder term is a polynomial in the exponential terms
exp(-f.e) of order n-1, and can be written as:

1
Rk(‘r.E,e) |

| exp(—kr.é) ’
= T.5
k o Sk(r"\"’e)J

n-1

I where each coefficient Ry, Sy 1s T-periodic in 6.

(3b) Each Ry, S 1s a linear combination of T-periodic

terms in & with coefficients depending on the §—derivatives of

%(T,s),...,dn_z(ﬁ‘,é) , functions of ,-’KO(O,E) , and the

functions By,...,By-9 and their derivatives.

(3c) 1In particular, the RO(’T,/\?E,E), SO(’T,E,e) term is
independent of the Bj,...,Bp-9 terms and the
coefficients of the T-periodic terms are polynomials in the -

derivatives of /O('T,'é).....}'fn_p_(’r,é) and functions of

}50(0,5_); and these coefficients are such that if the - i
~ ~ 3

4 ’ !

derivatives of }50(7,5),...,/(0“-2(1’,2)')0 as T-» +w, then .|

Rg,S50?0 also.

(In regard to (3c), no By can appear in Rgp,Sqp simply because

each B, when it first appears is part of the product Bkexp(-r(-'),
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and in all operations - differentiation, multiplication, the integration

below - nothing is ever done to separate such a product.)

Using (3a) to represent the general sum of the known remainder
- terms in (#1b), (#lc), and (#2), the equation (1) can now be written,
showing the complete dependence on ¢n—1: Bp-1 as:

T r
o, P (U,V) Fv(u,vﬂ "
- (4)

Voo LGu(U,V) Gv(U,V) v

]

; r 2 : t ! .
:‘ (=g ) o HLFDY £ Ut (e)+2(1+e0 VETS U™ (e)

(= ooy 107" g V' (@)42(1-0T 75, v (0)

[ , )

(-Bn—l ’,r-i-( 1+ )¢ Bn_l—zla( 1+ «) V;KO-\, B

| 2. 2 A

g +;qz6,r+(1+d)(-/uv /0+/~2| Vp(o\ ))Bn_l)b(e)
HO+OTETB__ H(=f +(1+ ) (vz;lo-z/‘l V34 %yyp__ i)

+(1+a) V¢0| 2Bn_l'ﬁ"(e)

+

2
exp(-46) (-Bn—l a +(1-«V'B__ - 2.(1- a{)V;JO-VBn_l

o+ «)(-/.vz;ﬁof/ﬁ A 2))Bn_)3(s)

R SO S

+QU=OTEGTB__ 4= +(1- D@ H-2TA) 08 _ i)

+(1-0)| Vg B __ (6 ;?
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(F (U,VIP ((T,5,00+F _(U,¥)Q,(7,5,8))0(6)
+
(cuu(u,v)plo(w,j,s)+cuv(u,V)Q10(¢,j,e))U(e)

+ (Fuv(u,v)P10(7,§,e)+Fvv(U,v)Q10(¢,E,e))@(e)]

< 4 i BI\'].EXP(‘-}A 9)
+ (G (U, V)P, (T,5,6)4G_ (U,V)Q;(?,5,6))V(6)

/}2 2 AA A2
Fuu(U,V)l + FUV(U’V)UV+ Fvv(U,V)(V)
+ (B

+f)Bn_
A2 AN A2
Guu(U,V)U +2GuV(U,V)UV+ va(u,v)(v)

exp(—Zre)

1 1

n-1 Rk(q’E’e)]
+ J exp(-kré) .

k=0 Sk(ﬁ,i,e)
Notice the resemblance of the fjn—l and By.] terms to
A
those for }51 and Bj (or B = Bj+f) 1in (IV.2.7) and (1IV.2.8).
Applying Lemma D to (4), using the previous definitions (IV.2.5) and

(1v.2.9), and defining

T Ry(T,5,9)8(s) - 5,(7,%,9)U(s)
: : ds = h_ (1,5) , (5)
0 ~

1
T U (s)V(s) - V' (s)U(s) n-l

(6, (U,NT +6_ (U,DIP| (1,5,8)+(G (U,

3]s

T
U/; + G (U, V)V)Q,,(7,3,s)) U'(s) —=

t =((F  BHF V)P (T, 3, 8)+(F U+ 9)Q, (T, 5,5)) V'(s)

= fn-l(q’z) ’

P R
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L [T 8,00 5.9Ut(9)-v! ()R (1,59 n |
T ~ A ds = h _l(f,i) ,
0 U'(s)V(s) - V'(s)U(s) e
we finally have:
| u'(e) Uce)
= A (71,3) + B (7,5)exp(-p0) | .
an o lvr(e) o 4@
2 £
(o o HUHRDT L 4200 m Yy W #0yey (1250 8
) .
+| fCB ) =)V B, +2(8, +dl, -p(1-ah ))VEVR |
A Oexp(—r,a)
+fn—1(¢’§)Bn-l+hn—l(T’E)

P (1,5,0)
+

I
—

exp(—kPO).
k=0 an('r,j,e)J

Setting the coefficients of 8, 6exp(7p6) to 0 gives (IV.2.2¢.1,3).
The structural properties listed in (3) for the coefficients in Rg,
S0sR],S] together with the definitions in (5) give (IV.2.2c.2,4).
Setting An('r,g) =0 gives (IV.2.2¢.5,7), and (IV.2.2c.6) follows
from the structural properties listed in (3), which are not changed

under the 6 -integration resulting from applying Lemma D. This proves

(1v.2.2c) for n > 3.




APPENDIX IV

AN ALTERNATE APPROACH TO THE EXPANSION OF CHAPTER IV
FINITE SERIES FOR 6

In the derivation of the expansion in Section 2 of Chapter IV, it
should be noticed that the original expression for wuj,vy (IV.2.6a)
had the form

u u'(e)

= Al('r,;;) + eee .

v v'(e)

The function A](¢,g) was arbitrarily taken to be 0; the equation
(1Iv.2.2c.1) for ¢1 resulting from the solution for wugz,vy was a
consequence of this choice for Aj. It seems plausible that we might
just as well have set | = 0 and found an equation for Aj -- this

approach 1s investigated jn this section.

In fact, instead of taking the sequence A“(T,z) to be 0 (in
equations (IV,.2.10) and (6)) and then obtailning equations for ;{“, we
could take each ﬂ% to be 0 and obtain an equation for An. In
this way, only the finite series t+}6(¢,3) would be required for &.
However, in return for a simpler &, the higher-order terms are more
complicated. The study of these higher-order terms has not been

pursued; this section will only derive an equation for Aj; to
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11lustrate the idea. Since the equation for A; 1is not solvable and

the equation for ﬁ& is solvable, the expansion of Section 2 is

preferable.

Briefly, the expansion of this section through 0(€) is:
2
8 = t+g (1,5 +o0(e%) , (1a)

where F% still satisfies (IV.2.2b.1);

-U(e )
= (1b)
v v(e) '

u

as in (IV.2.2a);

0 v ()] [3@)] [o,oer.5.0
= Al(7,5) +(Bl(¢,§)+f(7,§)exp(-r6) ~ +
v V'(ez) ~ ~ lv(s{J QlO(T,E,e)

1
(1¢)

~

where P)g, Q)p, f are the same functicns as in (IV.2.2b), and

A1,B} are to be determined by wup,vjy;

- 2 .7 2 N~ <
Ay = (1+dhDTA 4204 +am OTA VA +g(T, DA +0(7,3) (1d)

A
where g,h are polynomials in E-derivatives of %6(?,5) such that

A
g,h?0 if the 5-~derivatives of [50('1’,5) go to 0 as T+,
I ~

1f ﬂb(T,é) satisfles periodic initial data, then its §—

derivatives decay exponentially fast in ‘ to O, as shown by Lemma 1

L fadh s
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of Section 3 in Chapter IV, so in (1d) g(W,E) and %(T,j) decay

exponentially fast in T to 0. The arguments given for (IV.3.5) could
now be repeated to show that
P
IAllz ds
0
remains bounded as T +®, 1In short, the only important difference

between this approach and that of Section 2 appears to be the difference

in solvability of (1d) and (IV.2.2¢c.1).

To obtain equation (1), all calculations of Section 2 through

equation (1IV,2,6a) can be carried out without change, Then (IV.2,2a)

becomes (1b); (IV.2.6a) becomes (lc¢) when the & -term is eliminated;
eliminating the € -term shows ;50 satisfies (IV.2.2b,1), as mentioned

in (la). It only remains to derive (1d) by considering wuj,vs.

The coefficient of €2 in (IV.2.1d) gives an equation for

ug,vy; Af ¢i = 0 this coefficient becomes (note (IV.2.7)):

u IAFU(U,V) FL(U,V) l.uz
= (2a)

GU(U,V) GV(U,V)J" VZJ

26

Ve |
26 |

2 2, l. A12
Uy~ fyr gy HIEOT U +Y /{0“1'3”?7.-“‘0%19#‘7/0' Upgp )
+
v = f v (- (T 4T v 29T+ 1A By L)
1 " For Vi 1TY FoVie Yo7V e o Viee

2 2]
Fuu(u’v)ul + ZFUV(U,V)ulv + FW(U,V)v1

1

+.l L ]
2 2 2
CUU(U,V)ul + ZGuV(U,V)ulv1 + GVV(U,V)V1




Now substitute u;,vy as given by (lc). The nonhomogeneous terms

will now contain functions periodic in & and products of exp(-,ae)

and exp(-Z/..e) with periodic functions of € . Rewriting (2) to show

terms relevant to determining A; gives:

A I N CROR N CRY

= (2b)

v ¢ (U,v) G (U,Mi|v
u v

26 2

1

+
L . . - 2 1 2 . ” [N
~A V= g A VL O A V(T A 2T TA OV T4 Zyrary |
Fuu(U,V)U'P10+FW(U,V)(U'Q10+V'P10)+FW(U,V)V'Q10
+ A
Guu(U,V)U'P10+GUV(U,V)(U'Q10+V'P10)+GW(U,V)V'Q10
t 2 14 L L 2
FFW(U,V)(U ) +2Fuv(U,V)U ARS Fvv(U'V)(V ) Af
+ 2
L 2 1 ] 2
L(;uu(v,V)(u ) +zcuv(u,v)u ARS cw(u,v)(v')
P 5
Plo(“’.v'e)
+ + terms in exp(—/cé), exp(-ZﬁB),
alo(lr’é)e)

N N
where Pjg,Qjp are known quantities, independent of A},B),
and consisting of linear combinations of T-periodic functions of &

whose coefficients are polynomials 1in the § -derivatives of ﬂ{o; in

] " 2 ] 2, TA . " 2 Tye
~AL U A UL+ O (T7A, UTH(Y p0A1+2V;.40VA1)U +{V¢0| v )‘l

itk




e Vi AR D AR it i 2o . 0 D G i o) 4 Y
-~ G Ko i B > ey 3 s 101 33 SA I ARl 5 A 0 3£ b oo L DA i A W - 1s < L g kR i, AR R 45" B -

i it
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particular, if the 3 -derivatives of ¢0 go to 0 as Tr+o, then
A A
P10,Q10?0 also. (This last property of $10 follows from

property (IV.2.2b.4) of Pyg,Q)g and the fact that:

A 1 2 2 A
PIO =3 (Fuuplo + 2FuvP10Q10 + Fvvqlo) ; similarly for Q10°)

Before applying Lemma D to (2b), it should first be simplified by
2
noticing the Aj-term can be eliminated. Since differentiating the

equation for the limit cycle twice gives:

Hol [r 2+ 2r vv + 7 (vn)?
| uu uv vv
+ b

2 2 :
G II‘ + 2G Ul‘,' } G ‘,' 3

u"'] F, F,
':

N EAESILY

we can rewrite (2b) as

1 2.1 | 1 2.
(u, - 5 AU )b F,OF, (u, = 5 AJU") :
= (2¢) :
1 .2, D S ;
(v2 -5 AU )e G, cv (v2 5 AV ) ﬁ

- L " 2 ' 2y A.o " P 20t
Mg U'= o A U+ DT A U7 4 A 427478 DU VA “ur )

. + :
3 . 2 2( ! v ! 2 “
- Ly | -d 4 ) <+ 4 - lvi 1ere i
| A V' =G A V(L= (T A V(T4 A 20 VA OV T | Y )_l ;
i
: [ ' ' v .l B
FuuU Pot Fuv<U Qo * v PIO) tFY QIO F
+ ;
' [ ' ' ]
cuuU P10 + Guv(u QIO +v PIO) + vav QlO
: ]
Plo(!r!;":’g)
+ + terms in exp(jﬁo), exp(-%ké).

(1,3,0)

Qo




In applying Lemma D to (2c), terms of ((¢) will occur;

terms can be eliminated by a conditicn on Aj.

. resulting equation, we use hj, 11, m; from (5) and define:

- .%JPT
TJo

The equation for

A .
V(s)U'''(s) - U(s)V*'''(s)
V(s)U' 1 (8) + U(s)V'''(s)

Ky ' ' 1 '
V(F“uU P10+Fuv(U Q10+V P10)+Fvvv QIO)

A
_ ' ' ' '
UG, U P g*Cy (U Qg HV Py )46 (V' Q)

AA
VP -

10 ~ Qo

e

Ay 1is then:

2
Ay = (e DVA) + 2(§+dm YV VA

A
From (3) and the properties mentionad for Py, Q19, P10»

Pad
QIO:

A A
. and that f£,h?0 1if the % -derivatives of f#g go to 0 as T+,
A

A A

these
To write this
r -
T
s
ds - 1
u-v' i
A
£(1,%)
A
h(t,%)(
~o

(4)

+ [11(‘¢07+V2¢0) +o(mlv?‘¢0 + (r1+c(sl)| V¢0| z, 'f"('r,z)];\1 +?1(¢ ,E).

we know f,h are polynomials in E-derivacives of ,ﬁb(T,é)
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