ON THE UNIMODALITY OF HIGH CONVOLUTIONS. (U)

JUN 80  P L BROCKETT, J H KEMPERMAN

F/S 12/1

UNCLASSIFIED

CCS-RR-372

END

DATE
9-80

DTIC
CENTER FOR CYBERNETIC STUDIES
The University of Texas
Austin, Texas 78712

This document has been approved for public release and sale; its distribution is unlimited.
Research Report CCS 372

ON THE UNIMODALITY OF HIGH CONVOLUTIONS

by

P.L. Brockett
J.H.B. Kemperman

June 1980

*The University of Rochester, New York

This research was partly supported by Project NR047-021, ONR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas at Austin. Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 203E
The University of Texas at Austin
Austin, TX 78712
(512) 471-1821
On the Unimodality of High Convolutions

Patrick L. Brockett
The University of Texas

and

J. H. B. Kemperman
University of Rochester

Abstract. It has been conjectured, for any discrete density function \( \{p_j\} \) on the integers, that there exists an \( n_0 \) such that the \( n \)-fold convolution \( \{p_j\}^n \) is unimodal for all \( n \geq n_0 \). A similar conjecture has been stated for continuous densities. We present several counterexamples to both of these conjectures.

As a positive result, it is shown for a discrete density with a connected 3-point integer support that its \( n \)-fold convolution is fully unimodal for all sufficiently large \( n \).
1. Introduction

The limiting distributions of properly normalized sums of independent random variables are called class L distributions, (Gnedenko and Kolmogorov 1954). If the random variables are identically distributed then the limit law is stable. The problem of unimodality of the class L distributions, and the stable laws in particular, has only recently been decided after numerous false proofs. Yamazato (1978) established that all class L distributions are unimodal.

In view of the apparent unimodality of such limiting distributions, A. Renyi conjectured for a discrete distribution \( \{p_j\} \) on the integers that there is a number \( n_0 \) such that the \( n \)-fold convolution \( \{p_j\}^*n \) is unimodal for all \( n \geq n_0 \). In a similar vein, P. Medgyessy conjectured that for any continuous probability density \( f \) there exists a number \( n_0 \) such that the \( n \)-fold convolution \( f^*n \) is unimodal for \( n \geq n_0 \). See Medgyessy (1977) for both these conjectures.

If these conjectures were true then it would be easy to deduce the unimodality of the stable laws. Both are in fact false. We present two counterexamples to the conjecture of Medgyessy. The first is a bounded and infinitely differentiable density with the property that none of its convolutions is unimodal. We also exhibit a density on \([0,2\pi]\) which is continuous and such that each of its convolutions is nowhere differentiable. Since unimodality implies differentiability almost everywhere, this example disproves the conjecture of Medgyessy.

As to discrete distributions, we construct one which has the nonnegative integers as its support and such that none of its convolutions is unimodal.

As a positive result, we show in the final section that for any measure \( \mu \) with 3-point support \( \{0,1,2\} \) the \( n \)-fold convolution \( \mu^n \) is unimodal over the full range \([0,1,\ldots,2n]\), for all sufficiently large \( n \). We conjecture the corresponding result for any measure with a finite and connected support \([0,1,\ldots,N]\).

Already for \( N = 3 \) this is an open problem.
2. Discrete Unimodality

In the present section, we will be concerned with probability measure $\mu$ on the integers $\mathbb{Z}$. Let $p_j = \mu([j])$ denote its mass at $j$. Such a discrete distribution is called unimodal if the sequence $\{p_{j+1} - p_j\}_{-\infty}^{+\infty}$ has exactly one change of sign. A discrete distribution $\{p_j\}$ is said to be strongly unimodal if $\{p_j\} * \{q_j\}$ is unimodal for any unimodal discrete distribution $\{q_j\}$ with connected lattice support. As was shown by Keilson and Gerber (1971), this happens if and only if $p_j^2 \geq p_{j-1}p_{j+1}$ for all $j \in \mathbb{Z}$. For instance, the Poisson, geometric and binomial densities are all strongly unimodal.

Counterexample I.
Consider integers

\[ a_0 = 0 < a_1 < a_2 < \ldots \text{ with } a_{h+1}/a_h \to \infty. \]

Let $X$ be a random variable with range $A = \{a_0, a_1, a_2, \ldots\}$ and put $p_h = P[X = a_h]$, thus, $p_h > 0$ and $\sum p_h = 1$. Let $X_1, X_2, \ldots$ be independent copies of $X$ and $S_n = X_1 + X_2 + \ldots + X_n$. Observe that the range of $S_n$ includes $a_0 = 0$ as well as arbitrarily large positive integers. Hence, $S_n$ can have a discrete unimodal distribution only if $P[S_n = x] > 0$ for all integers $x \geq 0$.

Claim 0. Let $h$ and $x$ be fixed positive integers such that $a_{h+1} > na_h$.

Then

\[ P[S_n = x] = 0 \text{ whenever } na_h < x < a_{h+1}. \]

Moreover,

\[ P[S_n = na_h] = p_h^n \text{ and } P[S_n = a_{h+1}] = np_0^{n-1} p_{h+1}. \]

Proof. Suppose $P[S_n = x] > 0$. Then $x$ must be of the form

\[ x = \sum_{j=0}^{\infty} m_j a_j \text{ with } m_j \in \mathbb{Z}^+ \text{ and } \sum_{j=0}^{\infty} m_j = n. \]
If $m_j = 0$ for all $j > h$ then $x \leq a_h \sum_{j=0}^{h} m_j = n a_h$. If $m_j > 0$ for some $j > h$ then $x \geq m_a a_j \geq a_j \geq a_{h+1}$. This proves (2.2). A similar proof yields (2.3).

To complete the counterexample, one only needs to note that there exists a positive integer $x$ with $n a_h < x < a_{h+1}$ as soon as $a_{h+1} > n a_h + 1$. For each fixed $n$ this is true for all large $h$. Therefore, $S_n$ is not unimodal for any $n$.

One may wonder whether $S_n$ with $n$ large might be unimodal at least over its support. The answer is negative in general since one can arrange that for each large but fixed $n$ one has

$$P[S_n = a_{h+1}] = n p_0^{n-1} p_{h+1} > P[S_n = n a_h] = p_h^n,$$

for infinitely many $h$. For instance, $p_{h+1}/p_0 > \frac{1}{n} (p_h/p_0)^n$ for all large $h$ as soon as $p_h = c/(h^2 + 1)$.

One may further wonder whether assuming $P[X = j] > 0$ for all $j \in \mathbb{Z}^+$ (connected lattice support) might be sufficient. The following example shows that also here the answer is negative.

Counterexample II.

Let $X_1, X_2, \ldots$ and $Y_1, Y_2, \ldots$ be independent random variables such that the $X_i$ are i.i.d. with their common distribution the same as in Counterexample I, while the $Y_i$ are Poisson variables with mean $\lambda$. Put $S_n = \sum_{i=1}^{n} X_i$ and $T_n = \sum_{i=1}^{n} Y_i$.

Let further $Z_i = X_i + Y_i$ and $S'_n = \sum_{i=1}^{n} Z_i = S_n + T_n$. Observe that $Z_i$ has the connected lattice support $\mathbb{Z}^+ = \{0, 1, 2, \ldots\}$.

Let $n$ be fixed and choose $h$ so large that $a_{h+1} > n a_h$. We have from Claim 0 of Counterexample I that

$$P[S'_n = a_{h+1} - 1] \leq P[S_n = n a_h] \epsilon_h \leq \epsilon_h,$$
where

\[ \epsilon_h = \epsilon_{n,h} = \max\{P[T_n = j]: j \geq a_{h+1} - 1 - na_h\} . \]

Let \( b_h = b_{n,h} \) denote the smallest integer \( \geq a_{h+1} - 1 - na_h \). If \( h \) is sufficiently large then \( b_h \) exceeds the mode \([n\lambda]\) of the Poisson variable \( T_n \), hence,

\[ \epsilon_h = e^{-n\lambda(n\lambda)/b_h} . \]

On the other hand,

\[ P[S_n' = a_{h+1}] \geq P[S_n = a_{h+1}]P[T_n = 0] = np_0^n p_{h+1} e^{-n\lambda} . \]

Therefore,

\[(2.4) \quad P[S_n' = a_{h+1} - 1] < P[S_n' = a_{h+1}] \quad \text{for all large} \ h , \]

as soon as \( \epsilon_h = o(p_{h+1}) \) as \( h \to \infty \), which is the same as

\[ (n\lambda) b_h^{th}/b_h = o(p_{h+1}) \quad \text{as} \ h \to \infty . \]

For large \( h \), \( b_n \geq \frac{1}{2} a_{h+1} \) where \( \{a_h\} \) and thus \( \{b_h\} \) increases faster than exponentially. It follows that (2.4) holds as soon as \( \{p_h\} \) does not decrease too fast, for instance, only at an algebraic or exponential rate. In such a situation, \( P[S_n' = j] \) increases infinitely often. This clearly rules out unimodality.

3. Continuous Unimodality

One can easily carry over the examples of Section 2 to the absolutely continuous case. A continuous density function \( f \) is called unimodal if there exists a value \( x_0 \) such that \( f \) is non-decreasing over \(( -\infty, x_0) \) and non-increasing over \(( x_0, \infty) \). The following is an analogue of the above Counterexamples I and II.

Counterexample III.

Let \( (p_h)_0^\infty \) satisfy \( p_h > 0, \sum p_h = 1 \) and let \( (a_h)_0^\infty \) be as in (2.1). Let \( f(x) \) denote the density function which is obtained by distributing the mass \( p_h \)
uniformly over \((a_h - 1/2, a_h + 1/2)\). Thus, \(f(x) = \sum_{h=0}^{\infty} p_h \phi(x-a_h)\) with \(\phi\) as the characteristic function of the interval \((-1/2, 1/2)\).

Let \(S_n = \sum_{i=1}^{n} X_i\) where \(X_1, X_2, \ldots\) are i.i.d. with common density \(f\). The density \(f^*\) of \(S_n\) satisfies

\[(3.1) \quad f^*(x) = 0 \text{ for } na_h + n/2 < x < a_h + n/2,\]

(compare the proof of (2.2)). Since \(a_h + n > na_h\) for all large \(h\), it follows that \(f^*\) can never be unimodal.

If a strictly positive density is desired such that \(f^*\) is never unimodal, one may start with Counterexample II and afterwards spread the mass \(q_j = P[Z = j]\) uniformly over the interval \([j - 1/2, j + 1/2]\).

Or one can start with \(\{X_i\}\) as the i.i.d. sequence of Counterexample I. Let further \(Z_i = X_i + Y_i\) with the \(X_i\) and \(Y\) independent, each \(Y\) having density \(g\). Thus, the \(Z_i\) have density

\[f(x) = \sum_{h=0}^{\infty} p_h g(x-a_h).\]

This density \(f\) is infinitely differentiable as soon as each derivative of \(g\) exists and is bounded. Let us take \(g\) as the standard normal density \(\phi(x) = (2\pi)^{-1/2} e^{-x^2/2}\). Then \(S^* = \sum_{i=1}^{n} Z_i\) has density

\[(3.2) \quad f^*_n(x) = n^{-1/2} \sum_{j=0}^{\infty} P[S^*_n = j] \phi((x-j)/n^{1/2}),\]

where \(S_n = \sum_{i=1}^{n} X_i\).

Let \(n\) be fixed and \(h\) so large that \(\Delta_h > 0\), where \(\Delta_h = (a_{h+1} - na_h)/2\).

It follows from (2.2) and (3.2) that

\[f^*_n(a_{h+1} - \Delta_h) \leq n^{-1/2} \phi(\Delta_h/n^{1/2}).\]

On the other hand, using (2.3),
6.

\[ f_n(a_{n+1}) \geq n^{-1/2} p[S_n = a_{n+1}] \varphi(0) = (2\pi n)^{-1/2} n^p_0 p_{h+1}. \]

One has \( \varphi(h/n^{1/2}) = o(p_{h+1}) \) as \( h \to \infty \), provided \( \{p_h\} \) decreases only at an exponential or algebraic rate. In this case, \( f_n(a_{h+1}) - \Delta_h < f_n(a_{n+1}) \) for all large \( h \), showing that \( f_n \) is not unimodal.

**Counterexample IV.**

Observe that a unimodal density function is necessarily differentiable almost everywhere. In this example we exhibit a continuous density function \( f \) supported on \([0, 2\pi]\) such that the \( n \)-fold convolution \( f_n \) of \( f \) is nowhere differentiable for every \( n \). Actually, Bogdanowicz (1965) already showed that nearly each continuous function \( f \) on \([0, 2\pi]\) has this property. More precisely, in the space \( C[0, 2\pi] \) with supremum norm the collection of \( f \in C[0, 2\pi] \) with each convolution \( f_n \) nowhere differentiable is the complement of a set of first category.

Let us now exhibit an explicit density with this property. It is based on the following result due to Freud (1962). A short proof may be found in Kahane (1964).

**Theorem (Freud).** Let \( g(x) = \sum_{k=1}^{\infty} c_k \cos(b_k x) \), where \( \{b_k\} \) is a sequence of positive integers satisfying Hadamard's lacunarity condition \( b_{k+1}/b_k \geq q > 1 \). Then \( g \) being differentiable at some point implies that \( c_k = o(b_k^{-1}) \) as \( k \to \infty \).

To construct our example, let \( f \) be a probability density on \([0, 2\pi]\) and let \( f_n \) be its \( n \)-fold convolution. Note that \( f_n \) is carried by the interval \([0, 2\pi n]\). Consider further the essentially finite sum.
Since \( g_n(x+2\pi) = g_n(x) \), one may regard \( g_n \) also as a function on the circle group \( T \) of the reals modulo \( 2\pi \). Relative to the additive group \( T \), the function \( g_n \) is a probability density equal to the \( n \)-fold convolution of \( g_1 \). The easiest way to calculate \( g_n \) is to calculate its characteristic function. For each integer \( m \),

\[
\int_T e^{imx} g_n(x) dx = \left( \int_T e^{imx} g_1(x) dx \right)^n = \left( \int_R e^{imx} f(x) dx \right)^n.
\]

In other words,

\[
(3.3) \quad g_n(x) = \sum_m (\gamma_m)^n e^{-imx}
\]

as soon as

\[
(3.4) \quad f(x) = \sum_m \gamma_m e^{-imx} \text{ for } 0 < x < 2\pi.
\]

Let us take

\[
f(x) = c_0 - \sum_{k=1}^{\infty} c_k \cos bkx \text{ for } 0 \leq x \leq 2\pi,
\]

while \( f(x) = 0 \), otherwise. Here, the \( b_k \) are as in the above Theorem. Further \( c_0 = 1/(2\pi) \) and \( c_k > 0 \) (\( k \geq 1 \)) such that \( \sum_{k=1}^{\infty} c_k = c_0 \). Thus \( f \) is a continuous probability density with \( g(0) = g(2\pi) = 0 \). It is of the form (3.4) with \( \gamma_0 = c_0 \), \( \gamma_{b_k} = \gamma_{-b_k} = -c_k/2 \) when \( k > 0 \), while \( \gamma_m = 0 \), otherwise. Thus (3.3) yields that

\[
(3.5) \quad g_n(x) = (c_0)^n + 2^{-n+1} \sum_{k=1}^{\infty} (-c_k)^n \cos bkx.
\]

Suppose \( f_n \) were unimodal. Then \( f_n \) is differentiable almost everywhere.

The function \( g_n(x) \) restricted to \( (0,2\pi) \) is the superposition of the finitely
many translates \( f_n(x + 2nk), (k = 0, 1, \ldots, n-1) \), and thus would also have a derivative almost everywhere. By (3.5) and Freud's theorem, this would imply that \( (c_k)^n = o(b_k^{-1}) \) as \( k \to \infty \).

Consequently, if we choose \( b_k = 2^k \) and \( c_k = c/k^2 \) \((k \geq 1)\) we have an example of a continuous density \( f \) such that none of its convolutions \( f_n \) is unimodal. (In fact, no convolution is anywhere differentiable.)

It is interesting to note that, for any \( \varepsilon > 0 \), one can find a density \( f_\varepsilon \) uniformly closer than \( \varepsilon \) to the standard normal density, and such that the \( n \)-fold convolution \( f_\varepsilon ^{*n} \) of \( f_\varepsilon \) is not unimodal and nowhere differentiable for any \( n \). To construct such an \( f_\varepsilon \), we start with a random variable \( X \) with a density \( f \) as outlined in Counterexample IV. Since \( X \) has a compact support, it follows from well-known local limit theorems (e.g., Petrov (1975), Theorems 7 or 15 of Ch. VII) that the density \( h_N \) of \( \sum_{i=1}^{N} (X_i - N\mu) / (\sigma \sqrt{N}) \) is uniformly within \( \varepsilon \) of the standard normal density as soon as \( N \) is sufficiently large. Since \( h_N \) is linearly related to the previous \( f_N \), this density \( h_N \) is not unimodal or differentiable and neither is any of its convolutions \( h_N ^{*n} \). Thus, the reasoning behind the original conjectures of Rényi and Medgyessy is faulty. The central limit effect is much too weak for the property of exact unimodality of high convolutions.

4. Positive Results and Conjectures

Let us now investigate what positive results can be obtained concerning the eventual unimodality of sums of independent random variables. Also in view of the counterexamples, we shall restrict our attention to an integer valued random variable \( X \) having a finite support \( A \) with \( A \subset \{0, 1, \ldots, N\} \). Let \( p_j = P[X = j] \) thus \( A = \{j \in \mathbb{Z}: p_j > 0\} \). We will assume that \( p_0 > 0 \) and \( p_N > 0 \) and further that the members of \( A \) have their greatest common divisor equal to 1.
Let
\[ f_n(j) = P\left( \sum_{i=1}^{\infty} X_i = j \right) \]

be the \( n \)-fold convolution of \( \{p_j\} \). The support of \( f_n \) is precisely the \( n \)-fold sum \( A_n = A + A + \ldots + A \) of the support \( A \) of \( \{p_j\} \). One has \( A_n \subseteq \{0, 1, \ldots, nN\} \) and \( 0 \in A_n \); \( nN \in A_n \). In order that \( f_n \) be unimodal it is at least necessary that \( A_n \) be connected, that is, \( A_n = \{0, 1, \ldots, nN\} \). One has \( A_n \subseteq A_{n+1} \) while \( G = \cup A_n \) is precisely the semigroup generated by \( A \). Hence, in order that \( f_n \) be unimodal for \( n \) sufficiently large it is necessary that \( G \) be connected, that is, \( G = \mathbb{Z}^+ = \{0, 1, 2, \ldots\} \). This rules out a situation like \( A = \{0, 6, 10, 15\} \) since in this case \( G \) has the holes \( \{1, 2, 3, 4, 5\}, \{7, 8, 9\}, \{11\}, \{13, 14\}, \{17\}, \{19\}, \{23\} \) and \( \{29\} \).

Since \( G \) contains all sufficiently large integers, one easily shows that, for large \( n \), the support \( A_n \) of \( f_n \) has only a few holes all located at the very beginning and very end of \( A_n \). One might therefore conjecture that, for \( n \) large, \( f_n(.) \) is unimodal at least over the "solid" part of \( A_n \). However, even this can be shown to be false. Because of that, we will restrict our attention to the case of a connected lattice support
\[ A = \{0, 1, \ldots, N\} . \]
That is, \( p_j > 0 \) for \( j = 0, 1, \ldots, N \) and \( p_j = 0 \), otherwise. The results so far, as well as certain numerical calculations, lead us to make the following conjecture.

**Conjecture.** Let \( \{p_0, p_1, \ldots, p_N\} \) be a finite discrete distribution with \( p_i > 0 \) (\( i = 0, 1, \ldots, N \)). Then the \( n \)-fold convolution \( f_n(.) \) of \( \{p_j\} \) is unimodal for all sufficiently large \( n \).
If $N=1$ then this convolution is a binomial law and thus always unimodal. Nothing seems to be known for the case $N \geq 2$, not even in the symmetric case.

The conjecture, if true, would have further consequences. For instance, applying it to the discrete density $p_j = c_t p_j^t$ with $t > 0$ fixed, it would follow that also $\tilde{f}_n(j) = f_n(j)t^j$ becomes unimodal in $j$ for $n \geq n_0(t)$.

For density functions we make an analogous conjecture: if $f$ is an analytic density on the finite interval $(a,b)$ with only finitely many modes, then for $n$ sufficiently large, the $n$-fold convolution $f_n$ of $f$ is unimodal over the full range $(na,nb)$.

The major result of the present section is that the first conjecture is true when $N=2$.

**Theorem.** Let $X_i (i=1,2,...)$ be a sequence of i.i.d. discrete random variables with connected lattice support $(0,1,2)$. Then $S_n = \sum_{i=1}^{n} X_i$ is unimodal for all $n$ sufficiently large.

**Proof.** Let $p_i = P[X=i]$ thus $p_i > 0$ for $i=0,1,2$ and $p_i = 0$, otherwise.

Let $f_n(j) = P[S_n = j]$ thus

\[(4.1) \quad f_n(j) > 0 \text{ for } j = 0,1,...,2n; \quad f_n(j) = 0, \text{ otherwise}.
\]

Moreover,

\[(4.2) \quad f_{n+1}(j) = \sum_{i=0}^{2} p_i f_n(j-i).
\]

Let us introduce the ratios

\[(4.3) \quad \rho_n(j) = f_n(j+1)/f_n(j),
\]

letting $\rho_n(j) = \infty$ for $j < 0$ and $\rho_n(j) = 0$ for $j \geq 2n$. Note that unimodality
of $S_n$ above an integer mode $m_0(n)$ is equivalent to $\rho_n(j) \geq 1$ for $j < m_0(n)$ together with $\rho_n(j) \leq 1$ for $j \geq m_0(n)$.

**Lemma 1.** We have $\rho_n(j+2) \leq \rho_n(j)$ for all $j$.

**Proof.** We shall proceed by induction. The stated result is equivalent to

\[ f_n(h)f_n(h+3) \leq f_n(h+1)f_n(h+2) \]

for all $h$. Since $f_n(h) = 0$ if $h < 0$ or $h > 2n$, (4.4) is obviously true if $h \leq -1$ or $h \geq 2n - 2$, and therefore for $n = 1$.

In view of (4.2), inequality (4.4) with $n$ replaced by $n+1$ is equivalent to showing for all $j$

\[ \frac{2}{r=0} p_r f_n(j-r) + \frac{2}{s=0} p_s f_n(j+3-s) \leq \frac{2}{r=0} p_r f_n(j+1-r) + \frac{2}{s=0} p_s f_n(j+2-s) . \]

We must show that (4.4) implies (4.5). Rearranging terms, we see that (4.5) is equivalent to

\[ 0 \leq \frac{2}{r=0} p_r [f_n(j+1-r)f_n(j+2-r) - f_n(j-r)f_n(j+3-r)] + \frac{2}{r<s} p_r p_s F_{j,r,j-s} , \]

where

\[ F_{j,k} = f_n(j+1)f_n(k+2) + f_n(j+2)f_n(k+1) - f_n(j)f_n(k+3) - f_n(j+3)f_n(k) . \]

Applying (4.4) with $h = j-r$, we see that the first sum in (4.6) is non-negative. Hence, it suffices to show that $F_{j,j-1} \geq 0$, $F_{j,j-2} \geq 0$ and $F_{j-1,j-2} \geq 0$.

From (4.7), condition $F_{j,j-1} \geq 0$ reduces to

\[ f_n^2(j+1) \geq f_n(j-1)f_n(j+3) . \]

One may as well assume that $1 \leq j \leq 2n-3$ so that $f_n(j)f_n(j+2) > 0$. Now, applying (4.4) with $h = j$ and $h = j-1$ and then multiplying the results, one obtains
\[ f_n(j-1)f_n(j+2)f_n(j)f_n(j+3) \leq f_n(j)f_n(j+1)f_n(j+1)f_n(j+2) \, . \]

Dividing by \( f_n(j)f_n(j+2) \), one obtains the desired result. Replacing \( j \) by \( j - 1 \), one also has \( F_{j-1,j-2} \geq 0 \).

From (4.7), condition \( F_{j,j-2} \geq 0 \) reduces to

\[ f_n(j-2)f_n(j+3) \leq f_n(j-1)f_n(j+2) \, . \]

One may as well assume that \( 2 \leq j \leq 2n - 3 \) so that \( f_n(j)f_n(j+1) > 0 \). Applying (4.4) with \( h = j - 2 \) and \( h = j \) and then multiplying, one obtains that

\[ f_n(j-2)f_n(j+1)f_n(j)f_n(j+3) \leq f_n(j-1)f_n(j)f_n(j+1)f_n(j+2) \, . \]

Dividing by \( f_n(j)f_n(j+1) \), one obtains the desired result. This completes the proof of Lemma 1.

Remark. Lemma 1 is related to the paper "A Hurwitz matrix is totally positive", by J.H.B. Kemperman, which has been submitted for publication.

It follows from Lemma 1 that \( \rho_n(j) \) is monotonically decreasing if \( j \) runs through the even integers and also when \( j \) runs through the odd integers.

As to the Theorem, it suffices to prove that, for all sufficiently large \( n \), there exists an integer \( k = k(n) \) such that

\[ (4.8) \quad \rho_n(k-2) \geq 1 ; \quad \rho_n(k-1) \geq 1 ; \quad \rho_n(k) \leq 1 ; \quad \rho_n(k+1) \leq 1 . \]

For afterwards we have from Lemma 1 that \( \rho_n(j) \geq 1 \) for all \( j \leq k - 1 \) and \( \rho_n(j) \leq 1 \) for all \( j \geq k \), implying that \( f_n(.) \) is unimodal about \( k \).

In other words, it only remains to show that, for \( n \) sufficiently large, the restriction of \( f_n(.) \) to some 5-point set...
\[(k - 2, k - 1, k, k + 1, k + 2)\]

is nonzero and unimodal about the central value \( k \). We will do this by using a local limit theorem. In the sequel, \( \mu = \text{EX} \), \( \sigma^2 = \text{Var} X \) while \( \gamma_j \) denotes the \( j \)-th cumulant of \( X \). Further, \( B \) denotes positive constant with \( B > |\gamma_3|/(2\sigma^2) + 1 \).

**Lemma 2** For \( n \) sufficiently large, \( n \geq n_0(B) \), the restriction of \( f_n(\cdot) \) to the interval \( |j - n\mu| \leq B \) is unimodal about one of the two integers neighboring the value \( n\mu - \gamma_3/(2\sigma^2) \).

**Proof.** Let \( n \) be large but fixed and let \( j \) satisfy \( |j - n\mu| \leq B \). Further put
\[\Delta = 1/(\sigma \sqrt{n}) ; \quad x = (j - n\mu)/(\sigma \sqrt{n}) = (j - n\mu)\Delta .\]

By a local limit theorem for discrete distributions, (Petrov 1975, pages 207 and 139), one has
\[\sigma(2\pi n)^{1/2} f_n(j) = g_n(x)e^{-x^2/2} + R_n(x) ,\]
where
\[|R_n(x)| \leq Cn^{-3/2} ,\]
with \( C \) as a constant independent of \( x \) or \( n \). Moreover,
\[g_n(x) = 1 + [(x^3 - 3x)\gamma_3/(6\sigma^3)]n^{-1/2} + [(x^4 - 6x^2 + 3)\gamma_4/(24\sigma^4) + (x^6 - 15x^4 + 45x^2 - 15)\gamma_3^2/(72\sigma^6)]n^{-1} .\]

Since \( x = O(n^{-1/2}) \) and \( e^{-x^2/2} = 1 - x^2/2 + O(n^{-2}) \), it follows from an easy calculation that
\[\sigma(2\pi n)^{1/2} f_n(j) = 1 - x^2/2 - x\Delta \gamma_3/(2\sigma^2) + \beta n^{-1} + O(n^{-3/2}) ,\]
where \( \beta = \frac{\gamma_4}{(8\sigma^4)} - 5\frac{(\gamma_3)^2}{(24\sigma^6)} \) is a constant.

Replacing \( j \) by \( j+1 \) amounts to replacing \( x \) by \( x + \Delta \). Therefore,

\[
(2\pi n)^{1/2} [f_n(j+1) - f_n(j)] = -\Delta [x + \Delta/2 + \Delta \frac{\gamma_3}{(2\sigma^2)} + O(n^{-1})].
\]

Here, \( x = (j-n_\mu)\Delta \). It follows that

\[
f_n(j+1) < f_n(j) \quad \text{as soon as} \quad j > n_\mu - 1/2 - \frac{\gamma_3}{(2\sigma^2)} + O(n^{-1/2}).
\]

Similarly,

\[
f_n(j+1) > f_n(j) \quad \text{as soon as} \quad j < n_\mu - 1/2 - \frac{\gamma_3}{(2\sigma^2)} - O(n^{-1/2}).
\]

We conclude that the restriction of \( f_n(\cdot) \) to the interval \( |j-n_\mu| \leq B \) is strictly positive and unimodal about the integer \( k(n) \) closest to the value \( n_\mu - \frac{\gamma_3}{(2\sigma^2)} \), with one exception. Namely, there is a constant \( K > 0 \) such that for integers \( n \) satisfying

\[
|n_\mu - \frac{\gamma_3}{(2\sigma^2)} - 1/2 - k(n)| \leq Kn^{-1/2},
\]

with \( k(n) \) as a (unique) integer, one can only say that the above restriction is unimodal about one of the two values \( k(n) \) or \( k(n)+1 \).

**Remark.** It should be noted that, under mild side conditions, the Theorem and its proof carry over to the case of independent random variables \( X_1, X_2, \ldots \) which are not necessarily identically distributed, each having either \( (0,1) \) or \( (0,1,2) \) as its support. In fact, all that is needed is that for \( n \) sufficiently large there exists an integer \( k = k(n) \) such that the distribution of \( S_n = X_1 + \ldots + X_n \) restricted to the 5-point set \( \{k-2,k-1,k,k+1,k+2\} \) is unimodal about \( k \). Conditions for this may be derived from local limit theorems for sums of independent, non-identically distributed random variables (cf. Petrov (1975)).
Acknowledgments. The research of Patrick L. Brockett was conducted while under contract F33615-78-C-0623 with the U.S. Air Force. The research of J.H.B Kemperman was supported by the National Science Foundation.

References


It has been conjectured, for any discrete density function \( f \) on the integers, that there exists an \( n_0 \) such that the \( n \)-fold convolution \( f^{*n} \) is unimodal for all \( n \geq n_0 \). A similar conjecture has been stated for continuous densities. We present several counterexamples to both of these conjectures.

As a positive result, it is shown for a discrete density with a connected 3-point integer support that its \( n \)-fold convolution is fully unimodal for all sufficiently large \( n \).
Unimodal distributions

Sums of i.i.d. random variables